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PREFACE

This report presents the results of studies conducted during the

period July 19, 1969 —July 19, 1970, under NASA Research Contract

NAS 8-21432, "Lunar Surface Engineering Properties * Experiment Definition."

This study was sponsored by the Lunar Exploration Office, NASA Head-

quarters, and was under the technical cognizance of Dr. N. C. Costes,

Space Science Laboratory, George C. Marshall Space Flight Center.

The report reflects the combined effort of five faculty investiga-

tors, a research engineer, a project manager, and eight graduate research

assistants, representing several engineering and scientific disciplines

pertinent to the study of lunar surface material properties. James K.

Mitchell, Professor of Civil Engineering, served as Principal Investigator

and was responsible for those phases of the work concerned with problems

relating to the engineering properties of lunar soils and lunar soil

mechanics. Co-investigators were William N. Houston, Assistant Professor

of Civil Engineering, who was concerned with problems relating to the

engineering properties of lunar soils; Richard E. Goodman, Associate

Professor of Geological Engineering, who was concerned with the engineer-

ing geology and rock mechanics aspects of the lunar surface; Paul A.

Witherspoon, Professor of Geological Engineering, who was concerned with

fluid conductivity of lunar surface materials in general; Franklin C.

Hurlbut, Professor of Aeronautical Science, who was concerned with

experimental studies on fluid conductivity of lunar surface materials;

and D. Roger Willis, Associate Professor of Aeronautical Science, who

conducted theoretical studies on fluid conductivity of lunar surface

materials. Dr. Karel Drozd, Assistant Research Engineer, performed

laboratory tests and analyses pertinent to the development of a borehole

jack for determination of the in situ characteristics of lunar soils

and rocks; he also helped in the design of the borehole jack. H. Turan

Durgunoglu, H. John Hovland, Laith I. Namiq, Parabaronen Raghuraman,

James B. Thompson', Donald D. Treadwell, C. Robert Jih, Suphon Chirapuntu,

and Tran K. Van served as Graduate Research Assistants and carried

out many of the studies leading to the results presented in this
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report. Ted S. Vinson, Research Engineer, served as project manager

until May 1970, and contributed to studies concerned with lunar soil

stabilization. H. John Hovland served as project manager after May

1970, and contributed to studies concerned with soil property evaluation

from lunar boulder tracks.

Ultimate objectives of this project were:

1) Assessment of lunar soil and rock property data using information

obtained from Lunar Orbiter, Surveyor, and Apollo missions.

2) Recommendation of both simple and sophisticated in situ testing

techniques that would allow determination of engineering

properties of lunar surface materials.

3) Determination of the influence of variations in lunar surface

conditions on the performance parameters of a lunar roving

vehicle.

4) Development of simple means for determining the fluid

conductivity properties of lunar surface materials.

5) Development of stabilization techniques for use in loose,

unconsolidated lunar surface materials to improve the

performance of such materials in lunar engineering application.

The scope of specific studies conducted in satisfaction of these objectives

is indicated by the following list of contents from the Detailed Final

Report which is presented in four volumes. The names of the investigators

associated with each phase of the work are indicated.
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VOLUME IV

Studies on Fluid Conductivity of Lunar Surface Materials

Chapter 1. THEORETICAL STUDIES

P. Raghuraman and D. R. Willis

INTRODUCTION

Theoretical studies on the problem of developing a probe, capable of

measuring the fluid conductivity of porous media under lunar conditions

have been pursued in two principal directions. In the first place, we

have examined some aspects of the fundamental question as to whether or

not the probe can operate in quasi steady state conditions or whether it

will be operated while various transient phenomena are still affecting

the flow. A reasonable estimate of the time to establish steady state

conditions appears necessary in view of the limitations on the maximum

in situ testing time imposed — both by gas storage limitations and by the

time an astronaut can devote to this experiment, with this in mind, we

have considered the effect of dead end pores, which initially contain

essentially no gas and act for some time as sinks for mass flow, when gas

first flows down the main (through) pores. Clearly a truly steady flow

cannot be established before there is pressure equilibrium between the

dead end pore and the open pore. In the next section, the influence of

the length-to-radius ratio on the time constant for filling up the dead

end pores in the free molecular limit is considered.

In the second principal line of study, we have focused our efforts on

evaluating the degree of sophistication necessary to analyse the flow

through a porous media with vacumn as one boundary condition. We recognise

that the flow, in general •, would contain an initial region of continuum -

flow which would undergo a gradual transition to free molecular flow. In
/

an effort to obtain rough estimates, a sudden freeze model is proposed.

The third section contains the application of this model to various other

models of the porous media.
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FREE MOLECULE TIME CONSTANT OF DEAD-END PORES

Formulation and Assumptions

The unsteady Boltzmann equation is used to find the time constant

for filling up a dead-end pore at zero pressure. The dead-end pore is

visualized as a straight cylinder (Fig. 1-1), of radius "a" and length " I" ,

closed at one end. The problem is posed as the calculation of the time

constant of such a cylinder at zero pressure, separated from an infinite

reservoir of gas by a diaphragm, which is suddenly removed at some instant

t = 0. An approximate scheme is formulated to determine the time

constant for filling the cylinder, and the influence of the length of

th& cylinder on the time constant.

The basic assumptions made in the formulation are:

1, The flow is sufficiently rarefied that the effect of intermolecular

collisions within the cylinder can be ignored compared to the

effect of collisions with the boundary, i.e., the flow is free

molecular.

2, The molecules that strike the walls undergo perfect accomodation.

3, There is no accumulation or ablation at the wall.

4, The boundary distribution functions are Maxwellian; that is, the

infinite pocket of gas outside the cylinder has a Maxwellian

distribution, as do the molecules reflecting from the cylinder

' wall.

Taking the mass balance on a unit area of the wall at axial distance z

and time,t, the number flux t, (z,t) , from the cylindrical wall, is
c

? (z,t) = £ (z,t) + C (z,t) + r (z,t) (4-1)
C QC CC DC

while the number flux, £ (r,t) , per unit area from the back end at radius,

r, and time, t, is

,t) = C(r,t) + C(r,t), (4-2)

where £. . is the number flux from i to j , with subscripts b, c, and e

representing the back end, the cylindrical wall, and the cylinder entrance,
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respectively. Also, the total outflux, e(t), from the cylinder at

time t is

e(t) = e (t) + e, (t) ,
c b

(4-3)

where e. is the number flux to the cylinder exit from i.

