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- MICROCRATERS FORMED IN GLASS BY LOW DENSITY PROJECTILES

-- -; -ABSTRACT

Microcraters were produced in soda-lime glaby the impact of low

- density projectiles of polystyrene (p 1.o06 g/cm3 ) with masses between

0.7 and 62 picograms and velocities between 2 and 14 km/s. The morphology

of the craters depends on the velocity and angle of incidence of the pro-

jectiles. For normal incidence at 3 km/s, the projectile leaves a dent;

and at 4 km/s the deformed projectile lines the depression and forms a

rim. For velocities greater than 5.2 km/s at normal incidence, an ex-

tensive spallation zone surrounds the central pit; the ratio of the

central pit diameter to the projectile diameter (DC/d) increases from

1.25 to 1.75 with increasing velocity; and D /d is independent of pro-
C

jectile mass for constant velocity. The transitions in morphology of

the craters formed by polystyrene spheres occur at higher velocities than

they do for more dense projectiles. For oblique impact, the craters are

elongated and shallow with the spallation threshold occurring at higher

velocity. For normal incidence, the total displaced mass of the target

material per unit of projectile kinetic energy increases slowly with

the energy, according to the relation:

Experimental studies of microcraters formed by hypervelocity impacts

have become increasingly important in recent years. Fundamental develop-

ments and verification of theories for cratering depend on impact

-- - .-~ · ·.. · .. .-
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experiments in the laboratory. Current impetus results from the fact

'that the flux of interplanetary particles may be derived from the number

and size of craters on detectors flown on spacecraft (1) or on recovered

- ' parts of spacecraft (2). For these determinations, a relationship be-

tween projectile size and crater size is required as well as knowledge

of morphological features that distinguish a true event from other damage

(3). Estimates of useful lifetimes of sensitive parts of spacecraft ex-

posed to erosion by micrometeoroids are based on simulation experiments

(4). Also, meteoroids and planetary bodies without an atmosphere under-

go bombardment by interplanetary dust (5, 6, 7) and estimates of the

cumulative effect on these bodies depends on experimental evidence. Of

particular recent interest is the application of laboratory data in the

derivation of fluxes and erosion rates from the microcraters found in

abundance on lunar samples (8, 9) returned by the Apollo 11 and Apollo

12 missions.

Most of the previous experimentation in the forraation of craters

by hypervelocity microspheres has been done with mebal projectiles im-

pacting metal targets (10, 11, 12). Very little work has been done with

nonmetallic targets (9, 13, 14), and no work is known for nonmetallic

projectiles in the micrometer-size range. Metal projectiles, however,

are not typical of the secondary particles in the lunar environment (5)

or of the interplanetary dust which may have primarily a low-density,

stony composition (7). For this reasons an experimental program is in

-:progress at Ames Research Center to study microcraters generated in

simulated lunar materials by projectiles of various densities and comp-

-ositions. This report contains results on craters in soda-lime-silica

-2-
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glass formed by polystyrene spheres ( = 1.06 g/rm3) betweenl and 5 pm in

diameter with velocities from 2 to 14 km/s. Polystyrene was used in an

attempt to simulate the low density component of particulate material

that may exist in interplanetary space.

PROCEDURE

.A vertically oriented microparticle accelerator of unique design

provided the hypervelocity, low-density projectiles for the experiment.

At the upper end, single particles are charged by ion bombardment in

high vacuum in an electrodynamic suspension system (15). The charged

particle is injected into the accelerator having four drift tubes, each

initially at a high negative voltage. Each tube is grounded in sequence

at the proper time to give four stages of acceleration with a total volt-

age equivalent to about 1.5 MV. The timing sequence is automatically

controlled by the particle's charge-to-mass ratio measured in the source

by the operator just prior to ejection. At the entrance to the accelera-

tor, the particle generates a signal on a detector to initiate the timing

sequence. Detectors in the target chamber record the passage of the

projectile and provide information on its charge, velocity, and impact

site (16). The craters usually lie within a circle of 1 mm radius. A

rotary table permits the remote selection of different targets and the

separation of ranges of impact parameters on a particular target. For

-.. i impact angles other than normal ( 90=), the targets are mounted on

blocks machined to the appropriate angle.

