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ABSTRACT

During three balloon flights made in 1966 and 1967, cosmic electrons

were investigated with the aid of a hodoscope detector which provided ex-

tensive and detailed information on each cosmic ray event triggering the

apparatus. Similar information obtained during calibration exposures

to protons and pions as well as to electrons was used to provide identi-

fication of cosmic electrons and to determine their energies. Differential

primary electron intensities measured in the range from 1 GeV to 25 GeV were

substantially larger than some earlier measurements. Taken in conjunc-

tion with existing measurements at energies above 100 GeV, this indicates

that the energy spectrum of cosmic electrons is steeper than that of cos-

mic-ray nuclei and, consequently, suggests that Compton/synchrotron energy

loss plays a significant role in shaping the electron spectrum.

INTRODUCTION

Today, twelve years after the discovery of electrons among the pri-

mary cosmic-rays, there exists no experimental consensus on their energy

spectrum. On the one hand, results obtained by Anand, Daniel and Stephens

(1968 , 1969) which suggest a power law spectrum having nearly the same

slope below 300 GeV as that of the nuclear component, lead to an interpreta-

tion in which the age of cosmic electrons is less than 106 years,substantially

smaller than the value of 3 x 106 years obtained for nuclei from the rela-

tive abundances of light and medium nuclei (Shapiro and Silberberg, 1969).

On the other hand, independent measurements by Marar, Freier, and Waddington

(1971), and by Nishimura, Mikumo, Mito, Niu, Ohta and Taura (1969) give a
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relatively small flux at high electron energies and suggest a steep spec-

trum which would indicate a substantial effect resulting from the Compton/

synchrotron mechanism of energy loss acting on electrons over times com-

parable to or larger than 3 x 106 years. Because the electron spectrum

provides information on these and other important astrophysical issues,

the resolution of the presently confused situation is an urgent matter.

This paper presents experimental results on the electron spectrum

obtained with the aid of a detector whose response to both electrons and

nuclei was specified in accelerator exposures carried out in support of

balloon exposures to primary cosmic-rays. The instrument provided very

complete information on each triggering event. Eight pulse heights were

measured and trajectories were defined by a 54 element Geiger tube hodo-

scope. Because the discrepancies among existing experiments are almost

certainly due, in part, to instrumental effects, the procedures that we

used to identify electrons, to determine their energies, and to specify

their intensities are described in detail so as to allow the reader to

form his own opinion of their validity.

APPARATUS AND BALLOON FLIGHTS

The hodoscope is shown in Figure 1. Six crossed trays of Geiger tubes

gave a crude stereoscopic description of particle trajectories, served

as a guard element able to identify multiple incident particles, and pro-

vided information on the number of particles emerging downward from the

absorber in association with electromagnetic cascades or nuclear inter-

actions. Each tray contained 9 tubes of 1.58 cm outside diameter and 14.2 cm

sensitive length.

Triggering particles were selected by coincidence requirements among

tubes in the top four trays chosen so as to define straight line trajec-

tories passing completely through all absorbers and exiting through Tray 6

(see Figure 1). This was accomplished by combining a selected set of eleven

two-fold coincidences between tubes in Trays 1 and 3 with a similar set of

eleven coincidences based on discharges in Trays 2 and 4. Thus, a group of

121 four-fold coincidences defined incident trajectories suitable for analysis

while discriminating against trajectories not suited to unambiguous inter-

pretation. We refer to this scheme as the directional filter.

Although standard mathematical expressions for geometric factors were
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not directly applicable, it was possible to group the 121 elementary tele-

scopes (each of which may be visualized as being made up of two square planar

elements whose side is equal to one tube diameter) in such a way as to make

use of the formulas presented by Critchfield, Ney and Oleksa (1952). Geo-

metric factors so derived are presented in Table I which also contains in-

formation on the three balloon flights. Flights 1174 and 1195 were launched

from Ft. Churchill, Manitoba and drifted west at ceiling toward a recovery

area near Uranium City, Saskatchewan. Flight 1058, which was launched from

Minneapolis, Minnesota and recovered near Spooner, Wisconsin, took place

on September7, 1966 during a period of enhanced geomagnetic and solar acti-

vity following the August 30-September 1,1966 solar event. A temperature

compensated Olland cycle pressure transducer was used to measure pressure

altitudes at ceiling to an accuracy of + 0.2 g/cm2. The experimental ap-

paratus was destroyed at the end of Flight 1195, but, fortunately, good

data had been recorded throughout that flight and accelerator calibrations

had been performed. Subsequently, the instrument was reconstructed for fur-

ther electron calibrations. Details on the format in which information was

telemetered and analyzed and on the methods used to determine the sensitive

times presented in Table I are given in reports by Neely (1968) and Rygg

(1970).

