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PREFACE

The optimization and control of spacecraft trajectories
has been of considerable interest during the past decade, and a
significant amount of progress has been made 1n developing a
theoretical and numerical‘capability'to solve complex trajec-
v tory problems. There still exists, however, a need to deter-
mine the best épproach, given a specific problem. The gener-
ality of such a task is overwhelming, but an initial step is
taken when‘most of the promising methods have been studied
with the aid of a specific, but representative example. This
dissertation takes this first step, and along with several
significant -theoretical and numerical contributions, compareé
the relative merits of sevefal traJector& optimization methods.
In each sfage of thils research, the author has bene-
fited from many valuable suggesﬁions by and discussions with
~many indlviduals. He wishes to express sincere appreciation to
W. T. Fowler, G. J. Lastman, and J. F. Jordan who, as fellow
students, provided considerable eﬁcouragement. He wishes to
express gratitude to Professors L. Clark, W. Carter and
.E. Prouse of The University of Texas for rea@ing the manuscrigt
- and making helpful suggestions. The author 1s especially in-
debted to R. D. Witty of the Lockheed Electrohic Corporation,

without whose patience, intelligence and persistence the en-

deavor, as presented, would have never been realized.
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The author also wisheg to express gratitude to
E. L. Davis, Jr. of the Manned Spacecraft Center for pbovid-
ing a stimulating environment and great encouragement during
the course of this study. He 1s especlally indebted to | .
‘rofessor B. D. Tapley of The University of Texas who served : .
as advisor, but more than that a good frilend and teacher and
a cogstant source of inspiration and guidance.
The author wishes to express his deepest gratitude tb
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ABSTRACT

A theoretical development and comparative evalddtioﬁ is
made for several methods of solving the problem associated with
the optimum transfer of a spacecraft. Particular attention is
given to the sensitivity of the convergence characteristics of
the methods to. initially assumed parameters and trial solutions;
convergence times, computer logilc ahd storage requirements. '

The mephods considered may be classified as one of the
following types: (1)«Perturbétion, Second Variation or Ex- =
tremal Field Methods, (2) Quasilinearization or Generalized"
Newton-Raphson Meg?ods, or (3) Gradient or Steepest Descent
Methods. The numerical comparison of the convergence, charac-
teristics 1s made by considering a Tinimum time, low thrust,
Earth-Marsvtransfer trajectory. |

A new quasilinearization method, called the Modified
Quasilinearization Method, is proposed. For the example coh—
sidered, thils method feduces convergence time by approximately
70% when compared with the Generalized Newton-Raphson Method.
Moreover, the method allows the terminal boundary to be speci-
fied by‘a general function of the problem varilables rather
than individual values of the varlables themselves.

A uniquely Specified and easily determined, time de-
pendent welghting matrix has been discovered for the gradient

techniques. This welghting matrix accelerates the shaping of




the optimal control program and improves the convergence
characteristics during the terminal iterations by giving more
welght to regions of low sensitivity.

~ Convergence envelopes, which glve an indication of how
sensitive the convergence characteristics are to initially
assﬁmed}parameters, are plotted for the Perturbation and
Quasilinearization Methods. Several iteration schemes are
proposed which significantly increase the size of the con-
vergence envelopes, and hence decrease the sensitivity of

the method to initially assumed parameters.

vi



v

TABLE OF CONTENTS

Methods L L] L] . . L] L] L] L] L 3 L]

vii

/.

Page
PREFACE . . . v ¢ ¢ o v v v v v o v o v o o o e e s i1t
ABSTRACT . . ¢« ¢ v ¢« ¢« v v o o ¢ o . . ¥ v
LIST OF FIGURES . . « ¢ v ¢« ¢« ¢ o, ¢ o s o . RN b
LIST OF SYMBOLS . . ... . . . .‘. W e 8 s e e o e e Xv
CHAPTER 1 -‘INTRODUCTION-‘. T AN 1
1.1 Definition of the Optimization'Problem . 1
1.2 ‘Background Study of Optimizatior Theory : 3
1.3 Purpose of the Investigation . 14
ll.ﬁ Scope of the Investigation . . 14
CHAPTER 2 - FORMULATION OF THE OPTIMIZATION PROBLEM Coe 16
2.1 Derivation of the Necessary Conditions for an
: Optimal TrajJectory . . . . . . & . . . . e . 16
2;2 Reduction of the Optimization Problem to a Two-
Point Boundary Value Problem . .o 24
CHAPTER 3 - PERTURBATION METHODS . . + + « « « . . . 32
3.1 Methods of Adjoint Functions . . C e e e e . 36
‘3.2 Methods of Perturbation Functions b5
3.3 Iteration Philosophy for the Perturbation
Methods . . . . . . . . . .. . 51
'TCHAPTER 4 - QUASILINEARIZATION METHODS . e . '59.
' d.l Methods of Generalized Newton- Raphson . €0
4.2 Modified Quabilinearization'Method . 66
4,3 1Iteration Philosophy for the Ouasilinearization _ 70

,



TABLE OF CONTENTS
(CONT'D)

CHAPTER 5 - GRADIENT METHODS . . . v ¢ « « ¢« « « « .

5.1 Method of Steepest Descent . . . . . . .'.5f ;

5.2 Modified Method of Steepest Descent . . . .
5.3 Iteration Philosophy for the Gradient Methods

CHAPTER 6 - COMPARISON AND DISCUSSION OF THE OPTIMIZA-
TION METHODS AND ITERATION SCHEMES . .

6.1 Selection of Methods‘for Combarative Study
6.2 Basis of Comparisoh-. e e e e e e e

6.3 Perturbation Methods . . . . . .

6.4 Quasilinearization Methods . . . . Coe e
6.5 _Gfadient MEthods v v v v v v v o 0 e e e
6.6 lSummary of the Comparison-.-. e e e e e

CHAPTER 7 ~ DESCRIPTION AND EVALUATION OF NUMERICAL

PERFORMANCE . . . v &+ &« v v v o o & o o o &
7.1 Numerical Integration . . v ¢« ¢ o « « o + .
7.2 Linear System Routine . . . . . . . . . .

7.3 Numerical Criteria Affecting Accuracy . . .

7.4 Computation Facilities e e e e e e e e e
CHAPTER 8 - CONCLUSIONS AND RECOMMENDATIONS e

8.1 Summary of Conclusions Coe ; R

8.2 Recommendations for Continued Study e

APPENDICES + + + v v o o v v e e e v e e e e e e o

viii L

-
100

101

102

103

144
165
178

180

180
186
186

| Pagé'f

191

192

192
194
196

»



TABLE OF CONTENTS
(CONT'D)

Applicatibn of the Reduction of an Optimization

- A.1
Problem to a Two-Point Boundary Value Problem
A.2 Diséussién of the Applications' e e e e e e
A.2.1 Application of the Method of AdJoint Func-
tionS . . . 3 . . » L] . . .
A.2.2 Application of the Method of Perturbation
. Functions . . . . . . . . . . . . 3 )
A.2.3 Application of the Modiried Quasilineariza-
- t ion MethOd £ ] L] [ L] [ ] L] [ [ ] L] [ [ ] » [ ] . O\\ '
'A.2.4 Application of the Method of Steepest
N Descent . L] L] L] . [ ] * L] . [ * l- . . . . .
A.2.5 Application of the Modified Method of
: Steepest Descent . . . . . . . e
A.3 Numerical Constants . . . +. &+ ¢« ¢ + &« « o+ &
A.4 Normalization Scheme . . . . G e e
BIB'IJIOGRAPHY L] L] [ ] L] * L] L ] .
VITA . . . . L ] . L] L ] L] . . L] . L ] [ ] L] L] .
/.

ix

Page

196

202

217

222



Figure

ro

10

LIST OF FIGURES

Convergence Envelope for the MAF Using the
Normal Iteration Scheme, Initial Iteration

Factor of 100% and Terminal Time Error of

-20% . ..

~

:Convergenee Envelope for the MAF Using the
Normal Iteration Scheme, Initial Iteration:

Pactor of 100% and Terminal Time Error of
L) ‘;‘\; . L] . L ] L] L [ ] . . L] [ ] . . L] . L]

Convergence Envelope for the MAF Using the

Normal Iteration Scheme, Initial Iteration’

Factor of lOOﬁ and Terminal Time Error of
20% . . . . . . . . . . . . . . : .

‘Convergence Envelope for the MAF Using'It-

eration Scheme 1, Initial Iteration Factor
of 100% and Terminal Time Error of -20%

Convergence Envelope for the MAF Using It-
eration- Scheme 1, Inltial Iteration Factor
of 100% and Terminal Time Error of 0%

Convergence Envelope for the MAF Using It-
eration Scheme 1, Initial Iteration Factor
of 100% and Terminal Time Error of 207%

Convergence Envelope for the MAF Using It-

eration Scheme 1, Initial Iteration Factor
of 50% and Terminal Time Error of -20%

Convergence Envelope for the MAF Using It-
eration Schemes 1 and 2, Initial Jteration
Factor of 50%, Terminal Time Error of 0%
and Update Integer of 1 . . . . .

Convergence Envelope for the MAF Using It-
eration Scheme 1, Initial Iteration Factor
of 50% and Terminal Time Error of 20%

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor
of 50%, Terminal "Time Error of 0% and Up-

date Integer Of 2 v v o o o o o o o e .

Page

- 107

108

109

112

113

114

115

116

117

119



Figure

11

12

13 .

14

15

16

17

18

19

20

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor

of 50%, Terminal "Time Error of 0% and Up-
date Integer of U . . . o e e e e e

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor

- of 50%, Terminal "Time Error of 0% and Up-

date Integer of 6 . . . . . e e e e e e

Convergence Time as a Function of the Initial
Value of Iteration PFactor for the MAF Using
Itel"ation SCheme l . . . L] . L] . . . . . []

Convergence Time as a Function of the Initial

Value of Iteration Factor for the MAF Using
Iteration Scheme 2 . « ¢« ¢ ¢ ¢« o ¢ « o o o

Convergence Envelope for the MAF Using It-
eration Schemes 1 and 2, Initial Iteration
Factor of 50%, Terminal Time Error of 0%

and Update Integer of 1 (Time). . . . . . . .

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor
of 50%, Terminal "Pime Error of O% and Up-
date Integer of 2 (Time) . . .

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor
of 50%, Terminal Time Error of 0% and Up-
date Integer of 4 (Time) .+ . « « « « « « o &

Convergence Envelope for the MAF Using It-
eration Scheme 2, Initial Iteration Factor
of 50%, Terminal Time Error of 0% and Up-
date Integer of 6 (Time) « « « « o o o « o &

Norm of Terminal Constraints as a Function
of Computation Time for the MAF Using It-
eration Scheme 1 R . e

Norm ef Terminal Constraints as a PFunction

of Computation Time ror the MAF Using It-
eration Scheme 2 . . . .' . . . . . . . . . l.

xi

Page
120

121
123

125 -
126
127
123

129
131

132



22

23

o4
25
26
27
28
29
30

31

Convergence Envelope for the MAF Using the
Normal Iteration Schemc, Initial Iteration
Factor of 100% and Terminal Time Error of:
-10% (Earth Launch) . . . . . . . . . .

Convergence Envelope for the MAF Using the
Normal Iteration Scheme, Initial Iteration
Factor of 100% and Terminal Time Error of
0% (Earth Launch) . . . « . o . .+ . . . .

‘Convergence Envelope for the MAF Using the

Normal Iteration Scheme, Initial Iteration
Factor of 100% and Terminal Time Error of
102 (Earth Launch) . . . . . . . . . .

Convergence Envelope for the MPF Using It-
eration Scheme 1, Initial Iteration Factor
of 100% and Terminal Time Error of 0% '

Convergence Envelope for the MPF Using It-
eration Scheme 1, Initial Iteration Factor
of 50% and Terminal Time Error of 0%

Convergence Envelope for the MPF Using It-
eration Scheme 1, Initial Iteration Factor
of 100% and Terminal Time Error of 0% (Time) .

~Convergence Envelope for the MPF Using It-

eration Scheme 1, Initial Iteration Factor
of 50% and Terminal Time Error of 0% (Time) E

Metric  p as a Function of Computation Time

.for the MGNR Using the Normal Iteration' Scheme.

Metric p .as a Function of Convergence Time
for the MGNR Using Iteration Scheme 1,
Initial Iteration Factor of 1007 and a
Linear Initial Solution . . . . . .

Metric o as a Function of Computation Time
for the MMGNR Using the Normal Iteration
Scheme e e e e

Convergence Envelope for the MQM Using the
Normal Iteration Scheme, Initial Iteration
Factor of 100% and Terminal Time Error of
—20% . . . . . . . . . . . - . . . . . .

xii

Page

134

135

136

140

141

142

143

148

149

151

154

>



4

Figure

e
33
34
35

o
37
38

39
40
i1

42

. o ‘Page
Convergence Envelobe‘for the MQM Using the
Normal Iteration Scheme, Initial Iteration

Factor of 100% and Terminal Time Error or :
oz 0 LY . s . . .. . s e . . . . . L Y ) . 155

Cbnvergence Envelope for the MQM Using the
Normal Iteration Scheme, Initial Iteration .
Factor .of 100% and Terminal Time Error of
208 . . . . . Coe e e e e e e e e 156

Convergence Envelope for the MQM Using It-
eration Scheme 2, Initial Iteration Factor

: of 50% and Terminal Time Error of -20% ) . 157.

Convergence Envelope for the MQM . Using It-
eration Scheme 2, Initial Iteration Factor
of 50% and Terminal Time Error of 0% . ... .. 158

Convergence Envelope for the MQM Using It-

eration Scheme 2, Initial Iteration Factor

of 50% and Terminal Time Error of 20% . . . 159

Convergence Envelope for the MQM Using It-
eration Scheme 2, Initial Iteration Factor
of 50% and Terminal Time Error of 0% (Time) . 161

Metric p as a Function of Computation

Time for the MQM Using Iteration Scheme 2,

Initial Iteration Factor of 100% and for

Linear and Nonlinear Initial Solutions . . . 162

Convergence Time as a Function of the

- Initial Value of Iteration Factor for the

MQM Using Iteration Scheme 2 and a Non-
linear Initial Solution . . . . c e v s 164"

Metric p as a Function of Computation

Time for the MQM Using Iteration Scheme 2 -
and a Nonlinear Initial Solution ... . . 166
Thrust Angle as a Function of Mission Time

for Earth-Mars Transfer Using the MSD and

Weighting Matrix W =1 (Case 1) . . « « .« . 171

Thrust Angle as a Function of Mission Time

for Earth-Mars Transfer Using the MSD and
Weighting Matrix W =1 (Case 2) . . . . . . 172

xiii



A.2.3

A.2. 4

Thrust Angle as a Function of Mission Time
for Earth-Mars Transfer Using the MSD and .
Weighting Matrix W = H. (Case 1) . . . . . 173

Thrust Angle as 'a Function of Mission Time
for Earth-Mars Transfer Using the MSD and
Weighting Matrix W = H =~ (Case 2) . . . . s 174

Convergence Time as a Function of Integra-
tion Step Size Using Normal Iteration
Scheme . . . . [ ] . . . . . [ (] [ . . * [ 185

Optimal Trajectory for the Earth-Mars Trans-
fer . . . . . - LI . . . . . . . LI 3 3 . [ 205

Optimal Constant and Unbounded Thrust Pro- :
gram for the Earth-Mars Transfer . . . . . « 207

Optimal Trajectory for the Atmoapheric »
Earth Launch =« « « .« . e e e e e e e e 208

Optimal Constant and. Unbounded Thrust Pro-
gram for the Atmospheric Earth Launcb o« e e e 210

/ xiv



-y

LIST OF SYMBOLS

. The following list tabulates all significant symbols

used in the main text. Each symbol i1s accompanied by a brief

description and the equatioh'numbér where tﬁe symbol is first

introduced. A definition of each symbol is given where the

symbol 1s introduced.

Matrices:
The matrix size is indigated in the statement immedi-
ately following the symbol. The following speciric‘indices

are used.

n - the numbe} of state variables
m - the number of control variables

. p - the number of initially specified con- ,
‘ " straint relations

qQ - the number of terminally specified con-
straint relations

A 2n x 2n matrix of partial derivatives, (3.2)

'F_ n x n matrix of partial derivatives, (5.5)

G n x m matrix of partial derivatives, (5.5)

I ‘A 2& i 2; dnity matfix,_(B.lO)

W © m x m matrix of arbitrary weighting tefms, (5.19)
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- CHAPTER 1
INTRODUCTION

« A treatise on the theory of traJectory Optimization and
its application requires a clear and meaningful definition of the
problem. This derinition should 1nclude a discussion of the
terms and concepts required 1n studying the background material

and the theoretical rormulations. An indication of the purpose

[

of the 1nvest1gat;o is given along with the extent or scope of

such a study.

1.1 Definition of the Optimization Problem

The optimization of spacecraft trajectories has been of
considerable interest for a number of years, and significant proc-
gress has.been made in developing a capability for solvinglvery
eomplex_trajectory problems. In one class of optimization prob-
lems, it is desired to determine the history of the control vari-
ables in such a manner that certain specified initial and terri-
nal constrailnts are satisfied while some performance index 1s ex-
tremized. The control variables are unspecified inputs to toe
system which may be chosen to control the state, 1.e., the pcsi-
tion and velocity. The initial ahd terminal constraints are
simply conditions on therpositien and velocity that must be szt-
isfied at the 1initial and terminal time, respectively. The per-
formance index 1s usually a scalar function associated with the

‘spacecraft performance and is the quantity to be extremized. It



may be a scalar function of the terminal state and time and/or a
scalar ‘iIntegral term evaluated along the traJectory} .
| The:calculus of varlations is fhe classicai tool for

solving such problems, and with its use necessary conditions for
an optimal trajectory may be derived; These ﬁécessarylconditions‘
are dériVed in Chapter 2 and consist of bbundéry conditions re-
ferred to:aé.transversality conditions, algebraic equations re-
ferred to as optimality conditions and the Euler-Lagrange dif-
ferential equations. The optimality conditions and the Euler-'u
Lagrange equations must be satisfied at each point in the time -
interval of interest. - A closed rbrm solution'ror these equations
and boundary conditions is very difficult to 6btain and has been
obtained for only a few relatively simple cases. When an opﬁimi—
zation problem is solved numerically in such a way that the ne-
cessary conditions are satisfied, the method 1s usually desig-
nated an indirect method. )

‘There have been alternate methods deQeIoped to solve the
above stated class of problems without using the necessary condi-
tions derived with the calculus of variations. These'hethods,
usually referred to as direct methods, use influence functlons
which indicate how the pefformance index and terminal constraints
are influenced by initial state variations and integrated control -
variations.

In both the indirect and direct methods, the terminal
constraints are handled in either the io-called "hard" or "soft"
forms. 1In the "hard" form an effort is made to satisfy the

terminal constraints identically while in the "soft" form the



ds
terminal constraints are satisfied only approximately. .It'is
| with this latter case that the penalty funcﬁion concept to be_
.piSéussed later is introduced. The philoéophy used in this
method 1s that a certain penalty 1is accepted because of the

apprqximate satisfaction of the terminal constraints.
. /.

1.2 Background Study of Obpimization}TheofX

In assessing the "state of the art" in trajectoronptimi-
zation theory and application, 1f is helpful to understand the |
developments that lead to this current state. This background ié
divided iInto-previous and recent developments, the recent devel-
.opments being made since about 1960. The distinction between in;
direct and direct methods has become 1ndfeasidgly clear during |

these recent years and are discussed separately.

1.2.1 Previous Developments

f

The original trajectory optimization problems were formu-
- lated 1n terms of a set of nonlinear, ordinary differentlal equa-
tions, which were required to satisfy split boundary conditions.
The first problems to be solved wére extremely simple since
numeficalwsolufion of the &ore difficult problems required ex-
‘tensive computations. With the advent of the high speed digital
computer, ‘several previously impractical methods became available
for numerical solﬁtions. Development of the computer has stimu-
lated the formulation of many previously unknown methods.

.Some of the first published formulations of optimal tra-

Jectory programming problems appeared in the early 1950's. One



of the best known was by Lawden kl)* in which the equations which
describgd the optimal trajectory were derived for the general
case of a rocket moving in a speci{ied gravitational field and
subject to atmospheric resistance. ,Howeve:, results for only the
highly specialized case of uniform éravitational,field'and no
atmospheric resistance are bresented. The analysis probabiy re-
presents one of the most difficult known cases for which a closed
form solution can be obfained. | . -

In August 1957, a classical paper was published by
Breakwell\(2)_in which a method was presented for using a high -
speed digital computer for the study of a broad class of tra- |
Jectory optimi;ation problems. This class includes boost tra-
Jectories for maximum range or maximum energy, minimum time 1in-
tercept trajectories, and maximum glide range trajectorlies. The,
method devised for determining a solution requires a guess for
unknown initial conditions and an interpolation procedure to de-
crease 'the te}minal constraint dissatisfactibn on each chcessive
1teratlon. This particular approach can become extremely time-
consuming and inefficient. , .

A different analytical development of trajectory optimi-
zation theory was_publishedAby Kelley.(3) in October 1960. The
method 1is referred tq as the gradient method and it is based on .

an extension of some 1ideas presented by Courant in 1941. The

gradient technique represented a completely different approach

_ " #Numbers appearing 1n_pérenthesis rollowihg a name refer
to publications listed in the References.



to the solution of optimization problems,_aﬁd it soon became
evident that the recently developed optimization schemes would
fit into two baslcally different classifications, the indirect
and direct'tfajectory optimization methods.

The indirect'methqu involve the simultaneous . solution
'of the differential equations of motion and the Euler-Lagrange - .
eguaticns while saiisfying at each pointlin time a local opti- .
mality condition. Hence, every traJectory iteration 1is an .opti-
mal tféjectory, from the initial to some terhinal point in space.
The only remaining problem i1s to satisgy the terminal constraint
relations.‘ This approacﬁ also includes methods where the dif-
ferential equations mentioned above are lineérized about the
previous traJeétory 1terati§ﬁ, even thqugh the trajectories are
not exactly optimal in this case.

The direct methods involve the solution of the differ-
ential equations of motion and ﬁroduée conérol variable modifi-
cations that extremize the desired performance index while de-
creasing the terminal constraint dissatisfaction. This aéproach

includes the gradient techniques.:

1.2.2 Recent Developments
Since 1960 there have been a number of significant im-

provements for both the indirect and direct trajectory optimi-

/

zation methods. During this recent period a distinct difference

between the two appfoaches has evolved and for this reason the

approaches are discussed sgﬁarately._'

—~



1.2.2.1 Indirect Approaches o

‘ As mentioned earlier, the capability for solving'optinom
trajectory problems has existed since the'deveiopment ofjthe
theory to solve the two-point boundarv'vaiue prohlen,‘honever,A
numerical computation schemes were lacking. One'or the first
recent schemes was published hv MacKay, Rossa; and Zimmerman (4)
in 1961. The analysis uses a set of differential eqnations'
which describe the'optimai thrust direction.and a criterion‘for
determining the best time at Which.to begin and end-a coast
phase. - An’ iteration method is used to solve the two point
boundary value problem.  The various partial derivatives that(
describe how the terminal state changes as the initlial state 1s
changed, are evaluated by a firstforder finite difference tech—
‘nique and the successive integration of the differentialiequa- |
tions. B . :

Melbourne, Sauer, and ﬁichardson'(S). also in 1961,
presented the results of anvinvestigation of optimnm rendezvous
and round trip trajectories for a typical mission to Mars. A
classical calculus of variation approach 1s used and a Newton-‘
Raphson technique 1s implemented for the solution of the two-
point boundary value problem. The technique for determininglthe
partial derivative matrix is similar to that Jsed“by MacKay, .
Rossa; and Zimmermanf(u) and the suggestion is made'that‘this
matrix be'updated oniy once'every several trajectory iterations.
The Newton-ﬁaphson optinization methoddis discussed |

further by Scharmack (6) and several examples are presented AnA

especially simple special form of the Newton Raphson method is



givénAalso for the case where the terminal boundary 1is a func-
tion of time alone.

\ In 1§62 Jurovics and McIntyre (7) presented a method

~ for the Systematic evaluation of the two-point boundary value
problem using the equations adjoint to éhe linearized differen-~
tial equations of motion and the Euler-Lagrange equations. The
foundation of this work was lald by Goodman and Lance (8), but
the applicability of the technique to systemé of nonlinear
equations 1s very limited and the terminal time must be known.
Jurovics and MdIntyre eliminated some of the restrictions and
extended the technique to'allow for variable terminal time.

An. extension was méde to.the'Newton—Raphson techniques
by Breakwell, Speyer, and Bryson (9) in 1963. The procedure is
based partially on previous work by Breakwell (10) in 1959.

The method uses a set of equations obtained by pertdrbing the
previous nominal trajectory to evaluate the required partial de-
rivative matrix. The generality of the formulation allows for
variable terminal time and the satisfaction of time and state
dependent terminal constralnts. After the partial derivative .
matrix has been determined, a multiple linear interpolation is
made to determine the corrections required for the 1inlitlal con-
ditions. The Euler-Lagrange equations are satisfied on every
iteration, and hence every trajectory is an optimal one.
However, the terminal constraints must be satisfied by an itera-
tive process,

A rather recent developmeht based on the theory of the

second varlation was published by Kelley; Kopp, and Mbyer (11)

\
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in 1963. 1In the~1nitia1 phase of computation, the penalty func-
tion concept of handling the terminal constraints-1is used, agd
the process behaves much like the classical gradient technique.
During the terminal phase, the constraints are satisfied exactly »
and the method converges more rapidly than the gradient'scheme.ﬁ
However, the second variation method is significantly more com-
plicated, theoretically and computationally, than the first order
gradient theory. However, the reference does state that this
disadvantagé-is partially offset by a reduction in required comp-
utational timeL

Jazwinski (12) in 1964 presented an extension to the -
method suggested by Jurovics and McIntyre (7) by using the ad-
joint system'to solve optimization problems which contain initial
and terminal boundary conditions that are-general'functiéns of
the problem varlables. An additional feature of this scheme is
that after the open-loop optimization problem has been solved
all the information'fér the closed-loop control problém is avail--
abie. This 1nrormatioh is also available in Breakwell;'Speyer,‘
and Bryson's (9) paper, but it must be pointed out-that
Jazwinski's method requires fewer integrations of an equivalent
set of equations. ‘ - o ' y

A different approach to the solution of the indirect E N
optimization problem has been suggested by McGill and Kenneth -
(13) in 1964. This method, called the Gerieralized Newton-Raphson
Method, 1is forﬁulafed through the use of the quasilinearization
concept as presented by Kalaba (14). A convergence proof for the

method was presented by McGill and Kenneth (15) in:1963. This
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method uses the linearlized versions of fhe differential eqdations
of motion and the Euler-Lagrange equations, and proceeds to solve
a ;equenqe of,linear problems, the solutions of which convérgé to
the solutiéh of the desired nonlinear problem. A set of pertur-
bation or homogeneous equations are used to determine the partial
derivative matrix. The implementation of the procedure is simi-
lar to the perturbation method presented by Breakwell, Speyer,
‘and Bryson (9). The method is distinguished by the fact that an
initial solution must be assumed rather than just the initial
values of the dependent variables. Furthermore, variable termi-
nal time préblems are handled in a very awkward manner. o
The awkward handlihg of terminal time 1s partially re-
duced by Long (16) by introducing a change in the independ«rt
varliable. The method proposed bj Long is still rather cumiersone
because an additional differential equation must be integrz:te<
and all the previlious equations are complicated by ancther cor-
plex term. It is Shown, however, by McGill and Kennetn (1Z:,
that 1f convergence does occur it does so quadraticallf, arni trat
the terminal constraints, which are not general functicns cf ::e
problem variables, can be identically satisfied on every tra-
Jectory iteration. ’ ‘
'In summary, the indirect optimizatiog methods are usually
formulated in terms of a two-point boundary value problem, and
hence the many methods previously used for solution of this type
of problem become applicable for the solution of tfaJectory’opti-

mization problems. One of the most significant advantages of the

indirect methods is that the convergence properties are excellent.