; Once a 'series of impacts is completed, the targets are scanned

:'-'. optically to locate each crater and the impact areas marked for later

· -... . o. . - .- .-
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examination in a scanning electron microscope (SEM). The crater sites

are correlated with the position data from the detector for assignment

of impacting mass and velocity. In cases of doubtful correlations, the

crater size and morphology are an aid in the identification. Impacts are

limited to about six per target site to assure the correct identification.

Photomicrographs of each crater are taken with the SEM with the stage

tilt angle (T) at 230 and 300 relative to the horizontal plane to pro-

vide a stereoscopic view. Crater depths are determined photogramrnetric-

ally, and the stereopsis clarifies details in the crater morphology. A

thin vapor-deposited film of gold is applied to the target prior to

examination in the SEM in order to obtain a good image. In some micro-

graphs, a slight crazing of the gold film may be noted.

RESULTS

In this study, we impacted polystyrene spheres on soda-lime-silica

glass. The glass targets were made from ordinary microscope slides with

a thickness of 1 rmm and a density of 2.48 g/cm3 . The polystyrene has an

additive of 8% divinylbenzene as an agent for crosslinking the molecular

chains. The material density is 1.06 g/cm3 ; and under normal conditions,

the particles are infusible. Spheres with diameters between 1 pm and

5 pm and masses between 0.7 and 62 pg were accelerated to velocities

between 2 and 14 km/s. In general, the small particles have the high-

est velocities, a consequence of the charging process (15). Most of the

impacts were at an incident angle (0) of 90° relative to the glass sur-

face. The others were at impact angles of 450 and 300° . Primary and

: derived data for the projectiles and craters are tabulated for normal

incidence in table 1 and for obliqaue incidence in table 2.

4
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... ' -' The accuracy of the measurements can be evaluated and estimates of

. :..
.
the probable errors assigned to the various quantities. The projectile

mass, derived from the projectile charge and charge-to-mass ratio, has

an error of 10%. The projectile diameter, calculated from its mass and

density, then has a probable error of + 3.3%. The polystyrene particles

are assumed to remain spherical in the charging and acceleration process,

and the symmetry of the craters for e = 90° substantiates the assumption.

In a preliminary study, polyethylene spheres (p = 0.915 g/cm ), which 

did not retain their sphericity in the charging process, formed un-

-usual and highly asymmetrical craters. The velocities have a probable

error of about ± 5%. From the errors for mass and velocity, we derive

an error of + 12% for the kinetic energy of the projectile. Crater

dimensions measured on the photomicrographs from the SEM have a + 5%

probable error as a result of uncertainty in the magnification. We

have taken the diameter of the spallation region to be an average of a

maximum and minimum diameter of an area that is often very asymmetric;

and, therefore, a value for the accuracy has little meaning. The crater

depth derived from measurements on stereographic pairs of micrographs

has a probable error of + 50%. The error in the volume of ejected

material is about + 60%, depending primarily on the uncertainty in the

depth and secondarily on the deviation of the shape of the crater from'

the shape used to calculate the crater volume. No correction is made

for the thickness of projectile material on the crater floor.

The examination of the SE2 micrographs reveals several morphological

: -features that change withthe impact velocity and angle of incidence of

- the projectile. Consider, first, impacts at-normal incidence. Six
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examples are shown in fig. 1. For a velocity of 2.95 km/s, there is

: only a smooth indentation in the glass surface (fig. la) with a diameter

smaller than the projectile diameter. The projectile has rebounded

from the surface leaving a very shallow crater. Surrounding it is a

slightly raised, smooth rim generated by the plastic deformation of the

glass. A crater for a 2.06 km/s projectile could not be located because

-it was either too small and shallow for detection or did not exist for

that velocity. At 4.15 krn/s, the projectile lines the circular cup and

spreads into a narrow continuous lip (fig. lb). The pit diameter equals

the projectile diameter. There are no radial or concentric fractures

outside the lip. For velocities between 4.9 and 5.1 km/s, we observe a

circular, shallow cup ringed by a petalled lip of projectile material

(fig. -lc). Some of the petals extend as much as 0.6 Am above the sur-

-face. Again, there are no fractures outside the lip. At velocities

exceeding 5.2 ke/s, an extensive spallation zone develops around the

central pit (figs. Id, le, and lf). This zone is characterized by

approximately radial and concentric fractures. Where the individual

spalls have been ejected, radial ridges appear beneath the locations of

the radial surface cracks. At a given velocity of impact, a larger

projectile usually will dislodge completely a greater number of the

spalls. The larger ejected spalls may remove the outer part of the cup

and reduce its diameter. In such cases, an annular depression is left

outside the cup (fig. ld). The remaining spalls may rest more than 1

pm above the glass surface. At impact velocities exceeding 7 km/s,

almost all of the petalled lip has been carried away by a ring of

ejected spalls as in fig. le.- The spallation zone has become more

-6- . . .
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finely fragmented, and the smaller spalls are missing from the inner

ends of the larger segments. The relative depths of the craters in-

crease with the velocity of impact. In part, this is a result of

increased or complete dispersion of the projectile material in and from

the pit. The cross section of the central cup is approximately hemi-

spherical..