Each of the terms on the righthand side of Equations (4-1) , (4-2) ,

and (4-3) are evaluated using the ray tracing technique. The calculations

detailed in the Appendix yield the following equations for (4-1) , (4-2) ,

and (4-3) t respectively :

tan~1(2a/z)

n
Cc(z,t) =

r
J

d9 sin26 (l
t(2RT y cosQ
L \ e/ J

:(2RTe)- cos9

+ i2_ I d9(l + cos9Y
Tf I V /

dz1

(-z1 - z)2+ 2a2(l + cos9)J

CO

x / dc c3 e ° Cc(z
, L(z' - z)2 + 2a2(l + cose)]
/t - , -

C/2RTv

t r4 (£, - z) I g I dr r (a + r cos
11 / / [tt - z)2 + a

2 + r2 +

cos6)

2ar cos9I2

oo

: f dc c3

0 0

_2 - z)2 + a2 + r2 + 2ar cos0.

:(2RTw)'
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n (2RT Y
e V e)

TT5 '/

-i/a+r\tan (TV
d9 cos29 (r2 - a2 + I2 tan29)

2

;2 2RT cos29> ;2 2RT cos29
e

and

cos9) d9] dz' (H - z')

x I dc c3 e C *.z,t -

- z1)2 + a2 + r2 + 2ar cose]

- z ' ) 2 + a2 + r2 + 2ar cos9

C(2RTw)%

(4-5)

e(t) =

a ff a

/

dr r/ d9 IT ^ T

I I [£2 + r2 + r' + 2r r' cos9j

0 0 0
o

x I dc .c3 e [r t - <'r ,T- - I2 + r2 + r'2 •+ 2r r1 cos9;

V w/

TT

8a/ dz J dr r

jf J J
0 0 0

cos9)

2ar cos9

/x dc c3 e~C z, \. • ( . ' • 2 2I- a + r +

(
\ *2RT

W;

2ar cos9y
f

(4-6)
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where n and t are the number density and temperature outside the

cylinder, Tw is the temperature of the inside surfaces, and c is

molecular speed scaled by /2RT \ .V wy

We note that L, (z,t), C (r,t) and e(t) are equal to zero for t S 0
c b

while in the limit of larger values of t, they all tend to a constant

[
JL.n 1.

n (2RT \ J/27T . Equations (4-4) and (4-5) constitute an

integral equation for C (z,t). Once it is solved, £ (r,t) and, hence e(t),

can be easily determined from (4-5) and (4-6), respectively. The time

constant is then determined as that value of time t at which e(t) reaches

(1 - 1/e) of its final value

We will concern ourselves only with those situations wherein T and

T do not differ appreciably. Then the only characteristic time in the
w .- , _
filling of the cylinder is a/^2RT \ , and the time constant will be

equal to A/fc/a)ja/(2RT \ . The problem as posed is to determine the

function A(£/a), which gives the dependence on (£/a) . In view of the

motivation of this work, it does not seem appropriate to solve Equations

(4-3), (4-4), and (4-5) in detail. Rather, a series of assumptions are

made to yield simpler equations; these are then used to get the upper and

lower bounds for the time constant as a function of the length-to-radius

ratio, !L/a. In the next two subsections, the assumptions and the final

equations for the upper and lower bounds are detailed.

Upper Limit to the Time Constant

The various assumptions made are:

JL

1. The molecular velocity C^2RT \ involved in the time of flight

occurring in the various number fluxes, is replaced by the most
/ \%probable velocity (2RT l .
\ w/

2. The center of the back end is taken as a typical and representa-

tive point for the back end.

These two assumptions lead to simplifications of the various terms

involved on the righthand side of Equations (4-1), (4-2), and (4-3). The

details are elaborated in the Appendix. The simplification for each term

follows the derivation of the respective term.
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3. The lengths of flights involved in the fluxes are square roots

of expressions involving i, a, r, 0, and z in various combina-

. tions. It is proposed to get rid of the square root and represent

thesevlengths by "average" values.
JN

Thus, in Equation (4-4), we represent |(z - z1)2 + 2a2(1 + cos0)I

averaged over 0 by |z' - z] + 2a/k, with k, a function of (| z - z'| )/a,

[ o o o T fS
(i - z) + a + r + 2ar cos0 at r = 0 (due to assumption 2) by

(£, - z) + a/k , where k is a function of (& - z')/a. In Equation (4-5)
r 2 2 2 ~}%we represent (x, - z1) +a +r + 2ar cos0 at r = 0 (due to assumption 2)

by (I - z') + a/k where r is a function of (I - z')/a. Finally in
r T^C

Equation (4-6) we represent I z2 + a2 + 2ar COSD + r2 averaged over 0 and r
L r -I -.

COS0by z + 2aA, where k is a function of z/a, and t2 + r + r1 + 2rr['
at r = 0 (due to assumption 2) , averaged over r1 , by Jl + a/k with k as a

function of &/a. The last averaging is, however, valid only for large or

"medium" length-to-radius ratios. For short length to radius ratios it is

(I + r ' bv itself.

Finally, we naively assume that k = k ' = k = k = a constant = k, say.

This carries the tacit assumption that the exact values of k , k , k , and

k do not have a profound bearing on the final result.

The following scaling is introduced

•a/(Nk)

z/(a/Nk) = K

£/(a/Nk) = LL

= m

' (4-7a)
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cb(o,t)

[ne(2RTe)/2(7T) ]

h /2RT

2(TT)'

[LL + 1] -, TJ

= E(TJ)

(4-7b)

The shorthand notation F(I,J), E(J), and F(LL + 1, J) are used for

F(ilc I> TJ)' E(TJ)' and FRLL + 1) u£ • TJ] ' respectively. The scaled flux

from the back end has been called F(LL + i, J) for easier understanding of

the mechanics of the problem.