Corrections were applied to take into account, first, acceptable

particles rejected because of multiple discharges in one or more of the

directional filter trays and, second, acceptable particles which failed

to discharge one of those trays because of inefficiency, dead time or

leakage between the sensitive volumes of adjacent tubes. The multiple dis-

charge events are due to three distinct phenomena: (1) single inclined

trajectories passing through two adjacent tubes, (2) extra discharges

caused by knock-on electrons and (3) an effect specific to electrons in

which extra discharges, presumably caused by backscattered shower particles,

occur in trays immediately above absorbers of high atomic number. Since

knock-ons remain close to the primary trajectory and have relatively little

penetration power and since the geometric effect involves adjacent tubes

by definition, almost all multiple discharges associated with these pheno-

mena involve adjacent tubes. This fact, along with other information about

multiple discharges and inefficiency, was verified through an analysis of

flight events recorded by a second hodoscope having six trays of counters
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in addition to the directional filter instead of only two. Since the sec-

ond instrument was similar in geometry and arrangement of absorber to the

present hodoscope, extensive results obtained through sixfold sampling of

each trajectory which passed through the lower trays are directly applicable

here. Some of these results are shown in Figure 2 where the probability

that a particle will discharge adjacent tubes in passing through a tray

is plotted as a function of Z , where Z is the charge of the incident par-

ticle as determined from pulse height information. The probability at

"zero charge" extrapolated according to the Z2 dependence expected for

multiple discharges produced by knock-ons is interpreted as the charge in-

dependent, geometric effect due to single trajectories which happen to

pass through adjacent tubes. In this way, the multiple discharge pro-

bability per tray due to the first two effects was evaluated for minimum

ionizing particles as (1.36 + .06)% of which (.87 + .10)% was the geo-

metric effect.

To exhibit the third effect specific to electrons, a detailed break-

down of probabilities for various combinations of discharges in the direc-

tional filter observed during electron calibrations from 0.1 GeV to 8.2 GeV

is presented in Table II. Of the events having multiple discharges in the

directional filter, only 4% are attributed to the knock-on and geometric

effects. This figure is less than that derived for flight events because

of the smaller geometric effect associated with the collimated accelerator

beam. Most of the multiple discharge events are characterized by two dis-

charges in one or more trays and, as is shown in the lower part of the table,

these extra discharges occur preferentially in Trays 3 and 4, which are the

two trays nearest to the CsI in Counter 3. Since these trays are effectively

shielded by Trays 1 and 2,which do not show much of an effect, this obser-

vation rules out the possibility that the extra discharges were caused by

particles other than the incident electron coming from outside the instru-

ment and suggests that the observed phenomenon is due to low energy shower

electrons backscattered within the high Z absorber of Counter 3. Although

the relative absence of extra discharges in Trays 1 and 2 may be due, in

part, to the greater distance of these trays from the "source" of back-

scattered particles, there is a strong indication of rapid absorption in

the relatively low Z material of the directional filter. This implies that,

in future experiments, the importance of backscattering might be significantly
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reduced by a low Z shield placed between the elements defining the geometry

of the incident beam and the calorimeter. The absence of a strong depen-

dence of the backscattering phenomenon on incident energy is demonstrated

by the fact that corresponding probabilities at widely separated energies

agree in full detail except for a slight tendency toward higher multipli-

cities at the higher energies. This is particularly evident in events

having non-adjacent discharges. Although our data indicate that an ap-

preciable fraction (15 to 30%) of electron events exhibit triggering

multiplicity, the pronounced and strongly energy dependent backscattering

phenomena reported at comparable energies by Muller (1971) were

not observed.

The probability that a single particle passes through a tray without

discharging any tubes was found to be (3.0 + 0.2)% at ceiling and (1.5 + 0.2)%

at sea level. The difference between these values represents the effect

of inefficiency due to the dead time of the tubes. This is an important

factor at balloon altitudes because of the relatively high counting rates

encountered there, but it is almost negligible at sea level where the in-

efficiency is mainly attributed to insensitive regions between tubes. Since

the probability of coincidences between an event and a single uncorrelated

discharge can be related to the tray inefficiency due to dead time, the

measurements show that the probability of an accidental discharge when six

trays are involved is not larger than (0.9 + 0.20)% per event. This estimate

was based on measured values of (400 + 20) psec for the dead time and

(5.0 + 0.5) psec for the coincidence resolving time.

The scintillation counters shown in Figure 1 were viewed by 1 1/2 inch

diameter Type 6199 photomultipliers through adiabatic light pipes coupled to

one edge of the phosphor slabs. Separate pulse height analyzers provided

independent measurements of the pulse heights in each of the eight counters.

These analyzers had a dynamic range of 100 spanned in 16 logarithmic channels

each of which covered a factor of 4/3 in pulse height. (Note that (4/3) =10).

Each of the eight scintillation counters played a specific role which

depended upon its position relative to the lead absorber. Counters 1 and 2,

which consisted of 15 cm x 15 cm x 0.63 cm sheets of plastic fluor sand-

wiched among trays of the directional filter, gave two redundant estimates

of the ionization rate (dE/dx) of incident particles which were averaged to

give a mean value having improved statistical accuracy.
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Counter 3, which was placed just below the directional filter and

which constituted the first element of the calorimeter, was a 15 cm x

15 cm x 1.89 cm layer of cesium iodide - a scintillation phosphor whose

relatively high atomic number provided a thickness of 1.08 radiation

lengths in which took place the early stages of shower development,

which are of critical importance in identifying electrons. Counters

4 through 8 were 0.63 cm plastic sheets sandwiched among lead absorbers

to form, with Counter 3, a calorimeter in which the ionization deposited by

shower events could be sampled at the absorber depths indicated at the

top of Figure 4.

Scintillation counter sensitivities were evaluated in terms of

pulse height spectra for events characterized by a single discharge in

each of the six trays - a signature specific to single non-interacting

particles penetrating all absorbers and, consequently, having ionization

close to minimum (v/c > .62). Examples of such distributions recorded

during a flight are shown in Figure 3 along with those obtained during a

calibration exposure to a mixed beam of protons and pions. To avoid

errors from the nuclear interaction "tail" evident in Figure 3, the aver-

age pulse height for singly charged minimum ionizing particles was evaluated

by fitting a gaussian curve, whose standardized shape was derived for each

counter from pre and post flight meson calibration runs, to the peaks of

pulse height distributions tabulated at frequent intervals during flights.

