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. PREFACE

This repért preéents the results of studies conducted during the
period Juiy 19, 1969 — July 19, 1970, under  NASA Research Contract
NAS 8-21432, "Lunar Surface Engineering Préperties‘Experiment Definition."
This study was sponsored by the Lunar Exploration Office, NASA Head-
quarters, and was under the technical cognizance of Dr. N. C. Costes,

Space Science Laboratory, George C. Marshall Space Flight Center.

'The'feport reflects the combined effort of five faculty in&estigé-
tors, a research engineer, a project manager, and eight graduate reseérch
assistants, representing several engineering and scientific disciplines
pertinent -to the study of lunar surface material properties. James K.
Mitchell, Professor of Civil Engineering, served as Principal Investigator
and was responsible for those ‘phases of the work concerned with problems
relating to the engineering'properéies of lunar soils and lunar soil
mechanics. Co-investigators were William N. Houston,'Assistant Professor.
of Civil Engineering, who was concerned with problems relating to the
engineering properties of 1unar soils; Richard E. Goodman, Associate
Professor of Geological Engineering, who was concerned with the engineer-
ing ‘geology and rock mechanics aspects of the lunar surface; Paul A. |
Witherspdon, Professor of Geological Engineering, who was concerned with
fluid conductivity of lunar surface materials in general; Franklin C.
Hurlbut, Professor of Aeronautical Science, who was concerned with
experimental studies on fluid conductivity of lunar surface.mate:ials;
and D. Rbger Willis, Associate Professor of Aeronautical Science, who
conducted theoretical studies on fluid conductivity of lunar surface
haterials. Dr. Karel Drozd, Assistant Research Engineer, performed
laboratory tests and analyses pertinent to the development of a borehole
jack for determination of the in situ characteristics of lunar soils

" and rocks; he also helped in the design of the borehole jack. H. Turan
Durgunoglu, H. John Hovland, Laith I. Namiqg, Parabaronen Raghuraman,
James B. Thompson, Donald D. Treadwell, C; Robert Jih, Suphon Chifapuntu,
and Tran K. Van served as Graduate Research Assistants and carried '

out many of the studies leading to the results presented in this
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report. Ted S. VinSon, Research Engineer, served as project manaée;
until May 1970, and contributed to studies concerned with lunar soil
stabilization. H. John Hovland served as project manager after May
1970, and contributed to studies concerned with soil property evaluation

from lunar boulder tracks.
Ultimate objectives of this project were:

1) Assessment of lunar soil and rock property data using information

obtained from Lunar Orbiter, Surveyor, and Apollo-missiohs,

2) Recommendation of both simple and sophisticated in'situ Eesting
techniques that would allow determination of engineering

properties of lunar surface materials.

3) Determination of the influence of variations in lunar surface
conditions on the performance parameters of a lunar roving

vehicle.

4) Development of simple means for determining the fluid

conductivity properties of lunar surface materials.

5) Development of stabilization techniques for use in loose,
unconsolidated lunar surface materials to improve the

performance of such materials in lunar engineering application.

The scope of specific studies conducted in satisfaction of these objectives
~is ihdicated by the following list of contents from the Detailed Final
Repdrt which is presented in four volumes. The names of the investigators

associated with each phase of the work are indicated.
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_VOLUME 1V
Studies oh Fluid Conductivity of Lunar Surface Materials

Chapter 1. THEORETICAL STUDIES
“P. Raghuraman and D. R. Willis

INTRODUCTION

Theoretical studies on the problem of developing a probe capable of
measuring the fluid'conductivity of boroﬁs.media undér lunar cbnditions.
have been pursued in two prin 1pa1 directions. In the first place, we
have examined some aspects of the fundamentgl question as to whether or
not the probe can o?erate in quasi steady.state conditions or whether it
will be 6perated while various transient phenomena are still affecting
the flow. -A reasonable estimate of the time to establish steady state
conditions appéars necessary in Viéw of the limitations on the maximum
in situ testing time imposed — both by gas storage limitations and by the
time an astronaut can devote to this experiment. With this in mind, we
have considered the effect of dead end pores, whichvinitially contain
essentially no gas and act for some time as sinks for mass flow, when gas
ff:st flows down the main (through) pores. Clearly a truly steady flow
cannot be established before there is pressure equilibrium between the
dead end pore and the open pore. In the next section, the influence of
" the 1ength—to—radius ratio on the time constant fbr.filling up the dead

end pores in the free molecular limit is considered.

In the second principal line of study, we have focused our efforts on
evaluating the degree of sophistication necessary to analyse the flow
through a pofouS'medié with vacumn as one boundary condition. We recognise
that the flow, in general, would contain an initial region of continuum
flow which would undergo a gradual transition to free molecular flow. In
an effort to obtai% rough estimates, a suddeh freeze.model is proposed.
~ The third - sectlon contains the appllcatlon of thls model to various other

models of the porous media.



__FREE MOLECULE TIME CONSTANT OF DEAD-END PORES

Formulation and Assumptions

The unsteady Boltzmann équation is used to find the time constant
for filling up a dead-end pore at zero pressure. The dead-end pore is
visualized as a straight cylinder (Fig. 1-1), of radius "a" and length-"i",
closed at one end. The problem is posed as the calculation of the time
-constant of such a cylinder at zero pressure, separated from an infinite
reservoir of gas by a diaphragm, which is suddenly removed at some instapt
t = 0. . An approximate séheme is formulated to determine the time
constant for filling the éylinder,'and the influence of the length of

the- cylinder on the time constant.
The basic assumptions made in the formulation are:

1. The flow is sufficiently rarefied that the effect of intermolecular
collisions within the cylinder can be ignored compared to the
effect of collisions with the boundary, i.e., the flow is free

molecular.
2, The molecules that strike the walls undexrgo pérfect accomodation.
3. There is no accumulation or ablation at the wall.

4, The boundary distribution functions are Maxwellian; that is, the
infinite pocket of gas outside the cylinder has a Maxwellian
distribution, as do the molecules reflecting from the cylinder

wall.
Taking the mass balance on a unit area of the wall at axial distance z
and time,t, the number flux Cé(z,t), from the cvylindrical wall, is

Cc(z,t) = Cec(z,t) + Ccc(z,t) + cbc(z,t) o (4—1)

~while the number flux, Cb(r,t), per unit area from the back end at radius,

"r, and time,t,is

Eb(rlt) = ch(r,t)' + Ceb(r't)' B (4"2)

k

where Cij is the number flux from i to j, with subscripts b, c} and e

representing the back end, the cvlindrical wall, and the cylinder entrance,



“Fig. 1-1.

Dead-end pore model



respectively. Also, the total outflux, e(t), from the cylindei‘ at

time t is

e(t) = ec(t) + eb(t), | (4-3)

where e, is the number flux to the cylinder exit from i.

Each of the terms on the righthand side of Equations (4-1), (4-2)},. N
‘and (4-3) are evaluated using the ray tracing technique. The calculations
' détailed in the Appe_sndix yield the following equations for (4-1)', (4-2), +
and (4-3), respectively: ' .

