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ABSTRACT

A study to investigate the characteristics of a hubless converging
inducer was initiated in April 1968, redirected in September 1969, and com-
pleted in June 1971. The purpose of the study was to compare the performance
of several configurations of hubless inducers with a hydrodynamically similar
conventional inducer and to demonstrate the performance of a full flow
hydraulic turbine driven inducer boost pump using these inducers. A boost
pump of this type consists of an inducer connected to a hydraulic turbine
with a high speed rotor located in between. All the flow passes through the
inducer, rotor, and hydraulic turbine, then into the main pump. The rotor,
which is attached to the main pump shaft, provides the input power to drive
the hydraulic turbine which, in turn, drives the inducer. The inducer,
rotating at a lower speed, develops the necessary head to prevent rotor cavita-
tion. The rotor speed is consistent with present main engine liquid hydrogen
pump designs and the overall boost pump head rise is sufficient to provide
adequate main pump suction head. This system would have the potential for
operating at lower liquid hydrogen tank pressures.
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I. SUMMARY

Pump cavitation in high speed turbomachinery is a major design considera-
tion. Cavitation can be controlled by high suction performance inducers and/or
by a boost pump located upstream of the main pump.

A hubless inducer was designed and tested and the performance compared
to that of a similar conventional inducer. The suction performance of the
hubless inducer was not significantly better than that of the conventional
inducer after accounting for the larger inlet tip blade angle. Per established
theory, inducers with larger inlet tip blade angles will have higher suction
performance. The hubless inducer concept does, however, allow inducers with
larger blade angles to be manufactured. Hubless inducers can best be used
when the available drive power is at the outer shroud.

The full flow hydraulic turbine drive boost pump shows potential for
use with high speed pumps. It has the ability to start very quickly and
maintain an almost constant speed ratio over the entire flow speed range. The
performance limiting component was the high speed rotor, which cavitated more
than was expected. The rotor configuration is limited by overall boost pump
requirements, but there are several possible design approaches to reduce
rotor cavitation. During preliminary design selection of a pumping system,

a boost pump of this type should be considered, i1f any of the following
criteria must be met:

Fast starts

. No additional gears

No recirculating flow
Comparable high efficiency
Constant speed ratio

UL N

I1. INTRODUCTION

There are two major requisites to the high efficiency that will be
required for pumping systems for future rocket engines: (1) high pump shaft
speed to reduce turbopump weight, and (2) a low operating pump suction pressure
to reduce propellant tank weights. In the design of a pump these two require-
ments have a direct effect on each other. That is, the lower the pump suction
pressure, the lower the shaft speed must be to avoid cavitation and, conversely,
the higher the pump speed, the higher the suction pressure must be to avoid
cavitation. There are two ways that this design problem can be eliminated.

The first is to develop high speed pump inducers that can operate at low

inlet suction pressures. The second is to provide the main high speed pump
with higher pressure delivered from a boost pump. Several boost pump concepts
available to accomplish this objective are described in Ref 1.

The purpose of the work performed under this contract was to compare
the performance of a hubless inducer with that of a conventional inducer in
both cavitating and non-cavitating steady-state operation. Both inducers were
then tested in a full-flow, hydraulic-turbine-driven inducer boost pump to
demonstrate the performance of this concept for advanced boost pump application.
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The hubless inducer concept is shown in Figure 1 and was first reported
in Ref 2. Figure 1 also shows a conventional inducer for direct comparison.
The full-flow, hydraulic-turbine-driven inducer boost pump concept is shown in
Figure 2 and a working model was first reported in Ref 3. The inducer (hubless
or conventional) is driven by a hydraulic turbine, the power being supplied
through a rotor connected to the main pump shaft. The rotor is mounted between
the inducer and turbine with all the delivered flow passing through each of the
three units, then into the main pump. The inducer-turbine speed is approximately
1/2 to 1/3 that of the rotor, which results in a pumping system that can
operate at low suction pressure and high main pump speed, satisfying both the
design requirements.

The engineering drawings of the rotating components are presented as
Appendix C and are referenced to their corresponding figures in the text.

Program tasks were as follows:

Original Work Program

Task I: Hydrodynamic Design, Mechanism Layout, and Fabrication
of a Hubless Inducer;

Task II: Inducer Test to Determine Performance Characteristics.

The original work plan was terminated and the contract redirected
during Task II because the original design specification resulted in inducer
and rotor designs that were beyond the state-of-the-art. The revision in the
work plan eliminated testing in liquid hydrogen and all subsequent testing was
conducted in water, although the hardware was designed for hydrogen operation
and could be tested in hydrogen with slight modifications.,

Revised Work Program

Task III: Design, Fabrication and Test of a Conventional Inducer
Task IV: Design, Fabrication and Test of a Hubless Inducer

Task V: Design, Fabrication and Transient Test of a Hydraulic-
Turbine-Driven Inducer Boost Pump

Task VI: Comparative Performance Evaluation and Final Report

The revised design specifications for the boost pump operating
in liquid hydrogen are:

Flow rate 4900 gpm (0.309 m3/s)
Boost pump head rise 2000 ft (610 m)
Main pump (rotor) shaft speed 30,000 rpm (3142 rad/sec)

Boost pump net positive suction head 25 ft (7.6 m)

i et |



60° (1046 RAD)
45° ( 784 RAD)

HUBLESS CONVENTIONAL
INDUCER INDUCER
Figure 1. - Inducer Comparison, Hubless to Conventional
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III. PARAMETRIC ANALYSIS

In order to determine the requirements of the inducers, rotor, and
hydraulic turbine, a parametric analysis was conducted. This analysis set
the overall requirements of the boost pump, as well as the individual require-
- ments of each element of the boost pump. A survey was conducted of present and
future pumping systems that require a boost pump. From this survey, it was
possible to establish limits on main pump speed, flow, and operating net
positive suction pressure.

A. DESIGN POINT SPECIFICATION
The design point specifications set the overall boost pump
operating conditions. These specifications were determined after the contract

revision and were used with the NASA project concurrence,

1. Flow and NPSH

The flow rate of 4900 gpm (0.309 m3/s) was selected frgm the
original RFP which gaye limits of 4900 (0.309) to 11,000 (0.694) gpm (m™/s).
The 4900 gpm (0.309 m™/s) flow rate, when scaled to water, best fit the ALRC
low head test flow loop. High flow rates would require higher head rise
designs in order to 'pump' the flow loop.

The contractually specified NPSH of 25 ft (7.6 m) in hydrogen
was used with an additional 80 ft (24.4 m) for thermodynamic head. This amount
of thermodynamic head was used in designing the M-1 engine fuel pump (Ref 4)
and is a conservative estimate compared to the value used on current hydrogen
pump designs.

2. Main Pump Shaft Speed

There were four liquid hydrogen engine systems in which
extensive studies have been made to determine the design requirement of the
main pumps. In each of these the main pump speed was set at approximately
30,000 rpm (3142 rad/s). The speed-limiting parameters were bearing load/
critical speed or blade stresses in either the pump or the turbine. All
of the pumping systems used some type of boost pump to preclude main pump
cavitation.

3. Overall Head Rise

The overall head rise required of the boost pump can be deter-
mined from the flow, speed, and operating suction specific speed of the main pump.
Figure 3 shows the required boost pump head rise for a centrifugal main pump
with an inducer and without an inducer. It was assumed that, with an inducer,
the main pump could be designed to operate at 20,000 (7.3) suction specific
speed and without an inducer at 7,000 (2.55) suction specific speed. Main
pumps within this specific speed range can be designed with present technology.

In either case, 2,000 ft (630 m) boost pump head rise will allow for consider-
able variance in the specified main pump flow and/or speed.
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B, ROTOR CAVITATION

The boost pump rotor has two major design criteria: they are
blade loading and blade cavitation. The blade loading was considered to be
within normal design practice as outlined in Ref 5. The cavitation criteria
of high setting angle, axial flow blading, however, has only recently been
evaluated. Cavitation numbers for stationary cascade, high setting angle
blades are given in Ref 6, but data for this type of blade under rotation
and with inlet prewhirl were not available.