If J,K, and I are taken as continous variables, then consequent to the

three assumptions, Equations (4-4) through (4-6) take the following form:

-1 2Nk

x l l -
tan'6 ^ . IK- r][(i - K)2 +6N 2 k 2 ]

K \? 2
I - K;2 + 4N2>

F(K, J - |K - 11 - 2N) +
(LL - I)

2Nk

(LL - I)2 + 2N2k2

(LL - I) (LL - I)2 + 4NX
- 1 F(L1.. -I 1 , >T - LL + I - N)
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F(LL + 1, J) =

LL

+ 2N2k2 I
dK(LL - K)

(LL - K)2 + N2k2]2
F(K,J - LL + K - N)

(4-9)

E(J) =
LL'

2N2k2

dK K
K 2N2k2

K(KJ + 4isr
- 1 F(K, J - K - 2N , (4-10)

with

J = J - LL - N for large and moderate values of (~rr)

small values of (—-

and J = J - LL for

For a numerical computation scheme, I, X, and J are taken as integers;

while LL is always maintained as an even integer. The integrals in K can

be represented -as a sum with the integrand evaluated at odd values of

K = 1, 3, 5 ... (LL -1), so that dK = 2. However, this procedure had to

be modified to account for the rapid variation in the kernels of some of
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the integrals. Thus, in Equation (4-8) , the conventional way of interpreting

the second integral would be as

LL-1

fflT Z ̂ -l*-
N=l,3

- I)2 + 6N2k2]/[(K - I)2 + 4N2k2)]

X F(K, J - |K - 11 - 2N)

However, the kernel {1 - . K - I - I)2 + 6N2k2T/R^- I)2 + 4N2k2]

is a steeply varying function of K with a symmetry around K = I, where

it has a maximum value of 1. The above summation is hence an overestima-

tion. A more realistic interpretation would be to evaluate the kernal at

|K - I| = — rather than K = I, and hence represent the integral as equal

to

LL-1
JÎ
NR

K=l,3...
K4I

1 - K - I - I)2 4- 6N2k2]/ [(K - I)2 + 4N2k2]

X F(K, J - |K - I| - 2N) + —
IN Jt

i _ 24N2k2)
F(I, J - 2N).

Further, in Equation (4-10), the terms

K2 + 2N2k2

(k2 + 4N2k2)'

-K

and F(K, j - K - 2N), representing the integrand of the second term, are

both functions that rapidly drop to negligible values as K increases.

Designating the kernel

1
N2k2

~K2 -

(K2 H

I- 2N2k2

h 4N2k2)%
K
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as P(K), and F(K, J - K - 2N) as g(K) (only space variation is of concern),

the integral under examination, viz,

LL

Ids P(s) g(s),

is interpreted as,

LL-1

ds P(s) + g, (K) ls_zJSL +

where g(s) is expanded as a Taylor's series around S = K and g1(K), etc.,

are the derivatives with respect to S evaluated at K. Ignoring g" (K)Jand

higher derivatives, and considering g1(K) only at K = 1, the integral

under consideration is representable as

LL-1

2 -
K=l , 3 , - ,

(K + 1) [/K + 1
2Nk 1 Nk 2Nk

r/K - 1\
M Nk J

2 J* 2K4|
o 9

N2k2

F(K, J - K - 2N) +JF(3, J - 3 - 2N) - F(I, J - 1 - 2N)]

x 1 f/-A_ I.2\ L + N
2k^ +/2Nk - -i

3 [\N2k2 / \ / \ N2k2
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"'bus. Equations (4-8) through (4-10) take the following form:

2Nk
tan" I

F(I , J) = -
f

J
d9 sin26

r 'i _/JLE_V
1 ,/ I.m \2 e \J cose/ /L _ I2 tan26\

I V GOS9/J V " 4N2k2 /

LL-1

K=l,3,—

- l | [(K - I)2 + 6N2k2]- . . • (

[(K - II)2
 + 4N2k2]2

* F(K,
_1_ [1 (1 + 24N2k2) l
Nk 1

' L (l + 16N2k2)2-!

F(I, J - 2N)

(LL - (LL - I)2 4- 2N2k2

2Nk (LL - I) [(LL - I)2 + 4N2k2]^
- 1

x F(LL (4-11)

F(LL + 1, J) =

Nk

1 + N2k2

LL

LL-1

+ 4N2k2 (LL - K)

K=1,3,-[(LL - K)2 + N2k2] :

F(K, J - LL + K - N) (4-12)
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and

E(J) -£•[•£•

2
22 4N2k2

+ - JF(3, J - 3 - 2N) -F(l, J - 1 - 2N)

N2k2

K=l,3,—

2Nk
/J1L=_!)
\ N2k2

(K - 1) i v~ - ^ * 4 l _ ±fi I F (Kf j - K - 2N) (4-13)

where J = J - LL - N for large and moderate values ofrjTr)/ while Jj = J - LL
/LL\ ANJC/

for small values off—j-1.

Equations (4-11) through (4-13) can be easily solved numerically by

the process of "stepping forward in time." The first integral in Equation

(4-11) is evaluated using a five-point Gaussian quadrature scheme. Due to

the numerical finite difference quadratures [F(I, J), F(LL + 1, J), and

E(J)] in the limit J -*• °° do not tend to 1 as they should. They are hence

forced to tend to 1 by using correction factors: HF(I), the correction

factor for F(I, J), multiplies all terms on the right side of Equation (4-11)

except the first integral: HB and HE, the correction factors for F(LL +1, J)

and E(J), respectively, multiply Equations (4-12) and (4-13), respectively,

with

4N2k2

HF(I) =

denominator



1-14

where

denominator:

(LL - l)2 + 2N2k2 1 J^ T (l + 24N2k2

- I) fLL - I>2 + 4N
2kf ~ \ * L " (l + 16N2k2)

— 'v1 (1 _ IK - 11 UK - I)2 + 6N2k2J ) \
Nk Z , I" r i f I ' /

K=l,3,~ ^ [K - I)2 + 4N2k2J l '

HB =

LL^ + N*kz ^ , (LL -

and

HE =
denominator

wftere

denominator :

(LL - K)

N2k2] :

K=l,3,~

- l )

2 ^ M2,,2 /_, I,,, ,.,2 . . ,2 ,212 f (4-15)

K=l,3,~

1 \ 1^ I

) + H/ ' J I (4-16)
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The time constant is determined as that value of J at which E(J)

exceeds (1 - 1/e). Two computer programs were formulated; one to solve

Equations (4-11) through (4-13) for large and moderate values of LL/Nk

ranging from 24 to 1, while the second was used to solve the same

equations for small values of LL/Nk ranging from 1 to 1/64. It is

worthy of note that using finer and finer meshes by increasing N was

not found to change results at all (increasing N is equivalent to taking

finer meshes in space as also finer increments in time).

