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ABSTRACT

This dissertation introduces the idea of equicontrollability and

studies its application to the linear time-invariant model-following

problem. The problem is presented in the form of two systems: generically

called the plant and the model. The requirement is to find a controller

to apply to the plant so that the resultant compensated plant behaves,

in an input-output sense, the same as the model. All systems are

assumed to be linear and time-invariant.

The basic approach used is to find suitable equicontrollable

realizations of the plant and model and to utilize feedback so as to

produce a controller of minimal state dimension. The concept of

equicontrollability (introduced here) is a generalization of control

canonical (phase variable) form applied to multivariable systems.

It allows one to visualize clearly the effects of feedback and to

pinpoint the parameters of a multivariable system which are invariant

under feedback.

The basic contributions contained in this work are; (1)

the development of equicontrollable form; (2) solution of the model-

following problem in an entirely algorithmic way, suitable for computer

programming, and (3) resolution of some questions on system decoupling

(along with the application of the above algorithm to accomplish

decoupling, as shown in Appendix C).
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I. INTRODUCTION

A. Description of the Problem

The model-following problem has appeared periodically in the

literature for some time, it most often is referenced in conjunction

with proposed solutions for flight control problems. These have the

property of having no jj priori cost function to be minimized (contrary

to most problems in modern control theory). Instead, a model is

specified whose dynamic response is considered desirable. The problem

then becomes finding a controller (compensator) which, when added to

a given plant, will cause the resultant system to have a response as

close to the model's as possible.

A typical example of this kind of problem might arise during

the design of an SST. The future pilots of the SST would like to fly

the aircraft before it is built. This clear contradiction is generally

"solved" by construction of a simulator which does a credible job of

reproducing the "feel" of the aircraft, but is still not quite the real

thing. A recent proposal has been to take a small jet transport and

build a complete SST nose section on its front. Then some sort of

artificial feel system would connect the controls to the transport in

such a way as to make it feel to the pilots as if it were an SST

behind them. In this problem the model is the SST, the plant is the

transport and the artificial feel system is the compensator to be

designed. This problem was considered by Rynaski and Whitbeck [17]

with some success.

Another problem of the same type occurs in the design of

compensation for VTOL aircraft. In this case the plant is the helicopter

or VTOL and the model is a mathematical description of what sort of

system the pilot would like to fly. Such a description is probably no
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more detailed than the requirements of asymptotic stability, negligible

overshoot and decoupling of lateral and longitudinal dynamics. Time

constants are stated equally as grossly. Nonetheless, a model may be

formulated which the pilot would accept. This type of problem has been

considered by Wolovich and Shirley [21]. Unfortunately, they had to

compromise the model substantially to get a solution.

In summary then, the model-following problem involves some sort

of plant and a model whose response the compensated plant is to emulate.

The key factor in every problem statement of this type is a lack of a

measure of performance. No cost function is given to minimize, but

rather the designer wants the model and compensated plant to be the

same in response; or, barring that, "as close to the same as possible".

This is the point on which the problem hinges. At such time as the

measure of error is defined, the problem is half solved.

One might notice that there is a definite link between the

model-following problem and classical control theory; at least in so

far as the observation that virtually all classical design problems

specify enough desired parameters to roughly define a model. For

example, such criteria as overshoot, risetime, gain margin and so

forth can be translated into the specification of a second or third

order system. Certainly no cost function is given to be minimized

and the designer would like the plant and such a model to behave as

nearly the same as possible. Hence, the original form of the model-

following problem acts as a sort of bridge between what is commonly

called optimal control, i.e. problems with a cost functional, and

classical control problems.

Strangely enough, this link was to some degree born out

historically. At the time when a type of model-following problem was

being considered in a frequency domain sense (see Freeman [8],

Kavanaugh [11] and Morgan [14])."modern" control theory was waxing;

in particular Kalman's work was making the quadratic performance index

de riguer. The net result was a loss of the link between the two

approaches. Later some authors attempted to re-establish it (notably

Brockett [3]), but most research continued in the direction of optimal

control theory.
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B.

1.

Proposed Solutions

The Frequency Domain Approach

The initial interest in the model-following problem came from

the relative ease with which its scalar version could be solved. That

version involved the block diagram in Fig. 1.1:

r(t)
^ e(t)

)
\

n f ̂  \C(S)

u(t)
n/Y— \
V t \ S ) y(t)

Fig. 1.1

The Scalar Problem

r(t) is a scalar reference input, V(s) is a given linear model and

W(s) is the plant. The plant has been imbedded into a unity feedback

loop with the series compensator C(s) . The objective is to find

C(s) so that y(t) = |a(t) . In other words so that:

C(s)W(s)
+ C(s)W(s)

= V(s)

or that:

C(s) =
_1 V(s)
W(s) ' l-V(s) (1.1)

There were, of course, some restrictions placed on C(s) . Most often

they would be:

1. the closed loop system using C(s) must be stable and,

2. C(s) must be realizable (or, more restrictively, low pass).

These two restrictions are easily dispatched. First, if the numerator

of W(s) has a root in the RHP, then clearly we must require that V(s)

also have one at the same location. This assumption will guarantee
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stability. The second restriction is no more difficult to deal with.

If the numerator of C(s) is of greater dimension than its denominator,

one may modify the model in the form a V(s)/(s+a)r yielding:

U.2,
w(s) (S-KH) -a v(s)

We may certainly choose an r so that C(s) will be realizable. Then

a can be chosen so that the effect on the model will be as small as

desired (at the cost of increased feedback gain of course) .

The manipulations engendered by the scalar case are fairly

transparent, while the multivariable case is quite opaque. The block

diagram may be left the same, except that all variables would be

vectors instead of scalars, and all transfer functions would be matrices

We may then formally derive the required compensator:

C(s) = [W(s)]V(s)[I-V(s)]~ (1.3)

assuming that all inverses exist. Now, unfortunately, we cannot so

glibly arrange to satisfy the two given requirements. Stability is not

so clear, and realizability is more of a chore. Worse yet, the computation

of the inverses is especially complicated. All in all, the problem, as

given, is very difficult. It was only saved from extinction by the

advent of the quadratic loss approach which circumvented the difficulties

via a reformulation. Although we shall also reformulate it, Chapter V

contains a consideration of a similar problem which the algorithm given

in the sequel can solve.

2. The Time Domain Approach

The bulk of work in attempting to solve the model following

problem has used optimal control theory. To do this requires the

generation of a cost function. Since the actual problem statement does

not include one, it is necessary for the designer to create one to suit

both his convenience and to produce an acceptable answer. Most all of

the papers written in the area specify a quadratic performance measure.

More specifically, if the stateof the model is | and that of the plant

is x , then they choose:
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J = f [(x-t)TQ(x-|) + uTRu I dt (1.4)

0

where u is the control applied, as their measure. Since the plant and

model are assumed to be linear constant systems, the solution to such a

problem is well known. Such an approach has been used by Kalman and

Englar [10], Rynaski and Whitbeck [16], Rynaski e_t al [17], Tyler [18],

Tyler and Tuteur [19], Asseo [1], and Winsor and Roy [20]. These have

been, in some sense, ordered as to increasing sophistication in specify-

ing the matrices Q and R ; i.e.: the relative cost or states and

control effort. Coincidentally, they also appear in nearly correct

chronological order and order of increasingly useful results .(a judgment

based on the author's personal bias and minimal data).

The key difficulty in all of these attempts is the lack of

definition of Q and R . This is combatted by methods ranging from

cut and try to the addition of side constraints. None is especially

preferable to another, except that perhaps Winsor and Roy's approach

appears to be slightly more of a science than an art. Therein lies the

biggest fault in any of them. The production of the control law is

more of an art depending on the wit, cunning and experience of the

engineer rather than an algorithm which a computer can be taught to solve.

At the same time, the very nature of the solution lends itself

to criticism. Those familiar with the solution to the linear quadratic

loss regulator problem recall that it consists of constant feedback from

all the states. Since the designer here had to use the states of both

the system and the model in the cost function, he must build a realization

of the model as part of the controller. Diagramatically, the compensated

plant is shown in Fig. 1.2:
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reference
inputs

^
realization
of the
model

",

1
Kl

/

Fig. 1.2

Compensated Plant

The K. would be produced by the solution to the quadratic loss problem

K will not be zero, even in the case where acreated. Note that

K_ exists such that the system in Fig. 1.3

Fig. 1.3

Compensated Plant, Trivial Case

has the same response as the modell Similarly, intermediate solutions,

such as a compensator needing only one state of dynamics to do the job

perfectly, will not be uncovered. In summary, the solutions of this

type suffer these difficulties:

1. Since the cost function is unspecified, it must be

chosen ad hoc. Moreover, since the complete solution to

the inverse problem is as yet unknown, iteration toward a

solution is often a blind search.
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2. Exact solutions, even when they exist, will not be found.

The compensator must contain a realization of the model —

a real annoyance.

3. Although not mentioned here as yet, the solutions achieved

by the above authors were none too good, unless the problems

posed were virtually trivial. More on this below.

Quite a radical departure from the quadratic loss approach was

suggested by Erzberger [6]. The essence of his approach is contained

in the following observation. Of all conceivable happenstance, the

most fortunate, from the point of view at hand, would be for a feedback

to exist such that the plant and model would be identical. Suppose that

the plant is governed by the vector differential equations:

x = Fx + Gu ; y = Hx (1.5)

and the model by:

I = L| + Gr ; H = H£ . (1.6)

Suppose there exists a K such that:

F + GK = L (1.7)

then we may obtain the compensated system

x = (F + GK)x + Gr ; y = Hx (1.8)

by letting u = Kx + r . Now:

x = Lx + Gr ; y = Hx (1.9)

has the same transfer function as the model. Such a K exists if

and only if (I - GGf)(L - F) = 9*. The solution is then K = G (L - F)

where G is the penrose pseudo-inverse of G . (See [10] or [12]).

Close observation shows that for such a K to exist, great structural

similarity must exist between F and L . Moreover, G must have

sufficient rank. There have been at least two such examples given in

the literature which were solved using the quadratic cost technique [17],

*
9 represents the null matrix.
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[18], Erzberger has shown that, for this limited class of problem,

his direct approach involves much less computation than the quadratic

cost approach. We have extended Erzberger's approach for use in cases

in which the aforementioned structural correspondence is satisfied.

Since this work is not directly related to our major exposition, it is

treated in Appendix A.

The work of Asseo [1] is worthy of comment. Given the plant

and model

PLANT: x = Fx + Gu y = Ix (l.lOa)

MODEL: (l.lOb)

the method given in [1] finds a feedback control:

such that K and K satisfy:
m

m

GK = Tv

G(K -K ) = $ - F
m p

(l.lla)

(l.llb)

where K is arbitrary. If (1.11) are satisfied, we may substitute

into (l.lOa) to obtain:

hence:

x = Fx + G(K u + K x + K £ )v p m

= (F + GK )(x -
P

(1.12)

(1.13)

and K may be chosen to make the error system as stable as is desired.
P

(Under the usual controllability assumptions). The difficulty lies in

trying to find a solution to (1.11). Such a solution is vital to the

method. In [1] a canonical form (originally derived in [2]) is used as

a tool to solve (1.11). The claim was that for any pair (F,G) , there

exists a transformation T such that:

" 0!
1

. . _ U
1
1

. A!

I"

B_

n-m
_1

and T G =

m

" 0 "

I .

n-m

(1.14)
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In fact, such a transformation does not, in general, exist even if we

allow:

9

D

n-m

m
det D (1.15)

To check that this obviates the general solution of (1.11), we need

only observe that first defining new states as z = T x and TI = T 6
p m

solving (1.11), in the sense of [1], is equivalent to finding P

(nonsingular), K and K0 such that:
1 ^

Ĝ  = P'̂ T (]

GK0 =.
A

- F

Suppose (F,G) is in the form above. Then we need to solve;

GK1 =
"e "
— _ _ _

. i
Ki =

' 9 "

*™ *~ " "

- Kl-

-1
= p r

' e "

-V
P (fS"Dip jf ~

f9 «i
i
i

.A !