»
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Another advantage is that the converged solution does représent,a
‘true optimal, nop\just an approximatlion. The most severe disad-
vantage 1s that the solution of.the differential equations 1s
highly sensitive to the initially assumed values of.thé.dependenf ,
variablés:. This implies that accurate initial values are needed
to start the integration, and the problem is compounded by the
fact that often 1little physical significance can be attached to
the initial valueé of the‘Eulef variables. b
The disadvantages associated with indirect-optimization
methods are severe enough. to encourage the forumulation of meth-
ods that eliminate these difficulties. The convergence of the
direct optimization methods arelnot as dependent on the initially
assumed parameters as are the indirect'methods, but some ex-
tremely undesirable characteristics are introduced. A brief dis-
cussion of the direct methods is given in the following sectlon.

\

1.2.2.2 Direct Approaches -

While the gradient theory for flight path optimization
was being developed by Kelley (3), a similar formulation was
being made simultaneously and independently by Bryson, Dénham,~
Carroll, and Mikami (17) (18). 1In Reference (17), the gradient
method 1s used to study the problem of determining a control '
variable program that minimizés.vehiqle heating during reentry
to the earth's .atmosphere.

In 1961, Kelley, Kopp, and Moyer (19) pregented an
analysis of several gradient methods using inequality constraints -

on the control varlables and a penalty function teéhnique for
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handling terminal constraints. It i1s pointed out in the stﬁdy
that the numerical results obtained were too limited for com-
-paring the relative merits of the methods.

In an effort to determine the thrust Steering program
for the optimization of a second stage boospér, Pfeiffer (20)
developed a method of "critical direction" which was similar
to the gradient techniques of Kelley and Bryson. This same
gradient concept is studied by Wagner and Jazwinski (21) and
‘hpoth terminal and instantaneous inequality cohstraints are
introduced into the formulation. Wagner and Jazwinski also pre-
sent ahfihterésting method for determining the step size magni;
tude that should be taken in the gradient diréction to approxi-
mately maximize the decrease in the penaity function.

The gradilent techniq;e i1s well defined and has been
quite successful in avolding the difficultles assoclated with
the two-point boundary value problem associated with the cal-
culus of variation necessary conditions. One of the most costly
deficiencies of this method is the poor convergence characteris-
tics in the terminal stage of convergence In 1963, Rosenbaum
(22) developed a method similar to a closed-loop guidance scheme
that'provides rapld convergence for a varlety of missiocns. The
'distincuive feature of this method is that the step size in the
graé;ent direction 1is calculated and becomes a time dependent
quantity. The significant result is that larger deviations from
‘the nominal trajectory can be tolerated while still satisfying
the terminal constraints, thus it 1s possible to move mofe

rapidly ‘toward the optimal trajectory.
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¥ Stancil (23), fnﬂ1964, presented a slightly different
approach to the inherent gradieht éohveréence problem. This
approach 1is similar to Rosenbaum (22) in that a time'depeﬁdént
welghting matrix is calculated. Basically the formulation
followed a suggestioh'ﬁade, but ndt‘used, by Bryson, Denham,
Carroll, and Mikami (17); in which the current céntrol,proéram
was averaged with the Eulerian control. | ”

The latéét innovation.to\aﬁ optimizafion method 1s re-
ported by McReynolds and Bryson (24), and 1s called a succes-
sive sweep method. To this éuﬁﬁor's knowledge, no computaﬁiqn—,
al results have been bubliéhéd. The .procedure represents an ex-
tension and unificatioh-6f'thé‘steebést-desbenf and second Qariat
tion techniques.“The brocedure réquires the backwards iﬁtégra-
tion of a set of eqﬁations; in éddiﬁién to the qual_adJoipt
equations, that generate a linear control law that preserves the
gradient history on the following stéé. ‘Tbe gradient histoty,
however, may be changed by specified amounts:while also.specify—
ing a change in the terminal constraint dissatisféct;on. Thus,
in a finite number df‘steps,.the»gradient'hisﬁory_éhd the term-
inal dissatisfaction caﬁ be forced to-éppréach zepof Actﬁally,
the method has charactefistics;similéf to indirect methods as
well as direct methods.

The method seems very promiéing from a theoretical point

of view, but before a‘Judgment on 1its applicability to solving_

trajectory bptimization broblehs can be made, some computational
experience must be obtalned.

In summary, the direct optimization methods suffer from
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poor convergence characteristics, as the.optimal trajectory is
approached and, in fact, never yields a solution which will
satisfy the classical optimality conditions. The methods, how- "
ever, do begin the convergence.process with a relatively ' poor
Initial estimate of the control variable-history, and seek weak
relative extremals as opposed to poiﬁts where the functional 1is

merely stationary.

1.2.3 Recent Comparisons

The number of published studies that compare the relative
merits of the recently developed trajectory optimization schemes
1s extremely limited.. The reason for this is certainly not be-
cause this type of knowledge 1s unwanted or meaningless, but be-
cause 1t is so difficult to select a reasonable basls for compar-
ison. Another discouraging fact is that most optimization.
methods are highly problem dependent. |

One study of three felated successive approximation
gr?dient schemes by Kelley, Kopp, and Moyer (19) in 1961 con-
cluded that the numerical results were too limited to provide a
comparison of the relative merits. The differences 1n conver-
gence speeds were 1nsignificant in comparison to the improvements
attainable by small adjustments ih éhe penalt&’function con-
~ straints.

A more recent publication by Kopp and McGill (25) and
Moyer and Pinkham (26) compares a gradient, second variation and
generalized.Newton-Raphsen technique on beth-theoretical and
computational basis... The theory is explainedvby~considering an

I
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ordinary minimum problem with a.side constraint. It 1s.statéd
in this reference that the second variation method is a speéific-h
approach to the generalized Newton;Raphson method. One con-
clusion made on convergence times is that the second variation
scheme requires approximately 50% less computer time than the
conventional gradient technique, and the generalized Newton-

Raphson method required even less time.

1.3 Purpose of the Investigation -

The ultimate purpose of this investigation is to develop
an insight into the available numerical optimization méthéds; S0
that, given a problem and a set of clrcumstances, an intelligent
choice may be made as to which procedure 1s best suited for that
particular problem. This ultimate purpose 1is approached by
satisfying the following secondary objectives:

(1) Increase the understanding of the currently

popular optimization methods sovfhat‘the‘del
ficient areas of each method are discovereg.
Extend and modify these methods to eliminage'
the deficlencies. |

. (2) Formulate a basls on which the methods may be
compared,‘and-make-a meaningful comparison of

the relative merits of each method.

1.4 Scope of the Investigation

The scope of the'investigation includes the theoretical

ldevelopment of both direct and indirect methods. ' These methods
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are formulated in the "open loop" form; i.e., information is
not fed back to the system to provide cdntrol for the inevitable
state variations discovered during the process.

The problem is formulated in a Mayer form, and here the
performance index 1is simply a scalar function of the termiﬁal
state and ‘terminal time. The terminal constraints, which are of
the equality'form?'may be generai functions of the prdblem varig
ables, and the terminal time may be unknown. |

| The methods are applied to the étudy of a tWO-dimensional
transfer trajectory from Earth to Mars. One control variable,
the thrust attitude angle, is used. The specified térﬁinal Son-

straints do not contain the time explicited.



CHAPTER 2

FORMULATION OF THE OPTIMIZATION PROBLEM

The theoretitél development of several trajectory op-
timization methods 1s made with an objective being the presen-
tation,or a unified or common approach. A fundamental factor
in describing the.formulafion of any trajectory optimization
problem is the derivation of the first necessary conditions
for an optimal trajectory, with the approprlate remarks con-
cerning sufficiency. One other requirement helpful to the
discussions-presented, especlally for the indirectAoptimization

development, is an explanation of how the optimization problem

is reduced to a two-point boundary value problem.

2.1 Derivation of the Necessary Conditions for an Optimal
Trajectory

The classical trajectory opfimiZation problems require
thaé certain necessary conditions be satisfied. The different
optimization techniques that have been déveloped tend to
satisfy these conditions in various ways. The necessary con-
ditions are derived from the consideration of the following
problem. Determine the history of the varlables that controll
a nonlinear system in such a manner that some index of per-

formance is extremized while certain specified initlal and
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terminal constraints aré‘satisfied. This performance index
is usuall& some function of the terminal state and .time.

The differential equations of,motionAthat4désér1be
the tfajeéfor& of a spacegraf@,may bg,derived by.applying
Newton;s Segond Law; and thg.resuiting equations -are second
order differéntia;zequations. These equations may be reduced
to firgt order equations and hence, the problem is rormuiated;-
in terms.ﬁf a first order, nonlinear, ordinary, vector differ-.

ential equation
x = £(x,u,t) (2.1)

where x 1is an n vectgr of state'Variables, f 1s an n
vector of known-funétions, u 1is an m.vector of control va;i—
ables, and t {is the‘independent_variable time. The per- .- .-
formance iﬁdex, which 1s the function to be extremized, 1s

P

a scalar

0 = #(xp,ty) o ”"(272):

and 1is a function of terminal state and time. The speéified

initial constraint relations are

Vi

.naf>"exo’to) =0 | ;,<2'3?:

where n 1s a. p vecfor, and the specified terminal con-

straint relations are - g

Y =1Y(xf’tf) = 0. . . o (2.h)



18

where Y 1s a q vector.
- The classical method of extremizing a'functidn while

satisfying specified terminal constraints is to adjoin the

| constraints and the cohstrainihg differential equations of

motion to the functional with the Lagrange multipliers 'vT
and AT, respectively. The functional to be extremized

becomes

. T
:I = ¢(xf,tr) + v W(xr,t ) (2.5)

r

+ ‘ftf AT [F(x,u,t) - x]dt
to _
where ¢ 1s the scalar performancé index, v 1s a q vector
of constant Lagrange multipliers, ¥ 1is a q vector of
specified terminal bonstraint relations, and A 1s an
n vector of time dependent Lagrange multipliers. Eq. (2.3) is
usually easily solved for p of the 1nit1a1'conditions needed
to integrate Eq. (2.1). | - |
The functional I 4s simplified by 1ntroducing”a> 
quantity P where P = ¢(xp,t.) + vTY(xr,tf) and the general-

1zed Hamiltonian H = AT(t)f(x,u,t) . The functional I becomes

. . t o
f T.
I = P(xp,t,) - tj’ (7% - e . (2.6) .
0 :
The rifst_termnunéér the integral sign may be integrated by

parts and the functional rewritten
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tf T\ tr tf . .
1= P| - A“xi + ./- (x"x + H)dt . (2.7)
to t°~ ; L
The functional-is now expanded in a Taylor series about some
nominal trajectory such that dI = dI' + dI" + .... where
the term dI' desiénates the first varilation, the second
term dI"; the second variation and so forth. The first
variation dI' 1is given by
R I T I S, L
dI' = dP| =~ d(x x)l + d .f (A"x + H)dt (2.8)
t, b, ‘ S
and taking the total differential of each term and using

Leibnitz's Rule on ﬁheslast term, the equation becomes

t t
N A
dI' = (dex + Pav + Ptdt)l =(dr"x + A7dx)
. :, |
(2.9)
~ % R, o -
+ (3Tx + g)dtl +'f [eaTx + ATex + 6aTr # AT(r 8x + £ 6u)ddt .

Integrating the first term upder bhe.inﬁegrgl*sign by

parts and neting that to first order daf = éag + igési )

where 1 =0 er f, the Eq. (2.9) may be rewritten. After
eolleeting the terms that must be evaluated at the initial
and terminal times, and making the apprepriate caneellatiens,

the Eq. (2.9) beecemes



. vanish‘if the variations dx
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te

T
dI' = [(Px - A7)dx + Pvdv + (Pt + H)dt])

. (2.10)
T r o - .7
+ [ qx - Hdt]l + f (627 (£f-x) + (A +Hx)6x + Hudu]d.t
te %o

The first necessary conditions for the functional I
and hence for the performance index ¢ to be éxtremized is
that the first Qariation dI' must vanish. The vanishing of
the first variation implies that each term in Eq. (2.10) must
dv, dt

dxo, dt 61, &x and

rn' £ 0°
du are 1ndependént variations. Therefore, the necessary condi-

tions that must be satisflied at the initlal boundary are as

‘follows:

(1) Ade. = 0 - (2.11)
t .

. 0 .
This condition implies that if the initial state is
specified, 1.e. dx(to) = 0, the equation is identi-
cally satisfied. If, however, the initial state is
unspecified, the associated Lagrange multipliers
must vanish at the initial time. This assumes that
the initial state and time variations are independent of

one another, and if they are Eq. (2.11) yields n

initial conditions.
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(2) | - Hit|] =0 - (2.12)
T .
?his condition implies that if the initial time 1is
Spécir;ed, 1.e. dt = 0, thg-equation is ;denti-
cally satisfied. If, ﬁoweyer, the initial time 1is
unspecified and the initial state and time variations
are indépendent of one another, the genefaiizéd

Hamiltonian- ATf must vanish at the assumed initial .

time. . Thils ylelds one initial condition.

3

The necessary conditions that must be satisfied at the termi-
nal boundary are as follows:
_ be o
(1) Pdvf =0 - ‘ o (2.13)

t
- by
This condition implies that Ydv = 0 since

'%% = ¥ . The specified terminal constraints must be

satisfied, and hence the dv does not necesséfily

vanish. This ylelds gq " terminal conditions, V¥ = 0.
t

. T r
(2) (P = AT)ax| - =0 c 0 (2.4W)
This condition implies that if the terminal state
e o R te |
is unspecified, the coefficient (¢x+v LI )

must vanish. This transversality condition yields

n terminal conditions.
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t

_ r : A
(3) ‘ (P, + H)dt = 0 (2.15)
This condition implies that if the terminal time is
t
T £ ¢

unspecified,'thé coefficient '(¢t + v vt + H)

must vanish. This transversality condition yields

one terminal condition.

- The necessary conditions that must be satisfied at every

point aloné the trajectory are as follows:

(1) x < f(x,u,t) = 0 (2.16)

This is the original nonlinear differential equatidh
M

of motion and consists of n equations.
/

(2) AT e H OLxut) =0 (2.17)

This equation is the classical Euler-Lagrange equation

and consists of n equations.

(3) Hu(x,x,u,t) =0 . . -(2.18)

This equation is the classical optimality condition
and consists of m equatipns. This equation may also
be recognized as the weak form of the Pontryagin

Maximum Principle.

The problem is now theoreticglly,solvable‘sincevthe

Eqs. (2.11) through (2.15) yield 2n+q+2 1nitial and terminal
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boundary conditions for the 2n first order differential
equations, Eqs. (2.16) and.(2.17), and the q+2 ‘unknowns
v, to,» and t.. The m control variables may either

be eliminated from Eqs. (2.16) and (2.17) by using the
optimality condition Eq. (2.18), or Eq. (2.18) may be dif-

ferentiated and treated as another differential equation. In

this case

IQ

= [H (0,x,u,8)] = 0 - o (2219)

Q

and expanding Eq. (2.19) leads to the expreSsion
.Hux + Huxx.+ Huu“ + Hut = 0 . (2.20)

By inverting the Huu matrix, the time rate of change of the

control vector becomes

V(H A +H x+H

u = -Hyp, UHg, ux ut] ’ (2.21)

Using the differential equations of motion, Eq. (2.16) and

the Euler-Lagrange equations, Eq. (2.17), Eq. (2.21) becomes

T T

. -1 : g
Uom H T DHH = B H 4 H ) | (2.22)

which may be simultaneously integfaéed with Eqs. (2.16) and
(2.17). '
However, for such an integration, an initial condition

for the control must be known. The optimality condition
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~ -

yields the control in terms of the state and Euler variables,
and since these parameters must either be assumed or known
initlally anyway, the initial condition on the control may

be determined easily.

_The Justification for the statement that ‘H, = ﬁu'= 0

‘(and for that matter H = H = .... = 0) 1s that the opti-

u .
mality condition Hu = 0 must be identically satisfied at

every point along the optimal trajectory and at no point can
there be a deviation from Hu'='0 .

The préviously-stated first necessary conditibns are
the ones necéssary for the functional I to assume a sfa—
tionary value, however these conditions are not sufficient to
insure that a minimum has been obtained. If the Legendre _
Condition 1s éatisfied and if no cohjugate poinﬁs exist in thel
interval of the>1ndependent variable, the fourth,ﬁeéessary
cohdition, and the one that 1s sufficient to insure a stroﬁé
minimum, involves the We;erstrass E-Function. The E-Function
is ekélained by Gelfand (27) and must”be’equal'to or greater
than zero for a minimﬁm. 'An application of the Welerstrass
E-Function 1s shown in Appendix A.l for A yehicle moving 1in an
1n§erse square gravitational force field under the inrlugnce

of a thiust force.

2.2 Reduction of the Optimization Problem to a Two-Point

“Boundary Value Problem

The classical trajectory optimization provlem may be

reduced to a two-point boundary value problem‘and hence



several previously known methods become avallable for its.
solution. The first necessary conditions previously derived. .
in Section 2.1 must be used, and frequent reference 1s made to
that section. The conditions that must be satisfied at every

point along the traJectory are Eqs. (2. 16), (2.17), and (2. 18)
i.e. .the differential equations of motion

x = f(x,u,t) | . . (2.23)

where x 1is an n vector of state variables, the dirferen-
tial equation that 1s adJoint to the linearized differential

equation of motion and called the Euler-Lagrange equation
: T
A= -f X = -H (x,u,x,t) (2.24)

where A 1s an n vector of adjoint variables, and the

classical optimality condition
H (A,u,x,t) = 0 | (?.25_)

where -H 1s the generalized Hamiltonian and u {is an
m vector of control variables.

The m  Egs. (2.25) may be solved for the m unknown
control variables in terms of the state and aﬂjoint variables
and time, and the control then eliminated from Eqs. (2.23) and
(2.24).

In the general case, where the initial staterand time .
varlations are not 1ndepehdent of one another, Eqs. (2.11) and

(2.12) must remain as one equation. Hence, the initial
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conditions that must be satisfied are the initlially specified

constraint relations, Eq. (2.3)

h(xo,to)'= 0 | ' " (2.26)

where n 1s a p Vector, and the transversality conditibn .‘
T . L |
(A»"dx ~ ‘Hdt) =0 . : (2.27)
o

The state and time total variations dxo and dto are not

necessarily independent of one another, and in fact are re-

lated through Eq, (2.6). It is required that for all dx
and dt, that dn(xo,t0

) = 0, and to a first obder approxi-
mation this condition can be expressed as

an an . _
[3?]0m§xo * [SEJO dty = 0 “ (2.28)

Since dn(xo,t ) 1is a p vector of conditions, it follows

0
that p of the n+l total variations dx0 and dto may

be determined in terms of the femainiﬁg n+l-p variations.
These p total variations are eliminated from the varia-
tions in Eq. (2.27), leaving n+l-p 1independent variations.
The cpeff§cients of these n+l-p 4independent varlations may
be eqﬁated to zero to obtain n+l-p additional relations at
the initial time. Combining these n+l-p relations with the
p .initially specified constraint relations in Eq. (2.26) will
result in the desired - n+l 1initial conditions, glxy,t,) = 0

and ,tb



In most cases, the initial state and time are given,
which wouid‘be the required n+l. conditions, and the
_tranSvéfsaiity conéitidn Eq. (2.27) 1s then 1dénticaliy
satisfiea. |

The terminal conditions’that must be satisfied aré

the terminéily specifiéd COnstraintvfelations, Eq. (2;13)'”

CHxp,tp) = 0 | (2.29)

where ¥ is a q vector, and the transversality conditions,

‘Eqgs. (2.15) and (2.15),

tf,

(P, - \Tyax| ~ = o | ' (2.30)
A tf, _ N
(P, -+ mat| £ =0 . | (2.31)

Since the Lagrange multipligré § were 1nﬁroduced,
the total variations, dxr and. dtr » in Eqs. (2.30) and |
(2.31) caP be treated as independent variations, and the co-
efficients of these variations may be equated.to zero. This
procedure provides n+l terminallcdnditions, n resulting
from Eq. (2.30) and one from Eq. (2.31); Thefe are, however,
q rgmaining unknownsvto be evaluated, 1.e. the q Lagrange
multipliers v .- The- q terminally specified constraints.
given in Eq. (2.29) provide the additional conditions for

this operation.,

N

27
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In summary, the terminal conditions become

hy = ¥y(xpte) - for | 1=1,0  (2.32)
h, = (¢ +vTv -AT) for ' i = g+1, n+t (2.33)
17 V% x 1 qrs, N*q y
and hy = (¢, +v uxt"mi - for 1 = n+q+l . (2.34)

The n+l initial conditions are combined with the n+q+l
terminél conditions to obtain the boundary conditions for the
2utP order sysﬁém of differential equations given;by Egs.
(2.23) and (2424), t,, t,, and the q values of v .

If the terminal'cénstraint‘relations_are not very
compiicatéd; it may be easier to eliminate the Lagrange mul-
tipliers &' from the start. Hence, an alternative approach,
which considers the functional

: 2
I = ¢ +f AT (f -x)dt ,
: oot -
would yield transversality conditions

tr

(o, Tax] s (ogemdac] a0 (2.35)

to be satisfied. - R R

However, the total variations dxr and 'dtr ‘are not

independent, and are related in fact through the terminally"

specified constraint relation, Eq. (2.29). It 1is required

that d?(xr,t = 0, and to a first order approximation

f)
this becomes
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Yy ay : ‘

 where dﬁ(xr,tf) is a q vector. Now q. of tne 'n+i
total variations dx, and dtr may be determined in terms
of tneAfeméining n+l-q variations. These Fq total Qaria-
tions are eliminated from the variations in Eg. (2.35),
leaving only n+ifq' independent variations. The coefficients'

of these

o ]

+1l-q independent variations may be equated to zero
thus obtaining. n+l-q relations at the terminal time. Com-
bining these n+l-q relations with the ¢ terninally speci-
fied constraint relations Eq. (2.29), will lead to the ’
desired n+l terminal conditions, h(xp,tp) ='0j.' This pro-
cedure of elimineting>the Lagrange multipliers v requires
the determination of ' q 1less parameters in the iteration
procedure for solving the two-point boundany value problem.
The complete solution of the two-point ooundary value:
problem reouires 2n+l ‘boundary conditions, assuming that =
the initiel time ie given,‘and these conditions may be de-w
rived in the manner described above. To reduce the numben
of parameters that require determination, it is assumed that
the terminal constraint relations are included without the
use of the Lagrange multipliers v . Furthermore, it is
assumed that the control variables are eliminated from Egs.
(2.23) and (2 24), by using the optimality condition, Eq.
(2.25).
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In suhmary, thé-probiem.ia formulated in term: of an
ordinary, first order; nonlinear, vector differential equa-

tion
2= Rz,t) _‘ (2.37)

where 2z 1is a 2n vector composed of n state variables
and n Euler-Lagfahge variables and- t 1s the 1ndependéht:_

variable time.l More'specifically,

_ H’f(x,x,t) ‘ B f
el =] A = F(z,%) . (2.38)
‘ Al - “-Hx(x,l,t) | _ T

It is assumed that p 1initially specified constraint :ela-

tions

'n(zo,tb) =0 : | ‘ (2.39)
and a specified initial time t, are given. Sin¢é these :
conditions are given, dnly ~n-p 1initlal relations must bé
obtalned from the transversality condition, Eq. (2.27)'ahd
hence a total of n <conditions at the initial time are

known, These ~n conditions are represented as
8(zg,tg) = 0 (2.40)

Corisider that q terminally.specified constraint

relations

T(zg,tg) = 0 o N (2.41)

~
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are given. This implies that n+l-q terminal relations must
be obtained from the transversality condition, Eq. (2.35),
which when combined with Eq. (2. 41) yields n+l terminal

constraint relations
h(zp,tp) = 0 - o (2.42)

The 2n+l conditions needed for the two-point bound-

‘ary value problem solution are specified 'n conditions-from-

d n+1 conditions from Eqg~ (2 42).

DJ

Eq. (2.14v .
An application of the reduction of an optimization

problem to a two point boundary value problem is shown in

Appendix A.1.



CHAPTER 3
'PERTURBATION METHODS

Several of the most‘promising and successful mefhodsf
for solving the nonlinear th-point boundary value proolem,
associated with the optimization of spacecraft traJectories,
are classified as Perturbation Methods These methods are
sometimes referred to as Second'Variation or'ExtremaliField
Met hods. B | - | o

The Perturbation Methods are divided into two groups,
the Methods of Adjoint Functions and the Method of Perturba—
tion Functions. The Method of Perturbation Functions,require
the use of funcﬁions obtsined through a linear perturbation

about some nominal path, while the Method of Adjoint Functions .

require the use of functions which are adjoint to the perturoa—

“tion functions. The adjoint functions, along with the pertur-'

bation functions, are used to approximate the influence of
initial variable variations on terminal variable variations.
The theoretical development of the Method of Adjoint -
Functions and the Method of Perturbation Functions mdy be |
shown to follow common lines and in this sense the formulations
are parallel. For the speclal case discussed latér,ithe two

methods in fact become the same.