1. Cavitation Model

To evaluate the design parameters which influence rotor
cavitation, an analytical model was developed. This model defines the available
rotor cavitation constant as the dependent parameter. Cavitation constant (K)
has long been used to evaluate cavitation performance and is defined as follows:

2 2
- T -0 - wi (1)
(1 - w9? +0?

The inlet NPSH of the rotor will be equal to the actual head rise of the
inducer if it is assumed that the NPSH of the inducer equals the increase in
fluid vapor head due to heating within the inducer. It is also assumed that
there will be no contour change between the inducer exit and rotor inlet. (A
similar, valid expression can, however, be derived with contour changes.)
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The inlet prewhirl of the rotor (wﬁl) may be written in terms of the inducer
head coefficient,

. . i ¥{U; .
OR1 012 u
= SORL 1'
R1 Up Upng
lpI
* =
le SR Ny (3)

The available inlet rotor cavitation number can then be written in terms of
the inducer actual head coefficient by substituting Equations (2) and (3)
into (1).

e A N S
SR2 R SRanZ

2

v
I 2
T

This available cavitation number is expressed graphically in Figures 4 through 8

as a function of speed ratio and inducer actual mean head coefficient. Also
plotted on this figure are the D-3 flow loop head loss and the state-of-the-
art in inducer design. Variations in the value of the fixed conditions are
shown on these figures. TFigure 4 best represents the conditions near the
selected design. It can be seen that, for a given rotor blade cavitation
number, high speed ratios can be obtained only with high head coefficient
inducers. Designs to the left of the "inducer state-of-the-art" line would be
considered conservative while those to the right represent involving greater
risk designs. The inducer discharge flow coefficient varies along this line
and is optimum at only one point, but there is a wide design range on flow
coefficient.

The facility flow loop requirement (D-3A system) does not
influence the design criteria, but any design tested at the D-3A test bay
must lie above this limit in order to 'pump' the flow loop.
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2. Available Cavitation Data

Figure 9 shows the required 3% head loss cavitation number
of several axial flow blades (Ref 7 through Ref 12) at various flow coefficients.
There is a considerable amount of 'scatter" in these data and only one of the
blade rows shown was tested with inlet fluid prewhirl. The two solid lines
in this figure were taken from two-dimensional flow theory. The upper line
represents an incidence to blade angle ratio of 0.425, which is typical of
flat plate inducers. The lower line represents an incidence to blade angle
ratio that is a function of actual design flow coefficient, as shown in
Figure 10. Both of these ''theoretical” lines are shown to indicate the
relationship between cavitation number and flow coefficient at complete
cavitation head breakdown. The cross-hatched data represents pumps produced
and tested by ALRC,

The required cavitation number of the design rotor obtained
from Figure 7 must be less than the available cavitation number selected from
Figure 4 at the design conditions in order to ensure cavitation-free rotor
operation.

The significance of these figures can best be illustrated by
an example: Select an operating speed ratio of 2.14 at the conditions shown
at the top of Figure 4. A reasonable value of the required cavitation number,
from Figure 9 at the inlet flow coefficient of 0.116, is 0.1. From Figure 4
(at the selected speed ratio of 2.14) the inducer head coefficient must be
0.35 to produce an available cavitation number of (0.12) that is greater
than the required cavitation number (0.1). This operating point will also
satisfy the limits shown on Figure 4 (i.e., less than the 'inducer state-of-
the-art', and will produce enough head to pump the D-3A system).

If a speed ratio of 2.75 had been selected, the limits of
available cavitation number and minimum head to pump the flow loop could be
satisfied only by an inducer which exceeded the inducer state-of-the-art.

The final condition that must be satisfied is the stable
speed ratio criteria developed in Ref 3. This is shown graphically in
Figure 11 where all designs up to approximately 2.5 would be stable. This
criteria is considered conservative since it was developed from a theoretical
model that does not consider actual losses to determine the slope of the torque-
flow curve. Design speed ratios of 3 most likely could be used before instability
occurs. The test data in the following sections will verify the torque stability
characteristics of this concept.

C. WORK SPLIT AND ANNULAR GEOMETRY SELECTION
Based on the previously established design specifications and
the cavitation model for the high speed rotor, a pitch or mean line one-

dimensional work split analysis was made. The inducer - turbine speed, head,
and flow coefficients were selected.
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1. Inducer

The inducer speed was set to be consistent with the cavitation
model of the high speed rotor. A speed ratio of 2.14 and an inducer discharge
mean line head coe-ficient of approximately 0.35 were selected. This results
in a speed of 14,000 rpm (1470 rad/s) and head rise of 1700 ft (518 m).

Since the inducer inlet geometry was fixed by the pump test
fixture at a diameter of 7.72 in. (0.196 m), the inlet flow coefficient was
0.085 (0.071 for hubless). The following inducer parameters were set by the
inducer work split analysis and are consistent with those of Ref 13.

Conventional Hubless
Inlet Tip Diameter 7.72 in (0.196 m) 7.72 in (0.196 m)
Inlet Hub Diameter 3.09 in (0.0784 m) 0
Discharge Tip Diameter 7.142 in (0.181 m) 7.142 in (0,181 m)
Discharge Hub Diameter 5.714 in (0.143 m) 5.714 in (0.143 m)
Inlet Tip Flow Coefficient 0.085 0.071
Discharge Tip Flow Coefficient 0.250 0.250
Discharge Mean Head Coefficient 0.288 0.288
Speed 14,000 rpm (1470 rad/s) 14,000 rpm (1470 rad/s)
Flow 4,900 gpm (0.309 m3/s) 4,900 gpm (0.309 m3/s)

2. Rotor

The rotor inlet and discharge flow annulus was maintained the
same as the inducer discharge. The flow discharging for the inducer was assumed
to have the same properties at the rotor inlet since there were no radii change.
This annulus had previously been sized to prevent rotor cavitation and, there-
fore, only blade loading needed consideration. Figure 12 shows the one-dimensional
rotor diffusion factor as a function of speed ratio and inducer head coefficient.
Also shown is rotor mean head rise coefficient as a function of the same variable.
At the selected operating point, the rotor diffuser factor will be 0.27 and the
head rise coefficient 0.16. These values are consistant with those given in
Ref 5. The design parameters based on the one~dimensional analysis for the
high speed rotor are given below but were subject to change based on test

results from the inducer.

Tip Diameter 7.142 4in (0,181 m)

Hub Diameter 5.714 in (0,143 m)

Tip Flow Coefficient 0.117

Mean Head Coefficient Rise 0.16

Speed 30,000 rpm (3142 rad/s)
Flow 4,900 gpm (0.309 m3/s)
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3. Turbine

The hydraulic turbine must supply power to drive the inducer
and shroud. Since the shroud consists of both the radial and axial hydro-
static bearings, the drag torque in water will be higher than if this system
were tested in liquid hydrogen. For this reason, some modification to the
turbine would be necessary in order to maintain a constant 2.14 speed ratio in
liquid hydrogen. Again the flow annulus of the turbine was maintained the
same as the rotor; this was done for ease in manufacturing of the turbine and
adjacent components. On an actual pumping system the turbine discharge annulus
would be designed to match the inlet of the downstream main pump. The design
specifications for the turbine are as follows, again subject to change based

on inducer testing.

Tip Diameter 7.142 in (0.181 m)

Hub Diameter 5.714 in (0.143 m)

Flow Coefficient 0.117

Head Coefficient Drop 0.75

Speed 14,000 rpm (1470 rad/s)

Flow 4,900 gpm (0.309 m3/s)
IV. HYDRODYNAMIC DESIGN

With the nondimensional parameters of head and flow coefficient set
from the parametric mean line analysis, a detailed hydrodynamic design was
done on each of the blade rows, the end result of this design phase being
blade coordinates for manufacturing. Since the resulting boost pump was a
low head machine, the change in the hydrogen fluid properties was not con-
sidered. The nondimensional liquid hydrogen design data is therefore the same
as the incompressible water test data.