I"

B.

But to solve (1.17) requires the existence of P as in (1.14), which is

not, in general, possible [5], Hence (1.11) does not have a solution for

every plant and model. This implies, unfortunately, that Theorem 2,

part b, [1] is false. (For reference, Theorem 2, part a, is concerned

with the case in which G is nonsingular).

There is a further difficulty with the approach of [1]. The

formulation given there attempts to match states. In a reasonable model-

following problem, we would expect no net output transformation to be

allowed. That is, if we desire to keep the error e - y-u. as small as

possible (in some sense), to consider e = y-T|i is just short of absurd.

It is tantamount to matching, say, the pitch response of the model to the

roll response of the aircraft. Since x = y and £ = M. in the formulation

of [1], we must conclude that the plant and model transformation are the
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same T = T . Hence p = T" = I in (1.17) and the same
\ P m / p m

transformation must take both the plant and the model to the same

canonical form. This further reduces the number of cases which can be

reasonably handled by this direct approach. Overall, the approach in

[1], is an improvement on Erzberger's [6], but is not as general as

needed for multivariable control.

Winsor and Roy's paper [20] errs in description but appears

correct in mathematics. They falsely claim, in the text of the paper,

that Erzberger's test is a necessary condition, whereas it is only

sufficient, and quite restrictive at that. They do, however, use his

results properly, which relegates their error to editing. Their approach,

as optimal control approaches go, seems reasonable. At least they try to

take up some of the slack in the problem by introducing side conditions,

rather than ignoring it and plunging blindly ahead.

As a whole, then, the literature is none too satisfying on this

problem. The solutions are sparse and essentially ad hoc. None is of

the type where the problem may be simply packaged and fed to a computer

which could return an answer. All have to interact with their programs

in a series of cut and try iterations until, through chance or artistry,

the solution emerges. It is believed that the present work eliminates

these objections.

C. Allied Problems

The most closely allied problem found in the literature is that

of decoupling [7], [15], [22], in such a problem the designer is given a

system and required to find a compensator which would decouple its transfer

function. This is generally interpreted as meaning that each input should

effect one output (or group of outputs) and no other input would effect

that output (or group). If the transfer function matrix were square,

we would wish to diagonalize it.

The chief difficulty in turning this into a model following

problem is the lack of a specific model. It is possible to cut and try

models until a suitable one can be found, but this becomes tedious.

Nonetheless, the two problems are closely enough allied that workers in

either area can profit from papers concerning the other. Perhaps the
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most interesting contrast between the two is that the 'decoupling1

literature is almost exclusively theoretical in nature, while the 'model

following" papers are devoted to computation and algorithms. This difference

is perhaps most valuable to the workers in decoupling since many model

following algorithms could be used to decouple whereas little of their theory

can be used in a model following algorithm.

The present work has had considerable success in solving decoupling

problems. Since 'exact1 solutions are given, the results will indeed

decouple the given plant. The only difficulty lies in finding a suitable

model, in Chapter V we will show how the work of Wonham and Morse [15]

and [22], is connected to the present discussion.

D. Contributions of this work

The essential contributions of this work are as follows:

1. The introduction of and development of equicontrollability

(Chapter III).

2. Development of an algorithmic solution to the model-

following problem which is suitable for computer

programming (Chapter IV).

3. Resolution of some questions on the decoupling of

multivariable systems (along with the application of

the above algorithm to accomplish such decoupling)

(Appendix C).

Attendant on these specific items are the techniques devised for the

analysis of multivariable systems - particularly the use of non-minimal

(equicontrollable) realizations, as noted in Chapters III and IV.
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II. PROBLEM DEFINITION AND DISCUSSION

In view of the preceding discussion, it becomes apparent that

some better approach must exist for solving the model following problem.

It should not require a performance index as such, and should yield simple

answers to simple problems. It should be reducible to an algorithm

suitable for digital computation with little or no human interaction from

input to solution. Hopefully, it should not be iterative. The solution

to be proposed satisfies all of these requirements.

As has been pointed out, the definition of the problem essentially

structures the solution. We suppose that we are given two linear constant

dynamical systems in (the differential equation form:

PLANT: x = F x + G u y = H x (2.1)
n\n nxm

MODEL: | = *•{•+ F u> H = A I (2.2)
pxp pxm ' mxp

All capital letters are matrices; Note that the inputs and outputs

of the plant and model have the same dimension. This is not an unreason-

able assumption since it is hard to conceive of a problem having a plant

with, say, three outputs attempting to track a model with four! This

would be contradictory. The requirement that the number of inputs

equal the number of outputs is more obtuse, but not without justification.

In most aircraft problems, the number of control inputs is equal to the

number of consciously controlled outputs. That is, if the pilot pushes

the stick forward he has in mind a certain response in pitch. That

this will, some integrations later, produce a change in altitude is not

of immediate concern. Better, if the aircraft executes the proper

motion in pitch, the other modes attendant on pitch will respond favorably.
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Since the problem itself is linear, we might require that a

linear controller be used. Moreover, since virtually all other methods

involve state feedback, it is logical for us to do so also. This may be

reduced to specifying that the controller be a linear function of both

the states and external inputs. In the block diagram form shown in

Fig. 2.1 we insist on the linear transfer function C(s) as the compensator.

u

Fig. 2.1

Form of Compensation

The choice of a specific controller C(s) Must be based on

some measure of goodness. We choose to make this measure in terms of

acceptable modifications of the model instead of the minimization of some

function. Although the advantages of this stratagem are legion, the

clarity with which any performance degradation is displayed before the

computation is performed is, in itself, sufficiently compelling to

justify its use. More explicitly, we shall define the new model in Fig.

2.2:

ari

(s-KC)r

OJ
Model

Fig. 2.2

Form of Model

where a, is prespecified by the designer, and r is to be as small

as possible,
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a is a clear measure of closeness. As a -» w , the above transfer

function approaches V(s) . But the penalty for making a large is

to have large feedback gains. Hence, one may conceivably balance gain

magnitude against accuracy in matching, which is an anticipated tradeoff.

This discussion may be maneuvered into a definition of the

problem, by way of listing the assumptions we shall now make.

1. The plant and model are finite dimensional linear

constant systems.

2. Both the plant and model are completely controllable

and observable.

3. The plant and model have the same number of inputs and

outputs. (All four are the same).

4. The compensator should be a finite linear constant

system, C(s) , taking u , the command inputs, and x ,

the plant state, into u . This assumes that the state is

available.

5. s = 0 is not a root of either num det H(sI-F) G or

num det ACsI-fc)" T . (Num det W(s) is defined below).

6. Num det H(sI-F) G has no roots in the right half plane.

7. The designer will accept a revised model of the form:

r
A(si-<D)"1r

(s+a)

where a is at his disposal, and r is to be as small as

possible.

The assumptions, except for 5 and 6, are direct consequences of the

previous discussion. The fifth is best taken on faith until Chapter 4

in which we shall use it as a guarantee that the algorithm will work.

The symbol num det W(s) (where W(s) is a square transfer function

matrix) represents the numerator of the determinant of W(s) . The

numerator is extracted when the denominator equals the characteristic

equation of W(s) . A more graphic description is: if W(s) =

num det W(s) = det W(s)-det (sI-F) (2.3)

- 14 -
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For transfer functions of (2.1) or (2.2), num det is a polynomial in s

of degree at most n-1 . At the end of Chapter 3 we shall prove the fact

that, for all conformable K , (i.e. for any K of the proper

dimensions) num det H(sI-F)~1G = num det (sI-F-GK)"̂  .. In other words,

num det W(s) is invariant under state feedback.

Since, in the scalar case, feedback is unable to move zeros, we

will have to use a series compensator and pole-zero cancellation to

achieve a perfect match if plant and model zeros differ. Clearly to

cancel an RHP zero requires an unstable root, which would result in

an unstable design. Hence the inclusion of Assumption 6, which is the

analog of the above observation in the multivariable case. This

assumption can be weakened, as we will see later.

Defining the problem via a set of assumptions is perhaps the

clearest approach in this case. The original statement is so vague that

no straightforward definition is really feasible. We do gain something

for our interpretation of the problem. The ability to give the designer

a remarkably lucid picture of what he can expect by way of a solution

is especially useful. We do not have to present a vague idea of how well

the compensated plant will do — we can nearly describe its transfer

function! Only the value of r is unknown. The remainder is specified

by the given equations or is up to the designer's whim. To ask for

more would border on the unreasonable.
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III. EQUICONTROLLABILITY

A. Definition and Motivation
——̂ _̂̂ _ '*

For a number of problems, the usual property of controllability

does not provide sufficient information as to structure. A controllable

system with m inputs may be controllable from only one input or require

each and every one. Moreover,one cannot specifically give a canonical

form for multi-input systems that is the same for all such systems. The

best you can do is specify a procedure which will always yield some form,

although many forms are possible. We shall consider here how we may

trade one form of uncertainty for another to best serve our purposes.

DEFINITION; The pair (F,G) has controllability index p

if p is the smallest integer such that:

C = I G,FG,...,FP~1GJ (3.1)

has full rank n = dim F.

DEFINITION; The pair (F,G) is equicontrollable if n = pm

where p is the controllability index of (F,G) , F is nxn and G

is nxm .

Note that the definition of equicontrollability implies that1

m| n and that the first n = mp columns of the controllability matrix

m| n is read "m divides n" and means that there exists a k such that

n = mk where k belongs to the same class as m and n , (e.g. if

m and n are integers, k is an integer).
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are independent. These conditions are enough to enable us to write such

a system in a particularly useful canonical form — equicontrollable form.

Let us consider a slightly more general case.

PROPOSITION 1; Given the pair of real matrices (F,G) , F nxn ,

G nxm and full rank, then there exists a similarity transformation T

such that:

r m-r r m-r

m

"9

n-m

TFT =

and

9 9

9

9

_ X

TG =

0

9 9

9 9 9 9

9

9

9 9

X X

X

m

'9 n-m

m

r

9

9

9

I

9'

9

X

X

m-r

9

9

9

9

I

9

X

X

r

9~

9 /

9

9

9

I

Y

X _

r

m-r

r

r

m-r

r

m-r

r

m-r

~9

9

9 '

I

A

r

9

9

9

9

I _

m-r

r

m-r

(3.2)

(3.3)

where the X's, Y, and A are unspecified entries determined by (F,G) ;

and the parameter r is defined such that

n = (p - l)m + r 0 r < m (3.4)

All unmarked braces represent blocks of m rows or columns.
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if and only if the last n columns of the controllability matrix;

C = Fn~1G , Fn~2G ,..., FG j-G (3.5)

are linearly independent.

NECESSITY; Suppose the matrix T exists as specified and

define the following matrices:
-1p _

*

G* = TG

C = last n columns of Clet

C^ = last n columns of C^

then by inspection, we see that

C = T C^

and hence that

C = T̂ C.
*P

Moreover, C is nonsingular by construction. More specifically:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

r

I

X

X

X

X

m-r

e

i

A

X

X

r

9

e

i

X

•

X

m-r

e

e

. . . e

i

... A

r

e

e

e

e

i

r

m-r

r

m-r

r

(3.12)

thus C is nonsingular as required.
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SUFFICIENCY; The proof is constructive. Assume that C is

nonsingular. First we define partitions necessary to describe C in

terms of F and G .

Let

" Ji :
m-r r

G.

and

then
m

C =

-2G
m m

(3.13)

(3.14)

IT
^X/- • ' "^
I

FG.
1

.

i

•~—"^

'G

. .