This procedure eliminated instrumental drifts in average pulse height larger

than 0.2 channels or 5.9%. The r.m.s. width of the minimum ionization pulse

height distributions was typically + 1.3 channels (± 45%) for the plastic

counters and + 1.0 channel (+ 33%) for Counter 3.

A potentially important consideration in the correct interpretation of

events produced by high energy electrons is the saturation of photomultiplier

output currents arising from space charge limiting. This phenomenon leads

to underestimation of large pulse heights and, hence, to a corresponding

underestimate of the energy content of large showers. Such effects were

investigated by comparing output signals from two photomultipliers operating

with flight electronics and viewing simultaneously light pulses generated by

sea level cosmic ray events in a thick slab of plastic scintillator placed

between trays of a directional filter. Because of improved light collection

and increased thickness of the slab, the pulses obtained from single mesons
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selected by the directional filter were many times larger than correspond-

ing pulses from the flight scintillators while occasional pulses from

events of high multiplicity fell well above the largest pulse height that

could be measured by the analyzers in their flight configuration. To

make evident saturation effects occuring in this region of large pulse

heights, one tube was operated at reduced voltage, a step which reduced

both the gain and the importance of saturation at a given light input,

while the other tube was operated with full voltage but with an attenua-

tor in its output circuit, a step which reduced the gain without affect-

ing the saturation. In this modified configuration, limiting would

appear as a systematic deviation from proportionality in the relation-

ship between the pulse heights from the two multipliers. The fact that

such deviations were not observed shows that saturation had a negligible

effect onpulses up to five times larger than the maximum recorded during

flights. The absence of saturation was also confirmed by the fact that

the pulse height distributions for all events triggering during flights

exhibited a constant logarithmic slope at large pulse heights and did not

show any signs of the cut-off or increase in slope expected in the pre-

sence of limiting.



CALIBRATION PROCEDURES AND IDENTIFICATION OF ELECTRON EVENTS

The fact that only a few percent of the primary cosmic rays are

electrons imposes severe demands upon the techniques used to distinguish

true electron events from an inevitable background of superficially

similar events produced by the nucleonic component. This problem has

been solved through detailed knowledge of shower electron trajectories

obtained with cloud chambers (Earl, 1961) with nuclear emulsions (Daniel

and Stephens, 1965; Freier and Waddington, 1965; Marar, Freier, and

Waddington, 1971; Nishimura, et al., 1969) and with spark chambers

(Agrinier, Koechlin, Parlier, Boella, Degli, Antoni, Dilworth, Scarsi,

and Sironi, 1964; De Shong, Hildebrand, and Meyer, 1964; Oran, Frye, and

Wang, 1969) through the use of gas Cerenkov counters (Webber and Chotkowski,

1967; L'Heureux and Meyer, 1965) and through the use of subtraction procedures

based on the differing characteristics of shower development in materials of

different atomic numbers (Bleeker, Burger, Scheepmaker, Swanenburg, and

Tanaka, 1966; Rubstov, 1966). The present experiment takes advantage of

a technique in which shower development is sampled throughout a thick high

Z absorber in order to identify electron events through the more rapid

growth and decay of electromagnetic showers compared to nuclear cascades.

In applying this technique, use was made of detailed empirical knowledge

of both electron and nuclear events obtained in calibration exposures made

at the 2 GeV and 10 GeV electron synchrotrons at Cornell University and at

the 28 GeV Alternating Gradient Synchrotron (AGS) at Brookhaven National

Laboratory. The method yields a statistical identification in which electron

events are exhibited as a peak resolved from the nuclear background, but

identification of individual events was not achieved.

The basic data derived from the electron calibrations were a set of

shower curves for several incident electron energies giving ionization,

expressed in terms of the average scintillation counter pulse height for

minimum ionizing particles, as a function of depth in the absorber.

In an earlier version of this paper (Neely, 1968), calibration expo-

sures had been made only in the energy range from 0.1 GeV to 1.2 GeV and,

consequently, it was necessary to derive from these low energy data shower

curves applicable at higher energies. Such curves were constructed by using

-8-
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Approximation B of shower theory (Rossi 1952) as an extrapolation formula

with the radiation length and critical energy treated as variables which

were adjusted to produce good agreement between measured and calculated

curves at 1.0 GeV. Recently, a rebuilt version of the apparatus essentially

identical to that flown was exposed to electrons with energies up to 8.2

GeV. The new calibration data (1971 exposure) were in good agreement not

only with the earlier data (1967 exposure) in a region of overlap at low

energies but also with the extrapolated results deduced at higher energies.

This agreement gives empirical verification of the shower curves used to

analyze cosmic electrons from 1 GeV to 8.2 GeV and provides a basis for

the relatively minor extrapolations involved in extending the spectral

measurements to 25 GeV.

Calibration data are summarized in Figure 4 where the shower pro-

files used in the analysis of flight data are shown by solid curves cal-

culated as described above for a logarithmic sequence of electron energies

spaced by a factor of L78. Also indicated at the the top of Figure 4 are the

absorber thicknesses in radiation lengths above each counter and each tray.

Note that the thicknesses used during Flights 1174 and 1058 were identical

but somewhat less than those of Flight 1195. The observations and calculated

curves of Figure 4 are in only fair agreement with the Monte Carlo calcu-

lations of Nagel (1965) which predict, for shower electrons above 1.5 MeV,

about 20% more particles than are observed at maximum and about half as many

as are observed in the region of exponential absorption at large depths.