32
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As discussed in Chapter 2, the optimization problem is
formulated 1n'terms‘of‘an ordinary, first order, nonlinear,

vector differential equation
= F(z,t). ' (3.1)

where Z and F(z,t) are partitioned as shown in Eq. (2.38).
.The perturbation equations are derived by making a
linear expansion of,Ed. (3.1) about some nominal path. These

equations are represented by

6z = [gF]GZ = A6z ‘ ' ' (3-.2)

A

where 6z 1s a 2ﬁ vector of state and Euler~Lagrange
varlable variations and the 2n X 2n matrix of partial deriva-
tives A 1is evéluéted along the nominal path. The equations
that govern the set of functions adeint to tﬁe.perturbation

equatiqns,_Eq.'(3.2) are

: T. ' |
. _[ﬁ] A = -ATA T (3.3)

92

Qhere A 1s a 2n }vector of adjoint variablés. The motiva-
tion for the use of this equation becomes evident when Eq.
(3.8) 1is déveloped. |

In‘the‘general casé; the nominal trajectdry will not
satisfy the . n+l terminal constraint relations on the first
iteration because all the proper 1n1t1a1 conditions are not

known. To obtain a relation for the terminal constraint
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dissatisfaction as a function of the total terminal variations,
dz(tf) and dt. , the Eg. (2.42) 1s perturbed about ‘the -

nominal terminal conditions, to obtain .

_ [an 3h S o

where dh 1s an n+l vector of the change of thé dissatisfac—
tion in the terminal constraint relations, [gg} isFan'
’ f

n+l x 2n. matrix of partial derivatives; and

[%%] " 1s an n+l vector of partial derivativesi
f -

If allowance 1s made for the oossibility of a state
and/or Euler variable variation resulting from a terminal time.

variation, the following first order relation may be made

az(t ) = 6z(t,) + é(tf)dtrx, i (3.5)

When this relation 1s substituted into the perturbed terminal

constraint relations, Eq. (3.4), and:avrearrangement is made,

the resulting equation becomes
/ : : ‘ ‘

N A _ ah | . -~ » : . o
. ~dh = LEJI~6Z(§f) +hate T - (3.6)
where dh 1s an n+l vector of terminal_dissatisfaction
change. This relation 1s an indication'offhom the terminal
constraint dissatisfaction change i1s affected by variations in

the terminal values of state and Euler variables and total

variations in terminal time.
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~

is determined as some linear function of the initial

variation of- z(to)_, 1.e. 6z(t ) = [n]&z(t ) , where 1 1s

35

It may be noted here that 1f the terminal variation of

some 2n x 2n matrix, the terminal dissatisfaction change be-

comes a function of the ‘initial state and Euler variable

variation §2(t,) and the terminal time variation dt .

This substitution,reeults in

dh -[ah] (n]aa(t ) + hdt I (
_ = (22 ] 0 £ - 3.7)

LA

An iteration procedure may now be designed to reduce the

terminal disSatisfaction by proceeding in the following

manner.

(1) Integrate the nonlinear differentlal equations,

Eq. (3;1);-forward from 't to some assumed terminal.

0

time tf ,_using the n known initial,conditidﬁs

given by Eq. (2.40) and assuming n 1initial values

for the remaining variables

(2) When the assumed terminal time tr is reached,

,the matrix Fiq , the vector ﬁ and the terminal
: . ¢

92

constraint dissatisfaction change dh may be deter-

~mined.

(3) The terminal dissatisfaction may be reduced on

the next iteration by requesting that some percentage
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of the present dissatisfaction be corrected i.e}

dh = -ch, where 0 < ¢ 21 .

(4) Determination of [n]ﬁz(to)~ must be made in some’ .

manner and will be discussed,in;the,nextgsections&:-

(5) The linear algebraic equations, Eq.-(3.7)“sfev
~solved for the corrections Asz(t ) and 'dtf ' and
these values are applied to the initially assumed'

‘values of ;(to) and te

(6). The procedure is repeated until the_correctionsv

being applled are less than some preselected value.

The onlyiremaining.theonetical problem is to deterrine
[n]éz(t ) , and the manner in which this is done deternines
whether the technique is classified as a Method of AdJoint

Functions or Perturbation Functions. Techniques for deter—h

mining [n]éz(to) are discussed in the following sections

3.1 ‘Methods of Adjoint Functions

.:There are several methods of deternining the terminsl‘
state and Euler variable variations-as a function 5 the |
initial variations, 1i.e. éz(tr) = [n]sz(tol. A rélation thati
contains these}two variations may be derived by premultiplying
the perturbation equation, Eq (3 2), by the transpose of the
adjoint vector A , and postmultiplying the tranSpose of the
adjoint equations, Eq, (3.3), by &6z and adding the resulting

equations -to obtain
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d W Teiy o n
This equation may be integrated from t, to t, to obtain
AT(t Vez(t,) = AT(t Yez(t ) | (
£ £ 0 o' 3-9)

P'whére‘the boundafy cdndifiqné on the adjoint variables are com-
pletely arbitrary and may be selected such that the desired
relgtionghip between 6z(t,) and cz(to) is obtained. There
are several approaches that may be taken.

The first dpprdach and a most natural one is to inte-
grate the adjoint equations, Eq. (3.3), backwards from tf to

to y €N times'withAthe starting conditions

T, v T |
1A1(tf) "rhé(tf) EEEIN 2n(tf) or le(tr,tr)
where
=T 1T .
ity (e 22l
R R SO
19(tf.tf) = : = : =7, »(3-10)
: T . - ca» . e - e= o -
| lAzn(t ) L 0. 0 Q A | J

The presﬁbscripf refers to the first approach. When this
integration is completed, Eq. (3.9) may be written |
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sz(ty) = le(tr,g,}éi(tollzk o -~ (3ay

Substituting this equation into the perturbed terminal con—

straint relation, Eq. (3.6), ylelds the deslred relation o

_ [an .
Qh Lz]f o(t r,t )5z(t ) + hdtr'_: . -(3.1?)
where

dh. is an n+l_ vector repreoenting the change

in the terminal di%satisfaction

[%ﬁ}"a " "4s’an n+l x 2n’ matrikleﬁaIUated’at‘the
£ . .

nominal terminal time, itflﬂ‘

10(tf,tb)’ is an 2n x 2n matpix'neédltihg from the
2n backwara integratione ofvthe adjoiﬁt

equations,.

§z(t°) is a 2n vector of initial variable varia-
tions that along with dtf produce the

terminal disSatisfactiOn change.>'

ho - is an n+l vector which represents the
time rate of change of the terminal dis-
'satisfaction! evaluated at the nominal

terminal time, to -
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dtf : - i1s a scalar variation of the nominal

~ terminal time.

;p must_be qptéd that all'offthe perturbatidns sz(to) are not
1ndependent,‘but'ihAfact'are related;tﬁrbugh the initial'coﬁ;
straint reiatiohs"Eq.i(é.up);'-Assuming that the initial time
is specifiéd, the-reqﬁired firstvorder expansion‘of Eq. (2.40)
becomes B : . -

Adg,.-:.. [%%]66'2“;0) = 0 o (3.13)
This equation may be solved for n of the Gz(to) in terms of
the remaining n .eiemehtsvbf' Gz(to), énd fhese variations are
eliminated from Eq; (3.12). .This leaves the n+l Eqs. (3.12)
with the n 1ndependent. Gz'(to) and terminal time variation
dtf as the n+l unknowns.. The prime 1ndicatés that the vec-
tor has beer reduced in dimension so that only independent
variations remain.

This approach 1s fundamental and véry'inefficient, be-
cause more information is generated than needed. The computa-
tional difficulties associated with the backwards integration
o{ the adjoint equations may be eliminated by considering a
second approach. o

" This approach ‘requires the forward integration of the
adjoint eduatiohé ‘2n times from t, to ‘t, with the start-
ing conditions A1 (E,) ,‘znf(to) cov ghp () or 0(tysto)

where
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T
A () 100 ... 0
} RS A
"2 (o) ST
2O(to?to)4=. N SR " | (3'1y),
\T IR BT ol T
Zzn J L_o 0 0 .. 7

e [ .
H .

The presubscript refers to the second approach.-,When.this_iné

tegratien i1s completed (and it may be performed simultaneously

with the integration of Eq. (3.1);‘E§{;(3t9) becomes
2O(to,tf)éz(tf) = SZ(to)

and solving for..éz(tr) .ylelds

,sz(t'r) = [_zo(to',t'g)]'lsz(ﬁg) oo :_'('3".'15)

Substituting this equation Into theuperturbeq_terminal con=

straint relation, Eq. (3.6), yields the desired‘relation
dh = [;z] ( o(t ?tf)] 62(t0) + hdtf- - -(3.16)'
where the terms have the same physical s;gnificanee-as:in the
first-approach.
The obvious disadvantage with this second approach is .
that even though the backward 1ntegration has been eliminated

the. same number of equations must be integrated and a gn_x 2n

matrix must be_inverted at the terminal time. It would
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certainly be desirable-if an ‘approach could bewformulated such
that the above matrix inpersion is unnecessary and a more effi-
cient integration is made.'

The third approach requires the examination of Eq. '
(3. 12) which results from the first approach Since the ini-
tial conditions on the.linear adJoint equation, Eq. (3.35; are'
arbltrary and may be selected for convenience, an equation
identical to Eq. (3. 12) may be derived by integrating the ad-

Joint equations only n+l times with the starting conditions

olts,ty) = [g—*;]f (3.17)
an] |

where [ié] is an n+l x 2n matrix evaluated at the nominal .
f ’ S ' : : :

terminal time. In other words; since the linear adjoint

equation is integrated with starting conditions -lo(tf;tf) = I
in the first approach and results in le(tf’to) , 1f the

starting condition were 0(to,t,) = 3hi g ', the result
T 1 £2°f 9Z | o .

would be [%2] o(t r,t ). .. Hence, Eq. (3.12) has been derived
¢! ,
with n-1 fewer integrations of:an equivalent set of equa-
tions. ‘

For this last approach the desired equation may be

written

. dh = o(tr,to)az(to) + hdtr (3.18)



where the terms have the same physical significance as the
previous fwo approaches,'but ‘Okt ,t l- s an 'n+l:xA2n ‘matrix’
resulting from the simultaneous backward integration of the'
adjoint equations. Again the dependent initial state and/or
Euler variable variations must be eliminated, and this 1eaves

n initial variable variations and one terminal time variation
to be determined from the n+l equations, Eq (3 18)-

The explanation for the third approach gives the jus--r
tification for the scheme used by Jazwinski (12) where an ex—'
tension i1s made of Jurovics and McIntyre si(7)_presentation.
One additional time conserving feature, which may bevused, is .
the scaling of the Lagrange multipliers.'.Thisfadvantage reQV:
sults because the Euler-Lagrange equations arenlinearfandu.

homogeneous The implementation of this 1dea 1s discusSed in
Sectlion 7. 3 and essentially involves the trading of one termi—
nal condition for an initial condition. The decrease in the
dimension of the.terminal constraiht vector by one, also-de—ié
créases the number of:adjoint integrations*by~one,:ahd‘hence_.
results 1in less computation time. |

One additional remark is in order for cases where the.
specified terminal constraints are rather.complex and the
Lagrange multiplier v 1is introduced. For this case, the .

terminal constraint vector becomes

h = h(zg,tp,v) = 0 ' | | C(3.19)

P
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where h 1s'an -n+l+4q vector, aﬁd the perturbed terminal con-

straint relation, Eq. (3.4), becomes
an = |28) s2(c.) + hat, + [22] av (3.20)
3Z ] 5 r’ e v ]e _ ’

where [%g] is an n+l x ¢ matrix evaluated at the nominal
¢ - SXa mal |

terminal fime and dv 1s a q  vector of total Lagrange mdltie
plier variations.'“1£ should be recalled that wheﬁ the v
vector is used, there exists  n+1+q terminal constraint rela-
tions and this'increasee the dimension of the dh vector by
Q@ . This 1s just the number df'additional equations needed to
solve for the additional unknown variations dv . These varia-
tions are applied to the'assumedevalues of v

A eimilar'technique 1s used by Breakwell, Speyer, and
Bryson (9).  It 1s sheﬁn in this reference that after the
forward integration 6f Eq.-(3.1),has been made, q of the .n
equations representeq by Eq. (2.33) may be used to determine
the q valuee.of ; . Then'fhese‘ q values of  v are:used
to evaluate the terminal‘dissatisfacfion represented by the
remaining n-q equations of Eq. (2.33). This procedure simply
reduces the dimension of h to_n+1', and hence only n+l |
backward integrations of Eq. (5.3) are needed.

The computational procedure may be followed by re-
ferring to an illustration;of the Method of Adjoint Functions

(MAF): =



Desired Terminal -

‘(l)A integrate the v2n‘;nonlinear"aifferentiai eQuaF'
tions of motion and the Euler- Lagrange equations, Eq.
(3. 1) forward from t, to tf' with starting ‘condi-
tions satisfying Eq. (2.40) and "n assumed values;“ ’

for the unknown parameters

(2) . Evaluate-at the -nominal terminal time, te s the
quantities - h , h § and ‘the starting.conditions for,

the backwards integration of the adjoint equations,

(3) 1Integrate the 2n adjolnt equations, Eq. (3.3),'
backwards n+l times from t. to t, with starting

conditions, ah and use the value of the variables
3zf :

>



,55

stored during the forward iptegratioh to form the

coefficients of the adjoint variables.

(4) Sélve the.fn+1 Alinear'algebfaic equatlions, Egs.
(3.18), for a-iineat,appréximation of the corrections
that must be applied to the assumed initial values and )

the terminal time.

(5) ApplyAthese correctiohs and repeat the process
until';be corrections become smaller than some pre-

‘selected value.

3.2 Methods of Perturbation Functions

Of the se?eral'methods available for determining'the
terminal variations in the-ététe and Euler variables as a func-
tion of the initial varlations, i.e. sz(tr) = [nlez(t,) , the
most natural one 1nvolves the direct'usg.or‘the perturbation
equations, Eq. (3.2)

§2 = Asz . o © 0 (3.21)
As a first approach, integrate these perturbation equations
forward from to to tf, 2n times with the starting condi-

tions

L L . ., Celt ot 3
l5zl(to), lézz(to) ey lGzzn(to) or lo( 0’ o)_



h e (t - =
where ) (to,to)
11 01 10] :
sz (t ), & AU TR C -0 & S B I (R
1 1 o 182, o'’ ’xézzn(to)] | I g I.
' N O B N
01 ol B

The presubscript refers to the fifst approach.- This iﬁtegra;
tion may be made SimultaneéuslyEdighmﬁﬁe'fdrwé;d1iﬁtegré€ionaof
the differential eéuétidﬁs, Eq; (3.1), and hencdé less éoﬁﬁuter
storage i1s required. When this integr;tion ié:éompieﬁéé, fhe
resulting equations eValuated at the terminal time'may be

represented by
Sz(tp) = et ,to)sz(t ) . . . . (3.23) .

where lé(t6,tf) "1s a 2n x 2n matrix of partial derivatives

evaluated on the nominal trajectory. This éduétion may be
substitutéd into the perturaed terminal constrainﬁ relétibh;f

Eq. (3.6), and the desired result becomes
dnh = |30 o(t.,t.)sz(t ) + hdt (3.20)
B CEA P VA SA A AR S oo e

where thé‘symbois have been eipiéihed pfeV1éusiy. .These " n+1
equations contain én- initial state and Euler variablé varia-
tions and one terminal time variation.: Howéyer, the dépendent.
variations méy be eliminated as explaiﬁed for the%adﬁbint
methods and only the n+l1 1independent variétions muS£ be

.determined.
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This first approach,'uéihg‘thevperturbation equétions
represents a very special caSe; because it can be shownvto Be
the exact equivalent to the first approach using the adjoint
equations. This can be shown by substituting into Eq. (3.9)

the starting conditions

6z(t ) = o(t ) =

0! = I
v ‘ (3.25)
oo -
This substitution yié}ds
o(t 03 r) = G(tf,t ) _ (3.26)

and under these circumstaﬁces the algebraic equations for the
adjoint method, Eq. (3.12), and the perturbation method, Eq.
(3.24), become identical. | | ‘

A second approach is suggested after examination of Eq.
(3.24). Since the'initigl cpnditions on the linear perturba-
tion equatiéns, Ed. (3.21), are arbitrafy and may be selected
for convenience, an equatién identical-éo Eq. (3.24) may be

derived by integrating the perturbation equationé only n+l
times with the starting conditions

2¢(t0’t0) = [az]f (3-27)

where [%2] is an.  n+l x 2n matrix evaluated at the nominal
£ . ‘ - ' ' :
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terminal time. The resulting linear algebraic equation to be’

solved becomes

dh = 2¢(to,tf)az(to).+'hdtf o AR “_.(3;28)

where zo(to,tfl' is generated by only 7ﬁ+i ’integrations of'”
the perturbatlon equations. | SR o

_This approach loses some appeal, however, when imp1e4
mentation'begins because the starting condition,-Ed.'(3}27),
cannot be evaluated until a nominal trajectory is integrated.
Since the perturbation equations cannot be integrated simul-
taneously with the differential equations, the'nominal'oath‘v
must be stored and no particular advantage over the adjoint
method is reali7ed |

A third approach which proves to be the most effi-’f
clent, may be formulated by observing the manner in which th

O(te,ty) and  e(t ,t matrices are generated and used.

- g™ _ . ‘
For each of the n independent initial variations required a
t.) matrix’

0’ f

) matrix 1is generated ‘by rows,

corresponding column of the ( f’4 ) or lo(t
is needed Since the | o(t f’
to determine any one column requires all ”é('~integrations-of
the adjoint equations This however, 1s not true for the- per—
turbation methods, because the 1o(t t ) matrix is generated
by columns. The elements of any n columns can be determined

by simply integratinp the perturbation equation n times, the

starting vector having the element that corresponds to the
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desired initial unknown variation set equai to uhity~and‘all
others zero. With this modification, the linear algebraic

'

equation becomes
an = [0 o(t jedezr(e ) + Bat, - (3.29)
: 3z ot f 0 £ : (3:29

where ¢(t

otp) 1sa 2nxn matrix generated by‘integrating ,

the perturbation equation dnly n fimes and 'Gz'(to) becomes
an n vector representing the desired 1ndependent initiél
varlations. o

The essential feature .of the perturbation method is
that oniy n: ihtegrations are needed, and hénce bne less inte-~
gration of a set of eQuétidns equivalent to the adjoint equa-
tions. The third approach to the adjoint method and the above
perturbation method réquire.the,solution of exactly the Same'

linear system, but the required elements of the o(to,tf)
matrix are simply derived in a more efficlient manner. The

additional advantage of using the perturbation'method is'that'
the nominal trajectory does not require cohputer étoragew

The computational procedure may be followed by re~
ferring to an 1llustration of the Method of Perturbation

Functions (MPF):
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- Desired .Terminal ':.

Y

(1) Integrate the 2n nonlinear differential,equa-
" tions of motion and the. Euler-lLagrange:equations, Eq.

(3.1), forward from t; " to tf'-WIth-starting condi-

tions cénSisting of the n known initial conditions

satisfying Eq. (2.40) and’ n assumed values for the

unknown parameters.

(2) Simultaneously with the above integration, inte-

grate the 2n perturbation equations, Eq. (3.21),
with.starting conditions described above and coeffi-

cients formed from the variables that describe the

nominal trajeétory.
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(3) Solve the n+l 1linear algebraic equations, Eq.
(3.29), for a linear approximation of the corrections
. that must be appllied to the assumed initial values and

the terminal time.

(4) Apply these corrections and repeat the process
until the corrections become smaller than some pre-

selected value.

3.3 Iteration Philosophy for the Perturtation Methods

The 1teration schemes for the Perturbation Methods simply
consist of a procedure for 1teratively determining the initial
values of the Lagrange multipliers so as to decrease the terminzl.

constraint dissatisfaction on the following iteration. The corn-

La)
S

,

trol ié elimiwated'from the differential equations,.Eqs. (2.2
by usiné the optimality conditions, Eq; (2.25), =znd
the nonlinear differential equations are in;egrated during each
iteratibn. Since ;he optimality condition 1is always satisfied,
every iteration'proaﬁces an opt#mai trajectory, but to an un-
desired terminai condit;on. The only remaining complication is
to satisfy the_dé%ired ﬁerminal constrainté, EQ. (2.42).

Normally, the requested-change in.the terminal dissazisz-

o
D

facticn Is eguated to the negative of the terminal dissatisfzc-

1 4
»

1

ting frcm the previous iteratlcn. This requestec

e
—

tion

'
4]

S

[g
b

correcticn is then used in the linear algebralc equations, Egs.

(3.18) or (3.29), to make a multiple linear interpolation for
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the variations of the. initially assUmed'values<of the.state
and/or Eulen:variables. When these corrections are‘appliedjand
a new nominal trajectory integrated, the-terminaleconstfaint'
dissatisfaction 1s usually reduced. | |

"The difficulty with this type of indirect optimi7ation
procedure 1is that when the terminal dissatisfaction is large,_
the linear approximations are not very representative of ‘the
nonlinear system, and the possibility for divergence~is 1n—a
creased. The linearization 1s made about the cUrrenthnominal
trajectory, and whether or not this trajectory is close to
satisfying the terminal constraints on any’given iteration is
immaterial. The essential factor is that theltfajectory re-
sulting in the hext iteration be snfficiently"near the‘previous:
one so that the 1inearization assumptions are not stretchcd |
beyond the limits of validity |

One natural approach, the motive for which resultcd
from a suggestion ‘made by Breakwell Speyer, and Bryson (9), is
to request the correction of only a percentage of the terminai
dissatisfaction resulting from the previous‘iteration. For .
instance, the‘algebraic equation thaﬁvcontains the:corrections

for the Method of Perturbation Functions is

- |ah ‘ ; ,
dh = [%E]fo(to,tf)sz(co).+_hdtf (3.30)
and for a percentage correction let

dh = -ch - (3.31)
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where ¢ s the desired percentage to be corrected. The

iteration factor ¢ may have values in the range 0 2 c¢ 2 1.

A correction for the Method of Adjoint Functions 1is applied ih H

the same manner. |
It is also reasonable to expect that as the obtimal tra-

Jectory 1is approacheq,ksuccessivebtrajectories will be suffi—

ciently near one another. Hence, the linear represeﬁtation

becomes accurate enough to request the complete corfection of

the tefhinal‘dissatisfactipn. Also, as successive trajectory

iterations begin to converge, successive adjoint and pertﬁrba—

tion soiutioné Begin.to converge, and hence integration of

these eduéfionS‘fof'every iteration may be unnecessary.
A'SQmmary'and extension of the conjectures stated

above, which result 1h some of the desired characteristics of‘ 

an iteration scheme, are that:

(1) An iteration factor may be specified initially
and changed during subsequent 1iterations by speclifying
an iteration rate factor. As the 1iterations préceed,
the 1teration rate factor 1s used to control the per-
éenﬁége of the terminal dissatisfaction corrected on

any given 1lteration.

(2) There may exist an initial value of the iteration

factor that minimizes the convergence time or maximizes

the chance for convergence.
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(3) It may be unnecessary'to update'the o(t f)"

o)
and o(t f, ) matrices on every iteration.

(4) A correction of more than 100 percent may be

-reasonable and desirable.

These conjectures are investigated by using the following d]f—

ferent iteration schemes

. Iteration Scheme 1 - This scheme for_both the Methods

of Adjoint .and Perturbation Functlons requires the ;rbitrary
selection_of an_initial value. of the_iteration factor snd the .
iteration rate. factor ' An iteration is made and the corre-
sponding iteration factor is applied to obtain corrections for
the next 1iteration. If the norm of the terminal dissatisfac-
tion decreases on the next 1iteration, the iteration_faCtor is
increased by the value of the iteration rate factor. This
process 1is repeated nevcr alldwing the iteration factor to’be
zero or grcater than unity, until the corrections for each

assumed value 1s less than some preselected value.
A detailed procedure of Iteration Scheme 1 follows:

(1) Starting values of the iteration factor and the

-iteration rate factor are selected.

.(2) Integrate the nonlinear differential equations of
motion forward, noting the norm of the terminal dis-

satisfaction. If the Method of Adjoint Functlons is
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being used, integrate the adjoint equations backwards.
If the Method of Perturbatlon Functions is beiﬁg used,
the berturbation equations may be 1ntegfated forward
simultaneously with the differentlial equations of

motion.

(3) Snlve the algebraic equations, using the specified
value of the iteration factor, to determine the correc-

tions reqdired for the initially assuméd values.

(4) If all corrections are less than some preselected
value, terminate the iteration. If any one correction
is greater than the preselected value continue the

process as follows.

(55_ Aﬁply the cprrectioﬁs to the assumed initial con-
ditions; intégrate the differential equations again,
and detérmine the terminal dissatisfaction. If the
norﬁ of the terminal dissatisfaction is less than the.
norm that fesults:on the previous iteration,‘increése
the iteratién factor‘by the vaiue of theliteration
rate.factor and continue to iterate. Never allow the

iteration factofitolbe greater than unity.

(6) If the norm is greater than the previous norm,
decrease the iteration factor by the value of the

iteration rate_factor and continue to 1terate. Never
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allow the iteration factor to be less than the'value

of the iteration rate factor.

Iteration Scheme 2 -~ During the initial efforts to -

solve a problem with either the Method of Adjoint Functions‘orv
the Method of Perturbatlon Functions .a lowvinitial value for
the iteration factor is usually assumed. This requests‘a small’
change from a solutlon which is probably far from optimal, andi
thus reduces the possibility for divergence. .HoweVer,‘this |
could be an unreasonably low estimate and_if the iteration fac—
tor is systematically increased, as in Iteration Scheme 1, a
great number of iterations would be required before a full
Cu"FCCLlOﬂ would be requested This scheme reduces the con;7
v(rFexce time by avoiding the integration of the perturbation
or adjoint equations on certain iterations. The criterlon used
to establish when a perturbation or adjoint equation integra—i
tion is made is that either a divergence of the terminal con-
straint norm occurs or the integration is forced after a
specified number of corrections have been made The iteration
factor is still increased each time a norm convergence. ‘occurs

and the trajectory that produces this convergence is called a
nominal. When the terminal norm'divergeS'the iteration.factor
is decreased -and the last convergent trajectory 1s used as a

nominal.
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A detailed procedure of Iteration Scheme 2 follows:

(1) 'Starting values of the iteration factor and‘the

iteration rate factor are selected.

(2) Integrate the nonlinear differential equatiens of
'motion forward, noting the norm of the terminal dis— |
satisfaction. If the Method of Adjoint Functions,is
being used, integrate the adjoint equations backwards.
: If" the Method of Perturbation Functions is'being"used,r
-the pérturbation equations may be‘integrated‘forward

~ simultaneously with: the differential equations- of

"motion.’

(3) Solve the algebraic equations, using the specified
'value of the iteration factor, to determine the correc-

tions required for the initially assumed values

(4) If all corrections are less than some preseleeted.
value, terminate the iteration. If any one correction
is greater than the preselected value contlnue the

process as follows.