Al INDUCER

. An inducer head coefficient of 0.35 at the mean represents a
moderately heavily loaded blade row. Since it was desirable to design for
uniform discharge inducer flow and head, the inducer was divided into a
tandem design with a separate forward and aft section. The aft section, or
transition, would be exactly the same component for each inducer, hubless
or conventional. This resulted in an inducer concept similar to that of
Ref 14. The head rise in each section is approximately one-half of the total.

1. Forward Section

The forward section of the inducer provides the basic
cavitation performance of the pumping machine.

20
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a. Conventional Inducer

The design was consistant with a normal high suction
performance inducer. It was decided to have a three-bladed inlet to minimize
the blockage and still obtain the required solidity in a reasonable axial
length. The inlet geometry to the inducer was based on the theory of Ref 12.
The tip blade angle was calculated to be 81.5° by this method. All other
radial blade angles satisfy the condition for a right helix. The leading
edge radii of the vane from hub to tip were constant over the trim. A
nominal value of 0.010 in (0.00025 m) was used for the radius of the leading
edge. Sharpness is not only an aid to cavitation performance but also
affects the discharge head, as shown in Ref 15. Figures 13 and 14 show
the blade element design performance prediction for the conventional inducer;
these predictions are based on simple radial equilibrium. The loss coefficient
and the deviation angles were taken from Ref 14, 16, 17, and 18, The validity
of this type of analysis is shown in Figure 15, where the calculated and
measured parameters are shown for the design of Ref 19, The only inputs
necessary for this analysis are the streamline blade deviation angles and
loss coefficients. The discharge flow coefficient of the forward inducer
section was increased to obtain a value midway between the inlet and transition
discharge. In order to maintain the constantly increasing head, the blade
angles were decreased along the mean streamline by the relationship
=1 - EEE%;—E. The blade thickness at the root was designed for minimum
blockage, consistant with stress requirements. Stress levels were computed
from 'worst case' conditions accounting for both fluid and centrifugal loading.

b. Hubless Inducer

In order to determine some design criteria for the
inlet geometry of the hubless inducer, a computer program was developed which
had four options for the type of flow which existed radially across the inducer
inlet. The analysis obtained from this model, while qualitative, gave some
insight to the flow conditions.

The four flow options in the inducer inlet were free
vortex, forced vortex, power vortex, and zero angular fluid velocity. The
flow within the inducer blade passage was assumed to follow the blade after
the blade had reached a solidity of 1.0 along any given streamline. 1In all
cases, it was also assumed that the total head within the inducer eye was
equal to that of the free stream inlet pressure.

With these assumptions it was found that only the
fourth type of flow field, zero angular velocity, could exist at the inducer
inlet and support simple radial equilibrium. Secondly, it also became apparent
that the smaller the inlet angle was the larger the inlet blade tip angle must
be. This is caused by the limit in the rate of head increase, in the axial
direction, generated by the blade above the free fluid. Large head increases
along the tip streamline caused the flow to shift to the tip and the axial
velocity of the free fluid to go to zero. Large inlet angles permit faster
head increases along the streamlines within the blade.
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The final design was a selection of inlet geometry that
could be modified between tests to observe the characteristics of various
inlet angle changes. Figure 16 shows the predicted axial velocity profile at
two stations for a 60° inlet angle. As the flow passes through the inducer,
the axial velocity at the tip becomes more uniform. When the blade extends
to the hub and the fluid is completely 'captured' between blade passages and
the contour, the blade angle can be decreased more rapidly. Until this axial
station is reached, the blade angle can be decreased only to the point where
the inducer-free fluid pressure can support the flow field at the larger
radii.

To maintain hydrodynamic similarity between the hubless
inducer and the conventional inducer, the solidity at the mean radius was
made identical. This resulted in higher tip and lower hub solidities when
compared to the conventional inducer. The blade angles of the hubless inducer
are equal to those of the conventional inducer from approximately 70% of axial
length to the discharge.

The tip contour is converging from the inlet to the
discharge along a conical line. The convergence ratio, discharge to inlet,
is 0.946. The hub contour from the connection of the blade to the discharge
is also a conical section. This conical hub contour approximates the contour
of the conventional inducer over that portion of the inducer. This design
concept made the discharge of the hubless inducer nearly identical to that of
the conventional so that both would provide similar flow into the transition
(aft) section.

2. Aft Section

The aft section is common to both inducers and is aptly
called the transition section. The function of the transition section is to
'straighten' the flow coming from the front section and provide more nearly
uniform axial flow and radial head to the rotor. By dividing the inducer into
two sections, the blading of the rear portion could be twisted enough to
accomplish these favorable conditions. An inducer with a continuous blade
with comparable twist would not only be difficult to manufacture but would
have higher centrifugal stresses because of its forward lean.

The selected blade form of the transition section was double
circular arcs because of their characteristic sharp leading edges (which is
necessary for good cavitation performance), and abundance of cascade data.

The incidence angles were set at near-zero values after
accounting for the flow deviation from the forward section. This was done to
account for any uncertainties in relative flow angles. The deviation angles
were established from data in Ref 6 and corrected to account for rotation
effects, tip leakage and radial flow shifts, based on correlations of this
data and existing axial flow pump blade element performance data.
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Figures 17 and 18 show the predicted performance of the
transition section at the design flow. The inlet flow coefficient and mean
radius was obtained by assuming constant angular momentum at each streamline
discharging from the forward section. The discharge flow coefficient and mean
radius had previously been selected during the one-dimensional analysis
(Section III,C).

B. ROTOR

The detailed design of the rotor was initiated after the inducer
testing had been completed. Therefore, some adjustments were made to the
design specification of the rotor based on the test data. The only parameter
in which there was a significant variation was the required torque to drive
the inducer-shroud combination. Torque was measured at 30% greater than
that estimated during the parametric analysis (Section III). This discrepancy
will be discussed in later sections, but its only effect on the rotor was to
require a higher head rise due to additional turbine head drop necessary to
produce the required torque. The required head coefficient increased from
0.16 to 0.195 at the mean; this was still within the design limitations given
in Ref 5.

Since the inducer average head and head distribution from test
data was as predicted, the rotor inlet absolute fluid flow was assumed to be
the same as the predicted inducer discharge, adjusted for the speed difference,
Figure 19. The same design methods used to design the transition section of
the inducer were followed for the rotor. The mass average head rise of the
rotor was determined from the overall required system head rise, the inducer
head rise, and the head drop through the turbine. There were several design
iterations between the rotor and turbine to determine the best combined
system, based on the design specification and blade geometry.

The predicted blade element performance of the rotor is shown
in Figures 20 and 21. The blade inlet angles were set to give positive
incidence at all radial sections for improved cavitation performance, and
were greater than minimum loss incidence. The blade turning was then
adjusted to obtain the required average head rise with nearly uniform discharge
axial velocity. The maximum diffusion factor of 0.525 occurs at the tip stream
line.

C. TURBINE

Both the turbine and rotor were designed after the inducers were
tested; therefore, the power required to drive the inducer-shroud was known
through direct measurement.

Two types of turbine blading were considered, constant section
and twisted section. Since the relative inlet flow angle and a very wide
variation hub to tip and because a wide operating range was desired, a
constant section blunt leading edge blade was selected. This type blade,

27




Y12

P12
171
Wit

/_ DIT .
/ m

/
/
/
7

O wny

Ll; - 1030e4 uotrsn3i3zia

HV/ERIViAi

= e Q]

Ty o 115 _ Juetopzzeco mord ““lm - 3usTIIFFRD 8801
WLy 5 Iy - s3ua1o133900 PESH

20 30 40 50 60 70 80 90 100

10

Passage Height from Hub, %

passage Height

- Transition Blade Performance Vs.