(
'— V

f '™ -

Gl
Ĵ
— •>

m
A^ -

" \

G

-

G2
=

m r

(3.15)

Next we define the m\n matrix E from which the transformation is to

be constructed.
m m m r

EC = [ I 9 ... 9 0 ] m (3.16)

E exists since C is nonsingular, and is simply the first m rows of

G" . We partition E so that:

n

E = (3.17)
m-r

We claim that the transformation T is:

'E
EF

T =

,k-l

m

m

m
(3.18)
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In the first place, T is nonsingular as we can see by using the last

partition given for C :

TC =

r EF̂ G

EF̂ G

2k-4-
EF G

EG EG
£t

EFG EFG,,

EF G EF

Ê Ĝ Ê 2 -

(3.19)

By the definition of E , many elements in this matrix can be evaluated

to give:

TC =

m

I

m

9

m

9

e

r

9

9

m

m

m

(3.20)

Hence T is nonsingular since C is nonsingular by hypothesis,

we find the product:

Also

TG =

-EIG

E2G
•
•
•

ill J? \3
1

vk"2°
_E1F

k-1G_

=

m-r r

9 9

9 9

e - 9

I 9

A I

m-r

m-r

(3.21)
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k—1
where A = E , F G . Similarly:

TFT" =

E _ Fi
E2F

1

E F
1

v15"1
£4

k
E F
1

T"1 =

r m-r" r m-r^ 'm-r

9 9 I 9 • • • 9

9 9 9 1 9

I

e • • • 9

X X

X X

r

9

9

9

I

Y

X

m-r

m-r

m-r

(3.22)

Then as a special case we may write

COROLLARY: Given the conditions in the previous proposition,

and given that r =0 (i.e. m|n) then there exists a transformation

T such that:

mm n-m

TFT
-1 9 ; I

_ X _

, TG =
e

i

n-m

m

(3.23)

iff (F,G) is equicontrollable. The above is equicontrollable canonical

f orm.

The name "equicontrollable" is now easy to justify. Fig. 3.1

shows a block diagram representative of such a system. Each input drives

a string of m integrators, hence in some sense, the inputs control

"equally". The figure also shows (as does the canonical form) the

similarity of this form and control canonical form.

PROPOSITION 2: The form given in Proposition 1 is unique.

That is, given two realizations of the same system: (F,G) and (F,G) ,

both in the canonical form specified in the statement of Proposition 1 ,
f\ /\

then F = F and G = G .
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The proof consists of two lemmas.

Lemma 1: The recipe given in Proposition 1 yields the same

result regardless of the coordinates of the original system. That is,

given (SFS"1 , SG) , the

realization, for all S .

given (SFS , SG) , the procedure of Proposition 1 yields the same

Proof of Lemma 1; _ In the sufficiency argument of Proposition

1, we constructed the transformation T which produced the desired

realization. If we define

(FS , GS) = (SFS'1 , SG) (3.24)

and:

L • i i 2 J
also:

= [I 9 ... 9] (3.26)

and so forth, we find that:

so that:

CS = SC , ES = ES-
1 , and TS = TS'1 (3'27)

= TFT'1 (3.28a)

and

TSGS = TS~1GS = TG
Q.E.D.

TSGS - TS~1GS = TG (3.28b)

Lemma 2: If (F,G) is in the canonical form given in Proposition

1 then the transformation T given in the proof of sufficiency equals I .

Proof of Lemma 2: Consider C . After some tedious computation:
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c =

r

I

e

X

X

X

X

X

X

m-r

e

i
...

AL __ _

X

X

X

X

X

r

e

e
T

-_.

X

X

X

X

X

m-r r r m-r r

e e e e e

e e e e e_ _ _ _ _ _ _ _ _ . _ . _ _ _ . . . _ . .
9 9

r — . 1
1 9

A I

I
• t

I ' 9 9

. . . 9 1 9

X A I

r

m-r

r

m-r

r

(3.29)

where the X's are unspecified entries. This implies that:

m m m m r

E = [I 9 9 ... 9 9]m

EF = [9 I 9 ... 9 9]m
•
•
*

EFk~2 = [9 9 9 ... I 9]m

k-1

(3.30)

E F = [9 9 9 ... 9 I]r

hence T = I .
Q.E.D.

Proof of Proposition 2; Lemma 2 shows that the recipe in

Proposition 1 yields T = I if the realization (F,G) is already in the

given canonical form. But Lemma 1 shows that the procedure of Proposition

1 always gives the same answer, regardless of the coordinates of the

original system. Hence any two realizations in that canonical form

must be the same.
Q.E.D.
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COROLLARY 1; Given two minimal equicontrollable systems of

the same state dimension (H, F, G) and (A, $,D , there exists a

feedback matrix K such that:

SrV (3.31)

if and only if H=A when the two systems are reduced to the respective

equicontrollable canonical forms: (H, F, G) and (A, $, D .

Sufficiency is easy. If the last m rows of F are [F , ...,F ] and

of $ are [$,...,$ ] then the feedback matrix K is:

(3.32)-1

where T$T~ = $ ; IT = T , AT~ = AT~ = A (= H by hypothesis).

So:

T(F + GK)T~ =

9

e (3.33)

HT A

Hence, via the prpposition, we are done.

Necessity is similar. Suppose K exists as required.

Then there exists a T such that:
1

T$T~ = F + GK

T? = G (3.34)

AT"1 = H

But (H, F + GK, G) and (A,$, ?) satisfy the hypothesis of the

proposition, hence T = I and A = H . H

COROLLARY 2; In proposition 1, Y = 9 , i.e.:
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and

Hence:

but:

so:

-1
TFT

9

9

9

9

X

X

9 1 9

9 9 1
•

*

•

0

e . . .

x

x

9
•

9

I

9

X

X

0

9

9

I

0 —
X _

N.B.

Proof:

Y =

m

m

TG =

9

9

m

m

Y = E2F
k~1T"1(TG2) =

e m-r

Y = E0F " G_ = [9] m-r

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Q.E.D.

As an interesting observation, if m|n and the system

has been placed in the canonical form given in Proposition 1 but Y ̂  G ,

then the transformation
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P =

r

I

Q

e

e

e

e

e

m-r

e

j

e

e
- • - '

e

e
6

r

e

i

Q
r —

e

e

e

m-r

el
1
1
ft |

|
1

1

n
- -+• 1

61
i

e; ...
r

e; •

r m-r

e e 'i
e e |_ _

• r
e e i

i
e e i

•

i e

Q I
— ^ «> W *.n "

e e

r

e

0

e

e

e

e

i

r

m-r

r

m-r

r

m-r

r

(3.41)

will leave the form the same, only affecting the last m rows of the

system matrix. Hence, the form is surely not unique. That is, other

transformations than (3.18) will yield a similar form. (Note that if

r = 0 or Y = 9 , then Q = 9).

The utility of equicontrollable form is yet to be demonstrated.

The reader could well interject that for n = mp to be true requires that

a substantial structural constraint be placed on the system. To widen

the class of minimal realizations which can be placed in equicontrollable

form has been shown above to be impossible. On the other hand we could

allow the addition of states to the system, which do not modify the

transfer function, but do alter the structure so as to achieve equi-

controllability. Such states will have to be controllable but not observ-

able. (One gets into some semantic difficulty here. Since we shall be

physically constructing such states — say in analog computer fashion —

they are "measurable", but from the outputs specified, they are not

observable.) The following theorem will demonstrate that we can always

add such states. The method to be used will then be displayed.

THEOREM 1; Given a system (F, G) with controllability

index p, F nxn , and G nxm :

If n < mp , there exists matrices A and B and a number

N such that the N-dimensional system:
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|= (F, G) (3.42)
6 J/

is equicontrollable iff N = m(p + k) for some integer k > 0 .

SUFFICIENCY; The proof will be essentially constructive.

First the system is reduced to Luenberger form [13]. Fig. 3.2 shows

a block diagram of the system, where we have renumbered states so as

to draw the integrator strings in order of increasing length, left to

right. Now we simply add integrators to the blocks so as to make them

all the same length.

The smallest number we may add to do the job would be

^ thN (q -q.) where q. is the number of integrators in the i— block,

iti

and q is the length of the largest such block. But:

m my (vqi} = mqm - ̂
 q^

= mq - n (3.43)
m

Moreover, if we added another k integrators to each block we would have

m(q +k)-n states added, for a total of m(q +k) states after all have

been added. Hence, if we can show that p = q , we are done. By the

definition of p ,

C = [G, FG ,..., FP~1G] (3.44)

will have n independent columns. Recall that in constructing the
•f* Vt

Luenberger canonical form, the length of the i— block was determined
k-1

by how many vectors of the form F q. were independent of vectors

previously chosen from the controllability matrix. However, by the

definition of C , k £ p regardless of how the vectors were chosen,

i.e. q £ p , but suppose q < p . Then k < p which says that no

block has length p so that
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q -1
C = [G, FG, ..., F G] ' (3.45)
m

has full rank! But this contradicts the definition of p , hence

qm = P '
NECESSITY; We suppose that A and B exist, and that the control-

lability index of (F,G) is p . If we show that p ̂  p , then

N ̂  rap . By appealing to Proposition 1, m| N so N = m(p+k) for k

an integer ^> 0 .

Suppose p < p . Consider the partial controllability

matrix:

ce =
G FG F G

X

(3.46)

_6 AG AFG+BAG

C* is NxN and full rank. Therefore,

[G, FG,...,FPG]

is full rank. But this contradicts the definition of p , hence

j3 > p , and N = m(p+k) as previously argued.

To demonstrate the nature of the sufficiency argument (and

lead into an algorithm for implementing it) consider this example.

F =

f f1 *•
54 f '

3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

, G =

1
C'

E*°3

0 0

0 0

0 0

0

0

0

(3.47)

The system may be represented by the block diagram in Fig. 3.3
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f2X+g2U f2:

!L
s

X3 JL
-<jj> (

^^p"1
1
s

\
>*

X7

1
s

1
s

X2
1
s

X5
^-C

X9
•_w^

> f

_ 1
s

*- - -o

ORIGINAL
SYSTEM

ADDED
DYNAMICS

Fig. 3.3

Block diagram of

equicontrollable form

The resulting time domain matrices (after dynamics are added) are:

F =

^~

1

0

0

0

0

0

f '1

0

1

0

0

0

0

f '
2

0 0

0 0

0 1

1 0

0 0

0 0

f ;
3

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

, G =

^" ^™

G

0 0 0

0 0 0

0 0 0

(3.48)

Now the system may be put into equicontrollable form by renumbering

the states. (Recall p = q hence, since n = q . n = p ).
m m m
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Although not explicitly stated, the method of adding states

used in Theorem 1 works equally as well if, instead of each added state

being appended as — , it is appended as . A glance through the
S S4OJ

proof of sufficiency will confirm this. Since the resulting system is

equicontrollable, we know via Proposition 2 how to reduce it to equi-

controllable form.

In summary, we have shown:

1. That n = pm is the key to equicontrollable form.

2. That there is some measure of uniqueness to such

a form.

3. That we can find a non-minimal but nonetheless

equicontrollable realization for any transfer

function.