Because of the inherent complexity of shower phenomena the discrepancy be-

tween observations and Monte Carlo calculations is not disturbing especially

when the enhanced ionization of non-relativistic particles below the cut-

off energy of the calculations and the significant response of plastic scin-

tillators to the low energy photons abundant in showers are taken into con-

sideration.

The apparatus and analysis procedures are such that measured electron

energies are relatively insensitive to details of the shower curves, for the

energy content of events is essentially specified in terms of observed track

length independent of the distribution in depth. In this sense, the instru-

ment behaves as an ionization calorimeter. Errors in the shower curves can,

of course, lead to increased uncertainty in the identification of electrons
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because of poor agreement between observed and assumed shower profiles.

However, this is not of great significance, because, as will be demonstrated

later, the nuclear background is of relatively minor importance at high

energies where the shower curves are most uncertain. Calorimetric energy

measurements are characterized by the ratio of incident energy to track

length, a parameter whose value was defined in the course of the calibra-

tion experiments as 17.8 + 1.5 MeV/rl integrated over all depths. Through-

out this paper the radiation length in lead is taken to be 5.82 g/cm2 .

The identification of electrons was based on a comparison of the

electron shower curves of Figure 4 with ionization vs. depth profiles re-

corded during flights by Counters 3 through 8 for triggering events which

satisfied certain acceptance criteria. Better agreement with the shower

curves is obtained, on the average, for electrons than for nuclear events.

The comparison was carried out in terms of a parameter S defined as:

1 Counter 8
S = - E (Pulse Height Observed - Pulse Height Expected)2

6 Counter 3 (Standard Deviation of Expected Pulse Height)2

in exactly the same way as the familiar statistical X2 parameter. For each

event the nominal electron energy, which determines the expected pulse

heights and standard deviations,was varied until a minimum value Spin was

found. In this way each event was assigned a nominal energy Enom and a

parameter Smin measuring the degree to which the event fit an electron

shower curve of energy Enom-

Typical distributions of Smin obtained when this procedure was applied

to events produced by accelerator electrons are shown in Figure 5. At energies

below 3.2 GeV, good agreement was obtained with the X2 distribution for five

degrees of freedom which is expected, a priori, on the basis of the exact

analogy between the definitions of S and X2. (Only five degrees of freedom

are involved in fitting to six pulse heights because the minimization pro-

cedure effectively "removes" one degree of freedom). Above 3.2 GeV, the ob-

served distribution is shifted relative to the x2 curve toward smaller values

of Smin. We believe that this shift was caused by the distinctly skewed

pulse height distributions observed in some counters at high energies. These

violate the Gaussian assumption basic to the X2 treatment and result in

standard deviations which are, in effect, too large. In any case, the fact
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that a well defined electron "peak" in the Smin distribution persists over

a wide range of energies provides a powerful tool for'resolving electrons.

The distribution of E obtained by applying the above minimization
nom

procedure to accelerator electrons of fixed incident energy is, in effect,

the energy resolution function of the experiment. Such distributions,

shown in Figure 6, exhibit a fractional width of + 50% at 1 GeV improving

to + 30% at 8.2 GeV.

Two criteria were used to select for detailed analysis a sample of

flight events rich in energetic electrons. First, the ionization rate of

incident particles as measured in Counters 1 and 2 was required to be less

than 2.5 times minimum, a value chosen so as to ensure optimum separation

between electrons and helium nuclei. A second criterion, which tended to

select events in which many particles emerged from the lead absorber, was

based on tube discharges in trays 5 and 6; exactly two discharges in each

tray or more than two discharges in either tray were required. This cri-

terion was needed to discriminate against penetrating protons, a small

fraction of which generate ionization profiles similar enough to the pro-

files of electrons to cause confusion when the protons are overwhelmingly

more numerous. Since the probability of multiple knock-ons is very small,

events satisfying the second criterion will be designated as "interacting"

while those that penetrate to trays 5 and 6 with low multiplicity will be

called "non-interacting."

Although the multiplicity criterion greatly increases the ratio of

electrons to protons among the events it selects, it unavoidably introduces

an energy dependent bias in the selection of electrons. Selection proba-

bilities, as presented in Figure 7, exhibit a strong bias against electrons

below 2 - 5 GeV but give nearly unbiased selection above 6 - 8 GeV.

The effectiveness of the minimization procedure and selection criteria

described above was tested with nuclear events recorded at the Brookhaven

AGS accelerator in a calibration beam of positive charge and known momentum

but containing an unspecified mixture of protons and pions. Since we are

concerned with characteristics of nuclear interactions in lead which are not

very dependent on the nature of the incident particle, this ambiguity in

composition is not thought to be a serious shortcoming. Events recorded
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with and without a 3 radiation length lead plate placed just in front of

the directional filter were used to rule out the presence of any signi-

ficant flux of electrons in the calibration beam. Data were recorded at

rigidities of 0.4, 0.6, 2.0, and 4.0 GV. Because the characteristics

of events produced by protons and pions were relatively independent of

incident energy in comparison to those produced by electrons, we will

concentrate on data taken at 4.0 GeV which have the best statistics and

are most typical of primary cosmic rays.

The X2 curve, typical of the Smin distributions for electrons, is

compared in Figure 8 with empirical distributions obtained for nuclear

events recorded at Brookhaven. It will be noted that the peak for inter-

acting protons and pions is about a factor of five smaller than the elec-

tron peak and is shifted toward much larger values of Smin (Smin S 8).