Figure 1-2 shows a plot of the time constant (upper bound) vs LL/Nk.

Figure 1-3 shows an amplified plot of Figure 1-2 for small values of

(LL/Nk).

Lower Bound to the Time Constant

The relevant equations are again (4-4) through (4-6), and the first

two assumptions made for the upper bound are made here again. Assumption 3

for the upper bound case is still used, but the "averages" are deliberately

underestimated. This is equivalent to underestimating the time of flights.

Thus, in Equation (4-4) we represent the average over 6 of

[Yz1 - z)2 + 2a2(l + cose)]

by I z' - z I and

1 %
|?£ - z)2 + a2 + r2 + 2ar cos6j

at r = 0 (due 'to assumption 2) by (fc - z). ' In Equation (4-5) we represent

'm - z1) 2 + a2 + r2 + 2ar cos0]

at r = 0 (by assumption 2) by (g - z1). Finally, in Equation (4-6), we

represent
JL.

; + a2 + r2 + 2ar cos0|

and

v
+ r2 + r'2 + 2rr' cosSj'

at r1 =0 (by assumption 2) averaged over 0 and r by z and 1, respectively.

Scaling is done as in Equation (4-7) with k now set equal to 1. In finite

difference form,, the resultant equations (after amendments of some of the

integrand as in the case of the upper bound) are:
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Fig. 1-2. Variation of time constant with length to radius ratio.
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3 4

Upperbound

0.20 0.50 0.70 I.O
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tan
_! 2a

'/ ae sin2e [i - (/cose)

LL-1
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[(K - i)2 4- 4N2]
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2N (LL-I) [(LL - I)2 + 4N2]
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(4-17)

F(LL + 1, J) = e"

1 +
LL J

LL-1

+ 4N'y (LL - K)

i.3.- [(LL -
F(K, J - LL + K)

(4-18)

1 +
LL - ('' F(LL + 1, J - LL)

+ j {F(3, J - 3) - F(l,
* 1
+ 2N - —

N2

LL-1
(K + 1)
2N

K=l,3,—

(K (K - 1) | (K - I)

N"
2N

2K
- — }F(K, J - K)

(4-19)
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Correction factors HF(I), HE, HB from Equations (4-14) through

(4-16) are used again. Another computer program was evolved to solve

Equations (4-17) through (4-19), with the time constant being determined

as that value of J at which E(J) exceeds (1 - 1/e). Figure 1-2 shows

the plot of the time constant vs LL/Nk.

It bears observation that the time constant obtained is truly the

lower bound since the length of flight, and hence the time of flight

used, is the minimum possible (within the framework of assumptions 1 and

2). In fact, the time of flight between two elements at a speed (2RT \i*\

is assumed to be equal to that of a particle moving parallel to the z axis.

We hence have the anamoly that the speed of particles in the* radial

direction is infinite. However, we have achieved bur objective — that

of finding an upper and a lower bound to the time constant, although as

evidenced from Figure 4-2, the span between the two bounds is rather large.

Conclusions

The plot of the time constant vs H/a shows that the time constant tends

to a constant as &/a increases. This is directly attributable to the

assumption of diffuse reflection from the wall wherein each wall element

reflects to the exit a fraction of the flux coming to the element/ whose

value depends on the solid angle made by the wall element with the exit.

Thus, while the time constant increases with &/a for small &/a, after a

certain stage adding new wall elements (i.e., increasing the cylinder

length) is not going to increase the time constant, since not only does

the solid angle subtended by the wall element to the exit decrease rapidly

(as axial distance from exit increases), but also the flux to the element

(and hence flux from bhe element) is small in the time scales considered.

It is obvious that, if, the walls were specularly reflecting, the time

constant will progressively increase with A/a. Most surfaces are partly

diffuse and partly specular reflecting, being more diffuse than specular

in nature. It is hence possible to anticipate results similar to our

results for real surfaces; however, the exact value to which the time

constant tends, depends very much on the nature of the cylinder surface.
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APPLICATION OF SUDDEN FREEZE MODEL TO POROUS MEDIA

Formulation and Assumptions

The degree of sophistication necessary to analyzing the flow through

porous media with vacuum as one boundary condition is evaluated. It is

recognised that the flow, in general, would contain an initial region of

continuum flow that would undergo a gradual transition to free molecular

flow. However, if the initial region of continuum flow prevails over a

sufficiently large distance from the probe, the continuum equations can

be used with very little loss of accuracy. In an effort to obtain rough

estimates of the length of this continuum flow, a sudden freeze model is

proposed. Such a flow model is applied to various models of the porous

media.

The basic assumptions made here are:

1. The temperature T of the flow is constant.

2. The flow which is initially continuum undergoes transition to free

molecular flow abruptly at a section termed "the freeze section."

Properties at this section are described by the subscript "f."

The freeze section is identified as one wherein the mean free path,

X, is equal to the pore radius, a.

First a one-dimensional flow through a slab of finite thickness A is

considered. The medium is visualised as being made up of a bundle of

straight, capillary tubes of constant radius, a . Let the pressure at the

entrance of the tube (i.e., at the probe) be p and the pressure at the other

end of tube be equal to 0. Let the freeze section at which the mean free

path X = a, have a pressure p, and be at a length H from entrance.

In the continuum section, the flow is a poiseuille flow. Hence the

mass flux through each tube per unit time is

Q--,sl £. ,4-20.

where \i is the viscosity, dp/dx the pressure gradient along the tube axis

and x the coordinate along the tube axis. Integrating (4-20) with respect
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to x from the entrance to the freeze section, we have (since p — 9!*

Q is a constant)

(4-21)

Assuming p » p we have

Q = 16y RT 2.
(4-22)

In the free molecule region

d£

Q = - C — a tra2

V

—where C is a constant of 0(1) and V =
8RT\
- )

(4-23)

Integrating (4-23) between the freeze section and the tube exit, we

have

Q =
C ira3 Pf

V
(4-24)

Since at freeze section A = A = = a.

V

hence substituting for p in (4-24) and equating (4-22) and (4-24) for Q,

we have

-l

(4-25)

where

RT

= mean free path at tube entrance (i.e., probe).
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Next,a one-dimension spherically symmetric flow through a semi-infinite

medium1is considered. Let r be the probe radius, and p and X, the

pressure and mean free path at the probe. (Strictly the end of the probe

will probably not be a hemisphere, so r should merely be regarded as a

typical length seal for the tip of the probe). Let r be the freeze

radius and p the pressure at the freeze radius. Let the pressure at

infinity be zero. The porous medium is visualised as an assembly of

isotropic, randomly oriented, straight cylindrical pores of constant

radius "a", connected to one another at the ends. Several pores may start

or finish at these end points.