(5) Apply the corrections to the assumed initial con-
ditions, integrate the differential equations again,
and determine the terminal dissatisfaction. If the
norm of the terminal dissatisfactlion 1s less than the

norm that results on'the previous iteration, lncrease.
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" the iteration factor by the value ef the iteration rate

factor.. If the Method of Adjoint Functions is being
used, avold the adjoint integration on the present
iteration. 1If the Method of Perturbation Functions is

being used, avoid the perturbation integration'on the'

next iteration.

(6). If the norm 1s greater than the previous norm, or
..1f a specified number of iterations have been made, de-

. crease the iteration factor by the value of the itera-

tion rate factor. If the Method of AdJoint Functions
is being used, the adjoint equations are integrated

backWards where the coefficients are obtained from: the

-last convergent forward trajectory If the Method of

‘Perturbation Functions 1s being used, the perturbation

equations are 1ntegrated on the next iteration.



CHAPTER 4 .

QUASILINEARIZATION METHODS

The previously discussed Methdds of Adjoint:énd Pértur;>
bation Functions involve the 1ntegratioﬁ‘of a set éf nonlinear
differential equations. The coefficients for the’liﬁeér
adjoint or éerturbation diffefential equations'are formed with
the variables generated by the nonlinear equations. AWSOmewhat
different approach can be formulated by linearizing the differ-
ential equations, and then using thg adjoint and perturbation
functions in the same general manner as before. The coeffi-
cients used to generate a new nominal trajectory»are.formed
from the solution that corresponds to thevpreviousvnominal tra-
Jectory.. This, essentially, 1is the~quasilinéarization concept.

The theoretical development of the Quasiiinearization
Methods may be shown to follow common lines, and in this sense
the formulations are parallel. The approaches involvé the
solution of a set of linear differential equations; thé-solu;‘ :_'
tion of which converges, under appropriate qonditipns, to ﬁhe-
solutidn of the desired nonlinear probleﬁ. nSince the eduations
are linear, the terminal constralnts can be satisfied on every
iteration, if desired. However, the.classical optimality an—
dition is not satisfied untilvconvefgence.has.occurred,_and‘»
even though the end points of the trajectory are satisfied,

some care must be taken to insure that the trajectory shape

. 59
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betweeh these end points is pofrect. .Onezother characteristic
of the quasilinearization techniques is that an initially
assumed solution is reduired. If a reasonable estimate. of the
squtibn?caﬁnot'be made’, a'starﬁing SOIution, derived fréﬁ the
integratidn"Of“the‘nohlihéar differential equations, may be
good enough to resplt 1n‘convergénce; 'This_requires that only
the initial values of the unknown variables be assumed, rather-

-~

than the complete solution.

.1 Methods of Generalized Newton-Raphson

The complete solution of the two-point boundary value .

problem by using the Method of GeneralizedfNéWton—Rapthn may .

be'obtaiﬁed-in a manner similar to the Method of Pefturbatiqn
Functions discussed ih‘Section 3.2. The exception to this
similarity'is that the differentiai-equations, Eq. (3.1), are
linearized about the previous némina1, | '

The problem is formulated in‘termS'of an ordinary first -

order;'honiinear,Véétdr, differeritial equation

.z = F(z,t) | | (4.1) {
where z is a 2n vector composed of n state variables and =
n Euler-Lagrahée'variébIes and: t is the 1ndependent variable - -

time. This nonlinear equation may be‘expanded'about the pre-

th
n

vious nominal trajectory, say the ‘trajectory, and by

ignoring the nonlinear terms yields
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2ne1 T 2p +‘-A(Zn’t')(:"zrwl - Zn)- : o - (4.2)

where  A(z _,t) 1s the partial derivative matrix [g—}zi] .
’ o _ : _ . n _
This matrix is evaluated on the previous nominal trajectory
and is similar to the A(z,t) matrix discussed in the develop-
ment of the Perturbation Methods. This equation, EQ.»(U.Z);_

can be expressed as
( z = Az + B : C(4.3)

where A s described aboye'and B =,én - Azn ; ‘Not¢ that A
/and B aré known froﬁ the previous nominal trajectory;

The'first approach tb the Method of Generalized
Newton-Raphson 1is similar to-fhe method dutlined byiMccili‘and
Kenneth (13), and thls provides a starting ﬁoint for furﬁhcr
developﬁent. Suppose that p of the 1initial valués of -z are
specified, 1i.e. Azi(to) = Zid.’ 1 =1, p . This implies that_
2n-p 1initial values of z must be assumed along wifh an

assumed value of initlal time t, . The hémogeneous part of

Eq. (4.3) may be expressed as’
y=Ay . R IV

and hence 1t 1s. similar to the perturbation equations,lEq.
(3.21). Eq. (4.4) may be integrated forward from t, to tg

2n-p times with each successive starting_vgctor cqqsistiqg of
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all zero elements except for the element fhat corresponds to
one of the unknown- initial conditions. ' This element 1is set

equal to un;ty._ This procedure leads to a 2n X 2n-p matrix

of solutions' f(t ).. The forward 1ntegration amounts to
making a unit perturbation in each one of the unknown 1nitial
conditions. T' | ' . o . o L
»‘The nohhoﬁogeheous soiutioh to éq.l(ﬂ.3)Jﬁa& be ob-
tained as a solution to | o |

Ve

wo=Aw+B (4.5)

which generafes4aAparticu1ar solution when integrafed from“to

to ty with the p known initial conditions and ‘n-p assumed

initial conditions. Now, the general solution of the linear
system of Eqs. (4.3) becomes

2(t) = Y(t,8)C + w(t) (i)

where =z is a M2n vector'of_State and Euler’variables,. Y. is

a 2n x 2n;p,'metrix of homogeneous solutions, C  1is-a 2n-p
vector”of_oonstanfs.éhd"w'his a 2n vector dfbnohhomogeneous
solutions. - N ' ) ~
Since 2n+l-p conditions on the terminal value of =z
must be specified for a variable final time problem, any 2n4p
of these.condisiohs may be selécted and the appropriate 2n-p
members of Eq. (4. 65 Mayabe evaluated at the assumed terminal -
time. Then these equations are ‘solved for’ the' 2n- p constant

corrections C . These correctlons are used to update the
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assumed initlal conditlons for the next iteration. For the
purposo‘or sévihg computer stdrage the nominal tfajectory_istk.
not formed by the 1ihear»c§mb1nation of Eq. (4.6), put'by in-
tegrati;g_qu (P.35 with the updéted initial Qonﬁitions; _Thgs
requires oniy.ﬁﬁe.storage.of~the final‘values of tﬁe hdmogené-
ous énd ﬁonhomogenqous solutions. | |
' This procedﬁre is continued untilia metric (that rcpfé_
sents the maximum distanée,_over the complefe 1ndepend¢nt'
variable range, between suécessive.nominal traJectorieS) be-.
comes less than‘some preselecﬁed value. This_metric is giVéh
oy , A .

1 1 - |
24y ~ 2 . h(“f?)'

N
p o= ) max
i=1 t

Since this metric represents the maximum distance between suc-
cessive nominal trajectories, its value decreases as the ppti—
mal trajectory shape 1s converged upon. When this hetric.has |
been reduced to an acceptable value, convergende has océhrred
for the specified value of terminal time. Thelone-remaining:"'
unused terminal condition is used in a conventional scalar ap-
pliéation of the Newton-Raphson 1iteration technique_to prodiice
a more accurate determination of terminal time. This finite

difference equation 1s

bo-t (4.8)
ferr Tk | zfe, \-zft, ) ( fx fk-x) o
k k-3 ' EE
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where the subscript'Ak' refers to the kb 'time iterationiandA

20 is the desired terminal value of the variable selected.
This new terminal time is used and trajectory iterations are
made ‘until the metric.'p' is reduced once again. When the
time iterations result in time changes smalier than some'pres
‘selected value, the deslired solution has been determined and
the procedure is terminated | " .

One of’the‘prihcipal differences of the Method of
Generaiized'Newton-ﬁaphsohVas opposed to the Perturbatiom
Methods 1is that an initial solution of the state and Euler
variables is required. Also the.method by which the terminal.

time is determined is very time consuming, especially when a

large error is made in the assumed terminal time. A major ob-~

jection is that the initial and,terminal conditions must simply
be values of the variables involved, rather than general func-
tions of these wariables. The ‘above stated-difreremce can be.
‘ avoided, in some’cases,?by simply using the solution'generated
by integrating the nonlinear equations, Eq,e(hgl), and this
approach requires orily starting values of ‘the variables, p
of which are known.  The above stated objectlon has been par-
tially removed by Long «(16). _ ) |

The method proposed by Long, designated here by the
Modified Method of Generalized Newton-Raphson, involves a

~

change of the independent variable

't =as . ‘ a C(u.9)



where a 1s a constant and s 1is a new independent var1ab19>
having values 0% s €1 , The differential equations Eq.

(4.1), now become

[o )

z
S

2! =

|

= aF(z,as) » - ~ - - (4.10)

Q.

The constant-.a 1s considered a new statevvariable andhan

additional differential equationd
a' =0 S (4.11)

may be added 'but this is elearly not necessary sinceuthe SOIu—
tion to thls equation is trlvial The ualue otl a: is initjallv
assumed and then corrected on each iteration just liVe any other
initially unknown state variable - The value va represents the
terminal time as can be seen by evaluating Eq. (4.9) at the
terminal value of the 1ndependent variable, |

The determination of the terminal ‘time now beconcs an
integral part of the 1terat1ve scheme, and its separate con-
sideration, as required by the first approach 1s not requtred
Howe;er, this does not save as much time as one might-think,
since a ternlthat_corresponds to the new state'variable a
must be added to each differential equation Also another 1n-'
tegration of the 2n homogeneous equations must be made sirnce
the value of a must be iteratively determined. The other

objections discussed for the first approach are not
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eliminated. The effectiveness of-Long'siproposal is evaluated

and discussed'further in a later chapter.

y, 62 Modified Quasilinearization Method

The method proposed in the present study, called the
Modified Quasilinearization Method, uses the quasilineariza- R
tion concept but removes the restrictions on the Methods of |
Generalized Newton-Raphson discussed in Section 4, l- The
manner in which the terminal time is determined proves superior
to the modification proposed by Long

The Eq (H 6), derived for the Method of Generalized
Newton-Raphson, can be rewritten and evaluated at the terminal

time

Y(t ,t.)C = z(tf) - w(tfl;. . o (4.12)

0° f)
The right hand side of this equation is the difference between
the desired terminal value of z and the linear calculation
of the terminal value of w . This difference is interpreted
as the variation of Az(tf) s and is expressed as‘ éz(tr)

Now, 1f both siaes‘of Eq. (4.12) are premultiplied by [%g]f ,

the resulting expression becomes

= (&h
[az] Y(to,t )C [az] GZ(tf) . (4.13)
f f
where [%2] is a 2n+l-p xz2n matrix‘describing the partial
f.-

change of a general set of terminal boundary conditions,

1
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h(zf,tf) R tova,change'in\the terminal values of 2z, itself.
The right hand 'side of Eq. (4.13) is.the variation of this
general set of terminal boundary -conditions 6h(tr) . A first
order expansion of the terminal boundary conditioné may be

made, dh = éh + hdt_. , and substituted into Eq. (4.13) to

f
yield
dh ='[%E] Y(to,tf)c +'ﬁét¢ .(U.IU)
Lz.lf ) ) =, i
where dh 1s a 2n+l-p vectbr of terminal constraint dis-
satisfaction, [%%] is an 2n+l-p x 2n matrix of partial de-
f' .

rivatives, ¥(tg,t.) is an A2n x_2n-p .matfix of the terminal
values of the homogeneous sdlutions, C is'a "~ 2n-p  vector of
corrections to be determined, ﬁ is a 2n+l-p Veétor,of
time rates of change of the terminal constraints and dtf :is
the time correction to be determined. ¢
The Eq. (4.14) just derived is analogous to Eq. (3.29)
developed for the Method of Perturbation Functions. The major
exceptlion 1s that in the ppesent case the nonlinear differen-
tial equations of-motion and the Euler-Lagrange equations are
linearized. If the optimization problem 1s reduced to a two-
poing boundary value problem as discussed in Section 2.2, p
becomes equal to n and the implementation of the two methods

is similar. T
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The computational procedure may be followed by re-
ferring ‘to an illustration of the Modified Quasilinearization

Method (MQM):

Y

(1) 1Integrate the 2n 1linear nonhomogeneous differen-
tial equations, Eq. (4.3), forward from ty to~ tf
with starting conditions consisting of the n- known
initial conditions and n . assumed values for the un-
known parameters. The A and B »matrices are
evaluated from the previous nominal (on the first

iteration the assumed nominal 1is used).
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(2) 1Integrate the 2n ‘iinearjhomogeneous differen-
tial equations, Eq. (uﬁu), forward, simultaneously
with the Eq. (4.5), from to to tfb_with n start-
ing conditions consiéting of a.unit perturbation of
.thé variables that éorresponds to the unknown initial

conditions.

(3) ‘Solve the n+l 1linear algebraic equations, Eq.
(4.14), for a linear determination of the corrections
that must be applied to the assumed initial values and

terminal time.

(4) Integrate the 2n ‘linear nonhomogeneous'differ—
ential equations, Eq. (4.3), forward from t, to

tf + th
recently calculated corrections. This integration

with the initial conditions updated by the

ylelds a new nomlnal. -

(5) The process is continued until the metric o
and the corrections beéome less than some ppeselgcted

values.

It should be noéed that this appr?ach‘could have used
the adjoint functions rather than the perturbation functions.
In this case; its impleméntation will require the use of a
set of equations adjoint to the homogeneous equations, Eq.

(4.4), and its development runs parallel to the method
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discussed in Sectipn}B.l._.The algebraic equation to be. solved

becomes

-

~

“dh = 6'(tf;t°)éz(£°)u+'ﬂdtf _ (4.15)

where © 1s an n+l x 2n matrix resulting from the. simul-

taneous backward integration of the adjoint equations..

4.3 ;tebatioﬁ Philosbphy for:the Quasilinearization Methods

The iteration écheme'for“thé.Qﬁasiiinéarization Methods
simply consist of a procedufe'to'itefatively determine the
initial values of the Lagrange multipliers so as to'decreése
the metric o . The”con§rol‘1s eliminated from the differén-
tial equapions,;Eq. (4.1), by usinglthe optimality conditions,
Eq. (2.25),‘aﬁd the lineérized differential equations are in-
tegrated during each iteration. Even though the optimality
conditions are used, the trajectory iterations do,not.repre—

_ sent optimal sclutions becéuse the trajectories are generated
from a linearized version of the nonlinear differential équa-
tions. 'The:bnly’réméining'requirémeht'is to reduce thebmetricA
o to an acceptable value, which means that an optimal solution -
has been converged upon.

With the Method of Generalized Newton-Raphson, the
terminal values of the'desiréd variables are introduced and
essentially. forced to. satisfaction on each iteration.. The
metric o 1s reduced to an acceptable value by iterating on

an assumed value of terminal time. Then one of the desired

'
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terminal values is used in a scalar application of the Newton-

Raphsoﬁ method to determine & new terminal time.

Iteration Scheme l - This scheme is used with the
Method of Generalized Newten-Raphsqﬁ, andvis one which allows
a time iteration to be made while the hetric 'p is being de-
creased. This scheme effectively reduces the metric p 1in

conjunctioh with convergence on the desired terminal time.
A detailed procedure of Iteration Scheme 1 follows:

(1) Assume a solution for the 2n trajectory

variables and a terminal_time.

(2) Make one t;ajectory iteration by integrating
forward the homogeneous end nonhomogeneous equations,
"Eqs. (4.4) and (4.5), respectively. Determihefﬁhe
corrections gnd 1nfegrate the nonhomogeneous equaﬁion
once again with the new initial cenditions. This last-._
ihtegration is considered a new nominel and the metric
G is determined for this nominal and the aesumed.

trajectory.

(3) Make one more trajectory iteration and obtain a

‘new metric, £,

(4) Using one of the desifed ﬁerminalvvalues make a

NewtonéRaphson iteration to obtain a new value of

terminal time.:
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(5) Make two more trajectory iterations and record

the value of the metric 0,

(6) If the metric p, 1s less than the metric pé';

make another time 1iteration and. continue the process.

(7)Y 1If the metric. Py is. greater than the metric
p, » continue the trajectory -iterations until the
metric becomes less than P, - Then make a time

1teration and continue the process

(8) Terminate the procedure when the time corrections

and the current metric become less than some pre-

selected values.

Iteration Scheme 2 - This scheme is used on the Modi-

fied Quasilineérization Method and is similar to Iteration

Scheme 1 presented for the Perturbation Methods ' When the

MGNR 1is used, the terminal va]ues of the desired variables are
introduced in such a manner that a full correction is requested
on every iteration’ It is expected that if a full correction
is requested in cases where the linear represcntation is poor,
the sequence of linear solutions will diverge. The less

severe request of only a percentage correction is applied with
the Modified Quasilinearization Method and the linear algebraic

equation'thét contains the n+l corrections 1is
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dh = [Eh]fy(to,tf)c + fadtf . (4.16)

The terminal dissatisfaction change fof a peréentage‘correc—
tion 1is | . o -
dh = -ch

where ‘¢ 1s the desired percentage to be .corrected, and the
iteration factor ¢ may have values in the range 0 € ¢ € 1

S

A detailed procedure of Iteration Scheme 2 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected. Assume a solution

for the @2n trajectory variables, and a terminal time.

(2) Make one trajectory iteration by integrating
forward the homogenéous and nonhomogeneous equations,
determining the corrections and integrating the non-
homogeneous equation once again with the new initial
conditions and new terminal time. Thils last integra-
tion 1s considered a new nominal and the metric o

is determined for this nominal and the assumed tra-

Jectory.

(3) If all the corrections and the metric p are
less than some preselected values, terminate itera-

tions. If any one correction or the metric o 1is
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greater than the preselected value continue the

process.

(h) Apply the corrections and make another trajectory

iteration, obtalining a new metric ,o ;

(5) If the new metric~is iess than the old metric,
"increase the iteration factorbby the value of the
iteration:rate factor and continue to iterate. Never
allow the.iteration-factor to be less than the-value

of the iteration rate factor or greater than unity.



CHAPTER 5

GRADIENT METHODS

The genera;.theofy of thé gradient:qoncept 1s}now both
well known andvﬁidelylused for thé appfoximate solution.to‘
trajectory‘optimization problems. These methods have a common
characferistic in thaf thehinfluence function.concept is used
to detérmine how the pérfofmance index and/of.a combination éf
the terminai constraint relétions are changed és the control
variables are changed. Then a cqntrol step 1s taken in the
negative gradieht diréction; i.e. the direction'ofisteepest
descent, so as to extremize the performance index while satis;
fying certain sbecified terminal cénstraint relations.

The implementation of thg gradienﬁ techniques 5as been
widely varled and relatively arﬂitrgry beeause although the
gradient directibn 1s'w§11 defined; the proper sized step in
control space 1s not.- The convergenée prgperties of the methods
are dependent on Judicious selection of this étep slze and the
manner in which 1t 1is changed, and several efforts have been
made to improve the rather slow terminal convergence of the
grédient methods. Unfortunately, because of this inherent
arbitrariness in the gradient method, a great amount of human
intervention 1is required to Select a proper confrol step size

and still avoid violating the lineérity constraints imposed

(
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on the problem. In this sense the 1mp1ementation_of the
gradient techniques is an art | '

The theoretical development of the gradient techniqueo-
discussed here may be shown to follow common approaches. The
primary difference:being the manner in wnich:tne.tefminéi con-
straints are handled énd the method of eelecting‘thereontrdi
step size. The Method of Steepest Descent uses the terminal
constraints in the so~-called "hard" form, i.e; the constrajnts
are to be satisfied 1dentica11y. The Modified Method of
Steepest bescent uses the terminal constraints in the sd—i
called‘“soft"‘fefm, i.e. the,constraintelmay be}only approii;A‘”
mately satisfied. . o

—

5.1 Method of Steepeet'Deseent

o The theoneticél-development of the Method of Steepest
Descent 1is well'known“as-diseussed'1n<Refenences 17 thredgn
21; and 1s sumnarized:nere only to protide‘backgnound for*thqf‘
iteration scheme modification. It is desired to deteérmine the
control program d(t)'; where u 1is'a m _veetor, which will
yleld an extreme value of some perrormanee'indei

¢ =A¢(.xf,tf). . (51)

subject to the differential equations of motion

X = f£(x,u,t) B L (5.2)
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)

where x ‘is an n vector while satisfying the ‘terminal con-

straint relations
v = v(Xp,tp) =0 , o (5.3)

where Y 1s a gq vector. One of the desired terminal con-

straint‘relations may be.used as a -stopping dondition,

Q = n(xf’tf).= 0‘. o . (5.9?
The integration process continues until this.stopping'condi—
tion 1s satisfied. If the differential equations, Eq. (5.2),

are lineafized about some nominal path, the resulting,edua—

tions become : g : p

.

§x = F&x + Gsu , '  (5.5)

where F and G are n xn and n x m matrices of partial
derivatives evaluated on the nominal trajectory, respectively.

The equations adjoint to Eq. (5.5) are

NI , : (5.6)

where A 1s an n vector of ngoint variables. This equation
may be combined with Eq. (5.5) by premultiplying Eq. (5.5) by
AT and post multiplying the transpose of Eq. (5.6) by &x

and adding the equations to yield

%g(szx) = ATgéu . . (5.7)
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Integrating Eq. (5.7) from *tox‘td ff ‘yields

K. °f g T - '
(r"6x), = }r A Géudt‘+'(}.6¥)o . (5.8)
te : ' :
The boundary conditlons on the adjoint variables are arbitrary
and may be chosen for convenience. - The object now is to de—‘
termine how initial state .variations and integrated control
varlations influeﬁce the términai values/ﬁf the perférmahce"
index, stopping‘conaitibn'aﬁd the terminal éoné£faiﬁﬁ }éla;
tions. If, on separate trials, the terminal Qaluéé sfvthe

adjoint variables are set equal to

o7 _lae o, _ lavy T _laal :

where A, “is an" n  vector, Ay is a nxq matrix and 2
is an n - vector, the desired relations are seen to be

-

t
f . - : .
d¢ = J{ zGGudt +’(A éx) + ¢dtf _ (5.10)
to‘ . )
tf . _ o
dy = j’ Gdudt + (A §x), # vdt, S (5.11)
, ‘ o - . .
f .
an = A Géudt + (ag 6x) + ndt, N ; (5.12)
t

0
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‘where ) L . o e \
o= [0 s gi (5.13).
[3X _. ;-,f
w=-a—‘”>'<+3£ (5.14)
. Lax at_r o
- [sa. . aq]
Q= ==X + 3¢ NS |
_3x at“. .(E.‘ 5)
and
" deé = [66 +.$dt)£ - (5.16)
dy = [6v + vdt], - (5.17)
dn = [0 + f)dt“jf . ' (5.18)

The approach presented by‘Bryson and Denham (18) allows
for the specification of a requésteq terminal dissatisfaction
improvement and an allowable step size to be taken in control

space. The control step size 1s defined by

as =
t

: 0 : _
where the step 1s a welghted quadratic function of the . control

GuT W du dt ) . (5,19)

N =

- deviation. 'The wéighting matrix W 1s included to improve
the.convergence characteristics by giving more weight to

’ - /
reglons of low sensitivity. However, it i§'often chosen to

be the unity matrix because of the lack of knowledge



- satisfied so Eq. (5.12) 1s equated to zero. The terminal ﬂime

concefning the region sensitivity. The criteria used for de-

termining the best elements of this matrix are not given and

-are found through trial and error procedures.

The stopping condition, Eq. (5.4), is to be identically

variation dt. 1s eliminated from Eqs. (5.10) and (5.11) to ]

‘ f
yield '
t } 7
'd¢ = fxT Géudt + (AT §x) (5.20)
| o0 o0 0 : .
£, , .
L t oo
dy = ‘rxT Goudt + (AT &x) (5.21)
¥R -y 0 B
to :
s - ' _ 6. : '
:w?ere o A¢9‘r x¢ —.gxn : (5.22)
: @T » ' :
Agg = Ay - Ang N o | (5.23)

- The total variation 1n the performance index due to

initial state variations and integrated control variations

may be expressed as

t
f
XT

t : '
S £ ' |
4o = [T T T ' -(ay
d¢ = f N gl oudt+ (Mg 6x) +v7 jdv- [ mcé“dt_“mé’()o
t t

o - 0 -
. .

- ‘. £
+ u 1dS - :
_ " t

0

(5.2h)

éuT W dudt

nf -

LI
L TR
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where the terminal constraint and the control step relations
are adjoingd by the use of the vT and :u Lagrange multi-
pliers, respectively. The multipliér v is a q vector and
u 1s a scalar constant. Since it is desired to determine the

control varlation which corresponds to the maximdm change 1in

the performance index, the first varliation of Eq. (5.24) must

vanish

t

A - T _ T & Ty« 2 - .
6(de) ./. (A¢Q G v XWQG S udu~W)é“udt 0.. (5.25)
" - }

0

This implies-that the desired control variation 1s

_ 1 -1,T a
du = 3 W G (x¢n - Xwnv) . (5.26)

When this equation 1s substituted back into Eqs. .(5.19) and

(5.21) the values of v and u are determlned as

= 7! -1 : ;
vE —ulyde 4+ valv¢ . (5.27)
. . -
I _IT -1 /2
é¢ Y YY ¥
= ot T =
ds -ds I, .d8
where
dg = d¥ - (AL _sx) (5.29)
¥ 0 o
t..
fop 1 p |
t o : o



t
I,, = AT aw'aTa, dt (
Ly Y0 o0 5.31)
t
t .
I, = T ow 'aTa, at  (5.32)
Too paf¥ G A4q | 5.32),
and I,, is q x q matrix, I is a q vector and I;&

vy Yoé

i1s a scalar.
Now, combining Eqs. (5.26) through (5.32) yields the
desired control program |

T /2

YQ Yy

-1
‘ dS - ds"I,,d8
| ] L 5 = Yy
du = ¢+ W°'G (A¢Q AWQIWWIV¢) I - IT I,o1
\
+wleTh: 17%ag o o

where the positive sign 1s used if ¢ 1is to be maximized and
the negative sign used if ¢ 1s to be minimized. The pre-
-vious control program 1s now modified as follows:

'unew = uoid_+ sdu ..

The computational procedure for the Method of Stecpest
Descent may be summarized by considering the following:

‘ ' \

(1) Integrate the n differential equations of
motion, Eq. (5.2), forward in time using an assumed

control program and the desired initlal conditlons
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for the state variables. This integration is con-
tinued until the stopping condition, Eq. (5.4), is
satisfied. The value of the state variables are

stored at each point in time.

