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The attainment of very high efficiencies, that is overall efficiencies
in excess of 60$ to 80$ from klystrons and TWTs requires the knowledge
of accurate electron vector velocities at the end of the' rf interaction.
This knowledge is not so much of importance for the improvement or
more accurate computation of the interaction efficiency as for a realistic
and accurate treatment of the spent beams prior to and at their injection
into novel depressed collectors. Since at K-band frequencies interaction
efficiencies about 50$ for klystrons and 40$ for TWT are difficult to
achieve, application of novel depressed collectors becomes thus mandatory
for realization of overall super high efficiencies. Efforts to compute
3D electron motion in klystrons and coupled cavity TWTs are under way
at LeRC. This paper deals with the accurate computation of electron
motion throughout the output cavity of a klystron amplifier. The computa-
tion is based upon the following assumptions:

1. The beam is divided into N axisymmetric discs of equal charge
and each disc into R rings of equal charge, -27[X«>/£jA/R .

2. The velocity of each disc, its phase with respect to the gap
voltage and its radius at a specified position in the drift tunnel prior
to the interaction gap is known from available large signal one dimensional
programs.

3. The fringing rf fields are computed from exact analytical expressions
derived from the wave equation assuming a known field shape between the
tunnel tips at a radius a. (See Fig. 1)

4. .The beam is focused by an axisymmetric magnetic fields. Both
cpmponents of B, that is B and Br are taken into account. The flux
at the cathode, Yc , is available with the limits r£ = 0 (Brillouin
flow) and ̂  = 1 (fully confined flow).

5. Since this integration does not start at the cathode but rather
further down the stream prior to entering the output cavity it is assumed
that each electron moved along a laminar path from the cathode to the



start of integration, i.e. that its distance from axis relative to other
electrons remained unchanged. It is felt that this assumption is well
satisfied for confined flow beams prior to entering the output gap since
the motion is still almost entirely in one dimension. The assumption is
less good for Brillouin and PPM focused beams, but the only alternative
is to extend this complex computation into the cathode region if complete
accuracy is demanded.

Discussion of Equations of Motion

All equations are used in dimensionless, form normalized with respect to
the tunnel radius a and the dc voltage Vo. (Fig. 2)

In the above equations °^ = y V o designates the normalized rf voltage,
<9 ^a£5-2/&.=fl/a. £$_ = gap length, "^ and % are the f luxe s '

in the beam and the cathode, respectively, Joa. and >c are the unreduced
plasma and the cyclotron frequencies. ŝ and jp designate the
normalized axial and radial Green's space charge fields which will be
discussed later, in detail. Note that the voltage <X is not computed but
rather assumed to be knpwn.

The rf field factors z, FZ and r, Fr are derived exactly from the
wave equation. They describe the shape and relative magnitude of the
axial and radial fields. For ^n = .0 they are identical with equations
obtained first by G. Branch by contour integration of Fourier integrals
corresponding to a uniform field in the gap at /^ = Q~ , Because of the
use of these exact expressions it is unnecessary to introduce radial •
and axial coupling coefficients, (Fig. 3)

The Space Charge Fields

The space charge fields are derived from a Green's function potential of
a solid cylinder of radius a and is simplified. for the. case .of thin discs
and narrow rings, that is assuming that the Bessel function JQ ( /U,

%P )
varies only slightly inside the ring and thus may be replaced by its
value at the ring's .center of charge. It may be seen that for large W and
R (small, narrow rings) this is very well satisfied. Because the space
charge boundary value problem is solved accurately, there is no need to
compute or use the reduced plasma frequency. The expressions for j^. and
% are as follows. (Fig. 4) .

Integration and Results

The integration process deals with a set of N discs per cycle. Each disc
has a specified time of injection at the place, z =-5a, a specified
initial velocity, and an initial width. Each starting disc is divided



into R cell rings of equal volume and charge. Let W be 20 and R be 3 for
the purpose of this discussion. The integration. process in this case
follows 5 points per disc, the two outermost corner rings and the 3
centroid rings.,- Each disc will be distorted somewhat as it passes down
the tube. It may take more than one cycle to traverse the passage to
beyond the shield. Therefore a snapshot may contain more than 20 discs,

. because .two representatives of some disc may be in the channel at the
same 'time. . A snapshot for the case of £>C = ..6, -fL/a. = 2/3, and .S = 2.5 BR
at time 320° is shown in Figure 5 with each disc represented by a Kite
with 5 points.