Figure 1%

28



66
/“" e — GIT
64 /‘/
o ]
v 62
1
E v”//’
? 60
3
g 20 —— —
) ~\\\\\
& 18 ™~
0 D N
Q 7]
o w3
] Ly
(2] f 16 QIT
- v
o ]
' =~ 14
) =
— w0
g’ .
g 12
¥ o)
@ oed
o o
§ o 10
O E \
B g \
o]
> 6 N
el
= \ 5
-4
T
8 4 !
2
91T
0
0 10 20 30 40 50 60 70 80 90 100

Passage Height from Hub, %

Figure 18 . = Transition Blade Geometry vs. Passage Height

29




AT;

-
o)

\

Head and Flow Coefficients - {*
YR & %r1

D
oy

0 10 20 30 40 50 60 70 80 90
Passage Height from Hub, %

Figure 19. - Rotor Inlet Conditions vs. Passage Height

30

e ma



Pr2

N \
N\ \
//
\
| \
B
|/
\

LAl ~

mw - qU3IOTIIS0) SSOT .Nme - S3U3TOFIIS0D MOTd
Nm» - §3U31213390) PESH .mn - 103o®8] uoiIsn3i3yTd

™

(3]

20 30 40 50 60 70 80 90 100
Passage Height from Hub, %

10

Passage Height

- Rotor Blade Performance VS.

Figure 20.

31




100

/
70 80

/
60

50

]
30 40

—

< o~ o k/\
M~ ~ ™~ w

39p - m@ - UOF3IBTAD(Q ‘Bop -

3e8p - mO - 318uy aaquen ‘Bap -

~
-

|

1 - 2duapyoul

o~
-

10
8
6
4
2
0

Ay £31PIT08

MB - a78uy Bur3lsg

Passage Height from Hub, %

- Rotor Blade Geometry vs. Passage Height

Figure 2L

32

1



although less efficient, was far more tolerant of fluid mismatch, as described
in Ref 20. A constant section blade with blunt leading edge also provided a
larger surface area to which the outer shroud could be attached.

Figure 22 shows the predicted blade element performance with most
of the work being done at the blade tip. The discharge flow is nearly uniform,
a condition most desirable for the downstream main pump. The magnitude of
the discharge fluid whirl distribution is relatively small, In most design
configurations, zero fluid whirl at the turbine discharge would be desirable,
although the main stage blade velocity will be the speed ratio times the turbine
blade velocity so that fluid whirl becomes less significant.

V. DETATLED HARDWARE AND FABRICATION

A, HARDWARE DATA

Upon completion of the hydrodynamic design, a master layout was
made. This layout, Drawing No. 1158734, included all linear dimensions,
blade profile dimensions, materials, specifications, tolerance stackups, con-
centricity and other necessary fabrication information. The drive assembly,
P/N 1154352, was obtained from the program described in Ref 3. This drive unit
can be either directly coupled to an electric motor through a torque meter
and eddy current variable speed clutch or driven by a gas turbine. The first
setup was used for steady-state cavitation and non-cavitation testing, while
the latter was used for transient testing.

B. DESCRIPTION OF MAJOR HARDWARE

The hubless inducer shown in Figure 23 is in the unmodified
condition which is the 60° inlet angle. The inducer was machined on a center
hub, then brazed into an outer shroud, and finally machined to remove the
center hub.

Figure 24 shows the front view of the conventional inducer. This
inducer is contained within the shroud as shown in Figure 2. The blade
contours at the discharge are identical to those of the hubless inducer.

The conventional inducer and transitiom (aft) section are shown
in Figure 25. The transition section will mate with either the conventional
or hubless inducer. This component was also made by machining the blade
contour on the hub then brazing the shroud to the blade tips.

Figure 26 shows the rotor which is powered by the main shaft and
is located between the inducer and hydraulic turbine. The rotor configuration
is not unlike a high solidity axial flow airfoil blade. The condition shown
is after the modification, during which approximately one-half the blade
thickness was removed from the suction side. This modification resulted in
a "flat-plate" blade with a slight amount of camber at the discharge.
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The final blade row, the hydraulic turbine, is shown in Figure 27,
All the flow from the rotor passes through the turbine. A labyrinth at the
base of the hub shroud prevented excessive leakage around the turbine.

C. HARDWARE DIMENSIONS

A tabulation of the dimension and other pertinent design parameters
for each blade row is given in Table I.

VI. TEST PROGRAM

The test program consisted of two series conducted at different time
periods. During the first test series, a conventional inducer, a 60° hubless
inducer with both long and short spinners, and a 45° hubless inducer with
both long and short spinners were each driven directly by an electric motor.
A total of 28 cavitating and noncavitating tests were made, and the performance
of each inducer was obtained. The second test series was conducted using
either the conventional inducer or the 45° hubless inducer with the long
spinner. The inducers were powered by a full flow hydraulic turbine drive
system. The rotor, which supplies power to the hydraulic turbine, was in
turn driven by either the electric motor for steady-state or a GN, gas
turbine for transient operation. A total of 23 tests was conducted; 16 at
steady-state and 7 in transient.

A, TEST INSTRUMENTATION

The performance of each component (inducers, rotor, and hydraulic
turbine) was obtained by using Keil probes at the discharge of each row, as
shown in Figure 28. The angle at which the probes were set was determined by
the performance prediction. These probes have a wide operating range so
that even the off-design flow coefficient measured data are valid. The probes
were placed at three radial locations (20%, 50%, 80% of hub to tip radial
distance) and the pressure measured external to the pump through drilled
passages which connected to the probes. When the inducers were tested
separately (top of Figure 28) the probes were located directly downstream.
During the later test series, these probes were removed (middle of Figure 28)
and the performance of the downstream was rotor calculated by assuming that
the inducer head rise was unchanged. This assumption appears valid since the
measured rotor performance was unchanged with the two different performing
inducers. Overall performance of all components was determined by averaging
the measured pressure from the three probes.

The following types of sensors were incorporated into the measur-
ing systems:

Flows Turbine type flowmeter

Pressures Strain gage pressure transducer
Temperatures Resistance temperature transmitters
Torque Strain gage with slip rings

Speeds Magnetic coil type
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Figure 28. - Kiel Probe Location and Pressure Measuring Capability

42



The output from these sensors was fed through an analog-to-digital system,
Aerojet's Automatic Data Control System. Each parameter or channel is

"swept'" 30 times per second and the data is recorded on magnetic tapes. Three-
second time sweeps were used during steady-state testing, while continuous
sweeps were utilized during transient operation. The steady-state data for
each function were averaged and statistically analyzed over the 3~second time
interval. This statistical analysis of each function included the standard
deviation and the maximum difference from the mean. Then the data were
examined and considered to be acceptable if the two-sigma deviation was less
than 1%Z of the mean.

The above described average values were computed using Job No. 3001.
The output from this computer program, which has identical printed and punch
card output, was then used as input to a data reduction program. The test
data were utilized in this data reduction program to produce normalized pump
performance.

Visual gage and strip charts were used to record critical or
"redline" parameters, as well as aids in the setup of a test. The strip charts
also provided "quick-look" information and served as backup for the digital
recordings.

High frequency data was recorded for the purpose of determining
pressure oscillation during cavitation and transient conditions. These sensors
were flush mounted at the pump suction and discharge. The output was recorded
on magnetic tape which served as input to a spectral demsity computer program
(Job No. 2901).

B. TEST FLOW FACILITY

Figure 29 shows a flow schematic of the test loop and the relative
position of the necessary components. The hydrostatic bearing flow was
supplied by a facility pump and was directly coupled to the loop so that there
was no net gain or loss in fluid. Figure 30 is a photo of the test bay showing
the associated valves and piping.

C. TEST NUMBER AND TEST TYPE
Table II shows the test number and type of test for the two test
series. Also shown are the speed and flow range for each test as well as the

type of components tested.