In the continuum region the mass flux Q is given by Darcy's Law as

Q = -9-^ 2TT r2 (4-26)
* y dr

where K is the permeability and r is the radius. ,

Integrating (4-26) between r and r , we have (noting 9 = rjr and that Q
1 £ K.A

is a constant)

yRT
_

/r - r \ f (4-27)

We now consider the free molecular region. Consider a point at radius r.

The pores being randomly oriented,the number of tubes at radius r with

angular orientations (spherical coordinates r, 0 and <f>) between G and 6 + d6

and 0 and <j> + d(|> is

fr ar2\ sin9 d6 dd>
4TT

Tra2

2

sin6 d8

where a is the porosity of the porous medium.
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Since, in the free molecule limit, the mass flux through each tube is

= _ c cose E .
v dr

hence the mass flux over a radius r in the outward direction (along

increasing r) is

IT
2 27T'

6=0 <j)=0

= - * c 2< ̂  r2 . (4'28)

v dr

Integrating (4-28) (and noting that Q is a constant) between r and infinity,

we have

arf
Q = TT C a — - p . . (4-29)

V f

Equating (4-27) and (4-29), assuming p » p and using the fact that

, _ 2yRT
A - a - —r-

we have

j_ = ! +
 2K

ro c a xo

2M /_0_\2

* ( V
2M ' - v2

- ! + =-m s— • (4-30)

where we assume that K = M a2 with M, a constant of 0(1)
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Finally a one -dimensional flow through a slab of thickness £ is

considered, using the above random pore orientation model. The notations

used are the same as for the case of parallel capillary tube with i now

denoting the section at which flow freezes.

In the continuum region, the mass flux Q per unit are given by Darcy's

law as

v y dx '

where x is the coordinate along the line joining the end faces of the slab.

Integrating the above equation between x = 0 (from probe) to the freeze

section x = H and using o = r^- we have,

2yRT

K
£~ on assuming Pt > > P3 • (4-31)

Let us now consider the free molecule flow. Here at a section, x,

the total number of tubes with angular orientations between 9 and

9 + d9, <j> and $ + d<f>, per unit area is

a sin9 ,n ,,——- d9 dcj) .

Mass flux through each tube

dp
_ dx TTa Q= - C cos0 •

Hence total mass flux Q per unit area at x is

IT
5 27T

= y f L ^ sin0 JL.W. C g 2fil Cos9\

27T

Q =

9=0 <J>=0

_ a c a dp
4- dx (4-32)
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Integrating (4-32) with respect to x from x = I to x = I (and noting Q

is a constant) we have

_ a C a £f_
2 - /n - a \ (4-33)

4V (*"
2URT

Equating (4-31) and (4-33) , and noting that p = —^— we have
Va

J,

where

2M

-i

(4-34)

X =

RT

= mean free path at tube entrance (i.e.,probe)

while we assume K = Ma2 where M is a constant of 0(1).

CONCLUSIONS

To summarize the results obtained, we have: For the one-dimensional

slab flow using both the porous medium models, we find that the ratio of

the freeze length to the total slab thickness is ll + 0(1) x (X̂ a) J * ,

where X, is the mean free path of the gas at the probe entrance and a the

pore radius. In the spherically semi-infinite flow, the ratio of the

freeze radius to the probe radius is estimated as |l + 0(1) * (a/X j "I..

— 2 — 3
On the basis of a moon grain size of 10 to 10 cm, the pore radius

-3 —"f
can be roughly gauged to be 10 to 10 cm. If, for example, nitrogen

is pumped from the probe to the lunar surface at a pressure of about 1

atmosphere and normal (15° C) temperature, then X » a, and transition

will occur far from probe. Hence the continuum equations can be safely

used. However for rocks of smaller pore size (< 10 cms) X and a are

of the same magnitude and transition will occur near the probe — a- detailed

analysis of the transition flow is called for in such a case.
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APPENDIX

1. Formula for entrance to cylinder flux C (z, t)
c

The initial value for the distribution function f at time t = 0 is

)/
ne ,

exp I ] 6 (z), where fj -is the molecular velocity

and 6(z) is a function such that

6(z) =1 for z < 0

= 0 for z > 0 •

Solving the unsteady Boltzmann equation in the free molecular limit for

the above initial value, we have

fe(r, g, t) = fe(z, g, t) = . . e*P[ P(z - *,t) -

(2
m 17 \ 2RT2TT RT Jz \ e

If n be the unit normal at the wall at z, the number flux from

the entrance to an annulus of unit area located at the wall at z, at

time t is

= / d 2- fe(z' §' fc) § ' n

Using a spherical coordinate system fixed to the wall as shown

in Figure 1-A1, we have

C * n ='? sin9 cos<j> .
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Employing the ray-tracing technique gives

. -i 2a -l /z tan6\

r
tan -T r

cos (-IT) f /2 x
:, t) = I d6 2 I d<() I d^^C sin6jd9 2

6=0 (j>=o
tan

-i 2a

x ^ sin6 cos(j> f (z, §, t) = f"*.)* r^ 7
x d6 sin20

cos6

exp

cos6

The geometry for the entrance to cylinder flux is shown in Figure 1-Al.

Fig. 1-Al. Geometry for entrance to cylinder flux.
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2. Formula for cylinder to cylinder flux £ (z, t)
cc

By virtue of the basic assumptions and definition of C (z, t), the

distribution function of the molecules emitted from the cylindrical wall

at time t and axial position z is given by

C (z, t) 2(70*
f
c <

2' §• fc) - ~- -

The geometry for the cylinder to cylinder flux is shown in Figure 1-A2.

Consider two elements of area dA and dA1 at axial positions z and z1 ,

respectively, separated by a distance S . Let <J> and <t>' be the angle made

by the line joining the two area elements with the normals at dA and dA1,

respectively. Then

S2 = (z1 - z)2 + 2a2 (1 + cos9)
2

, ., Q\J. + COS0)
costp = cos(p = :

d A1 = a d6 dz1 .