The most difficult and important aspect of the computation is an accurate
treatment of the dynamic effect of space charge forces on the motion of
the 'individual rings.. The method is illustrated in Fig. 6. This method
was -arrived at after subdividing the source rings and reference rings
.into many fine subrings and carrying out an exact integration of the
space charge forces. This lead to the following 3 simplified schemes
illustrated by case's 1, 2, 3 in Fig. 6. In case (l) there is no overlap
in the Z direction. Here the equivalent action may be correctly represented
by taking the representative ring of the same cell at a position where
the centroid of mass is shifted by a fixed amount toward the reference ring.
This fixed amount depends only on the width of the two cells. In case
number (2) we have Z overlap but not of the center of mass of the ""
reference cell. Here the correct position of the representative source
ring leaves the center of mass unshifted thus reducing the repelling
forces. This is equivalent to stating that a violent interaction which
would occur in a collision of two points does not occur in continuous
charge distributions. In case number (3) there is a Z-overlap of the
reference centroid. The correct treatment is to split the source cell
into two parts; one is symmetric about the reference centroid, the
other is the remainder of the source ring. The symmetric part has no Z
effect. The R effect is computed by taking the representative source
ring at a position half way from the symmetry line to the edge of the
subcell. The remainder has its most representative equivalent' ring at
its centroid. The contributions are weighed by relative volumes.

Case (4) is a simple extension of the principal used in case (3) to
describe the effect of a finite size reference ring in itself: in a
continuous distribution of changes there would be no Z effect but a
R effect equivalent to Gauss law. Using the methods described above
the space charge was calculated for every cell at each time step of 10 .
The space charge field associated with the snapshot of Fig. 5 is shown
in Fig. 7. •

Disc number 3 is near the center of bunch. Its J z is zero, its j r is
maximum. Discs 8 and 19 are at left and right of the bunch with unsymmetric
distribution. They experience a ̂  force near dc level and maximum of
outward f z forces. The antibunch disc number 11 experiences about half
of j T forces and almost no ̂  z forces. o



The total effect of the circuit fields, magnetic fields and space charge
fields on the motion of the rings were computed until steady state
condition were achieved. A movie showing the flow will "be shown. There
are several features of the flow that should be pointed out: the result-
ing converging action of the radial gap fields, the divergent action of
the shield terminating the focusing field on confined flow and the
interesting effect of crossovers and overtaking.

The results show that there is no interception and no substantial cross-
overs for CX̂ . 1 and confined flow focusing, S>^ <=* ̂ 8R. . The radial
velocities remain small being less than 10% of the axial component and
minimum Vz is <= 0.2. The situation changes, however, as O< becomes ̂  1

and for simple Brillouin focusing. Interception and large radial excursions
with deflection angles going above 20° increase rapidly as electrons are
slowed down more closely to zero.



E L E C T R I C FIELD SHAPE BETWEEN REENTRANT TUNNEL T I P S

A - C O N S T A N T FIELD; B - "KNIFE EDGE" FIELD; C - A C T U A L FIELD

I 0, I
i 21 r
i -|

E - CONST AT r = 0 i 4i /i
V '

JN
B

Fig. 1

E(+0 -*«>

I 9?

"

cosh (mz)

CS-60455

EQUATIONS OF MOTION

ml

;
asinh(ml) /GR\Sin9 + i/^

4(-l)(M2\FR/ 4\"

P> -- C

CS-fi0456

.
P N R w G- «p(^P^o.Po»

Fig. 2



Gz = < cosh(mz).

Jnla-/k* + -« Z < + I

00

•£
n=l

AnJ0(py/,emE

PnJl(V-\Pn "am

n-1

n-1

pn + m pn - m

n '
am Pn + am;

. V

n-1

m sinh(mZ)
J

Jn a-Vk2 + m2

sinhfml+-pn) sinhfml-— pn)
V a n/ . V a _"/

ma P n - m a

pni|zp.
sinh(m( + - pn^ sinh(mi - - pn)

\ ' a / \ a /
pn + ma pn - ma

Fig. 3
CS-60458



G R E E N ' S FUNCTION P O T E N T I A L
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320° SNAPSHOT OF FLOW IN KLYSTRON
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