VII. TEST RESULTS AND PERFORMANCE EVALUATION

All the test results discussed in this section were obtained from
water-loop testing, which was completed in two test series. The three basic
type of tests conducted were non-cavitating steady-state, cavitating steady-state,
and cavitating transient.
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Test Number

1225-p02-0P-001

-002
-003
-004
-005
-006
-007
-008
-009
-010
-011
-012
-013
-014
-015
-016
-017
-018
-019
-020
-021
-022
-023
-024
-025
-026
-027
-028

1225-p03-0P-001
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-002
-003
-004
-005
-006
-007
-008
-009
-010
-011
-012
-013
-014
-015
-016
-017
-018
-019
-020
-021

-022
-023

~ TEST NUMBER AND TEST TYPE

TABLE II.
Speed, Flow/Speed,

Test Type % Design % Design
Head Flow 40 18-130
Head Flow 60 24-130
Head Flow 80 60-130
Head Flow 40 18-120
Head Flow 60 25-122
Head Flow 80 63-123
Head Flow 100 65-140Q
Cayitation 100 100
Cavitation 100 100
Cavitation 100 100
Cavitation 100 80
Cavitation 100 100.
Cavitation 100 110
Cavitation 100 80
Head Flow 100 65-132
Cavitation 100 100
Cavitation 100 80
Cavitation 100 110
Cavitation 100 100
Cavitation 100 100
Head Flow 100 65-123
Head Flow 60 12-123
Cavitation 100 104
Cavitation 100 82
Cavitation 100 115
Cavitation 100 104
Cavitation 100 82
Cavitation 100 115
Head Flow 40 17-116
Head Flow 60 11-118
Head Flow 80 65-117
Head Flow 100 70-118
Cavitation 100 100
Head Flow 100 72-118
Cavitation 100 100
Cavitation 100 110
Cavitation 100 80
Head Flow 40 0-118
Head Flow 60 0-120
Head Flow 80 63-123
Head Flow 100 65-120
Cavitation 100 100
Cavitation 100 110
Cavitation 100 80
Transient 0-100 -
Transient 0-100 -
Transient 0-100 -
Trangient 0-100 --
Head Flow & 100 69-127 &
Cavitation 100
Cavitation 100 80
Cavitation 100 110
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The test results presented for each blade row are based upon the average
of the three Kiel probe readings, unless otherwise noted.

A. STEADY STATE NON-CAVITATING
The steady state non-cavitating tests were conducted with suction
pressure sufficiently high to preclude any cavitation. The drive mode was an

electric motor capable of maintaining constant speed to within + 0.1%.

1. Conventional Inducer

Figure 31 shows the inducer efficiency and normalized input
torque for several speeds over a flow range of 15 to 1307 of the discharge flow
coefficient. The measured input torque (and, consequently, the efficiency)
includes the inducer torque plus the shroud torque. The shroud torque was
calculated to be 38.8 1b-ft (52.6N-m) at the design speed. Since there was no
direct measurement to verify the calculated shroud drag torque, a value was
obtained by subtracting the inducer torque at design flow from the measured
input torque; this resulted in a shroud torque value 30% higher than calculated.
This value was then normalized with speed and was used at all other speeds and
flow coefficients.

The inducer head cocefficient and efficiency as a function of
flow coefficient are shown in Figure 32. Again, it is noted that the inducer
efficiency at the design flow was set to the design value. This is justified
by the fact that the measured head coefficient has the same value as the design
predicted value, therefore, the efficiency at the design point should be near
the predicted value. Since the shroud drag at off-design flow coefficient was
constant (at constant speed), the off-design efficiency will be true relative
to the design point. There appears to be little or no speed effect imposed
on the normal data scatter. The inducer shows some stall at approximately
45% of the design flow coefficient. The maximum flow coefficient was determined
by the facility flow loop resistance with a fully open valve.

The head rise coefficients at four radial stations are shown
as a function of discharge flow coefficient in Figure 33. The upper three are
total head coefficients measured with total Kiel probes, while the lower one
1s a static head coefficient measured with a wall tap. Over the flow range
shown there is no evidence of inducer stall at the low flow, or inducer choking
at the high flow. It appears that zero slope or stall will occur first at the
80% streamline; some stall did occur at slightly lower flow coefficient, as
indicated by Figure 32. Figure 34 shows the measured head coefficient at the
various radial stations; also shown 1is the design prediction. The mass-averaged
design-predicted head coefficient and the head coefficient determined by average
of the three probes agreed within 1%. At the 80% radial station, the measured
head coefficient was 137 higher than the predicted value. An average was
used to determine blade row performance since the velocity and mass flow distri-
bution can not be obtained from Kiel probe readings.
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Sym Speed
0 1600 RPM (168 rad/s)
A 2400 RPM (252 rad/s)
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O 4000 RPM (419 rad/s)
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Figure 31. - Conventional Inducer, Combined Inducer and Shroud Normalized
Torque and Efficiency vs. Flow Coefficient (Non-Cavitating)
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Figure 32. - Conventional Inducer, Head Coefficient and

Efficiency vs. Flow Coefficient (Non-Cavitating)
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Sym  Speed

O 1600 (168 rad/s) —
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Figure 33. - Conventional Inducer, Head Coefficients vs. Flow
Coefficient at Four Radial Measuring Stations (Non-Cavitating)
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2, Hubless Inducer with 60° Inlet

Figure 35 shows the normalized input torque and efficiency
for several speeds over a flow coefficient range of 25% to 1257 of the design
flow coefficient. The input torque appears flat and continuous while the
efficiency has a double peak. The head coefficient shown on Figure 36 has an
inflection at the same flow coefficients. Also shown is the inducer efficiency
without the shroud drag torque. The shroud drag torque used to calculated
efficiency was exactly the same as that determined from the conventional
inducer testing. The inflection in the head flow and efficiency flow curves
can most likely be attributed to flow shifts within the inducer. Most of the
head is generated near the tip of the inducer as shown in Figure 37. The
head values at radial stations 20% and 50% are almost the same and are
approximately 60% of the head at the 80% radial station.

3. Hubless Inducer with 45° Inlet

»

Figure 38 shows the normalized torque and efficiency vs. flow

coefficient for two different speeds over a flow coefficient range of 12 to 125%

of the design. Again the efficiency shown is based on input torque, which
includes both inducer torque and shroud drag torque. The head coefficient

and efficiency vs. flow coefficient curves shown on Figure 39 have inflections
which are most likely caused by the radial flow shifts within the inducer.
Figure 40 shows the head coefficient at four radial stations. This curve

also shows that flow shifts are occuring at two flow coefficients: 0.16 and
0.25.

4, Inducer Comparison

By juxtapositioning Figures 31, 35 and 38, Figures 32, 36 and
39, and Figures 33, 37 and 40, the non-cavitating performance comparison of the
conventional, 60° hubless, and 45° hubless inducers can be made. For the first
set of figures it can be seen that the normalized input torque is the same for
all inducers above a 80% design flow (0.2 flow coefficient). The efficiencies
at the design flow are 52%, 42% and 41%, respectively. The second set of
figures shows that the inducer efficiency excluding shroud drag is 85% (design
value), 69% and 68%, respectively. The head rise coefficients are displaced
by the same relative amount as the efficiencies. The final set of figures shows
that head coefficients at each radial station for both hubless inducers is
considerably less than that of the conventional inducer; this implies that the
losses through hubless inducers are greater than those for the conventional
inducer, since the discharge blade angles are the same for all three inducers.
The tip head coefficient for both hubless inducers should be the same since no
modification to the inducer was made at the tip. The solidity at the tip is
much greater for the hubless inducers, which could account for the higher
losses due to form drag. It appears that the head - flow relationship of a
hubless inducer could be 'tailored' by modification of the inlet angle, although
the performance would most likely not exceed that of a conventional inducer.
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1 0+6

T/p N2 - mas2 x
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Figure 35. - Hubless Inducer (609), Combined Inducer and Shroud Normalized
Torque and Efficiency vs. Flow Coefficient (Non-Cavitating)

53



Sym Speed
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Figure 36. - Hubless Inducer (Gd)), Head Coefficient and Efficiency
vs. Flow Coefficient (Nom-Cavitating)

