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PREFACE

/" • ' : ' • ' . • ' -

The optimization and control of spacecraft trajectories

has been of considerable interest during the past decade, and a

significant amount of progress has been made in developing a

theoretical and numerical capability to solve complex trajec-

tory problems. There still exists, however, a need to deter-

mine the best approach, given a specific problem. The gener-

ality of such a task is overwhelming, but an Initial step is

taken when most of the promising methods have been studied

with the aid of a specific, but representative example. This

dissertation takes this first step, and along with several

significant theoretical and numerical contributions, compares

the relative merits of several trajectory optimization methods.
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ABSTRACT

A theoretical development and comparative evaluation is

made for several methods of solving the problem associated with

the optimum transfer of a spacecraft. Particular attention is

given to the sensitivity of the convergence characteristics of

the methods to initially assumed parameters and trial solutions,

convergence times, .computer logic and storage requirements.' '

The methods considered may be classified as one of the

following types: (1) Perturbation, Second Variation or Ex-

tremal Field Methods, (2) Quasilinearization or Generalized

Newton-Raphson Methods, or (3) Gradient or Steepest Descent
\

Methods. The numerical comparison of the convergence, charac-

teristics is made by considering a minimum time, low thrust,
V

Earth-Mars transfer trajectory.

A new quasllinearization method, called the Modified

Quasilinearization Method, is proposed. For the example con-

sidered, this method reduces convergence time by approximately

7Q% when compared with the Generalized Newton-Raphson Method.

Moreover, the method allows the terminal boundary to be speci-

fied by a general function of the problem variables rather

than individual values of the variables themselves.

A uniquely specified and easily determined, time de-

pendent weighting matrix has been discovered for the gradient

techniques. This weighting matrix accelerates the shaping of



the optimal control program and Improves the convergence

characteristics during the terminal iterations by giving more

weight to regions of low sensitivity.

Convergence envelopes, which give an indication of how

sensitive the convergence characteristics are to initially

assumed parameters, are plotted for the Perturbation and

Quasillnearization Methods. Several iteration schemes are

proposed which significantly increase the size of the con-

vergence envelopes, and hence decrease the sensitivity of

the method to initially assumed parameters.
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CHAPTER I

INTRODUCTION

A treatise on the theory of trajectory optimization and

its application requi-res a clear and meaningful definition of the

problem. This definition should include a discussion of the

terms and concepts required in studying the background material

and the theoretical formulations. An indication of the purpose

of the investigation is given along with the extent or scope of

such a study.

1.1 Definition of the Optimization Problem

The optimization of spacecraft trajectories has been of

considerable interest for a number of years, and significant pro-

gress has been made in developing a capability for solving very

complex trajectory problems. In one class of optimization prob-

lems, it is desired to determine the history of the control vari-

ables in such a manner that certain specified initial and termi-

nal constraints are satisfied while some performance index is ex-

tremized. The control variables are unspecified inputs to t'r.e

system which may be chosen to control the state, i.e., the posi-

tion and velocity. The initial and terminal constraints are

simply conditions on the position and velocity that must be sat-

isfied at the initial and terminal time, respectively. The per-

formance index is usually a scalar function associated with the

spacecraft performance and is the quantity to be extremized. It



may be a scalar function of the terminal state and time and/or a

scalar integral term evaluated along the trajectory.

The calculus of variations is the classical tool for

solving such problems, and with its use necessary conditions for

an optimal trajectory may be derived. These necessary conditions

are derived in Chapter 2 and consist of boundary conditions re-

ferred to as transversality conditions, algebraic equations re-

ferred to as optlmality conditions and the Euler-Lagrange dif-

ferential equations. The optimality conditions and the Euler-

Lagrange equations must be satisfied at each point in the time ̂

interval of interest. A closed form solution for these equations

and boundary conditions is very difficult to obtain and has been

obtained for only a few relatively simple cases. When an optimi-

zation problem is solved numerically in such a way that the ne-

cessary conditions are satisfied, the method is usually desig-

nated an indirect method.

•There have been alternate methods developed to solve the

above stated class of problems without using the necessary condi-

tions derived with the calculus of variations. These methods,

usually referred to as direct methods, use influence functions

which indicate how the performance index and terminal constraints

are influenced by initial state variations and integrated control

variations. .

In both the indirect and direct methods, the terminal

constraints are handled in either the so-called "hard" or "soft"
-v

forms. In the "hard" form an effort is made to satisfy the

terminal constraints identically while in the "soft" form the



terminal constraints are satisfied only approximately. It is

with this latter case that the penalty function concept to be

..discussed later is introduced. The philosophy used in this

method is that a certain penalty is accepted because of the

approximate satisfaction of the terminal constraints.x /

1.2 Background Study of Optimization Theory

In assessing the "state of the art" in trajectory optimi-

zation theory and application, it is helpful to understand the

developments that lead to this current state. This background is

divided into-previous and recent developments, the recent devel-

opments being made since about I960. The distinction between in-

direct and direct methods has become increasingly clear during

these recent years and are discussed separately.

1.2.1 Previous Developments .
I

The original trajectory optimization problems were formu-

lated in terms of a set of nonlinear, ordinary differential equa-

tions, which were required to satisfy split boundary conditions.

The first problems to be solved were extremely simple since

numerical solution of the more difficult problems required ex-

tensive computations. With the advent of the high speed digital

computer, 'several previously impractical methods became available

for numerical solutions. Development of the computer has stimu-

lated the formulation of many previously unknown methods.

Some of the first published formulations of optimal tra-

jectory programming problems appeared in the early 1950's. One



of the best known was by Lawden (1)* in which the equations which

described the optimal trajectory were derived for the general

case of a rocket moving in a specified gravitational field and

subject to atmospheric resistance. However, results for only the

highly specialized case of uniform gravitational field and no

atmospheric resistance are presented. The analysis probably re-

presents one of the most difficult known cases for which a closed

form solution can be obtained.

In August 1957, a classical paper was published by
>v

Breakwell (2) in which a method was presented for using a high

speed digital computer for the study .of a broad clas.s of tra-

jectory optimization problems. This class includes boost tra-

jectories for maximum range or maximum energy, minimum time in-

tercept trajectories, and .maximum glide range trajectories. The

method devised for determining a solution requires a guess for

unknown initial conditions and an interpolation procedure to de-

crease the terminal constraint dissatisfaction on each successive

iterat'ion. This, particular approach can become extremely time-

consuming and inefficient. .

A different analytical development of trajectory optimi-

zation theory was published .by Kelley (3) in October I960. The

method is referred to as the gradient method and it is based on.

an extension of some ideas presented by Courant in 19^1. The

gradient technique represented a completely different approach

•Numbers appearing in parenthesis following a name refer
to publications listed in the References.



to the solution of optimization problems, and it soon became

evident that the recently developed optimization schemes would

fit into two basically different classifications, the indirect

and direct trajectory optimization methods.

The indirect methods involve the simultaneous solution

of the differential equations of motion and the Euler-Lagrange

equations while satisfying at each point in time a local opti-

mality condition. Hence, every trajectory iteration is an -opti-

mal trajectory, from the initial to some terminal point in space,

The only remaining problem is to satir^y the terminal constraint

relations. This approach also includes methods where the dif-

ferential equations mentioned above are linearized about the

previous trajectory iteration, even though the trajectories are

not exactly optimal in this case.

The direct methods involve the solution of the differ-

ential equations of motion and produce control variable modifi-

cations that extremize the desired performance index while de-

creasing the terminal constraint dissatisfaction. This approach

includes the gradient techniques.

1.2.2 Recent Developments

Since I960 there have been a number of significant im-

provements for both the indirect and direct trajectory optimi-
/ -

zation methods. During this recent period a distinct difference

between the two approaches has evolved and for this reason the

approaches are discussed separately.



1.2.2.1 Indirect Approaches

As mentioned earlier, the capability for solving optimum

trajectory problems has existed since the development of the

theory to solve the two-point boundary value problem, however,

numerical computation schemes were lacking. One of the first

recent schemes was published by MacKay, Rossa, and Zimmerman (*0

in 1961. The analysis uses a set of differential equations

which describe the optimal thrust direction and a criterion for

determining the best time at which to begin and vid a coast,

phase. • An: iteration method is used to solve the two-point

boundary value problem. The various partial derivatives that

describe how the terminal state changes as the initial state is

changed, are evaluated by a first-order finite difference tech-

nique and the successive integration of the differential equa-

tions .

Melbourne, Sauer, and Richardson (5), also in 1961,

presented the results of an investigation of optimum rendezvous

and round trip trajectories for a typical mission to Mars. A

classical calculus of variation approach is used and a Newton-

Raphson technique is implemented for the solution of the two-

point boundary value problem. The technique for determining the

partial derivative matrix is similar to that used by MacKay,

Rossa, and Zimmerman (^) and the suggestion is made that this

matrix be updated only once every several trajectory iterations.

The Newton-Raphson optimization method is discussed

further by Scharmack (6) and several examples are presented. An

especially simple special form of the Newton-Raphson method is



given also for the case where the terminal boundary is a func-

tion of time alone.

In 1962 Jurovics and Mclntyre (7) presented a method

for the systematic evaluation of the two-point boundary value

problem using the equations adjoint^to the linearized differen-

tial equations of motion and the Euler-Lagrange equations. The

foundation of this work was laid by Goodman and Lance (8), but

the applicability of the technique to systems of nonlinear

equations is very limited and the terminal time must be known-.

Jurovics and Mclntyre eliminated some of the restrictions and

extended the technique to'allow for variable terminal time.

An extension was made to the Newton-Raphson techniques

by Breakwell, Speyer, and Bryson (9) in 1963. The procedure is

based partially on previous work by Breakwell (10) in 1959-

The method uses a set of equations obtained by perturbing the

previous nominal trajectory to evaluate the required partial de-

rivative matrix. The generality of the formulation allows for

variable terminal time and the satisfaction of time and state

dependent terminal constraints. After the partial derivative,

matrix has been determined, a multiple linear interpolation is

made to determine the corrections required for the initial con-

ditions. The Euler-Lagrange equations are satisfied on every

iteration, and hence every trajectory is an optimal one.

However, the terminal constraints must be satisfied by an itera-

tive process.

A rather recent development based on the theory of the

second variation was published by Kelley, Kopp, and Moyer (11)
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in 1963. In the initial phase of computation, the penalty func-

tion concept of handling the terminal constraints is used, and
X

the process behaves much like the classical gradient technique.

During the terminal phase, the constraints are satisfied exactly

and the method converges more rapidly than the gradient scheme.

However, the second variation method is significantly more com-

plicated, theoretically and computationally, than the first order

gradient theory. However, the reference does s.tate that this '.

disadvantage is partially offset by a reduction in required comp-

utational time. ;

Jazwiriski (12) in 196^ presented an extension to the

method suggested by Jurovics and Mclntyre (7) by using the:ad-

joint system to solve optimization problems which contain initial

and terminal boundary conditions that are general functions of

the problem variables. An additional feature of this scheme is

that after.the open-loop optimization problem has been solved

all the information for the closed-loop control problem is avail-

able. This information is also available in Breakwell, Speyer,

and Bryson's (9) paper, but it must be pointed out that

Jazwinski's method requires fewer integrations of an equivalent

set of equations. r

A different approach to the solution of the indirect

optimization problem has been suggested by McGill and Kenneth

(13) in 1964. This method, called the Generalized Newton-Raphson

Method, is formulated through the use of the quasilinearization

concept as presented by Kalaba (14). A convergence proof for the

method was presented by McGill and Kenneth (15) in 1963. This



method uses the linearized versions of the differential equations

of motion and the Euler-Lagrange equations, and proceeds to solve
i

a sequence of linear problems, the solutions of which converge to

the solution of the desired nonlinear problem. A set of pertur-

bation or homogeneous equations are used to determine the partial

derivative matrix. The implementation of the procedure is simi-

lar to the perturbation method presented by Breakwell, Speyer,

and Bryson (9). The method is distinguished by the fact that an

initial solution must be assumed rather than Just the initial

values of the dependent variables. Furthermore, variable termi-

nal time problems are handled in a very awkward manner.

The awkward handling of terminal time is partially re-

duced by Dong (16) by introducing a change in the -independent

variable. The method proposed by. Long is still rather cuirtersorr.e

because an additional differential equation must be integrated

and all the previous equations are complicated by another cc~-

plex term. It is shown, however, by McGill and Kenneth (13 ,

that if convergence does occur it does so quadratically, ar.i t.-.at

the terminal constraints, which are not general functions cf the

problem variables, can be identically satisfied on every tra-

jectory iteration.
/-

In summary, the indirect optimization methods are usually

formulated in terms of a two-point boundary value problem, and

hence the many methods previously used for solution of this type

of problem become applicable for the solution of trajectory opti-

mization problems. One of the most significant advantages of the

indirect methods is that the convergence properties are excellent.
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Another advantage is that the converged solution does represent, a

true optimal, not Just an approximation. The most severe disad-

vantage is that the solution of the differential equations is

highly sensitive to the initially assumed value.s of the .dependent

variables.. This implies that accurate initial values are needed

to start the integration, and the problem is compounded by the

fact.that often little physical significance can be attached to
~\

the initial values of the Euler variables.

The disadvantages associated with indirect optimization

methods are severe enough.to encourage the forumulation of meth-

ods that eliminate these difficulties. The convergence of the

direct optimization methods are not as dependent on the initially

assumed parameters as are the indirect methods, but some ex-

tremely undesirable characteristics are introduced. A brief dis-

cussion of the direct methods is given in the following section.

\ .

1.2.2.2 Direct Approaches -

While the gradient theory for flight path optimization

was being developed by Kelley (3), a similar formulation was

being made simultaneously and independently by Bryson, Denham,

Carroll, and Mikami (1?) (18). In Reference (17), the gradient

method is used to study the problem of determining a control

variable program that minimizes- vehicle heating during reentry

to the earth's.atmosphere.

In 1961, .Kelley, Kopp, and Moyer (19) presented an

analysis of several gradient methods using inequality constraints

on the control variables and a penalty function technique for
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handling terminal constraints. It is pointed out in the study

that the numerical results obtained were too limited for com-

paring the relative merits of the methods.

In an effort to determine the thrust steering program

for the optimization 'of a second stage booster, Pfeiffer (20)

developed a method of /'critical direction" which was similar

to the gradient techniques of Kelley and Bryson. This same

gradient concept is studied by Wagner and Jazwinski (21) and

both terminal and instantaneous Inequality constraints are

introduced into the formulation. Wagner and Jazwinski also pre-

sent an interesting method for determining the step size magni-

tude that should be taken in the gradient direction to approxi-

mately maximize the decrease in the penalty function.

The gradient technique is well defined and has been

quite successful in avoiding the difficulties associated with

the two-point boundary value problem associated with the cal-

culus of variation necessary conditions. One of the most costly

deficiencies of this method is the poor convergence characteris-

tics in the terminal stage of convergence. In 1963* Rosenbaum

(22)developed a method similar to a closed-loop guidance scheme

that provides rapid convergence for a variety of missions. The

distinctive feature of this method is that the step size in the
•^ ''•"*•• -• - .-, - -

gradient; direction is calculated and becomes a time dependent

quantity. The significant result Is that larger deviations from

the nominal trajectory can be tolerated while still satisfying

the terminal constraints, thus it is possible to move more

rapidly toward the optimal trajectory.
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•*-Stancil (23), in 1964, presented a slightly different

approach to the inherent gradient convergence problem. This

approach is similar to Rosenbaum (22) in that a time dependent

weighting matrix is calculated. Basically the formulation

followed a suggestion made, but not"used, by Bryson, Denham,

Carroll, and Mikami (17), in which the current control program

was averaged with the Eulerian control.

The latest innovation to van optimization method is re-

ported by McReynolds and Bryson (24), and is called a succes-

sive sweep method. To this author's knowledge, no computation-,

nl results have been published. The procedure represents an ex-

tension and unification of the steepest-des'cent and second varia-

tion techniques. The procedure requires the backwards integra-

tion of a set of equations,- in addition to the usual adjoint

equations, that generate a linear control law that preserves the

gradient history on the following step. The gradient history,

however, may be changed by specified amounts while also specify-

ing a change in the terminal constraint dissatisfaction. Thus,

in a finite number of steps, the gradient history and the term-

inal dissatisfaction can be forced to approach zero. Actually,

the method has characteristics similar to indirect methods as

well as direct methods.

The method seems very promising from a theoretical point

of view, but before a Judgment on its applicability to solving

trajectory optimization problems can be made, some computational

experience must be obtained.

In summary, the direct optimization methods suffer from
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poor convergence characteristics, as the optimal trajectory is

approached and, in fact, never yields a solution which will

satisfy the classical optimality conditions. The methods, how-

ever, do begin the convergence process with a relatively poor

initial estimate of the control variable-history, and seek weak

relative extremals as opposed to points where the functional is

merely stationary. .

1.2.3 Recent Comparisons

The number of published studies that compare the relative

merits of the recently developed trajectory optimization schemes

is extremely limited. The reason for this is certainly not be-

cause this type of knowledge is unwanted or meaningless, but be-

cause it is so difficult to select a reasonable basis for compar-

ison. Another discouraging fact is that most optimization,

methods are highly problem dependent.

One study of three related successive approximation

gradient schemes by Kelley, Kopp, and Moyer (19) in 1961 con-

cluded that the numerical results were too limited to provide a

comparison of the relative merits. The differences in conver-

gence speeds were insignificant in comparison to the improvements

attainable by small adjustments in the penalty function con-

straints .

A more recent publication by Kopp and McGill (25) and

Moyer and Pinkham (-26,) compares a gradient, second variation and

generalized .Newton-Raphson technique on both theoretical and

computational basis;.-.. The theory is explained by considering an



ordinary minimum problem with a~side constraint. It is stated

in this reference that the second variation method is a specific

approach to .the generalized Newton-Raphson method. One con-

clusion made on convergence times is that the second variation

scheme requires approximately 50/5 less computer time than the

conventional gradient technique, and the generalized Newton-

Raphson method required even less time.

1 .3 _ Purpose of the Investigation x ...

The ultimate purpose of this investigation is to develop

an insight into the available numerical optimization methods, so

that, given a problem and a set of circumstances, an intelligent

choice may be made as to which procedure is best suited for that

particular problem. This ultimate purpose is approached by

satisfying the following secondary objectives:

(1) Increase the understanding of the currently

popular optimization methods so that the de-

ficient areas of each method are discovered1.

Extend' and modify these methods to eliminate

the deficiencies.

(2) Formulate a basis on which the methods may be

compared, and make a meaningful comparison of

the relative merits of each method.

l.fr Scope of the Investigation

The scope of the investigation includes the theoretical

development of both direct and indirect methods. These methods



are formulated in the "open loop" form; i.e., information is

not fed back to the system to provide control for the inevitable

state variations discovered during the process.

The problem is formulated in a Mayer form, and here the

performance index is simply a scalar function of the terminal

state and terminal time. The terminal constraints, which are of

the equality form, may be general functions of the problem vari-

ables, and the terminal time may be unknown.

The methods are applied to the study of a two-dimensional

transfer trajectory from Earth to Mars. One control variable,

the thrust attitude angle, is used. The specified terminal con-/
stralnts do not contain the time explicited.



CHAPTER 2

FORMULATION OF THE OPTIMIZATION PROBLEM

The theoretical development of several trajectory op-

timization methods is made with an objective being the presen-
i

tation of a unified or common approach. A fundamental factor

in describing the formulation of any trajectory optimization

problem is the derivation of ,the first necessary conditions

for an optimal trajectory, with the appropriate remarks con-

cerning sufficiency. One other requirement helpful to the

discussions presented, especially for the indirect optimization

development, is an explanation of how the optimization problem

is reduced to a two-point boundary value problem.

2.1 Derivation of the Necessary Conditions for an Optimal
Trajectory

The classical trajectory optimization problems require

that certain necessary conditions be satisfied. The different

optimization techniques that have been developed tend to

satisfy these conditions in various ways. The necessary con-

ditions are derived from the consideration of the following

problem. Determine the history of the variables that control

a nonlinear system in such a manner that some index of per-

formance is extremized while certain specified initial and

I O
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terminal constraints are satisfied. This performance index

is usually some function of the terminal state and time. .

The differential equations of motion that describe

the trajectory of a spacecraft may be derived by applying
i

Newton's Second Law, and the -resulting equations are secjond

order differential equations. These equations may be reduced

t1© first order equations and hence, the problem is formulated;

in terms of a first order, nonlinear, ordinary, vector differ-

ential equation

x = f(x,u,t) (2.1)

where x is an n vector of state variables, f is an n

vector of known functions, u is an m vector of control vari-

ables, and t is the independent variable time. The per-

formance index, which is the function to be extremized., is .

a scalar . . _ ... . .

* = f(xf,tf) - (2>2)

and is a function of terminal state and time. The specified

initial constraint relations are ' :
. i '

rr = nU0,t0) -• 0 (2.3)'

where n is a p vector, and the specified terminal con-

straint relations are c

f -.»(xfftf) -.0. . - . . (2.*O
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where ¥ is a q vector.

The classical method of extremizlng a function while

satisfying specified terminal constraints is to adjoin the

constraints and the constraining differential equations of
m

motion to the functional with the Lagrange multipliers v
Tand A , respectively. The functional to be extremized

becomes

.1 • *(xf,tf) + v
TY(xf,tf) (2.5)

f AT(t)[f(x,u,t) - x]dt
to

where $ is the scalar performance index, v is a q vector

of constant Lagrange multipliers, f is a q vector of

specified terminal constraint relations, and A is an

n vector of time dependent Lagrange multipliers. Eq. (2.3) is

usually easily solved for p of the initial conditions needed

to integrate Eq. (2.1).