For impacts at a 450 angle of incidence, the crater pit and

spallation zone become asymmetrical (fig. 2a). At velocities less than

6 km/s, we find the cup is broadened toward the forward end, "down

ranger from the point of impact. The greatest width occurs about 2/3

the length of the cup from the rear end. In profile, the crater is

shallow and nearly semri-ellipsoidal in the long direction. The lip of

5.2 kr/s. The spallation zone usually predominates at the forward end

but may sometimes be nearly circular. In the velocity range of 5.8 to

6.8 kmr/s, the crater profile changes such that the greatest depth occurs

closer to the "up range" crater rim.

abc rThe damaged area is evenmore asymmetrical for an angle of incidence

of 30h Up to a velocity of 12.3 km/s, we find little spallation;

although for velocities between 7 xnd 8 kme/s a few spalls maybe gen-

erated (fig. 2b). The craters are shallower relative to those formed

at e 450* The damaged area is about the same as in the 450 impacts,

-' . .but the bcrater is more elongated. At velocities less than 7 km/so , small

-7-
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: - droplets with diameters of about 0.1 to 0.15 pm fan out from the impact

point. These are p.obably projectile material. The results for oblique

impacts indicate that the crater depth and the threshold for spallation

are determined by the normal component of velocity and that the asymmetry

of the crater is controlled by the tangential component.

Some of the targets, after the SEM examination, were treated in a

low-temperature asher in an attempt to remove projectile material and

thus to distinguish it from target material. The material is exposed

in the asher to monatomic oxygen at controlled temperatures. By this

procedure, the lips were reduced in height or removed almost entirely.

Prior to this treatment, the gold film applied for the SEM image was wiped

off; but in some cases, where part of the crater floor was still coated

with the film, the gold appeared to lie slightly above the floor on a

thin layer of the polystyrene which was protected from the ashing process

by the gold film. Thus, our conclusions on the distribution of project-

ile material in the crater and in the petalled lip are substantiated.

Figure 3 shows a graph of the ratio of the crater diameter to the

projectile diameter (d) versus velocity. The diameter of the central

cup is denoted DC and the average diameter of the spallation zone DS.

A maximum and minimum diameter are measured and averaged to give DS.

For velocities from 5.2 to 14 km/s, the ratio DC/d increases from 1.25'

to 1.75. 'A least squares fit to the data in this velocity range gives

DJd = 0.76 v0 3 1 5 where v is the projectile velocity in kilometers per

second. Because of inherent limitations of the particle charging system,

the projectile mass is, in general, smaller for projectiles with the

-higher velocities. But the mass or, equivalently, size does not

-8- - ' :
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influence the DC/d ratio noticeably. This is more clearly shown in fig.
C

4, where.. /d is plotted against the mass of the projectile for several

velocity intervals. In each range, the ratio is constant within the

accuracy of the data. The mean values for DC/d are 1.27 for velocities

between 5.3 and 6.4 krn/s, 1.47 for 7 to 10 km/s, and 1.71 for 12-14 km/s.

In the 5-.3 to 6.4 km/s range of velocities, the mass varies from 2.5 to

46 picograms. Th.is, in our data there is no discernable mass, or scale,

effect on the diameter of the central pit other than that caused by the

change in projectile diameter with the mass. At velocities below 5.2

km/s, where spallation does not occur, the diameter ratio drops off more

rapidly. This is the result of a thicker lining of projectile material

in the pit, the uncertainty in defining the cup diameter for measure-

ment in these cases, and a transition in the cratering process.

In fig. 5, we have plotted the crater diameter versus the mass of

the projectile for the same velocity intervals. Equations from a least

squares fit to the data in these ranges indicate that for constant

velocity the diameter of the central cup varies approximately as the cube

root of the mass of the projectile and, therefore, as the diameter of

the projectile. This result is equivalent to that seen in fig. 4 where

DC/d is constant for a given velocity. The equations for the spallation

data is these velocity intervals indicate a slight increase in the ratio

'of diameter-to-projectile-diameter as the projectile mass increases.