B. Properties

PROPERTY 1; If the system (H, F, G) has been converted

to the equicontrallable form:

"e i e ... e

e e i ... e

H-[H jHg,...,H ] , F —

e e e ... i
, G =

e

e

•
e

i

(3.49)

Then W(s) = H(sI-F)~1G =

The last column of (sI-F) is easy to compute. To wit:
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W(s) = JĤ H..,,...,̂

I

si [,, . ,, -. -1

H.s
i

1-1

(3.50)

PROPERTY 2: Num det W(s) = det

num det W(s) = num det r £ H/-I u. 5 V
/ -^ I I 1—4

.1=1 J L i=l

1-1

= numJdet \ H.s1 det sl -

(3.51)

(3.52)

= num

det \ H.s

det |s l -

(3.53)

= det \ H.s (3.54)

The last step follows from the definition of "num det",

equation (2.3) and the observation that:

XF(S) = det (sI-F) = det (3.55)

i=l
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PROPERTY 3: For any conformable matrix K ,

num det H(sI-F)~1Q = num det H(sI-F-GK)~1G . (3.56)

PROOF: (cf: Morgan [14]). Without loss of generality, we

may assume that:

F =

F • F11 12

F ' F21 i 22

e
H=[Hi!H2]

(3.57)

Let: num det H(s-F)~ G = num det W(s) and T =
F

_e ;

det W (s). = det HTT~1(sI-F)
F

(3.58)

= det

SI-F11 \ -F12

Sl-F
22 _

-1

e

e
(3.59)

= deth!
sI-F

11

-F12
(SI-P22)-P12(SI-P11)

-1

(3.60)
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(3.61)

Observe that:

1, det

det
H

det
(3.62)

2. X(s) = det det (3.63)

Therefore:

det

det
Sl-Fn

Hi !
XF(s)

-F12

V (3.64)

so that:

num det W (s) = det
F

sI-F ' -F
11 i 12

_ i

H ' H 2 -•

(3.65)

But if we compute num det W -,T,(s) in the same fashion,F+GK

num det W^ ,,T..(s) = num det
F+trK

sI-F
11

-K

-F12
-1 e

= det

sI-F 11 -F
12

Hl H2

(3.66)

(3.67)

num det W_(s)
r

(3.68)

Q.E.D.
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Note that property 3 is not only a property of equicontrollable

systems, but of any system. We include it here since it fits in well

with the properties of equicontrollable systems, making a well rounded

picture.

PROPERTY 4; Suppose (H,F,G) is equicontrollable and

completely observable, and (C,A,B) is equicontrollable. Further, F

is nxn, A is NxN, N ̂  n , and both have m inputs and r outputs.

If

= H(sI-F)~1G (3.69)

then there exist T,X,Y such that:

[H ;9]T = C

G
---- = B

-1

T

F

X

G

.0

e
-- i

Y

(3.70)

T .= A

Proof: Observe that since the transfer functions are equal,

HF G = CA B for any k (3.71)

Let p and q be the controllability indices of (F,G,H) and (A,B,C)

respectively. Then we claim that:

T =
G FG ... FP"1G

e

FPG ... F^G

m(p-q)

|B AB (3.72)

It is easy to check the first two equations above. To wit

|"H ieJT = FHG HFG ... HF^G] [B AB ... A

but from our initial observation, we may write:

(3.73)
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[H ; e]T = [ CB CAB . . . CA
q-]

AB ... A (3.74)

TB =

G FG ... F^ G G

:: X3..75)

Finally we must check the last equation.

TAT"1 =

G FG ...

Q I

B AB ... 1

B AB .... A'

d-1
G FG . . . FH G:

6

-1

(3.76)

G FG ... Fq~1G

e

e e
i e
e i

. e AJ
9 V
9 A3

e e ... i A

G FG ...

•e

(3.77)

where we have defined A.

fi AB ...
A3

(3.78)

ASIDE: From the above;

- 37 _



-['B AB ...
(3.79)

Then;

C

CA
*
•
*

CA
n-1

which implies that:

H

HF

HF
n-1

FqG =

C

CA
•
•

CA

H

HF
•

•

HF

n-1

B AB ... Aq-]

A
L q.

n-1

JG FG ... Fq 1GJ

q .

(3.80)

(3.81)

But Q is full rank (since (H,F,G) is completely observable),

we conclude that:

Hence

«[G FG ...

q J

(3.82)

Now to return to the original train of thought. We may consider the first

n rows of the matrix TAT as follows.

- 38 -



Hence:

e e • • • e A ~i -.
I 9 9 A_ [~G FG ... Fq~ G

r ~l 2

• 0 ' T; . 0 , 1

e e ••• i A '-q
_^ «M

G FG . . . Fq~ G
P '2 o— 1 a ~\
\ T1/"t T1 *~< T1^^ ^* T1^/"^ 1

L J t
e ; i

G FG . . . Fq~ G
r 9 n i "i

— FG F G . . . F G — i r —
L J '

[_ e ! i

• '['-1 9]
= [p:e]

"F « e"
-i '

TAT = --•• — for some X and Y .
i

.X ' Y_

-1

-1

( q oq\^o. 00}

f *3 JJ4 ^(..5.04 j

(3.85)

(3.86)

(3.87)

Q.E.D.
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IV. THE ALGORITHM

A. Introduction to the Algorithm — The Scalar Case

The basic difficulty in presenting the algorithm is in the

large number of steps required. Any explanation tends to lose continuity

when attempting to clarify each individual step of such a long

procedure. To attempt to alleviate this problem, we shall try to

proceed in a number of progressively more difficult stages, each

cutting deeper into the wealth of detail involved. Extensive use will

be made of simultaneous presentation of steps in sundry forms (block

diagram, time domain equations, transfer functions, and text description)

so that the mechanisms involved will be as clear as possible.

To begin the discussion let us consider a scalar problem in

transfer function terms. The model and the plant might, for example,

be given by:

PLANT0: (s+D(a-2)
(s+3)(s+4)(s+5)

(4.1)

MODEL : s+3
(s+6)(s+7)

A moment's reflection will reveal that no realizable

compensator can be added to the plant which will cause it to behave the

same as the model. Further, if we are to be able to find a stable

compensator, we shall have to require a change in the model, namely it

must also have a zero at s - 2 . These observations may be summed up

by this modified problem.
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PLANT1- (s+l)(s-2)
' (s+3)(s+4)(s+5)

MODEL1: s+3 g(s-2)
(s+6)(s+7) •' (s+a)

(4.2)

a is arbitrary, but is prespecified by the designer. If this model's

response were not acceptable, there would have to be negotiation with

the designer until a suitable model were found. But we suppose here

that this model was approved. Then the way to a solution is clear.

First, we find the feedback which matches the dynamics (poles) of the

two systems, yielding:

PLANT2:

MODEL

(s+6)(s+7)(s+a)

(4.3)

2 s+3 a(s-2)
(s+6)(s+7) ' (s+a:)

Finally, we apply an input series compensator to the plant, which

completes the solution.

PLANT3: (s+D(s-2) a(s+3)

MODEL

(s+6)(s+7)(s+aO '

(4.4)

3 (s+3) q(s-2)
(s+6)(s+7) ' (s+a)

The transfer functions are now the same, so we are done. Some comments

are in order at this point.

1. Although this was a specific example, the procedure

is quite general. Even if the plant had fewer states

than the model, the same method would be used.

2. There is no doubt about the minimality of the solution,

since the manipulations are quite transparent.

3. The need for adding RHP zeros of the plant to the model

is also obvious, lest the compensator be unstable.

Let us do the same problem in the time domain. The format will be to
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place the associated block diagrams, time domain equations, etc., in

an accompanying figure. Thus the steps may be more easily visualized

during the discussion.

We begin with the original problem (Fig. 4.1). Since the

systems were assumed to be controllable, we have chosen to write them

in control canonical form. (Ordinarily the problem would be given in

differential equation form, so it would first have to be reduced to

such a form.) Exactly as before, the first step is a modification of

the model.

PLANT0:
0 1 0
0 0 1

-60 -47 -12

y = [-2 -1 1] x

u = Fx + gu

hx

Fig. 4.1

Scalar Example: '0' Coordinates
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Fig. 4.2 shows a method of appending the additional state to

the model. This particular way of introducing them is used since only

input changes are deemed reasonable (or realizable). Although such a

restriction is not strictly necessary in the model, which is a

mathematical fiction, it is essential in dealing with the plant. The

outputs represent (usually) physical actions, such as pitch or roll

of an aircraft, which must be the outputs. This observation is basic

to the problem but has occasionally been overlooked, such as in [2],

Generally, this step would also include another transformation to

control canonical form, but it was not shown here for the sake of

better displaying the details of the state addition.

1
PLANT : unchanged

1
MODEL :

I =

_

0 1 0

-42 -13 1
— — - ̂ L

o o -a

£ +

-.
0

a
2

-a -2a_

- «T —

u- = [3 1 0] 1^ ^F

V(s) =
(s+3) a(s-2)_

(s+6)(s+7) '

0)

-a -2a K>8-

o

Fig. 4.2

Scalar Example: 'I1 Coordinates
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At this stage (Fig. 4.3), three changes have been made.

First, the model state has been redefined so as to place it in

control canonical form. Second, the plant has had feedback (per

fig. 4.4) applied, viz:

u = u + Kx (4.5)

Third, a series compensator has been added. In the figure, the

feedback is evidenced by the third row of the F matrix, to the

left of the dashed line. The series compensator has state z and

transfer function a(s+3)/(s+l) . The result "has been to "give the

plant the same transfer function as the model (after revision).

The compensator is stable, as is the compensated system as a

whole. Moreover, the compensator is minimal, whereas the resultant

system is not, due to the cancellation of the (s+1) factor.

Fig. 4.4 shows the series and parallel compensation as applied

to the original plant. Note that, in this case, there is no

feedback from the states of the plant to the input of the series

compensator. This is not a general property of the method.

The changes in the model are neither unexpected or

unreasonable. Were it not for the RHP zero of the original plant,

the changes required would have been especially acceptable.
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2
PLANT :

• ~
X

"."
z

y

=

•'

0 0 0 0~

0 0 1 0

-42 -(42+13a) -(a+13) 1

0 0 0 - 1

;.2 ... , .]

/\

X
---

z

s_

+

0 ~

0

a

2a

/\
X

u = F— -
z

X

z'

+
<s/\
Gu

W(s) =:
a(s+3)

(s+6)(s+7)(s+o;)

K>

MODEL :

V(s) =

unchanged

(s+3)
(s+6)(s+7)

q(s-2)
(s+a)

Fig. 4.3

Scalar example: '2' Coordinates
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u O-Of7!

COMPENSATOR

K>

PLANT

K = [-42a+6oi-(42+13a)+47:-(a+13)+12]
^ i

u =

[2{e]-~
X

[a|K] —

Fig. 4.4

Scalar Example: Compensator Structure

In summary then, the steps involved in a scalar problem may

be given as:

1. Get both the plant and the model into control

canonical (equicontrollable) form.

2. By adding states to the plant and/or the model, correct

unequal numbers of states in the plant and model.

3. Adjust pole locations by feedback.

4. Cancel and/or replace zeros in the plant as required,

by series compensation.

5. Transform back to original coordinates and write the
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compensator as:

z = F z + G
c c

u = H z + J
c c

(4.6)
u ~

thus completing the design.

Although the detail differences between the scalar and multi-

variable problems are legion, the basic steps are very similar, and the

result is expressed in the same form.

B. The Multivariable Case — Overview

The problem to be faced when looking at the multivariable case

is the lack of a good canonical form for all possible systems. Since

no one is suitable, the approach we shall use is to increase state

dimension to simplify structure. More specifically we shall add states

to any system which is not equicontrollable so as to make it equi-

controllable. In chapter 3, theorem 1, we showed this to be always

possible and subsequently described the procedure that we shall adopt

to accomplish it. We lose simplicity in the sense of state dimension

and we introduce some non-uniqueness, but we are more than repaid in

structure by being able to write every matrix in a canonical form having

all mxm partitions. Moreover, the sundry properties of the equicontrollable

form may be invoked.

Even with this approach in mind, the path is not at all clear.

A number of directions present themselves which seem at first to quickly

solve the problem, but which actually create more difficulties than they

remove. In this section we shall consider one of these, which, although

it does not succeed, provides useful insights into the true nature of

the problem and how we shall finally go about solving it. <

To demonstrate the approach let us consider a simple multi-

variable problem (Fig. 4.5). Both systems have been chosen to be equi-

controllable and of equal state dimension. Thus the detailed (but
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straightforward) step of achieving this form has been temporarily

ignored. We intend to show that simply operating by analogy with the

scalar case is not sufficient, and to do so would lead us astray, even

in this simplified case.