The functional I is simplified by introducing a
Tquantity P where P « <>(xf,tf) +• v t(xf,tf) and the general-

ized Hamiltonian H - A (t)f(x,u,f) . The functional I becomes

f̂ T.
I - P(xr,t.) - /

 l (AAx - H)dt . (2.6)
fcO '

The first term under the integral sign may be integrated by

parts and the functional rewritten
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:T. (2.7)I = P - XAX| + / (x*x + H)dt .
fco ' *o

The functional-is now expanded in a Taylor series about some

nominal trajectory such that dl = dl1 + dl" 4- .... where

the term dl' designates the first variation, the second

term dl", the second variation and so forth. The first

variation dl' is given by .

dl dP - dU'x)
• . rp
(Xx + H)dt (2.8)

and taking the total differential of each term and using

Leibnitz's Rule on the last term, the equation becomes

(P dx + Pdv + Pdt) -(dXAx + X4dx)

H)dt
*f *

f C«J

(3,9)

Int©gratin§ th© first tepn) under the integral ̂ ign fey
T T ' 3?part§ and netin§ that t© first ©rder dx* • «x-^ + ̂ 4̂ 4 »

wh§r§ i • S er f, tht iq, (1,0) may b§ rewritten, After

@§Ue§ting the termg that mugt fee evaluated at the initial

and terminal times, and making the appp§priate §&n8§!lati§n§,

the la. (itf)
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T
dlf « [(Px - X*)dx + Pydv + (Pt + H)dt]

t (2.10)

+ [XTdx - Hdt] + J [6XT(f-x) + (XT+Hx)6x + Hu«u]d.t .

S S

The first necessary conditions for the functional I

and hence for the performance index $ to be extremized is

that the first variation dl1 must vanish. The vanishing of

the first variation implies that each term in Eq. (2.10) must

vanish if the variations dxf, dv, dtf, dx , dt , fix, 6x and

6u are independent variations. Therefore, the necessary condi-

tions that must be satisfied at the initial boundary are as .

follows:

(1) XTdx (2.11)

This condition implies that if the initial state is

specified, i.e. dx(t ) * 0, the equation is identi-

cally satisfied. If, however, the initial state is

unspecified, the associated Lagrange multipliers

must vanish at the initial .time. This assumes that

the initial state and time variations are independent of

one another, and if they are Eq. (2.11) yields n

Initial conditions.
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(2) - Hdt| - 0 (2.12)

fco
This condition implies that if the initial time is

specified, i.e. dtQ = 0, the equation is identi-

cally satisfied. If, however, the Initial time is

unspecified and the initial state and time variations

are independent of one another, the generalized
THamiltonian X f must vanish at. the assumed initial <

time. .This yields one initial condition.
i

The necessary conditions that must be satisfied at the.termi-

nal boundary are as follows:
'•" ' *r • ,

(1) Pydv =0 •

|tf
This condition implies that fdv » 0 since

(2.13)

3Pĵ j- = y . The specified terminal constraints must be

satisfied, and hence the dv does not necessarily

vanish. This yields, q terminal conditions, Y = 0.

(2) , •"•(?_ - XT)dxx (2.U)

This condition implies that if the terminal state

T T
is unspecified, the coefficient (*x'

fv *X"
X ^

must vanish. This transversality condition yields

n terminal conditions.
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(3) (Pt + H)dt «= 0 (2.15)

This condition implies that if the terminal time is

unspecified, the coefficient ($. + v7*. * H) f

must vanish. This transversality condition yields

one terminal condition.

The necessary conditions that must be satisfied at every

point along the trajectory are as follows:
i

•'(I") i - f(x,u,t) =0 (2.16)

This is the original nonlinear differential equation

of motion and consists of n equations.

(2) XT + Hx(X,x,u,t) - 0 . (2.17)

This equation is the classical Euler-Lagrange equation

and consists of n equations.

(3) Hu(X,x,u,t) - 0 (2.18)

This equation is the classical optimality condition

and consists of m equations. This equation may also

be recognized as the weak form of the Pontryagin

Maximum Principle.

The problem is now theoretically solvable since the

Eqs. (2.11) through (2.15) yield 2n+q+2 Initial and terminal
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boundary conditions for the 2n first order differential

equations, Eqs. (2.16) and (2.17), and the q+2 unknowns

v, tQ, and tf. The m control variables may either

be eliminated from Eqs. (2.l6) and (2.17) by using the

optimality condition Eq. (2.18), or Eq. (2.18) may be dif-

ferentiated and treated as another differential equation. In

this case

^ [HuU,x,u,t>] - 0 : (2.19)

and expanding Eq. (2.19) leads to the expression

V + Hux* 4 V1 * Hut • ° • (2'20)

By inverting the HUU matrix, the time rate of change of the

control vector becomes

" • - [1W + Hux + Hut> • (2'2

Using the differential equations of motion, Eq. (2.16) and

the Euler-Lagrange equations, Eq. (2.17), Eq. (2.21) becomes

" - -«uu'HxHI - Hu*H* + «utl 12'2

which may be simultaneously integrated with Eqs. (2.16) and

(2.17).

However, for such an integration, an initial condition

for the control muSt be known. The optimality condition



yields the control in terms of the state and Euler variables,

and since these parameters must either be assumed or known

initially anyway, the initial condition on the control may

be determined easily. .
•' •

The Justification for the statement that H '» H =0

(and for that matter HU * HU « ..... • 0) is that the opti-

mality condition HU » 0 must be identically satisfied at

every point along the optimal trajectory and at no point can

there be a deviation from H « 0 .

The previously stated first necessary conditions are

the ones necessary for the functional I to assume a sta-

tionary value, however these conditions are not .sufficient to

insure that a minimum has been obtained. If the Legendre

Condition is satisfied and if no conjugate points exist in the

interval of the independent variable, the fourth necessary

condition, and the one that is sufficient to insure a strong

minimum-, involves the Weierstrass E-Function. The E-Function

is explained by Gelfand (27) and must be equal to or greater

than zero for a minimum. An application of the Weierstrass

E-Functlon is shown in Appendix A.I for a vehicle moving in an

inverse square gravitational force field under the influence

of a thrust force.

: ' • - r

2.2 Reduction of the Optimization Problem to a Two-Point
Boundary Value Problem

The classical trajectory optimization problem may be

reduced to a two-point boundary value problem and hence
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several previously known methods become available for its

solution. The first necessary conditions previously derived

in Section 2.1 must be used, and frequent reference is made to

that section. The conditions that must be satisfied at every

point along the trajectory are Eqs. (2.16), (2.17), and (2.18),

i.e. the differential equations of motion

x - f(x.u.t) (2.23)

where x is an n xyector of state variables, the differen-

tial Equation that is adjoint to the linearized differential

equation of motion and called the Euler-Lagrange equation

X « -f^X = -j£ (X,u,x,t) (2.2U)

where X is an n vector of adjoint variables, and the

classical optimality condition

Hu(X,u,x,t) - 0 (2.25)

where -H is the generalized Hamiltonian and u is an

m vector of control variables.

The m Eqs. (2.25) may be solved for the m unknown

control variables in terms of the state and adjoint variables

and time, and the control then eliminated from Eqs. (2.23) and

(2.210.

In the general case, where the initial state and time ,

variations are not independent of one another, Eqs. (2.11) and

(2.12) must remain as one equation. Hence, the initial
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conditions that must be satisfied "are the initially specified

constraint relations, Eq. (2.3)

n'(x0,t0) = 0 (2.26)

where n is a p vector, and the transversality condition

(XTdx - Hdt) « 0 . (2.27)

The state and time total variations dx and dt are not

necessarily independent of one another, and in fact are re-

lated through Eq. (2.6). It is required that for all dxQ

and dtQ that dn(x ,t ) = 0, and to a first order approxi-

mation this condition can be expressed as

<2'28)
Since dn(x ,t ) is a p vector of conditions, it follows,

that p of the n+1 tojbal variations dx and dtQ may

be determined in terms of the remaining n+l-p variations.

These p total variations are eliminated from the varia-

tions in Eq. (2.27), leaving n+l-p independent variations. ,

The coefficients of these n+l-p independent variations may

be equated to zero to obtain n+l-p additional relations at

the Initial time. Combining these n+l-p .relations with the

p .initially specified constraint relations in Eq. (2.26) will

result in the desired n+1 initial conditions, g-(x0,.t0> = 0

and -tfl .
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In most cases,N the initial state and time are given,

which would be the required n+1, conditions, and the

transversality condition Eq. (2.2?) is then identically

satisfied.

The terminal conditions"that must be satisfied are

the terminally specified constraint relations, Eq. (2.13)

*(xf,tf) = 0 (2.29)

where Y is a q vector,, and the transversality conditions,

Eqs. (2.14) and (2.15),

T A'(Px - X^dxl « 0 (2.30)

|tf
(Pt •«- H)dt| l- * 0 . (2.3D

' . . . \

Since the Lagrange multipliers v were introduced,

the total variations, dxf and dtf ,, in Eqs. (2.30) and

(2.3D can be treated as Independent variations, and the co-.
\

efficients of these variations may be equated to zero. This

procedure provides n+1 terminal conditions, n resulting

from Eq. (2.30) and one from Eq. (2.31). There are, however,

q remaining unknowns to be evaluated, i.e. the q Lagrange

multipliers v . The q terminally specified constraints

given in Eq. (2.29) provide the additional conditions for
i

this operation.
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In summary, the terminal conditions become

hl " *l(xf-»tf) for . i. Bl»q (2.32)

hl e (*x+N)Tyx"xT)l for i * q+1' n+q (2.33)

and h .« (**v^v+H) for 1 » n+q+1 . (2..31*)

The n+1 initial conditions are combined with the n+q+1

terminal conditions to obtain the boundary conditions for the

2ii order system of differential equations given by Eqs.

(2.23) and (2v24), tQ, tf, and the q values of v .

If the terminal constraint relations are not very

complicated, it may be easier to eliminate the Lagrange mul-

tipliers v from the start. Hence, an alternative approach,

which considers the functional

tr

/

J .
xT(f - x)dt , ;

would yield transversality conditions

T |tf I-*'-x'jdx + (»..+H)dt| - 0 (2.35)
• \fA

to be satisfied. ".-.-- .

However, the total variations dxf and dtf are not

Independent, and are related in fact through the terminally

specified constraint relation, Eq. (2.29). It is required

that dy(xf,t.) • 0, and to a first order approximation

this becomes
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where dy(xf,t-) Is a q vector. Now q of the n+1

total variations dxf and dtf may be determined in terms

of the remaining n+l-q variations. These q total varia-

tions are eliminated from the variations in Eq. (2.35),

leaving only n+l-q independent variations. The coefficients

of these n+l~q independent variations may be equated to zero

thus obtaining n+l-q relations at the terminal time. Com-

bining these n+l-q relations with the q terminally speci-

fied constraint relations Eq. (2.29), will lead to the

desired n+1 terminal conditions, h(x«,tf) * 0 . This pro-

cedure of eliminating the Lagrange multipliers v , requires

the determination of ' q less parameters In the iteration

procedure for solving the two-point boundary value problem.

The complete solution of the two-point boundary value

problem requires 2n+l boundary conditions, assuming that '

the initial time is given, and these conditions may be de-x

rived in the manner described above. To reduce the number

of parameters that require determination, It is assumed that

the terminal constraint relations are included without the

use of the Lagrange multipliers v . Furthermore, it is

assumed that the control variables are eliminated from Eqs.

(2.23) and (2.24), by using the optimality condition, Eq.

(2.25).
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In summary, the problem is formulated in terir of an

ordinary, first order, nonlinear, vector differential equa-

tion

z = F(z,t) (2.37)

where z is a 2n vector composed of n' state variables

and n Euler-Lagrange variables and t is the Independent

variable time. More specifically,

• ,

X
c

.

X

HI(X>
^P

_~Hx (x

x, t )

, X , t )_
- P(z,t) (2.38)

It is assumed that p initially specified constraint rela-

tions

n(z0,t0) =0 (2.39)

'" ' ' •' • ' „ ' ' " • . . ? •

and a specified initial time tQ are given. Since these

conditions, are given, only n-p initial relations must be

obtained from the transversality condition, Eq. (2.2?) and

hence a total of n conditions at the initial time are

known. These n conditions are represented as

g(z.,t0) = 0 (2.HO)

Consider that q terminally specified constraint

relations

»(zf,tf) (2.U1)-
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are given. This implies that n+l-q terminal relations must

be obtained from the transversality condition, Eq. (2.35),

which when combined with Eq. (2.4l) yields n+1 terminal

constraint relations

h(zf,tf) = 0 (2.42)

The 2n+l conditions needed for the two-point bound-

ary value problem solution are specified, n conditions from

Eq. (2.40)'and n+i conditions from Eq-; (2.42).

An application of the reduction of an optimization

problem to a two-point boundary value problem is shown in

Appendix A.I.



CHAPTER 3

PERTURBATION METHODS ' .- [

Several of the most promising and successful methods,

for solving the nonlinear two-point boundary value problem,

associated with the optimization of spacecraft trajectories,

are classified as Perturbation Methods. These methods are

sometimes referred to as Second1 Variation or Extremal Field

Methods . , . . , •.
i - *

The Perturbation Methods are divided into two groups,

the Methods of Adjoint Functions and the Method of Perturba-

tion Functions. The Method of Perturbation Functions require
^ ">

the use of functions obtained through a linear perturbation

about some nominal path, while the Method of Adjoint .Functions

require the use of functions which are adjoint to the perturba-

tion functions. The adjoint functions, along with the.pertur-

bation functions, are used to approximate the influence of

initial variable variations on terminal variable variations.

The theoretical development of the Method of Adjoint

Functions and the Method of Perturbation Functions may be

shown to follow common lines and in this sense the formulations

are parallel. For the special case discussed later, the two

methods in fact become the same.

32
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As discussed in Chapter 2, the optimization problem is

formulated in -terms of an ordinary, first order, nonlinear,

vector differential equation

z = P(z,t). (3.1)

•

where z and F(z,t) are partitioned as shown in Eq. (2.38).

.The perturbation equations are derived by making a

linear expansion of Eq. (3-D about some nominal path. These

equations are represented by

6z = [|f]6z = A6Z (3.2)

where 6z is a 2n vector of state and Euler-Lagrange

variable variations and the 2n x 2n matrix of partial deriva-

tives A is evaluated along the nominal path. The equations

that govern the set of functions adjoint to the perturbation

equations, Eq. (3-2) are

T T
A = -ATA (3.3)

where A is a 2n vector of adjoint variables. The motiva-

tion for the use of this equation becomes evident when Eq.

(3..8) is developed.

In .the general case, the nominal trajectory will not

satisfy the . n+1 terminal constraint relations on the first

iteration because all the proper initial conditions are not

known. To obtain a relation for the terminal constraint



dissatisfaction as a function of the total terminal 'variations,

dz(tf) and dtf , the Eq. (2.42) Is perturbed about the ••••-

nominal terminal conditions, to obtain .

dh = Ir—I dz_ + Ivr-l dtr (3-4)

where dh is an n+1 vector of the' change of the dissatisfac-

fa hi
tion in the terminal constrai-nt relations, jr^r Is'an

n+1 x 2n- matrix of partial derivatives, and

r-p is an n + 1 vector of partial derivatives. ,•

If allowance is made for the possibility of a state

and/or Euler variable variation resulting from a terminal time

variation, the following first order relation may be made

dz(tf) = 6z(tf). + z(tf)dtf ' ... . (.3,5).

When this relation is substituted into the perturbed terminal

constraint relations, Eq. (3.4), and: a rearrangement is made,

the resulting equation becomes

dh = |5 6z(tr) + :hdtr - . . . • (3.6)
L3zJf r r

where dh is an n+1 vector of terminal dissatisfaction

change. This relation is an indication of.'how the terminal

constraint dissatisfaction change is affected by variations in

the terminal values of state and Euler variables arid total

variations in terminal time.
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It may be noted here that if the terminal variation of

z(tf) is determined as some linear function of the initial

variation of z(tQ) , i.e. 6z(tf) » [n]6z(tQ) , where n is

some 2n x 2n matrix, the terminal dissatisfaction change be-

comes a function of the initial state and Euler variable

variation 6z(tQ) and the terminal time variation dtf .

This substitution results in

dn "Tlrl Cn]6?(tft) + hdt- . (3.7)
I I r

An iteration procedure may now be designed to reduce the

terminal dissatisfaction by proceeding in the following

manner:

(1) integrate the nonlinear differential equations,

Eq. (3-D, forward from t to some assumed terminal

time tf , using the n known initial, conditions

given by Eq. (2.40) and assuming n initial values

for the remaining variables.

(2) When the assumed terminal time tf is reached,
fah~lthe matrix 5-^ , the vector h and the terminal
L3zJf

constraint dissatisfaction change dh may be deter-

mined.

(3) The terminal dissatisfaction may be reduced on

the next iteration by requesting that some percentage



36

of the present dissatisfaction be corrected, i.e.

dh = -ch, where 0 ^ c ̂  1 . •

(ll) Determination of [n]6z(t )• must be. made in some'o
manner and will be discussed in the next .sections, - .

(5) The linear algebraic equations, Eq. (3.7), are" '.

solved for the corrections 5z(t ) and dtf
 ;, and

these values are.applied to the initially assumed

values of z(t ) and tf . .

(6) The procedure is repeated until the.corrections

being applied are less than some preselected value.

The only remaining theoretical problem- is to determine

[n]6z(t ) , and the manner in which.this is done determines

whether the technique is classified as a Method of Adjoint

Functions or Perturbation Functions. Techniques for deter-

mining [n]6z(t ) are discussed in the following sections.

3.1 Methods of Adjoint Functions . ' !

: There are several methods of determining the terminal

state and Euler variable variations as a; function of the

Initial variations, i.e. <5z(tf) = [n]6z(tQ). A relation that

contains these two variations may be derived by premultiplying

the perturbation equation, Eq. (3-2), by the.transpose of the

adjoint vector A , and postmultiplying the transpose of the

adjoint equations, Eq. (3-3), by 6z and adding the resulting

equations to obtain
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(A«z) (3.8)

This equation may be integrated from tfl to tf to obtain

AT(tf)6z(tf) - A
T(t0)«z(to) (3.9)

where the boundary conditions on the adjoint variables are com-

pletely arbitrary and may be selected such that the desired

relationship between «z(t.) and 6z(t ) is obtained. There
, o

are several approaches that may be taken.

The first approach and a most natural one is to inte-

grate the adjoint equations, Eq. ,(3«3)» backwards from tf to

t , 2n times with the starting conditions

iAi(tf) • iA2(tf) or

where

"l*I(tf) "
1AI(V

•

'•

•

•

A \ t jt /

m '

1 0 0 . . . 0

0 1 0 ... 0

•

•

•

•

0 0 0 . . . 1

• I . (3.10)

The presubscript refers to the first approach. When this

integration is "completed, Eq. (3.9) may be written
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• 6z(tf) = jGU^t, )6z(t0) -. (3.11)

Substituting this equation into the perturbed terminal' con-'

straint relation, Eq . (3-6), yields the desired relation

where

dh

dh is an n+1 vector representing the change

in the terminal dissatisfaction..

[r̂ -
3zJf

is an n'+l x 2n" matrix evaluated at the
. '

nominal terminal time, - t . '

0(tf,t' ) is an 2n x 2n matrix' resulting from the

2n backward integrations of the adjoint .

equations.

6z(tQ) is a 2n vector of, initial variable . varia-

tions that along with .dtf produce the

terminal dissatisfaction change^

h N!S an n+1 vector which represents the

time rate of change of the terminal dis-

satisfaction, evaluated at the nominal

terminal time, t- .
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dtf is a scalar variation of the nominal

terminal time.

It must be noted; that all of the perturbations 6z(t ) are not

independent, but in fact are related; through the initial con-

straint relations Eq. (2.̂ 0). Assuming that the initial time

is specified, the required first order expansion of Eq. (2.^0)

becomes

dg-»- fffl «z(t0) =0 (3,13)

This equation may be solved for n of the 6z(tfl) in terms of

the remaining n elements of fiz(t ), and these variations are

eliminated from Eq. (3.12). This leaves the n+1 Eqs. (3.12)

with the n independent 6z (tQ) and terminal time variation

dtf as the n+1 unknowns. The prime indicates that the vec-

tor has been reduced in dimension so that only independent

variations remain.

' . This approach is fundamental and very inefficient, be-

cause more information is generated than needed. The computa-

tional difficulties associated with the backwards integration

of the adjoint equations may be eliminated by considering a

second approach.

This approach/requires the forward integration of the

adjoint equations 2n times from tfl to tf with the start-

ing conditions 2A^'(tfl) » VJ^Q) •" 2A2n(to) °r 2e(t0',t0). •

where



1 0 0

0 1 0

0

0

0 0 0

= I (3.1*0

The presubscript refers to the second approach. When this in-

tegration Is completed (and It may be performed simultaneously

with the integration of Eq. (3.1)> Eq. (3.9) becomes

2G(to,tf)6z(tf) = 5z(to)

and solving for . 6z(tf) .yields

_l
«z(tf) = [20(t0,tf)] 6z(tQ)

1 ^ (3.15)

Substituting this, equation into the perturbed terminal con-

straint relation, Eq. (3.6), yields the desired^relation

dh ~1

f 2
,t.)]~6z(t ) + hdt.

"
(3.16)

where .the terms have the same physical significance as in the

first--approach. . . . ... ., .

The obvious disadvantage with thi-s second approach is .

that even though the backward integration/has been eliminated,

the. same number of equations must be integrated and a 2n x 2n

matrix must be inverted at the terminal time. It would



certainly be desirable if an approach could be formulated such

that the above matrix inversion is unnecessary and a more effi-

cient integration is made,

The third approach requires the examination of Eq,

(3.12) which results from the first approach. Since the ini-

tial conditions on the linear adjoint equation, Eq. (3-3), are

arbitrary and may be selected for convenience, an equation

identical to Eq. (3.12) may be derived by integrating the ad-

Joint equations only n+1 times with the starting conditions

•e(tf,tf) = |f|]f (3.17)

where |̂ ~1 ^s an n+l x 2n matrix evaluated at the nominal

terminal time. In other words, since the linear adjoint

equation is integrated with starting conditions 0(tf,tf) = I

in the first approach and results in jO^f^g) > if< tne

starting condition were (̂t̂ t̂ ,) = U^- I , the result

would be 1^- ,e(t-,tn) . Hence, Eq. (3.12) has been derived
I o Z I -II 0

with n-1 fewer integrations of ;an equivalent set of equa-

tions.