This relationship results in a proton rejection ratio of 100:1 at the

peak of the electron curve (Smin= 1l0) improving to 400:1 in the region

Smi
n
< 0.5. These ratios refer to a sum over all nominal energies. Since

the nominal energies of nuclear events are predominantly below 1 GeV,

the rejection ratios for events of high nominal energy are even higher.

The fact that the peak for "non-interacting" particles lies relatively

close to the electron curve leads to great difficulties in distinguish-

ing these events from electrons and points up the advantage of having

trajectory information which makes possible a separation based on

multiplicity.

Data from Flight 1058 treated in the same way as the calibration data

are summarized in Figure 9. Interacting events were categorized according

to whether their nominal energy was greater than or less than 1 GeV. It

is apparent that the distribution for Enom >1 GeV is resolved into two

components: electrons, represented by the X2 curve reproduced as in previous

figures, and protons, represented by the dashed curve derived from calibration

data for interacting particles of Enom > 1 GeV in the same way as the curves

of Figure 8. The flight events of nominal energy less than 1 GeV are well

represented by the solid calibration curve describing nuclear events. In

other words, since the events produced by electrons of energy less than 1 GeV

do not satisfy the selection criterion for interacting particles (see Figure 7),

an electron contribution below 1 GeV is not expected in Figure 9 and is,

in fact, not observed.
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In the bottom part of Figure 10, $mi
n
distributions similar to those

of Figure 9 are presented for interacting events restricted to the band of

nominal energies centered at 5.6 GeV (4.2 to 7.5 GeV) and recorded during

Flight 1058 (circles) and the Brookhaven calibration (squares). Good sepa-

ration of protons and electrons is obtained, with a proton rejection ratio

greater than 10:1 for Smin < 1 confirming that the resolution improves as

the energy is increased. Note that, in this figure, the two sets of data are

plotted on an absolute basis derived from the relative numbers of minimum

ionizing non-interacting events observed during calibration and flights.

Thus, the agreement exhibited for Smin > 1 is an indication that the number

of events of this nominal energy contributed at large values of Smin by

4 GV calibration particles was approximately the same as that contributed by

the average cosmic ray. Since it has been demonstrated that the contribution

of nuclear particles at 2 and 4 GV for Smin < 1 is small relative to the

number of events observed in that region during flights (see Figures 8,9,

and 10), the interpretation of any significant fraction of such flight events

as nuclear interactions would imply a radical change in the Smin distribution

such that the relatively few cosmic rays above 4 GV would contribute orders

of magnitude more events to the region Smin <1 than those below 4 GV. An

examination of 2 and 4 GV calibration events, which exhibit a slowly in-

creasing energy dependence of these events, gives no indication of such

pronounced variations.

At the top of Figure 10, a normalized distribution obtained by divi-

ding the observed number of particles by the probability calculated from

the X2 distribution is presented. In this representation, the electron peak

appears as a horizontal line at low values of Smi
n
while components not

following the electron distribution appear as steeply sloping lines. At

each energy, the separation between electrons and protons was carried out

with the aid of such a normalized curve on which the value of Smin where

the nuclear contribution dropped to one-tenth that of electrons was estimated.

All interacting events with Smin below this value were counted as electrons

in terms of which the total number of electrons could be determined with the

aid of known probabilities derived from Figure 5. In practice, this amounted

to taking events below Smin of 1.2 (77% of the electrons) and 0.86 (61%

of the electrons) for nominal energies above and below 4.2 GeV, respectively.
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It has been suggested that secondaries from nuclear interactions pro-

duced in the calorimeter by the numerous particles which enter outside of

the normal triggering geometry could occasionally satisfy both the trig-

gering and selection criteria and be mistaken for electrons. To check

on this possibility, we have plotted in Figure 11 a histogram giving, for

Flight 1195 events with Smi
n

<1, the number of tube discharges in Tray 6

as a function of horizontal displacement from the axis defined by discharges

in the directional filter. These events, most of which were identified as

electrons, follow accurately the expected distribution calculated for elec-

trons by folding together the displacement histograms for accelerator electrons

and for penetrating particles observed in flight (solid curve). In contrast,

for the nuclear events described above, there is no correlation between dis-

charges in the directional filter and those in lower trays, and the expected

distribution is that calculated by assuming equal discharge probabilities for

each tube in Tray 6 (dashed curve).

RESULTS

The spectrum of cosmic electrons was defined in two steps. First,

the spectrum of electrons observed at the balloon was calculated taking

into account the effects of finite resolution in energy and of selection

bias,as indicated in Figures 6 & 7. Then the observed spectrum was

corrected for secondary production and bremsstrahlung energy loss in

the residual atmosphere above the balloon.

Because of the rapid variation with energy of the spectral intensity,

which is implied not only by the power law character of the primary spectrum

but also by the pronounced energy dependence of the selection probability,

the dispersion in nominal energies assigned to events produced by electrons

of a fixed incident energy can lead to significant errors if not taken into

consideration. To compensate for this effect, we used a matrix inversion

method in which a set of linear equations expressing the number of particles

observed in each energy interval in terms of integrals involving the spectrum

and resolution function of Figure 6 was solved to yield corrected estimates

of the spectral intensities. The justification for applying the resolution

correction before taking into account the effect of selection probability

is that correlations between numbers of shower particles observed at different
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depths are small (Brecht 1969). Hence, the use of a multiplicity criterion

based on discharges in trays separated in depth from all counters has

essentially no effect on the nominal energies of events so selected.