Re (2RTe)g z i )

Cc(z't) = " de sin?6 (1 + I
' i t(ZRTe) .cosb
0
2 2, d V ' 2
x [1 - % tan“f exp [- z}j
: 4a? t(2RTe) cosH
I L
4a3 2 dz'
+ — de (l + cosf ) ]
T _ ) [(z' - 2)%+ 2a2(1 + cos6)]2
o 0
x / dc.ca e-c2 Cc z',t - [(z' -z)2 ¢ Za;(l + cose)]%’
' 2RT
Y c( W)
j .
+ 4_(¥'_T_r.°_,z_)_ a9 dr rA (a + r cosB)
[& -z)? + ?2 + r? + 2ar co_sGJ2
0 0

[oe] ) .
. _ 2 . [ 2 - 2 + 2 + 2 ]%
x/ dc c® e ¢ LTt - { z) a r% + 2ar cosf ]
) c(ZRT)
0 _ W



-1/a+
with tan (agl r )

E1 .
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3
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a m a A
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0 0 0
et - .
: 1
. - 2 2 2 '2. .
X [dc c? e F Cb r,t - -(2' +r" +r'"+ 2rr cosG)
c(2RT )
0 . w
2 a m :
+8af az z| arr df(a + r cosb) . .
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[e o]

2 : 2 2, 2
- : + +
X/ dec c® e ¢ |z,t - (Z a by +%2ar cosG) -
: c(2rt,) - (4-8)
0 w



where n, and t are the number density and temperature outside the
cyllnder Tw is the temperature of the inside surfaces, and c is

molecular speed scaled by (ZRT )

We note,that Cc(z,t), Eb(r,t) and e(t) are equai to zero for t £ 0
while in the limit of larger values of t, they all tend to a constant
value equal to [ne(ZRTe)%]/Zﬂ%. Equations (4~4) and (4-5) constitute an
integral equation foerC(z,t). Once it is solved, §b(r,t) and, hence e(t),
can be easily determined from (4-5) and (4-6), respectively. The time
cénstant'is then determined as that value of time t at which e(t) reaches

(1 - 1/e) of its final value [ne(ZRTe)g]/2ﬂ%.

We will concern ourselves only with those situations wherein Te and
T do not differ appreciably. Then the only characteristic time in the
f1111ng of the cylinder is a/(2RT ) , and the time constant will be
equal to A(l/a)[%/(ZRT ) ] The prokblem as posed is to determine‘the
function A(/a), which gives the dependence on (#/a). In view of the
motivation of this work, it does not seem appropriate to solve Equations
(4-3), (4-4), and (4-5) in aetaii. Rather,'a series of éssumptions are
made to yield simpler equations; these are then used to get the upper and
lower bounds for the time constant as a function of the length-to-radius
ratio, £/a. In the next two subsections, the assumptions and the final

equations for the upper and lower bounds are detailed.

Upper Limit to the Time Constant

The various assumptions made are:

1. ' The molecular velocity C(2RTW)% involved in the time of flight

occurring in' the various number fluxes, is replaced by the most

probable velocity (2RTw)%'

< 2. The center of the back end is taken as a typical and representa-

tive point for the back end.

These two assumptions lead to simplifications of the various terms
involved on the righthand side of Equations (4-1), (4-2), and (4-3). The
details are elaborated in the Appendix. The simplification for each term

follows the derivation of the respective term.



3. The lengths of flights involved in the fluxes are square roots
of expressions involving £, a, r, 0, and z in various combina-
. tions. It is proposed to get rid of the square root and represent

.these' lengths by "average" values.

Thus, in Equation (4-4), we represent 'Bz - z')2 + Za?(l + cose)]
averagéd over O by>|z' - zl + 2a/k, with k, a function of (|z - z'|)/a,v
and Bl -2z)2 + a? + r? + 2ar cose] at r = 0 (due to aésumption 2) by
L -2z) + a/kz, where.k2 is a fﬁnction of ¢ ~ z')/a. | In Equation (4-5)

" we represent El - 2'9% +a? +r? 4+ 2ar cose] at ¥ = 0 (due to assumptién 2)
by (2 - z') + a/k2 where r, is a functioh of - z")/a. Finally in

¥ .
2 4+ 2ar cosb + rz} averaged over © and r

Equation (4-6) we represent ;[zz + a
by z + 2a/k3 where k3 is 'a function of z/a, and [22 +r2+r'?%+ 2rr"cosel
at r =0 (due to assumption 2), averaged over r', by £ + a/k“ with ku as a
function of 2/3.. The last averéging is, however, valid only for large or
"medium" length-to-radius fatios, For short length to radius ratios it is

% .
- felt to be appropriate to represent the average of (22 + r.z) by & itself.

Finally, we naively assume that k1 = k'2 = k3 = ku = a constant = k, say.
This carries the tacit assumption that the exact values of kl; k2, ka’ and

kuvdo_not'haVe a- profound beariﬁg on the final result.

The following scaling is introduced

a/(Nk) 7 _ T \
(_2RTw)
t/T =J
/() = 7
L'(4—7a)
zV(a/Nk) = K
L/ a/&k) = LL 2
TN
(i) --
T
e/
/



Cc(zrt) ' | ) _ . ‘
[“e (ZRTe)}‘/z (w)!“] = F ;-k T TJ)

Cb(olt) ’ a ' .o

_ = (I 11 2, ) Y (a-
[ne(znTe)*/z(n)}’] F(LL + 1) {5k Tf’ . (4-7b)
%

e(t).\ I'ne(zRT ) ‘|‘ - _
| 7a? l/l_ 2(")8 )

The shorthand notation F(I1,J), E(J) » and F(LL + 1, J) are used for :

a a

F({\]—]-(. I, TJ), E(TJ)T and F[(_LL + 1) f\l—f .
from the back end has been called F(LL + i, J) for easier understanding of

the mechanics of the problem.

If J,K, and I are taken as continous variables, then consegquent to tﬁg

three assumptions, Equations (4-4) through (4-6) take the following form:

can~! 2K |
L2 B I > (o “
F(1,J) = ﬂ_— a6 sinze‘[l +(J—C-I£—s—e—) J exp [_(37:%;6_ ]
0
LL :
% ' 2
« (1 - 12 tan?0 L L ax M- |k - 1] [(I -_K). + 6N2k2]
4N%k? 2Nk ' : 3
[(1-- 1<)2 + 4Nzkz]2
0 ) . , -
‘ ’ (LL - I)
X . - - e
F(K, J - |K - 1| - 2n) + o

2 2,2
- X (LL I)7 + 2N7k : - 1] P(LL 4+ 1, 0 = LL + 1 - N)

(LL - 1) [(LL - 12+ 4N2k"]"’

' TJ], respectively. 'The scaled flux

(4-8)



with
_(&2 ()’ - .
FaL+1, 3 =e \7/ [1--2 322 '
1 + Nk
\ wu? /|
LL
’ o+ 2n%2 dK(LL - X). F(K,J - LL + K - N) -
- [(LL -K)Z + Nzkz]z' ' -
0 - : (4-9)
/
and _ _
| LL? - on2y? - a P\ 4
E(J) = S - {1+ - F(LL.+ 1, Jl)
2n%k? ? /- LL ‘ ,
LL
2 2.2 : , .
+ 21— | &« -E—-f——zi—k—%-lv F(K, J - K - 2N , " (4-10)
N2k? f K(K2 + 4N2)
, .
0
with
. o ,
J,. = J - LL - N for large and moderate values of (ﬁf) and J, = J - LL for
small values of EE) | |
Nk