For this last approach the desired equation may be

written ' ' '

dh 0(tr,t )6z(t ) + hdt (3.18)1 0 o r



where the terms have the same physical significance as the

previous two approaches, but O(tf,t0) is an n+1 x 2n matrix

resulting from the simultaneous backward integration of the

adjoint equations. Again the dependent initial state and/or

Euler variable variations must be eliminated, and this leaves

n initial variable variations and one terminal time variation

to be determined from the n+1 equations, Eq. (3.18).

The explanation for the third approach gives the Jus-

tification for the scheme used by Jazwlnski (12) where an ex-
s~. •

tension is made of Jurovics and Mclntyre's (7) presentation.

One additional time conserving feature, which may be used, is

the scaling of the Lagrange multipliers. This advantage re-

sults because the Euler-Lagrange equations are.,linear, and, • .

homogeneous. The implementation .of this idea is discussed in..

Section 7.3 and essentially involves the trading of one termi-

nal condition for an initial condition. The decrease In the

dimension of the terminal constraint vector by one, also de-

creases the number of adjoint integrations by one, -and hence •

results in less computation- time. . -

One additional remark is in order for eases where the.

specified terminal constraints are rather..: complex and the

Lagrange multiplier v is introduced. For this case, the . ;

terminal constraint vector becomes

-• • • ' ' ' • . ' . ' ' • J • '

h = h(zf,tf,v) = 0 (3.19)



where h is an n+l+q vector, and the perturbed terminal con-

straint relation, Eq. (3.1*), becomes

dh =
 f

62 (V ;* hdtf + fdv ( 3 . 2 0 )

where — is an n+1 x q matrix evaluated at the nominalI— 1

terminal time and d\> is a q vector of total Lagrange multi-

plier variations. It should be recalled that when the v

vector is used, there exists n+l+q terminal constraint rela-

tions and this increases the dimension of the dh vector by

q . This is Just the number of additional equations needed to

solve for the additional unknown variations dv . These varia-

tions are applied to the assumed values of v .

A similar technique is used by Breakwell, Speyer, and

Bryson (9). It is shown in this reference that after the

forward integration of Eq. (3.1) has been made, q of the n

equations represented by Eq. (2.33) may be used to determine

the q values of v . Then these q values of \> are used

to evaluate the terminal dissatisfaction represented by the

remaining n-q equations of Eq. (2.33). This procedure simply

reduces the dimension of h to n+1 , arid hence only n+1

backward integrations of Eq. (3-3) are needed.

The computational procedure may be followed by re-

ferring to an illustration of the Method of Adjoint Functions

(MAP) :
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Desired Terminal
. Conditions"""

(1) Integrate the 2n nonlinear'differential equa-

tions of motion and the Euler-Lagrange equations, Eq.

(3.1), forward from tQ to t ' with starting condi-

tions satisfying Eq. (2.40) and n assumed values

for the unknown parameters.

(2)_ Evaluate at the nominal terminal time, tf , the

quantities h , h * and the starting .conditions for

the backwards integration of the adjoint equations,.

(3) Integrate the 2n adjoint equations, Eq. (3.3),'

backwards n+1 times from tf to tQ with 'starting

conditions, f-^ and use the value of the variables



stored during the forward integration to form the

coefficients of the adjoint variables.

. (4) Solve the n+1 linear algebraic equations, Eqs.

(3.18), fpr a linear approximation of the corrections

that must be applied to the assumed initial values

the terminal time. • ,

(5) Apply these corrections and repeat the process

until the corrections become smaller than some pre-

selected value.

3.2 _ Methods of Perturbation Functions

Of the several methods available for determining the

terminal variations in the state and Euler variables as a func

tion of the initial variations, i.e. 6z(tf) = [n]6z(tQ) , the

most natural one involves the direct use of the perturbation

equations, Eq. (3.2)

6z = A6z . , (3.21)

As a first approach, integrate these perturbation equations

forward from t to t-, 2n times with the starting condi-
o f

tions

or



where ,t
o o
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0
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. 0
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0

• • ' - . "

* * *

0
0
0

1

(3.22)

= I.

The presubscript refers to the first approach. This integra-

tion may be made simultaneously with the forward integration of

the differential equations, Eq. (3.1), and hence less computer

storage is required. When this integration is completed, the

resulting equations evaluated at the terminal time may be

represented by '.'.•'• . ; ••;...

:5z(tf) = 1*(t0,tf)6z(t(j) ,. - (3.23)

where *(t'0,tf) is a 2n x 2n matrix of partial derivatives

evaluated on the nominal trajectory. This equation may be

substituted into the perturbed terminal constraint relation,

Eq. (3.6), and the desired result becomes

dh = fiHl[ft]f i
(3.2*1)

where the symbols have been explained previously. 'These n+1.

equations contain 2n initial state and Euler variable varia-

tions and one terminal time variation. However, the dependent

variations may be eliminated as explained for the adjoint

methods and only the n+1 independent variations must be

determined.



This first approach, using the perturbation equations

represents a very special case, because it can be shown to be

the exact equivalent to the first approach using the adjoint

equations. This can be shown by substituting into Eq. (3.9)

the starting conditions

6z(t0) = »(t0,t0)

AT(tr) = 0(tr,tr) = I .

(3.25)

This substitution yields

*(tQ,tf) = 0(tf,to) (3-26)

and under these circumstances the algebraic equations for the

adjoint method, Eq. (3.12), and the perturbation method, Eq.

(3.24), become identical.

A second approach is suggested after examination of Eq

(3.24). Since the initial conditions on the linear perturba-

tion equations, Eq. (3.21), are arbitrary and may be selected

for convenience, an equation identical to Eq. (3-24) may be

derived by integrating the perturbation equations only n+1

times with the starting conditions

NMrwhere \~\ is an n+1 x 2n matrix evaluated at the nominal



terminal time. The resulting linear algebraic equation to be

solved becomes . .

dh = -*(t ,tr)6z(t ).+• hdt ' ••-..-' (3.28)
2 0 1 0 I

where <t>(t0,t_)' is generated by only n+1 integrations of

the perturbation equations. . . .

This approach loses some appeal, however,, when imple-

mentation 'begins because the starting condition, Eq. (3.27),

cannot be evaluated until a nominal trajectory is Integrated.

Since the perturbation equations cannot be integrated simul-

taneously with the differential equations, the nominal path

must be stored and no particular advantage over the adjoint

method is realized.

A third approach, which proves to be the most effi-

cient, may be formulated by observing the manner in which the

0(tf,t ) and <t>(t ,tf) matrices are generated and used.

For each of the n independent initial variations required a

corresponding column of the jOCt-.tg) or ^(t^t-) matrix

is needed. Since the 10(t_,tQ) matrix is generated by rows,

to determine any one column requires all 2n - integrations of

the adjoint equations. This, however, is not true for the per-

turbation methods, because the I*^
t
0»

tf^ matrix is generated

by columns. The elements of any n columns can be determined,

by simply integrating the perturbation equation n times, the

starting vector having the element that corresponds to the



desired initial unknown variation set equal to unity arid all

others zero. With this modification, the linear algebraic

equation becomes

dh = f-l'tCt-Vt-^z'Ct-) + hdtr (3.29)
| O &\ « U 1 U X ;

where »(t0,tf) is a 2n x n matrix generated by, integrating

the perturbation equation only n times and 6z'(t ) becomes

an n vector representing the desired independent initial

variations.

The essential feature of the perturbation method is

that only n integrations are needed, and hence one less inte-

gration of a set of equations equivalent to the adjoint equa-

tions. The third approach to the adjoint method and the above

perturbation method require.the.solution of exactly the same

linear system, but the required elements of the »(tQ,tf)

matrix are simply derived in a more efficient manner. The

additional advantage of using the perturbation method is that

the nominal trajectory does not require computer storage.

The computational procedure may be followed by re-

ferring to an illustration of the Method of Perturbation

Functions (MPF):



Desired .Terminal

Conditions

(1) Integrate the 2n nonlinear differential, equa-

tions of motion and the. Euler-Lagrange equations, Eq
t

(3.1)9 forward from t0 to tf with starting condi-

tions consisting of the n known initial conditions

satisfying Eq. (2.̂ 0') and n assumed values for the

unknown parameters. • : ' •

(2) Simultaneously with the above integration, inte-

grate the 2n perturbation equations, Eq. (3-21),

with starting conditions described above and coeffi-

cients formed from the variables that describe the

nominal trajectory.
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(3) Solve the n+1 linear algebraic equations, Eq.

(3.29), for a linear approximation of the corrections

that must be applied to the assumed initial values and

the terminal time.

(4) Apply these corrections and repeat the process

until the corrections become smaller than some pre-

selected value.

3.3 Iteration Philosophy for the Perturbation Methods

The iteration schemes for the Perturbation Methods simply

consist of a procedure for .iteratively determining the initial

values of the Lagrange multipliers so as to decrease the terminal

constraint dissatisfaction on the following iteration.. The con-

trol i? eliminated from the differential equations, Eqs. (2.23)

and (2.2^4), by using the optimality conditions, Eq. (2.25), and

the nonlinear differential equations are integrated during each

iteration. Since the optimality condition is always satisfied,

every iteration produces an optimal trajectory, but to an un-

desired terminal condition. The only remaining complication is

to satisfy the. desired terminal constraints, Eq. (2.U2).

Normally, the requested-change in-the terminal dissatis-

faction is equated to the negative of the terminal dissatisfac-

tion resulting from the previous iteration. This requested

correction is then used in the linear algebraic equations, Eqs.

(3.18) or (3.29), to make a multiple linear interpolation for
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the variations of the. initially assumed values o.f the state

and/or Euler variables. When these corrections are applied and

a new nominal trajectory integrated, the terminal constraint

dissatisfaction is usually reduced.

The difficulty with this type of indirect optimization

procedure is that when the terminal dissatisfaction is large,

the linear approximations are not very representative of the

nonlinear system, and the possibility for divergence is in-

creased. The linearization is made about the current nominal

trajectory, and whether or not this trajectory is close to

satisfying the terminal constraints on any given iteration is

immaterial. The essential factor is that the trajectory re-

sulting in the next iteration be sufficiently near the previous

one so that the linearization assumptions are not stretched

beyond the limits of validity.

One natural approach, the motive for which resulted

from a suggestion made by Breakwell, Speyer, and Bryson (9), is

to request the correction of only a percentage of the terminal

dissatisfaction resulting from the previous iteration. For

instance, the algebraic equation that contains the corrections

for the Method of Perturbation Functions is

dh = j|£J »(t0,tfi)6z(t6) + hdtf (3-30)

and for a percentage correction let

dh = -ch (3-3D
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where c is the desired percentage to be corrected. The

iteration factor c may. have values in the range 0 < c < 1.

A correction for the Method of Adjoint Functions Is applied In

the same manner.

It is also reasonable to expect that as the optimal tra-

jectory is approached, successive trajectories will be suffi-

ciently near one another. Hence, the linear representation

becomes accurate enough to request the complete correction of

the terminal dissatisfaction. Also,.as successive trajectory

iterations begin to converge, successive adjoint and perturba-

tion solutions begin to converge, and hence integration of

these equations for every iteration may be unnecessary.

A summary and extension of the conjectures stated

above, which result in some of the desired characteristics of

an iteration scheme, are that:

(1) An iteration factor may be specified initially

and changed during subsequent iterations by specifying

an iteration rate factor. As the iterations proceed,

the iteration rate factor is used to control the per-

centage of the terminal dissatisfaction corrected on

any given, iteration.

(2) There may exist an initial value of the iteration

factor that minimizes the convergence time or maximizes

the chance for convergence.



(3) It may be unnecessary to update the *(t,tf)

and 0(tf,t ) matrices on every iteration.

CO A correction of more than 100 percent may be

reasonable and desirable.

These conjectures are investigated by using the following dif-

ferent iteration schemes:

. Iteration Scheme 1 - This scheme for both the Methods

of Adjoint and Perturbation Functions requires the arbitrary

selection of an initial value of the iteration factor and the

iteration rate factor. An iteration is made and the corre-

sponding iteration factor is applied to obtain corrections for

the next iteration. If the norm of the terminal dissatisfac-

tion decreases on the next iteration, the iteration factor is

increased by the value of the iteration rate factor. This

process is repeated, never allowing the iteration factor to be

zero or greater than unity, until the corrections for each

assumed value is less than some preselected value.

A detailed procedure of Iteration Scheme 1 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected.

(2) Integrate th'e nonlinear differential equations of

motion forward, noting the norm of the terminal dis-

satisfaction. If the Method of Adjoint Functions is
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being used, integrate the adjoint equations backwards.

If .the Method of Perturbation Functions is being used,

the perturbation equations may be integrated forward

simultaneously with the differential equations of

motion.

(3) Solve the algebraic equations, using the specified

value of the iteration factor, to determine the correc-

tions required for the initially assumed values.

CO If all corrections are less than some preselected

value, terminate the iteration. If any one correction

is greater than the preselected value continue the

process as follows.

(5) Apply the corrections to the assumed initial con-

ditions, integrate the differential equations again,

and determine the terminal dissatisfaction. If the

norm of the terminal dissatisfaction is less than the

norm that results on the previous iteration, increase

the iteration factor by the value of the iteration

rate factor and continue to iterate. Never allow the

iteration factor to be greater than unity.

(6) If the norm is greater than the previous norm,

decrease the iteration factor by the value of the

iteration rate factor and continue to iterate. Never
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allow the iteration factor to be less than the value

of the iteration rate factor.

Iteration Scheme 2 - During the initial efforts to

solve a problem with either the Method of Adjoint Functions or

the Method of Perturbation Functions, a low initial value for

the iteration factor is usually assumed. This requests a small

change from a solution which is probably far from optimal, and

thus reduces the possibility for divergence. However, this

could be an unreasonably low estimate and if the iteration fac-

tor is systematically increased, as in Iteration Scheme 1, a

great number of iterations would be required before a full

correction would be requested. This scheme reduces the con-

vergence time by avoiding the integration of the perturbation

or adjoint equations on certain iterations. The criterion used

to establish when a perturbation or adjoint equation integra-

tion is made is that either a divergence of the terminal con-

straint norm occurs or the integration is forced after a

specified number of corrections have been made. The iteration

factor is still increased each time a norm convergence occurs

and the trajectory that produces this convergence is called a

nominal. When the terminal norm diverges the iteration factor

is decreased and the last convergent trajectory is used as a

nominal. ' . • . .
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A detailed procedure of Iteration Scheme 2 follows:

(1) Starting values of the Iteration factor and the

iteration rate factor are selected.

(2) Integrate the nonlinear differential equations of

motion forward,.noting the norm of the terminal dis-

satisfaction. If the Method of Adjoint Functions is

being; used, integrate the adjoint equations backwards.

If the Method of Perturbation Functions is being used,

the perturbation equations may be' integrated forward

simultaneously with the differential equations-of

mot ion:.

(3) Solve the algebraic equations, using the specified

value of the iteration factor, to determine the correc-

tions required for the initially assumed values.

CO If all corrections are less than some preselected,

value, terminate the iteration. If any one correction

is greater than the preselected value continue the

process as follows.

(5) Apply the corrections to the assumed initial con-

ditions, integrate the differential equations again,

and determine the terminal dissatisfaction. If the

norm of the terminal dissatisfaction is less than the

norm that results on the previous iteration, Increase
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the iteration factor by the value of the iteration rate

factor. If the Method of Adjoint Functions is being

used, avoid the adjoint integration on the present

iteration. If the Method of Perturbation Functions is

being used, avoid the perturbation integration on the

next iteration.

(6) If the norm is greater than the previous norm, or

if a specified number of iterations have been made, de-

crease the iteration factor by the value of the itera-

tion, rate factor. If the Method of Adjoint Functions

is being used, the adjoint equations are integrated

backwards where the coefficients are obtained from the

last convergent forward trajectory. If the Method of

Perturbation Functions is being used, the perturbation

equations are integrated on the next iteration.



CHAPTER 4 - • . .

QUASILINEARIZATION .METHODS

The.previously discussed Methods of Adjoint and Pertur-

bation Functions' involve the integration of a set of nonlinear

differential equations. The coefficients for the linear

adjoint or perturbation differential equations are formed with

the variables generated by the nonlinear equations. A.somewhat

different approach can be formulated by linearizing the differ-

ential equations, and then using the adjoint and perturbation

functions in the same general manner as before. The coeffi-

cients used to generate a new nominal trajectory are formed

from the solution that corresponds to the previous nominal tra-

jectory. This , .essentially , is the quasilinearization concept.

The theoretical development of the Quasilinearization

Methods may be shown to follow common lines, and in this sense

the formulations are parallel. The approaches involve the

solution of a set of linear differential equations, the solu-

tion of which converges, under appropriate conditions, to the

solution of the desired nonlinear problem. Since the equations

are linear, the terminal constraints can be satisfied on every

iteration, if. desired. However, the .classical optimality con-

dition is not satisfied until convergence has occurred, and

even though the end points of the trajectory are satisfied,

some care must be taken to insure that the trajectory shape

59
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between these end points is correct. One other characteristic

of the quasilinearization techniques is that an initially

assumed solution is required. If a reasonable estimate of the

solution cannot be made, a starting solution, derived from the

integration of the nonlinear differential equations, may be

good enough" to result in convergence. This requires that only

the initial values of the unknown variables be assumed, rather

than the complete"solution.

*4.1 Methods of Generalized Newton-Raphson

The complete solution of the two-point boundary value

problem by using' the Method of Generalized Newton-Raphson may .

be obtained in a manner similar to the Method of Perturbation

Functions discussed in Section 3-2. The exception to this

similarity is that the differential equations, Eq. (3-l)> are
t

linearized about the previous nominal. .

The problem is formulated in terms of an ordinary first -

order, nonlinear, vector, differential equation

z = F(z,t) (4.1)

where z is a 2n vector composed of n state variables and

n Euler-Lagrange variables and: t Is the independent variable

time. This nonlinear equation may be expanded about the pre-

vious nominal trajectory, say the n trajectory, and by

ignoring the nonlinear terms yields .
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= zn +.A(zn,t)(zn+1 - zn) (4.2)

• ' . TSP"!where A(zn,t) is the partial derivative matrix hp- •

This matrix is evaluated on the previous nominal trajectory

and is similar to the A(z,t) matrix discussed in the develop-

ment of the Perturbation Methods. This equation, Eq. (4.2),

can be expressed as

( z = Az + B (4.3)

where A is described above and B = z - Az . Note that A

and B are known from the previous nominal trajectory.

The first approach to the Method of Generalized

Newton-Raphson is similar to the method outlined by McGill and

Kenneth (13), and this provides a starting point for further

development. Suppose that p of the initial values of z are

specified, i.e. z.(t ) = z. , i = 1, p . This implies that

2n-p initial values of z must be assumed along with an

assumed value of initial time tQ . The homogeneous part of

Eq. (4.3) may be expressed as

y = Ay . . "' (4.4)

and hence it is.similar to the perturbation equations, Eq.

(3.21). Eq. (4.4) may be integrated forward from tQ to tf

2n-p times with each successive starting vector consisting of



all zero elements except for the element that corresponds to

one of the unknown- initial 'conditions. This element is set

equal to unity. This procedure leads to a 2n x 2n-p matrix

of solutions Y'(t ,t) . The forward integration amounts to

making a unit perturbation in each one of the unknown initial

conditions. -

The nonhomogeneous solution to Eq. (4.3) may be ob-

tained as a solution to

/

w = Aw + B (4.5)

which generates a particular solution when integrated from t.
U

to tf with the p known initial conditions and n-p assumed
. • ' ' -. " ^ • • t .. .

initial conditions. Now, the general solution of the linear

system of Eqs. (4.3) becomes

z(t) = Y(to,t)C + w(t) . - (4.6)

where z ,is a 2n vector of .state and Euler variables, Y is

a 2n x 2n-p, matrix of homogeneous solutions, C is a 2n-p

vector of. constants arid w is a 2n vector of nonhomogeneous

solutions. —

Since 2n-H-p conditions on the terminal value of z

must be specified for a variable final time problem, any 2n-p

of these conditions may be selected and the appropriate 2n-p

members of Eq. (4.6) may be evaluated at the assumed terminal

time. Then these equations are solved for' the1 2n-p constant

corrections C . These corrections are used to update the
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assumed initial conditions for the next iteration. For the

purpose of saving computer storage the nominal trajectory is .

not formed by the linear combination of Eq. O.6), but by in-

tegrating Eq. (U.3) with the updated initial conditions. This

requires only the storage of the final values of the homogene-

ous and nonhomogeneous solutions.

This procedure is continued until a metric (that repre-

sents the maximum distance, over the complete independent

variable range, between successive nominal trajectories) be-

comes less than some preselected value. This metric is given

by

P =
N
£1=1

max
t '

Jn+i - z"n (1:7)

Since this metric represents the maximum distance between suc-

cessive nominal trajectories, its value decreases as the opti-

mal trajectory shape is converged upon. When this metric has

been reduced to an acceptable value, convergence has occurred

for the specified value of terminal time. The .one remaining

unused terminal condition is used in a conventional scalar ap-

plication of the Newton-Raphson iteration technique to produce

a more accurate determination of terminal time. This finite

difference equation is , .

k+i

Z^-J

(1.8)



where the subscript k refers to the kth time iteration and

zf Is the desired terminal value of the variable selected.

This new terminal time is used and trajectory iterations are

made until the metric p is reduced once again. When the

time iterations result in time changes smaller than some pre-

selected value, the desired solution has been determined and

the procedure is terminated.

One of the principal differences of the Method of

Generalized Newton-Raphson as opposed to the Perturbation

Methods is that an initial solution of the state and Euler

variables is required. Also the method by which the terminal

time is determined is very time consuming, especially when a

large error is made in the assumed terminal time. A major ob-

jection is that the initial and terminal conditions must simply

be values of the variables involved, rather than general func-

tions of these .variables. The 'above stated difference- can be

avoided, in some cases,-by simply using the solution generated

by integrating the nonlinear equations, Eq. (4:1), and this

approach requires only starting values of the variables, p

of which are known/ The above stated objection has been par-

tially removed by L6ng-(l6). •

The method proposed by Long, designated here by the

Modified Method of Generalized Newton-Raphson, involves a

change of the independent variable

. t = as . (4.9)
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where a is a constant and s is a new independent variable

having values 0 t s ̂  1 . The differential equations, Eg.