S
Molecules in the velocity range £ and £ + d£ leaving dA1 at . t - -=-

~ ~ — s>
can arrive at dA at time t. Hence the number of molecules with velocity

in range £ and £ + d£ leaving dA' that arrive at dA at time t

(z', §, t -= dA dr__(z, t) = f lz', £, t - -^-K3 d5 COS<<) ""°r dA dA'
c \ t, ' '. ' • e2

2
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or the total number of molecules in all speed ranges that arrive at time t

on an unit area annulus at z per unit time from all parts of the cylindrical

surface is

Ccc(z, t) =11 -̂cos* cos^T dC £3 fYz', §, t - -+

A' 2

TT I

= 4ji ( d e ( 1 + Cos9)2f — dz>
* J / f(z' - z)2 4- 2a2(l +
0 0

x / dc c3 e~c Ciz' t -

(z1 - z)* + 2a"(l + cos6)l2

2 f f(z' - z)2 + 2a2(l + cose)]*1
r J_i i. L : : r

"« - [2RTJ

3. Formula for back to cylinder flux £. (z, t)

Pursuing the same line as in the C (z. t) derivation and referring to
cc J

Figure 1-A3, we have here

if

f, (r, §, t) = f (r, C/ t) = ^ exp f-ub -' 2' ' b ' -' 3 ^ I 2RT

- z)2 + a2 + r2 + 2ar cos6

cos<|) = (a + r cos0)/S

cos<J)' = (I - z)/S3

and

dA' = rdr1 d0 .
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Hence,

dA'

S2

3

IT

0 0 0

r' •§' * • T)
dc c3 e~° (£ - z) (a + r cos6)

[(£ - z)2 + a2 + r2 •+ 2ar cosel2

r, t -
[(£ - z)2 + a2 + r2 +

C/2RT
v • • • • «

2ar cos9

To get the upper and lower bound (of the time constant) approximation,

using assumption 1. and 2., we have

<b '• * - - z) + a2 + r2 + r2 + 2ar cos9j

'(^w):

' b u / - z)* + a*H

)
so that

'bcv^'
£
IT

0, t -
[(£ - z)2 + a

2?

/•/
0 Q

dr r(£ - z) (a + r cos9)

[(£, - z)2 + a2 + r2 +2ar cos6|

oo/ dc c e

(JL - z)2 + 2a2

2a
'(£ - z) (£ - z)2 + 4a2

- 1

w
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4. Formula for cylinder to back flux £ , (r, t)
cb

Referring to Figure 1-A4, we have here

S2 = (I - z')2 + a2 + r2 + 2ar cos6if

cos<J)' = a - z')/S

cos<f> = (a + r cos0)/S
'•

dA1 = a d9 dz*

so that

Ccb<r, t) =
r r
I cos<j) cos<}>' I d

J* J

/

5, o>

ie f ax" /
J J..:.L

\z» §» t - -^-

-cdc c (£, - z') (a + r cos9) e

f(Jl - z.1)2 + a2 + r2 + 2ar cos0]

4- 2ar COS0J I

K]* '

,o o r o •
(Jl - z ' ) 2 + a2 + r2 + 2ar cos0

To get the upper and lower bound (of the time constant) approximation,

using assumption 1. and 2., we have

D

/'
" ^ 3 -C2

dc c e - t-tuLz• ' *- .
..-,, + .j*i

0 0 0

2 a' z ' ) [a. - » • > ' . < . a2]*!
K)*
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5. Formula for entrance to back flux £ . (r, t)
eb

The number flux from entrance to the back end at time t at radius r

per unit area is,

Jfe

where n is the unit normal to dA.

Proceeding on lines similar to the calculation of t, (z, t) and

referring to Figure 1-A5 we have

a+r r2-a2+£2tan28
tan" t, 2ritan6

n (2RT V
e\ e/

3
7T2 "1 Ia-r J

d0

tan S, 0

oo/x / dc c3 sin9 cos9 e~C

t.

tcos6 f2RTV e

2

TT2

a+r
tan" I

x I d6 cos20f
[r2 - a2 + a2 tan2e]

a-r
tan"1 SL

1 +
cos9

exp

[2RTe]'
cos6J
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To get the upper and lower bound approximations (for the time

constant), using approximations 1.. and 2., we have
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tcose

sin6 cos6 e

(21T

exp /-
2(TT)'

K2".)

6. Formula for cylinder to exit flux e (t)

Referring to Figure 1-A6, we have here,

f(r, §, t) = fc(z, §, t) =
(z, t) 2 (TT) '

exp I-

S2 = z2 + a2 + r2 + 2ar cos6
6

cos<f> = (a + r cos6)/S

dA = 2ira dz and dA' = rdr d6
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Since

, dA dA' cosd) costb' ... ..3 _ | r ^ e
de = — d£ C f U, 5. t -

S2

6

or

= r dA, r dA cosfr cos** fe (t) = I dA' / — —r ~~-T • d^ ^3 f z> £ t _ _•.
C / / .2 • • I C\^ - g ,

A' A 6

jl a IT

8a C ^ f" , C aeca + r cos8)I zdz I dr r I ^ ^ '—. =•
J J J [z2 + a2 + r2 + 2ar cosSj 2

t - r' ^ 2ar

The geometry for the cylinder to exit flux is shown in Figure 1-A6

7. Formula for back to exit flux e (t)

Referring to Figure 1-A7, we have here,

Cb(r, t) 2(Tir
f(r, £, t) = f (r, £, t) = -3- exp (- —

\ 2RT
\ w

S2 = £2 + r2 + r'2 + 2rr' cos9
6

cos<)> = cos<f>' =
6

dA = 2irr dr

and dA1 = r1 dr1 d9
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deb = dA

hence integrating we obtain

a IT a

0 0 0

/ .

+ r2 + r'2 + 2rr' cos9

V£2 + r2 + ri2 + 2rr' cose)

w
]

To get the lower and upper bound approximations (for the time constant),

using assumptions 1 and 2, we have

r f <- (ft2 + r2 + r'2 + 2rr' cose) 1 r L «. •' (&2 + r'2)C r, t - r—— « c, u, t - r^—fo
L

*'">*]\F̂2RTW)
% J

so that

e(t) = 4)1

IT a af c r* Ct2 I d6 I dr r' I

J J J t'+r«*
0 0 .0

„)
2rr' cos0

The geometry for .the back to exit flux is shown in Figure 1-A7.
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SYMBOLS

a radius of pore — dead end, open.

c scaled modecular speed; constant of 0(1)

e(t) total outflux from dead end pore at time t

e.(t) outflux (from dead end pore) from i at time t

E(J) scaled outflux from dead end pore

F. distribution function of molecules coming from i

F(I, -J) scaled cylindrical wall flux

F(LL + 1, J) scaled flux from the back end of the dead end pore.