(2) 1Integrate the n adjoint equations, Eq. (5.6),
backward q+2 times with the starting conditions,
Eq. (5.9). The coefficient matrix F is obtained

from the nominal generated on the forward integration.

(3) 1Integrate the Egs. (5.30), (5.31) and (5.32

—

backwards simultaneously with the adjoint equations
using zero as initial conditions to yield the values

, I,, , and I,, .

for 1 Vo 06

vy

(4) Select a desired impfovement in the terminal

dissatisfaction dY¥ for the next iteration.

(5) Select a reasonable value for the mean square
control deviation from the previous control program

by using

This will provide a value for the control step dS'.

(6) Use the selected values of dY and dS to cal-
culate the numerator under the radical in Eq. (5.33).

If this quantity is negative, determine the d¥ that
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makes the quantity vanish. It is is positive, use

the quantity as it 1is.

(7) Calculate the 6u as glven in Eq. (5.33) and

alter the assumed control program.

(8) - This procedure is continued until the control

variations are less than some preselected value.

5.2 ‘Modified Method of Steepest Descent

The theoretical development of the Modified Method of
Stéepest.Descent, which uses the penalty function techniﬁue
for handling the terminal constfaintg, is similar to the con-
ventional method discussed in Séction 5.1. The primary dif-
ference is that the terminal constraint relation is included,
iﬁ the'"soft"'form, with the performance index to form a .

pehalty funétion
‘ ~

2 q 2 .
P(xp,tp) = Woe (xp,tp) + i};l wiwi(xf,tf) (5.35)

where the wi's are weighting constants. If these constants
are sufficiently large, minimizing the penalty function is
essentially the same as miﬁimizihg the pefformance index ¢
and driving the terminal constraints ¥ to zero.

To determine how this penalty function 1s related to

initial staﬁe_yariations and the integration control variations,



the Eq. (5.8) is used. Selecting the terminal boundary condi-

tion for the adjoint equations, Eq. (5.6) to be

T 3P | | '
A (tl) = == (5.36)
3oy = [22] (5.37)
Q' f X : !
LT df
where XP is an n vector and kg is a scalar, yields
t ..
4P = rxTGGudt + (2 sx) + Pat | . (5.38)
P P 0 f )
to
t .
da = rATGGudt + (xTax)A + adt,. = 0 (5.39)
Y] Q 0 f ‘ )
to :
where
. aP} .+ 3P '
. an an-
il = —_— X t — (5-“1)
[a; at_jr .

N

The stopping condition, Eq. (5.39), must be identically satis--

fied. Hence dtr can be determined from Eq. (5.39) and used

to eliminate dt, from Egs. (5.38). The result can be ex-

pressed as
t
r T
dp = jr xPnGGudt + (xpnéx)o (5.42)
t

0
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where

Now, 1t 1is desired to determine the control variation
which haximizes'the change in the penalty function dP . To
insure the predominance of first order effects, a control step

size constraint 1s adjoined to the total variation of the-pen—

ot t
I £y o T
-dp = XPQGéudt + ds - . §6u sudt | + (xPnéx)0
t t .

0 0

If the above Eq. (5.44) is to assume a.maximum value, the

first variation must vanish, or

f , N
6(dP) = j{ G - u6u ys2udt = 0 (5.45)
RN
t, A
which implies that
= KGTa (5.1
s§u = KG APQ o (5.46)
where K 1s a constant equal to 1/u . This expression could
be written )
su = KH T (5.47)
u S . .
T

where H 1s defined as the generallzed Hamiltonian, XPQG
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This equation implies that the control variation which‘
‘maximizes the penalty function change is proportional to the
magnitude of the control gradient and in either the positive
or negative gradlent directiop, depending on the slign of K
The constant K may be interpreted as the control step size
in the gradient direction. When_ﬁﬁe gradient Hu approaches
zero, the control varlation alsb ﬁanishes.

Thé penalty function change 1s evaluated by substi-
tuting Eq. (5.47) into Eq. (5.42) to yileld

- | ) tf
dP = K [ H H, dt . (5.48)
t

The computational procedure for the Modified Method
of Steepest Descent'may be summarlzed by considering the

following:

(1) Integrate the n ditfeiéntial eqﬁations of
motion, Eq. (5.2), using an assumed control program
and the desired initial conditions of state. This
integration 1s continued until the stopping condition,
"Eq. (5.4), is satisfied. \

(2) Integrafe the n adjoint equations, Eq. (5.6),
backward one time with the starting condition, Eq.
(S-“3) » O



T. 1{ap p\[an
- [6)- )

forming the coefficient F  from the nominal path .

generated on the forward integration.

(3) Having obtained the solution AL (t) the term:

‘Hu =’1£QG’ may be formed.

- (4) The square of XgQG may be integfated from t,

to t. . Then, using Eq. (5.48), the step size K

may be determined by specifylng a desired penalty

function change 4P .

-

(5) The control variation may be determined from Eq.

(5.47) and applied to the assumed control program.

(6) The procedure continues until the penalty func-

tion reaches a minimum.

It must be noted that the specified peﬁalty function change,
and hence the step size K 1s arbitrary, and the judicious
selection of K becomes-.-a key factor in increasing the con-
Vergence rate. An automatic procedure fbr its selection is

desired.

88
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5.3 _Iteration Philosophy for the Gradient Methods

"The 1teration schemes for the gradient methods simply
consist of a procedure to iteratively determine a control pro-
gram so as to extremize a pertormance.ihdex while simultaneous-
ly dfiving»the terminal constraint dissatisfaction to zero.
The nonlinear differential equations of motlon are integrated
during each itération, and the adjoint equations are used to
determine how the variation of different terminal quantities
‘are influenced by initial state variations and integrated con-.
trol variétions. The optimality condition, Hu = 0, 1s not
used in the formulafion, and hence 1s never identlically satis-
fied. |

A minimization of performance index requires a control
step to be taken in the negative gradient directlon, con-
sistent with the specified termiﬁal constraints, but Ehe size
of this step 1s ﬁot defined by ¢onsider1ng the theoretical
,dévelopment of the gradient technique itself. Hence, the most
severe disadvantage of these techniques is the arbitrariness.
Usually a satisfactory convergence rate can only be achieved
b& experienced personnel.

A primary objective of the present study 1s to develog
an iterative scheme fhat removes some of the arbitrar;ness,and
increases the convergence rate. Since the weighting matrix
W , introduced in Eq. (5.19) is arbitrary, some rational basis

‘for its selection is needed. This problem is approached by
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examining an integral form of the Weierstrass E- Function which
approximates the change in the performance index or the ponaltj,

function. This change is approximated by

<

: t :
* f PR : ’
dP" E(x™, x, x,t)dt (5.49)
where E  1s the Welerstrass E-Function as developed by Gelfand

and Fomin (27). The E-Function is defined as

E . F-(xl*,).(.,t) - F‘(x*',)'(*,t) - %—I::*(x*,:;*,-t)(iu;(l*). ‘(5.‘50>'
_ D gy _ o
and for the system being ceesidered
F(x,i;t) = H(x,u,t)'- ATi , | (5.515V
where H ='ATf . The asterisks refer to the optimal path, and

the_absence of asterisks refer to any nearby path. From the -
calculus of variations a neces sary condition for the exlstence
of a minimum value of performance index is that E be non-
negative during the interval t, Tt Rty

' It is noted, by examining Eq. (5.2), that a wariation
in control is accompanied by a variation in § ; and that a
state variation will occur only after’a finite duration of
time. Hence, the expansion of Eq. (5.49) is made by consider-

ing that the control deviation is not accompanied by a change

in state. The Eq. (5.49) is now written
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e - L
apr" ~ / (H - #Hat . - (5.52)
t, ‘

The first term of the integrand may be expanded in a Taylor's

serles about the optimal path at each point in time

L ] 1. T # :
HxH +H 6u+ 56uH "6u+ ... - .(5.53)

and substituting the above equation into Eq. (5.52) and ref.
calling that Hu' = 0 on the dptimallpafﬁ results in
. te , ‘ K
dP » / souTH  Meuat . (5.54)
t, ‘ '
This eqdation fepresenté ﬁhe deviation in fhé peffofmance in-
dex associated with the deviation of the contfol'program from
an optimal control program.l It must be Stated that Huu* is
not known until the optimal trajectory 1s'convefged upoﬂ, bﬁt
the expression, Eq. (5.54), becomes»increasihgly accurate as
convergence progresses. 4 | | |
An expression identical to Eq. (5.54) may be derived
for the performance index change by considering the second
variation of the functional 1 as presepted in EQ.'(Z.SY;
‘This approach requires thaﬁ the control varlations are not

accompanied by state deviations and that an optimal trajec-

tory 1is used as the reference path.
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The term "uu* is approximated by using the general-
ized Hamiltonian and the optimality condition, and may be

derived as
AT+, | (5.55)

for ﬁhe Earth-Mars fransfer and the Earth lauﬁch examples dis-
cussed in Appendix A.2. | ‘

The Eq. (5.5U4) indicates that the performahce index
incrcase 1s abgfo*imately'équal to the integral of é weight¢dA
quédratic form of the control deviation, where the wéighting
is given by Huu* . This same quadratic form appéafs in qu
(5.19) for -the Method of Steepest Descent, except the weighting
matrix W 1s undefined. This matrix was 1ntrodq¢éd_toAprovide
diffefentvweights to contfol regions of different sensitivity,
and may'still.be uécd-to restrict the control-step_sige. The

Eq. (5.19) is then introduced into an expression for the per--

rormance index increase as shown 1in Eq. (5.2“), Hence, 1t is

reasonable to interpret the welghting matrix to be Huu- s

thus becoming an easily determined specified matrix.

Iteration Scheme 1 - The first iteration scheme for the
Method of Steépest Desqent-follows the procedure outlined in
Section 5.1. The weigﬁﬁing ma#rix_ W 1s set equal to the
unity matrix, and hencé the control variatioﬁs at all pqin;s

in time are given the same weight.
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Iteration Scheme 2 ~ The second iteration scheme for

the Method of Steepest Descent also follows the procedure out-
lined in Section 5.1. However, the weighting matrix W iskset
equal to Huu. , and hence the control variation is 1nf1uenc¢d
by 2 time dependent weighting matrix. The only procedural éx-

ception is the one associated with determining the Huu

matrix,

Qne of thé inaccuracies introduced in the'abové analy-
sis 1s that the Hug* matrix mﬁst be evaluated with currént
trajectory 1nf6rmation, rather than the desired optimal Valuéé.
This problem is eiiminated‘inithe Modified Method of Steepest
Desccnﬁ by makiné the Taylor's expansion about the currént

nominal trajectory. This expansioh results in

' 1, T )
H ~ H + \Hu6u + 56u Huuau + ..., (5.-5.6)

When this edﬁation is substituted into Eq. (5.52), the rela-
tionship for the penalty function change becomes
t
ap* » f o (Hosu+ L suTh suat (5.57)
- u 2 uu ) = )
to : -

The negative sign 1s now present because the control deviation
is toward the optimal, instead of away from 1t as before.

It 1s desired for the penalty function change to be
extremized, and a necessary condition for this to occur is
that the rirst'variation of dP',_vanish. The first variation

of Eq. (5.57) 1is set equal to zero
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‘ }G(dP.) n 1 C T 2 SR
| v - (Hu + Su'H, )6 udt = 0 . (5.58)
A £ :

This implies that

su=-H “‘wT - - (5:59)

where Hu and Huu are evaluated with current trajectory in-

formation.i This équation implies the optimal control is in the

! The

negative gradient direcfiqn, welghted by Huu_
approximations-invoivéd become 1n¢reasing1y accufate és the
convergence process approachés the optimal. It 1is in this
near optimal région that the gradient technique‘is most defi—
cient, and 1t is expected that the_conﬁrol Iaw, Eq. (5.59),

will assist in nullifying the inherent slowness of conver-

gence. By comparing Egs. (5:“7) and (5.59), it 1is seen that

-1

the gradient step now becomes time dependent, where K = ;Huu s

and may be easily calculated on each iteration.

Iteration Scheme 1 - The first iteration scheme asso-
clated with the Modified Method of Steepest Descent requires
the gradient step determination to be made by using Eq. (5.48).
This equation will yleld a gradient step after performing the
indicated integration and specifying a desired improvement in
the penalty function. 'Caution must be exercised so as not to
request such a large penalty function improvement that the-

linearity assumptions are violated.
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A.détailed procedure of Iteration Scheme 1 follows:

(1) Integrate the nonlinear differential equations
of motion, Eq. (5.2), forward from t, to the tr'A
which satisfies the stopping condition, ‘Eq. (5.4).
The desired initial conditions and an assumed control
program are used. . An initial evaluation of the

penalty function P0 is made.

(2)° Integrate the adjoint equatibns, Eq. (5.6),
backwafdé from tf using the variables ffom the
forward integration to evaluate the coefficients.

The stafting conditions are determined by évaluating

" Eq. (5.43) at thHe terminal time and are used to gene-

"~ rate the solution \Agn(t) .
N\
(

(3) Having obtained-the solution xgn(t), the quan-
P .
- tity Hu = xPnG may be evaluated

(4) The square of Hu may be integrated from t,

to t, and using Eq. (5.48), K may be determined

f
by specifying a desired change in the penalty func-

tion.

(5) This step size K 1is used to modify the control
variation as stated in Eq. (5.47), and a new control

program is determined.
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(6) This new control program is used to generate a

new nominal and the procedure is repeated.

Iteration Scheme 2 - The second iteration scheme aséof.

clated with thé.Modified Method of Steepest Descenf'is similar
to a techniqué:used by Wagner and Jazwinski (21). This scheme
involves making three trial forward integrations using dif--
ferent but constant gradient step slzes, and recording the
three r¢suit1ng'penalty function valués. A second order poly-
nomial 1s fitted throggh these points and the étep size that
corresponds to fhe minimum value of the peﬁalty functipn is
selected. This method takgs full advantage of each adjoint .
integration Sy.selecting an optimél step slze for thatliteraf .

tion.
A detailed procedure of Iteration Scheme 2 follows:

(1) Integrate the nonlinéér differential’equatiohs of
motion, Eq.,(5.2)) forward from t, to the ¢t which
satisfies thertpppiﬁg condition, Eq. (5.4). The de-
sired initial conditions and an assumed control program
is used. An initial evaluaﬁion of the penalty functiqn:

‘ Po is made.

(2) 1Integrate the adjoint equations, Eq. (5.6), back-

wards from tf using the variables from the forward
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integration to evaluate the coefficients. The start-
~1ing conditions are determined by evaluating Eq. (5.43)

at the terminal time and are used to generate the

T
solution XPQ(t)

(3) Having obtained the solution lgn(t) , the quan-

tity Hu = xgnc may be evaluated.
- (4) The square of Hu may be integrated from t, to

t, and using Eq. (5.48) K. may be determined by

1
specifylng a desired change in the penalty function.

(5) This step size K is used to modify the contrcl

1
variation as stated in Eq. (5.47), and a new control

program 1s determined.

(6) Integréte the differential equations‘of motion
again using the new control program-and record the

assoclated penalty function P,

(7) Depending on whether Pl is greater or less than

P, the step size K, 1s either halved or doubled,

0
respectively.

1

(8) The control 1is modified once again and an integra-
tion of the differential equations of motion yileld a

penalty function P,

(9) A second order polynomial 1s fitted through the

three points, and the step size K , is determined
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that corresponds to the minimum value of the penalty

function.

(10) The control is modified with this K ., = and-the
differential equations are Integrated to yield a new
nominal trajectory. The penalty function resulting
from this integration is used to start ‘the cycle over

_ again.

Iteration Scheme 3 —'The third iteration scneme asso—

ciated witn thevModified Method of Steepest Descent requires
reference to the results given in Eq. (5.59). The implementa-
tion of this scheme 1s extremely simple compared to the first
iteration schene, because no triai forward integrations are re-
quired. The time dependent matrix Huu , which may be formed
as the adjoint equations are 1ntegrated backwards, is easily
determined. The control varlation for the next iteration is

then determined as the H =~ matrix is formed.

N
v

A detailed procedure of Iteration Scheme 3 follows:

(1) Integrate the nonlinear differential equations-of
motion, Eq. (5.2), forward from t  to the t. which
satisfies the stopping condition, Eq. (5.4). The de-
sired initial conditions and an assumedtcontrol‘program
.1s used for the first iteration. An 1n1t1ai evaiuqtion

of the penalty function P0 is made.
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(2) Integrate the adjoint equations, Eq. (5.6), back-
wards from tr using the variables from the forward
fntegration to evaluate the coefficientsf The starting
conditions are determined by evaluating Eq. (5.43) at
the terminal time and are used to generate the solution

T
xPn(t) :

(3) Having obtained the solution Agn(t) , the quan~
tities H, and H, ~may be evaluated, hence the

control modification, Eq. (5.59), may be determined.

(4) The preVious control program can be modifled and

the‘process cqntinued.



CHAPTER 6

COMPARISON AND DISCUSSION OF THE OPTIMIZATION
METHODS AND ITERATION SCHEMES

A meaningful ébmparisoh of the optihizatioh;ﬁethods and
assoclated iteration schemes is extremely d1fficult to make.

One brimary reason for thié difficulty'is thét'most:methods are
highly problem dependent, i.e., the characteristiés'bf each
method are different for each problem attacked:. Furthermore,
difficulties arise even 1f a comparison 1s madé between the op-
timization methods based on the same physical problem. As an
example, suppose it 1s desired to compare the convergence times
6r.severai 6ptim1zétibﬁ methods. It is 6bviouslthat the conver-
gence time 1is highly dependent on'the 1htegréfion-step slze se-
lected, and therefore some reasonable criteria for this selec-
tion m&st be established.

The comparison of fhe optimization methods and itération
schemes on a numerical basis requires a realistic and represen-
tative tfajectory problem. The example chosen 1s a spacecraft
moving under the influence of thrust in an inverse square gravi-
tational forée field. Specifically, the problems investigatéd
are (1) a low thrust transfer-trajectory'from Earth to Mars, and
(2) an atmospheric Earth launch to circular orbit trajectory. A
more detalled discussion of the speéific applications 4is made in

Appendix A.2. The time histories of the variables and control

100
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programs that correspond to the optimal trajectories are shown in

Figures A.2.1 through A.2.4.

6.1 Selection of Methods for Comparative Study

The trajectory optimization problem has been shown to

. be theoretically solvable by using several different indirect and

~direct methods. Of the methods, presented in Chaptefs 3, 4, and

5, several different approaches are discussed. Some of the more

promising methods and associated iteration schemes were selected

for computational investigation. | |
| The methods selected for c;mbutational investigation

are referred to by the following abbreviated names. These meth-

ods are:

(1) Method of Adjoint Functions (MAF) - the third

approach discusced in Section 3.1.

(2) Method of Perturbation Functions (MPF) - the

third approach discussed in Section 3.2.:

(3) Method of Generalized Newton-Raphson (MGNR) -

the first approach discussed in Section 4.1.

(U). Modified Method of Generalized Newton-Raphson

(MMGNR) - the second approach discussed in Section
uoll

(5) Modified Quasilinearization Method (MQM) - the

approach discussed in Section 4.2.

»
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(6) Method of Steepest Descent (MSD) - the approach
" discussed in Section 5.1. |

(7) Modified Method of Steepest Descent. (MMSD) - the, -

approach discussed in Section 5.2. - ..

. The constants used in the numerical study are given in

Appendix A.3.

6.2 | Basis of Comparison
A basis of comparison must be estéblished fof“the’com?
parative Studonrlthe optimizétion'methods selected in Section
6.1. The compérison is to be made not only'between optimizatioh
methqu,'but between the associated iteration schemes as weii. |
| :In a general sense, the following items are considered

a basis for comparison for the optimization methods:.

(1) Required formulation, application. and programming

complexity.
(2) Required amount of computer logic and storage. ~
(3) Ease of use by inexperienced personnel.

(4) Required programming effort for solving different

problems.
(5) Effectiveness in solving different problems. ~

(6) Sensitivity of the convergence characteristics to

initially assumed parameters.
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(7) Resulting time ror'convergence.

The 1teration schemes are not only concerned with the -

above items but with the following items as well:

(1) Effectiveness of decreasing the sensitivity of
the convergence characteristics of the method to

initially assumed parameters.

(2) Effectiveness of decreasing the time for conver-

gence.,

6.3 / Perturbatioh Methods

| ~The comparison and discussion of the Perturbation
Méthods will consist of two separate analyses. The Method of
Adjoint Functions, iﬁéluding the normal proéedure and Iteration
“Schemes 1 and 2, is discussed:first. The Method of Perturbation
Functions with Iteration Scheme 1 is discussed last. The dis-
éggsion content will include the applicable items listed in

~ Section 6.2.

6.3.1 Method of Adjoint Functions

The required formulation of the Method of Adjoint
Functions as disbussed.in Section 3.1 is simple and stfaightfor-
‘'ward. A general discussion of the applications is presentéd in
Appendix A.2 andha speéiric apblicatién of the MAF is made in
Appendix A.2.1. The examples chosen éré described by four, first

order, nonlinear differential equations of motion, il.e., Newton's
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equations for motion in a plane.

The proéramming effort requires thé'forward integration
of the four differential eqhations of motion and tﬁe four Eulé;
differential equations. Integration of the differential equation
for the rate of change of control, i.e., Eq. (2.22), 1s not re-
quired since the control 1s easily determined and eliminated from
the state and Euler equations. These eight dependent variables
and the independent varilable afe Stored‘in computer memory or on
tape‘at each time step during the forward integratién'fdr use 1in
forming the A(z,t) matrix. This requires less storage than if
eac% element of the A(z,t) matrix . 1is stoxed since thls would re-
quire 64 quantities to be stored at each time step. The A(z,t)
matrix must be formed during the backward integration, but this'“
requires very little additional time.

The backwards integration of the eight adjoint differ-
ential equations must be -made with four different starting vec-
tors, and hence a large percentage of the computation time is
spent in this backward integration. The adjoint equaﬁidns are
linear and it 1s conceivable that a larger integration step or a
varliable step could be taken. This, however, requires additional
progrémming complexity to 1nsufe that the proper coefficients arc
being formed from theAvariabieé.stored dﬁring the forward inte-
gration.

There 1s an al;ernat;ve approach that eliminates the
storage problem, and hence becomes attractive for problems of

large dimension or for ones that require many integration steps.
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This approach is one where the differential equations 6? motion
and the Euler equations are integrated backward simulténeously
with the adjoint equations. This does not eliminate the forward
1htcgration because the terminal values of the state and Euler
.vafiablgs are required to start the backward integration. The
.saérjfice fo eliminate the storage and magnetic tape problems 1is
madc by having to integrate an additional set of equations.

For the numerical investigation made, the former pro-
cedure is used which means morec programming complexity, but also
leés computer time required. A constant step size was selected
- for both the forward and backward integrations.

The computer program that uses the MAF requires two
.1nitially assumed Lagrange multipliers and an assumed terminal
time. These estimates require a familiarity ;ith the physical
problem and, to some depgree, experience. The computer prosram
is bullt such that only the subroutines containing thé differen-
tial equations of motion, the Euler-Lagrange equations; and phe
adjoint equations must be changed to solve different problems.

Iteration Scheme 1 requires very little computer logic
in addition to the Normal Scheme which just requests 100 peﬁcentl
terminal constraint satisfaction on each 1teration. Oberation iz
simply transferred to a subroutine where the iteration factor {is
altered in accordance with the terminal norm criterion explained
in Section 3.3.

Iteration Scheme 2 requires some additional programmin.

and computer storage. Basically, the scheme 1s such that the
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" iteration factor is increased, omitting an adjoint integration,
until either the terminal constraint norm divergés or a specified
number of fqrward integrations have becn made. if-the norm does
divefge, the last convergent trajectory is used as a nominal, and
hence this trajectory must be saved until it ié.détermined
whether or not it wiil be needed. The storage problem can be
eliminated, however, by simply regenerating the last convergent
trajectory.
| The Earth~M;rs transfer is completely. defined when

Ao, *20, and tr have been determined; as shown in Appendii
A.2.1. The quantity i,p 1s easlily determined to be zero. In
an effort to determine how sensitive the method is to poor .ini-
tial assumptions, for the above three quantities, many cases are -
invéstigated, These numerical results are best illustrated by
building envelopes of convergence, the boundary of which repre-
sents the last,convergent trial. Points beyond this boundary do
not result in a convergent solution. The percentage numbers on' , -
the axes represent the percent deviation from the values that re-
sult in an optimal solution.

The envelopes of convergence for the MAF, using the
Normal Iteration Scheme of requesting a 100 percent corrcction in
the terminal constraints regardless of the terminal norm re-'
sponse, are shown 1n Figures 1, 2, and 3 for the cases .of -20, 0
and 20 percent error in perminal time, respectively.

The physical significance of the convergence envelopes .

is clear when it 1s realized, by referring to Appendix A.1l, that
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Earth-Mars transfer

Iteration method: MAF
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: =209

+50%
_070 ’ O
zeo - ‘ 6 O
"'500/0 - 070
| 10

Note: The numbers indicate
the iterations required
for convergence

Figure 1.- Convergence envelope for the MAF using the normal iteration
scheme, initial iteration factor of 100% and terminal time error of -20%.