(4.1), now become

f\7
z' = |f = aFCz,as) , • (4.10)

The constant a is considered a .new state variable and an

additional differential equation

a ' = 0 . . . . . • • (4.11)

may be added, but this is clearly not necessary since the solu-

tion to this equation is trivial. The value of a is initially

assumed and then corrected on each iteration Just like any other

initially unknown state variable. The value a represents the

terminal time as can be seen by evaluating Eq. (4.9) at the

terminal .value of the independent variable.

The determination of the terminal time now becomes an

integral part of the iterative scheme, and its separate con-

sideration, as required by the first approach, is not required.

However, this does not save as much time as one might think,

since a term that corresponds to the new state variable a

must be added to each differential equation. Also another in-

tegration of the 2n homogeneous equations must be made since

the value of a must be iteratively determined. The other

objections discussed for the first approach are not
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eliminated. The effectiveness of Long's proposal is evaluated

and discussed further in a later chapter.

4.2 _ Modified Quaslllnearlzation Method

The method proposed in the present study, called the

Modified Quasilinearization Method, uses the quasilineariza-

tion concept but removes the restrictions on the Methods of

Generalized Newton-Raphson discussed in Section 4.1. The

manner in which the terminal time is determined proves superior

to the modification proposed by Long.

The Eq. (4.6), derived for the Method of Generalized

Newton-Raphson, can be rewritten and evaluated at the terminal

time

Y(t0,tf)C = z(tf) - w(tf) . (4.12)

The right hand side of this equation Is the difference between

the desired terminal value of z and the linear calculation

of the terminal value of w . This difference is interpreted

as the variation of z(tf) , and is expressed as 6z(tf) .

Now, if both sides of Eq . (4.12) are premultiplled by h^r >

the resulting expression becomes

where — is a 2n+l-p x 2n matrix describing the partial
L3ZJf-

change of a general set of terminal boundary conditions,
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h(zf,tf) , to a.change in,the terminal values of zf Itself.

The right hand -.side of Eq. (4.13) is. the variation of this

general set of terminal boundary conditions 6h(tf) . A first

order expansion of the terminal boundary conditions may be
•

made, dh = 6h + hdtf , and substituted into Eq. (4.13) to

yield

= [ft] Y(t0»tf)C + hdtfdh =

where dh is a 2n+l-p vector of terminal constraint dis-r

satisfaction, ^- is an 2n+l-p x 2n matrix of partial de-

rivatives, Y(t0,tf) is an 2n x 2n-p matrix of the terminal

values of the homogeneous solutions, C is a 2n-p vector of
• •

corrections to be determined, h is a 2n+l-p vector of

time rates of change of the terminal constraints and dtf is

the time correction to be determined.

The Eq. (4.14) just derived is analogous to Eq . (3-29)

developed for the Method of Perturbation Functions. The major

exception is that in the present case the nonlinear differen-

tial equations of motion and the Euler-Lagrange equations are

linearized. If the optimization problem is reduced to a two-

point boundary value problem as discussed in Section 2.2, . ,p

becomes equal to n and the implementation of the two .methods

is similar. - - . .
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The computational procedure may be followed by re-

ferrinc 'to an illustration of the Modified Quasilinearization

Method (MQM)": • . :

(1) Integrate the 2n linear nonhomogeneous different

tial equations, Eq. (4.3), forward from . t-0 to t«

with .starting conditions consisting of. the n- known

initial conditions and n assumed values for the un-

known parameters. The A and B matrices are

evaluated from the previous.nominal (on the first

iteration the assumed nominal is used).
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(2) Integrate the 2n linear homogeneous differen-

tial equations, Eq. (^.4), forward, simultaneously

with the Eq. ('1.5), from t0 to tf with n start-

ing conditions consisting of a unit perturbation of

• the variables'that corresponds to the unknown initial

conditions.

(3) Solve the n+1 linear algebraic equations, Eq.

(4.1*1), for a linear determination of the corrections

that must be applied to the assumed initial values and

terminal time.

(*0 Integrate the 2n 'linear nonhomogeneous differ-

ential equations, Eq. (^.3), forward from t to

t~ + 6tf with the initial conditions updated by the

recently calculated corrections. This integration
*

yields a new nominal.

(5) The process is continued until the metric p

and the corrections become less than some preselected

values.

It should be noted that this approach could have used
( '

the adjoint functions rather than the perturbation functions.

In this case, its implementation will require the use of a

set of equations adjoint to 'the homogeneous equations, Eq.

(Jj.'O, and its development runs parallel to the method
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discussed in Section 3.1. The algebraic equation to be solved

becomes . . . . , - • •

dh = o'(tf,t0)«z(t0) + hdtf '' ' (H

i
where 0 is an n+1 x 2n matrix resulting from the simul-

taneous backward integration of the adjoint equations.

1. 3 Iteration Philosophy for the Quasillnearlzatlon Methods

The iteration scheme for the Quasllinearization Methods

simply consist of a procedure to iteratively determine the

Initial values of the Lagrange multipliers so as to decrease

the metric p . The control is eliminated from the differen-

tial equations, Eq. (1,1), by using the optimality conditions,

Eq. (2.25), and the linearized differential equations are in-

tegrated during each Iteration. Even though the optimality

conditions are used, the trajectory iterations do not repre-

sent optimal solutions because the trajectories are generated

from a linearized version of the nonlinear differential equa-

tions. The only'remaining requirement is to reduce the metric

p to an acceptable value, which means that an optimal solution

has been converged upon.

With the Method .of Generalized Newton-Raphson, the

terminal values of the desired variables are introduced and

essentially forced to, satisfaction on each .iteration. The

metric p is reduced to an acceptable value by iterating on

an assumed value of terminal time. Then one of the desired
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terminal values Is used In a scalar application of the Newton-

Raphson method to determine a new terminal time.

Iteration Scheme 1 - This scheme is used with the

Method of Generalized Newton-Raphson, and is one which allows

a time iteration to be made while the metric P is being de-

creased. This scheme effectively reduces the metric p in

conjunction with convergence on the desired terminal time.

A detailed procedure of Iteration Scheme 1 follows:

(1) Assume a solution for the 2n trajectory

variables and a terminal time.

(2) Make one trajectory iteration by integrating

forward the homogeneous and nonhomogeneous equations,

Eqs. (4.4) and (4.5), respectively. Determine the

corrections and integrate the nonhomogeneous equation

once again with the new initial conditions. This last

integration is considered a new nominal and the metric

p is determined for this nominal and the assumed

trajectory.

(3) Make one more trajectory iteration and obtain a

new metric, p .

CO Using one of the desired terminal values make a
* * ' * - -

Newton-Raphson iteration to obtain a new value of

terminal time.'
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(5) Make two more trajectory iterations and record

the value of the metric p, .

(6) If the metric p3 is less than the metric p ,

make another time iteration and.continue the process.

(7) If the metric. p3 is-greater than the metric . •• .

p , continue the. trajectory .-iterations until the

metric becomes less than p2 . Then make a time

iteration and continue the process.

(8) Terminate the procedure when the time corrections

and the current metric become less than some pre-

selected values.

Iteration Scheme 2 - This scheme is used on the Modi-

fied Quasilinearization Method and is similar to Iteration

Scheme 1 presented for the Perturbation Methods. When the

MGNR is used, the terminal values of the desired variables are

introduced in such a manner that a full correction is requested

on every iteration. It is expected that if a full correction

is requested in cases where the linear representation is poor,

the sequence of linear solutions will diverge. The less

severe request of only a percentage correction is applied with

the Modified Quasilinearization Method and the linear algebraic

equation that contains the n+1 corrections is
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dh = [ft] Y(t0,tf)C + hdtf .

The terminal dissatisfaction change for a percentage correc-

tion is

. f
dh = -ch

where c is the desired percentage to be .corrected, and the

iteration factor c may have values in the range 0 < c < 1 .

A detailed procedure of Iteration Scheme 2 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected. Assume a solution

for the 2n trajectory variables, and a terminal time.

(2) Make one trajectory iteration by integrating

forward the homogeneous and nonhomogeneous equations,

determining the corrections and Integrating the non-

homogeneous equation once again with the new initial

conditions and new terminal time. This last integra-

tion is considered a new nominal and the metric p

is determined for this nominal and the assumed tra-

jectory.

(3) If all the corrections and the metric p are

less than some preselected values, terminate itera-

tions. If any one correction or the metric p is



greater than the preselected value continue the

process.

CO Apply the corrections and make another trajectory

iteration, obtaining a new metric p .

(5) If the new metric is less than the old metric,

increase the iteration factor by the value of the

iteration rate factor and continue to iterate. Never

allow the iteration factor to be less than the value
<-\

of the iteration rate factor or greater than unity.
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CHAPTER 5

GRADIENT METHODS

The general theory of the gradient concept is now both

well known and widely used for the approximate solution to

trajectory optimization problems. These methods have a common

characteristic in that the influence function concept is used

to determine how the performance index and/or a combination of

the terminal constraint relations are changed as the control

variables are changed. Then a control step is taken in the

negative gradient direction, i.e. the direction of steepest

descent, so as to extremize the performance index while satis-

fying certain specified terminal constraint relations.

The implementation of the gradient techniques has been

widely varied and relatively arbitrary because although the

gradient direction is well defined, the proper sized step in

control space is not. The convergence properties of'the methods

are dependent on Judicious selection of this step size and the

manner in which it is changed, and several efforts have been

made to improve the rather slow terminal convergence of the

gradient methods. Unfortunately, because of this inherent

arbitrariness in the gradient method, a great amount of human

intervention is required to select a proper control step size

and still avoid violating the linearity constraints imposed
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on the problem. In this sense the implementation of the

gradient techniques is an art.

The theoretical development of the gradient techniques

discussed here may be shown to follow common approaches. The

primary difference being the manner in which the terminal con-

straints are handled and.the method of selecting the control

step size. The Method of Steepest Descent uses the terminal

constraints in the so-called "hard" form, i.e. the. constraints

are to be satisfied identically. The Modified Method of

Steepest Descent uses the terminal constraints in the so-

called "soft" form, i.e. the .constraints may be only approxi-

mately satisfied. -

5 .1 Method of Steepest Descent

The theoretical development of the Method of Steepest
' f •- • ' ' ',

Descent is well known as discussed in References 17 through

21, and is summarized here only to provide background for thev

iteration scheme modification. It is desired to determine the

control program u(t') , where u is a m vector, which will

yield an extreme value of some performance index

* = *(xf,tf) " . (5.U

subject to the differential equations of motion'

x .= f(x,u,t) , "(5.2)
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where x 'is an n vector while satisfying the terminal con-

straint relations

* = v(xf,tf) =0 (5-3)

where Y is a q vector. One of the desired terminal con-

straint relations may be. used as a stopping condition,

n = n(xf,tf) = 0 (5.1)

The integration process continues until this . stopping condi-

tion is satisfied. If the differential equations, Eq. (5.2),

are linearized about some nominal path, the resulting equa-

tions become ,

6x = F6x + G6u (5.5)

where F and G are n x n and n x m matrices of partial

derivatives evaluated on the nominal trajectory, respectively.

The equations adjoint to Eq . (5.5) are

X = -FTX (5.6)

where x is an n vector of adjoint variables. This equation

may be combined with Eq. (5-5) by premultiplying Eq. (5.5) by

T
X and post multiplying the transpose of Eq. (5.6) by <5x

and adding the equations to yield

= XTG6u . (5.7)
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Integrating Eq. ( 5 - 7 ) from tQ to t ' f yields

( X T 6 x ) f = / xTG5udt + ( X T 6 x ) 0 . ( 5 . 8 )
fco

The boundary conditions on the adjoint variables are arbitrary

and may be chosen for convenience. The object now is to de-

termine how initial state variations and integrated control

variations influence the terminal values of the performance

index, stopping condition and the terminal constraint rela-
t • '. . ' • • ; '

tions. If, on separate trials, the terminal values of the

adjoint variables are set equal to

where X. is an n vector, X... is a nxq matrix and X0
9 ™ • "

is an n vector, the desired relations are seen to be

idt. (5.10)
* '

i:: Ydtf

/

* m m •
xi,G6udt + (\n6x) •»• ndtr (5-12)M n o i .
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where

(5a3)

= \£* + Kr]f
-

•[!£* If],

and

(5 .16)

•dy = [6* + *dt3f (5 .17)

dn = [5n + fldt]f . (5.18)

The approach presented by Bryson and Denham (18) allows

for the specification of a requested terminal dissatisfaction

improvement and an allowable step size to be taken in control

space. The control step size is defined by

dS = I |6uT W 6U dt (5-19)
•'t o

where the step is a weighted quadratic function of the control

deviation. The weighting matrix W is included to improve

the., convergence characteristics by giving more weight to

regions of low sensitivity. However, it is often chosen to

be the unity matrix because of the lack of knowledge
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concerning the region sensitivity. The criteria used for de-

termining the best elements of this matrix are not given and

are found through trial and error procedures.

The stopping condition, Eq. (5.̂ ), is to be identically

satisfied so Eq. (5.12) is equated to zero. The terminal time

variation dt. is eliminated from Eqs. (5.10) and (5.11) to

yield

'0

.t.

(5.20)

(5.21)

where _n (5.22)

(5.2̂ )

The total variation in the performance index due to

initial state variations and integrated control variations

may be expressed as

dS ftfl T- / |6UTW

•'t.

(5

6udt
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where the terminal constraint and the control step relations
m

are adjoined by the use of the v and y Lagrange multi-

pliers, respectively. The multiplier v is a q vector and

v is a scalar constant. Since it is desired to determine the

control variation which corresponds to the maximum change in

the performance index, the first variation of Eq. (5.21*) must

vanish

£•• G - -. y«uTW)62udt = 0 . (5.25)

This implies that the desired control variation is

6u = 1 W"
1GT(x - X v) .

y $n T»
(5.26)

When this equation is substituted back into Eqs. (5.19) ana

(5.21) the values of v and v are determined as

(5.2.7)

T - 1
~

ds -

where

de

£'•
(5.29)

(5.30)



/•tf:»* = / ; (5.3D

(5.32)

and Ivv is q x q matrix, I..,, is a q vector and I, .
Y Y T y (f) (J>

is a scalar.

Now, combining Eqs. (5.26) through (5-32) yields the

desired control program

6u = *

+ w- 1Gx y ni;d6 ;. (5.33)

where the positive sign is used if 41 is to be maximized and

the negative sign used if $ is to be minimized. The pre-

vious control program is now modified as follows:

0

unew = uold * 6u '

The computational procedure for the Method of Steepest

Descent may be summarized by considering the following:

' \
(1) Integrate the n differential equations of

motion, Eq. (5.2), forward in time using an assumed

control program and the desired initial conditions
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for the state variables. This integration is con-

tinued until the stopping condition, Eq. (5.*0, is

satisfied. The value of the state variables are
t

stored at each point in time.

(2) Integrate the n adjoint equations, Eq . (5.6),

backward q+2 times with the starting conditions,

Eq = (5.9). The coefficient matrix F is obtained

from the nominal generated on the forward integration

(3) Integrate the Eqs. (5-30), (5-31) and (5.32)

backwards simultaneously with the adjoint equations

using zero as initial conditions to yield the values

for Iy4, , Iy^ , and 1^ .

CO Select a desired improvement in the terminal

dissatisfaction dv for the next iteration.

(5) Select a reasonable value for the mean square

control deviation from the previous control program

by using

dS = W6u'(tf - t0) .

This will provide a value for the control step dS .

(6) Use the selected values of dv and dS to cal-

culate the numerator under the radical in Eq . (5-33)-

If this quantity is negative, determine the dY that
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makes the quantity vanish. It is is positive, use

the quantity as it is.

(7) Calculate the 6u as given in Eq . (5-33) and

alter the assumed control program.

08) This procedure is continued until the control

variations are less than some preselected value.

5.2 Modified Method of Steepest Descent

The theoretical development of the Modified Method of

Steepest Descent, which uses the penalty function technique

for handling the terminal constraints, is similar to the con-

ventional method discussed in Section 5.1. The primary dif-

ference is that the terminal constraint relation is included,

in the "soft" 'form, with the performance index to form a

penalty function

2
P(xf,tf) = W0<t> (xf,tf) + W1v(xf,t (5.35)

where the W.'s are weighting constants. If these constants

are sufficiently large, minimizing the penalty function is

essentially the same as minimizing the performance index •$

and driving the terminal constraints f to zero.

To determine how this penalty function is related to

initial state variations and the integration control variations,



the" Eq. (5.8) is used. Selecting the terminal boundary condi-

tion for the adjoint equations, Eq. (5.6) to be

••> • KL. (5.36)

Xji(tf) - |j|J (5.37)

where Xp is an n vector and X is a scalar, yields

r:dP «'/ XpGfiudt -f ( X p 6 x ) Q + Pdtf (5 .38)

.t
A rp m «

'S
where

(5.40)Hi* ft

The stopping condition, Eq. (5-39), must be identically satis-

fied. Hence dt can be determined from Eq. (5.39) and used

to eliminate dt. from Eqs. (5.38). The result can be ex-

pressed as

/"'dP - / xJflG6udt + (^pn«x)0 (5-^2)
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where

. , (5.13)

Now, it is desired to determine the control variation

which maximizes the change in the penalty function dP . To

insure the predominance of first order effects, a control step

size constraint is adjoined to the total variation of the pen-

alty function, to obtain

(5.1D

dP = dS rfi -- • / ?*"•^t.
6udt

If the above Eq. (5-11) is to assume a^maxlrnum value, the

first variation must vanish, or

t

S(dP) = / '<*
Jtn

- y6uT)62udt = 0

which implies that

6u = '(5.16)

where K is a constant equal to 1/p . This expression could

be written

6u = KHu (5.17)

where H is defined as the generalized Hamiltonian, xpn
G • '



This equation implies that the control variation which

maximizes the penalty function change is proportional to the

magnitude of the control gradient and in either the positive

or negative gradient direction, depending on the sign of K .

The constant K may be Interpreted as the control step size

in the gradient direction. When the gradient H approaches

zero, the control variation also vanishes.

The penalty function change is evaluated by substi-

tuting Eq. (5.4?) into Eq. (5-42) to yield

rtf
dP « K I HUH-J dt . (5.48)

fco

The computational procedure for the Modified Method

of Steepest Descent may be summarized by considering the

following:
*

(1) Integrate the n differential equations of

motion, Eq. (5.2), using an assumed control program

and the desired initial conditions of state. This

Integration Is continued until the stopping condition,

Eq. (5.*»), is satisfied.

(2) Integrate the n adjoint equations, Eq. (5-6),

backward one time with the starting condition, Eq.

(5.«3), or
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T
1 I « A f l l i f lu A. i ft

forming the coefficient P from the nominal path , .

generated on the forward integration.

(3) Having obtained the solution *pn(t) the term

THU = Xpf}G may be formed.

T
(4) The square of *pn

G ™ay be integrated from t0

to tf . Then, using Eq. (5.'l8), the step size K

may be determined by specifying a desired penalty

function change dP .-

(5) The control variation may be determined.from Eq

(5.^7) and applied to the assumed control program.

(6) The procedure continues until the penalty func-

tion reaches a minimum.

It must be noted that the specified penalty function change,

and hence the step size K is arbitrary, and the Judicious

selection of K becomes a key factor in Increasing the con-

vergence rate. An automatic procedure for its selection is

desired.
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5.3 Iteration Philosophy for the Gradient Methods

The iteration schemes for the gradient methods simply

consist of a procedure to iteratively determine a control pro-

gram so as to extremize a performance index while simultaneous-

ly driving the terminal constraint dissatisfaction to zero.

The nonlinear differential equations of motion are integrated

during each iteration, and the adjoint equations are used to

determine how the variation of different terminal quantities

are influenced by Initial state variations and integrated con-

trol variations. The optimality condition, H =0, is not

used in the formulation, and hence is never identically satis-

fied.

A minimization of performance index requires a control

step to be taken in the negative gradient direction, con-

sistent with the specified terminal constraints, but the size
/

of this step is not defined by considering the theoretical

development of the gradient technique itself. Hence, the most

severe disadvantage of these techniques is the arbitrariness.

Usually a satisfactory convergence rate can only be achieved

by experienced personnel.

A primary objective of the present study is to develop

an iterative scheme that removes some of the arbitrariness, and

increases the convergence rate. Since the weighting matrix

W , introduced in Eq. (5.19) is arbitrary, some rational basis

for its selection is needed. This problem is approached by
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examining an integral form of the Weierstrass E-Function which

approximates the change in the performance index or the penalty

function. This change is approximated by

dP* 21 / E(x", x", x,t)dt (5.^9)f f «• •« •/ E(x , x , x

*tA'0

whore E is the Weierstrass E-Function as developed by Gelfand

and Fomin (27). The E-Function is defined as

E = F(x*,x,t) - F(x*,x*,t) - i£ (X*,x*,t)(x.-x*) (5-50)
3x*

and for the system being considered

F(x,x,t) = H(x,u,t) - xTx , (5.51)

Twhere H = \ f . The asterisks refer to the optimal path, and

the absence of asterisks refer to any nearby path. From the-

calculus of variations a necessary condition for the existence '

of a minimum value of performance index is that E be non-

negative during the interval t ^ t ̂  t« •.

It is noted, by examining Eq. (5-2), that a -variation
•

in control is accompanied by a variation in x , and that a

state variation will occur only after^a finite duration of

time. Hence, the expansion of Eq. (5.^9) is made by consider-

ing that the control deviation is not accompanied by a change

in state. The Eq. (5.^9) is now written
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dP* 1 / (H - H*)dt . (5.52)
fco

The first term of the Integrand may be expanded in a Taylor's

series about the optimal path at each point in time

H Z H* + Hu*6u + |«u
THuu*«u + ... (5.53)

and substituting the above equation into Eq. (5-52) and re-

calling that H =0 on the optimal path results in

ftf
* / I T *

o

This equation represents the deviation in the performance in-

dex associated with the deviation of the control program from
*

an optimal control program. It must be stated that H is

not known until the optimal trajectory is converged upon, but

the expression, Eq. (5.5^)t becomes increasingly accurate as

convergence progresses.