For a numerical computation scheme, I, X, and J are taken as integers;
‘whilg LL ié always maintaihed as an even integer. The integrals in-K cén
be fepreéentedAas a sum with the integrana evaluated at odd values of .
K=1, 3,5 ... (LL- 1), so that dK = 2. AHowgver, this procedure had to

be modified to account for the rapid variation in the kernels of some of
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the integrals. Thus, in Equation (4-8), the conventional way of interpreting

the second integral would be as

1. | _ 3
{1‘- lx - Il'[(K -D%s 6N2k2]/[(1( - 1)2;+ 4N2k2)]2}

52
= )
N=1,3.
x F(K, J - [k - 1] - 2™
. 3

| . | 3
However, the kernel ll - |x - 1| [(K -n%+ eNzkz]/[(K,— 2 + 4N2k2] }

is a steeply varying function of K with a symmetry around XK = I, where
it has a maximum valﬁe of 1. The above summation is hence an overestima-

‘tion. A more realistic interpretation would be to evéluate the kernal at

lK - II = %-rather than K = I, and hence représent,the integral as equal
to
LL-1 e : 3
L 1 - |k - 1] (K-—I)2+6N2k2]/ [(K—I)2+4N2k2]2
NR - . .
K=1,3...

K+I

X F(K, J - |K - 1] - 2n) + &i- 1 - gl_i_gﬁﬁikf)

F(I, J - 2N).
(1» + __16N2k2)_.%.

Further, in Equation (4-10), the terms

K2 + 2n%k?

(k2‘+ 4N2k2)%

-K

and F(K, J - K - 2N), representing the integrand of the second term, are
both functions that rapidly drop to negligible values as K increases.

Designating. the kernel

1| k%24 28%2
N2k2 (K2 + 4N2k2)!’

K



as P(K), and F(X, J - K - 2N) as g(K) (only space variation is of concexn),

the integral under examination, viz,

LL

[ds P(s) g{s),

0
is interpreted as,
-1 - Kl

z f ds P(s) [g(K) + g'(K)
K=1,3,... {k-1) S ' -

BBy g w

~

where g(s) is expanded as a Taylor's series around S = K and é'(K), etc.,
-are the derivatives with respect to S evaluated at K. Ignoring g" (K)-and
higher derivatives, and considering g’(K) only at K = 1, the integral

under consideration is representable as

<t (k+ 1) |k + 1\ ¥ k- b) k- 1NE L 0F 2K-l'
z 2Nk Nk vk |\ Nk Nzkz’

K=1,3,~ ~

F(K, J - K - 2N) +[F(3,J-3-2N) —F(I,J—1-2N)]

. ‘ E
X % (--—l-— --2) (1 + Nzkz) +<2Nk - ——1—->
N2k2 . NZkZ
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Thus, Equations (4-3) through. (4-10) take ‘the following form:

_, 2Nk -
tan I : - :
f o ; -(-'I—"m—)z 2 . 2‘ %
F(I, J) =% a8 sin®@ [1 +<?EL“-F),]e J cosd (1 ,LEB..Q)
o ~l o ;e o an?k?2
0
LL-1 , ‘ _[‘» : ] Y
B C - _ 2 2,2 |- o
L L ) [k - 1l ik - )% + &N’k _ :
Nk & _ c : R .
K=1,3,-- : [(K - 1)2 4 4N2k2]2
K#I . . '

X F(K, J - |k - 1| - 2m) +’i—[1 o3+ 2Nk )3}?(1,-3,- 2N)

NK 3
- (1 + 168%x2)% -

(LL - 1) (LL - 1¥2 + 2n2x? !

T ¥ 1
(LL - 1) [(LL -0+ 4N2k2] :
X F(LL+1, J-LL +I~N) (4-11)
1L)\2 _(gl_c_ 2 © LL-1 .
F(LL + 1, J) = _e'(T) 1 -8 Jz |+ v (LL 'ZK) —
1 +Nk : K=1'3,__[(LL— K) ka] _
LL? : '

F(K, 3 - LL + K - N} . .. S S . (4-12)



and

_ 2 X
1 /LL 2n°%k 2 2y 2
E(J) =_-2-(ﬁ (1+~NL>-(14+ 4—N-k—) F(LL + 1, 3,)
. ' LL? : LL? 1

1 : ) ‘ '
+ §‘F(3, J=-3-2N) -F(1, J -1 - 2N)’x'[( 1 - 2)(1 + N-z’kz)%’-"'
: . : . o W\w2ez /) , ]
LL-1 ‘ 2 x
+(2Nk_ . {(K+l) k+n”
: N k2 2Nk \ .Nzkz
K—1,3,-—
(k-1 [((k=-1?. 2K : :
+4) - &£ - K - -
S (N2k2 ) - } F(K, 3 - K=~ 2N, | (4-13)

1

where J, = J - LL - N for large and moderate values of(;i), while J, = J - LL
L
for small values of(Nk)

Equations (4-11) through (4-13) can be easily solved numerically by
tﬁe process of "stepping forward in time." The first integral in Equation
(4-11) is evaluated using a five-point Gaussian quadraturé scheme. Due to
the numerical finite difference quadratures [F(I, J), F(LL + 1, J), and
E(J)] in the limit J * © do not tend to 1 as they should. They are hence
forced to tend to 1 by using correction factors: HF(I), the correction
factor for F(I, J), multiplies all terms on the right side of Equatidn (4-11)
except the first integral: HB and HE, the correction factors for F(LL + 1, J)
and E(J), respectively,—hultiply Equations (4-12) and (4-13), réspectively;

with
2Nk
tan™! T N
2 - 2 2
1 - = a0 sin2gf1 - 1 tan'@
m an?x?

o

denominator
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where
denominator:
(LL - 1) (LL - 1)2 + 2N%k? 1 (1 + 24N2k2)
2Nk (LL - 1) ELL 12 + 4N2k2];‘; e IR 2
(r+ 16N%k2) 3.
LL-1 E 2 2 2]
L L Lo lk-al k- 1? + en’k
Nk _ 3 (4-14)
K=1,3,-- [K -0% 4+ 4N2k2] S
K=1
HB = L
2,2 -1
Nk + 4 2k2 (LL - K) :
2 2,2 N [ Cn2 2. 2] 2 - (4-15)
+ N%k -
LL K=1,3,-- (LL - K)° + Nk ]
and
HE = 1 -
denominator
where
denominator: : . :
LL-1 N7
1 (LL 2 2n2%k? an2k2 7 (K + 1)
sl 1+ - |11+ —— + —_—
2 \Nk . ) P ] z 2NK
K=1,3,--

(4-16)

[CORTR ORI



The time Eonstant is determined as that value of J at which E(J)
exceeds (1 - 1/e). TWo.computer programs were formulated; one to solve
Equations (4-11) through (4-13) for large and moderate values 6f LL/Nk
ranging from 24 to 1, while the second was used to solve the same
equations for small values of LL/Nk ranging from 1 to 1/64. It is
worthy of noﬁe that using finer and finer meshes by increasing N was
not fouhd to change results at all (increasing N is equivalent to taking

finer meshes in space as also finer increments in time}.

Figure 1-2 shows a plot of the time constant (upper bound) vs LL/Nk.
Figure 1-3 shows an amplified plot of Figure 1-2 for small values of
(LL/NK) .