For each system the transfer function's form is derived via

Property 1, Chapter III.

The first step is a natural analog to what was done in the

scalar case, but with a slight variation. If we wished to try a

direct application of the scalar method, we would find a K such that:

XF+GK
(S) = VS) (4'7)

This has two serious drawbacks:

1. The feedback is not unique (as it was in the scalar case),

so choosing it now would remove a degree of freedom in

the solution. Thus it might be better to wait until we

have better grounds for the choice.

2. If we did choose K now, the next step could be impossible.

Mainly since we will later add series compensation to the

input , and we will need to have

SPI - V (F. + K^s1"11 1 J
and the compensator's transfer function commute. This

is not always possible in the multivariable case,

consistent with the requirement of prescribed character-

istic equation. It was in the scalar case — a fact which

was not explicitly stated.
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PLANT :

x =

9 I .,

9 9

9

9
x +

9

9

y = [H H .j. &

P .

H ] £ Hx
p

u = Fx + Gu

W(s) = ITS '.s

u -o 1 x

MODEL0:

I =

e i
6 9

9
9

A

V(s) =

i=

sPI
-1

U)

Fig. 4.5

Multivariable Example: '0' Coordinates
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In view of observation number 2 above, we can choose a K which will

allow the necessary commutation. In particular choose K. = -F. !

The model is left unchanged, and the plant is still equicontrollable

(a property invariant under feedback). Fig. 4.6 displays the result.

we could have let K. = <&. - F. and been

done at the first step! The chances of this occurring are so slim that

we ignore it. Now, at least in principle, the way is clear. We build a

realization of

Note that had H. = A.V i ,

C(s) =
l->I -1

(4.8)

if possible (we fail if num det W(s) has a pole in the RHP, for

example, since then the compensator is unstable, recalling that

num det W(s) divides det
-

H.s ). Then put that compensator in

series with the plant to yield:

W(s)C(s) =
-1

(4.9)

spl
-1

(4.10)

Now it would seem that we need only apply the feedback K.= 0. and we

would be done. Unfortunately, this argument is specious. It is not

true that after application of the series compensator C(s) , we may

apply such a feedback. In particular, the cancellation of
P, i_1
\ H.s

in eq. (4.9) above does not occur internally, hence the state has increased

in size and K cannot be as claimed.

- 50 -



1
PLANT ;

x =

"9

9

.9

I

9

'.

9

0 c\
• • • ^

I ... 9

.

9 ... 9.

x +

"9 "

9

,

.1

u = (F+GK)x+Gu

y = [H. H_ ... H ] x = Hx
L 4 p .

W(s) = H.S

-1

u

MODEL:

V(s) -

unchanged

1=1

P

i=

-1

Fig. 4.6

Multivariable Example; 'I1 Coordinates

To demonstrate that this is the case, suppose p = 2

say that C(s) has the (possibly nonminimal) realization:

9 I

_ Al A2 _

•

9

I

Then

(4.11)

(C(s) may require more or less states than shown but the principle

will remain). Then the series compensated plant will have the form:
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[e e e]

e
e

e
e

i i
ce

e
e

e
Bi
9

Al

e
B2

I

V

>

~e ~"
e

e
i

(4.12)

Now we are somewhat at sea. Is the system above equicontrollable?

Is it for some difficult realization of C(s) ? Even if it is, how

do we find a feedback to match it to the given model? These questions

do not seem to have general satisfactory answers at this point.

On the other hand, the general approach is salvageable. We

need only guarantee that a suitable feedback will exist to complete

the compensation. This, in fact, can be done. In the next section we

shall give such a construction. Briefly, it will proceed as follows:

1. Place both model and system in equicontrollable

form with the same state dimension, even at the cost

of adding states.

2. Apply a loop of feedback to the plant to place all of

its eigenvalues at the origin. (In particular making the

last m rows of its "F" matrix zeros.)

3. Synthesize a series compensator along the lines of the

method given here, but modified in such a way that indeed

feedback alone will be able to complete the job.

4. Find the aforementioned feedback, K .

5. Untangle the compensator and return it to the original

coordinates of the plant.

6. Find a minimal realization of the compensator — considered

as a linear system taking (x,u) into u .

The next section will detail the algorithm.

C. The General Multivariable Case — Detailed Description

Fig. 4.7 depicts the various operations which we propose to

perform on the plant. This is essentially a pictorial version of the

outline just given, but containing substantial detail. Each step is

numbered along the left margin. These numbers will correspond with later
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u •- PLANT
,0 -*- y

L j.

1
AUGMENTED
PLANT y

I 1_JL_J

>u AUGMENTED
PLANT
EQUI.FORM

K

' *.

y

5 -0+
AUG.PLANT
& SERIES COM
EQUI.FORM

Fig. 4.7

Algorithm: Operations on the Plant

>-*- AUGMENTED
PLANT
EQUI.FORM

K

i X*

^
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numbering of the plant in various coordinate systems. Again, each of

these coordinate systems will be considered in detail in subsequent

figures. The transformations indicated on the right show how the' states

of one version are derived from the previous one. In each case the

block(s) within the dashed lines are derived through the indicated

transformation from the previous diagram. The model will follow a

similar history as we proceed, but it will not receive the various

rounds of feedback. Fig. 4.8 gives the details for the model.

Fig. 4.9 shows the starting place for the plant and model.

Note that the figure gives the block diagram, a state description,

and the transfer function for each. This pattern will be continued in

the remaining figures. In general, the plant and model are of

different dimension. Neither is equicontrollable, and their controllability

indices are usually different. To alleviate this uncertainty, we shall

first add states to each to make them equicontrollable. (Alternatively

one could say that we will find the smallest equicontrollable realization

of each.) Then we shall increase the number of states in the smaller so

that they both have the same state dimension. This addition will be

made so as to create a new equicontrollable state realization of the

appropriate state dimension. The reduction to equicontrollable form is

accomplished in discrete steps.

First, we add states with roots at the prespecified location

CC . Fig. 4.10 shows the result of applying this procedure to the

plant, as PLANT . As the block diagram shows, the states z are

totally isolated from the output. Hence they do not appear in the

transfer function. J and J 0 simply define the method of
11 IA

connection of those states, as per the recipe given in the proof of

Theorem 1, Chapter III. In the example after that theorem, we may note

that

12

0

0

0

0

0

0

1
0

0

0

0

0

0

1
0

0

0

0

0

0

0

0

0

0_

(4.13)

and a = 0 . PLANT is simply a redefinition of the previous coordinates

where x and z are combined into the single vector x .
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MODEL
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EQUI .FORM

1
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MODEL
EQUI. FORM

L- !'-H-

r
•

1
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1
1

— J

ADDED
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1
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1
i

I

Fig. 4.8

Algorithm: Operations on the Model
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PLANT0;

G

x

y

W0(s)

Fx + Gu

Hx

H(sl - F)~1G

MODEL0:

= AS

VQ(S) = A(SI -

Fig. 4.9

Algorithm: Plant and Model in

'0' Coordinates
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PLANT1:

r
I

U O I fc
X

i _TI:

! e

Ji2 :

e

PLANT :

G

e

r
U ^ «J

••••

1
s

«••

F

X
k-OM. H 1 .- V

I _^L__ I

X = FJT + Gu

y = Hx
x =

Fig. 4.10

Algorithm : Plant in 'I1 and '2'
Coordinates
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Now the reduction to equicontrollable form, via the similarity

transformation T , is shown in Fig. 4.1. In our notation, a subscript

"*" indicates equicontrollable form, and will be referred to as "star"

coordinates.

The feedback KT sets the last m rows of F, to 9 . We
*

KT for notational convenience later,choose to define the feedback as

when we will unravel the transformations to give the compensator in the

original coordinates of the plant. The result of the feedback is that:

(4.14)

9

e

e
e

i
e
•

e
e

e
i

e
e

• • • 9

9
•

•

I

... e

Fig. 4.11 shows the external results of the feedback. The transfer

function is reminiscent of the one found in the previous section (4-B).

From this point on it would be well to keep in mind the lessons learned

in that development.

Figs. 4.12 and 4.13 give the operations on the model so as to

bring it to a set of coordinates comparable to the "bar-star" represent-

ation of the plant in Fig. 4.11, but without the feedback. No special

indication is made as to whether the plant or model had a larger state

dimension at the outset. Whichever it was, it no longer matters.

The discussion to follow is somewhat complicated, both in

notation and in logic. Recall that if H = A,., , we could complete the

problem at this point by feedback alone. We desire to find a way to

add states to the plant and model so that, when again reduced to equi-

controllable form, the output matrices will indeed be the same. More-

over, we wish to do this consistent with the various restrictions which

we placed on the original problem statement. Let us first look at the

type of compensation we will add to the plant (series, in fact) and

then go back and show how this answer works. Fig. 4.14 shows the

application of the series compensator. J_. and J00 are defined,
£ii. £&

and simply show how we shall wire in the additional states. We shall

define k matrices A. and k scalars X. by the boxed equation.
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PLANT3:

~1

I J

x. = (F + G.KT )x + G u
Jf, ^ 3f J^ If ^

y =

TI~
IFTI

H. =

9 I 9 ... 9

9 9 1 9

• •

H<> ^q- • -HZ o p

G* =

9

9

KT, = |K. K_ ... K = -F. -F- ... -F
L 1 2 p J L 1 2 PJ

W3(s) = sHI - \ (F± -
-1

H.s

Fig. 4.11

Algorithm : Plant in '3' Coordinates
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MODEL :

~l

CO,

J

r
i

$ | 9
it

— 1 —

6

P e

MODEL

$ _-
$ e

_L11 aI+L12.

p —
> -1 —

r

e
! e]

= A I

Fig. 4.12

Algorithm: Model in '!' and '2'
Coordinates
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MODEL3:

•"•"

1
s

<f>"
*

FJ=iK —
. •> A

F "»- ^

= V*

*„, =

e i e ... e
e e i e

e
e

... Ap]

V3(s) = sPI - V^s1-1
-1

Fig. 4.13

Algorithm : Model in '3' Coordinates
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4
PLANT :

O-i

•

**
•

z

y =

i
F* + G,KT j J21

I
9 ' J22 .

L "* 1 V

x*

z

1-?-
z

G*Ak
A

u = Fx + Gu

A A
= Hx

k . .

Iv1-1
i=l A

p . 1

_±=1

-1 " pi v"1
LI=I j

ra

y x.s1-1 (s + a > r

1=1

(*)

where:

A =

k-l

2

i_'̂

21

e
e

e ... e

22

e i e- ... e
e e i e

e e e ... e

I 0 ... 0

p blocks

k-l
blocks

k-l
blocks X. scalar

i

A. matrix

square

Fig. 4.14

Algorithm: Plant in '41 Coordinates
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PLANT5:

x* =

y =

A
F. = T

-1

e

.

--)-*i
22

= T
* L2

A -I

r2 ' G* = T2

e

n • • • K ,
2 p+k+1

where:

P+k-1 Ay K.s1- =
^__f spl - ^ ^s^1

k

I X..S

Fig. 4.15

Algorithm: Plant in '5' Coordinates
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(Note that the right hand side of the equation is reminiscent of the

C(s) given in section 4-B). We wish to use the smallest integers r

and k for which that equation is satisfied for some A. and X,
1 1

The value of k is increased and zero A. are added if the numerator
i

order is too low.

Fig. 4.15 completes the operations on the plant by applying

a final round of feedback, KT . T represents the similarity
£ £

transformation used to transform the plant in Fig. 4.14 to the equi-

controllable form in Fig.4.15. T is given by

T2 =

Al

e
.
,

.