An expression identical to Eq. (5-5*O may be derived

for the performance Index change by considering the second

variation of the functional I as presented in Eq. (2.5).

This approach requires that the control variations are not

accompanied by state deviations and that an optimal trajec-

tory is used as the reference path.



The term H is approximated by using the general-

ized Hamiltonian and the optimality condition, and may be

derived as

"UU* ^HX'2 + X2 (5'55)

for the Earth-Mars transfer and the Earth launch examples dis-

cussed in'Appendix A.2.

The Eq. (5.5*0 indicates that the performance index .

increase is approximately equal to the integral of a weighted

quadratic form of the control deviation, where the weighting

is given by H . This same quadratic form appears in Eq.

(5.19) for-the Method of Steepest Descent, except the weighting

matrix W is undefined. This matrix was introduced to provide

different weights to control regions of different sensitivity,

and may still be used to restrict the control step size. The

Eq. (5-19) is then introduced into an expression for the per-

formance index increase as shown in Eq. (5-24). Hence, it is
• • f • . • g

reasonable to interpret the weighting matrix to be H ,

thus becoming an easily determined specified matrix.

Iteration Scheme 1 - The first iteration scheme for the

Method of Steepest Descent follows the procedure outlined in

Section 5.1. The weighting matrix W is set equal to the

unity matrix, and hence the control variations at all points

in time are given the same weight.
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Iteration Scheme 2 - The second Iteration scheme for

the Method of Steepest Descent also follows the procedure out-

lined in Section 5.1. However, the weighting matrix W is set

equal to H , and hence the control variation is influenced

by a time dependent weighting matrix. The only procedural ex-

ception is the one associated with determining the H

matrix.

One of the inaccuracies introduced in the above analy-

sis is that the H * matrix must be evaluated with current

trajectory information, rather than the desired optimal values.

This problem is eliminated in the Modified Method of Steepest

Descent by making the Taylor's expansion about the current

nominal trajectory. This expansion results in

H* x H + Hu6u + 2
16uTHuu(5u + ' ' ' ' (5.56)

When this equation is substituted into Eq. (5.52), the rela-

tionship for the penalty function change becomes

. f t f I T
dP* 2i / - <HU

6U + 5" «u Huu«u)dt . (5.57)

The negative sign is now present because the control deviation

is toward the op.timal, instead of away from it as before.

It is desired for the penalty function change to be

extremized, and a necessary condition for this to occur is

that the first variation of dP* . vanish. The first variation

of Eq. (5.57) is set equal to zero
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«(dP") 1 / - (Hu + 6u
THuu)6

2udt = 0 . (5.58)

This Implies that

«u = -HUU"
1HU

T (5:59)

where H and H are evaluated with current trajectory in-

formation. This equation implies the optimal control is in the

negative gradient direction, weighted by H ~J . The

approximations involved become increasingly accurate as the

convergence process approaches the optimal. It is in this

near optimal region that the gradient technique is most defi-

cient, and it is expected that the control law, Eq. (5.59),

will assist in nullifying the inherent slowness of conver-

gence. By comparing Eqs. (5-^7) and (5-59), it is seen that

the gradient step now becomes time dependent, where K = -H~ ,

and may be easily calculated on each iteration.

Iteration Scheme 1 - The first iteration scheme asso-

ciated with the Modified Method of Steepest Descent requires

the gradient step determination to be made by using Eq. (5.^8).

This equation will yield a gradient step after performing .the

indicated integration and specifying a desired improvement in

the penalty function. Caution must be exercised so as not to

request such a large penalty function improvement that the

linearity assumptions are violated.
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A detailed procedure of Iteration Scheme 1 follows:

(1) Integrate the nonlinear differential equations

of motion, Eq. (5.2), forward from t0 to the tf
which satisfies the stopping condition, Eq. (5.ll).

The desired initial conditions and an assumed control

program are used. An initial evaluation of the

penalty function PQ is made.

(2) Integrate the adjoint equations, Eq. (5.6),

backwards from t- using the variables from the

forward integration to evaluate the coefficients.

The starting conditions are determined by evaluating

Eq. (5.̂ 3) at the terminal time and are used to gene-
Trate the solution *po(t) •

T(3) Having obtained the solution ^po^t)* tne quan-

tity H B XpflG may be evaluated

(W) The square of HU may be integrated from tQ

to tf and using Eq. (5-^8), K may be determined

by specifying a desired change in the penalty func-

tion.

(5) This step size K is used to modify the control

variation as stated in Eq. (5.*»7), and a new control

program is determined.
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(6) This new control program is used to generate a

new nominal and the procedure is repeated.

Iteration Scheme 2 - The second iteration scheme asso-.

elated with the Modified Method of Steepest Descent is similar

to a technique used by Wagner and Jazwinski (21). This scheme

involves making three trial forward integrations using dif-

ferent but constant gradient step sizes, and recording the

three resulting penalty function values. A second order poly-

nomial is fitted through these points and the step size that

corresponds to the minimum value of the penalty function is

selected. This method takes full advantage of each adjoint

integration by selecting an optimal step size for that itera-

tion.

A detailed procedure of Iteration Scheme 2 follows.:

(1) Integrate the nonlinear differential equations of

motion, Eq.^(5.2), forward from t~ to the t_ which

satisfies the stopping condition, Eq. (5.̂ ). The de-

sired initial conditions.and an assumed control program

is used. An initial evaluation of the penalty function

P Is made,o

(2) Integrate the adjoint equations, Eq. (5.6), back-

wards from tf using the variables from the forward
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integration to evaluate the coefficients. The start-

ing conditions are determined by evaluating Eq . (5.^3)

at the terminal time and are used to generate the

T
solution * ( t ) •

(3) Having obtained the solution *o(fc) » tne quan-po

tity HU = XpnG may be evaluated.

CO The square of HU may be integrated from t0 to

tf and using Eq . (5.^8) KI may be determined by

specifying a desired change in the penalty function.

(5) This step size Kj is used to modify the control

variation as stated in Eq . (5.^7)> and a new control

program is determined.

(6) Integrate the differential equations of motion

again using the new control program and record the

associated penalty function P .

(7) Depending on whether P is greater or less than

P , the step size Kj is either halved or doubled,

respectively.

(8) The control is modified once again and an integra

tion of the differential equations of motion yield a

penalty function P2 .

(9) A second order polynomial is fitted through the

three points, and the step size Kmln is determined
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that corresponds to the minimum value of the penalty

function.

(10) The control is modified with this K . and themln

differential equations are Integrated to yield a new

nominal trajectory. The penalty function resulting

from this integration is used to start the cycle over

again.

Iteration Scheme 3 - The third iteration scheme asso-

ciated with the Modified Method of Steepest Descent requires

reference to the results given.in Eq. (5.59). The implementa-

tion of this scheme is extremely simple compared to the first

iteration scheme, because no trial forward integrations are re-

quired. The time dependent matrix H , which may be formed

as the adjoint equations are integrated backwards, is easily -,

determined. The control variation for the next iteration is

then determined as the H matrix is formed.
>

A detailed procedure of Iteration Scheme 3 follows:

(1) Integrate the nonlinear differential, equations of

motion, Eq. (5.2), forward from tQ to the tf which

satisfies the stopping condition, Eq. (5.1*). The de-

sired initial conditions and an assumed control program

-is used for the first iteration. An initial evaluation

of the penalty function P is made.
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(2) Integrate the adjoint equations, Eq. (5.6), back-

wards from tf using the variables from the forward

integration to evaluate the coefficients. The starting

conditions are determined by evaluating Eq. (5.^3) at

the terminal time and are used to generate the solution

T(3) Having obtained the solution xpn(t) , the quan-

tities H and HUU may be evaluated, hence the

control modification, Eq. (5.59), may be determined.

CO The previous control program can be modified and

the process continued.



CHAPTER 6

COMPARISON AND DISCUSSION OF THE OPTIMIZATION
METHODS AND ITERATION SCHEMES

A meaningful comparison of the optimization methods and

associated iteration schemes is extremely difficult to make.

One primary reason for this difficulty is that most methods are

highly problem dependent, i.e., the characteristics of each

method, are different for each problem attacked., Furthermore,

difficulties arise even if a comparison is made between the op-

timization methods based on the same physical problem. As an

example, suppose it is desired to compare the convergence times

of several optimization methods. It is obvious that the conver-

gence time is highly dependent on the integration step size se-

lected, and therefore some reasonable criteria for this selec-

tion must be established.

The comparison of the optimization methods and iteration

schemes on a numerical .basis requires a realistic and represen-

tative trajectory problem. The example chosen Is a spacecraft

moving under the influence of thrust In an inverse square gravi-

tational force field. Specifically, the problems investigated

are (1) a low thrust transfer -trajectory from Earth to Mars, and

(2) an atmospheric Earth launch to circular orbit trajectory. A

more detailed discussion of the specific applications is made in

Appendix A.2. The time histories of the variables and control

100
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programs that correspond to the optimal trajectories are shown in

Figures A.2.1 through A.2.^.

6.1 Selection of Methods for Comparative Study

The trajectory optimization problem has been shown to

be theoretically solvable by using several different indirect and

direct methods. Of the methods, presented in Chapters 3, ^, and

5, several different approaches are discussed. Some of the more

promising methods and associated iteration schemes were selected

for computational investigation.
/•

The methods selected for computational investigation

are referred to by the following abbreviated names. These meth-

ods are:

(1) Method of Adjoint Functions (MAP) - the third

approach discussed in Section 3 • "1 ••

(2) Method of Perturbation Functions (MPF) - the

third approach discussed in Section 3-2. •

(3) Method of Generalized Newton-Raphson (MGNR) -

the first approach discussed in Section *i. 1.

(I*) Modified Method of Generalized Newton-Raphson

(MMGNR) - the second approach discussed in Section

U.l.

(5) Modified Quasilinearization Method (MQM) - the

approach discussed in Section 4.2.
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(6) Method of Steepest Descent (MSD) - the approach

discussed in Section 5.1.

(7) Modified Method of Steepest Descent (MMSD) - the.

approach discussed in Section 5.2*. ,

. The constants used in the numerical study are given in

Appendix A.3.

6. 2 Basis of Comparison

A basis of comparison must be established for the com-

parative study of the optimization methods selected in Section

6.1. The comparison is to be made not only between optimization

methods, but between the associated iteration schemes as well.

•-• In a general sense, the following items are considered

a basis for comparison for the optimization methods:

(1) Required formulation, application and programming

complexity.

(2) Required amount of computer logic and. storage. ~

(3) Ease of use by inexperienced personnel.

(4) Required programming effort for solving different

problems.

.(5). Effectiveness in solving different problems.

(6) Sensitivity of the convergence characteristics to

initially assumed parameters.
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(7) Resulting time for convergence.

The iteration schemes are not only concerned with the

above items but with the following items as well:

-x s

(1) Effectiveness of decreasing the sensitivity of

the convergence characteristics 'of the method to

initially assumed parameters.

(2) Effectiveness of decreasing the time for conver-

gence.

6.3 Perturbation Methods

The comparison and discussion of the Perturbation

Methods will consist of two separate analyses. The Method of

Adjoint Functions, including the normal procedure and Iteration

Schemes 1 and 2, is discussed first. The Method of Perturbation

Functions with Iteration Scheme 1 is discussed last. The dis-

cussion content will, include the applicable items listed in

Section 6.2.

6.3-1 Method of Adjoint Functions

The required formulation of the Method of Adjoint

Functions as discussed in Sebtlon 3.1 is simple and straightfor-

ward. A general discussion of the applications is presented in

Appendix A.2 and a specific application of the MAF is made in

Appendix A.2.1. The examples chosen are described by four, first

order, nonlinear differential equations of motion, i.e., Newton's
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equations for motion in a plane.

The programming effort requires the forward integration

of the four differential equations of motion and the four Euler

differential equations. Integration of the differential equation

for the rate of^change of control, i.e., Eq. (2.22), is not re-

quired since the control is easily determined and eliminated from

the state and Euler equations. These eight dependent variables

and the independent variable are stored in computer memory o-r on

tape at each time step during the forward integration for use in

forming the A(z,t) matrix. This requires less storage than if
4

each element of the A(z,t) matrix.is stored since this would re-

quire 64 quantities to be stored at each time step. The A(z,t)

matrix must be formed during the backward integration, but this

requires very little additional time. -

The backwards integration of the eight adjoint- differ-

ential equations must be made with four different starting vec-

tors, and hence a large percentage of the computation time is

spent In this backward integration. The adjoint equations are

linear and it is conceivable that a larger integration step or a

variable step could be taken. This, however, requires additional

programming complexity to insure that the proper coefficients are

being formed from the variables .stored during the forward inte-

gration.

There is an alternative approach that eliminates the

storage problem, and hence becomes attractive for problems of

large dimension.or for ones that require many integration steps.
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This approach is one where the differential equations of motion

and the Euler equations are integrated backward simultaneously

with the adjoint equations. This does not eliminate the forward

integration because the terminal values of the state and Euler

variables are required to start the backward integration. The

sacrifice to eliminate the storage -and magnetic tape problems is

made by having to integrate an additional set of equations.

For the numerical investigation made, the former pro-

cedure is used which means more programming complexity, but also

less computer time required. A constant step size was selected

for both the forward.and backward integrations.

The computer program that uses the MAF requires two

initially assumed Lagrange multipliers and an assumed terminal
r

time. These estimates require a familiarity with the physical

problem and, to some degree, experience. The computer program

is built such that only the subroutines containing the differen-

tial equations of motion, the Euler-Lagrange equations, and the

adjoint equations must be changed to solve different problems.

Iteration Scheme 1 requires very little computer logic

in addition to the Normal Scheme which Just requests 100 percent

terminal constraint satisfaction on each iteration. Operation is

simply transferred to. a subroutine where the iteration factor is

altered in accordance with the terminal norm criterion explained

in Section 3.3.

Iteration Scheme 2 requires some additional programming

and computer storage. Basically, the scheme is such that the
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iteration factor is increased, omitting an adjoint integration,

until either the terminal constraint norm diverges or a specified

number of forward integrations have been made. If the norm does

diverge, the last convergent trajectory is used as a nominal, and

hence this trajectory must be saved until it is determined

whether or not it will be needed. The storage problem can be

eliminated, however, b.y simply regenerating the last convergent

trajectory. .

The Earth-Mars transfer is completely, defined when

Mo> X 2 0 > an^ t_ have been determined, as shown in Appendix

A. 2.1. The quantity X^o "is easily determined to be zero. In

an effort to determine how sensitive the method is to poor .ini-

tial assumption.';., for the above three quantities, many cases are;

investigated. These numerical results are best illustrated by

building envelopes of convergence, the boundary of which repre-

sents the last .convergent trial. Points beyond this boundary do

not result in a convergent solution. The percentage numbers on f

the axes represent the percent deviation from the values that re-

sult in an optimal solution. . . . , • .

The envelopes of convergence for the MAP, using the

Normal Iteration Scheme of requesting a 100 percent correction in

the terminal constraints regardless of the terminal norm re-

sponse, are shown in Figures 1, 2, and 3 for the cases .of -20, .0

and 20 percent error in terminal time, respectively.

The physical significance of the convergence envelopes

is clear when it is realized, by referring to Appendix A.I, that
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Earth-Mars transfer
Iteration method: MAP
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: -20%

+50%

"20

-50% 0%

10

Note: The numbers indicate
the iterations required
for convergence

Figure 1.- Convergence envelope for the MAP using the normal iteration
scheme, initial iteration factor of 100% and terminal time error of -20%.



108

Earth-Mars transfer
Optimization method: MAP
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: 0%

+50%

20
0%

-50%

-50% 0%

6X 10

+50%

Note: The numbers indicate
the iterations required
for convergence

Figure 2 .- Convergence envelope for the MAP using the normal iteration
scheme/ initial iteration factor of 100% and terminal time
error of 0%.



Earth-Mars transfer
Optimization method: MAP
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: 20%
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X

-50% 0%

6X 10

X AXXXX

+50%

Note: The numbers indicate
the iterations required
for convergence

Figure 3.- Convergence envelope for the MAP using the normal iteration
scheme, initial iteration factor of 100% and terminal time
error of 20%.



the thrust"or control angle with respect to the local-hori-
2 2 i,

zontal is given by sin 0 = -Xi/(X! + X2 ) - and cos 3 =
2 2 % o

-x2/(Xj + X2 ) . Points along a ^5 diagonal lying in the

first and third quadrants 'represent the optimal initial control

angles, but with different values for the individual magnitudes

of the Lagrange multipliers. The signs of the initial Lagrange
e

multiplier errors are the same. Points along a ^5 diagonal

lying in the second and fourth quadrants represent nonoptimal

initial control angles for various values in the individual

magnitudes of the initial Lagrange multipliers. Down and to the

right in the fourth quadrant means the initial control angle is

decreasing and up and to the left means the initial control angle

is increasing. The signs of the initial Lagrange multiplier

errors are opposite.

It is seen that the, convergent solutions in Figures 1,

2, and 3 remain near the diagonal passing from the second to

fourth quadrants. The conclusion must be that for these cases

the method is more sensitive to changes, in the optimal values of

the initial Lagrange multiplier errors that have the same sign,

even though the initial control angle remains near optimal for

these cases. The method is less sensitive to changes in the

initial Lagrange multiplier errors that have the opposite sign,

even though the initial control angle is not near optimal. One

other interesting characteristic is that as the error in ter~ir.il

time increases from negative to positive, the envelopes increase

in size and move further down into the third and fourth quad-

rants. The convergence envelope in Figure 2 is approximately
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30 percent larger than the one in Figure 1, and the convergence

envelope in Figure 3 is approximately 70 percent larger than the

one in Figure 2. When a positive terminal time error exists, the

method becomes less sensitive to negative \2o errors, but

highly sensitive to positive X2o errors.

.Iteration Scheme 1, using an initial value for the iter-

ation factor of 100 percent, is effective in increasing the con-

vergence envelope slightly, as illustrated in Figures 4, 5, and

6. These envelopes exhibit the same characteristics as those

shown in Figures 1, 2, and 3, except' that the envelopes are

slightly larger. This increase in size is attributed to the

ability of the Iteration Scheme 1 to decrease the iteration

factor when the.terminal norm diverges. This easement of. the

requested percentage correction allows some cases to converge

when divergence would have occurred had the iteration factor

been forced to remain 100 percent for all iterations.

.The convergence envelopes are significantly increased by

using_ Iteration Scheme 1 and an initial iteration factor of 50

percent rather than 100 percent. These envelopes are shovm in

Figures 7, 8, and 9, and are approximately 360, 350 and 260

percent larger, respectively, than the corresponding envelopes

for initial iteration factors of 100 percent. The convergent

solutions of these envelopes do not remain so near the second to

fourth quadrant diagonal as the previous cases although the

skewed appearance is still perceptible. One characteristic seer,

in Figures ^, 5, and 6 becomes more pronounced in Figures 7, 8,

and 9 and that is the downward movement of the envelope as the
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Earth-Mars transfer ,
Optimization method: MAP
Iteration scheme: 1 ,
Initial iteration factor: 100%
Terminal time error: -20%

+50%

0%
20

-50%

-50%

Note: The numbers indicate
the iterations required
for convergence

0%

4o

+50%

Figure 4.- Convergence envelope for the MAP using iteration scheme 1,
initial iteration factor of 100% and terminal time error of -20%.
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Earth-Mars transfer
Optimization method: MAP
Iteration scheme: 1
Initial iteration factor: 100%
Terminal time error: 0%

+50%

-50%

Note: The numbers indicate the
iterations required for
for convergence

Figure 5.- Convergence envelope for the MAP using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 0%.



Earth-Mars transfer
Optimization scheme: MAP
Iteration scheme: 1
Initial iteration factor: 100%
Terminal time error: 20%

llU

.+50%

0%
20

-50%

9 7
C 0 6 5 6
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7 6 6 6 6 6 6 6 6 7 7 v '

7 7 7 (} 9 9

-50% 0%

6X 10

t ^

X
r j

XXXX
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Note: The numbers indicate the
iterations required for
convergence

Figure 6,- Convergence envelope for the MAP using iteration scheme
initial iteration factor of 100% and terminal time error of 20%.



Earth-Mars transfer
Optimization method: MAP
Iteration scheme: 1
Initial iteration factor: 50%
Terminal time error: -20%
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100%

+50%

-50%

7 9 7 9 9 9 9

; ; ; ; r ; 7 7 9 9
9 7 7 7 7 7 7 7 7 l l

9 7 7 7 7 7 7 7 ; ;

9 7 7 7 7 7 7 7
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9 9 9 7 7 7 7 9

119 9 7 7 9

-50% 0% +50%

Note: The numbers indicate
the iterations required
for convergence

'10

Figure 7.- Convergence envelope for the MAP using iteration scheme 1,
initial iteration factor of 50% and terminal time error of-20%.