108

Earth-Mars transfer
Optimization method: MAF
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: 0%

+50%

6)\20

0%

'500/0

-50% 070 +500/o

Note: The numbers indicate
the iterations required
for convergence

Figure 2 .- Convergence envelope for the MAF using the normal iteration
scheme, initial iteration factor of 100% and terminal time
error of 0%.
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Earth-Mars transfer
Optimization method: MAF
Iteration scheme: Normal
Initial iteration factor: ' 100%
Terminal time error: 20%

0%
20 » 0

S\

'500/0

-509% 0% +509%

6)\10

Note: The numbers indicate
the iterations required
for convergence

Figure 3.- Cbnvergence envelope for the MAF using the normal iteration
scheme, initial iteration factor of 100% and terminal time
error of 20%.
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the thrust or control angle with respect to the local-hori-
zontal is given by sin g = —Al/(xlz + Azz);5 .and cos B =
-kz/(A12V+ xzz);i . Points along a u5° diagonal ‘lying in the
first and third quadrants represent the optimal-iniﬁial control

angles, but with different values for the individual magnitudes

of the Lagrange multipliers. The signs of the initial Lagrange

-multiplier errors are the same. Points along a 45 diagonal

1y1ng in the second and fourth quadrants repfesent’nonoptimal
initial control angles for varipus valués in the inéividual
magnitﬁdes of the initicl Lagrange multipllers. Down and to the
right in the fourth quadrant means the initial control angle 1is
decreasiﬁg and up and to the left means the initial control angle
is increasing. ,Tﬁe signs of the initial Lagrange multiplier
errofs are opposife. | V

| It is seen thatfthe,bonvefgéﬁﬁ solutions in Figures 1,
2, and 3 remain near the diagonal passjhg from the second to
fourfh quadrants. The conclusion must be that for these cases
the method is more sensitive to changes in the optimal values of
the initial Lagrange multiplier errors that.have the same sign,
even though the initial control angle remains near optimal for
these cases. The method is léss sensitive to changes in the
initial Lagrangé multiplier errors that have the opposite sign,
even though the initial control angle is not near optimal. One
other interesting characteristic 1s that as the error in termirz.
time 1ncreas¢s from negative to positive, the envelopes Increase
in size and move further down into the third and foufth guad-

rants. The convergence envelope in Figure 2 is approximately

IS
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30 percent larger. than the one in Figﬁre 1, and the convergence
envelope in Figure 3 is approximately 70 percent larger than the
one in Figure 2. When a positive term;nal time error exists, the
method becomes less sensitive to negative i,4 errors, but
highly sensitive to positive ,, errors. ‘

.Iteration Scheme 1, using an initial value for the ‘iter-
ation factor of 100 percent, is effective in increasing the con-
vergence envelope slightly, as illustrated in Figures 4, 5, and
6. Thesé envelopes exhibit. the same characteristics as those
shown in Figures 1, 2, and 3, except=tﬂat_the envélopes aré
slightly 1afger. This increase in sizé 1s attributed to the
ability of the Iteration Scheme 1 to decrease the iteration
factor when the terminal nérm diverges. This easement of the
requested bercentage ¢orrection allows some cases to converge
when divergence would have occurred had_the iteration factor
been forced to remain 100 percent for all iterations.‘

:The convergence envelopes are significantly increased by
using Iteratlion Scheme 1 and an initial 1teration factor of 50
perceﬁ; régger than 100 percent. These envelopés ére shown in
Figures 7, 8, and 9, and are approximately 360, 350 and 260
percent larger, fespectively, than the corresponding envelopes
for initial iteration factors of 100 percent. The convergent
solutions of these envelopes do nét remaln so near the second to
fourth quadrant diagonal as the previous cases although the
skewed appearance 1is still perceptible. One characteristic seen
"in Figures 4, 5, and 6.becomes more pronounced in Figures 7, 8,

and 9 and that 1s the downward movement of the envelope as the
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Earth-Mars transfer .
Optimization method: MAF
Iteration scheme: 1 =
“Initial iteration factor: 100%
Terminal time error: =20%

+50%
| 0

O @

0% 6
Sog .
'5070
'500/0 Oo/o +500/o
6)\10

Note: The numbers indicate
the iterations required
“for convergence

Figure 4 .- Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of =207%.
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- w RN TR it

Earth-Mars transfer
Optimization method: MAF
Iteration scheme: 1

Initial iteration factor: 100%
Terminal time error: 0%

+50%
5Xyg 0% ‘ ”
"50_‘70_
'500/0 Oo/o +50°/o
6)\10

Note: The numbers indicate the
iterations required for
for convergence

Figure 5.- Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 0%.
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Earth-Mars transfer
Optimization scheme: MAF
lteration scheme: 1
Initial iteration factor: 100%
Terminal time error: 20%

+50%
O
0% 6
oo )

@

:.'._50"/?.

~50% 0% , +50%

10

Note: The numbers indicate the
iterations required for
convergence

Figure 6 .- Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 20%.
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Earth-Mars transfer ‘ A
Optimization method: MAF

Iteration scheme: 1
. Initial iteration factor: 50%
Terminal time error: -20%

1 000/0 ' 0
- +50%
5)\20 070
'.‘50%
. '50‘70' ' Oo/o . +50"/o
6>\10

Note: The numbers indicate
the iterations required
for convergence

Figure 7.~ Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 50% and terminal time error of -20%.
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Optimization method: MAF

lteration scheme: 1 and 2

Initial iteration factor: 50%

Terminal time error: 0%

Update integer: 1

+50%

5)\20 0% :

'5070

"10070 ‘ ' -50"/«_: Oo/o '+50%

Note: The numbers indicate o
the iterations required

for convergence

Figurg 8.-. Convergence envelope for the MAF using iteration scherﬁes 1 and 2, initial
iteration factor of 50%, terminal time error of 0% and update integer of 1.
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positive terminal error is 1ncreased; This seems reasonable
since a negative 1,y error, which decreases the initial control
angle, combined with a positive tf error would»ppobably causc
the vehicle to 1nter§¢§t.Mar's orbit at a low angle. uThis tra-
Jectory would conceivably termipate closer to.the optimal point
than if the time error were.lesS.

Figures 7, 8, and 9 also display the characteristic that

_the envelope boundary becomes podrly defined, i.e., more irregu-

lar. ThiS'emphasizes the fact that‘many'timQS’only a slight

numerical difference exists between convergence and divergencé,

‘and hence the scheme becomes very unpredictable near thé'bound-,

aries. This is emphasisz further by notihg that in many cases

a divergence‘occurs.1mhed;at¢1y after anreiatively low iteration

P L f
. R

s

DRI

Iteration Scheme 2 conﬁinues‘to intégrate the differen-

l:itial equationS'forwaré and sk1ps the édjoint equation integfation
‘unless a divergence occurs or a sp;cified'npmbef (updating inte-
. ger) of forward passeé‘ﬁave been méde. Figures 10, 11; ana 12
-show Iteration Scheme 2 for an initilal iteration factof of SQ L

percent and updating integers of 2, 4, and 6, respectively. The

figures indicate the total iterations and the humber of adjoint

»1ntegratiohs.required. Figure 8, showing Iteration-Scheme 1,

may be considered a special case of Iteration Scheme 2 where the
updating integer is unity. A combarison of these figures reveals
that no significant change in the convergence envelope size or

shape has resulted from the application of Iteratlon Scheme 2 or
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increasing the updating integer. The total number of iterations
required increased, but the number of adjoint integrations de-
crease as the updating integer is increased. This trend con-
tinues until the updating'integer reaches four or six and thié:
appears to be a'point 6? diminishing return for this particulér
problem. o
It becomes apparent that the initial value of the itera-
tion factor has a pronounced effect on the convergence envelope
size, and in most cases convergence time as well. An initial
valﬁe of iteration factor of 20 percent, with either iteration
schemé,.produces a significantly larger envelope than the ones
for 50 percénﬁ shown 1in Flgures 7 through 12. This increase in
envelope size 1s'accompanied by a slignificant increase 1n the re-
quired computer convergence time for Iteratlon Scheme 1. Figure‘
13 1llustrates this influence of the initial values of iteration
factor on the convergence time for the particular but ‘represen-
tative cases where the Lagrange'muICipiief and terminal time
érrqrs are as indicated on the figure. For Case 1, where the two
Lagraﬁge multipliers and terminal time errors are -10, -10, ard

20 percent, respectiVely, the largest values of initial iteratior

_ractof result in the most favorable convergencé times. On the

other hénd, for the case where the initial error is larger, as
illustrated by Case 2 where the Lagrange multipliers and terminal
time errors are -20, 10, and 20 percent, respectively, some 1ntér—
mediate value of initial iteration factor results in the most

favorable time.
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Initial value of iteration factor

| | l N I
Earth-Mars transfer Case 2 6>\10 =-20%
Optimization method: MAF . 6)\20 - 10%
11 11 lteration scheme: 1 = - 5t _ oo ,
RN Casel &\ ,=-10% f= 20%
\ Gt’f = 20%
9 cCase 2
; .
7
'
/
_ /
\ /
\‘ 7 II
7 7 : U
Y 4
N\ ’
6 6,
6b\“"“‘
\\ 5 k :
b 2 S_Case 1—]
i
Note:- The numbers indicate )
the jterations required
~ for convergence.
1 .2 4 5 6 7 .8 .9

1.0

Figure 13. - Convergence time as a function of the initial value of iteration
: factor for the MAF using iteration scheme 1,



124

F;gure 13 also reveals the ekisténce of an uncertainty
about the:selection‘of the initial iteration factor. When a
problem is first attacked, one has little or no feel for - e per-
céntage correction to reduest.' A low initial value fop fhe iter-A
ation factor is usuaily selected because it is expected that this
results in a large envelope of convergence. A low initial‘itefé-
tion factor results in a convergence time penalty as shown in
Figure 13. However, in some situations a high value for the
iniéiﬁl iteration factor results in a convergence time penalty.
It 1s not known how to determine the best initial iteration
factor before a series of investigations is made. |

Iteration Scheme 2 attempts to overcome thils problem by
seeking the largest iteration factor that can be used, without a
tfajectory divergence, before the time consuming adjoint inte-
gration is made. Since only forward integrations are made in.>
bringing the iteration factor from a low initial value’to the
bést valué, the time penalty is reduced. The influence of 1ni-
ﬁial iteration factor on the cohvergende time 1s illustrated in
Figure 14 for Iteration Scheme 2. This plot may be compared to
one of the cases in Figure 13, and 1t 1s'éasily seenvthat‘ror low
initial values of the iteration factor the time penalty 1s‘not 50
severe. The objeétion'to an initial low iteration factor is re-
moved now, and yet good convergence possibilitles remain because
large envelopes of convergence are associated with low initial
iteration facfors.

The influence of the update integer on convergence times

is illustrated in Figures 15, 16, 17, and 18. These envelocpes
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Figure 14, - Convergence time as a function of the initial value of iteration
factor for the MAF using iteration scheme 2,

24 ] T T -
Earth-Mars transfer .
29 Optimization method : MAF
lteration scheme : 2
Update integef : 6
20 Case 1 -6)\10 =-10%
6)\20 =-10%
‘18 ot = 20%
16}
14 a3 I
13/3 | N
12 1 ~ -11/3—1—11/3-11/3
10 . 11/2 —J 10/3
e 1 oaep | M
8 - — _
6.
4 D ——
‘ Note: The numbers indicate
| the lterations/adjoint |
L2 — iterations required for
e convergence .
l .
0 d 2 3 4 6 .7 .8 .9 1.0

Initial value of iteration factor
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Earth-Mars transfer
Optimization method: MAF
lteration scheme: 1 and 2
Initial iteration factor: 50% -
Terminal time error: 0%
Update integer: 1

+50%

%20 0%

'500/0

-50% 0% +50%
**10
Note: The numbers indicate

the time in seconds
required for convergence

Figure 15.~ Convergence envelope for the MAF using iteration schemes 1 and 2, initial
iteration factor of 50%, terminal time error of 0% and update integer of 1.
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correspond to the envelopes in Figures 8, 10, 11, and 12, but
indicate the convergence times rather than the required itera-
tions. A most interesting characteristic of Iteration Scheme 2
is revealed. For a given initial iteration factor of 50 ﬁcrcent,
the convergence times are generally reduced by increasing the up-
dating integer to the four to six range. Larger values of the
updating integer result in higher convergence times. It is ex-
pected that for this problem the best update integer approxi-
mately equals the humber of steps required between the_initjal
value of the iteration factor and unity.

It is very interesting to take a specific and repre-
sentative example, and examine the norm of the terminal con-
straints as a function of computation time. Figure 19 shows the
terminal dissatisfaction norm decrecasing for Iteration Scheme 1
for initial values of the iteration factor of 20, 50, 70, and 100G
percent. Not on]y is the increase in convergence time for the

smaller lteration factors evident, but the characteristics of the-

‘convergence rate are also seen. Figure 20 illustrates these sarnc

characteristics for Iteration Scheme 2 using an initial iteration
faétqr of 50 percent. The norm of the terminal dissatisfaction
is plotted as a function of computation time for update integerec
of 1, 2, 4, and 6. With an update integer of six, the conver-
gence time 1is appfoximately reduced by 50 percent when compared
to the extreme case where the integer 1s unity.

In an effort to determine some of the complications

associated with solving a different problem, the atmospheric
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Earth launch to circular orbit described in Appendix A.2 was
formulated and solved. These results are sh&wn in'Figure§‘21,
22, and 23. It was discovered, for the Earth la&néh proﬁlem,
that the convergence ethlopes were less sensitive to terminal
time errors than for the Earth-Mars transfer. Hence, the plots
shown are the same as for previous cases with the exception that
terminal time variationé are only 10 peréent.

It 1is obviéus from the figures that the method is rela-
tively sensitive to Ao errors and relatively insensitive to
A9 errors. This Earth laﬁnch example reveals some of the same
characteristics séen for the Earth-Mars transfer, namely, as the
terminal time error 1hcreasesfﬁhe’éonvergence envelope increases
in size and moves dowhward. This downward movement means a re-
duction of negative A, error sensitivity.

One interesting éharactéfistié, not seen in the Earth-
Mars transfer example, is that when the iy error is 100 per-
cent, considerable convergence difficulty is experienced. This
case corresponds to the initial control angle of 90 degrees. .It
is rather remarkable that convergence still results for some
cases where the initial control angle 1s greater than 90 degrees.

In summary, for Iteration Scheme 1 the envelope of con-
vergence increases Qith posiﬁi;e increasés in terminal time
error, for a given initial iteration factor. The envelope size
is increased further with a reduction of initial iteration fac-
tor, but unfortunately the convergence time is increased. . The

convergence envelope'for Iteration Scheme 2 is also increased by
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Figure 21 .- Convergence envelope for the MAF using the normal iteration
scheme, initial iteration factor of 100% and terminal time error
of -10% (Earth launch).
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scheme, initial iteration factor of 100% and terminal time error of 0%
(Earth launch).
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Figure 23.~ Convergence envelope for the MAF using the normal iteration
scheme, initial iteration factor of 100% and terminal
time error of 1 0% (Earth launch). .
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reducing the initial iteration factér, for a given update inte-
ger. For a given initial iteration factor, the convergence time
is reduced by inqreasing the update .integer. The best times re-
sult for update integers of approximately six, and increased
times result for further increases in the integer.

The significant fact 1s that Iteration Scheme 2 1is
superior to Iteration Scheme 1 because low, and hence safe, ini~
tial valueé of the iteration factor may be used without resulting
in an unreasonably large convergence time.

The application of this optimization method to a differ-
ent problem resultedAin approximately the.same general conver-

gence cbaracteristics.

6.3.2 Method of Perturbation Functions

The required formulation as discussed in Section 3.2 is
simple and straightforward, and even more natural than MAF since
the perpurbation equations are used directly. A general dis-
cussion of the applicat;ons_is presented in Appendix A.2 and a
specific application of the MPF 1s made in Appendix A.2.2.

The programming effort requires the forward integrationr
of the eight differential equations. of motion and the Euler
differential equations. Thé éight perthrbation equations must
also be integrated forward, and this must be done with three
different starting vectors. The coefficients for these pertur-
bation eqha;fbns may be formed as needed and no storage 1s re-

quired. This represents a decided advantage over the MAF,.-
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especially when the problem is of large dimension, because'thé‘
back spacing of ‘tapes is not necessary. The programming com-
plexity is.reduced a150'be¢ause no checks are required for tbe
acquisition of proper coefficients, i.e., the coefficients are
simply formed'as the forward integration is made. it may,also
be noted that one less integration is required for the MPF as
opposed to the MAF, and thils results in less toﬁal'integration
time.

| The integration of the perturbation equations requires
a large percentage of the total computational time. It is éon~
ceivable that the same numerical accuracy might result when a
variable integration step size is used, however, this increaseé
the programming complexity considerably. A constant step size
was selected for the integration of all equations. »

The computer program that uses the MPF requires two
initially assumed -Lagrange multipliers and an assumed’terminal
time. These - estimates requlre a familiarity with the physical
problem and, to some degree, experience. 'The computer progrém
is built such that only the subroutines cohtaining the differ-

ential equations.of motion, the Euler-Lagrange equations, and the

perturbation equations must be changed to solve different prob-

lems, and the effort is comparable to that required for the MAF.
Iteration Scheme 1 requires very little computer logic'

in addition to the Normal Scheme of requesting 100 berceht termi-

nal constraint satisfaction on each iteration. Operation is |

simply transferred to a subroutine where the iteration factor 1s
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altered in accordance with the terminal norm criteria explained
in Section 3.3. The process 1s essentlally the same as that for
the MAF, |

Iteration Scheme 2 requires some additional programing
and storage, and 1s comparable to that required for the MAF.
Basicalli, the scheme is such that the iteration factor is in-
creased, omitting a perturbation Integration, until.either the
norm of the terminal .constraints diverges or é'specified number
of nominals have been generated. If thé nofm divefges, the last
.convergent trajectory is used as a néminal,'énd hence this tra-
jectbry'must be saved until itgis determiped whether or not it
will be needed. _Tﬁe stgrage broblem can be eliminated by simply
regenerating ;he iast p6nvergent'trajecpory.

An extensiveﬁaﬁéiysis of the MPF is not made since the
theoret#dal devéiopmént.in Section 3.2 'shows thét exactly the
same algebraic‘eQuation-used'for the MAF 1s used to determine the
corrections. The ohly difference between the MAF and MPF is that
one less integration 1s required for MPF, and therefore a re-
duced convergence time is expected. The envelopes of convergence
for Iteration Scheme 1 using 1nitial iteration factors of 100
and 50 percent, respectively, are shown-in Figures 24 and
25. The obvious fact is that the envelopes have the same size
and shape as the corresponding envelopes for the MAF shown in
Figures 5 and 8, and the numbers on the figures indicate an
equal number of 1terations are required. Figures 26 and 27

illustrate the convergence times for the above cases. A
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Figure 24 .- Convergence envelope for the MPF using iteration scheme 1,

initial iteration factor-of 100% and terminal time error of 0%.
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Figure 25 .- Convergence envelope for the MPF using iteration scheme 1,
initial iteration factor of 50% and terminal time error of 0%.
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Earth-Mars transfer
Optimization method: MPF
Iteration scheme: 1
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Figure 26 .- Convergence envelope for the MPF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 0%.
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Optimization method: MPF
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Figure 27 .- Convergence envelope for the MPF using iteration scheme 1, initial
iteration factor of'50% and terminal time error of 0%.
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comparison of the convergence times may be made between the MAF
and MPF by comparing the times shown in Figures 15 and 27, re-
spectively. It is seen that the MAF must integrate a éomparable
set of differential equations four times rather than only three,
as required by fhe MfF. Iteration Scheme 2 for the MPF was not
programmed. | _

‘The significant fact is that the MPF results in the
same envelope of convergence and requires-the same number of
iterations as the MAF, but approximétely 20 pefcent less'com—

puter time is required because one less integration is needed.

6.4 Quasilincarization Methods

The éomparison and discussion of:the'Quasilinearization
Methpds williconsist oC:th separate analyses. The Method of.
Generali?e@.Newpon-RapHEBn,ﬁinéiudihgﬁthe:normal pfbcedure and
Itgréﬁibn'SChémé l is diséussed first. The Modified Quasilinear-
ization'Method'inclﬁding the normal proéedure and Iteration .
Scheme 2 is discussed-last. The Modified Method of Géneralized
“Néﬁtbn-Raphson.is also discussed briefly, but the MQM 15 empha-
sized. The discussion content will include the applicable items

listed in the Section 6.2.

6.4.1 Method of Generalized Newton-Raphson
The required formulation of the Method of Generalizegd
Newton-Raphson as discussed in Section 4.1 1is simple and rela-

tively easy to apply, although this particular method 1s not
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capable of handling terminal constraint functions or determining
the terminal time in an efficient manner. For these reasons, an
extensive investigation of this method is not made. However,
}several runs are made, and spot comparisons illustrate its effec-
tiveness with respect to ‘the other methods.

The oroéramming effort requires the foruard integration
of the homogeneous parts of eight linearized differential equa;
tions of motion and the Euler differential equations. Also the
nonhomogeneous parts are integrated forward once, and all coeffi—
clents for the solution of a linear system must be included for
use after each trajectory iteration. When convergence is ob-
tainedvfor the specitiedlvalue of terminal time, a time iteration
is made by making a scalar application of the Newton-Raphson
technique, " ‘ |

If the solutions to both the homogeneous and nonnomo-
geneous equations are stored, a new nominal is 1mmediate1v avail—
able. However, to conserve storage only the terminal values of
the solutions are stored and‘the next nomlinal is simply generated
by an additional integration |

| The current traJectory is generated from the preced:ng
trajectory, however, after a positive correction of terminal time
has been made no previous 1nformation 1s avallable. This fact
represents a problem that does not exist for the MAF or MPF The
program is written so that a linear extension of all tne varia—

bles of the previous nominal is made to provide information for
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‘the current trajectory.

The computer program'that uses the MGNR requires two
initially. assumed Lagrange multipliers' an assumed terminal time,
and an 1initial trial solution consisting of the time histories of
all elght variabhles. The estimates require a familiarity with
the physical problem to insure that the assumed quantities are
close enough to optimai that convergence will result. The sig-
nificant'difference between MGNR and MAF or MPF is that a com-
plete solution must'be.assumed rather than just initial starting
values of the variables. If no reasonable solution can be de-
cided'upon, the nonlinear equations may be.integrated to provide
the first solution. However in the more complex problems;'this
solution may not be adequate to result in'convergence.

The program is built such that oniy the subroutines con-
tainingvthe nonhomogeneous and homogeneous equations and the
’triai solution must be'changed to solve.different problems. A
constant integration step sise was selected for all integrations.

The‘Normal Scheme of the MGNR 1s that of making tra-
Jectory iterations, requesting 100 percent correction in the
terminal constraints, until convergence results for the assumed
terminal time.‘ Then a time iterationiis'made and the process
continued. Iteration Scheme 1 requires very little additional
computer logic. This scheme amounts to avoiding time iterations
until the present metric becomes less than the previous_metric.
The-logic is simpiy inserted in.the‘program, and an additional

subroutine 1is not used.
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A'typibal'exsmplé of the cthergence chafﬁdte;iStics of
the MGNR 1is shown in Figure‘éB. This 1llustration shows how the:
metric decreases as a function of computation time for the case
wher¢ the Lagrange multipliers and terminal time errors are -10,
-10, and 20 percent, reSpecéiVély. A linear initial trial solu-
tion 1s used and this solufion is represented by long dashed
lines in Figure A;2.1. Trajectory iterations:are made until the
metric is less ﬁhan 10-5, then a time iteration is made. buring
the Initial Stages, the time 1teration essentially destroys the
reduced metric that hﬁs just been obtained. This characteristic
1s not quite so severe when terminalitime~errors are small.

The convérgence charaéteristiqs for ;hg same ¢xampie,
using Iteration Scheme 1 are shown in Figure 29, and a signifi-
cant reduction in computation time is evident.i This scheme
appears sﬁperior to tﬁe nofmal procedure,‘but it must be pbinted
out that a theoreﬁical analysis of thls scheme has not:been made
to-defihe a bounds for convergence. - For a given terminal time,
the convergence proof given by McGill (1&) applies,-but‘the time
iterations could be so poor that divergence would result. The
examples in Figures 28 and 29 show that the Iteration Scheme 1
results 1n-a.éanergence time tﬁat is 43 percént less ﬁhan that
required by the Normal Scheme;' | | 4' - -

'The Modified Method of Generalized Newton-Raphson,; dis-
cussed in Section 4.1, 1s modified in the sense that a change 1in
the independent variable 'is made to eliminate the qumbersome de-

termination of terminal time. One advantage of this method is
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that the independent variablé range is the same for all itera-
tions, thué simplifying the programming slightly. A disadvantage
is that one additional equation must be integratéd and a rather
complex term is added to each of the existing equations. The
most significant advantage 1s that the terminal time determina-
tion becomeé an integral part of the.iteration process.

The convergence characteristics of the MMGNR is 11lus- -
trated in Figure 30 for the same case shown in Figures 28 and 29
for the Ndfmal Scheme and Itération‘Scﬁeme 1, respectiVely, using
the MGNR. The metric reduction becomes a honotonic function of
computation time, and'ﬁhen a linear initial solution is used the
convergence time is 27 pércent less'than that required by the
MGNR using the Norma; Scheme. Figure 30 also shows the conver-
gence characterlstics for the case where the initial trial solu-
tion is_qetermineq from integrating the-ﬁonlinear differential

’

equations.

6:4.2 Modified Quasilinearization Method

The required formulation of the Modified Quasilineari-
zation Method as discussed in Appendix A.2.3 1is simple and rela-
tively easy to'apply and this method is capable of handling
terminal consfraint functions. The terminal time determination
is included as an integral part of the proceséland this method 1is
very efficient comparéd to‘the MGNR. Also, no additiona; equa-
tions or terms are needed as with the‘MMGNR.

The programming-effort‘requires the forward integration
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of the homogenebus parts of eight lineérizedrdiffgrential equa-
tions and Euler-Lagrange equations.. Also, the nonhomogeneous
parts are 1ntegrated'fofward and all coefficlents are évaluated
from the previous néminal. TheAcorrections that must be applied
for the next iteration are determined byisolving a linear system.
Only the terminal valués of the forward integrations are stored
as explained in Section.6.4.1. When a positive terminal correc-
tion 1s made, a iinearvextension of the yarjables.fromithe bre—
vioqs'nominalvis made. . |

' The computer program that uses the MQM requires two init-
tially assumed Lagrange mUltiﬁliers; an assumed terminal time, |
and an'initial trial solution. In a manner similar to the MGNR,
if a reasonable initial sblution cannot be selected, the non-
linear equations may be integrated to providé an initial solu-
tion. 'The'brogram is buiaf suéh that oniy the subroutines con-
taininé the.nonhomégeneoué.and homogeneous equations and the
trial solu;ibn must be éhanged to solve different problems.

The Normél Scheme of the MQM 1s that of redueSting a 100
percehtAcorreEtipn in the terminal constraintsT Iteration Scheme
2, used with the MQM, 1is similar to Iteration Scheme 1 for the
MAF or MPF, Qhere a percentage: correctioﬁ in the terminal con-
straints 1is requésted. The logic reqﬁiféd t§ determihe'whéther'
the iteration factor 1s increased or decreased in the Quasi—
linearizapionhﬁethods 15 more complex.than that required for the
MAF or MPF, because the metric p must be determined. This cal-

culation requires séveral operations on all elght dependent



variables at each time step and hence requires a relatively large
amount of time compared to the calculation of the norm in the MAF
or MPF.

The convergencé envelopes.for the,MQM uéing the Normal
Scheme, a nonliﬁear initial trial solution and -20, 0, and 20
percent errors in terminal time, respectiveiy, are shown in
Figures 31, 32, and 33. The nonlinear initial trial solution is
the one that résulté from integrating thé noniinear differential
equations. Cbmparing-these Figures with the Figures 1, 2, and 3
for the MAF réveals-that'while the general shape of the entelopes
are the same, thé'MQM results in slightly smaller envelopes. For
negative and zero terminal time errors, the method is extrehely
sensitive to Lagrange multiplier erfOrs tﬁat have the séme sign.
For positive.términél timeierrdrs, the method 1is much more sen-
sitive to ﬁositive_ Ao efrors than to negative X, errors.