0

*

0

0
^™

A2 • • • Ak 0 ..- 0

A A ... A 0 ... 0
1 £ K

•
• •

.
. - - AI A2 . . . Ak

•

*

0 0 AI A2

* * •

0 0 A '
1

(4.15)

We may also give the matrices in Fig. 4.14 specifically as follows.

/\
H =

0

0

0

0

e
0

._

[Hi

i
0

0

0

0

0

H2

0

I

0

0

0

0

"

... 0

0

* * * f~j

... 0

0
. . .

0

' ' H
P

0

0

I

0

0

0

0

0

0

0

I

0

0

0

... 0

0

... 0

0...0

0 I
. »^

0 9

—-i

©•" 0

A

—

0

0

A

A

A

A

—

k-1

2

1 _

(4.16)
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From which we may check that T0 is indeed the correct transformation.
£i

Note that T will be non-singular if and only if A is
ft 1

non-singular. That our assumptions are sufficient to guarantee the

invertability of A will be shown in Chapter V.

We now claim that the compensated plant has the correct

transfer function. To prove that this is the case, consider the

further expansion of the model shown in Fig. 4.16. The transfer function

has not been affected, but it has now as many states as the plant in its

'5* form. Further, the state transformation:

s. =
2

*~~ t
A A . . . i I 9 . . . 9

9 A^ A- • • • A. , I . . . 9
-L & rC— J.

1

9 9 e • • • • • . A .1

I 9 • • • 9 r9 .9 . . . 9

9 1 9 9 9

9 • • • 19 9 • • • 9

I ,'9
(4.17)

will place that model into equicontrollable form. Now consider the

following digression, which will show that:

pjhk-1 p+k-1-i ~r«.— JL ^v . _ * K ̂ _*y j. ^\ . -,
V"v 1—1 Qi K~^ 1-1X W e X A c ;
/ i ~ r 7 Ai

^—i (s-tct.) 4—i.
(4.18)

where:

H* =

,

(4.19)
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Fig. 4.16

Algorithm: Model in '4' Coordinates
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By rearranging equation (*) in Fig. 4.14 we obtain:

P , , k i_1 r P
A.s = a,

1= 1=1

i-l v- , i-l

J

(4.20)

1=1

equivalently:

i-l

i-l

p-1 V> AA. s

i-l

i-l

(s40!)
r[H l JH2,...,Hp]

1=1

A1A2 A3 •'• \9 '•• 9

0 A A A A ft n
f\- «-,-, "•«-!, • • • •"", W » • #W

9 9

(4.21)

si

= a

A1A2A3'"\
. . . A e .. . 9

)...e

9 9 • ' ' \.

si
(4.22)
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Recalling that H = [HJ9] and A= [AJ6] and the definitions of

T and S we may then write:

or:

(s+a)rHTr

I
si

I
si

I

si = a A

I

si

/ *(s4a)
p+k-1 p+k-1

H.S = a A.S

(4.23)

(4.24)

(4.25)

But now note that:

— 1

e i
e e

e ... e
i e

l_*l 2 3 p+k-1.

(4.26)

By computing the above in a similar vein to the previous development,

we can show that:

p+k-1- .\- s.s1-1 =Z 1
r k

i=l

(4.27)

But this implies that $. = K. I So we may conclude that:
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-1

.-1

(4.28)

(4.29)

(s+a)
r

(s+a)r

(4.30)

(4.31)

Hence the algorithm gives the desired result.

Unfortunately, we have two more tedious, but straightforward,

steps to perform. First we must unravel the compensator and reduce it

to original coordinates, and second we must find a minimal realization

of that compensator. Both of these tasks are essentially bookkeeping and

use standard techniques. The first may be accomplished by reversing the

sundry steps shown in Fig. 4.7. The second can be achieved by using

the technique given by Kalman [9], operating on the compensator shown in

Fig. 4.17.

The essence of Kalman's method is as follows. Suppose the

given system were described by:

(4.32)x = Ax + Bu y = Cx

First check the rank of the controllability matrix:

C = [B̂ B,...̂ ""̂ ]

If rank C < n , find the transformation T such that:

(4.33)

T 1C =

X } Y

e : e
(4.34)

Then:

T~ B =

" B

. e .
, T """AT =

"A i x "
!„ ..i

. e v Y _
, cr =

Therefore:
B(sI-A)~1C = B(sI-A)~1C

(4.35)

(4.36)
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One then replaces the system (A,B,C) with the smaller dimension system

(A,B,C) . The same operation may be repeated in the dual, observability

case. The final result will be a minimal (i.e. completely controllable

and observable)system. The approach has no formal difficulty, but finding

T accurately is no mean numerical analysis task, for even moderate

state dimension.

D. Conclusion

By a somewhat circuitous path we have succeeded in solving,

algorithmically, the model-following problem as posed in Chapter II.

Although the process is involved, the operations at each step are

quite straightforward. The resultant compensated plant has the proper

transfer function, although it usually represents a non-minimal realization

of same. Our solution differs markedly from the quadratic loss, but

bears a great deal in common with,the classical approach. In a sense

it is a hybrid, using the best features of each. One may visualize

the process as finding feedback laws which take full advantage of existing

plant structure so as to minimize the dynamics required in series. The

classical approach insists on "unity" feedback, thereby obviating any

potential advantage.

Even when programmed in an essentially brute-force manner,

the algorithm is capable of generating the compensator in about the

time required for one pass through a quadratic loss program using the

Q-R algorithm (a very fast technique). Considering that the quadratic

loss method has only begun after one pass, our algorithm is especially

attractive.

Perhaps more significant is the potential of using non-

minimal realizations (particularly equicontrollable or "equi-observable"

ones) for the analysis of multivariable systems. Our previous claims

as to the utility of such techniques should now be vindicated. Being

able to write fairly explicit formulas for transfer functions and being

able to see immediately the effects of feedback are compelling enough

reasons to justify their use.
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V. PROPERTIES OF THE ALGORITHM

A. Stability

Assumption 6 leads to stability in an easy way. Observing

the resultant compensated plant leads to the observation that its

characteristic equation's roots are: -a , roots of the model's character-

istic equation, or contained in num det H(sI-F) G . By the assumption,

num det H(sI-F) G has all of its roots in the left half plane, hence

the compensated plant is surely stable if the model is. The condition

is not, however, necessary. For example, if p(s) equals a polynomial

formed from all right half plane roots of num det H(sI-F) G , and if

r̂  i-1
p(s) divides \ A.s , we may cancel those terms in eq.(*),Fig.4.14,

i=l

so that the roots will not appear in the result.

B. Existence

Assumption 5 guarantees that A exists and is non-singular.

To show this note that:

Al = ̂ X̂ l (5>1)

where det A(sI-$)~ r = *\ l-i.s1" , if H is non-singular. But:

£=!' X

num det H(sI-F)"1G

num det A(sI-O) r

= det H (5.2)
l \

= det A, = V, (5.3)
s=0

Hence the assumption says that det H ^ 0 and det A, ¥• 0 . Thus

A exists and is non-singular.

- 72 -



Again, the condition is not necessary. For example, if

A = 9 and X = 0 we may still have success by cancelling the common

factor of s in equation (*), Fig. 4.14, and renumbering (A0 becomes

, X becomes
£i

A, and so forth) . More complicated situations may

also occur, but the essential ingredient is for T to be non-singular.
£i

This would have been quite difficult to state at the outset, hence we chose

to use an intuitively appealing sufficient condition.

C. Solution Invariance

In an interesting case, the solution is largely invariant

under changes in the plant. Recall Fig. 4.16, which shows the compensator

as a transfer function from u and x to u . Suppose that the plant

and model are both given in equicontrollable forms of the same state

dimension. Then if we had written the compensator as:

u

x

u

X

(5.4)

and the plant and model as:

PLANT: [ H ]

MODEL: [ A ]

where q is a vector of parameters, then:

"e i i ~

. F(q) .

"0 . I "
i

. *

>

e

. i .

" e

_ i _

(5.5)

= e = e (5.6)

since A. , J.. , etc., depend only on H and not on F , and TQ = I .

Moreover, K was partitioned so that K was nxm ! Hence K vanishes.

Therefore, the reduced compensator elements F ,G ,K are invariant under
* * r* r* c*.
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changes in q , whereas J is affected linearly. Note that we may
c

relax the above restrictions to the point where:

1. The plant is equicontrollable, and of the form:

9

L F(q) .

e

L I _

(5.7)

2. The original model's dimension is less than or equal

to that of the plant.

The result of this observation is that one need only estimate accurately

the parameters of H . The parameters of F do not as strongly effect

the form of the compensator. Since J varies linearly in q. , we

know that small errors in estimating the parameters of F will result

in small errors in the compensator. Moreover, if better estimates of

F become available it is a trivial matter to adjust the compensator

to match, since only the "feed-through" gains J need be adjusted.
C

D. Comparison with the Classical Approach

As discussed in Chapter I, the classical control problem,

which led to the "modern" version we have considered, was not readily

soluble, in fact, our algorithm cannot solve it either, since too much

structure was placed on the solution. We shall, however, consider a

compromise problem which we can solve, and which has many of the features

of the classical problem. In itself, it is of some interest since it

includes a reference input. Such a feature is common to many control

problems. The block diagram of the problem we shall consider appears

in Fig. 5.1:

a(t) R(s) rCtr

i

"̂ jULtJ C(s)

1

W(s)

X

y(t)

Fig. 5.1

A Classical Problem
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R(s) represents a linear system which generates the reference signal

r(t) in response to impulses at a(t) . (a(t) can be thought to

establish the initial conditions placed on the system) . Our problem

is to make e(t) behave in some arbitrary manner by the choice of

C(s) . For example, the designer might like e(t) = £~1[Q(s)] for

some transform Q(s) . Suppose that is indeed the case. For

notational purposes, we might say that we wish the transfer function

from a to e to be Q(s) . Hence we wish to find C(s) so that if

the modified transfer function from e to y were V(s) , then

Q(s) = (I+V(s))~R(s) (5.8)

Hence, if we could make V(s) = R(s)Q (s) - I , then the problem would

be solved. So we have the model: V(s) = R(s)Q~ (s) - I and the

plant: W(s) . This is then a problem which falls under the ability

of our algorithm. We need only check that the various assumptions and

conditions of that algorithm are either satisfied or easily accommodated.

A short study of the matrix Q(s) will be of some help.

Q(s) represents the dynamic response which we would like the error to

have. As such it is not unreasonable to suppose that an acceptable

Q(s) might be diagonal (noting that, by the definition used above,

Q(s) is indeed square). Moreover, a designer might well be pleased

with a response of the form Q(s) = I/(s+a) . Although one usually

would think of such a response as a bound on performance, we mean it

here to be the actual dynamics of the error.

Another point worth a brief discussion is the transform

R(s) . The reference system is simply a model of the specified refer-

ence input. In that case it is not unreasonable that R(s) also be

diagonal: that is, that the separate input (reference) signals r.(t)

could be separately described by the diagonal entries of R(s) .

Although a(t) really only represents the initial conditions on the

systems described by R(s) , it is not any problem to allow a(t) to

represent any input.

Putting these observations together, we find that:
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V(s) = (s+a)R(s) - I

or (5.9)

Vi(s) = (s+a)R..(s) -

If the state dimension of R.(s) is greater than or equal to one,

there is no problem of having a non-realizable model. This does

not appear to be a problem, since it makes little sense for the

reference input to be non-dynamic!

In conclusion then, it is quite possible to wrestle the

classical type of reference input control problem into a form which we

may easily handle. The algorithm is used to solve an auxiliary

problem which, in turn, makes the main problem trivial. Note that the

nature of the problem involves a decoupling (since the defined model

is diagonal). This points out the subserviance of the decoupling

problem to that of model following, (see Appendix C).