Earth-Mars transfer
Optimization method: MAP
Iteration scheme: 1 and 2
Initial iteration factor: 50%
Terminal time error: 0%
Update integer: 1

116

+50%

"20 0%

-50%

10 7

;; ;; 7 7 7 7 v io
7 7 7 7 7 7 7 7
7 7 7 7 7 1 77

7 7 7 7 7 7 7 7 7 7 7 7 1 2

7 7 7 7 7 7 7 7 ; ; ; ; ; ; 7 ; ;
ll <; ,", 7 7 7 7 77 ;; ;;

-100%

Note: The numbers indicate
the iterations required
for convergence

-50% 0%

W

"+50%

Figure 8.- Convergence envelope for the MAP using iteration schemes 1 and 2, initial
iteration factor of 50%, terminal time error of 0% and update integer of 1.
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positive terminal error is increased. This seems reasonable

since a negative X2o error, which decreases the initial control

angle, combined with a positive tf error would probably cause

the vehicle to intercept Mar's orbit at a low angle. This tra-

jectory would conceivably terminate closer, to the optimal point

than if the time error were less. " -

Figures 7, 8, and 9 also display the characteristic that

the envelope boundary becomes poorly defined, i.e., more irregu-

lar. This emphasizes the fact that-many 'times- only a slight

numerical difference exists between convergence and divergence',

and hence the scheme becomes very unpredictable near the bound-

aries. This is emphasized further by noting that in many cases

a divergence occurs, immediately after a. relatively low iteration

convergence case. .-—-•.•• •

Iteration Scheme 2 continues' to integrate the differen-

tial equations forward and skips the adjoint equation integration

unless a divergence occurs or a specified number (updating inte-

ger) of forward passes have been made. Figures 10, 11, and 12

show Iteration Scheme 2 for an initial iteration factor of 50

percent an.d updating integers of 2, ^, and 6, respectively. The

figures indicate the total iterations and the number of adjoint

integrations -required. Figure 8, showing Iteration-Scheme 1 ,•

may be considered a special case of Iteration Scheme 2 where the

updating integer is unity. A comparison of these figures reveals

that no significant change in the convergence envelope size or

shape has resulted from the application of Iteration Scheme 2 or
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increasing the updating integer. The total number of iterations

required increased, but the number of adjoint integrations de-

crease as the updating integer is increased. This trend con-

tinues until the updating integer reaches four or six and this

appears to be a point of diminishing return for this particular

problem. • . • .

It becomes apparent that the initial value of the itera-

tion factor has a pronounced effect on the convergence envelope

size, and in most cases convergence time as well. An initial

value of iteration factor of 20 percent, with either iteration

scheme, produces a significantly larger envelope than the ones

for 50 percent shown in Figures 7 through 12. This increase in

envelope size is accompanied by a significant increase in the re-

quired computer convergence time for Iteration Scheme 1. Figure

13 Illustrates this influence' of the initial values of iteration

factor on the convergence time for the particular but 'represen-

tative cases where the Lagrange multiplier and terminal time

errors are as indicated on the figure. For Case 1, where the two

Lagrange multipliers and terminal time errors are -10, -10, and

20 percent, respectively, the largest values of initial iteration

factor result in the most favorable convergence times. On the

other hand, for the case where the initial error is larger, as

Illustrated by Case 2 where the Lagrange multipliers and terminal

time errors are -20, 10, and 20 percent, respectively, some inter-

mediate value of Initial iteration factor results in the most

favorable time.
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Figure 13 also reveals the existence of an uncertainty

about the selection of the initial iteration factor. When a

problem is first attacked, one has little or no feel for e per-

centage correction to request. A low initial value for the iter-

ation factor is usually selected because it is expected that this

results in a large envelope of convergence. A low initial itera-

tion factor results in a convergence time penalty as shown in

Figure 13. However, in some situations a high value for the

initial iteration factor results in a convergence time penalty.

It is not known how to determine the best initial iteration

factor before a series of investigations is made.

Iteration Scheme 2 attempts to overcome this problem by

seeking the largest iteration factor that can be used, without a

trajectory divergence, before the time consuming adjoint inte-

gration is ir.ade. Since only forward integrations are made in

bringing the iteration factor from a low Initial value'to the

beet value, the time penalty is reduced. The influence of ini-

tial iteration factor on the convergence time is illustrated in

Figure 1*4 for Iteration Scheme 2. This .plot may be compared to

one of the cases in Figure 13, and it is easily seen that for low

i-nitial values of the iteration factor the time penalty is not so

severe. The objection to an initial low iteration factor is re-

moved now, and yet good convergence possibilities remain because

large envelopes of convergence are associated with low initial

iteration factors.

The influence of the update integer on convergence time?

is illustrated in Figures 15, 16, 17, and 18. These envelopes
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correspond to the envelopes in Figures 8, 10, 11, and 12, but

indicate the convergence times rather than the required Itera-

tions. A most interesting characteristic of Iteration Scheme 2

is revealed. For a given initial iteration factor of 50 percent,

the convergence times are generally reduced by increasing the up-

dating integer to the four to six range. Larger values of the

updating integer result in higher convergence times. It is ex-

pected that for thir, problem the best update integer approxi-

mately equals the number of steps required between the initial

value of the iteration factor and unity.

It is very interesting to take a specific and repre-

sentative example, and examine the norm of the terminal con-

straints as a function of computation time. Figure 19 shows the

terminal dissatisfaction norm decreasing for Iteration Scheme 1

for initial values of the iteration factor of 20, 50, 70, and 100

percent. Not only is the increase in convergence time for the

smaller iteration factors evident, but the characteristics of the-

convergence rate are also seen. Figure 20 illustrates these sarrc-

characteristics for Iteration Scheme 2 using an initial itcratior.

factor of 50 percent. The norm of the terminal dissatisfaction

is plotted as a function of computation time for update integf-rr-

of 1, 2, i), and 6. With an update integer of six, the conver-

gence time is approximately reduced by 50 percent when compared

to the extreme case where the integer is unity.

In an effort to determine some of the complications

associated with solving a different problem, the atmospheric
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for the MAP using iteration scheme 1.
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Earth launch to circular orbit described in Appendix A.2 was

formulated and solved. These results are shown in Figures 21,

22, and 23. It was discovered, for the Earth launch problem,

that the convergence envelopes were less sensitive to terminal

time errors than for the Earth-Mars transfer. Hence, the plots

shown are the same as for previous cases with the exception that

terminal time variations are only 10 percent.

It is obvious from the figures that the method is rela-

tively sensitive to XJQ errors and relatively insensitive to

X2o errors. This Earth launch example reveals some of the same

characteristics seen for the Earth-Mars transfer, namely, as the

terminal time error increases the convergence envelope increases

in size and moves downward. This downward movement means a re-

duction of negative X2 error sensitivity.
'4 .

One interesting characteristic, not seen in the Earth-

Mars transfer example, is that when the A2o error is 100 per-

cent, considerable convergence difficulty is experienced. This

case corresponds to the initial control angle of 90 degrees. It

is rather remarkable that convergence still results for some

cases where the initial control angle is greater than 90 degrees.

In summary, for Iteration Scheme. 1 the envelope of con-

vergence increases with positive increases in terminal time

error, for a given Initial iteration factor. The envelope size

is increased further with a reduction of initial iteration fac-

tor, but unfortunately the convergence time is increased. The

convergence envelope for Iteration Scheme 2 is also increased by
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reducing the initial iteration factor, for a given update inte-

ger. For a given initial iteration factor, the convergence time

is reduced by increasing the update integer. The best times re-

sult for update integers of approximately six, and increased

times result for further increases in the integer.

The significant fact is that Iteration Scheme 2 is

superior to Iteration Scheme 1 because low, and hence safe, ini-

tial values of the iteration factor may be used without resulting

in an unreasonably large convergence time.

The application of this optimization method to a differ-

ent problem resulted in approximately the same general conver-

gence characteristics.

6̂ 3.2 Method of Perturbation Functions '

The required formulation as discussed in Section 3-2 is

simple and straightforward, and even more natural than MAP since

the perturbation equations are used directly. A general dis-

cussion of the applications is presented in Appendix A.2 and a

specific application or the MPF is made in Appendix A.2.2.

The programming effort requires the forward integration

of the eight differential equations, of motion and the Euler

differential equations. The eight perturbation equations must

also be integrated forward, and this must be done with three

different starting vectors. The coefficients for these pertur-

bation equations may be formed as needed and no storage is re-

quired. This represents a decided advantage over the MAP,
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especially when the problem is of large dimension, because the

back spacing of'tapes is not necessary. The programming com-

plexity is reduced also because no checks are required for the

acquisition of proper coefficients, i.e., the coefficients are

simply formed as the forward integration is made. It may also

be.noted that one less integration Is required for the MPF as

opposed to the MAP, and this results in less total integration

time.

The integration of the perturbation equations requires

a large percentage of the total computational time. It is con-

ceivable that the same numerical accuracy might result when a

variable integration step size is used, however, this increases

the programming complexity considerably. A constant step size

was selected for the integration of all equations.

The computer program that uses the MPF requires two

initially assumed Lagrange'multipliers and an assumed'terminal

time. These-estimates require a familiarity with the physical

problem and, to some degree, experience. The computer program

is built such that only the subroutines containing the differ-

ential equations of motion, the Euler-Lagrange equations, and the

perturbation equations must be changed to solve different prob-

lems, and the effort is comparable to that required for the MAF.

Iteration Scheme 1 requires very little computer logic

in addition to the Normal Scheme of requesting 100 percent termi-

nal constraint satisfaction on each iteration. Operation is

simply transferred to a subroutine where the iteration factor is
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altered in accordance with the terminal norm criteria explained

in Section 3.3- The process is essentially the same as that for

the MAP.

Iteration Scheme 2 requires some additional programing

and storage, and is comparable to that required for the MAP.

Basically, the scheme is such that the iteration factor is in-

creased, omitting a perturbation integration,, until either the

norm of the terminal constraints diverges or a 'specified number

of nominals have been generated. If the norm diverges, the last

convergent trajectory is used as a nominal, and hence this tra-

jectory must be saved until it, is determined whether or not it

will be needed. The storage problem can be eliminated by simply

regenerating the last convergent trajectory.

An extensive,.analysis of the MPF is not made since the

theoretical development in Section 3.2 shows that exactly the

same algebraic, equation used for the MAP is used to determine the

corrections. The only difference between the MAP and MPF is that

one less integration is required for MPF, and therefore a re-

duced convergence time is expected. The envelopes of convergence

for Iteration Scheme 1 using initial iteration factors of 100

and 50 percent, respectively, are shown'in Figures 24 and

25. The obvious fact is that the envelopes have the same size

and shape as the corresponding envelopes for the MAP shown in

Figures 5 and_8, and the numbers on the figures indicate an

equal number of iterations are required. Figures 26 and 27

Illustrate the convergence times for the above cases. A
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Figure 24 .- Convergence envelope for the MPF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 0%.
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Figure 26.- Convergence envelope for the MPF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of 0%.
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comparison of the convergence times may be made between the MAP

and MPF by comparing the times shown in Figures 15 and 27, re-

spectively. It is seen that the MAF must integrate a comparable

set of differential equations four times rather than only three,

as required by the MPF. Iteration Scheme 2 for the MPF war> not

programmed. •

The significant fact is that the MPF results in the

same envelope of convergence and requires.-the same number of

iterations as the MAP, but approximately 20 percent less com-

puter time is required because one less integration is needed'.

6 . Jl Quasilincarization Methods

The comparison and discus.sion of'the- Quasilinearization

Methods will cons'ist of. two separate analyses. The Method of.

Generalized Newt-.on-Raph'sbn', '--i-ncludirig'-^the normal procedure and

Iteration S'c.lYeme. 1 is discussed first. The Modified Quasilinear-

ization Method including the normal procedure and Iteration

Scheme 2 is discussed last. The Modified Method of Generalized

Newton-Raphson is also discussed briefly, but the MQM is empha-

sized. The discussion content will include the applicable items

listed in the Section 6.2.

6.^.1 Method of Generalized Newton-Raphson

The required formulation of the Method of Generalized

Newton-Raphson as discussed in Section 4.1 is simple and rela-

tively easy to apply, although this particular method is not



capable of handling terminal constraint functions or determining

the terminal time in an efficient manner. For these reasons, an

extensive investigation of this method is not made. However,

several runs are made, and spot comparisons illustrate its effec-

tiveness with respect to the other methods.

The programming effort requires the forward integratiorr

of the homogeneous parts of eight linearized differential equa-

tions of motion and the Euler differential equations. Also the

nonhomogeneous parts are integrated forv/ard once, and all coeffi-

cients for the solution of a linear system must be included for

use after each trajectory iteration. When convergence is ob-

tained for the specified value of terminal time, a time iteration

is made by making a scalar application of the Newton-Raphson

technique.

If the solutions to both the homogeneous and nonhomo-

geneous equations are stored, a new nominal is immediately avail-

able. However, to conserve storage only the terminal values of

the solutions are stored and the next nominal is simply generated

by an additional integration.

The current trajectory is generated from the preceding

trajectory, however, after a positive correction of terminal time-

has been made, no previous information is available. This fact

represents a problem that does not exist for the MAP or MPF. The

program is written so that a linear extension of all the varia-

bles of the pre-vious nominal is made to provide information for
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the current trajectory.

The computer program that uses the MGNR requires two

initially, assumed Lagrange multipliers, an assumed terminal time,

and an initial trial solution consisting of the time histories of

all eight variables. The estimates require a familiarity with

the physical problem to insure that the assumed quantities' are

close enough to optimal that convergence will result. The sig-

nificant difference between MGNR and MAF or MPF is that a com-

plete solution must be assumed rather than Just initial starting

values of the variables. If no reasonable solution can be de-

cided upon, the nonlinear equations may be integrated to provide

the first solution. However, in the more complex problems, this

solution may not be adequate to result in convergence.

The program is built such that only the subroutines con-

taining the nonhomogeneous and homogeneous equations and the

trial solution must be changed to solve different problems. A

constant integration step size was selected for all integrations.

The Normal Scheme of the MGNR is that of making tra-

jectory Iterations, requesting 100 percent correction in the

terminal constraints, until convergence results for the assumed

terminal time. Then a time iteration is made and the process

continued. Iteration Scheme 1 requires very little additional

computer logic. This scheme amounts to avoiding time iterations

until the present metric becomes less than the previous metric.

The logic is simply inserted in the program, and an additional

subroutine is not used.



A typical example of the convergence characteristics of

the MGNR is shown in Figure 28. This illustration shows how the

metric decreases as a function of computation time for the case

where the Lagrange multipliers and terminal time errors are -10,

-10, and 20 percent, respectively. A linear initial trial solu-

tion is used and this solution is represented by long dashed

lines in Figure A.2.1. Trajectory iterations are made until the
_s

metric is less than. 10 , then a time iteration is made. During

the initial stages, the time iteration essentially destroys the

reduced'metric that has just been.obtained. This characteristic

is not quite so severe when terminal time errors are small.

The convergence characteristics for the same example,

using Iteration Scheme 1 are shown, in Figure 29, and a signifi-

cant reduction in computation time is evident. This scheme

appears superior to the normal procedure, but it must be pointed

out that a theoretical analysis of this scheme has not-been made

tO'define a bounds for convergence. For a given terminal time,

the convergence proof given by McGill (14) applies, but' the time

iterations could be so poor that divergence would result. The

examples in Figures 28 and 29 show that the Iteration Scheme 1

results In a convergence time that is 43 percent less than that

required by the Normal Scheme.

The Modified Method of Generalized Newton-Raphson, dis-

cussed In Section 4.1, Is modified in the sense that a change in

the independent variable Is made to eliminate the cumbersome de-

termination of terminal time. One advantage of this .method is
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Figure 28. - Metric p as a function of computation time for the MGNR
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that the independent variable range is the same for all itera-

tions, thus simplifying the programming slightly. A disadvantage

is that one additional equation must be Integrated and a rather

complex term is added to each of the existing equations. The

most significant advantage is that the terminal time determina-

tion becomes an integral part of the-iteration process.

The convergence characteristics of the MMGNR is illus- •

trated in Figure 30 for the same case shown in Figures 28 and 29

for the Normal Scheme and Iteration Scheme 1, respectively, using

the MGNR. The metric reduction becomes a monotonic function of

computation time, and when a linear initial solution is used the

convergence time is 27 percent less than that required by the

MGNR using the Normal Scheme. Figure 30 also shows the conver-

gence characteristics for the case where the initial trial solu-

tion is determined from integrating the nonlinear differential

equations.

6;*4.2 Modified Quasllinearizatlon Method

The required formulation of the Modified Quasilineari-

zation Method as discussed in Appendix A.2.3 is simple and rela-

tively easy to apply and this method is capable of handling

terminal constraint functions. The terminal time determination

is included as an integral part of the process and this method is

very efficient compared to the MGNR. Also, no additional equa-

tions or terms are needed as with the MMGNR.

The programming effort requires the forward integration
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of the homogeneous parts of eight linearized differential equa-

tions and Euler-Lagrange equations. Also, 'the nonhomogeneous

parts are integrated forward and all coefficients are evaluated

from the previous nominal. The corrections that must be applied

for the next iteration are determined by solving a linear system.

Only the terminal values of the forward integrations are stored

as explained in Section .6.4'. 1. When a positive terminal correc-

tion is made, a linear extension of the variables from the pre-

vious nominal is made.

The computer program that uses the MQM requires two ini-

tially assumed Lagrange multipliers, an assumed terminal time,

and an' initial trial solution. In a manner similar to the MGNR,

if a reasonable initial solution cannot be selected, the non-

linear equations may be integrated to provide an initial solu-

tion. The program is built such that only the subroutines con-

taining the nonhomogeneous and homogeneous equations and the

trial solution must be changed to solve different problems.

The Normal Scheme of the MQM is that of requesting a 100

percent correction in the terminal constraints. Iteration Scheme

2, used with the MQM, is similar to Iteration Scheme 1 for the

MAP or MPF, where a percentage- correction in the terminal con-

straints is requested. The logic required to determine whether

the iteration factor is increased or decreased in the Quasi-

linearization Methods is more complex than that required for the

MAP or MPF., because .the metric p must be determined. This cal-

culation requires several operations on all eight dependent
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variables at each time step and hence requires a relatively large

amount of time compared to the calculation of the norm in the MAP

or MPF.

The convergence envelopes for the MQM using the Normal

Scheme, a nonlinear initial trial solution and -20, 0, and 20

percent errors in terminal time, respectively, are shown in

Figures 31, 32, and 33- The nonlinear initial trial solution is

the one that results from integrating the nonlinear differential

equations. Comparing these Figures with the Figures 1, 2, and 3

for the MAF reveals that while the general shape of the envelopes

are the same, the MQM results in slightly smaller envelopes. For

negative and zero terminal time errors, the method is extremely

sensitive to Lagrange multiplier errors that have the same sign.

For positive terminal time errors, the method is much more sen-

sitive to positive \2 errors than to negative X2 errors.

An attempt to generate the same envelopes by using the

MQM with a constant initial trial solution must be recorded as a

failure, because no convergent solutions were obtained. The con-

stant initial trial solution used is illustrated in Figure A.2.1

by short dashed lines.

Figures 3^ , 35, and 36 illustrate the convergence en-

velopes for MQM using Iteration Scheme 2 with an initial itera-

tion factor of 50 percent, a nonlinear initial solution and -20,

0, and 20 percent errors in terminal time, respectively. These

envelopes.are significantly larger than the envelopes for the

Normal Scheme shown In Figures 31, 32, and 33. It Is interesting
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Optimization method: MQM
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: -10%
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Figure 31.- Convergence envelope for the MQM using the normal iteration
scheme, initial iteration factor of 100% and terminal time
error o f -20%.
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Earth-Mars transfer
Optimization method: MQM
Iteration scheme: Normal
Initial iteration factor: 100%
Terminal time error: 0%
Initial solution: Nonlinear
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Note: The numbers indicate
the iterations required
for convergence

Figure 32 .- Convergence envelope for the MQM using the normal
iteration scheme/ initial iteration factor of 100%
and terminal time error of 0%.
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scheme, initial iteration factor of 100% and terminal,time error of 20%
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Earth-Mars transfer
Optimization method: MQM
Iteration scheme: 2
Initial iteration factor: 50%
Terminal time error: -20%
Initial solution: Nonlinear
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for convergence
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Figure 34.- Convergence envelope for the MQM using iteration scheme 2,
initial iteration factor of 50% and terminal time error of -20%.
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to note that while the envelopes for the Normal Scheme are ,,

slightly smaller than the corresponding envelopes for the MAF,

the envelopes shown in Figures 3^> 35, and 36 are .slightly larger

than the corresponding envelopes for the MAF shown in Figures.?,

.8, and 9. This suggests that Iteration Scheme 2 for the Quasi-

linearization Methods is more effective than Iteration Scheme 1

for the Perturbation Methods. The Figures 3*4, 35, and 36 follow

the pattern previously mentioned for the other methods in that

the method is increasingly sensitive to positive *2 errors as

the terminal time error increases.

It is of definite interest to note the required conver-

.gence times for the cases illustrated for the MQM. As an ex-

ample, Figure 37 shows the convergence times for the envelope of

Figure 35. This envelope may be compared directly with the

corresponding envelopes generated by the MAF in Figures 15, 16,

17, and 18 and the MPF in Figure 27. An obvious fact is that the

MQM requires slightly more computation time than the MAF and MPF,

.but shows considerable improvement over previous quasilineari-

zation techniques such as the MGNR and MMGNR. In all fairness,

however, it must be pointed out that more time was spent in trying

to make the programming efficient for the MQM than for the MGNR

and MGNRM.

An insight to the convergence characteristics of the MQM

may be seen in Figure 38 for the special case where the Lagrange

multiplier and terminal time variations are -10, -10, and 20 per- .

cent, respectively. This figure may be compared directly with
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Initial solution: Nonlinear
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Figure 38. - Metric p as a function of computation time for the MQM
using iteration scheme 2, and initial iteration factor
of 100% .
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Figures 28, 29, and 30 for the MGNR using the Normal Scheme,

MGNR using Iteration Scheme 1 and MMGNR, respectively. Figure 38

may also be compared, in a sense, with the 100 percent curve in

Figure 19 for the MAF. Caution must be exercised, however, be-

cause the ordinates represent different quantities. It is ex-

pected that a reduction of the metric p is more stringent a re-

quirement than reduction of the terminal constraint norm. The

more stringent requirement results from the fact that the metric

p is composed of so much" more information than the terminal con-

straint norm.

Figure 39 illustrates the effect of the initial value of

iteration factor on convergence time for two specific cases of

Initial parameter error. This figure may be compared to Figure

13 which represents the same information for the MAF for the same

cases. The same characteristics are noted in that for some cases

the best initial iteration factor is somewhat less than 100 per-

cent and that this.best value Is not the same for all cases. One

additional characteristic, noted in Figure 39, is that very large

penalties in the convergence times are paid when low initial

iteration factors are used. This deficiency is attributed to the

metric criteria used to determine how the iteration factor must

be changed. When only a small percentage correction is re-

quested, the metric does not decrease rapidly at first. This is

because the metric is interpreted as the maximum distance between

successive trajectories. In fact, in application the metric

sometimes increases slightly and this causes the iteration factor
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to decrease. This process could conceivably have a decelerating

effect on the convergence. This phenomena may be seen in Figure

1*0 for the case where the initial iteration factor is 20 percent.