An attempt to generate the same envelopes by using the
MQM with a constant initial trial solution must be recorded as a
fallure, because no conVérgent soiutions were'obtained. The con-
stant initial tfia; solution used 1s illustrated in Figure A.2.1.
by short dashed lines.

Figures 34, 35, and 36 illustrate the convergence en-
velopes for MQM using Iteration Scheme 2 with an initial itera-
tion.factor of 50 percent, a nonlinear initilal solution and -20,
0, and 20 percent errors in terminal time, respectively. These
envelopes.are significantly larger than the'envelope§ for the

Normal Scheme shown in Figures 31, 32,'and 33. It 1s interesting
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Earth-Mars transfer
Optimization method: MQM
lteration scheme: Normal
Initial iteration factor: ' 100%
Terminal time error: -10%
Initial solution: Nonlinear
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Fig'ure 31 .- Convergence ehvelopé for the MQM using the normal iteration
scheme, initial iteration factor of 100% and.terminal time
error of =20%. '
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Figure 32 .- Convergence envelope for the MQM using the normal
iteration scheme, initial iteration factor of 100%
and terminal time error of 0%.

155



156

Earth-Mars transfer
Optimization method: MQM
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: 20%
Initial solution: Nonlinear
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Figure 33.- Convergence envelope .for the MQM u-si,n_g.éthe,\nqrrhaI;;iteration
scheme, initial iteration factor of 100% and terminal,time error of 20%.
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Earth-Mars transfer
Optimization method: MQM
Iteration scheme: 2
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Terminal time error: -20%
Initial solution: Nonlinear
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Figure 34 .- Convergence envelope for the MQM using iteration scheme 2,
initial iteration factor of 50% and terminal time error of -20%.
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to note that while the envelopes for the Normal Scheme are
slightly smaller than the corresponding envelopes for the MAF,
the envelopés shown in Figures 34, 35, and 36 are .slightly 1érger
than the corresponding envelopes for the MAF shown in'Figurés,?,
.8, and 9. This suggests that Iteration Scheme 2 for the Quasi—
linearizaﬁion Methods is moré effective than Itératiqn.Scﬁéme 1
for the Pertprbation Methddsu The Figures 34, 35, and 36 £011pw
the pattern pﬁeviously mentioned forvtﬁe other methods in that
- the method is increasingly sensitive to positive Ao ,e;rors as
-the terminal time error 1increases. |

It i1s of definite interest to note the requirea conver-
.gence times for the cases 1llustrated for thé.MQM. As an er
ample, Figure 37 shows the convergence times for the énvelope of
Figure 35. This envelope may be compared directly with the
_cbrresponding'envelopes ggnerated by the MAF in Figures 15, 16,
17, and 18 and the MPF in Figure 27. An obvious fact is that the
.MQM requires slightly more computation time than the MAF and MPF,
ﬂbﬁt shows considerable improvemeﬁt over previous quasilineari-
j zation techniques such as ﬁhe MGNR and MMGNR. ;n all fairﬁess,
howeQér, it must be pointed out that more time was spenf ih-tr&ing
to make the programming efficlent for the MQM'than'fdr the MGNR
and MGNRM. | | B

An ‘insight to the convergence characteristics of‘theAMQMl'
may be seen in Figure 38 for the spécial case where the Lagrange
multiplier and'terminal time variations are -10, -10, and 20 per-

cent, respectively. This figure may be compared directly with
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Figures 28, 29,<an6 30 for the MGNR using the Normal Scheme,
MGNR using Iteration Scheme 1 and MMGNR, respectively. Figure 38
may also be compared, in a sense, with the 100 percent curve in
Figure 19 for the MAF. Caution must be e*ercised, however, be-
éausé the ordinates represent different quantities. It iS ex-
peéted that a réduction of the metric p 1is more stringent a re-
quirément than reduction of the terminal constraint norm. The
more stringent requiremént results from the fact that the metric
p 1s composed of so much more ihformation than the termiﬁél'con-
straint norm.

| Figure 39 1illustrates the effect of the initial value of
iteration factor on convergeﬁce tihe for two specific caseslof
initial parameter error. This figure may be compared to Figure
13 which represents the.same information for the MAF for the same
cases.. The same characteristics are noted in that for some cases
the best initiél iteration factor is somewhat less than 100'per-
cent énd that this,bésf value 1s not the same for all cases. One
additional_characteristip,inoted in Figure 39, is that very large
penaities in the’ convergence times are pald when low initial
iteration factors are used. This deficiency is attributed to the
metric criteria used to determ;ne how the iteration factor must
be changed. When only a shall percentage correctioﬁ is re-
quested, the metric does not decrease rap1d1y at first. This is
because the metric 1s interpreted as the maximum disfance between
successive trajectories, In fact, in application the metric

sometimes increases slightly and this causes the iteration factor
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to décrease. This_process could conceivably have a decelerating.
effect on the convergence. This phenomena may be seen 1n Figure
L0 for the case where the initial iteration factor is 20 percent.

Figure 40 also illustrates the convergence characteris-
tics for seveQaI different initial iteration factors and may be
compared to Figure 19 which represents the same information for
the MAF for the same case. It should be noted that near the
terminal phase of each trial the metric reduction is nearly quéd-
fatic. |

In summary, the Quasilinearization Methods shqw a wide
fange of convergence. characteristics, but the proposed method,
the MQM, successfully reduces the convergence times and increases
the convergence envelopes to become compeﬁitive with the MAF and
MPF. .

Generally speaking, the MQM displays the same character-
{stics that are seen for the MAF and MPF. For the case wheﬁ'an
initial iteration factor of 50'pércent'is ﬁsed, the envelope of
convergence for the MQM is slightly larger than the corresponding
envelope for the MAF énd MPF. But the convergence times are al-

ways slightly larger than for the MAF.

6.5 Gradient Methods

The comparison and discussion of the Gradient Methods
will consist of two separate analyses. The Method of Steepest
Descent, including Iteration Schemes 1 and é, is- discussed first,

and the Modified Method of Steepest Descent is dlscussed last.
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The discussion content will include the applicable items listed

in Section 6.2.

6.5.1 Method of Steepest Descent

The required formulation of the Method of Steepest de-
scent as dlscussed in Section 5.1 1s‘simp1e and straightforward,
but slightly cumbersome when compared to the MAF or MPF. A spe-
cific application of the MSD is presented in Appendix A.2.4.

The programming efforf réquires forward integration of
four differéntial equations of motion, storing the dependent
variables in computer memory or on tape at each time step. AThis
requires less storage than storing the A and B matrices. The
four adjoint differential equatibns; Eq. (5.6), are integrated o
backwards five times using the variables stored'during the for-
ward integration to form the coefficients. One additional com-
plexity 1is that Eqs. (5.30) through (5.32) must also be inte-
grated backwards, and may be carried along sim&ltaneously with
the adjoint equations. To reduce the programming complexity, a
constant integration step is used for all 1ntégrations. The com-
puter storage problem can be ‘eliminated by integrating the dif-
ferential equations of motion backward along with the.adjoint
equations, Eq. (5.:6), and Egs. (5.30) through (5.32). This is‘
not done iﬁ the presedt method because the equations of motion
must be integraﬁed‘forward aﬁyway to determine the terminal
values of state. '

In addition to the programming effort explained above,



the most serious disadvantage of the MSD is thap a modenate
amouns of human intervention and experience 1is required to im-
plement the program. For example, the weighting matrix W is
not defined, and by just using the unity matrix the less sensi—
tive regions of the control program are very slow in acquirlng
the optimal shape. The weighting matrix,may be used to speed
this‘optimal shaping process, but the insensitive reglons of the
control program are not always known. -
An examination of Eq. (5 33) reveals that the first
group of terms are related tovthe minimizing effort while the
last group of terms are related to phe_terminal constraint satis—
faction.‘,There is, however, some erossvcoupling«of the;terminal
constraint satisfacpion in the first term5; Theﬂproeedure pseq ﬁo'
affect cenvergence requires a selection‘of,anﬂallpwable average .
control deviation, based:on_Eq.‘(5,19),_that does notuinyalidape
the linearipy'constraints on the prpplem. . This allowable conprol
deviation must be reduced in sqme;specifieq manner as the process
pfggresses;. If tne numerator of:phe radical in Eq._(5.33) is
negative when IQQ percent eorrection in the terminal dissapis—
faction 1is requested, the percent correction that causes the
radical term tp vanish 1s determined. When this occurs, emphasis
1s placed on neducing;the.terminal dissatisfaction. _If the:
numerator 1s ppsipive_when 100 percent«correcsion is requested,‘
the radical;is used,and both the_performanqe index is.reeuced,
and the terminal constraints are‘driven toward satisfaction. The

computer logic involved in the above operations requires-a
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signiricant'amount of the iteration time.

The computer program that uses the MSD requires the ini-
tial value of the state variables, a stopping condition and an
assumed control program., These estimates require some familiar-
ity with the physical problem. The stopping condition that is
chosen must be one that will be satisfied. The control program
selection is not as critical as it is for the MQM. The computer
program 1s not so easily generallzed as it is for the MAF, MPF,.
or MQM, i.e., extensive programming is required to accommodate.a
different problem.

Iteration Scheme 1 Simply uses the unity matrix for W
and Iteration Scheme 2 uses the Huu* matrix. This second
‘scheme requires some additional computer storage and programming.
When Iteration Scheme 2 is to be used, Huu' must be formed with
the variables that result from integrating the-adjoint differen-
tial equations backwards, using v as given in Eq. (5.27) for
the starting conditions. A major probiem when using Iteration
Scheme 2 is that when a .percentage correction in the terminal
constraints 1s requested, thereby forcing the radical term in
Eq. (5.33) to vanish, v becomes infinite. Clearly this cannot
be used as a starting condition for the adjoint equatlions.

. With the examples discussed, this radical term vanishes
for the first few 1iterations, and when this happens the unity
weighting matrix is-used. . As soon as the radical becomes finite,
the <Huu' matrix is calculated for use on the following tra-

Jectory.
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The thrust angle as a-functionuof mission time for the
Earth-Mars transfer 1s shown -in Figures 41, U2,:43, and 44, and
the convergence process from the assumed history to _the Eulerian
history 1s illustrated. Figures 41 and 42 show ‘the convergence -
characteristics for two widely different initiaily assumed”coné-
trol programs, designated Case 1 and Case 2, using Iteration .
Scheme 1. fIt is. interesting to note that the number of itera-
tions réquired is relatively independent . of the initial ‘control
progrém. After 30 iterations both cases yield control programs
that almost obscure large pdrtions of the Eulerian program; and
hence are not shown., When to terminate the iterationwprocess is
not clear since the Eulerian optimal is really never reached.-
The method used here was to continue until no further improvement
was being made, i.e., until -the solution began to oscillate about
some ‘mean path. A more sophisticated -method would be to termi-.
nate when-a time integral of Hu ;6r: HuTHu became arbitrarily
small.

An appérent discontinulty begins to develop at approxl-
mateiy 100 days, as'Seen*in'Figure-u13 and becomes more severe as
the iterations progress.T‘Aftér 30 iterations ‘the apparent dis-
~continulty becomes very sharp and the Eulerian control is accu-.
rately approximated. The same characteristic 1is-noted in Figufe
42.

"The-effectiveness of Iteration Scheme 2. in shaping the.
optimal control program is illustrated in Figures U3 and U4l, and
it 1s seen that the number of iterations required is signifi-

cantly reduced. In comparing Figures 41 and 43, for instance,
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it is seen that the apparent discontinuity deveiOpmenﬁ is much.
faster in the latter figure. These two cases are identical for

the first 11 iterations because the radical in Eq. (5.33) van-

th ¢

uu
matrix is formed and used. It is during these finai iterations

ishes and W = I, but starting with the 12°" iteration, the H
that the. full value of Iteration Scheme 2 becomes evident. After
only four additional iterations the apparent disdontinuity, aé
shown in Figure 43, 1s well beyond the development shown in
Figure 41. Moreover, the Eulerian is much better approximated,
for a given number of'iterations,'whéh Iteration Scheme 2 is
used, | | |

The same characteristics are seen in Figures 42 énd Ly,
For this case, howevér, the Huu. matrix is not célculated Qntil
the'23rd iteration. After only two additional iteraﬁiohs, Itera-
tion Scheme 2 in Figure U4 shows marked. improvement in the devel-
opmenﬁ of the apparént discontinuity. : ‘ |

An éverage iteration for Iteration Scheme 1 requires
'approximately 2.75 seconds of computer.time, whilé~approximatéiy
3.0 seconds 1is required with Iteration Scheme‘2 when the Huu
matrix-must be formed. However, an extensive step size study Qas
not hﬁde for the MSD. The s;ep'size used was the same as that
used for the integrations in the indirect methods.

It should also be pointed out that the terminal con-
dition resulting from Eq. (2.14) may be used to determine the

tenminalnvalue of the'Légrange multipliers. These values»are

used to start the backward integration of the adjoint equations,

»
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for the ~Huu“ determination, and also may be used to estimate
the Lagrange multipliers required for starting the indirect opti-
mization methods. For the case 1llustrated in Figure uu the
rirst time ,Huuf is_determined, the values of A;p and . Azp
'are calculated to be 2.15‘and 6.65 percent larger than. the yalues
that correspond to-the.optimal trajectory, respectiyely. This
error 1is Well within the envelope of convergence of all the in-

direct methods studied.

6.5.2 Modified Method of Steepest Descent

The required formulation of the Modified Method of
Steepest Descent as discussed in Section 5.2 is simple and
.straightforward and is not as cumbersome as the MSD. A spe-
cific application of the MMSD is presented in Appendix A.2. 5 N

The programming effort requires forward integration of
four differential equations of motion, storing the dependent »
variables in computer memory or on tape at each time step. This
requires less storage than storing the A and B matrices. The
four adjoint differential_equations are 1ntegrated backward only
once, using the variahles stored during the forward integration.
The Eq. (5.48) must also be integrated so that after a desired‘.
penalty function decrease is specified, a.step size k may be.
determined The MMSD requires a significantly reduced numher-of
operations, as Opposed to the MSD, because. the adjoint equation
is integrated backwards with»three”less starting uectors and the

integration of Eq. (5.48) 1s much less time consuming than the
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integration of Eqs. (5.30) through (5 32) in the MSD " The stor-

age problem associated with the first forward integration may be

avoided in a manner similar to that ‘suggested in Section 6.5.1.

The present method does store the forward integration and use a
constant integration step size for all integrations

In addition to the programming effort explained above,
the most serious disadvantage of the MMSD is that a considerable
amount of human intervention and experience 1s required-to imple-
ment the program, even more than that required for the MSD. For
example, the step size K 1is not defined, and must be approxi-
mated by using Eq. (5.48). A still more serious deficiency is
that a constraint on the control‘deviation is not included as an
integral part of the method itself, and hence appropriate com-
puter logic must be used to insure that the linear constraints of
the problem are not violated. One further complexity is that the
convergence characteristics are highly dependent on the factors

that weight the terminal constraints in the penalty function, and

_the magnitude of these factors are not specified. To compound

the matter, the rates at which these factors are changed to
tighten the terminal constraints are not known. It 1s seen that
the orice that must be paid for the simplicity of the method is
that of increased‘arbitrariness, and a considerable amount of
skill and experience 1is required to obtailn meaningfullresults.
This method has been programmed and 1s in the stage of evalua-

tion,;-but -no results are presented here.
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6.6 Summary of the Cbmparigon

The compariédn.df 6ptiﬁization methodslthus far ﬁas géﬁ-
sisted of individual analysis of each method with'én.océasiqnél
comment conéerniné the relé;ive:merifs‘of one ﬁéthéélwiﬁh respeét
to the others. It Qéuid be heIpfulAto sﬁmmarizé #he conélﬁsions
of the compériéon with particulér émpﬁaéis‘on the‘b%sié of com-
parisdn'és quﬁlined in Sectionb6p2.>7A summary of the comﬁa;iéqn

is:

(1) The programming complexity and required formulation
. time 1is greater for the MQM and MSD than for the MAF;

- MPF and MMSﬁ, because more computer logic iIs required.

(2) The MAF and MSD requires mofe computer storagé than
the other methods. | | " |

- (3) ‘The MSD and. MMSD require more human intervention'
and intuition than the other methods, and hence are
difficult for inexperienced personnel to use. However,"

.the indirect methods become difficult to implement when:

the problem dimension is large.

<u)' The compdter program for the MSD requires cohsider-
able modification for solving a different problem, while .
the other programs require less modification. |

(5) The convergence envelope sizes for all the indirect

methods are essentiélly the same when the initial itera-

tion factor i1s near 100 percent. The MQM envelope 1is



slightly larger than the envelopes of the other methods
when the initial iteration factor is in the 50 percent

range.

(6) The time penalty associated with the lower initial

iteration factors is greater for -the MQM than the other

indirect methéds.

(7) The MPF is superior to the MAF and MQM when conver-
gence time 1is considered, because of the one less equa-

tion that must be integrated.

- (8) The approximations to the Lagrange multiplier val-

ues as derived by the MSD are well within the conver-

gence envelopes of all the indirect method investigated.



CHAPTER 7

DESCRIPTION AND EVALUATION OF NUMERICAL PERFORMANCE

The evaluation of numerical performance is an essen-
tial feature in assessing the accuracy of an optimization
technique. The primary sources of error are encountered dur-
ing numerical integration and solving of linear systems
(which 1nc1§des matrix inversion). Most of the cbmputational
time is taken during numerical integration and hence, in-
creééing the speed of the 1ﬁtegration will have é prqnounced
effect on the total computer time. The criterion uséd for

defining convergence is also a factor in determining total
time, and 1f cautlon is not exercised an unrealistic com-

parison between different optimization methods could result.

7.1 Numerical Integration

There are many characteristics that must be cdn-

sidered when selecting a particular numerical integration
scheme; some of the most important are acc&racy, stabllity
and speed. The method and procedure to be explained takes

excellent advantage of the above characteristics.

7.1.1 Numerical Integration Routine

The numerical integration routine consists of two

subroutines and either a control subroutine or a control
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block of code. A Runge-Kutta fourth-order routine 1s uséd as
a starter, supplying the initial and three succeédingtderi-A
vatives. Control 1is then shifted to a subroutine that éon-
tains a fourth-order Adams-Bashford predictor and a
fifth-order Adams-Moulton corrector. An option for the
iteration 6f the corrector 1s provided.

One of the nicest features of the 1ntegration package
is the method by which the derivatives are stored and moved.
The names that refer to these locations are simply changed,
rather than changing the location of each derivative itself,
and the values are used as if being rolled from a drum
Credit for this unique and time saving idea is given to
W. T. Fowler and G. J. Lastman of the Engineering Mechanics
Department, The University of Texas.

An additional capability of the subroutine 1s that
the starting value of the integration step size may be sub-
divided ihto N substeps, thus providing extremely accurate
starting values for the derivatives. The Runge-Kutta 1is
then called 3N times and the derivatives are saved every Nth,
integration step. Four derivatives now being available, the'

integration proceeds using the usual predict-correct cycle.

7.1.2 Numerical Integration Procedure

The numerical integration proceeds using N = 3 and

the Runge-Kutta 1s called nine times, hence a derivative is

181
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saved on every third substep. This provides the initial

four values required by the Adams-Bashford predictor. A

constant vaiue of step-size is used to continde the inte-
gration.

Two methods are used to terminate the integration,
and the method selected depends on whether or not a back-
wards integration of the adjoint equations is expécted. Ir -
theAadjoint equations are to be integrated, when the remain-
.ing time 1s less than four steps this time is subdivided into
3N szsteps and control 1is shifted to Runge-Kutta. This pro-
vides values of the dependent variables which will be used to
form coefficients for the backwards integration of the
adjoint equations. If backwards integration is not antici-
pated, when the remaining time is less than one step, contrql
is shifted to Runge-Kutta for the final time increment.

The subdividing of 1ntegration steps at the beginning
and end of the trajectory increases the programming complex-
ity, however, it was decided that this additional difficulty
was more than compensated for by the increase in accuracy of
the starting derivatives.

7.1.2.1 Successive Application of Corrector

Successive application of the Adams-Moulton corrector
was made for an optimal Earth-Mars transfer trajectory using

from one through five applications. No improvement was made



in the optimal values of the Lagrange multipliers and termi-
nal time after the number of applications reached thfee.
Hence, it was decided that two applications of the éorrector
would be sufficient.

The computation time is reduced by approximateiy 20
percent when only one application of the corrector is made
and increased by approximately 20 percent when three correc-
tions are made.

The selection of a corrector with two iterations was
encouraged furgher by examination of the terminal values of

the state variables after the first iteration.

7.1.2.2 Step Size Selection:
The step-size of the numerical integration technique
is extremely important. Not only does-the accuracy of the

method depend on this selection, but the reSulting computef

-time ‘as well. So much depends on thils selection that a con-"

siderable effort for its determination 1is Justified. One
complicating factor that exists for comparison studies is

that convergence time 1s to be compared for all methods,

some of which might require different integration step sizes.

The criteria that i1s used in selecting step-size is
determined in the following manner:
(1) Use the near optimal starting conditions of

-10, -10, and 20 percent error in the initial
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Lagrange multipliers and terminal time, respectively.
Proceed to a convergent conditionvusing integrationl
step sizes that range on either side of sohe reason-

able value.

(2) Record the resulting optimal values of the
Lagrange multipliers and terminal time énd theitime
required for convergence. )

(3) Small integration steps result in large round-
off errors and large steps result in large.trunca;
tion errors."A step-size value in theirange where a
maximum number &f signficant figures agree is in-

terpreted as a desirable one.

Thelintegration step-size of 0.03 units of time was
chosen for the Earth-Mars fransfer because the value of the:
estimated variables on either side of the selected step
égreed to at least five places. The step-size for the Ea;th
launch trajectory was selected to be ‘2.0 seconds. )

The plot in Figure 4S5 of convergence time as a func-
tion of integration step-size for the MAF, MPF, and MQM and
the Earth-Mars transfer reveals that a larger step would
result in fewer places of numerical agreement, while a

smaller step would suffer from a severe time penalty as well

as fewer places of agreement.
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7.2 ~-Linear System Routine

- The computer routine that solves a general linear
sysgem'of equayions AX = B_ is composed of six subroutines.
The routine-has the additional capability of returning the
determinate of 'A , an inverse of A , an ihdication if A 1s
singular ‘and an estimate of the condition number of A .

The firsﬁ operation of the master driver programbis
to row equilibrate the matrix A Dby an exponent procedure.
The equilibrating multipliérs are stored for later use to
scale the right)hand side B . An initial estimate of X
is determined and é-residﬁal vector 1s found that defines a.
new linear system. This system 1s solved an§ a correction
is added to the'previous solution.‘ﬁSufficient information

is then avallable to‘iﬁitiate an iteration for the final

solution of X .

7.3 Numerical Criteria Affecting Accuragy

The numerical aécuracy of avcomputer solution dgpen@s.
not only'on programming'skills, but other criteria as well.
For 1nstanée, it 1s desirable "in numerical‘studies to achieve
some degree of numerical magnitude compatibility. This 1s
conveniently accomplished by normalizing oé the state vari-
ables, Lagrange'multipliers, and time.

One additional item that affects numerical accuracy

is the criterion for establishing when convergence has




occurred, Since it is desired to compare the results of
several different optimization methods on a convergence time
basis, it is essential that the methods result in the same

order of numerical accuracy.

7.3.1 Normalization of Numerical Parameters

In many cases, such as the ones presented here, the
correction to several of the variables 1s used to determine
some of the procedures foilowed in the iteration scheme,
even though these variables have different units. Hence, 1£
i1s desirable, from a computational point of view, to achieve
some degree of numerical magnitude compatibility.

This normalization 1s accomplished for the state
variables by selecting certain quantitles to be new units of
that variable. As shown in Appendix A.b4, three variables
are selected and these selections dictate new.units for the
remaining variables. An effort i1s made to choose the three
varlables such that the range of all variables is near unity.
In an effort to make the Lagrange multipliers humerically
compatible with these state varlables, a scaling process 1s
used.

In any two-point bouﬁdary value problem where 2n
differential equations are involved, 2n+2 boundary condi-
tions must be specified, all of which are not necessarily at

the same boundary. If an additional initial boundary
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condition is obtained, a terminal boundary condition must be..
ignored. Now, since the Euler Lagrange equations are lineaf
and homogeneous, the solution is simply a linear magnifica-
tion of the initial conditions.

In the optimization problem, the Lagrange'multipliers
may be normalized by selecting one multiplier to bé positive |
or negative unity and in this manner adding one initial
boundary éondition. This éimply scales the multipliers by -
the unnormalized value of this multiplier. With the addition.
of this initial boundary condition, a terminal condition must
be ignoréd. It is recommended that the ignored terminal .
‘condition be cne of the conditions that result from the
tfansversality.equatib;s because usually there 1s little
intuitive feel for the physical significance’or these equa-
tions. In requesting a desired improvement in the_satisfaé—
tion of terminal constraiﬁts, it may be helpful to havé a
intuitive feel for the mganing of these constraints.

»The fact that one of the transversality conditions
is ignored does not mean that this condition is not satis-
fied. For instance, if the 1gnored transversality terminal

constraint

- o
h = (°x + A )f o -

is perturbed ;so that the terminal dissatisfaction becomes



T
dh (oxxdx + °x dt + di )r

t

it 1s seen that when the solution does converge, the termi-

T

nal dissatisfaction vanishes because dx dtr, and dxr

f’
vanish,

7.3.2 Criteria for Defining Convergence

EStablishing when convergence has occurred is an es-
sential part of determining the characteristics of a conver;
gence process. Definlng convergence becomes a matter of
arbitration.

In the present study the criterion used is that the
corrections beihg appiied to the 1initial estimates of the-
Lagrange multipliers and terminal time must be less than
some small number. There are, however, several other tra-
Jectory characteristics that must be observed. For instanée,
in the MAF and M?F an improvement in the terminal constraints
is requested, but this request is not always completely ef-
fective., Therefore, the norm of the terminal constraints is
improved as the method proceeds, and hence the convergence
definition could hinge on the.terminaI'Qissatisfaction being
less than some small number. Even if this criterion is not
used, as in the case presented here, the norm of terminal
dissatisfaction is of great interest and should be observed

closely.
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" In the investigation of the MGNR the terminal con-
straints are satisfied identically, but the trajectory shape
does not correspond to the shape assumeq by a trajectory
that satisfigs the oﬁfimality conditions. Hence, one logical
criterion for this method is a metric that represents the
maximum éistance between corresponding time points on the
present éﬁd previous trajectory. This metric is récorded
and is used in the selection of the correction criteribn;

. The iteration procedure for the ihdirect methods
continue until change 1in thevnorm of terminal dissatisfaction
between the final two iterations in MAF and MPF is comparabie
-1n numerical magnitude to the metric described in MGNR.