Lower Bound to the Time Constant

The relevant equatibné are again (4-4) through (4-6), and the first
two assumptions made for the upper bound are made here again. Assumption 3
for the uéper bound case is still used, but the "averages" are deliberately
underestimated.' This is equivalent to underestimating the time of flights.

Thus, in Equation (4-4) we represent the average over § of

[(z' - z)2 + 2a2(1 + coséﬂ%.

by |z' - zl and
)2 2 2 %
[(2,4 - z) + a“ + r° + 2ar cose]
at r = 0 (due ‘to assumption 2) by @& —_z).' In Equation (4-5) we represent
. ' %
B? - z')2 + a? + r? + 2ar cose]

at ¥ = 0 (by assumption 2) by (¢ - z'). Finally, in Equation (4-6), we

represent
[22 + a2 + r? + 2ar cose]
and

@ﬂ +r2 +r'? + 2rp’ cose]

at r' = 0 (by assumption 2) averaged over O and r by z and 1, respectively..

Scaling is done as in Equation (4-7) with k now seﬁ equal to 1. 1In finite
difference form,. the resultant equations (after amendments of some of the

integrand as in the case of the upper bound) are:

,
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Fig. 1-2. Variation of time constant with length to radius ratio.
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-1 22
tan I
Im
: s [ (2B Y] o ()
I, J) =% a
F(I, J) T 8 sin“@ [1 + (J cose) ] e \J cosB/
0
’ " LL-1 oy
1 - 12 tanf \¥ L L ZE ;- Ix - 1 (K - 1)2 + 6N?
4n? ‘ N ‘ 3
_ K=1,3,~~ - [(K - 1)2A+ 4N2]2 ‘
K+ T , -

3

2 .
x'F‘(K,_ J - IK -.I,)+~;— ’r __(]i_z_‘xy_)_-, F(I, J)
| L (+aen?)?]

Ut

_ L 2 2 _ :
4 LL - 1) (LL - I)" + 2N , -1l FCL+1,3-1L+ D).
2N (LL—I){}LL -1+ 4N2]
(4-17)
( ) ]
: 2 _-1_‘1__)
_'E) 2
F(LL + 1, J) = e (J 1- 9—41f7;
1 P
LL?
LL-1
+ 4an? jz (LL "ZK) =5 F(K, J-LL+ K) o
13, [(LL-K) +N] |
4 (4-18)
1 /LL\? 2N2 an?\*
EQ) =3 33) 1+ - [1+=)|r@L+1, g-~11)
. LL? LL? v
1 1 ki 1
+§ F(3, J-3) -F@1, J-1) (——-2)[1+N] + 2N - —
N2 n?
‘LL-1 ) % ' ~.. L
. EE (K + 1) [(K 12 %] (K - 1) [(K - 12, %]
2N N2 o 2N 2
K=1,3,~-- : L
) (4-19)

2K
"‘N— F(K, J - K) .



Correction factors HF(I), HE, HB from Equations (4-14) through
(4-16) are used again. Another computer program was evolved to solve
quations (4-17) through (4-19), with the time constant being determinedf
as that value of J at which E(J) exceeds (1 - 1/e). Figure 1-2 shows
the plot of the time constant vs LL/Nk. '

It bears observation that the time constant obtained is truly the
lower bound since thellength of flight,.and hence the time of flight
used, is the minimum ﬁossible (within the framework of assumptions 1 and
2) In. fact the time of flight between twc elements [at a speed (ZRT )*]
is assumed to be equal to that of a partlcle mOV1ng parallel to the z axis.
We hence have the anamoly that the speed of particles in the radial
direction is infinite. However, we have achieved our objective ;-that
of finding an upper and a lower bound to the time constant, although as

evidenced from Figure 4-2, the span between the two bounds is rather large.

Conclusions

The plot of fhe time constant vs %£/a shows that.the time constant tends
to a constant as 2/a increases. This is directly attributable to the
assumption of diffuse reflection from the wall wherein each wall element
reflects to the exit a fraction of the flux coming to the element, whose
‘value depends on the s0lid angle made by the wall element with the exit.
Thus, while the time constant increases with %/a for small %/a, after a
certain stage adding new wall elements (i.e., increasing the cylinder
length) is not going to increase the time constant, since not only does
the solid angle subtended by the wall element to the exit decrease rapidly
(as axial distance from exit increases), but also the flux to the element

(and hence flux from the element) is small in the time scales considered.

It is obvious that, if, the walls were specularly reflecting, the time
constant will progressively increase with £,//a. Most surfaces are partly
diffuse and partly specular reflecting, being more diffuse than specular
in nature. It is hence possible to anticipate results similar to our
results for real surfaces;'however, the exact yalue to which the time

constant tends, depends very much on the nature of the cylinder surface.
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APPLICATION OF SUDDEN FREEZE MODEL TO POROUS MEDIA

Formulation and Assumptions

The degree of sophistication necessary to analyzing the flow th;ough
porous media with vacuum as one boundary condition is evaluated. It is
reCogniséd that the flow, in general, would contain an initial region of
‘continuum flow that would undergd a gradual.transitidn to free molecularAi
£low. -waéve;,”if the initial region of continuum floﬁ_éfeéails_over a
sufficiently large distance from the §robe;'the continuum'eQuatiohs can
be used with very little loss of accuracy. In an effort to obtain rough
estimates of the length of this céntinuum flow, a sudden freeze_model is
proposed. 'Suéh a flow modél is applied to various models of the porous

‘media.
The basic assumptions made here are:
1. The temperature T of the flow is constant.

2. The flow which is initiallyAcontinuum‘undergoés ;ransition to free
molecular flow abruptly at a section ﬁermed "the freeze section.”
P:opefties at this section are described by the subscript nEL"

The freeze section is identified as one wherein the mean free path,

A, is equal to the pore radius, a.

First a one—dimensional flow through a slab of finite thickness . g is
considered. The medium is visualised as being made up of a bundle of
straight, capillary tubes of constant radius, a . Let the pressure .at the
entrance of the tube (i.e., at the probe) be P, and the pressure at the other
end of tube be equal to 0. Let the freeze section at which the mean free

path A = a, have a pressure Pe and be at a lenéth lf from entrance.

In the continuum section, the flow is a poiseuille flow. Hence the

mass flux through each tube per unit time is

Q=_91T_é‘__§2_ o . (4-20)

where | is the-viscosity, dp/dx the pressure gradient along the tube axis

and x the coordinate along the tube axis. Integrating (4-20) with respect



to x from the entrance to the freeze section, we have (since p = 9RT and

Q is a constant)

_(_Ef"__l’%_)_ u (4-21)

Assumiﬁg P >> pp we have

pi ma"
= S 4-22
Q 161 RT Zf ( )

In the free molecule region

) dp
Q=-C g?-a Ta
v

z i : : (4-23)

(BRT ¥
v

where C is a constant of 0(l) and V =

Integrating (4-23) between the freeze section and the tube exit, we

have
0= c mal Pg . '
) = _ . - (4-24
5 (g, g,f) ‘ (4-24)
. . 2U
Since at freeze section A = A\_ = ———— = 3,

£ p
(s
RT

hence substituting for Pe in (4—24) and equating (4-22) and (4-24) for 9Q,

we haqg
24=1 o ' .
e [h )
I a (4-25)
where
A o= —2M

(@)
vi{—
RT

mean free path at tube entrance (i.e., probe),

il



Next,é ong—dimension spherically symmetric flow through‘a semi-infinite
medium is considered. Let r be the probe radius, and p, and A, the
pressure and mean free path at thé probe. (Strictly the end of the probe
will probably not be a hemisphere, so r should merely be regarded as a
typical length seal for the tip of the probe). Let re be the freeze
radius and Pe the pressure at the freeze radius. Let the pressure at

/infinity be zero. The porous medium is visualised as an assembly of
isotropic, randomly oriented, stréight cylindrical pores of constant
radius "a", connected to one another at the ends. Several pores may start

or finish at these end points.