HB correction factor for the back end flux

HE correction factor for the outflux

HF(i) correction factor for the cylindrical wall flux

I scaled distance along dead end pore axis

J scaled time (from opening of the cylinder entrance)

k constant

K permeability

£ length of the dead end pore; length of porous medium slab

£ length of freeze section from probe

m square root of the ratio of wall temperature to temperature
of gas outside the dead end pore

M constant of 0(1) — relates permeability and the square of
the pore radius

N an integer

n. number density of molecules coming from i.

p. pressure of gas at i

Q mass flux
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r radial distance from dead end pore axis; radial distance
of spherically symmetric flow.

r. radial distance of i in spherically symmetric flow

R gas constant

t time from opening of dead end pore entrance

T scale for time, temperature

T. temperature of molecules coming from i.

V most probable molecular velocity

z axial distance along dead end pore axis

a (alpha) porosity

C^ (zeta) molecular flux from i

?^. (zeta) modecular flux from i to j

A. (lambda) means free path at i

y (mu) viscosity

£ (xi) molecular velocity

9 (rho) density

SUBSCRIPT

b back end

c cylindrical wall

e entrance

f freeze section

w wall

i probe entrance
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Chapter 2. EXPERIMENTAL STUDIES

F. C. Hurlbut, C. R. Jih, and P. A. Witherspoon

INTRODUCTION

The underlying rationale for undertaking studies of fluid flows

in porous media under rarefied gas flow conditions has been to supply

the empirical basis for theory necessary to the design and understanding

of a permeability probe device for in situ experimentation at the lunar

surface. A second objective has been to provide the practical experience

in such experimentation necessary to permit a sound, efficient, and work-

able design of such a probe.

The outlines of our attack, both theoretical and experimental, have

been summarized in the 1969 Final Report, Vol. IV of IV, "Studies on

Conductivity of Lunar Surface Materials," by Katz, Willis,and Witherspoon,

and remain very little changed to this date. In that report our current

state of knowledge was described, preliminary concepts of probe design

were discussed, and directions of analysis were indicated.

.The present report is confined to the description of the ongoing

experimental program and to a presentation and discussion of preliminary

observations. It should be understood as a record of work in progress

and is to be taken, together with the 1970 Final Report, "Studies of

Fluid Conductivity of Lunar Surface Materials —Theoretical Studies,"

by Raghuraman and Willis, as a representation of our progress in the

fiscal year 1969-1970.

BACKGROUND .

The flow of gases through porous media has received a moderate

amount of attention over the years as, for example, the flows of low-

density gases connected with the problems of catalytic beds or with

those of transport phenomena at permeable barriers. The words "low

density" refer here to conditions under which the Knudsen number, based

on pore size, is greater than ̂  1/100. One may note that such low-
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density flows might well occur at pressures above or below 1 atmosphere

for rocks within the ordinary range of pore size. Above the limit of

low density cited, the flow of gases in porous media may be treated by

the empirical continuum methods which have been found to be successful.

Prior studies of low-density flows have been confined to certain semi-

continuum models or to the assumption that the flows are entirely free

molecule in character. Such models imply that the density gradients

are everywhere small, a constraint which cannot be applied in general

to flows in porous media whose natural environment is, and has been for

a very long time, a vacuum. ,

Related studies of the flow through capillaries have been more

widely conducted, and it would be in connection with these somewhat

simpler flows that one would hope to see the development of theoretical

models for the transition from continuum flows to the free molecule

regime. Such models would provide a valuable base for modeling the

porous medium. However, we again find that nearly all theoretical work

has confined itself to conditions where the density gradients are small

so that the gas remains within a particular regime of flows throughout

the capillary. Work relating to larger density gradients has been con-

ducted by interpolation and fitting but without a rigorous basis in the

kinetic theory. Experimental work on capillary flows has been conducted

under conditions appropriate to the theory with few exceptions and in

these latter cases no examination has been made of the details of the

transition from continuum flow to free molecule flow.

•With these limitations of available information in evidence it was

determined to undertake direct measurements of porous medium permeability

under low—density conditions as the most efficient route to the design

and understanding of an in situ permeability probe for lunar materials.

It was determined that initial investigations should be of one-dimensional

flows through homogeneous, simulated rock samples having a range of

permeabilities. Use would be made of the pumping system- associated with

the existing rarefied gas wind tunnel, and it was also planned that

advantage would be taken of the technology and experience of the Rarefied

Gas Laboratory.* The program of design, construction, and measurement

has proceeded well, but not as rapidly as planned, so that to this time

*U. C. Division of Aeronautical Sciences (Mechanical Engineering)
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only the first phases of the measurement program have been completed. In

the next sections details of the permeability apparatus are given.

DESIGN AND CONSTRUCTION OF APPARATUS

Introduction

As in the proposed permeability probe, gas from a source at moderate

pressures flows into the porous specimen toward a sink at low pressures.

If the Knudsen number of the flow is initially of order 1 or smaller,

the flow will inevitably transform to a free molecule flow within the

specimen. The character of the transition, as determined by the measured

pressures at various distances from the source, will permit a calculation

of permeability and possibly pore size and configuration when suitable

theory becomes available, The experimental apparatus required for the

investigation of one-dimensional flows within the above conceptual

framework consists of a gas source and flow metering system, a specimen

chamber with pressure taps distributed along its length, a pressure

transducer and metering system, a high capacity vacuum pump, and the

necessary valves, ancillary gauges, and pumps. A detailed description

follows.

Description of the Apparatus

It was a basic objective of the design that it should permit the

detailed examination of pressures as a function of position along a one

dimensional flow through a porous specimen. It was determined that the

specimen should consist of up to 10 cylindrical slabs, each of thickness

to 1 inch and diameter 2.5 inches, permitting pressure measurements to

be made at discrete intervals by sampling the space between slabs. The

arrangement is shown in Figure 2-1, a dimensioned assembly drawing of

the equipment. The specimen chambers, shown in greater detail (Figure

2-2), consist of 2 flanged cylinders of stainless steel each with pro-

visions for 5 segments of specimen. Each specimen segment consists of a

plexiglass ring within which is cast the porous material. A seal between

the plexiglass ring and the inner wall of the specimen chamber is arranged

by an "0" ring set in a groove in the chamber wall. Pressure taps with
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Fig. 2-1. System assembly.