These criteria for establishing convergence may result in
slightly different values of correct.ion criterion for the
different methods. The over-riding factor of concern ‘is
that trajectories to be compared should have approximatély
the same numerical accuracy.

A correction criterion of 107° for an Earth-Mars
transfer using MAF and MPF produced a final terminal norm
change of order 10‘5. The'cprrection cpiterion that re-

sulted in a metric of approkihately 10"-5 was also 107%. . The
MSD 1s difficult to compare with the indirect methods since

convergence in the same sense 1s never reached.
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7.4 Computation Facilities

The numerical investigation was made at the facili-
tles of NASA-Manned Spacecraft Center, Housﬁon; Texas. The
facllity used for the numerical calculations was the directly

coupled IBM 7094. All programs were programmed in FORTRAN IV

compiler language.



y ' CHAPTER 8

- CONCLUSIONS AND RECOMMENDATIOMS

[ A L2 ”"::u\ Y
. There have tbeen .many:signifiicant conclusions-based on
both theftheoretxcal“éndqnumenical results described in:the- - -3

prevyousgcbappensg Detailed results, and -coenclusions -have been .

~presented, in Sections 6.3, 6.1, and 6.5.  In Section 6.6, a._._...

summary of the relative merits of the methods 1s made with _ .
particular emphasis on the basis of comparison as explained in
Section 6.2. A general summary of the most significant con-
clusions are presented in this chapter.

The many questions that have been successfully answered
during this investigatibn héve brought forth many new un-
answered questions, and this 1is as 1t should be. The existence
<;f these new questions provide a motivation for additional and

perhaps rewarding studies, and several possilibilities for con-

tinued investigation are suggested.

8.1 Summary of Conclusions

The major theoretical conclusions resulting from the

analysis are:

(1) The Method of Adjoint Functions and the Method
of Perturbation Functlons are recognized as essen-
tially the same method. The Method of Perturbation

Functions, however, requires one less integpation
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are:

because of the more efficient manner 1n which the co-

efficient matrix of the perturbétion_equation is .

generated.

(2) The Modified Quaéilinearization‘Method is an ex-
tgnsipn of the Method of Generallzed Newton-Raphson
whigh accommoéates problems that have terminal bound-
aries given as general funétions,of the state.énd/or
Euler variables. Moreover, the terminal time deter-
mination is made an integral part of the iterative pro-
cedure itself, and no additional terms must be added to
the existihg'differential'equations‘and no additional

differential equations are needed.

(3) A uniqué and easily determined welghting matrix

has been derived which increases the convergence rate

of the Method of Steepest Descent. This matrix assists

the method in accelerating the shaping of the optimal

control‘program during the terminal iterations.

The other major conclusions resulting from the analysis

(1) Two 1terétion schemes which significantly increase
the possibility for convergence have been successfully
implemented for the indirect methods. This desirable
characteristic is obtained with one of the schemes with-

out an appreciable increase in convergence time.
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(2) . The Modified Quasilinearization Method is success~
fully implemented and results in a significant decreasé
1in convergence time when compared to the other quasi-

. linearization methods studied.

(3) The Method of Steepest Descent, after only a few
iterations, provides initial values of the Lagrange
multipliers which are well within the convergence

envelopes of all the indirect methods 1nvestigéted.

The results of this investigation support the claim
s .
that a hybrid optimization method would be the most desirable

method to build for a general purpose capabllity. This hybrid-

method would consist of the Method of Steepest Descent for the

initial phase of optimization and switch to the Method of Per-
turbation Functions for the later phase. It must be pointed
out, however,.that bullding a general purpose optimizatibn
method would result in a very time consuming method, whereas

by knowing the specific nature of a given situation, a very
gfficient method can be tallor made for that particular situa-

tion.

8.2 Recommendations for Continued Study

The present investigation has succeeded in developing

a new method, based on the theory of quasilinearization, which

places the Quasilinearization Methods in a more competitive
position with the Perturbation and Gradient Methods. Several

iteration _schemes are formulated and applied, and significant



195

reductions in computation time and initial parameter‘séhsiﬁi-
vity have been r?alized. A foundation has been la;d‘for build-
ing more cpmpléx methods which willl in turn handle more complex
and realistic problems.

A natura; extension of the current investigatioq would
be to study several more example problems that have a larger
dimension, more control variables and that require inequality
constraints, such as a three-dimensidnal, atmospheric, reentr&
problem.

Some thought has been given to developing a method fpr
approxihatihg the initial values of the Lagrange mgltipliers
by assuming a control program for the first iteration 1in the‘
indirect methods, or by using the constants of motion as de-
rived by Melbourne (28).

The applicability of several other methods for solving
the nonlinear two-point boundary value problem, assoclated with
the trajectéry optimization problem, should be investigated,"
such as the ones proposed by Merriam (29)'and Sylvester and
Meyer (30). A comparison should be made between the methods
discussed in this study and the methods recently proposed
by McReynolds and Bryson - -(24) and Kopp and Moyer (11).

A generalized hybrid optimization program.may be
eaéily built in which the initial values of the Lagrange multi-
pliers are approximated by using a direct method, then switch-
ing, when the estimates are within the convergence envelope,
to an indirect method for rapid convergence. The detalls of

such a procedure should be studied.

-



APPENDIX A.1l

Application of the Reduction of an Optimization Problem to a
Two-Point Boundary Value Problem

The following application is formulated to illustrate
the procedure explained in Section 2.2.. The equétion numbers
in parenthesis refer to the coerSponding‘equation in Seétion
2.2, The nbnlinear, ordinary, differential équations of

- motion are

. 2
X, = u = % _GM . T sing £

r? m
x, = v o= -2¥ Tc;segfz

(A.1.1)

x3 = pr =4 -= f3
0. v
X, =0=g=1,

and the nonlinear, ordinary, Euler-Lagrange differential

equations are

_

ol ,. v }
Al = (r) xz - Aa fs

. 2 B
A = (¥ _ 2_GM A - (Y A + v, A = f
3 r? r3/ !} r2/ 2 r2) " 7
N ) (A.1.2)

(2.24)

196



197

The optimality condition H, = 0 leads to

T o
ﬁ(‘ cos 8 - A, sin 8 ) = 0. | (A.1.3)

1

This condition implies that

2 : A A

tan 8 = fl sin B = R — cos 8 = S —
2 t/x17+xz§ :/x12+xzi

where fhe sign in front of the radical terms 1s selected ac-
cording to the Weierstrass E-Function.

The Weierstrass Condition is the fourth necessary
condition which must be satisfied for a glven trajectory to be
an extremal. It 1s defined és
E=F(x%,x,t)-F(x¥,x#%,t)-2E (X%:x%,8) o uy 5 0 (A.1.4)

: ax*
for a minimum where E 1s the Welerstrass E—Function and
F = AT(f - x). The asterisk refers to the optimal trajectory.

Since the equations of motibn must be satisfied on

the optimal, as well as the nearby trajectory, F = F* = 0

and the Weierstrass E-Function becomes
' T . o.
Making the proper substitutions in Eq. (A.1.5) ylelds
T T s
E=r | ~(sinB-sin8¥)| + ),|=(cosB - coss*)| 5 0. (A.1.6)

The optimality conditions, i.e. Eq. (A.1.3), leads to the

requirement that

tan g% = Tl
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which 1implies

A A . S
] 1 2
sin 8 = ————— and cos ¥ = ——— |, (A.1.7)
t/xlz+x22 . :/x12+x22

Eq-'(A.l.j) does not indicate which sign should be selected on
the radical terms. Substituting Eq. (A.1.7) into Eq. (A.1.6)

ylelds

I

E = % [¥JA12+A22] [ -1 + cos (8 - 8%] > 0 and (A.1.8)

for this equation to be satisfied for all admissible
values of 8 , the negative sign on the radical must be

chosen. Hence, the optimal control program‘ié given by

'sin " =

# —l
cos B = .
A 242 ’

1 2
The specified initial boundary conditions are

n, =g, = u(to) -u, =0
n. =g, = v(to) - vy =0
2 2 (A.1.9)
o . _ v (2.26)
A n3 = 83 = r(to) - ro = 0
n, = &, = e(to) -06_=0

where t, is specified. Hence no initial conditions are obtained
from the transversality conditions because the initial state

and time are specified.

-

»
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The specified terminal boundary conditions are

Y =h =u(t) -u, =0

Y. = h, = v(t.) - v. = 0 ~ ' (A.1.10)
2 -2 (te) T - (2.29)
Va = h3 = r(tr) - rf s 0 ,

If it is desired to determine the minimum time trans-
fer, the performance index is ¢ = ty, and the terminal
trans?ersality condltions are

~(A,du 4 A.dv + A dr + A, de),. + ’ .
! 2 3 Wt (A.1.11)
(2.35)

(1 +_xlr1 A0, a0+ A ). dt. =0,

The terminal state perturbations in Eq. (A.1.11) are not
independent. They are related through Eq. (2.36). The

application of this equation results 1n‘
s dur = dvf =_drf = 0 ., V(A.1.12)

Combining Eqs. (A.1.11) and (A.1.12), the fourth terminal

boundary condition becomes
hu = x“f = 0 (A.1.13)

. since 1t 1is not desired to constrain the terminal value of
the angle © . If, however, it is desired to constrain the

erminal angle, der must vanish and Aot would not
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necessarily be zero. In this case, the fourth terminal
boundary condition.becomes

r .

) h, = G(tf) - 9 = 0. (A.1.14)

Allowing for the possibility of a variable terminal
time, Eq. (A.1.11) also yilelds the fifth and last terminal
condition ’

hS = (1 +-Alf‘ + Azfz + A3f3 + A“f“)f = 0. (A.l.ls)

ir it is desired to nofmalizé the Lagfange muitipliers
as discussed in Section 7.3.1, one multipller is initially
Seiected plus or minus unity and one terminal boundary condi-
tion 15 ignored. The initial boundary condition
Ay (tg) = -1.0 , is used in place of the fifth terminal bound-

ary condition, and the result 1s

!
=

n
o

0 - v= ' ' - ' = |
hy = ulty) -ug =0 (A.1.16)

g, = u(to)

1
<

"
o

g, = v(t ) .
0 0 hy = v(t.) - v, =0
gy =r(tg) ~rg =20

h, = r(tr) ~r, = 0

g, = 0(t,) -0, =0
[ 0 0 h = X“(tf) =

B = As(to) + 1.0 =0
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For the solution of 2n differential equations,
2n+2 Dboundary conditions must be known. Assuming that the
initial time is zero, 2n+l conditions are needed. These

are the boundary conditions given above.



APPENDIX A.2

Discussion of the Applications

. The example class of problems used to appiy the
theoretical formulations.présented in.Chapters 3,: 4, and
5 1s the minimum time trajectory of a thrusting spacecraft
under the influence of an linverse square gravitational
force field. .The specific examples used to obtaih the -

numerical results discussed in Chapter 6 are:

(1) A constant low thrust Earth-Mars transfer tra-
jectory which leaves the Earth's circular orbit about
the Sun with a velocity equal to that of the Earth.
The control or thrhst_angle is unbounded and only

the Sun's gravitational influence is considered.
N The spacecraft arrives at an arbitrary heliocentric
angle in the circular Mars orbit having velocity

conditions that match that of Mars.

: \
(2) A constant high thrust Earth launch to a 100

kilometer circular orbit leaving the Earth's sur-

face with zero veloéity. Thebcontrol or thrust

angle is unbounded. ' The Earth's lnverse square
gravitational influence 1is considered. The dissa-
pative terms of the atmospheric drag are also included.

The spacecraft arrives at an arbitrary heliocentric
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angle in the circular orbit. The effects of otheér

bodies are neglected.

In the optimization reduction problem shown in Appen-
_dix A.l1 1t ;s seen that the initial‘state is spgciried and
hence n =p =4 . The terminal velocity and radial position
are specified and hence q = 3 . Two additional terminal
constraints afe depived from the transversality conditions.
Assuming that the initial time is Specified as zero,1five
initial conditions and five terminal conditions are spepi-
fied, therefore the problem 1s solvable.

| When the numerical pafameters are normalized as dis-
cussed in Section 7.3.1, the initial value of the Lagrange
multiplier associated with the radius is equated to a negative
unity, and hence p = 5 , and the last transversality condi-
tion is ignored. This means that six initial conditions<«and
four,terminal conditions are specified, where the initial time
is included. The problem is still solvable, but the com-
plexion of the applicatipns is changed slightly from that
described in the detailed procedures presented in Chapters
3 and b,

It should be pointed out that the fourth differential

equation of state and the corresponding Euler-Lagrange equa-
tion is not necessary for the analysis made here. These

equations are simply included for the sake of generality,




and hence the same computer progréms may easily be converted
to soive the class of problems where terminal state is com-
pletely specified.

The time histories of each yariabléAthat correspond
to the optimal solution for the Earth-Mars transfer are il-i
lustrated in Figure.A.S,l. The optimal control history for
this problem is shown in Figure A.5.2. The time histories
of each Variable that corfespond to the optimal solution for -
the Earth launch are illustrated in Figire A.5.3. The‘opti;'

mal control history for this problem is shown in Figure A.5.4.
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APPENDIX A.2.1

Application of the Method of Adjoint Functions

The nonlinear, ordinary, vector differential equa-
tion é = F(z,t) 1is composed of n = U4 differential.equa-
tions of motion (with control eliminated By Qse of the
optimality condition) end n = 4 Euler-Lagrange equations.
These equations are integrated from a known to to an assumec.

Ef with the known 1initial conditions and assumed values for

those not'known, i.e.

-
~

)
_J

z(té) =

> > > > o 3 < €

F w N

=

0

whevre the bar indicates an assumed value.

When the assumed terminal time Ef i1s reached, the

terminal dissatisfaction h and dissatisfaction rate h are .
evaluated. The starting vectors for the backwards integra-

tion of the adjoint equations are also evaluated.
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These adjoint equations, A = - [%fj A, are

- l :
| -[r—z- (2“1 - ux, + A“)]A7

. 2 v
A, - (v_ . ?ﬂ),\l i} (u>,\2 NYCAYY +<_1>A5
r2 r? r? r2 r2

1 1o =2 cuva —va —v2x Jei-C6GMA . ]
-[ 2(2vx1-uA2+x“{]A6-{;3[uvxz VA, v_x1]+r“[scmxli} A,

r

A =0
L
Ta 2 A A, gy )
Ay = A - A+ (—%) As-(!: -
m(x 24x 2)%/2 m(x 2+x,2)%/2 re
1 %2 1 M2
- : 2
' Th A, T A -(E)a - (B)a, + [
A S - A+ 2 r S r 6 2
6 3 1 3 r
m(x 24x_2) " m(r 242, 2) /2
1 2 1 2
Ay = As

and are integrated backwards from tr to to forming the

coefficients from the variables stored during the forwaﬁa
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integration. The 2n+l-p = ) starting vectors for this back-

ward integration are

~ — n = =
1] 0 (o [ o
0 1 0 0
0 0 1 0
0 0 0 0
Altg) = g | Ap(tg) o | Aa(tg) o | A(tg) = ] o
0 0 0 ' 1 o
0 | o 0 0
Lo_‘ LO- L0 _ L..l_J

When the initial time to is reached, 2n+l-p

algebraic equations are solved for the linear estimates for

the corrections that must be applied to the assumed initial

conditions - (Tlo, de’ 7“0) and the assumed terminal time

(ff). These algebraic equations are
-1
r — r— . r‘ L’
le(to) 051 961 981 ur du
,ze(to) esz esz eaz Ve dv
=

SX“(to) 353 953 683 rr dr
ot | (%50 %0 % Mur LA,

where the elements of the © matrix are evaluated at to.

These corrections are applied to the initially assumed values

of %,, A\_, x, and Ff and a new nominal trajectory is

1* T2 T
integrated using z = F(z,t) .



N APPENDIX A.2.2

Application of the Method of Perturbation Functions

The nonlinear, ordinary, vector differential equation
z = F(z,t) 1is cémposed of n =4 differential equations of .
motion_(with control eliminated by use of the optimality con-
dition) and n = 4 Euler-Lagrange equations. These equa-
tions are integgated from a known to to an assumed Ef

with the known initial conditions and assumed values for

those not known, 1l.e.,

z(to) =

>l > > >l o B8 < £

FE W N e

0

where the bar indicates an assumed value.

The perturbation equations [- Jéz are
. 2 ' : E .
sz, = (2¥)ez +(28M _ ¥\g, o 5z
S m(a 242, 2) )
Ta, 2
1
+ 2 sz

3
2 2y /2 6
m(x1 +,?)

- 211‘



l Ta, A
* . 172 :
<Sz2 = - % Gzl - (%) 6z, + (u)éz3 + 525
‘ r? m(x,24x,2) 3/2 .
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<
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| ]
1
c
>
~N
+
>
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N
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. [V, 1 )
6z7 - —J)sz_ + ——(zvxl - uxz + A“)] Gzz
r2 1 r? ‘ .
1 GGMA1 )
+ r—3 - - 2V Al + 2uv)«2 - ZVA“ 623

) .
+ (- 2GM 6z, - <9-!)626 + (L Gze
r?2 rd r? r? :

and are integrated forwards from t, to tr_ forming the

coefficients from the variables calculated by the integration
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of 2z = F(z,t) . The integration of the differential and
perturbation equations may be done Simultaneously, where the

2n-p = 3 starting vectors for the perturbation equations

are
(o0 (0 ] [ o
0 0 0
0 0 0
, 0 0 . 0
sz (t.) = 6z.(t,) = §z,(t,) =
0 1 -0
0 0 - 0
L.O-J LO _ ;IJ'

When the terminal time 1is reached, 2n+l-p = 4
algebraic equations are solved for the linear estimates for

the corrections that must be applied to the assumed initial

conditions (X Xy0s rko) and the assumed terminal time .

10’

(fr) . These algebraic equations Are
° n - e PO ~ -
6A1(t0) 011 012 013 Uge .Idu
§x,(t)) %0 %2 %3 Ve dv
=
S, (tg) Py %y, ¥, Ty dr
] dtr ] L %1 %52 943 X“QJ L'dx“‘f

where {he elements of the ¢ matrix are evaluated at tr .

These correétions are applied to the initially as-

sumed values of Tl, YR X, and Fr and a new nominal tra-

Jectory 1s integratéd using z = F(z,t) .



APPENDIX A.2.3

Application of the Modified Quasilinearization Method

The nonhomogeneous linear, ordinary vector differen-
tial 2z = Az + B 1is composed of n = 4 1linearized differ-
ential equations of motion (with the controi_eliminated by':
use of the optimality condition) and n = 4§ 1linearized
Euler-Lagrange equations. These equations are

. . 2€> | <2GM vz)
7 = u = (X)) v + (=2 - L) r
.‘n+1 n+} <I‘ n n+1( r3 I‘2 n+1l

n

™, 2 Ta. A

2 . N + 172 { a
- 2,3/¢
m(x, 42,°) they m(xlz+x22)37zA 2n+1
‘ n n
+ (Bl)n
. . v u uv
z u - (=) v + —{) r
2
n+ n+l <;>n n+i <%>n n+1 r n nt+l
2
+ A - 71377 | A
33772
m(xlzﬂ2 ) 4 Tney m(x, 5 ) 2n+1
n n
J
M (Bz)n
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¥
+ (By)p
.o .“ | ".("Ba)n
zan-\»x‘ n+}
where (Bl)n . 3(?2 - ;—-;'F/_/*{’:‘{" ."‘ i
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. e
These nonhomogeneous linear

, | , S
from t, to tr with the starting vector

S

/

z(to)n+l"

»>| > »|>o|g> 0-3_'< c

£E W N e

L]
o "

equations are 1ntegrated

[}

where the bar indicates an assumed value. This determines

" the variables for the n+1'P 1teration by using the vari-

“ables resulting from the n?h

- Quired coefriéients,

iteration to form the re-

The homogeneous linear equations (same as above ex- .

cépt'without the -(Bi)n s, 1 =1, 2n

terms) y = Ay, are



integrated from t, o tf in_the same manner as the non-

humogeneous equations but with the 2n-p=3 startingfvectors

ra. 07 | i:' {oﬁ
N IR RO )
l ' : :

J . : U H . '.:f.
’ TR
O 0 . i >
Yt T By = L Oy (tdpy = | O
0 1 : 0.
0 ) 0 0
LO 0 1
- . - - . "" "Jo
When the terminal time is reached, 2n+l-p = y ;o

algebralc equations are solved for the corrections that must

ve applied to the assumed initial conditions (Ti°,~x2°,'7“o)'

and the assumed terminal time (Ef) . These algebraic equa-

tions are

-~ v "1 ~ e 7 e n
-1
éxl(to) Vi, Yy, Y., Y { du
§x,(t,) Yy, Y., Y,a Vr dv
-] .
ka(to) 3’31 Y32 Y3 I‘r . dr
dt -y Yoo Yo A dx
u f 8 g 81 82 83 | u{J L 4 £

where the elements of the matrix are. evaluated at te
These correcticns . are applied to the initiaily as-~

-~

sumed values of X, X, f“ and tg

jectory is integrated using z = Az+B . where the A and B

and a2 new nominal tra-

) A
matrices are formed from the previous nominal.

crl



APPENDIX A.2.4

Application of the Method of Steepest Descent

_ The nonlinear, ordinary, vector diffééentiﬁl}eduation
X = f(x,u,t) 1is compoéed of ns= 1\ dirferential éduatibns\

of motion. These equations are integrated forward with the

‘initial conditions

x(to) =

0

and the initlal estimate of tﬁe control pfogram' u(t) .
| The performance -index to be minimized is A

¢ = to
and the‘terminal constraints are

A u{tf) - up = 0

Y, " v(tr) - V. 0
Y, = :(tr) ~r,=0

The condition that is used to stop the integration is
A =o(ty) -6

r-o.‘
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The equations adjoint to the differential equations

of motion, X = -f "1 , are

=0

and the starting conditions for the backward 1ntegrétion are;

T,. 2] :
xo(tp-[—i [0 0 0 0]

x|,
- 0 0 0
7 vl .
x‘,(tr) [ax“. 0 1 0 0
0 1 0
T = -a_- =
"n-(tr) [“]r (o o o 1].

The time rates of change of the performance 1ndex;'

terminal constraints and stopping condition are-

[ 'a a [
0-[.3—%+T%x]r-l
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APPENDIX A.2.5

o~

Application of the Modified Method of Steepest Descent

The nonlinear, ordinary, vector difrerentiél EQQation
X = r(x,g,t) is composed of nm=214 dirrerehtiai.gqpat;onsf:
of motioh. These equations are integrated forward with the

initial conditions

x(ﬁo) =

O < <

0

and the initial estimate of the control program .u(t)';,

The penalty function to be minimized is
- 2 -y 12 -y 12 e 12
P wo'cr *w1[”(tr) ur] +w2[v(tr) va +w3[r(tf)_?f]

and the stopping condition is o -

B =e(ty) - 8g =0 .

The equations adjoint to the differential equatigns

of motion, A = -fxTx , are

: v, _ . . : AR
Xll (;)Xz- A3 N v - ". : -
¢ ‘ ' . .

225



e [

PQ

S §
: Pﬂ“

Pa.

Pa,

oW fulte) - ugd

2wz[v<§f) -V

ﬁ] = [a A A - x "
][ax ‘ “PR,’ P“z_’“Pns" PQ,

e
2w [r(t,) - r,l

r +xﬂ't‘ + Wt
-2 F¥3 3 0

f,

“The new control program is given by

cos 8)]
2 b

. T ‘ . " - -
nG = K [E(APQl sin 8 - AP

| ,"fﬁé'Stéftithcbnditions'for'the_baqkwafd_ihtegfétién;;.' 
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APPENDIX A.3

Numerical Constants

Earth-Mars Transfer.

Astronomical Unit, AU : .1“959870 X 1012 meters

Orbital Radius of Earth, r, .10000000 X 10! AU

Orbital Radius of Mars, r_ .15236790 X 101 Au

Gravitational Constant of Suﬁ;"GMs ; .1327150U'X 102}
meters3/second?

Initial Spacecraft Mass, m, | 4 - .67978852 X 103 kilograms

Thrust, T uo31237o X 101 newtons

‘Mass Rate, m ) .10123858 X 107
kilograms/second

Earth Launch

Radius of Earth, R, 63781700 X 107 meters
Gravitational Constant of Earth GM, .39860640 X 1015

| metérs?/second?
Initial Spacecraft Mass, m, .1soooooo.x 10% kilograms
‘Thrust, T . .27000000 X 105 newtons
Mass Rate, m 3 .45000000 X 10!

kilograns/second

The terms that must be added to the d;rferential

equations f and fz to include atmospheric resiétance

)}
are:
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and where

*p =

pC
r - D _

Au/u2+vZ

1 v «.m

pCDAv/uI+v§

2 2m

-Cy = 0.3, 0 € M € .6950 (dr: .

Cn= K, + == M> .6950

’ .Mz, M3

. a.

évé“D'¥ B(r“

P =A0f§2”' ‘
E = 7600.0

K, = 1.0724 .

D = 340.0

B = 0.00071

A=L4.0

K, = 1.6218

Ky

(maéh»number)_-fA

- R.)

e (speed of sdund)fv_

kilograms/meter? =

meters

K. = 0.1368

meters/second
l/seconds

metexjsz

(mar | ensity)

a8

coefficient) .~ .-



APPENDIX

 Normalization Scheme

Earth Mars Transfer

Unit

Unit

Unit-

.IrJUniﬁ

Unit

of Lencth (1 AU)

of Mass (m)

. _ - GMs

of Velocity Ve *¥Y T
e

of»Fcrcec

of Time

.14959870 X 1012 meters
67978852 X 103 kilograms

.29784901 X 105
meters/second

.40312370 X 10! newtons
.50226355 X l07 seconds
58132355 X 102 days

"?Tﬁé"ndrméiiéedﬁvaldes-of thc.ﬁarameters_of interest are:

Gravitational Constant of Sun, GM
;nitial Spacecraft Mass = 1, 0
‘1n1t1a1 Spacecraft Velocity = 1.0
.Initial Spacecraft Radius = 1.0

1.0

Terminal Spacecrart Velocity = 0, 81012728

'5Term1na1 Spacecraft Radius = 1, 5236790

Thrust =

.14012969

Mass Rate =-0.074800391

Earth I.aunch -'No”hormaiizatioh scheme.
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