In the continuum region the mass flux Q is given by Darcy's Law as

- _okdp 2 _
Q= S"J - 2m ¥ _ (4-26)

where K 1is the permeability andAr is the radius. ;

Integrating (4-26) between r, and re, we have (noting 9 = é%—and that 0
is a constant)

o = m((pf_Pz)__ r r
URT (rf - rl) £ o .(4-27)

—

We now consider the free molecular region. Consider a point at radius r.

The pores being randomly oriented,the number of tubes at radius r with

angular orientations (spherical coordinates r, & and ¢) between 6 and 6 + dB
and ¢ and ¢ + d¢ is

_ (4ﬂ ar2> sin® a9 4¢

4T
ma?

2
= 2 sind ap a9,
'lTa2

where o is the porosity of the porous medium.



Since, in the free molecule limit, the mass flux through each tube is

AN

3
= -C Ta_ cosf 92-.,
‘-; dr

hence the mass flux over a radius r in the outward direction (along

increasing r) is

o2 A A
: ar? crmad |
Q= (?6 d$ **— sind (} cosd £
2 - dr
a“ v .

8=0 ¢=0

=-mcl 9 2 o (4-28)

dr .

<R

Integrating (4-28) (and noting that Q is a constant) between r. and infinity,

we have

arf )
Q=mCa-—— p; - : , - (4-29)
V .

Equafing (4-27) and (4-29), assuming p1 >> Pe and using the fact that

£ ‘-’ ’

p3

we have
r
r_f, =1+ X
2
0. Ca)‘o
2 .
cCa AO ' (4-30)

where we assume that K = M a? with M, a constant of 0(l).
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Finally a one-diménsional flow through a slab of thickness ¢ is
considered, using the above random pore orientation model. The notations
used are the same as for the case of parallel capillary tube with Qf now

denotingvthe section at which flow freezes.

In the continuum region, the mass flux Q per unit are given by Darcy's

law as

- . 9K dp
Q= u.oodax

where x is the coordinate élong the line joining the end faces of the slab.

~ Integrating the above equation between x = O (from probe) to the freeze

i - .. - P
section x lf and using ¢ 7y Ve have,

V 2 _ .2
0 = K (pl ps)
2URT ‘ zf '
2
b
~ K 1 : > > ' -
2URT . on assuming p, p, . (4-31)

Let us now consider the free'moiecule flow. Here at a section, X,
the total number of tubes withvangular’orientations‘betWeen 6 and
8 +dd, ¢ and ¢ + dd, per unit area is

0 sinf a0 da¢
2 47
Ta :
Mass flux through each tube
dp
.=-C§—TI§-—COSB
v

~ Hence total mass flux Q per unit area at x is

3 .
/2/ d0 d¢ sin® ——) (- C g& “—f—’ cose)
A v

8=0 $=0




Integrating (4-32) with respect to x from x = £ _ to x = £ (and noting Q

f
is a constant) we have
0= o C a Pg .
T = - ) 4-3
4 (2 lf) ( 3)
. ' ‘ . 2URT
Equating (4-31) and (4-33), and noting that py = ——— we have
Va
o 2] 1 ' S
Le = |1 4+ %€ (ﬁ) Y
% 4M a ' - (4-34)
where
2M

mean free path at tube entrance (i.e., probe)

while we assume K = Ma? where M is a constant of o(l).

CONCLUSIONS

To summarize the results obtained, we have: For the one-dimensional
slab flow using both the porous medium models, we find that the ratio of
the freeze length to thevtotal slab thickness is [1 + 0(1) x (}l/a)z]-l,
where A, is the mean free path of the gas at the probe entrance and a the
pore radius. In the spherically semi-infinite flow, the ratio of the
" freeze radiué to>the probe radius is estimated as [1.+ 0(1) X(a/kl)z],

3 .
cm, the pore radius

On the basis of a moon grain size of 10~ % to.10”
can be roughly gauged to be 10"3 to 10—4 cm. If, for example, nitrogen
is pumped from ﬁhe probe to fhe lunar surface at a pressure of about 1
‘atmosphere and normal (15° C) temperature, then Xl >> a, and transition
will occur far from probe. Hence the continuum equations can be safely

used. However for rocks of smaller pore size (< 1073

cms) Xl and a are
of the same magnitude and transition will occur near the probe — a detailed

analysis of the transition flow is called for in such a case.



APPENDIX

>

1. Formula for entrance to cylinder flux (C(z, t)

The initial value for the distribution function f at time t = 0 is

n -£ £ . '
f = -—---—e——3 exp( S > §(z), where § -is the molecular velocity
' (21T RTe)-z— . 2RTe '

and §(z) is a function such that

§(z)

1 for z

IA
o

=0 for z > 0 .

Solving the unsteady Boltzmann equation in the free molecular limit for

‘the abovévinitial value, we have

| », £
fe(EI gl t) = fe(zl gl t)\= exp

3
_(ZH RTe)2 2RT

§(z - Ezt)-

If n be the unit normal at the wall at z, the number flux from

the entrance to an annulus of unit area located at the wall at z, at

time t is
- 3 .
Loo (24 ) -/d £ f_(z, E, t),g n

Using a spherical coordinate system fixed to the wall as shown

in Figure 1-Al, we have

\ g - §.='£ sin6 cos¢ .



Employing the ray-tracing technique gives

-1 2a -1 /z tanB

tan > cOSs ( >a o
SNCE t) =/ ae 2/ ‘ a¢[ ag(e? sind)
o=e $=0 ° ™! 22
5 S

ne ()

X & sinb cos¢ fe(z, £, t) = —

“2

Z

X exp{- |
t [2RTe]% cosf

The geometry for the entrance to cylinder flux is shown in Figure 1-Al.

N
S

Fig. 1-A1. Geometry for entranée to cylindér fFlux.



2. Formula for cylindef to cylinder flux Ccc(z, t)

By virtue of the basic assumptions and definition of Cc(z, t), the
distribution function of the molecules emitted from the.cylindrical wall

at time t and axial position z is given by

%
C (zl t) 2(1T) -E
£, (2 0 = = ()

3 2RTw
(2RT Y(zn RT ) 2
. w/ w

The geometry for the cylinder to cylinder flux is shown in Figure 1-A2.