When there is no reference input, the problem is amenable

to our algorithm. The classical approach seems, at first, to be simpler

if for no other reason than the compensator is easy to define. On the

other hand, the indicated inverses are especially tedious and the

resultant system is usually of over-large state dimension.

As an example of how the result of using the classical

approach compares with our design, consider the following problem.

W(s) =

V(s) -

Using the procedure shown in Chapter I, we would find

1
s + 5

0

1
s + 1

0

(s+1)

(s+1)

s

(s+2)

s+4
(s+2. 5)

s+4
(s+2. 5)

2
+ 2

s+4
(s+3)

(5.10)
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C(s) =

(s+5)(s +4s+6)

s(s +4s+2)
(5.11)

(s +4s+2)

This solution requires 3 states.

On the other hand, using our algorithm, we would find that

only one dynamic element, namely an observer root, is required. If

0(s) is an observer, then our solution is shown in Fig. 5.2;

u

Fig. 5.2

Form of Solution to the
Classical Problem

where C is defined by:

u =
4 -1/3 1/3

0 -1/3 1/6

— y

(5.12)

This feedback law was generated by our program using suitable realiza-

tions of V(s) and W(s) .

It is worth noting that our solution is much simpler than

the classical design. A quadratic loss approach would result in a 4

state compensator (3 for the model realization, and 1 for an observer).
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VI . COMPUTER PROGRAM AND EXAMPLES

A . The Computer Program /

The foregoing algorithm has been programmed for an IBM

360/67 at Stanford University, in Fortran IV. The details of the

program are hardly germain here - particularly in view of the brute

force nature of the programming. Besides the computation of the con-

troller, the program includes an impulse response simulation for the

model and compensated plant. This provides a graphic check as to how

well the solution actually matches the model's behavior. Some controls

on roundoff error are included such as using double precision throughout,

setting "canonical elements" in a Luenberger form to 1 or 0 as the case

may be, and occasionally rounding off matrices to set small elements

to zero.

A flow diagram is not particularly useful in describing

the program since only the reduction to Luenberger form, a subroutine

to find the independent columns of a matrix, and the simulation routine

are iterative in any sense. Hence the flow is virtually always down such

a chart. The program was a literal translation from the description of

Chapter IV to Fortran. Subroutines were used heavily. The following is

a rough scenario which is a reverse translation from the main program

back to verbage.

1. Perform the requisite input, immediately echoing back

most of what was read in as a check.

2. Reduce the plant and model to Luenberger canonical

form, [13]. (It turns out to be easier to go

through Luenberger form rather than to equicontrollable

form directly - see Theorem 1, Chapter III.)
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Print the results.

3. Add states as required and get the plant and model

into equicontrollable forms of the same state dimension.

4. Perform a roundoff to set small entries to zero.

Print the result.

5. Compute the polynomial matrix:

[adj \ H.s- 1- \ A-^S"
P

>

and the corresponding

det

(Note: k is determined and A. adjusted as per Chapter

IV, section C).

6. Again perform a roundoff.

7. Check for factors of s and stability of

If assumptions fail — exit the program with error message.

8. Print A± and X±- .

9. Reduce model to bar-star coordinates.

10. Invert A . If it is singular — exit with message.

11. Compute compensator. (This is a vast understatement.

The code is lengthy, the essence is bookkeeping.

Print the result.

12. Minimize the dimension of the compensator. Print it.

13. Find the compensated plant and simulate it.

Further details of the program may be gleaned from consulting

the Appendix B. It gives a description of many of the matrices and

variables computed.
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B.

1.

problem.

Examples

Example 1.

Let us use the algorithm described above on a fairly simple

PLANT:

F =

MODEL:

$ =

PLANT

MODEL

~-5

0

. 0

r i
L o

~-i
0

0

C

0

-1
0

1
1

0

-2

0

1

1

these to

"-5

0

0

1

0

r_i
0

. 0

i
0

0

0

2.5

4

4

0

0

-6

6

4

0

0

-2.5.

1

1 ^

0

0

-3 _

0

1

a Luei

0

1

-3.5_

1

1

0 "

1 ,

-5 .

2

1 _

G =

1 0

0 2

0 -1

r =
i
o

o
2

0 -1

"1

0

0

0"

0

1

1

0

LO

0

0

1J

(6.1)

\

(6.2)

Now we add a root.at s = -15 to each system (a = -15) and again

reduce to a canonical form similar to Luenberger*s.
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2
PLANT :

—F =

_

H =

«' =

_

A =

-20

0

0

.!

1

0

-16

0

0

_ 1

1

0

0

0

-2.5

0

4

4

0

0

-6

0

6

4

0

1

-3.5

0

1

1

0

1

-5

0

2

1

-75

0

0

0

—
> G

i
0

0

_ 0

'

-15

0

0

0

, r =

1
0

0

.0

15]

o

0

0

1
0_

0

0

1
0_

(6.3)

A simple state renumbering will reduce the above to equicontrollable

form. Note that only one state was required since the previous block

lengths of 1 and 2 (see Theorem 1, Chapter 3) indicate that 4 states

will be needed. The equicontrollable form is then:

PLANT3:

MODEL

H* =

" 0

0

-75

0

15

0

0

0

-15

0

1 15

o

0

0

0

-2.5

4

4

0

0

0

-6

6

4

1

0

-20

0

1

0

1

0

-16

0

1

0

0

1
0

-3.5

1

1

0

1

0

-5

—, G , —' *

" 0

0

1

0

-
' * ~

0

0

1
0

2 1i J

o"
0

0

1

0 "

0

0

1

(6.4)
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Up to this point we have simply been maneuvering the plant and model

into forms which are convenient, while maintaining their transfer

functions. Now we proceed to find the compensation required. It is

easy to compute that:

1 1
0 1

A —2
19 6 "

0 19
, A =
' 1

60 8

0 60

= 19 = 60
(6.5)

A is clearly invertible. hence there will be no difficulty with

getting the compensator. We can see that there are no zeros in the

RHP in num det W(s) = s + 3 , so stability of the solution is sure.

Now via Fig. 16 we may simply write down the solution, after checking

the definition of some assorted matrices. To wit:

ll = [1
(6.6)

21 •I 0

0

0

0 _
Joo =22

" 0

0

0

0

0 'i

0

0

0

1
0

0

0

0

1
0

0.

A simple observation aids in writing the solution. Consider:

Hc *)] (6.7)

By computation (hand or machine) we find that H = [0] . Thus only
C

feedback will be required (along with a suitable input transformation).

The solution is then:
/\
u

Pi 1 4
u =

LO i o

4

0

-2/3

-2/3

2/3 ~

1/6.
X

(6.8)

written in original coordinates. One may check that indeed this does

the job. The above matrices were all taken from our computer program
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compiled by a load-and-go type processor, and run on an IBM 360/67.

The execution took 1.34 seconds. (Compilation took 8.00 seconds).

Execution time would have been of the order of 0.3 seconds if it had

been compiled using the IBM Fortran IV Level H compiler-link editor,

but compilation would have taken over a minute.

2. Example 2;

This example first appeared in a paper by Tuler and Tuteur

[19]. The problem is defined by the equations:

F =

G =

H =

$ =

0.0

0.0

0.086

. 0.0

0.0

0.0

0.035

-2.53

" 0.0

. 0.0

0.0

0.0

0.086

0.0086

" 0.0

0.0

0.035

-2.53

" 0.0

0.0

1.0 0.0

-2.93 -4.75

-0.0 -0.11

-0.040 2.59

0.0

-3.91

0.0

0.31,

1.0 0.0

0.0 0.0

1.0 0.0

-1.0 -73.14

0.0 -0.11

0.086 8.95

0.0

-3.91

0.0

0.31 _

1.0 0.0

0.0 0.0

0.0

0.78

-1.0

-0.39.

0.0 "I

1.0 J

0.0

3.18

-1.0

-0.49_

0.0 "I

1.0 J

r =

A =

The solution we obtain by use of our program is:

z =

u =

F z + G
c c

X
i*,
u

H z + J
c c

(6.9)

(6.10)
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where:

F =

G =

H =

J =

|-24.92975

[ 3 .8066034 -0.4247245 j 3.142755 -0.2604497

-18.09820 -36.66145

-2.441089

36.66145

]
(6.11)

1.000000

0.000000

If

0.00000000 { 0.3074326 -0.1369023
i

1.00000000 J-4.6682222 -0.09383566

-0.9029511 -3.715906

25.48522 54.65753

F ,G ,H J are used to double precision (as they are computed, butc c c c
not as they are listed above) then the model and the compensated plant

agree to 14 decimal places in their respective impulse responses (over

the first 4 time constants of the transient). Surely this is a good

fit. Moreover the solution was obtained after one pass of the program

(nee; algorithm), and took but 6 seconds of 360 time. The solution

put forward by Tyler and Tuteur was only obtained after some unspecified

number of man-machine iterations (i.e. new choices of the Q and R

matrices), and involved 4 states in the compensator (by virtue of the

quadratic loss approach). The observant reader might notice that no

output matrices were named there. On the other hand, the solution they

obtain, which purports to be matching all of the states, actually

succeeds mainly in closely matching the characteristic equations rather

than the transient responses, much less transfer functions. Our

solution above, matches the first three states nearly perfectly in a

transfer function sense. Should it be required to match the third

state, say, instead of the fourth, one would simply make:

= fo.O 0.0 0.0 0.01

LO.O o.o i.o o.oj
(6.12)

This may then be computed to have the solution:
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= -72.62536

G =c

H =
c

J =c

0.03243403 0.150421

0.08903046 2.771866

-2.771866

-0.0001956313

-0.1186034

-0.07890249_

1.00000000 0.00000000 -0.00295

0.00000000 1.00000000 -0.00008405342

-0.1098584 -0.3698480 -0.04065118

-0.4967333 17.48052 0.6149679

(6.13)

This solution is not surprisingly quite different from the first.

However, one may as easily solve for any compromise between the two

or any other desired output set - so long as it is limited to two

directly. (Since one state is the integral of the other, it will be

matched up automatically if its associate is).

3. Example 3;

Rynaski and Whitbeck [17] present a similar problem. To wit:

F =

G =

H =

-0.751 0.0000046

1.0 0.0

0.0 -32.2

1.0 -0.0000214

0.0015 -2.65

0.0 0.0

8.46 0.0

-0.0069 -0.0326_

1.0 0.0

0.0 0.0

-1.28 0.0000044

1.0 0.0

0.0 -32.2

1.0 -0.0000086

0.000572

0.0

-0.0296

-1.604

0.0

17.45

-0.0009599 -0.681

(6.14)

0.0 I

0.0 J

0.0

1.0

0.0005067 -0.2558

0.0 0.0

-0.0263 30.58

-0.0009859 -0.8584

/Contd
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/Contd...(6.14)

r =

A =

0.0048 -0.898

0.0 0.0

17.4 0.0

-0.00934 -0.129

1.0 0.0

0.0 0.0

0.0

1.0

o.ol
o.oj

Again, the answer yields remarkably good results, namely 7 decimal

places accuracy as measured by the simulation over a similar time

period as the previous example. The output matrices had to be contrived,

but exactly the same arguments may be put forward as for Example 2.

Also it is possible to match 3 of the 4 states nearly exactly, and there

is considerable freedom as to which states or combination of states will

be matched. The solution obtained is:

= I-0.8044424

G = !c

"c =

J =
c

-0.0115643
L.