The main features in the changing morphology of the craters examined

here may be compared to those observed in other studies of impacts by

:microparticles on soda-lime glass. Information is available for impacts

on'glass by aluminum projectiles (14) and by iron projectiles (9).

-9-
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For the latter, target indentation with rebound of the projectile

occurs at velocities of impact less than 1 km/s. With the polystyrene

particles, a dent occurs at 3 kra/s. A deformed iron projectile rests

in the crater for impact velocities between 1 and 2 kmn/s, and spallation

has developed at 3 km/s. Wi-th polystyrene, a highly deformed projectile

overflows the crater at 4 kmi/s and spallation appears at velocities ex-

ceeding 5.2 km/s. Impacts by aluminum projectiles generate spallation

at a velocity of 3.6 km/s, but the threshold velocity was not investi-

gated. The preceeding inforemation is suwamarized in table 3. These

comparisons show that the velocity thresholds for the morphological

transitions are some direct function of the specific energy (1/2 P va)

-of the projectiles; that is, higher velocities are required for low

density projectiles to generate the same effects as those generated by

impacts of high density particles.

A study by Bloch et al. (13) of craters formed by iron projectiles

impacting quartz glass provides additional data for comparison. Within

several velocity intervals between 2.8 and 8 km/s, their ratio, Dc/d,

is nearly independent of the mass of the iron projectile. This is the

same result as determined for polystyrene impacting glass. In contrast,

their D /d ratio increases as the 0.67 power of velocity; while in our
C

case, the exponent is only 0.315. Their value of 2.2 for DC/d at 20 km/s

-compares favorably with an extrapolated value of 1-95 at 20 km/s for

polystyrene impacting glass. Because of the difference in the densities

of iron and polystyrene, the actual crater size is larger for a poly-

styrene projectile with the same mass and velocity as an iron projectile.

-'·- -The curves cross near 14 km/s, but diverge rapidly at higher and lower

velocities.

-10-- , ., -- · .' -10O- ." 
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It is interesting to relate the mass of target material displaced

- -(Me) to the kinetic energy (E) of the impacting Projectile for compari-

son with other experiments. The volume of the crater can be approximated

by the volume of a spherical segment of depth P and diameter D. Thus

V = r P (P + ). Using a density of 2.48 g/cm3 for the glass, we

obtain the displaced mass which is plotted against the projectile

energy in fig. 6. No adjustment is made in the measured depth for the

thin layer of projectile material lining the crater floor. The total

displaced mass includes the spallation zone and the central cup. Not

all the listed impact events were measured for depth. Also, in the normal

charging process, the higher velocity projectiles have the lower energies

except where a range of masses is selected for a given velocity. The

least squa'res fit to these data give M = 227 E1 1 3 5 for the total
eS

damaged region and M 47 E 10 7 for the pit, where M is in picograms
eC e

and E in microjoules. Thus, the displaced mass per unit of projectile

energy increases with increasing energy; that is, cratering efficiency

increases with increasing size of the crater. This trend has been ex-

plained by a decrease in the effective target strength as the crater

becomes larger (17, 18). In hardness tests of glass, the strength is

known to increase as the dimensions of the tested area decrease (19).

Because the phenomena of impact on glass is similar to that on rock,

our expression for displaced mass is compared with one derived by Gault

(20) for dense crystalline rock. He finds Me =1300 E in the units

used above. The mass of rock ejected is about six times that of glass

for a given energy of impact. Rock is less homogeneous than glass; and,

therefore, rock has a lower effective strength. ' -

-11- 
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CONCLUSIONS -: --

In conclusion, we find that the crater morphology changes markedly

in the velocity'range from 2 to 14 km/s for polystyrene microspheres im-

pacting soda-lime glass targets. At 3 krn/s, the rebounding projectile

forms a shallow depression in the glass. The deformed projectile lines

and overflows the depression from an impact at 4 km/s. At about 5 km/s,

a petalled lip forms; and at a slightly higher velocity, a spallation

-region is generated outside the central cup. This region is characterized

by radial and concentric fractures and radial ridges where the spalls

have been ejected. As the velocity of impact increases further, the

spallation zone becomes more finely fragmented. These transitions in

morphology occur at higher velocities than for similar changes observed

for impacts by denser projectiles. This indicates that the specific

.energy of the particle is a primary factor in the mechanics of crater

formation. For constant velocity, the DC/d ratio is independent of mass;

but with velocity increasing from 5.2 to 14 km/s, the ratio increases

from 1.25 to 1.75. The total mass of glass, displaced per unit of the

projectile energy increases slowly with energy in agreement with results

of studies by others of craters formed by centimeter-size projectiles

impacting rock.