In Figure 12, spectra observed at the balloon during Flight 1195

(Churchill, 2.0 g/cm2 ) and Flight 1058 (Minneapolis, 8.3g/cm2 ) are pre-

sented. Although the lowest energy point for Flight 1058 was below the

nominal geomagnetic cutoff of 1.3 GV (Shea, Smart,and McCracken, 1965),

the observed flux of helium nuclei stopping in Counter 3 indicated that

the full intensity of primary helium was present above 0.9 GV. Thus, since

a depression of geomagnetic cutoffs similar to those reported for other

disturbed periods (Winckler, Bhavsaar,and Peterson, 1961) appears to have

been present during Flight 1058, electrons between 0.9 GeV and 1.3 GeV

incident during that flight were interpreted as primaries rather than

as reentrant albedo. Each point plotted in Figure 12 represents the

differential intensity at the center of a logarithmic energy interval

spanning a factor of 1.78, with squares and circles representing, re-

spectively, the spectra before and after correction for selection effects.

Above 5 GeV, where the selection probability is very nearly equal to one,

these spectra merge. At low energies, the fact that the absorber thick-

nesses were not the same for the two flights led to significant differences

between the spectra observed before correction for selection bias. After

corrections based on the probabilities of Figure 7 were applied, the

selection effects at low energies disappeared leaving the spectrum of

Flight 1195 systematically higher by about a factor of 1.4 over the entire

range from 1 GeV to 10 GeV. Although solar modulation and atmospheric se-

condaries may play a minor role in producing this difference, we think that

it is best interpreted as an effect due to bremmstrahlung energy loss in

the air above the balloon. Because the electron spectrum is quite steep,

even the relatively small energy losses occuring at balloon altitudes can

have significant effects on the observed spectrum.

Since the average energy of electrons subject to bremstrahlung de-

creases exponentially with an e-folding distance of one radiation length

(37.7 g/cm2 in air), energy losses can be taken into account by multiplying

all energies measured at the balloon by a factor exp (* X/37.7) which de-

pends only on the depth X. This has the effect of shifting each point on

a differential energy spectrum upward in energy and downward in intensity
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by the same factor. On a typical log-log plot, the points are displaced

diagonally downward to the right. Although this procedure is relatively

insensitive to spectral shape, it is strictly correct only for power law

spectra. A more elaborate procedure taking into account fluctuations in

radiation loss is called for in dealing precisely with spectra of rapidly

changing slope, but these refinements are not appropriate here. For a

power law spectrum with index y, these considerations lead to a differen-

tial intensity at a fixed energy which depends on depth as exp- ty-l).

(x/37.7)}.

On the grounds that photons produced in the 5.7 g/cm2 of material

in the directional filter would almost always enter the calorimeter

where their energy would be correctly added to the residual energy of the

incident electron, no corrections were applied for bremmstrahlung in

the instrument itself. In any case, the fact that calibrations and flights

were carried out with the same amount of material above the calorimeter

ensured correct assignment of energies.

In Figure 13 and Table III are presented primary electron spectra

at the top of the atmosphere corrected for bremmstrahlung as indicated above

aar8taemospheric secondary electrons using the calculations of Beuer-

mann (19711 However, the contribution of secondaries was appreciable

only in the two lowest energy intervals where it was comparable to statis-

tical uncertainties. The agreement among the three sets of data presented

in Figure 13 is remarkable, especially in view of the marked deviations

evident in Figure 12. The fact that significantly different experimental

configurations flown at different depths yield identical results is, in

itself, evidence that electrons were correctly identified.

DISCUSSION

Marar, Freier, and Waddington (1971) have summarized the extensive

literature on cosmic electron experiments and have called attention to

the existence of marked discrepancies among independent spectral measurements.

There is no point in repeating their compilation here. Published infor-

mation provides little or no basis for reconciling the discrepancies. Under

these circumstances, we are forced to trust our own data and discuss their im-

plications with only enough intercomparison with other experiments to lend

perspective. In this spirit, we note that the intensities of Table III are
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among the highest reported. They are in very good agreement with the

satellite observations of Marsden, Jakeways, Crowden, Napier, and Calder

(1969) and of Bleeker, Burger, Deerenberg, Van de Hulst, Scheepmaker,

Swanenburg,and Tanaka (1969) and in fair agreement with balloon observations

of Fanselow, Hartman, Hildebrand,and Meyer (1969), but they are significantly

larger than the rest of the measurements tabulated by Marar et al. Relatively

high electron intensities are indicated by observations of cosmic radio

noise (Alexander, Brown, Clark, Stone,and Weber, 1969) and are consistent

with a detailed reconciliation of radio and cosmic ray observations carried

out by Goldstein, Ramaty,and Fisk (1970). The latter have also shown

that solar modulation is negligible above 5 GeV where the differential

fluxes of Figure 13 can be represented by the power law:

dJ -3.3 ± 0.1 2
dJ = 1000 E-33 + 01 particles/m sec sterad GeV

where E is expressed in GeV. This expression characterizes the interstellar

spectrum of cosmic electrons as determined by this experiment.