0.0443522

-0.8354341

-0.0227829

2.0587376

-0.0006471

0.0424707

0.0011583

0.0751778

0.0008648

0.0000000

0.3388679

0.0002993

0.0000224

i -0.8354341t

0. 5827508 J

! 0.4112750i
j
j 0.2127252

1. 0295431 1

-0. 5221243 J

(6.15)
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APPENDIX A

A MINIMUM NORM APPROACH

A. The linear problem.

Given the plant and model:

PLANT: x.= Fx + Gu
v

MODEL: | = <J>£ + G

We might wish to find a feedback control law u = Kx 3 :

J = ||e$T - e(F+GK)T||2 ; ||A||2 -trace [AV] (6.17)

is minimized over choices of K . This is a generalization of Erzberger's

[6] approach. We refer.the reader to his paper for motivation of the

formulation. It incorporates two distinctive features not possessed by

hi s, however,

1. A weighting matrix Q is included (Q ̂ > 0) so

that one's relative interest in matching the states

can be expressed.

2. A parameter T is included which is a gross

measure of closeness. As T -» 0 , this problem becomes

the same as Erzberger's.

The main hurdle to be overcome in solving this problem

is finding the gradient of the cost function with respect to K .

Further we would like the gradient to be linear in K . To that end,

let us make a model of the plant.

x(n + 1) = eFTx(n) + F"1(eFT- I)Gu(n) (6.18)

(Note: F~ need not exist for the term to exist, as a series

expansion will confirm).
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Suppose we choose T to be small so that the above

is a good representation and further that the feedback law:

u(n) = Kx(n) + u(n) (6.19)

is desired. Then:

x(n + 1) = eFT + F~1(eFT- I)GK x(n) + F'1

+ F~1(eFT- I)Gu(n) (6.20)

s\
u(n) represents external inputs. Now, the continuous system, after

such feedback, is:

x = (F + GK)x + Gu (6.21)

But this system is virtually equivalent to the preceding (for small T),

hence:

F T - 7 03.22)

Then:

J = ||e - e - F (e - I)GK|L = lie - e || (6.23)
Q Q

- eFt) , K>+ <rTQTK, K>

where T - F~1(eFt- I)GK and <A,B> = Vtrace ATQB

Then taking V^(J) formally , we obtain:
K

Vir(J) = -2rTQ(e°T- ^-) + 2FTQTK (6.24)
K

Setting Aj,(J) = 6 we obtain:

K = [rTQT]"1rTQ[e$T- eF] (6.25)

This is then a solution to a form of model following problem.

It suffers from the basic difficulty of Erzberger's approach, namely

that the plant and model must have vast structural similarity for it to

be successful. Fortunately, however, there are many problems having

this trait. In aircraft control problems we have a great deal of

information as to structure. One often finds the plant and model are
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different only in a few parameters, while they have the same essential

organization of dynamics. Hence the success of Tyler's problem (among

others) is not surprising.

One might notice that, as in the quadratic loss formulation,

we have an unknown weighting matrix Q . No attempt will be made to

minimize the problems engendered by it. Suffice to say that the solution

here takes less than one second to perform, hence a time-share mode

might be quite feasible, wherein the designer would rapidly cut and try

various Q's until an acceptable solution appeared. That such an

approach can yield spectacular results will be shown by example.

Rynaski, et al [16] give an interesting problem, depicted in

Pig. A.I. They give the usual solution, but indicate that improvement

in accuracy would involve substantial increase in control effort.

However, trying our approach yields an interesting result. Not only

can we find a pure feedback control which does slightly better than

theirs, but it does so with uniformly less control effort. For an

increase of about 20$ in maximum effort we may do a spectacularly close

match. Clearly we may choose any tradeoff in between that we desire.

These results are depicted in Figs. A.2 and A.3. Plotted are the pitch

responses of the open loop aircraft, the model, Rynaski's solution, and

the two solutions obtained via our method. The associated control

efforts are plotted .to verify our claim.

- 89 -



F =

G =

0

-3.72

-8.54

3.72

0

0

0

-2.959

0,514

2.959

0

_0

0

0.0667

0

0

25

0

1

-2.156

0

2.0

0

0

1

-0.0119

0

0

0

0

0

0

0

0

0

6.67

0 0 0 0

0.05626 0.317 0 0

-2.56 2.50 0 0

0 -3.17 0 0

0 0 -25 0

00 0 0 -6.67

0 0 0 0

0.00906 0.0103 1.36 0.250

-0.0625 0.0376 -2.33 -5.12

-0.0037 -0.0103 -1.423 -0.25

0 0 -25 0

0 0 0 -6.67

Fig. A.I

Rynaski Problem
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A final example, from Rynaski and Whitbeck [17], is almost

trivial.

G =

with Q =

was

F + GK =

-0.751

1.0

0.0

1.0

-1.285

1.0

0.0

1.0

0.0015

0

8.5

-0.0069

1 0

0 0

0 0

0 0

-1.275

1.0

0.066

0.993

0.0

0.0

-32.2

0.0

0.0

0.0

-32.2

0.0

-2.65

0

0

-0.033

0 0

0 0

1 0

0 0

0.0

0.0

-32.2

0.0

0.0

0.0

-0.029

0.0

0.0

0.0

-0.026

0.0

"*

-

the

0.0

0.0

-0.0260

0.0

-1.60 "

0.0

17.45

-0.68 _

-0.26

0.0

30.6

-0.86 _

(

resultant system

-0.264

0.0

30.53

-0.674_

(

(6.26)

(6.27)

Enough said.'

In conclusion then, if a problem with such a high degree of

structural consistence between plant and model appears, this method is

worth trying. The computation times involved are so short that it might

be used as first cut in any event. If five or so tries fail to yield

an acceptable solution, it is perhaps best to switch to the more general

algorithm.
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B. A non-linear extension

Suppose we have the plant:

x = Ff (x) + Gu

where where

f(x) = (6.28)

and F and G are the usual matrices, and a model: £ = $£(£)

where

m n

and further assume that for the output matrix H ,

f(Hx) = Hf(x)

Then say we desire |(t) = Hx(t) given that |(0) = Hx(0)

implies:

= Hx(t)

But:

= HFf̂ (x) + HG u

i = «f(I)

So that:

HFf (x) + HGu = (J)Hf(x)

or

define

HGu = ($H - HF)f_(x)

«
u = Kf(Dx)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)
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where

f(Bx) =

fl(dlx)

f (d x)
P P

= Df (x)

(we assume such a. D exists).

Then we desire a K 3:

[HGKD - ($H - HF)]f_(x) = 0 for any x .

It is sufficient that:

HGKD = d>H - HF

Then the solution, if it exists is:

K = (HG)f($H - HF)Df

For example, the systems:

-1 1

H =

1 0

-1 1

3 0

1 0

0 1

2

u f (x) =
V2J

-

so f(Hx) i f (x)

and D = I is also reasonable. So K =

0 0 0

[2

9

o]

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

So U = [2 0] f(Dx) = [2 0] = 2x
2

X2

(6.40)
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which is correct, although trivial. Nonetheless, the idea is that in

cases in which the previous linear approach is used, we may allow some

non-linearity into the problem without changing the solution. Such a

condition is often present in aircraft problems; i.e. a small amount

of nonlinearity. This might be effectively modeled in the form we

suggest which would assure us that if the linear problem could be

solved, then the non-linear one could be also.
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APPENDIX B

DEFINITION OF SOME VARIABLES

Our purpose here is to describe those variables which are

used in the algorithm which are particularly obtuse in definition.

They will be considered in order of occurrence in the original.

The number of states added in z depends on:

1. The number of states n needed to make m| n+n .

The smallest such n is chosen.

2. Whether or not the model has more than n+n

states. If it does, say n more, then n extra states
2 ^

are added.

We suppose that the system is in Luenberger form and that a

state map is available. It has p rows and m columns

(p = (n+n +n )/m). It represents how the current block
1 ^

diagram of the plant is numbered. For example:

\ a . x . + u

iti

^-> ± i 2

This would yield the

f l 4 "

2 0

L 3 0 .

. !
s

1
s

St£

X3 , X2 , Xl

s s

X4

ite map:

The zeros are merely place keepers. To illustrate how states

are added, and in turn how J is created, suppose in the

above example we wish to add 4 states. The new map would be:
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" 5

1

2

3

6 "

7

8

4

The procedure is to "push down" the short blocks and to add

states into the spaces required, numbering left to right and

top to bottom. The block diagram then becomes:

8•i'
i=l

8

I1
i=l

This

Chapt

Jl =

X

iVui LI
i ~~~ ~i „

iXi+U2 | 1 X

1 ,.,.

3 i X2
s • »

4 [7] X8
1 * s • *

is reminiscent of the discussion

er III, we may define:

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

1 - x — • x
1 1 1 5
s • *- s ••*-

— - J

1 X7 1 X6
s * *" s • *

i after Theorem 1,

• [j«!jul
The partition is made between the n and (n+1)

columns of J, Even though no a has been mentioned,

the dynamics associated are contained in a. and b. rather

than in J, In actuality the added states would have been

l/(s4Q!) rather than 1/s , but it is an easy matter to separate

those dynamics from the structural information of J (which

is invariant under a) .

L is entirely analogo

changes should be apparent.

L is entirely analogous for the model. The notational

K In "bar-star" coordinates:
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e i e ... e
_e-—e 1 9-

F F F1 2 p

then

KTl = Tl F2 — FpJ

KT is defined rather than K for notational convenience.

A

A =

k-1

A. are mxm matrices

Formally, A. are computed as follows. In bar-star coordinates:

H2 -- Hp] ' ••' A

.A.s
-l

This is subject to the restrictions:

2. r is to be as small as possible.

3. The left side of the above is to be minimal. That

is, any cancellations possible are made between

numerator and denominator.

4. The numerator and denominator on the left are to be

the same length (as shown).
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L3 =

e
e

i
e

e
i

e
e

-i-

all blocks are

X.I

e
e

e
e

e-
e

. e
e

i e e ...
p blocks

k-1 blocks

J21
T22

21 = [ i e e ... e ]

J22 =

all blocks are

e i e ... e
e e i e
' . • •

• •
• •

_e e e ... e.
k-l blocks square

In bar-star coordinates:

e i e ... e
e e i e

- *
If:

KT2 =

then: .

K2 •'• Kp+k-lJ

I v1"1 SPI

i=

- 100 -



Al A2

e A,

0

0 e

_e 0

V e e e_

e e

e A, A, n A,k-l k

k-l

0

e

e

Al A2

e Ai -i

p + k - 1 blocks square

Note that T is nonsingular iff A is nonsingular. Also
& A

T is (p+k-l)m dimensional .
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APPENDIX C

DECOUPLING

After becoming familiar with the technique of this

dissertation, it becomes clear that the decoupling problem (see

Wonham and Morse [22], and Morse and Wonham [15]) is closely allied

to model-following. To wit, the model is decoupled. Granted the

decoupling problem specifies no particular model. On the other hand,

we can easily see that if the plant satisfies the conditions given in

Chapter II, then virtually any decoupled model can be followed perfectly.

This observation is borne out in theory. In [22] a necessary and

sufficient condition is given such that a system may be decoupled by

dynamic compensation. We have shown (see [23]) that their condition

is equivalent to ours under the input and output restrictions given in

Chapter II. Hence our intuition is nicely fulfilled in reality.

Specifically we may state the following theorem,

proven in [23]:

Theorem; Given the system (H,F,G) with H mxn ,

F nxn , G nxm and full rank, then (H,F,G) may be decoupled by a

dynamic compensator C(s) , of the form given in Fig. 2.1, if and only

if num d<

s-plane.

if num det H(sl - F) G has none of its roots at the origin of the

This theorem constitutes a simple test for decoupling

in the m-input, m-output case. The design is as per the previous

solution (Chapter IV) with the model virtually arbitrary. Note further

that the comments in Chapter V also may be applied to decoupling. In

particular, Wonham and Morse and the above theorem do not specify

that the resultant decoupling be stable. If that is required, the

further restriction of tl

half plane will suffice.

further restriction of the roots of num det H(sl - F)~ G to the left
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