54

i Bl



oOD ¢

RPM
2400

3200
4000

*Passage Height from

Hub (Total Head)

e b
.3

-80%*

5
%,

207%*

?

e Yl

RS

AT

Head Coefficient - WI
N

Pk

"%

1 Q}D‘(

r,fr—HUb (Static Head)

0 .1 .2
Flow Coeffici

3

ent - CDI

Figure 37+ - Hubless Inducer (603), Head Coefficients vs. Flow
Coefficient at Four Radial Measuring Stations (Non-Cavitating)
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' Torque and Efficiency vs. Flow Coefficient (Non-Cavitating)
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Figure 39. - Hubless Inducer (450), Head Coefficient and Efficiency
vs. Flow Coefficient (Non-Cavitating)
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Figure 40. - Hubless Inducer (450), Head Coefficients vs. Flow
Coefficient at Four Radial Measuring Stations (Non-Cavitating)
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5. Rotor

The rotor efficiency and head coefficient vs. flow coefficient
for several speeds over a flow range of O to 120%Z of design is shown in Figure 41.
There does not appear to be a speed effect, although the data scatter is greater
than normal. Part of the data scatter could be attributed to the calculated
rotor inlet pressure, which was obtained from curve fits of the data taken from
Figures 33, 37, and 40. The rotor efficiency was approximately four points
lower than design, although the maximum did occur near the design flow coefficient.
The input torque used in the efficiency calculation includes the torque from
bearing and seal, which are located between rotor and torque meter; this could
account for the four percentage points in efficiency.

The head coefficient at design flow agrees with the design
prediction within 1%. It appears that the rotor has two inflections, one at
0.104 and the other at 0.055. The first is rotor stall, which occurs at 85%
design flow. The second, at flow coefficient 0.055, is most likely caused by
inducer stall. From this point to zero flow coefficient, the peak-to-peak
discharge pressure oscillations increased slightly (zero flow testing was con-
ducted only at reduced speed, 60% of design).

The head coefficient at each of the four radial measuring
stations is shown in Figure 42. 1t appears that the station nearest the hub
stalls first and that the stall progresses toward the tip as the flow is decreased.
The data shown is over a flow range of 65 to 1207 of design and was taken when
the conventional inducer was in the buildup.

Figure 43 again shows the rotor head coefficlent, with the
solid line representing the results from Figure 42 and the symbol data taken
from tests with the hubless inducer in the buildup. Since each of these
inducers had significantly different head - flow coefficient relationships,
the agreement indicated by this plot verifies the validity of the method of
determining rotor performance.

The actual measured radial head coefficients at the design
flow are shown in Figure 44, where the line represents the predicted method
and, again, shows reasonable agreement.

6. Hydraulic Turbine

Turbine parameters are normally shown vs. blade velocity/gas
velocity, but, for this report, the independent abscissa 1s flow coefficient:
fluid axial velocity/blade velocity. The method was used so that the reader
may relate from a pump figure to a turbine figure without changing the flow
reference.
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Figure 41. - Rotor, Head Coefficient and Efficiency vs. Flow
Coefficient (Non-Cavitating)
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The performance of the hydraulic turbine is shown in
Figures 45 and 46. The first figure shows the overall head drop coefficient
and efficiency vs. flow coefficient. The torque was calculated from the inducer
and shroud torque shown on Figures 31, 35, and 38. The head drop coefficilents
on Figure 46 show large variations between hub and tip. Almost all of this
variation is caused by the turbine inlet head distribution since the turbine
head distribution was nearly constant from hub to tip. The design head drop
was less than that actually measured by 14%, most likely due to the non-uniform
inlet condition, which caused higher turbine inlet losses, The efficiency
shown appears to be invalid below a flow coefficient of 0.25. This is most
likely caused by the Keil probe measurements at off-design flow, as discussed
previously.

7. Overall Performance

The overall performance is defined as the head rise from
inducer suction to hydraulic turbine discharge, since this represents the
available head to the doenstream main stage (see Figure 2 for component
location). Figure 47 shows the speed ratio and discharge head coefficients
(from suction) for each blade row, inducer, rotor, and hydraulic turbine,
based on the rotor tip velocity. The design values are also shown for comparison
with the test data. The speed ratio is constant within 6% of the design value
over the entire flow range tested. The efficiency and normalized input torque
for the overall machine is shown in Figure 48. The overall efficiency of 40%
at the design compares to 30% predicted overall efficiency of a part flow
hydraulic turbine driven inducer which was designed for nearly the same operating
conditions. The input torque represents the torque necessary to drive the
boost pump, and would be added to the main pump torque in determining the total
pump drive requirements.

B. STEADY-STATE CAVITATING

The steady-state cavitating tests were conducted at constant flow
coefficient, with the suction pressure decreased f[rom rhe non-cavitating con-
dition, until at least 107 head loss was measured. The drive mode was an
electric motor capable of maintaining constant speed to within + 0.1%.

All cavitation testing was conducted with water temperature at
160°F (345°K) except for one test on the hubless inducer. The difference in
available thermodynamic head between ambient temperature water and water at
160°F (345°K) is insignificant, per Ref 21; therefore, no attempt was made to
normalize the data to standard water temperature.

The head coefficient for the inducer cavitation performance was
obtained from the Kiel probes rather than from static taps in the discharge
line. During cavitation the Kiel probes gave erratic readings and were there-
fore not used. Consequently, the head coefficients obtained from the
cavitation curves will not agree with the head coefficients previously shown.
The relative head coefficient value, however, is adequate to determine the per-
centage head loss.
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1. Conventional Inducer

Figure 49 shows the cavitation performance of the con-
ventional inducer at three different flow coefficients. The highest suction
specific speed values shown are very near complete breakdown since further
decreases in suction head were not possible at constant flow coefficient. At
the design flow cgefficient, head breakdown occurs at 43,000 (15.7) which is
equivalent to 1/¢¢ = 2.67, the minimum value per Ref 12. Both the 807 and
110% flow show less margin than the design.

2. Hubless Inducer (60°)

Figure 50 shows the 60° long spinner hubless inducer cavitation
performance at two flow coefficients. At the 80% flow coefficient, the water
temperature exceeded 190°F. At this flow, 10% head loss could not be obtained
because of the facility flow limit. It appears, however, that the value would
exceed 50,000 (18.2).

The data for the 60° short spinner hubless inducer 1s shown
on Figure 51 at three flow coefficients. At 80% flow the inducer pumped with-
out excessive loss up to a suction specific speed of 59,000 (21.5). This is
reasonably close to the predicted value (by Ref 12) for am inducer with this

inlet blade tip angle. The incidence to blade angle ratio for optimum performance

is near the 80% flow since the hubless inducer does not have hub blockage (16%).

3. Hubless Inducer (45°)

Figure 52 and 53 show the 45° hubless inducers, with the long
spinner and short spinner, respectively, at three different flow coefficients.
These flow coefficients were chosen (see Figure 39), so as to not fall on a
discontinuing portion of the head flow curve. The maximum suction specific
speed was approximately the same for both spinners. Again the maximum suction
specific speed value shown represents the near breakdown point since any
decrease in suction pressure caused the head to drop below that required to
pump the test flow loop.

b, Inducer Comparison

a. Comparison of Previous Data

Figure 54 shows the cavitation performance of all the
inducers at the design flow coefficient. The difference in head coefficient at
low suction specific speed (non-cavitating) is indicative of the head - flow
relationship discussed in previous sections. The conventional inducer shows
the typical drop in head, usually less than 5%, at about 15,000 (5.5) suction
specific speed and then a slight increase until breakdown. The 60° hubless,
however, showed an almost continuous increase in head until breakdown occurred.