Although there is no proof of the assumption that the slope of the

electron spectrum unmodified by Compton-synchrotron losses is identical

to that of the nucleonic spectrum, any interpretation of the fact that

the above spectral index is larger than the nucleonic value of 2.6 in terms

of this plausible hypothesis leads to the conclusion that energy loss

processes play a significant role in steepening the observed electron

spectrum. In the classical theory of Compton/synchrotron steepening

(Tunmer, 1959), the electron spectrum is characterized by a break energy E

given, in GeV, by the expression:

WET = 307

where W is the total electromagnetic energy density in eV/cm3 and T is

the average electron exposure time in millions of years (Myr.). If we

adopt 5 GeV as an upper limit on the break energy imposed by the onset

of modulation, and assume W = 0.92 eV/cc, a value which includes the

contributions of the microwave background radiation (0.38 eV/cc), of

starlight (0.3 eV/cc) and of a galactic magnetic field of 3 x 10 gauss

(0.24 eV/cc), then the exposure time must be greater than 66 Myr. If the
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intense infrared radiation reported by Shivanandan, Houck,and Harwit (1968)

exists (W = 14 eV/cc), then an exposure time greater than 4.4 Myr is required.

This value agrees with the conventional "age" of cosmic rays deduced from

the abundances of Li, Be and B (Shapiro and Silberberg 1969). However, the

presence of an intense infrared component is not consistent with upper limits

set by observations of interstellar molecular absorption (Bortolot, Clauser,

and Thaddeus 1969).

To confirm the steepening discussed above, we have compared, in Figure

14, our results with observations of electrons above 100 GeV (Nishimura,

Mikumo, Mito, Niu, Ohta, and Taira 1969) (Anand, Daniel,and Stephens 1969)

(Marar, Freier, and Waddington, 1971). (The use as ordinate of differential

intensities multiplied by E3 has the effect of mapping a steeply sloping

cosmic ray energy spectrum into a slowly varying function of E and of

making more evident any discrepancies between data points or changes in

spectral steepness.) The solid linewhich describes the power law given

earlier extrapolates rather well through the measurements of Nishimura et al.

and of Marar et al. On the other hand, the dashed curve, dJ/dE = 480 E- 3 ,

also agrees with our points and those of Anand et al. In either case

an electron spectrum significantly steeper than the nucleonic spectrum is

suggested.

The data of Figure 14, as well as preliminary results of Silverberg,

Ormes, Balasubrahmanyan and Ryan (1971), suggest spectral indices in the

range from 3.0 to 3.5 which are a little smaller than the classic steepening

by one power of E but which agree with the spectrum calculated by Jokipii

and Meyer (1969). This calculation, in which electrons produced in the

galactic disc diffuse within an infinite isotropic medium, predicts two

characteristic energies bounding a region of spectral slope steepened by

one half power of E. The smaller of these energies, which must be identified

with the 5 GeV upper limit discussed above, corresponds to the characteristic

time for spherical diffusion over a region of galactic radius. The lower

limit of 66 Myr, now applicable to this time, is consistent, within the

framework of the model, with the Li Be B age of nucleonic cosmic rays

because fragmentation occurs only during the small fraction of the time

spent by cosmic rays in the galactic disc. Although confirmation of this

specific model will require more evidence than the exhibition of a power law
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electron spectrum of appropriate slope, such a spectrum would indicate the

validity of the essential feature of the modelwhich is diffusive propagation

of electrons from a localized source region.
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Table I

Balloon Flight Summary

Flight No.

Launch Location

Ceiling Altitude (g/cm2 )

Reached Ceiling
(UT/Date)

Termination
(UT/Date)

Geometric Factor
(cm sterad)

Average Sensitive
Time per event (sec)

Total Number of
Usable Events

Total Number of
Clean Events**

Total Exposure
(m2 sterad sec)

Percent of time at ceiling
not spent on usable events

1174

Churchill

6.3

1200
July 30, 1966

1510
July 30, 1966

8.1+0.3

.202

11,326

5,697

1.85+.07

1058

Minneapolis

8.3

0230
Sept. 7, 1966

2300
Sept. 7, 1966

7.4+0.3

.245

56,330

26,528

10.2+0.5

11.4 32

1195

Churchill

2.0

1420
July 12, 1967

0315
July 13,1967

7.7+0.3

.225

115,829

50,963

20.1+0.7

3.7

All corrections included except for the effect of backscattered shower electrons.

Clean events are those which trigger without multiple discharges in the
directional filter.
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Table II

Directional Filter Discharge Probabilities for Electron Events

Percentage
probabilities

One and only
one discharge
in each tray

Two adjacent
discharges in
one or more
trays*

1967 Calibration
.10 GeV .15 GeV .30 GeV .60 GeV 1.0 GeV 1.2 GeV

85+1

10+1

Two non-adjacent
discharges in one 3.8+0.5
or more trays

More than two
discharges in one 1.0+0.3
or more trays

Events not satis-
fying directional 0.3+0.1
filter requirement

83+1

12+1

82+1

12+1

80+1

12+1

81+1

11+1

80+1

12+1

4.0+0.4 5.1+0.6 6.2+0.5 7.1+0.6 6.0+0.4

0.8+0.2 1.4+0.3 1.1+0.2 1.3+0.3 1.3+0.2

.08+.06 0.8+0.3 0.8+0.2 0.4+0.1 0.2+0.1

1971 Calibration
1.0 GeV 1.8 GeV 3.3 GeV 5.6 GeV 8.2 GeV

78+1

14+1

76+1

15+1

72+1

16+1

71+1 71+1

16+1 15+1

6.7+0.4 7.3+0.7 10.+0.4 12.+0.5 13.+0.4

1.5+0.2 1.7+0.3 1.7+0.2 1.4+0.2 1.5+0.2

Two adjacent
discharges in:

Tray 1 0.8+0.2 1.3+0.2 1.3+0.2 1.5+0.2 0.9+0.2 1.3+0.2 1.7+0.2 1.2+0.3 1.4+0.2 1.2+0.2 1.1+0.1

2 2.4+0.4 2.0+0.3 2.0+0.4 2.5+0.3 2.5+0.4 2.3+0.2 2.5+0.3 3.0+0.5 3.1+0.2 3.0+0.3 2.9+0.2

3 3.6+0.5 4.3+0.4 5.5+0.6 5.0+0.4 4.7+0.5 5.5+0.3 6.2+0.4 6.0+0.6 6.4+0.3 6.1+0.4 5.4+0.3

4 4.9+0.5 6.8+0.5 5.7+0.7 6.5+0.5 5.4+0.5 6.5+0.4 7.3+0.4 7.9+0.7 8.1+0.4 9.0+0.4 8.0+0.3

The probability of two adjacent discharges
is estimated as 4.0 + 0.5 %.

in one or more trays due to knock-ons and multiple penetrations



Table III

Electron differential intensities corrected to the top of the atmosphere.

Flight No.

1174

1195

1058

Energy*
(GeV)

1.6
3.7
6.6
11.8
21.0

1.05
1.9
3.3
5.9
10.5
18.8

1.25
2.2
3.9
7.0

12.5
22.2

Raw number of 2 Intensity
Electrons observed ......p/m. sec sterad GeV

2
4
6
6
1

23 i 16
5.6 f
1.7 i
0.65 :
0.05 +

5
6
25
56
39
10

58 m
14 i
7.8 i
2.7 4
0.47 +
0.057*

3
12
37
21
17
4

18 -
10 £
6.8 +
0.9 +
0.32 +
0.032±

3.0
0.7
0.27
0.05

27
6
1.6
0.4
0.08
0.018

16
4
1.1
0.2
0.08
0.016

Intensities quoted are based on the number of electrons with nominal
energies falling in a logarithmic interval spanning the range from
0.75 Eoto 1.33.Eo , w!ere E. is the energy.in this column. However,
corrections for the effects of averaging over this finite interval were
applied in such a way that differential intensities presented in this
table refer to the energy Eo .
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FIGURE CAPTIONS

Fig. 1. Cross sectional diagram of-the instrument. Trays of Geiger tubes,

scintillation counters and lead absorbers all have lateral dimensions

of 15 cm x 15 cm.

Fig. 2. Probability that a single particle penetrating a tray of tubes will

produce two adjacent discharges.

Fig. 3. Scintillation counter pulse height distributions. Note the alpha

particle peak in Channel 9 and the nuclear interaction tail appearing

in Counter 6 at large pulse heights. Because it is separated from

heavy material-and shielded by the directional filter, Counter 2

does not exhibit a tail.

Fig. 4. Shower curves used in this paper to identify electron events. Circles

refer to the 1967 calibration. Triangles and squares refer to the

1971 calibrations of the Flight 1058 and 1195 configurations, respec-

tively. These symbols are also used in Figs. 5, 6 and 7. Solid

curves were calculated as described in the text. Numbers

associated with the curves give electron energies in GeV while the

depths of various counters and trays are indicated at the top of the

figure.

Fig. 5. Probability distributions for electron events recorded during calibra-

tions. The abscissia is the parameter S defined in the text. The
min

ordinate gives the probability that an event will fall in a logarithmic

interval of Smin of width ± 17%. In evaluating the agreement

between experimental points and solid theroretical curves, note that

no normalization of either abscissa or ordinate was employed.

Fig. 6. Energy resolution functions givingthe probability that electron

events having energies indicated will be assigned nominal energies

above, below or agreeing with the actual energy.

Fig. 7. The selection probability for events satisfying a criterion on the

multiplicity of discharges in Trays 5 and 6 is plotted as a function

of electron energy.

Fig. 8. Probability distributions, similar to those of Figure 5, for electrons

and for protons and pions recorded during the calibration exposure at

Brookhaven.
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Fig. 9. Probability distributions, similar to those of Figure 5, for

interacting events recorded during flights.

Fig. 10. Presented below, are probability distributions, similar to those

of Figure 5, for interacting flight events having nominal energies

between 4.2 GeV and 7.5 GeV. Above, are probability distributions

normalized by dividing the observed probabilities by the probabilities

expected for electrons as given by the X2 distribution function.

Fig. 11. Observed discharge probability of tubes in Tray 6 as a function of

displacement from shower axis for flight electrons agrees with that

obtained from the calibration exposures (solid line). Dashed line

represents distribution expected from nuclear interactions.

Fig. 12. Electron energy spectra recorded at the balloon before correction

for atmospheric secondaries or energy loss in the atmosphere. The

depth of Flight 1195 was 2.0 g/cm
2
while that of Flight 1058 was

8.3 g/cm2 . Squares and circles refer,respectively, to data before

and after correction for the selection effects whose probabilities

are given in Figure 7.

Fig. 13.Electron energy spectra corrected to the top of the atmosphere.

The overall agreement among three flights indicates that corrections

appropriate to electrons serve to remove the instrumental and atmos-

pheric effects exhibited in Figure 12.

Fig. 14. Spectral intensity multiplied by E3 for electrons observed in the

present experiment compared with existing data above 50 GeV indicates

spectral indicies ranging from 3.0 (dashed line) through 3.3 (solid

line) suggested by this experiment to a maximum of 3.5 suggested by

Nishimura, et al. (1969).
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