Consider two elements of area dA and dA' at axial positions z and z',
respectively, separated by a distance S,. Let ¢ and ¢' be the angle made
by the line joining the two area elements with the normals at dA and dA'{

respectively. Then

2

n
]

2 (z' - 2)2 + 2a% (1 + cosH)
a(l + cosf)

S
2

cosp' =

Q
-0
/2]
<

[}

d A' = a df az'

. S
Molecules in the velocity range § and § + 4§ leaving dA' at . t - 7%

can arrive at dA at time t. Hence the number of molecules with velocity

in range £ and § + df leaving dA' that arrive at dA at time t

.8 . L
=drd_ (z, t) = fc<z', £, t - E?-)g? aE S‘lsib—%@-— dA da'

52



Fig. 1-A2. Geometry for cylinder to cylinder flux .
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or the total number of molecules in all speed ranges that arrive at time t
on an unit area annulus at z per unit time from all parts of the cylindrical

surface is

aA | : S
— ! N 3 . 2
Loclze t) —/:[ _32 cos¢ c05¢[ dag ¢ fc(z P &0t - F_)

2

A'
3 . = |
=4—:—f as (1 + cosh)? — dg o ¥
LR Bz' -2)%2 + 2a%2(1 + cosG)]2
0 : | . .

dc ¢ e T {z' t - ‘ .

_jo‘o | 3 c? [(z' - z)? + 2;\2(1 + cose)]* :
o c _[212'1"”];‘F

3. Formula for back to cylinder flux Cbc(z, t)

Pursuing the same line as in the Ccc(z, t) derivation and referring to

Figure 1-A3, we have here

. 2
= . 2(m)° - 3
fb(f' £, t) = fb(r' E, t) = 3 exp (— o7 >
‘ (ZRT )2 72 w
w
S§ = (2 - 2)% + a® + xr? + 2ar cosb
cosp = (a + r éose)/s3
cos¢' = (& - z)/s,.
and
. o

rdr' 4o



Fig. 1-A3. Geometry for back to cylinder flux. “ -
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o -] 4a’ - 3 (l S’)
Lotz 8 7./‘52 .cosd> cos?f a g° £ rf g, "I
s —c? N
ﬁe dr / dc ¢ e ® - z) (a-+rcose)l
@ - z)2 +,a2 + r? + 2ar co'se]?
N (2, - z) + a® + r? + 2ar cosB
X C‘b r ‘ PRERES
T <2RT )
To get the upper and lower bound (of the time cons -a;ﬁproximatioh,’.'

us:.ng assumption 1. and 2., we have L

' [(2. -z)2+a%+ rz' + r2 + 2ar cose]%

. lr, t -

b ' - (2RT
3 . [(2 - z)% 4+ az]"
ol SN %
: (2RT )
w
so that _ o
X
' : _4 [(2 -z)% + az]
Cbc(z, t) = p= Cb 0, t -~ ] B "
- (ZRT)
w .
0
[+ e}
N dr r(z - 2z) (a + r cosB) de &? e—Cz'
[(2, - Z) + a? + r2 +2ar cosG]
- (g --z) (g - z)? + 2a%2 -1

- '(_JI, - z) [(2, - z)z + 4a_2]%..

z lo, ¢ . [(2 - z)? + az]’.“

byt (2RT)’5'
w

X



4. Formula for cylindér to back. flux Z;cb(r, t)

Referring to Figure 1-A4, we have here

'Si = (R - z')2 + a? + r? + 2ar cos®
. cos¢‘ = (& - z')/S“
‘cosp = (a + ¢ cds@)/suffi

~dAf = a’_de"d.z"" o

so that

ch(_r.‘ t) = '.Q-A——cosd) cos¢’ dE.g3 .fc'('z,_g" t—

SZ

dcc(R,—z) (a+rcose)e

c2

Ry
\

o-v
(2,—2)2+a2+r

2

[(2, -z ), + a2 + r¥ + 2ar cose]

c [ZRTW] ¥

+ 2ar cose}!’, |

To get the upper and lower bound (of the time constant) approximation,

using assumption 1. and 2., we have

(Z

ch(r. t)
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| Fig. 1-A4, Geometry for cylinder to back flux. ‘ o
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S. - Formula for entrance to back flux. Céb(r,l t)

The number flux from entrance to the back end at tlme t at radlus r’

per un1t area is, o o I
whete'n is the uniﬁ nbfnal to dAQ>"

' Proceedlng on lines 51m11ar to the calculatlon of C (z", t) and’

_ referrlng to Flgure l-A5 we have

r?-a2+2%tan?0

" 2rf tanb
ey t) _ ae
oo o ‘ ' . B
. - ' 2 . n, (ZRTe)sz
x J dc c? sinf cosd e =
S S
tcosb (ZRT )*
e
'_1 a+r
tan L
2 _ 2 2 ] :
. 30 cos28 [r .a + 2% tan 6‘
2r?
_. a-r ‘
tan vl [
2) - o 2
i : AW B - L
X 1 +} . — |\ exp {- -

t [ZRTe]% eese | t [ZRTe]% cos_e':
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Fig. 1-A5. Geometry for entranc

e to back flux, .
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To get the upper and lower bound approximations (for the time

constant)’, using approximations 1. and 2., we have

(r, t) = L, (0, t)

eb
. .-1_2
tan | @ 2m © .
o : o . - : _r2 ’
= fag -do at &3 sind cosb e & /2RTe
0 0 2
' tcosb

[

2(m)

’ ' a 2
_ | _ T——]
. = e(zg're)"f | . 2 ) ; . Lt @RTe)_l
, T X xp N % | 14 (a/z)z

t(2rt,)

6. Formula for cylinder to exit flux ec(t)

" Referring to Figure 1-A6, we have here,

%

' g, (z, t) 2(M
f(E, g" t) fc(z, g., t) = - . 3‘ exp -
z

(o Y o v,
W w
2 2 2

2z + a° + r° + 2ar cosf

4]
[}

1]

cos¢ (a +r cosB)/S6

da

2ma dz and dA' = rdr 40 .-

.n_
e

(o 52,
e

Nilw

£-¢ >
2RT
. w



Fig. 1-A6. Geometry for cylinder to exit flux ., L



Since

de _da dn’ cos$ cosod' daE g3 £ (z, gl t—i6—>
c g2 c 2 /)

or

2 2

‘ dd{a + ¥ cos8)
= Sa/ zdz | dr r ! =Dovs "
: [z2 + a‘ + r° + 2ar cose]
0 .

: .2 2 2 2 )k

x/dé o? o€ Cc[zlt' (z +a‘+r +§ar cose)]
c(ZRTw) :

0 ’ )

The geometry for the cylinder to exit flux is shown in'Figure 1-R6

7. Formula for back to exit flux eb(t)
Referring to Figure 1-A7, we have here,

]
L, (xe £) 2(m)

.
(2RTW)% (ZTTRTW)Z AL

Wy
Wy

f(EI _g_r t) V= fb(rl gr t) =

€

1

S: = 22+ x?2 +r'?2 + 2rr' cosb
cosd = cosd' = 5?1/5‘s .
dA = 27r dr

and dA'= r' dr' 40 .
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o Fig. 1-A7. Geometry for back t¢ ekit flux;f-f.rf o



Since

. ‘ s
deb =-dA dA'dg C_O..M%ﬂga fb(r' §l t - —6—

.
hence integrating we obtain

a ' m™ a

. ‘ 2 | e v ,
eb(t) = 8[(11‘ rf de] .2' r’ dr Y
. 4 v. . .[9,2.4. r2 + r'? % 2rr® 'cose]
o o o bt :
oo ’ ) { . ” ' .
x [ dee’e” b : c (2rT )}5 : " _I