" The 45° hubless had a continual decrease in head as the suction specific speed

was increased. Both the conventional inducer and the 60° short spinner hubless
inducer obtained approximately the maximum suction specific speed possible for
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their respective inlet blade tip angles (per Ref 12). It appears that decreas-
ing the inlet angle from 60° to 45°, which makes the inducer more 'hubless',
has adverse effect on the cavitation performance. This is most likely caused
by absence of head which can be generated at the inducer inlet eye.

The large variation in breakdown suction specific
speed between the long and short spinner for the 60° hubless inducer is not
apparent but could possibly be the result of providing a cavity where vapor
can collapse before passing into the inducer.

b. Comparison of High Frequency Data

Figures 55 and 56 show a comparison of the high frequency
pressure oscillations at the suction and discharge, respectively. All the data
shown was in a frequency range of between 5 and 30 Hertz, with the predominent
frequency being 20 Hertz. Any data recorded outside this range was either
exactly 60 Hertz, which was undoubtedly electrical noise, or had an insignificant
peak-to-peak pressure magnitude. The ordinate value on Figure 55 represents
the peak-to-peak normalized head coefficient; a value of 0.03 would be approxi-
mately 10% of the discharge head coefficient. The ordinate value on Figure 56
is a ratio of the peak-to-peak pressure to the discharge pressure. The abscissa
value for both figures is the normalized suction pressure parameter, The con-
ventional inducer shows smooth suction operation at the design flow over the
total suction pressure range. At the 80% flow the Ypp has increased, but returns
to approximately the same value as the design when complete cavitation is
approached. The 1107% flow pressure oscillations, in general, fall between the
design and 80% flow but has a resonance at T = 0.1.

The 60° hubless inducer has suction pressure oscillations
slightly higher than the conventional with little difference between the long
and short spinner. Peak-to-peak pressure oscillations were largest for the
45° hubless inducer, occurring over the entire suction pressure range. There
was no difference in pressure magnitude between short and long spinner. In
almost every case the design flow pressure oscillations were less than the
80% and 110% flow conditions.

The discharge peak-to-peak pressure oscillations (Figure 56)
were less than 10% of the discharge pressure for all inducers down to a T value
of 0.2. From t = 0.2 to T = 0,075, the conventional inducer and both the short
and long spinner versions of the 60° hubless decreased in pressure oscillation
to approximately 2%. The 45° hubless inducer, short and long spinner, increase
in pressure oscillation over the same range. From v = 0.075 to minimum, all
inducers show an increase in discharge pressure oscillation, with the 45° hubless
having the highest value of 25%.
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5. Rotor

The rotor cavitation performance at three flow coefficients
is shown in Figure 57. The NPSH at the rotor was computed by adding the NPSH
of the inducer to the total head rise of the inducer and does not account for
fluid temperature increase in the inducer or fluid prewhirl at the rotor inlet.
The maximum suction specific speed at 2% head loss was 6600 (2.4) at the design
flow coefficient. This compares with the design point value of 7420 (2.7) at
2% head loss. The off-design cavitation performance was 6000 (2.2) for the
78% flow and 5200 (1.9) for the 108% flow at 2% head loss. 1In all cases the
head loss increased uniformly as the suction specific speed was increased over
the test range. Data was taken until approximately 10% head loss occurred,
which was equivalent to 30% loss in the overall boost pump head rise.

6. Overall Performance

The overall boost pump cavitation performance is shown in
Figure 58 at three different flows. Essentially all the head loss shown is
due to the rotor cavitation. The inducer is operating at a maximum of
20,000 (7.3) which, as can be seen on Figure 49, represents negligible head loss.
If the rotor would have had less than 2% head loss at 7420 (2.7) suction specific
speed then the boost pump would have operated with negligible loss to 92,000
(33.6). This represents a 12% increase in the suction specific speed perform-
ance of the rotor. The value of the 92,000 (33.6) is equal to 43,000 (15.7)
inducer suction specific speed times the shaft speed ratio and is the maximum
obtainable boost pump suction performance.

C. TRANSIENT PERFORMANCE

The transient tests were conducted in both cavitating and non-
cavitating conditions, using a GN, powered turbine to drive the boost pump.
The flow loop flow control valve was preset to the desired steady-state flow
coefficient and the manually operated GNy power valve was opened to the
desired rate. This method produced start transients with a minimum of 1.5 sec
elapsed time from zero to design speed; there was no limit to the maximum
start time. The shutdowns were not controlled and were accomplished simply
by closing the GN, power valve through the emergency override system.

1. Conventional Inducer

Figure 59 shows the start transient of the boost pump with
the conventional inducer at the design steady-state flow and non-cavitation
conditions. This transient acceleration represents the 'fastest' start possible
within drive limitations. The suction pressure was set to a level which pre-
cluded cavitation within the boost pump. As indicated by Curve 7, the inducer -
turbine are essentially locked to the rotor after 1.5 sec of elapsed time. The
boost pump does not operate along a specific speed line as it would if the start
was infinitely long. This can be seen by Curves 8 and 9, which are directly
proportional to their respective flow coefficients. Curve 8 shows that the
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speed leads the flow, which is caused by fluid inertia in the entire flow

loop system. The fluid inertia in the flow loop is most likely more than

would be found in a rocket engine. Curve 9 shows that the flow is being 'pulled’
through the inducer because the speed ratio is greater than the steady-state
value.

The discharge heads, Curves 2 and 3, are consistant with the
speed and flow at any given point. This indicates that a start transient
model can use a quasi steady-state technique as described in Ref 3.

Figures 60 through 62 show the conventional inducer during
cavitating start transients at different flows and times. TFor the 3-sec
starts, the rotor has reached 100% speed before the inducer starts to rotate.
The flow rate is almost zero until this time. This means that the rotor is
completely cavitated out (maximum speed with near zero inlet head) and one could
expect that flow would not start. Apparently there is enough fluid shear drag
between the rotor and the inducer -~ hydraulic turbine that rotation is initiated.
When the inducer does rotate and generates NPSH for the rotor, rotor begins to
generate head which, in turn, initiates flow.

The NPSH shown on Figure 61 is reduced to 4.5 ft (1.7 m) at
5.25 sec. This is equivalent to a boost pump suction specific speed of 85,000
(31.0) which approaches the maximum capability of 92,000 (33.6) as discussed in
the previous section. As indicated by Figure 58, this would be at considerable
head loss but recovery was possible, as can be seen by Figure 61, Curve 3.

A typical shutdown is shown in Figure 63, This particular
shutdown occurred at nearly constant specific speed, as indicated in Curve 8.
The inducer speed returns to zero faster than the rotor, causing both the
speed ratio and the flow/speed parameter, Curves 7 and 9, respectively, to go
to an infinite value. '

2. Hubless Inducer

The boost pump, with the 45° hubless inducer, transient non-
cavitating performance at the design flow coefficient is shown in Figure 64.
The inlet NPSH was set high enough to preclude cavitation (see Curve 1). There
is little or no difference between the non-cavitating transient performance of
the boost pump with the hubless inducer and that of the conventional inducer.
Since the shroud drag torque was approximately 40% of the total torque delivered
by the hydraulic turbine, the effect of difference in inducer torques was
minimized. Locked speed ratio therefore occurred in the same time regardless
of inducer configuration.

Figures 65 through 67 show the cavitating transient performance
of the hubless inducer at different flow coefficients and elapsed times. The
inlet NPSH had to be increased from 10 ft (3.05 m), the minimum value used on
the conventional inducer, to 26 ft (7.95 m) at design flow and 16 ft (4.88 m)
at 807% flow because the hubless inducer would not start at the lower NPSH value.
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This was caused by the decrease in head produced by the hubless inducer compared
to the conventional. This has the effect of decreasing the available NPSH
to the rotor causing complete cavitation breakdown and consequently zero

delivered head.