In any application of these laboratory impact data to analysis of

lunar microcraters, several points should be kept in mind. Although

crater morphology can provide some- information on the velocity and angle

of incidence of the impacting particle, the threshold velocities for

certain features of the crater depend on the projecile density and occur

-% at lower velocities for higher density particles, In addition, for a

-12-
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·~~~~~~~~~~~~~~'
given projectile mass and crater shape, the low density particle produces

a larger area of damage. Finally, ejected spalls may diminish the central

cup in size, and a measurement of the diameter of the residual cup can

lead to a low estimated value for the size of the impacting projectile.

The probability of ejection of these spalls increases with increasing

projectile size for a given velocity of impact.
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Table 1. StulL!L:ry or.I d1 ta for !o.1.yIt, SLrie u:o :Ia reat ' 

Projectile

Velocity Mass
(v, klm/s) (m, pg)

2.06 46.2

2.95 42.2

4.15 28.6

4.9 , 31.8

5.05 57.7

5.1 , 62.1

5.27 41.2

5.38 27.5

5.54 ' 45.9

5.80 31.3

5.96 11.2

5.97 41.4

6.og 2.49 .

6.10 11.7

6.3 22.7

6.9 30.5

7.0 , 21.7

7.2 '20.8

7.3 17.5

8.22 17.0

8.4, 6.15

8.73 5.73
8.75 ' 4.65

10.1 3.23

12.3 1.23

12.6 1.67

14.o 0..70

Diameter
(d, *Lm)

4.37
4.24

3.72

3.86

4.70

4.82

4.20

3.67

4.36

3.84

2.73
4.21

1.65

2.76

3.44

3.80

3.39

3.34
3.16

3.13

2.23

2.18

2.03

1.80

1.30

1.44

1.08

Energy
(E, ,jJ)

0.098

0.183

0.246

0.382

0.736

0.807

0.572
0.398

0.709

0.525

0.199

0.737
o.o46

0.217

0.451

0.625

0.531
o. 540

o.465

0.574

0.217

0.219.

0.178

0.165

0.093

0.132

0.069

Diamleter

(Dc, rm)

C rlotC!'

iD, .L-

(DS, nm)

,i, DC /d
(p, LLl) 

No crater found*

3.2

3.7

4.5

5.0

5.0

5.45
4.8

5.5

5.1

3.6

5.5

2.2

3.6

4.9

5.4
5.0

5.0

4.75

4.8

3.2

3.3

2.9

2.9

2.25

.4

1.9

14

13

13

8

15

4.3
8

10

13

11.5,

10

11

11.5

7.5

7
6

6.25

5

4.75

3. 5

0.7

0.4

1

1

0.7

0.8

1

0.7

0.3
0.7

0.5

0.8

0.9

1.2

0.8

1.1

0.9

0.65

1

0.7

.76

1..00

1.16

1.08

1.04

1.30

1.31

1.28

1.33

1.32

1.31

1.33

1.30

11.42
{ 1.43
1.48

1.50

! 1.50

i I
1.43

1.51

1.43

1.60

1.74

1.66

1.75

Pi".'"lae'c:a ::':- '"

3.3 21 132.0

3.0 18.7 94.6
3.0 .30.7, o165

3.5 · .

2.6 .:1. 5 5·', ..5

2.9 : 6.45 31.2

3.14 .