2
-5

f(-irt i 
*•j

^ 
Û
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pressure leads of 1/4" diameter stainless tubing welded in place are

provided between each specimen position. Spacer rings between each

specimen maintain the correct position.

Uniform entry conditions over each slab face are established by

virtue of the high flow conductance of the large gap between slabs as

compared with the lower conductance of the slab material. Thus a

segmented ideal one-dimensional flow is permitted. Note that - the

number of slabs may be varied from 1 to 10 and that the thickness of

each slab may be arbitrarily determined up to 1 inch.

Each pressure tap is connected via a valve to a central manifold

and that manifold is connected through 3/4-inch copper tubing and a

quarter swing valve to a pressure transducer. Ample conductance is

provided to permit degassing the specimens and to make possible a

sufficiently short gauge response time. The pressure transducer is

an MKS diaphragm gauge having a maximum differential pressure range of

30 Torr. This device was selected for its well-known accuracy, stability,

and insensitivity to gas composition. Since it is a differential pressure

gauge it must be connected to a reference vacuum system, details of which

are shown in Figures 2-1 and 2-3. Note that a bypass valve is provided

for establishing the zero of the gauge and to permit evacuation of the

manifold.

At the downstream end of the specimen chambers is a 6-inch vacuum

gate valve and beyond that, the main manifold of the rarefied gas wind

tunnel.' The pumps associated with the wind tunnel flow system have the

capacity to maintain the downstream end of the permeability apparatus

at 1 to 2 microns Hg for any realistic flow within the porous samples.

The gas supply system is also shown in Figure 2-1. .This system

consists of high and intermediate pressure regulators, appropriate shut-

off valves, and a gas-service regulator followed by a system of 5 viscosity
' — 3

type flow raters covering a range of flow rates to "^ 3 x 10 cc/sec.

For lower rates of gas flow the film-capillary, positive displacement

method will be used. A needle valve between the flow metering system

and the first specimen chamber serves to regulate the flow rate.
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An overall view of the permeability apparatus is shown in the

photograph, Figure 2-4.

SPECIMEN PREPARATION

A number of options exist for the preparation of porous samples.

Among these are the aggregation of sand particles using wax or resin

binders; the casting of concretes and artificial stones; the sintering

of metallic beads, chips, filings, or fibers; the sintering of ceramic

materials in fibre, bead, or rod form; and the cutting of natural rocks,

particularly those of volcanic origin. To be suitable for low pressure

measurements, the porous media must be free of organic materials having

vapor pressures in the micron range. In order to insure an extended

region of transition flow under pressure conditions appropriate to

this experiment, the samples should have much greater permeability than

ordinarily found in natural rock.

The various constraints of the present program favored the con-

struction of sintered materials, preferably ceramics. However, for

initial performance testing it was decided that cast concrete specimens

would serve and that these could be constructed using materials and

technology readily available in the Civil Engineering Laboratories.

Accordingly,three sets of cast concrete samples were prepared, careful

attention being paid to mixing and uniformity of casting procedure. The

composition of these samples is shown in Table 2-1.

Table 2-1

Sample

1

2

3

Sand .
(gm)

2000

2000

2000

Cement
' (gm)

100

500

800

Water
(gm)

100

250

400

In each set the concrete was cast into 12 to 16 plexiglass ring

forms of 1-inch depth. Upon curing and drying the samples, the perme-

ability for air was measured at atmospheric pressure and above using
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Fig. 2-4. View of the permeability apparatus,
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a standard permeability apparatus. Set 3 was rejected immediately

as too impermeable, and the 10 slabs most uniform in permeability were

selected from each of sets 1 and 2. The results of these tests are

shown in Table 2-2.

Table 2-2

Slab
No.

1-1

1-2

.1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

Permeability
K(cm2)

(x 10"11)

9.3

9.3

9.3
X.

9.3

9.1

9.1

9.1

9.1

9.5

9.5

Slab
No.

2-2

2-3

2-5

2-7

2-8

2-9

2-10

2-11

2-13

2-16

Permeability
K(cm2)

(x 10~12)

4.5

6.8

- 4.5

4.8

7.5

4.8

5.2

5.8

5.2

5.4

It may be noted that Set No. 1 is both more uniform and more

permeable than Set No. 2. The permeabilities are within the range

of the more porous natural rocks.

PRELIMINARY OBSERVATIONS

Preliminary measurements were made on a set of 4 slabs (No.'s

2-2, 2-3, 2-10 and 2-11) to gain operational experience with the

instruments and to develop a physical sense for the•appropriate

permeability ranges of the next generation of specimens. The gas was

nitrogen. The tunnel downstream pressure and the M.K.S. gauge reference
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pressure were at 1 micron or below. Operational experience was

obtained,although no useful quantitative information has resulted to

this point, owing to the low permeability of the present specimens.

Certain conclusions may be drawn which are summarized as follows:

1. It must be recalled that the objective of the system

design is to permit the study of the regime of transition

flows in porous media. This is accomplished by extending

the region of transition in physical space over slabs

which are somewhat less in thickness than that region. It

is implied that specimens of very high permeability must

be employed.

2. The flow conductance of the specimens must be sufficiently

great that the pressure taps open into, effectively, an

unlimited reservoir of gas at the measured pressure.
t .

Thinner samples and greater permeabilities will improve

conditions in this regard.

3. In all regards the apparatus behaved well and appears to

have the capability of giving results of the quality desired.

CONTINUING PROGRAM

Within the next few months it will be our objective to complete

measurements enabling the description of transition flows in porous

media. Interpretation of these results will require the independent

characterization of the medium in terms of pore size and configuration.

Such characterization will be accomplished by a combination of optical

and displacement methods and by a knowledge of the size and configura-'

tion of particles (beads, rods, etc.) used for the preparation of each

sample. Materials of various descriptions will be formed into specimen

slabs, with sintering being viewed as the most promising technique at

this time. Thus,one may summarize by stating that the next phase of

our activity will consist of four essential parts: 1) the preparation

of suitable samples, 2) the physical characterization of these samples,

3) the measurement of flow characteristics, and 4) the interpretation

of results.