Figure 40 also illustrates the convergence characteris-

tics for several different initial iteration factors and may be

compared to Figure 19 which represents the same information for

the MAF for the same case. It should be noted that near the

terminal phase of each trial the metric reduction is nearly quad-

ratic.

In summary, the Quasilinearization Methods show a wide

range of convergence characteristics, but the proposed method,

the MQM, successfully reduces the convergence times and increases

the convergence envelopes to become competitive with the MAF and

MPF.

Generally speaking, the MQM displays the same character-

istics that are seen for the MAF and MPF. For the case when an

initial iteration factor of 50 percent is used, the envelope of

convergence for the MQM is slightly larger than the corresponding

envelope for the MAF and MPF. But the convergence times are al-

ways slightly larger than for the MAF.

6.5 Gradient Methods

The comparison and discussion of the Gradient Methods

will consist of two separate analyses. The Method of Steepest

Descent, including Iteration Schemes 1 and 2, is discussed first,

and the Modified Method of Steepest Descent is discussed last.
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Figure 40. - Metric p as a function of computation time for MQM
using iteration scheme 2 and a nonlinear initial solution.
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The discussion content will include the applicable items listed

in Section 6.2.

6.5.1 Method of Steepest Descent

The required formulation of the Method of Steepest de-

scent as discussed in Section 5.1 is simple and straightforward,

but slightly cumbersome when compared to the MAP or MPF. A spe-

cific application of the MSD is presented in Appendix A.2.1.

The programming effort requires forward integration of

four differential equations of motion, storing the dependent

variables in computer memory or on tape at each time step. This

requires less storage than storing the A and B matrices. The

four adjoint differential equations, Eq. (5.6), are integrated

backwards five times using the variables stored during the for-

ward integration to form the coefficients. One additional com-

plexity is that Eqs. (5-30) through (5.32) must also be inte-

grated backwards, and may be carried along simultaneously with

the adjoint equations. To reduce the programming complexity, a

constant integration step is used for all integrations. The com-

puter storage problem can be eliminated by integrating the dif-

ferential equations of motion backward along with the adjoint

equations, Eq. (5.6), and Eqs. (5-30) through (5-32). This is

not done in the present method because the equations of motion

must be integrated forward anyway to determine the terminal

values of state.

In addition to the programming effort explained above,
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the most serious disadvantage of the MSD is that a moderate

amount of human intervention and experience is required to im-

plement the program. For example, the weighting matrix W is

not defined, and by Just using the unity matrix the less sensi-

tive regions of the control program are very slow in acquiring

the optimal shape. The weighting matrix may be us.ed to speed

this optimal shaping process, but the insensitive regions of the

control program are not always known. , .

An examination of Eq. (5-33) reveals that the first

group of terms are related to the minimizing effort while the

last, group of terms are related .to the terminal constraint satis-

faction. .There is,, however, some cross coupling of the. terminal

constraint satisfaction in .the first term;.. The, procedure used to

affect convergence requires a selection of an .allowable average

control deviation, based on Eq. (5.19), that does not invalidate

the linearity constraints on the problem. This allowable control

deviation must be reduced in some specified manner as the process

progresses. If the numerator of the radical in Eq. (5.33) is

negative when 100 percent correction in the terminal dissatis-

faction is requested, the percent correction that causes the

radical term to vanish is determined. When this occurs, emphasis

is placed on reducing.the terminal dissatisfaction. If the

numerator is positive when 100 percent .correction is requested,

the radical is used and both the performance index is reduced,

and the terminal constraints are driven toward satisfaction. The

computer logic involved in the above operations requires a
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significant amount of the iteration time.

The computer program that uses the MSD requires the ini-

tial value of the state variables, a stopping condition and an

assumed control program. These estimates require some familiar-

ity with the physical problem." The stopping condition that is.

chosen must be one that will be satisfied. The control program

selection is not as critical as it is for the MQM. The computer

program is not so easily generalized as it is for the MAP, MPF,.

or MQM, i.e., extensive programming is required to accommodate a

different problem. .

Iteration Scheme 1 simply uses the unity matrix for W •
ft

and Iteration Scheme 2 .uses the H matrix. This second

scheme requires some additional computer storage and programming.

When Iteration Scheme 2 is to be used, H must be formed with

the variables that result from integrating the adjoint differen-

tial equations • backwards, using v as given in Eq.. (5'.27) for

the starting conditions. A major problem when using Iteration

Scheme 2 is that when a percentage correction in the terminal

constraints is requested, thereby forcing the radical term in

Eq. (5.33) to vanish, v becomes infinite. Clearly this cannot

be used as a starting condition for the adjoint equations.

With the examples discussed, this radical term vanishes

for the first few iterations, and when this happens the unity

weighting matrix is used. As soon as the radical becomes finite,
it

the H matrix is calculated for use on the following tra-

jectory.
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The thrust angle as a function .of mission time for the

Earth-Mars transfer is shown in Figures til, 42, -43, and 44, and

the convergence process from the assumed history, to .the. Eulerian

history is illustrated. Figures 41 and 42 show the convergence

characteristics for two widely" different initially assumed con-:

trol programs, designated Case 1 and Case 2, using Iteration

Scheme 1. 'It is interesting to note that the number of itera-

tions required is relatively independent of the initial control

program. After 30 iterations both cases yield control programs

that almost obscure large portions of the Eulerian program^- and

hence are not shown.. When to terminate the iteration process is

not clear since the Eulerian optimal is really never reached.

The method used here was to continue until'no further improvement

was being made, i.e.., until the solution began to oscillate about

some mean path. A more sophisticated .method would be to termi-
Tnate when a time integral of H ; or H H became arbitrarily

small. • ' • : . -i. ..- v • • . . '

An apparent discontinuity begins to develop at approxi-

mately 100 days, as seen in Figure -1*1, and becomes more severe as

the iterations progress. After 30 iterations the apparent dis-

continuity becomes very sharp and the Eulerian control is accu-..

rately approximated.. The same characteristic is-noted in Figure

4 2 . • ' . • •

The-effectiveness of Iteration Scheme 2- in shaping the

optimal control program is Illustrated In Figures 43 and 44, and

it Is seen that the number of iterations required is signifi-

cantly reduced. In comparing Figures 41 and 43, for instance,
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Figure 41. - Thrust angle as a function of mission time for Earth-Mars transfer
' using the MSO and weighting matrix W = I.
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Figure 43. - Thrust angle as a function of mission time for Earth-Mars transfer
using the MSD and weighting matrix W = H.
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it is seen that the apparent discontinuity development is much.

faster in the latter figure. These two cases are identical for

the first 11 iterations because the radical in Eq. (5.33) van-
th *

ishes and W = i, but starting with the 12 iteration, the HUU

matrix is formed and used. It is during these final iterations

that the.full value of Iteration Scheme 2 becomes evident. After

only four additional iterations the apparent discontinuity, as

shown in Figure 13> is well beyond the development shown in

Figure ill. Moreover, the Eulerian is much better approximated,

for a given number of iterations, when Iteration Scheme 2 is

used.

The same characteristics are seen in Figures 42 and 44.
« .

For this case, however, the H matrix is not calculated until

the 23r iteration. After only two additional iterations, Itera-

tion Scheme 2 in Figure 44 shows marked improvement in the devel-

opment of the apparent discontinuity.

An average Iteration for Iteration Scheme 1 requires

approximately 2.75 seconds of computer time, while approximately

3.0 seconds is required with Iteration Scheme 2 when the H

matrix must be formed. However, an extensive step size study was

not made for the MSD. The step size used was the same as that

used for the integrations in the indirect methods.

It should also be pointed out that the terminal con-

dition resulting from Eq. (2.14) may be used to determine the

terminal value of the Lagrange multipliers. These values are

used to start the backward integration of the adjoint equations,



176

for the H determination, and also may be used to estimate

the Lagrange multipliers required for starting the indirect opti-

mization methods. For the case illustrated in Figure 44 the

first time H, is determined, the values of Xin and. X2oUU . • ,

are calculated to be 2.15 and 0.65 percent larger than, the values

that correspond to the optimal trajectory, respectively. This

error is well within the envelope of convergence of all.the in-

direct methods studied.

6.5.2 Modified Method of Steepest Descent

The required formulation of the Modified Method of

Steepest Descent as discussed in Section 5.2 is simple and

straightforward, and is not as cumbersome as the MSD. A. spe- .

clfic application of the MMSD is presented in Appendix A.2.5-

The programming effort requires forward integration' of
t

four differential equations of motion, storing the dependent

variables in computer memory or on tape at each time step. This

requires less storage than storing the A and B matrices. The

four adjoint differential equations are integrated backward only

once, using the variables stored during the forward integration.

The Eq. (5.48) must also be integrated so that after a desired

penalty function decrease is specified, a step size K may be

determined. The MMSD requires a significantly reduced number of

operations, as opposed to the MSD, because the adjoint equation

is integrated backwards with three less starting vectors and the

Integration of Eq. (5.^8) is much less time consuming than the
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integration of Eqs. (5.30) through (5.32) in the MSD. The stor-

age problem associated with the first forward integration may be

avoided in a manner similar to that suggested in Section 6.5.1-

The present method does store the forward integration and use a

constant integration step size for all integrations.

In addition to the programming effort explained above,

the most serious disadvantage of the MMSD is that a considerable

amount of human intervention and experience is required to imple-

ment the program, even more than that required for the MSD. For

example, the step size K is not defined, and must be approxi-

mated by using Eq. (5.̂ 8). A still more serious deficiency is

that a constraint on the control deviation is not included as an

integral part of the method itself, and hence appropriate com-

puter logic must be used to insure that the linear constraints of

the problem are not violated. One further complexity is that the

convergence characteristics are highly dependent on the factors

that weight the terminal constraints in the penalty function, and

the magnitude of these factors are not specified. To compound

the matter, the rates at which these factors are changed to

tighten the terminal constraints are not known. It is seen that

the price that must be paid for the simplicity of the method is

that of increased arbitrariness, and a considerable amount of

skill and experience is required to obtain meaningful results.

This method has been programmed and is in the stage of evalua-

tion, , butrno results are presented here.
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6.6 Summary of the Comparison

The comparison of optimization methods thus far has con-

sisted of individual analysis of each method with an occasional

comment concerning the relative merits of one method with respect

to the others. It would be helpful to summarize the conclusions

of the comparison with particular emphasis on the basis of com-

parison as outlined in Section 6.2. A summary of the comparison

is:

(1) The programming complexity and required formulation

. , time is.greater for the MQM and MSD than for the MAP/

MPF and MMSD, because more computer logic is required.

(2) The MAP and MSD requires more computer storage than

the other methods.

(3) The MSD and. MMSD require more human intervention
«

and intuition than the other methods, and hence are

difficult for inexperienced personnel to use. However,

.the indirect methods become difficult to implement -when

the problem dimension is large.

CO The computer program for the MSD requires consider-

able modification for solving a different problem, while -

the other programs require less modification.

(5) The convergence envelope sizes for all the indirect

methods are essentially the same when the initial itera-

tion factor Is near 100 percent. The MQM envelope is
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slightly larger than the envelopes of the other methods

when the initial iteration factor is in the 50 percent

range.

(6) Th0e time penalty associated with the lower initial

Iteration factors is greater for the MQM than the other

indirect methods. ;

(7) The MPF is superior to the MAP and MQM when conver-

gence time is considered, because of the one less equa-

tion that must be integrated.

(8) The approximations to the Lagrange multiplier val-

ues as derived by the MSD are well within the conver-

gence envelopes of all the indirect method investigated.



CHAPTER 7

DESCRIPTION AND EVALUATION OF NUMERICAL PERFORMANCE

The evaluation of numerical performance is an essen-

tial feature in assessing the accuracy of an optimization

technique. The primary sources of error are encountered dur-

ing numerical integration and solving of linear systems

(which includes matrix inversion). Most of the computational

time is taken during numerical integration and hence, in-

creasing the speed of the integration will have a pronounced

effect on the total computer time. The criterion used for

defining convergence is also a factor in determining total

time, and if caution is not exercised an unrealistic com-

parison between different optimization methods could result.

7. 1 _ Numerical Integration

There are many characteristics that must be con-

sidered when selecting a particular numerical integration

sch'eme; some of the most important are accuracy, stability

and speed. The method and procedure to be explained takes

excellent advantage of the above characteristics.

7.1.1 Numerical Integration Routine

The numerical integration routine consists of two

subroutines and either a control subroutine or a control

180



181

block of code. A Runge-Kutta fourth-order routine is used as

a starter, supplying the initial and three succeeding deri-

vatives. Control is then shifted to a subroutine that con-

tains a fourth-order Adams-Bashford predictor and a

fifth-order Adams-Moulton corrector. An option for the

iteration of the corrector is provided.

One of the nicest features of the integration package

is the method by which the derivatives are stored and moved.

The names that refer to these locations are simply changed,

rather than changing the location of each derivative Itself,

and the values are used as if being rolled from a drum.

Credit for this unique and time saving idea is given to

W. T. Fowler and G. J. Lastman of the Engineering Mechanics

Department, The University of Texas.

An additional capability of the subroutine is that

the starting value of the integration step size may be sub-

divided into N substeps, thus providing extremely accurate

starting values for the derivatives. The Runge-Kutta is

then called 3N times and the derivatives are saved every N

Integration step. Pour derivatives now being available, the

integration proceeds using the usual predict-correct cycle.

7.1.2 Numerical Integration Procedure

The numerical integration proceeds using N « 3 and

the Runge-Kutta Is called nine times, hence a derivative is
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saved on every third substep. This provides the initial

four values required by the Adams-Bashford predictor. A

constant value of step-size is used to continue the inte-

gration.

Two methods are used to terminate the integration,

and the method selected depends on whether or not a back-

wards integration of the adjoint equations is expected. If

the adjoint equations are to be integrated, when the remain-

ing time is less than four steps this time is subdivided into

3N substeps and control, is shifted to Runge-Kutta. This pro-

vides values of the dependent variables which will be used to

form coefficients for the backwards integration of the

adjoint equations. If backwards integration is not antici-

pated, when the remaining time is less, than one step, control

is shifted to Runge-Kutta for the final time increment.

The subdividing of Integration steps at the beginning

and end of the trajectory increases the programming complex-

ity, however, it Was decided that this additional difficulty

was more than compensated for by the increase in accuracy of

the starting derivatives.

7.1.2.1 Successive Application of Corrector

Successive application of the Adams-Moulton corrector

was made for a_n optimal Earth-Mars transfer trajectory using

from one through five applications. No improvement was made
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in the optimal values of the Lagrange multipliers and termi-

nal time after the number of applications reached three.

Hence, it was decided that two applications of the corrector

would be sufficient.

The computation time is reduced by approximately 20

percent when only one application of the corrector is made

and increased 6y approximately 20 percent'when three correc-

tions are made.

The selection of a corrector with two iterations was

encouraged further by examination of the terminal values of

the state variables after the first iteration.

7.1.2.2 Step Size Selection

The step-size of the numerical integration technique

is extremely important. Not only does the accuracy o(f the

method depend on this selection, but the resulting computer

•time as well. So much depends on this selection that a con-

siderable effort for its determination is Justified. One

complicating factor that exists for comparison studies is

that convergence time is to be compared for all methods,

some of which might require different integration step sizes.

The criteria that is used in selecting step-size is

determined in the following manner:

(1) Use the near optimal starting conditions of

-10, -10, and 20 percent error in the initial
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Lagrange multipliers and terminal time, respectively.

Proceed to a convergent condition using integration

step sizes that range on either side of some reason-

able value.

(2) Record the resulting optimal values of the

Lagrange multipliers and terminal time and the time

required for convergence.

(3) Small integration steps result in large round-

off errors and large steps result in large trunca-

tion errors. A step-size value in the range where a

maximum number 6f signficant figures agree is in-

terpreted as a desirable one.

The integration step-size of 0.03 units, of time was

chosen for the Earth-Mars transfer because the value of the

estimated variables on either side of the selected step
i

agreed to at least five places. The step-size for the Earth

launch trajectory was selected to be 2.0 seconds.

The .plot in Figure ^5 of convergence time as a func-

tion of integration step-size for the MAP, MPF, and MQM and

the Earth-Mars transfer reveals that a larger step would

result in fewer places of numerical agreement, while a

smaller step would suffer from a severe time penalty as well

as fewer places of agreement.
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Integration step size, time units

Figure 45. - Convergence time as a function of integration step size
using normal iteration scheme.
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1^2 Linear System Routine

The computer routine that solves a general linear

system of equations AX = B is composed of six subroutines.
A. -

The routine has the additional capability of returning the
•

determinate of A , an inverse of A , an indication if A is

singular and an estimate of the condition number of A .

The first operation of the master driver program is

to row equilibrate the matrix A by an exponent procedure.

The equilibrating multipliers are stored for later use to
i

scale the right hand side B . An initial estimate of X

is determined and a residual vector is found that defines a

new linear system. This system is solved and a correction
• /

is added to the previous solution. Sufficient information

is then available to initiate an iteration for the final

solution of X .

7V3 Numerical Criteria Affecting Accuracy

The numerical accuracy of a computer solution depends

not only on programming skills, but other criteria as well.

For instance, it is desirable'in numerical studies to achieve

some degree of numerical magnitude compatibility. This is

conveniently accomplished by normalizing of the state vari-

ables, Lagrange multipliers, and time.

One additional item that affects numerical accuracy

is the criterion for establishing when convergence has
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occurred. Since it is desired to compare the results of

several different optimization methods on a convergence time

basis, it is essential that the methods result in the same

order of numerical accuracy.

7-3.1 Normalization of Numerical Parameters

In many cases, such as the ones presented here, the

correction to several of the variables is used to determine

some of the procedures followed in the iteration scheme,

even though these variables have different units. Hence, it

is desirable, from a computational point of view, to achieve

some degree of numerical magnitude compatibility.

This normalization is accomplished for the state

variables by selecting certain quantities to be new units of

that variable. As shown in Appendix A.1*, three variables

are selected and these selections dictate new units for the

remaining variables. An effort is made to choose the three

variables such that the range of all variables is near unity.

In an effort to make the Lagrange multipliers numerically

compatible with these state variables, a scaling process is

used.

In any two-point boundary value problem where 2n

differential equations are involved, 2n+2 boundary condi-

tions must be specified, all of which are not necessarily at

the same boundary. If an additional initial boundary
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condition is obtained, a terminal boundary condition must be,

ignored. Now, since the Euler Lagrange equations are linear

and homogeneous, the solution is simply a linear magnifica-

tion of the initial conditions.

In the optimization problem, the Lagrange multipliers

may be normalized by selecting one multiplier to be positive

or negative unity and in this manner adding one initial

boundary condition. This simply scales the multipliers by ,

the unnormalized value of this multiplier. With the additionr • . :• ' '.><•'.>•

of this initial boundary condition, a terminal condition must

be ignored. It is recommended that the ignored terminal

'condition be .one of the conditions that result from the

transversality equations because usually there is little

intuitive feel for the physical significance of these equa-

tions. In requesting a desired improvement in the satisfac-

tion of terminal constraints, it may be helpful to have a

intuitive feel for the meaning of these constraints.

The fact that one of the transversality conditions

is ignored does not mean that this condition is not satis-

fied. For Instance, .if the ignored transversality terminal

constraint * . .'

h- (»x+ x
T)f

is perturbed ,so that the terminal dissatisfaction becomes
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dh

it is seen that when the solution does converge, the termi-

Tnal dissatisfaction vanishes because dxf, dtf, and dX-

vanish.

7.3-2 Criteria for Defining Convergence

Establishing when convergence has occurred is an es-

sential part of determining the characteristics of a conver-

gence process. Defining convergence becomes a matter of

arbitration.

In the present study the criterion used is that the

corrections being applied to the initial estimates of the

Lagrange multipliers and terminal time must be less than

some small number. There are, however, several other tra-

jectory characteristics that must be observed. For instance,

in the MAP and MPF an improvement in the terminal constraints

is requested, but this request is not always completely ef-

fective. Therefore, the norm of the terminal constraints is

improved as the method proceeds, and hence the convergence

definition could hinge on the terminal dissatisfaction being

less than some small number. Even if this criterion is not

used, as in the case presented here, the norm of terminal

dissatisfaction is of great interest and should be observed
•»

closely.
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In the investigation of the MGNR the terminal con-

straints are satisfied identically, but the trajectory shape

does not correspond to the shape assumed by a trajectory

that satisfies the optimality conditions. Hence, one logical

criterion for this method is a metric that represents the

maximum distance between corresponding time points on the

present and previous trajectory. This metric is recorded

and is used in .the selection of the correction criterion.

The iteration procedure for the indirect methods

continue until change in the norm of terminal dissatisfaction

between the final two iterations in MAP and MPP is comparable

in numerical magnitude to the metric described in MGNR.

These criteria for establishing convergence may result in

slightly different values of correct, i on criterion for the

different methods. The over-riding factor of concern is

that trajectories to be compared should have approximately

the same numerical accuracy.

A correction criterion of 10 for an Earth-Mars

transfer using MAP and MPF produced a final terminal norm

change of order 10~ . The correction criterion that re-

sulted in a metric of approximately 10~ was also 10~6. The ..

MSD is difficult to compare with the indirect methods since

convergence in the same sense is never reached.
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1.U Computation Facilities

The numerical investigation was made at the facili-

ties of NASA-Manned Spacecraft Center, Houston, Texas. The

facility used for the numerical calculations was the directly

coupled IBM 709*1. All programs were programmed in FORTRAN IV

compiler language.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

. Ther.e hav;e tb.een,.cmanyi:.slgni:f.ica'nt conclusions based on

both the theoretical-, and,numerical r,esults d.esc'ri-bed irKthe •-••

previous.-.c.ha-pt.eris .. Detailed .results,'and, conclusions '-have bee;n .

presented, in S.eĉ ipns.,.6,.3., 6,..'l,,;̂ and 6...5. . In Section .6 .6:,: a.......

summary of the relative merits of the methods is made^with . • •••

particular emphasis on the basis of comparison as explained in

Section 6.2. A general summary of the most significant con-

clusions are presented in this chapter.