'To‘get the lower and upper bound approximations (for the time constant),

using assumptions 1 and 2, we have

. cb r, t - (2,2 + 2 4 pr? +%2.rvr". coée) ]z Cb[O,. e (2’_2_'4_ r';)%] .
o C(ZRTw) | N (éRTw)'

so that . .
T (2 +2%
S [0t T T
(QRT )
W,
ey (t) = .
9,2 +r2+ 1'% 4 2rr cose] '

The geometry for .the back to exit flux is shown in Figure 1-a7.

e



SYMBOLS

a

C
e(t)
e, (t)

1
E(J)

F,

1
F(I, J)
F(LL + 1, J)
HB
HE

_>HF(I) j

radius of pore —-déad end, épen.

scaled modecular speed; constant of 0(1)

total outflux from dead end pore at time t

outfiux (from dead end pore) from i at time t
scaled putflux from dead.end éqre

distribution function of holeéules coming from i
scaled cylindrical wall flux

scaled flux from the back end of the dead end.pore.
correction factor for the back end flux |
correction factor for the outflux

correcfion factor for the cylindrical wall fluk
scaled.distance along dead end pore axis

scaled time (from oéenihg of tﬁe cylinder entrance)

constant

permeability

length. of the dead end pore; length of porous medium slab

length of freeze section from. probe

square root of the ratio of wall temperature to temperature’

of gas outside the dead end pore

constant of 0(l) — relates permeability and the sqqare of

thg pore radius

an integef

number density of molecules coming from i.
pressuré of gas at i

mass flux
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radial distance from dead end pore axis; radial distance
of spherically symmetric flow.

radial distance of i in spherically symmetric flow
gas constant

time from opening of dead end pore entrance

scale for time, temperature

temperature of molecules coming from i.

most probable molecular velocity.

axial distance along dead end pore axis

(alpha) porosity

(zeta) molecular flux from i
(zeta) modecular flux f;om.i to j
(lambda) means.freé path at i
(mu) viscosity

(xi)‘mqlecular velocity

(rho) density

back end

cyliﬁdrical wall

~entrance

freeze section
wall

probe entrance
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Chapter 2. EXPERIMENTAL STUDIES
F. C. Hurlbut, C. R. Jih, and P.-A. Witherspoon

INTRODUCTION

The underiying rationale for. undertaking studies of fluia flows’
in porous medla under rarefied gas flow condltlons has been to supply
the empirical basis for theory necessary to the desxgn and understandlng
of a permeability probe device for in sztu.experlmentatlon at the 1unar
surface. A second objective has been to provide the pra tlcal‘experiéhce
in such experimentation necesSary to permit a sound, efficient,. and work-

able design:of such a probe.

The outlines of ourvattack;bboth theoretical and experimental, have
been summarized ih-the‘1969 Final Report, Vol. IV  of IV, "Studies on
Conductivity of Lunar Surface Materials," by Katz, Willis,and‘witherspoon,
and remain very little chahged to this date. In that report our current
state of knowledge was described, preliminary concepts of probe de51gn

were discussed, and dlrectlons of analy51s were indicdated.

.The present report is confined to the description of the ong01ng
'experlmental program and to a presentatlon and discussion of prellmlnary
observatlons. It should be understood as a record of work in progress
and is to be taken, together with the 1976 Final Report, "Studies of
Fluld Conduct1v1ty of Lunar Surface Materlals —-Theoretlcal Studies,"
by Raghuraman and Willis, as a representatlon of our progress in the

fiscal year 1969-1970.

BACKGROUND

The flow of gases through porous media has received a moderate
‘amountgof attention over the years as, for“example, the flows of low-
dehsity_gases connected with the problems of catalytic beds or with
those ‘of transport.phenomena at permeable barriers. The words "low
density" refer here to conditions under which the Knudsen numher, hased=

on'pore size, is greater than " 1/100. One may note that such low-



density flows hdght»well occur at pressures above or below 1 atmosphere
for rocks within the ordinary range of pore size. Above the iimittof
low density cited, the flow of gases in porous media may be treated by
the empirical continuum methods which have been found to be successful.
Prior studies of low-density flows have been confined to-eertainvéemi—
continuum models or to the assumption:that the flows ere entlrely free
molecuie in character. Such models imply that the den51ty gradlents'
are everywhere small, a constraint which cannot be-applied in general
to flows in porous media whose natural environment is, and has been for

a very long time, a vacuum.

Related studies of the flow throdéh capillaxies have been more
widely conducted, and it woﬁld be  in cohnection with these.somewhat
-éimpler flows.that one would hope to see the developmeht of theoretical
models for the transition from continuum flows to the free molecule
regime; such models would provide a valuable haee for modeling the
porous medium. However, we again fihd that nearly all theoretical work
has confined itself to conditions where the density gradients are small
so that the gas remains within e particular regime of flows-throughout
the capillary. Work relating to larger density grediehts-hae been con-
ducted by interpolation and fitting but without a rigorouslbasis in the
klnetlc theory. Experlmental work on caplllary flows has been conducted
under conditions approprlate to the theory w1th few-exoeptiohs'and in 
these latter cases no examination has been'made of the details of the
transition from continuum flow:to'free molecule flow.

‘With these limitations of available ihformatidn'ih evidence it was
'detetmined to undertake direct measurements of porous medium permeability
under low—den51ty condltlons as the most efficient route to the design
and understanding of an in situ permeablllty probe for 1unar materials.
It was determined-that 1n1t1a1 investigations should be of one—dlmen51onal
flows througa homogeneous, 51mu1ated rock samples hav1ng a range of
permeabllltles. Use would be made of the pumping system-essoc;ated with -
'the,existinq farefiea gas wind tunnel, and it was also pianned that
advantage would be taken of the technology and experience of the Rarefied
Gas Laboratory.* The pfogram-of aesign, Construction, and measurement

‘has proceeded well, but not as rapidly as planned, so that to this time

*y. C. Division of Aeronautical Sciences (MechanicalvEngineering)



only the first phases of the measurement program have been completed.' In

the next sections details of the permeability apparatus are given.

DESIGN AND CONSTRUCTION OF APPARATUS

Introduction

As in the proposed permeability probe, gas from a source at moderate
pressures flows into the porous specihen toward a sink at low pressures.
If the Xnudsen number of the flow is initially of order 1 or smaller,
the flow will inevitably transform to a free molecule flow wiﬁhin the
specimen. The character of the transition, as deterﬁined by the measured
pressures at various distances from the source, will permit a calculaﬁion
of'permeability and possibly pore size and configuration when suitabie
theory becomes available, The experimental apparatus required for the
investigétion of one-dimensional flows within the above conceptual
framework consists of a gas source and flow metering‘éystem, a épecimen
chamber with pressure taps distributed élong its 1ength,'a‘pressure
- transducer and metering'system, a high capacity vaéuum'pump,-and the
necessary valves, ancillary gauges, and pumps.. A detailed description

follows.