3.4 20 103.4 .-

3.0 i 22.8 88.3
3.5 0 -

3.0 14314.2 67.8 

3.2 9.17 38.7
3.2 10.7 40.2 

3.75 · 8.29 41.3

3.85 3.49 16.1

3.4 6.88 23.7
3.3 .2 .89 8.8

I 

I



Table 2. :Summary of data for polystyrene spheres impacting glass at oblique incidence

Projectile

.Mass Diameter
(m, pg) (d, 1m)

Energy

(E, pJ)

4.67 0.665

3.29 0.304

4.59 o.877

3.62 o. 469

4.31 0. 79

3.67 Q.590

3.59. 0.592
2.99 0.385

3.26 o.62

3.29 o0.682

1.3 0.095

Length
(L, Am)

9 = 450
7.5

5.2

8.7
6.8

7.4
7.0

6.4

5.8

6.7

3.8

Crater

Width
(W, Pm)

5. 5

4.5

7.0

5. 5

5.o

4.0

4.0

5.0

5.0

2.5

Depth

(P, Am)

0.4

0.3

1.0

0.4

-0o.8

0.5

0.5

1.0

0.8

0.4

Spallation

No

No

No
No .'

Yes

Yes .

Yes

Yes

Yes

Yes

e = 300.

5.1 - 59.0

6.0 ' 31.7

6.4 ,40.3.

6.9 7.91i

7.2 17.9

7.8' 17.0

8.4 12.3

12.3 1.22

4.74 0.768

3.8 b. 570

4.17 0.825

1.99 o0.188

3.18 o0.464

3.13 o. 517

2.81 0.434

L.3 0.092

Velocity
(v, km/s)

4.85

5.54

5.71

5.91

6.3

6.55

6.79

7.22

8.05

8.30

12.5

56.6

19.8

53.8'

26.3

44.4

27.5

25.7

14.8
.19.2

19.8

1.22

6.o

7.0

6.5

7.3

5.5

3.1

4.0

5.5

4.0

4.5

4.0

2.3

0.25

0.25

o.6

0.5

0.5

0.25

No

No

Y. es

Yes

No

No



Comparison of the impact velocities for occurrence of several mor'
features of craters formed in soda-lime glass by projectiles with
densities.

Projectile
Material

Polystyrenea

b
Aluminum

Ironc

Morphology
Dented Glass Deformed Projectile Petalled

(km/s) (km/s) (km/s

3 3.5-4.6

9

<1 1-2 >3

Information is included from some additional impacts not listed in tabli
Taken from ref. 14.

c. Taken fran ref. 9.

phological
differing '

Lip Spallation
)· ('(k/s) ::

?. · ' ~, !.

Tr > 5.2

,> ? (<3.6):

>3

e. j

: b ~ ~ ~ ··

· · J 

Table 3.

/Projecti
Densit

lle
tY

(g/cnoe)

1.o6

2.7

a.
b..

4.8-'

'.8

'

·:··

L'

'Z '?'

· [.

7 ·

;. . ,,

Z.,"

· .. ~ . ,



Mandeville/Vedder

FIGURE CAPTIONS

Fig. 1 SEM photomicrographs of craters formed by polystyrene spheres

striking soda-lime glass at normal incidence (T = 90° )

a) 2.95 km/s, 42.2 pg. SEM stage tilt T 30°;

b) 4.15 kr/s, 28.6 pg, T= 30; 

c) 5.05 km/s, 57.7 pg. T = 23°;

d) 5.38 km/s,27.5 pg,T 30°;

e) 8.22 km/s,17.0 pg,T - 23°;

f) 12.6 krn/s,1.67 pg, T 230°.

The SEM stage tilt is such that the top of each micrograph is

at the base of the slope.

Fig. 2 SEM micrographs of craters formed by polystyrene spheres striking

soda-lime glass at oblique incidence.

a) 7.2 km/s, 15 pg, 6 = 45 ° , T = 30°;

b) 7.8 kr/s., 17 pg., 6 = 30 0 ,T 300.

Fig. 3 The ratios of the diameter of the spallation zone to the pro-

jectile diameter (Ds/d) and the central cup diameter to the

projectile diameter (Dc/d) versus projectile velocity for

polystyrene spheres impacting glass at normal incidence (' = 90°).

Fig. 4 The ratios of the diameter of the spallation zone to the

projectile diameter (DS/d)'and central cup diameter to projectile

diameter (D /d) versus projectile mass for different velocity
C

intervals of polystyrene spheres impacting glass at normal

incidence.



F

F

Mandeville/Vedder

Pig. 5 The diameters of the crater cup (DC) and the spallation zone

(Ds) versus projectile mass for polystyrene spheres striking

:glass at normal incidence.

'ig. 6 Displaced mass ff target material versus projectile kinetic

energy in microjoules calculated for the central cup (MeC)

and for the-whole area of damage (sM ) for polystyrene spheres

striking glass at normal incidence.
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P.S. --- GLASS
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