The many questions that have been successfully answered

during this investigation have brought forth many new un-

answered questions, and this is as it should be. The existence

of these new questions provide a motivation for additional and

perhaps rewarding studies, and several possibilities for con-

tinued investigation are suggested.

i

8.1 Summary of Conclusions

The major theoretical conclusions resulting from the

analysis are:

(1) The Method of Adjoint Functions and the Method

of Perturbation Functions are recognized as essen-

tially the same method. The Method of Perturbation

Functions, however, requires one less Integration

192
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because of the more efficient manner in which the co-

efficient matrix of the perturbation equation is

generated.

(2) The Modified Quasilinearization Method is an ex-

tension of the Method of Generalized Newton-Raphson

which accommodates problems that have terminal bound-

aries given as general functions of the state and/or

Euler variables. Moreover, the terminal time deter-

mination is made an integral part of the iterative pro-

cedure itself, and no additional terms must be added to

the existing differential equations and no additional

differential equations are needed.

(3) A unique and easily determined weighting matrix

has been derived which increases the convergence rate
t

of the Method of Steepest Descent. This matrix assists

the method in accelerating the shaping of the optimal

control program during the terminal iterations.

The other major conclusions resulting from the analysis

are:

(1) Two iteration schemes which significantly increase

the possibility for convergence have been successfully

implemented for the indirect methods. This desirable

characteristic is obtained with one of the schemes with-

out an appreciable Increase in convergence time.



(2) The Modified Quasilinearlzation Method is success-

fully implemented and results in a significant decrease

in convergence time when compared to the other quasi-

linearization methods studied.
i- •

(3) The Method of Steepest Descent, after only a few

iterations, provides initial values of the Lagrange

multipliers which are well within the convergence

envelopes of all the indirect methods investigated.

The results of this investigation support the claim
/

that a hybrid optimization method would be the most desirable

method to build for a general purpose capability. This hybrid

method would consist of the Method of Steepest Descent for the

initial phase of optimization and switch to the Method of Per-

turbation Functions for the later phase. It must be pointed

out, however, that building a general purpose optimization

method would result in a very time consuming method, whereas

by knowing the specific nature of a given situation, a very

efficient method can be tailor made for that particular situa-

tion.

/

8.2 Recommendations for Continued Study

The present investigation has succeeded in developing

a new method, based on the theory of quasilinearization, which

places the Quasilinearization Methods in a more competitive

position with the Perturbation and Gradient Methods. Several

iteration,schemes are formulated and applied, and significant
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reductions in computation time and initial parameter sensiti-

vity have been realized. A foundation has been laid for build-
*

ing more complex methods which will in turn handle more complex

and realistic problems.

A natura-1 extension of the current Investigation would /

be to study several more example problems that have a larger

dimension, more control variables and that require inequality

constraints, such as a three-dimensional, atmospheric, reentry

problem.

Some thought has been given to developing a method for

approximating the initial values of the Lagrange multipliers

by assuming a control program for the first iteration in the

indirect methods, or by using the constants of motion as de-

rived by Melbourne (28).

The applicability of several other methods for solving

the nonlinear two-point boundary value problem, associated with

the trajectory optimization problem, should be investigated,

such as the ones proposed by Merriam (29) and Sylvester and

Meyer (30). A comparison should be made between the methods

discussed in this study and the methods recently proposed

by McReynolds and Bryson (2*0 and Kopp and Moyer (11).

A generalized hybrid optimization program may be

easily built in which the initial values of the Lagrange multi-

pliers are approximated by using a direct method, then switch-

ing, when the estimates are within the convergence envelope,

to an indirect method for rapid convergence. The details of

such a procedure should be studied.



APPENDIX A.I

Application of the Reduction of an Optimization Problem to a
Two-Point Boundary Value Problem ~

The following application is formulated to illustrate

the procedure explained in Section 2.2.- The equation numbers

in parenthesis refer to the corresponding equation in Section

2.2, The nonlinear, ordinary, differential equations of

motion are

i . u = v2. OM + T_sin3 .
r r2 m

i . ; „ .Hi + T_cos0 . f
2 . r m 2 (A. 1.1)

(2 .23)
* •

x3 = r = u * f

and the nonlinear, ordinary, Euler-Lagrange differential

equations are

- V fs .

Xi . i2M\A . /uvV + A \ .* P > ; > v - 2 / 2 v^r. 7
(A.1.2)

196
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The optimality condition H « 0 leads to

-(Xt cos 6 - X, sin 0 ) = 0. (A. 1.3)
m 1 2 (2.25)

This condition implies that

X* Xl X» '

tan 8 * r-i- sin 6 = — - _ ••• cos 8 « — _
X2 t/A^ + Xj2 '/x^+Xj2

where the sign in front of the radical terms is selected ac-

cording to the Weierstrass E-Function.

The Weierstrass Condition is the fourth necessary

condition which must be satisfied for a given trajectory to be

an extremal. It is defined as
•

E-P(x«,i,t)-P(x«,x«,t)-^ (**iX".t) (X,x«) 5 o (A. 1.4)

for a minimum where E is the Weierstrass E-Function and
<P .

F * X (f - x). The asterisk refers to the optimal trajectory.

Since the equations of motion must be satisfied on

the optimal, as well as the nearby trajectory, F = F* s 0

and the Weierstrass E-Function becomes

E - XT(x - x ). (A. 1.5)

Making the proper substitutions in Eq. (A. 1.5) yields

E=x,J-(sinS-sinB»)| + X-F-CcosB - cos8*)l ? 0. (A. 1.6)ILm J 2|_m J

The optimality conditions, i.e. Eq. (A. 1.3), leads to the

requirement that
Ai

tan e» • ~
2
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which Implies

sin 6 - — — and cos e« - 2 - . (A.1.7)
'/x^+Xj2 , *Al

2-»-x2
2

Eq. (A.1.3) does not indicate which sign should be selected on
*

the radical terms. Substituting Eq. (A.1.7) into Eq. (A.1.6)

yields ^

E m Xi +X2 U -1 + cos (B - 8 ̂  ' ° and (A.1.8)

for this equation to be satisfied for all admissible

values of e , the negative sign on the radical must be

chosen. Hence, the optimal control program is given by

x. • .
'sin e*

i

x2
cos 3" «= — '

The specified initial boundary conditions are

u(tQ) - UQ = 0

n - g2 - v(tfl) - .v0 - 02 2 (A.1.9)
(2.26)

n, = g, B r(t0) - r0 = 0

where tQ is specified. Hence no initial conditions are obtained

from the transversality conditions because the initial state

and time are specified.
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The specified terminal boundary conditions are

. . *! c hx « u(tf) - Uf - 0

*2 » h, • v(tr) - v o 0 (A. 1.10)
2 "2 f *> (2.29)

*3 * h3 = r(tf) - rf - 0 .

•

If it is desired to determine the minimum time trans-

fer, the performance index is * » t-, and the terminal

transversality conditions are

-(X.du + X,dv + x.dr + X.de). +
1 2 3 •» f (A. 1.11)

(2.35)
(i + _x jr l + x2f2 + x3f 3 + *k

f^f dtf • o .

The terminal state perturbations in Eq. (A. 1.11) are not

independent. They are related through Eq. (2.36). The

application of this equation results in

duf - dvf - drf « 0 . (A. 1.12)

Combining Eqs. (A. 1.11) and (A. 1.12), the fourth terminal

boundary condition becomes

\ - XHf - 0 (A. 1.13)

since it is not desired to constrain the terminal value of

the angle 0 . If, however, it is desired to constrain the

erminal angle, def must vanish and \kf would not
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necessarily be zero. In this case, the fourth terminal

boundary condition becomes

ht( «= 0(tf) - ef - 0' . (A.1.11)
4

Allowing for the possibility of a variable terminal .

time, Eq. (A.1.11) also yields the fifth and last terminal

condition

•

h5 = (1 + - X l f l + A2f2 + X3f3 .+ ̂fk}t = 0. (A.1.15)

If it is desired to normalize the Lagrange multipliers

as discussed in Section 7.3.1, one multiplier is initially

selected plus or minus.unity and one terminal boundary condi-

tion is ignored. The initial boundary condition

X3 (tQ) «* -1.0 , is used in place of the fifth terminal bound-

ary condition, and the result is

g • u(t ) - u • 0
1 ° ° h, « u(tp) - U, «= 0 (A.1.16)

g, " v(t ) - v • 0
2 0 0

g3 - r(t0) - r0 - 0

,
2 ° v(tf) - vf « 0

- r(tf) - rf • 0

g, - e(t0) - e0 = o
hn

8^ " *,(tft) * 1.0 - 0
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For the solution of 2n differential equations,

2n+2 boundary conditions must be known. Assuming that the

initial time is zero, 2n+l conditions are needed. These

are the boundary conditions given above.



_._.__ APPENDIX A. 2

Discussion of the Applications

The example class of problems used to apply the

theoretical formulations presented in Chapters 3, ^, and

5 is the minimum time trajectory of a thrusting spacecraft

under the influence of an inverse square gravitational

force field. The specific examples used to obtain the

numerical results discussed in Chapter 6 are:

(1) A constant low thrust Earth-Mars transfer tra-

jectory which leaves the Earth's circular orbit about

the Sun with a velocity equal to that of the Earth.

The control or thrust angle is unbounded and only

the Sun's gravitational influence is considered.

x The spacecraft arrives at an arbitrary heliocentric
«

angle in the circular Mars orbit having velocity

conditions that match that of Mars.

\
(2) A constant high thrust Earth launch to a 100

kilometer circular orbit leaving the Earth's sur-

face with zero velocity. The control or thrust

angle is unbounded. The Earth's inverse square

gravitational influence is considered. The dissa-

pative terms of the atmospheric drag are also included,

The spacecraft arrives at an arbitrary heliocentric

202
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angle in the circular orbit. The effects of other

bodies are neglected.

In the optimization reduction problem shown in Appen-

dix A.I it is seen that the initial state Is specified and

hence n » p = 4 . The terminal velocity and radial position

are specified and hence q = 3 • TWO additional terminal

constraints are derived from the transversality conditions.

Assuming that the initial time is specified as zero, five

initial conditions and five terminal conditions are speci-

fied, therefore the problem is solvable.

When the numerical parameters are normalized as dis-

cussed in Section 7.3.1* the initial value of the Lagrange

multiplier associated with the radius is equated to a negative

unity, and hence p = 5 , and the last transversality condi-

tion is ignored. This means that six initial conditions«and

four.terminal conditions are specified, where the initial time

is Included. The problem is still solvable, but the com-

plexion of the applications is changed slightly from that

described in the detailed procedures presented in Chapters

3 and H.

It should be pointed out that the fourth differential

equation of state and the corresponding Euler-Lagrange equa-

tion is not necessary for the analysis made here. These

equations are simply included for the sake of generality,
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and hence the same computer programs may easily be converted

to solve the class of problems where terminal, state is com-

pletely specified.

The time histories of each variable that correspond

to the optimal solution for the Earth-Mars transfer are il-

lustrated in Figure A.5.1. The optimal control history for

this problem is shown in Figure A.5.2. The time histories

of each variable that correspond to the optimal solution for

the Earth launch are illustrated in Figure A.5.3. The opti-

mal control history for this problem is shown in Figure A. 5 • ** •
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APPENDIX A. 2.1

Application of the Method of Adjoint Functions

The nonlinear, ordinary, vector differential equa-
*

tlon z = F(z,t) is composed of n = ^ differential ̂ equa-

tions of motion (with control eliminated by use of the

optimal ity condition) and n = ^ Euler-Lagrange equations.

These equations are integrated from a known tfl to an assumec

tff with the known initial conditions and assumed values for

those not known, i.e. .

u

V

r
G

*(tfl> =

where the bar indicates an assumed value.

When the assumed terminal time tf is reached, the
•

terminal dissatisfaction h and dissatisfaction rate h are

evaluated. The starting vectors for the backwards integra-

tion of the adjoint equations are also evaluated.
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These adjoint equations, A » - are

./Zi.2Sfi\. . /HI\, +/v_
3 Vr2 rV ' VrV J ^2

A «= 0

r

TX

n ( X 1
2 + X 2

2 ) 3 / 2

r T x , x 2

m ( X l
2 , X 2

2 ) V 2 _

A -
1

A x
T

TX X
1 2

_ m ( X l 2 + X 2
2 ) 3 / 2 _

" TX 2

i

m(x , 2 +x 2 )
• i A — '

(-) vC-f -

and are integrated backwards from tf to t forming the
\

coefficients from the variables stored during the forward



213

integration. The 2n+l-p = 4; starting vectors for this back-
!

ward integration are

w •

1
0
0
0
0
0
0
0

A 2 ( t f ) =

0
1
0
0
0
0
0

_ . o _

A 3 ( t f ) =

0
0
1
0
0
0
0
0

w •

0
0
0
0
0
0
0
1

When the initial time tfl is reached, 2n+l-p

algebraic equations are solved for the linear estimates for

the corrections that must be applied to the assumed initial

conditions (^i0» *2o* \o^
 anc^ the assume(* terminal time

(t_). These algebraic equations are

-. r- ~i ~1 r~
^ ' "~ du9

9

8i

82

u

953 963 983 rf

dv

dr

where the elements of the e matrix are evaluated at t Q.

These corrections are applied to the initially assumed values

of T., T , IT and tff and a new nominal trajectory is

Integrated using z • F(z,t) .



APPENDIX A.2.2

Application of the Method of Perturbation Functions

The nonlinear, ordinary, vector differential equation

z = F(z,t) is composed of n = 4 differential equations of

motion (with control eliminated by use of the optimality con-

dition) and n = 4 Euler-Lagrange'equations. These equa-

tions are integrated from a known tfl to an assumed tf

with the known initial conditions and assumed values for

those not known, i.e.,

z ( t 0 ) =

u

V

r

0

T2

where the bar indicates an assumed value

The perturbation equations 6z = — 6z are

6z • $)•*>+&* -
m(\l

Tx
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3 <°:
Tx 2
1 A i

3/2

3/2

;3 = «Zl

6z, = F - ••) •
6Z5 - V-

' 2X

,F 6Z6 - 6Z7

fe^-

(»K - ffl 6z.

6Z_ • -I v-+PLr

x /6GM

r ^ V ^

/v2

fc-

•f 2uvX, - 2vX, 6 Z .

2QM
rV 5 Vr2/

6ze - — Uz, + /— Uz

0 ,

and are integrated forwards from tQ to tf forming the

coefficients from the variables calculated by the integration
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of z = F(z,t) . The integration of the differential and
v

perturbation equations may be done simultaneously, where the

2n-p » 3 starting vectors for the perturbation equations

are

0
0
0
0
0
0
0

When the terminal time is reached, 2n+l-p » 4

algebraic equations are solved for the linear estimates for

the corrections that must be applied to the assumed Initial

0

0

0

0
1
0

0

0

6 z 2 ( t 0 ) =

ro
0

0

0
0
1
0

0

conditions (*"10i
and the assumed terminal time

(tf-) . These algebraic equations are

12 U
-1
V

du

dv

dr

*21 *22 *23 Vf

A A A

31 32 33

83

where the elements of the * matrix are evaluated at tf .

These corrections are applied to the initially as-

sumed values of T , T2, T^ and Ff and a new nominal tra-
•

Jectory is Integrated using z * P(z , t ) .



APPENDIX A.2.3

Application of the Modified Quasillnearlzatlon Method

The nonhompgeneous linear, ordinary vector differen-

tial z = Az + B is composed of n » 4 linearized differ-

ential equations of motion (with the control eliminated by

use of the optlmality condition) and n « *l linearized

Euler-Lagrange equations. These equations are

; « u „ /W\
'Wi n*1 \r/n

+ /2GM _ vi

n

n-n

'n-n

-©„ ""*' - ©n V"+' + (Dn

TX,ia
2 Z . 3Z

n *n

217
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m Q »

n+i 8n

A2 \ / 2XA
ze « x - (-i) u - [ U v

«n+i 2n+i \ r/n n+l V r /n
 n+1

n
(B»)nn

r *
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these nonhomogeneous linear equations are Integrated

from tQ to/ tf with the starting vector

u
V

r
e
r.

where the bar Indicates an assumed value. This determines

the variables for the n+1 Iteration by using the vari-

ables resulting from the n Iteration to form the re-

quired coefficients.

The homogeneous linear equations (same as above ex-

cept without the (BA)n , 1 « 1, 2n terms) y • Ay, are
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integrated from tQ u c_ in.the same manner as the non-

homogeneous equations but with the 2n-p=3 starting vectors

, - • : ' " • • ; ! - • • 1 0
ij

0

1 '

0

0

0

y 2 ( t o ) n-n "

\

u

0

0

1
0

0

y 3 ( t 0 ) +1: -

f

-.
0

o':
0
i

r
CM

When the terminal time is reached, 2n+l-p = 1

algebraic equations are solved for the corrections that must

be applied to the assumed initial conditions (*\o> ^20* "*MQ

and the assumed terminal time (tf) . These algebraic equa-

tions are

0

— - •

yi 1 yi2 yi3 Uf
•

v y v v«
^21 Jr22 ^23 f

a

V - V o o V o o I *3i 32 JJj f

•

81 82 83 Uf^

-1 du

dv

dr

d\
M-I f

where the elements of the matrix are- evaluated at t_.

These corrections -are applied to the initially as-

sumed values of T , T , and tf and a new nominal tra-

jectory is integrated using z » Az+B . where the A and B

matrices are formed from the previous nominal.



APPENDIX A.2.H

Application of the Method of Steepest Descent

The nonlinear, ordinary, vector differential equation

x« f(x,u,t)( is composed of n « *l differential equations

of motion. These equations are integrated forward with the

initial conditions

u
v
r
e

and the initial estimate of the control program u(t) .

The performance index to be minimized is

and the terminal constraints are

u(tf) - uf » 0

v(tf) - vf - 0

r(tf) - rf « 0

The condition that is used to atop the integration is

fl » e(t 0 .

222



223

The equations adjoint to the differential equations
m ;

of motion, x • -f X , are

- x

\ • ° >
and the starting conditions for the backward integration are,

[0 0 0 0]

1
0

0

0

1
0

0

0

1

0

0

0

<s<v • [4 [0 1] .

The time rates of change of the performance index,

terminal constraints and stopping condition are



sta

for

are

.'••0



APPENDIX A.2.5

Application of the Modified Method of Steepest Descent

The nonlinear, ordinary, vector differential equation
• .

x » f(x,u,t) is composed of n • 4 differential equations

of motion. These equations are integrated forward with the

initial conditions

x(t0) -

and the initial estimate of the control program u(t)

The penalty function to be minimized is

P - W0tf
2+W1[u(tf)-uf]

2+W2[v(tf)-vf]
2*W3[r(tf)-rf]

2

and the stopping condition is 7

n « e(tf) - ef • o .

The equations adjoint to the differential equations
Tof motion, X « -f X , are
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; ._/2°«_viV _/uv
1 ^r' r'/ ' ^r

0 -

The starting conditions for the backward integration

are

m - B
where

2WiCu(tf) -

- v,]

f3[r(tf) - rf]

. f + Xpo f + XpQ f + 2W t
•l . 1 Pn2 2 p"3 3 0 1

The new control program is given by

sin 8 - AB_ cos 8)



APPENDIX A.3

Numerical Constants

Earth-Mars Transfer.

Astronomical Unit, AU

Orbital Radius of Earth, r

Orbital Radius of Mars, rm
Gravitational Constant of Sun, GMs

Initial Spacecraft Mass, m

Thrust, T
t

Mass Rate, m

.11*959870 X 1012 meters

.10000000 X IO1 AU

.15236790 X 101 AU

.1327150*1 x io21

metersVsecond*

.67978852 X IO3 kilograms

.1*0312370 X 101 newtons

.10123858 X 10~*
kilograms/second

Earth Launch

.63781700 X IO7 metersRadius of Earth, Rfi

Gravitational Constant of Earth, GMe .39860610 X IO
15

meters'/second2

Initial Spacecraft Mass, m

Thrust, T

Mass Rate, m

.15000000 X 10" kilograms

.27000000 X IO5 newtons

.1*5000000 X IO1

kilograms/second

The terms that must be added to the differential

equations f1 and f2 to Include atmospheric resistance

are:
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fl i ^ m

f, - f, -

r-Re .. ;
where p = p e E (ma iensity)

CD; « Q..3, 0 < M < .6950 (dr. coefficient)

'• •' . - ' •-•-.' " K- K, ' . • .-:•'••'••
Cn « K. + — =-, M > .6950

•' - }' ^M2 M3

M * — (mach number)
a

a e D - B(r - Re) (speed of sound)

and where

:. >

p * 0.52 kilograms/meter3

E « 7600.0 meters

Kj « 0.1368.

: K2 » 1.6218

K-3 * 1.072ft

- , • . . - • . •* - : -, • • '

D • 3 f t O . O meters/second

B • 0.00071 Vseconds

A • ft.O meters2



APPENDIX A.H

Normalization Scheme

Earth-Mars Transfer

Unit of Lensth (1 AU)

Unit of Mass (m )
: " . ' . ' . °

Unit of Velocity v «=V—~e ? r.

Unit of Force

Unit of Time

.14959870 X 1012 meters

.67978852 X 103 kilograms

.29784901 X.105

meters/second

.40312370 X 101 newtons

.50226355 X 107 seconds

.58132355 X 102 days

The normalized values of the. parameters of Interest are :

, .Gravitational Constant of Sun, GM - = 1.0g

Initial Spacecraft Mass * 1.0

Initial Spacecraft Velocity -1.0

.Initial Spacecraft Radius » 1.0

Terminal Spacecraft Velocity • 0.81012728

.Terminal Spacecraft Radius • 1.5236790

Thrust « .11012969

Mass Rate - 0.07^800391

Earth Launch - No normalization scheme.
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