3. High Frequency

A comparison of the boost pump suction and discharge pressure
oscillations with the conventional and with the 45° hubless inducer during
transient operation is shown on Figure 68. The 45° hubless inducer had the
highest peak-to-peak pressure oscillations during steady-state operation
(Section VII.B.3.b.). In most cases there appeared to be some resonance between
1 and 3 seconds. This could have been caused by 'ringing' of the flow loop.
All frequencies with significant peak-to-peak pressure magnitude were between
5 and 30 Hertz with 20 being the predominant frequency. In all cases except
one, hubless inducer discharge pressure at 80% flow coefficient, peak-to-peak
pressure returned to the minimal steady-state value after 4 seconds. The
suction peak-to-peak oscillations in transient are approximately three times
those measured in steady-state (see Figure 55 for comparison). The discharge
peak-to-peak pressure oscillations, however, are approximately the same during
transient and steady-state (see Figure 56 for comparison) .

D. MODIFIED ROTOR

Upon completion of the contract-required test program, the rotor
was modified in an attempt to improve its cavitation performance. The
modification consisted of reducing the maximum blade thickness by approximately
one-half at mid cord from hub to tip on the suction side. From mid cord to
20% and 80% cord the material removal was reduced to zero. Since the blade
was a double circular arc with little camber, the radius of curvature on the
pressure side was extremely large, consequently the modification had the

effect of making suction and pressure surfaces parallel from 20% cord to 80% cord.

In addition the leading edge was reduced from 0.030 in. (0.00076 m) to 0.007 in.
(0.00018 m). The thickness increased from the leading edge linearly to the
207% cord station.

Figure 69 shows the head coefficient and efficiency vs. flow
coefficient for the maximum test speed. The head coefficient is less than the
design but 16Z higher than the original head coefficient. The efficiency
appears to peak at a higher than design flow coefficient and is 13 percentage
points less than design and 7 percentage points less than the origianl. Stall
is not evident down to 70% flow coefficient. The original rotor stalled at
approximately 85% flow coefficient. At 120% flow coefficient the modified
rotor has a 23% higher head coefficient, indicating that decreasing the
thickness kept the rotor from choking at the higher flow.

The modified rotor head coefficient at four radial stations vs.
flow coefficient is shown in Figure 70. This should be compared to Figure 42,
which is the same data for the original rotor. The stall at the hub in the
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original rotor is completely absent in the modified rotor. The head coefficient
is higher at each radial station over the entire flow range for the modified
rotor.

To determine what the expected or predicted performance of the
modified rotor would be, the design analysis method discussed previously was
used with the new deviation angles produced by the change in thickness—-to-cord
ratio. The results of this prediction can be seen in Figure 71 where the test
data is overlaid on the design-predicted values. The mass average of the
design-predicted value is the same as was shown on Figure 69.

The suction performance of the modified rotor is shown in Figure 72.
There is no significant difference in performance between the modified and the
original rotor (Figure 57). The 80% flow is somewhat less, while the 1107%
flow is slightly better. Since the head coefficient of the modified rotor was
higher at a given flow coefficient, the blade loading would likewise be higher.
In general, the more highly loaded blades will have lower cavitation performance,
as was shown in Ref 3. This could account for the unchanged suction performance;
that is, any gain realized by sharpening the lead edge was offset by the higher
blade loading.

VII1. CONCLUSIONS

1. The hubless inducer concept allows the inlet blade tip angle to
be increased from the present manufacturing limit of 83° to 86°. This is
accomplished by attaching the blade to a shroud after machining the fluid
passages. After attachment the hub is removed and blade leading edge is faired
to the desired sharpness.

2. The suction performance of a hubless inducer is limited to that value

predicted by Ref 12 for the corresponding inlet blade tip angle. That is,
larger blade angles have smaller flow coefficients which, in turn, produce
the highest suction specific speed performance.

3. The head coefficient of a hubless inducer is lower than that of a
conventional inducer with the same discharge flow coefficient and blade angle.
A hubless inducer therefore must be used in an application requiring low head
rise inducer, or a downstream stage must be used to produce additional head.

4. Hubless inducers mechanically couple best in shroud driven applica-
tions, i.e., with a shrouded pump impeller or a hydraulic turbine driven inducer
concept similar to Figure 2.

5. The design method used to predict inducer, rotor, and hydraulic

turbine head performance at design flow proved to be very accurate. This
accuracy is shown by Figures 31, 34, 41, 44, 45, 47, 69, and 71,
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6. The full flow hydraulic turbine driven inducer boost pump in the
configuration shown in Figure 2 has the following characteristics:

] Maximum speed ratio of 2.5 limited by the cavitation per-
formance of the rotor.

[ ] The speed ratio has nearly the same value as the design
from 0 to 120% of the design flow coefficient.

o The boost pump has the capability of start transient times
less than 1 second.

[ Successful start transients can be realized even through a
high degree of rotor cavitation exists at some point during
the transient. These transients, however, require a longer
elapsed time.

7. Rotor cavitation performance appears to be somewhat a function of
hub/tip diameter ratio as shown by Figure 73. If this indication is correct,
cavitation performance is limited and can be improved to the required 7420 2.7)
suction specific speed only by decreasing the hub/tip diameter ratio. This
of course affects the complete design of the boost pump and may impose other
restrictions.

8. Blade row head rise performance across the discharge passage can
be successfully measured by the use of fixed-position Kiel probes. Care must
be taken to set probes so that the required flow range can be met.

9. Shroud drag calculated by standard disk friction procedures was
in error by 25% to 40%. This could be partially caused by larger than normal
clearances or by pumping action through the radial thrust bearings.

10. Full flow hydraulic turbine driven inducer boost pumps similar to
the concept shown in Figure 74 are not speed ratio limited at 2.5 but can be
designed for speed ratios as high as 4. The disadvantages are a high speed
shroud coupling and return flow into the inlet of the high speed inducer. All
hydraulic components are within the state-of-the-art.
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APPENDIX A

Symbols

blade diffusion factor ) ) -
acceleration due to gravity, 32.17 ft/sec2 (9.8 m/s2)
total head, ft (m)

blade head rise, ft (m)

incidence angle, deg

cavitation number

rotating speed, RPM (rad/s)

net positive suction head, ft (m)

flow rate, gal/min (m3/s)

radius, ft (m)

suction specific speed, RPM (gpm)l/z/(ft)3/4

speed ratio

blade velocity, ft/sec (m/s)

fluid velocity, ft/sec (m/s)

blade setting angle with respect to axial direction, deg
blade angle with respect to axial direction, deg

fluid angle with respect to axial direction, deg
deviation angle, deg

efficiency

hub/tip radius ratio

blade solidity, ratio of blade cord length to blade tangential spacing

cavitation parameter

flow coefficient

blade camber angle, deg

suction specific speed coefficient
head coefficient

head coefficient ideal

loss coefficient
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Symbols (cont.)

Subscripts

BP boost pump (inducer inlet to hydraulic turbine exit)

design point

hub
inducer
IC conventional inducer (forward section)
IH hubless inducer (forward section)
IT transition inducer (aft section)
m mean
PP peak-to-peak pressure oscillations
R rotor
t tip
T turbine
0 tangential direction
zZ axial direction
1 inlet
2 outlet
Superscripts

relative to rotor
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EQUATIONS
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Diffusion Factor

Incidence Angle

Cavitation Number

Speed Ratio

Deviation Angle

Efficiency

APPENDIX B

Equations
v,” R, V - R, V
D = 1 - 2 + 2 062 1 ‘el

L= 8%-8
2
_ NPSH-2g [V21]
K - 2 - V -
v, 1
SR = N/N,
= * -
n = —3};
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Appendix B (cont.)

Cavitation Parameter

T = NPSH- 2g
2
@,)
Suction Specific Speed
1/2 3/4
s = v @Y% awswy’
Flow Coefficient
U
t
Camber Angle
@ = B - B
Head Coefficient
v = AH-g
w )?
t
Head Coefficient Ideal
F 3
\Y
w* = __9_
Ut
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Appendix B (cont.)

Loss Coefficient

= _ 2
W, )
Head Rise
AH = H2 - Hl
Hub Tip Diameter Ratio
£ = R /R,

Suction Specific Speed

X = N (Q)l/z/(NPSH°g)3/4 (unitless)
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