Description of the Apparatus

It was é basic objective of the design that it should permit the
.detailed examination of pressures as a function of position along a one
dimensional flow throuéh a porous specimen. It was determined that the
specimen should consist of up to 10 cylindrical slabs, each of thickness
to 1 inch ana diameter 2.5 inches, permitting pressure measurementé to
be made-at discrete intervals by sampling the space between slabs. The
arrangement is shown in Figure 2-1, a dimensioned assembly drawing of
the equipment. The specimen‘chambers, shown in greater detaii (Figure
2-2), consist of 2 flanged cylinders of stainless steel each with pro-
visions for 5 segments éf épecimen. Each specimén segment consists of a
plexigiass ring within which is cast the porous material. A seal between
the plexiglass.ring.and the inner wall of the specimen chamber is arranged

v

by an "0" ring set in a gfoove in the chamber wall. Pressure taps with
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pressure leads of 1/4" diameter stainless tubing welded in place are
provided between each specimen'position. .Spacer rings between each

specimen maintain the correct position.

. Uniform entry conditions’oﬁer'each slab face are established by
virtue of the high flow conductance of the large gap between slabs as
compared with the lower conductance of the slab matérial. "Thus a.
segmented ideal one-dimensional flow iswpermitted. Note that:the
nuﬁber of siabs may be varied from 1 to 10 and;that'thé thiékness‘of

éaqh slab méy be arbitrarily determined up to 1 inch.

Each preésure tap is connected via a valve to a central-manifold
and that manifold is connected througt 3/4-‘nch-copper tubing and a
quarter swing valve to a pressure transducer. Ample conductance is
provided to permit degassing the specimens and to make possible a
sufficiently short gauge tesponse time. The pressure transduéer is
‘ én MKS diaphragm gauge having a maxiﬁum differential pressure rahgé,df
30 Torr. This device was selected for its well-known accuracy, stability,
and insensitiVity ﬁo'gas‘composition, Since it is a differential_pressure
gaugé it must.be connected to a reference vacuum system, detailsqu which
are shown in Figureé 2-1 and 2-3. Note that a bypass'valvé is prpvided
fOr_establishing.the zero of the gauge and to permit evacuation of the

manifold.

At the~downstreamvend of the.Specimen'chambers is a 6-inch vacuum
gate valve and beyond that,the main'manifoldvof the rarefied éas wind
tunnel. The pumbs associated with the wind tunnel flow system have the
capacity to maintain the downétream end of the permeability_apparatus;

at 1 tq'2 microns Hg for any realistic flow within the porous samples.

The"gas‘supply syétem is also shown_iﬁ'Figure 2-1.'.This éYstém
consists of high and intermediate pressure regulators, approp;iate shut¥
ofvaalves;~and a gés-service regulator followed by a system of 5 viscosity
type %low raters covering a range of flow rates to v 3 X 10'-3 cc/séc.

For lower rates'of.gas flow the film—capillafy, positive dispiacémght‘
method will be used. A needle valve between the flow metéring systeﬁ

and the first specimen chamber serves to regulate the.fldw_rate.'
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An overall view of the permeability apparatus is shown in the

[

photograph, Figure 2-4.

SPECIMEN PREPARATION

A number of options exist for the preparation of porous samples.
Among these are the aggregation of sand particles using wax or resih
binders; the casting of concretes and artificial'stones;'the sintering
of metalllc beads, chlps, flllngs, or flbers, the sintering of ceramlc
materials in fibre, bead, or rod - form, and . the cuttlng of natural rocks,
partlcularly those of volcanlc orlgln; To be suitable for low.pressure
measurements, the porous media must be free of organic materials hav1ng
vapor pressures in the micron‘iange. In order to insure an extended
region of transition flow under pressure conditions approprlate to
this experiment, the samples should have much greater permeablllty than

ordlnarlly found in natural rock

The various constralnts of the present program favored the con-
struction of 51ntered materlals, preferably ceramics. However, for
initial performance testing it was decided that cast concrete specimens
would serve and that these could be eonstructed using materials and
technology readily available in the Civil Engineering Laboratories.
Accordingly,three.sets of cast conerete'samples'Were prepared, cafeful
attention being paid to mixing and uniforﬁity of‘casting_precedure.: The

composition of these samples is.shown in Table 2-1.

Table 2-1

Sample . _ ) Sand e ' Cement i o Water
' (gm’ o C(gm (gm)

1 ‘A 20000 . - 100 o 100

2 ' 2000 . - 500 - 250
3 2000 ' 800 400

' In each set the concrete was cast into 12 to 16 plexiglass ring
forms.efilfinch depth. Upon: curing and drying the samples, the perme-

ability for air -was measured at atmospheric pressure and above using
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a standard:permeability:apparatus;_ Set 3 was rejectéd immeaiately
as too imﬁermeable} and theslo slabs most uniform in permeability were
selected from each of sets 1 and 2. The results of these tests are

shown in Table 2-2.>

Table 2-2

Slab | Permeability | Slab - Permeébility
_No. _1 VK(cmz) o No. .K(cmz)A

(x 1071 | v(x:lo—iz)
1-1 é.j 2-2 4.5
1-2 9.3 ‘2j3 6.8
1-3 9.3 2;5 4.5
1-4 9.3 2-7 4.8
1-5 9.1 2-8 7.5
1-6 9.1 2-9 4.8
1-7 9.1 2-10 5.2
1-8 9.1 - 2-11 5.8
1-9 9.5 2;l3 5.2

It may-be noted that Set No. 1 is both more unifotm and more
permeable  than Set No: 2."The_permeabilities are within the range

of the more porous natﬁralfrocks.

PRELIMINARY OBSERVATIONS

Prelimihary measurements were made on a set of 4 slabs (No.'s
242,'2—3,‘2-10'and 2-11) to gaih operational experience with the
instruments and to develop a ph?sicalﬂséﬁse fbr the;appropriate
perméaﬁility ranges of‘the ne#t'géneratién 6f‘specimens. _The‘gas'was

nitrogen. The tunnel downstream pressure and the M.K;S.‘gauge.referenCe
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pressure were at 1 micron or below. Operational experience was
obtalned although no useful quantltatlve information has resulted to
this point, -owing to the low permeability of the present specimens.

Certaln,conclu51ons may be drawn which are summarized as follows:

1. It must be recalled that the objective of the system
-design is to permit the study of the regime of transition
flows in porous media.. This is accompllshed by extendlng
the reglon of tran51tlon in physical space over slabs
whlch are somewhat less in thickness than that reglon. It
is lmplled that specimens of very high permeablllty must

be employed.

2. The flow conductance,of the speeimens must be sufficiently
'great that the pressure taps opeh into, effectively;‘an:_
unlimited reserv01r of gas at the measured pressure.
Thlnner samples and greater permeabilities will 1mprove

conditions in this regard.

- 3. In all regards the apparatus behaved well and appears to -

have the capability of giving results of -the qﬁality desired.

CONTINUING PROGRAM

‘Within the next feﬁ months it will be our objective to complete
measurements enabling the’description of transition'flows in poroﬁs
media. Interpretation of these results will require the independent
characterization of the medium in terms of pore size and cohfiguration;,
Such characterization will be accomplished by a combinatioh of optical
and displacement methods and by a knowledge of the 51ze and conflgura—
tion of particles (beads, rods, etc.) used for the preparation of each
sample. Materials of various descriptions will be‘formedllnto spe01menf
slabs,-With sintering being viewed as the most promising techniqﬁevat
this time; Thus, one may summarize by stating that the next phase of
_our_activity will consist of four essential parts: 1) the'preparation_
of suitable samples, 2) thevphysical characterization of these samples,
~3l the .measurement of flow characteristics, and 4) the interpretation

of results.



