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GRAVITY FLOW OF POWDER IN A LUNAR ENVIRONMENT

(In Two Parts)

2. Analysis of Flow Initiation

by

. Wi l l iam G. Pariseau '

ABSTRACT

A small displacement-small strain finite element technique utilizing the
constant strain triangle and incremental constitutive equations for elastic-
plastic media that are nonhardening and obey a Coulomb yield condition has
been applied to the analysis of gravity flow initiation in a V-shaped hopper
containing a powder under lunar environmental conditions. Three methods of
loading were examined. Of the three, the method of computing the initial
state of stress in a filled hopper prior to drawdown by adding material to
the hopper layer-by-layer is superior (as expected). Results of the analysis
of a typical hopper problem show that the initial state of stress, the elastic
moduli, and the strength parameters have an important influence on material
response subsequent to the opening of the hopper outlet.

INTRODUCTION

The purpose of this Bureau of Mines paper is to present the results of a
preliminary investigation concerning the applicability of finite element tech-
niques to the analysis of the initiation of gravity flows of powders in a
lunar environment.

On the moon as on the earth, efficient storage and transfer of particu-
late materials may, under favorable conditions, be accomplished by gravity
bins and hoppers. The lunar environment with respect to materials handling
is characterized by ultrahigh vacuum, absence of moisture, and low gravita-
tional acceleration, and thus may offer distinct materials-handling advantages
in comparison to the terrestrial environment, where moisture, gas counterflows,
and consolidation are frequent causes of binhopper malfunction. The same
physical principles apply in either case so that in theory the design of a
gravity flow binhopper for handling powder in a lunar environment is less
difficult than in a terrestrial environment. However, the primitive state of
the predictive art as regards the functional design of binhoppers, in contrast
to structural design, limits the confidence one is willing to invest in present

1 (Assoc. Prof. of Min. Eng., Montana College of Mineral Science and Technology,
Butte, Mont.) Mining engineer, Bureau of Mines, Spokane Mining Research
Center, Spokane, Wash.



design procedures. Experimental duplication of lunar conditions (such as
equivalent lunar gravity) on the earth presents even greater obstacles,
economic as well as technical, to the design approach. The inevitable
compromise that circumstances dictate consists of experimental determination
of material properties under lunar conditions and the use of the computer as
a laboratory for the investigation of the mechanics of gravity flow of powder
in a lunar environment.

The determination of the requisite material properties has been described
in part 1 (30j of this two-part paper. In this part, the results of a pre-
liminary investigation of the suitability of a finite element computer code
for functional binhopper design are described.. Theoretical emphasis is upon
the broad aspects of particulate media mechanics, whereas a case study
approach is utilized to illustrate specific features of a typical finite
element binhopper analysis.
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STATEMENT O F .THE PROBLEM ' . ' ' . ' . . .

The problem of functional binhopper design has general" features common'to
all design situations as well as specific features particular to a given set
of circumstances. Common to all design situations is the necessity of select-
ing an appropriate mathematical model of material behavior. Features partic-
ular to a given set of circumstances include formulation and solution of a
specific, boundary, value problem. • ' . . . , . - . _ ' ,

General Features of the Mathematical Model ' '

Although powders, and similar particulate materials are indeed discrete,
the lack of a useful theory for the description of the mechanical behavior of
discontihua necessitates recourse to .continuum models of material response.
An order of magnitude argument is helpful here. If a characteristic linear
dimension of a representative particle (for example, average particle ,
diameter) is an order of magnitude less than a characteristic linear dimension
of the. hopper outlet (for example, width), then a continuum model may be
reasonable. .

In this investigation, the actual material was replaced mathematically
by a homogeneous, isotropic, nonhardening elastic-plastic medium. Temperature
and time effects were neglected, so that material response was tacitly assumed
to be isothermal and time-independent. These assumptions may be relax'ed, but

2Underlined.numbers in parentheses refer to items in the list, of references at
the end of this report. . ; .



only at the expense of a considerable increase in experimental difficulties
in determining the requisite material properties. If, for example, one wishes
to relax the assumption of nonhardening, then one must be prepared to quanti-
tatively specify an applicable hardening rule. This trade-off between
increased realism in material description and added difficulty in material
properties testing is present regardless of the binhopper environment. How-
ever, the point of diminishing returns can only be decided on the basis of a
given design situation. The same accuracy, precision, and reliability will
not be required in all cases, since the cost of a malfunction and, conversely,
the benefit of reliable design will be different in each instance.

A nonhardening, elastic-plastic material deforms without permanent volume
or shape change up to some state of stress at which large, permanent deforma-
tions become possible with little additional increase in stress (9̂). The
essential elements of theory in addition to the equations of equilibrium and
the geometry of deformation include the yield function and constitutive
equations. Inasmuch as gravitational stresses must be of the same magnitude
as the strength of the material, it is essential that body forces be incorpo-
rated into the analysis. In this study, a Mohr-Coulomb yield condition and
associated flow rule were utilized (4, 39). The constitutive equations were
taken in incremental form under the assumption that the total strain increment
was composed of elastic and plastic components in the yielding material ele-
ments, and were elastic otherwise. The elasticity is assumed to be linear
over small increments of load, but different moduli may be used for loading
and unloading. The plasticity is also incremental. Body forces are applied
in a manner appropriate to accreted bodies (2^ 14) that are subsequently
"cut." This means that the state of stress just prior to drawdown is
obtained by first adding material layer by layer to the hopper and simultane-
ously accumulating the stress, strain, and displacement increments in each
material element due to the added load of the new layer. Hopper drawdown is
then initiated by incrementally removing the loads exerted on the outlet by
the prestressed material within, that is, by a "cut" across the hopper outlet.
Thus, the computer simulates binhopper fill-flow initiation processes.
Arbitrary fill-flow (cut) sequences are accomplished without difficulty. If
a fill sequence is not specified, drawdown will proceed from an initial state
of stress due to gravity loads applied under complete lateral constraint.
Additionally, body forces may be applied in the classical "turn-on" manner.

The binhopper fill-flow simulation is based upon the finite element tech-
nique of analysis (17, 35, 42). This technique is a numerical method for
solving boundary value problems in mathematical physics and is eminently
suited for coping with the nonlinearities of elastic-plastic analyses (27-28).
Nonhomqgeneity and anisotropy are readily introduced into the computations.
The end result of a finite element formulation of an elastic-plastic problem
is a rather large system of algebraic equations of matrix form F = KU, where
F and U are forces and displacements, and the elements of K reflect the
material response to load entirely analogous to the force-displacement equa-
tion for a spring of stiffness K. Once the displacements are obtained, it is
an easy matter to compute the associated strains and stresses.
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FIGURE 1. -Typical Element Mesh Used in Analysis.

Implementation of the finite element technique proceeds through four
major stages. First the material is partitioned into a number of discrete
or finite elements. Triangular elements of unit thickness were used in the
present analysis. Other shapes can be employed, however. Partitioning is
accomplished by simply drawing the binhopper to scale and then dividing the .
material into relatively small triangles where stress gradients are expected
to be large, as at the outlet edge,.and into larger elements elsewhere.
Figure 1 shows a typical hopper element mesh used in this investigation.
Next the, properties of the individual elements are specified. An application
of the principle of virtual work suffices to define the nodal force- (
displacement relationships .once the mathematical material model has been
selected. The individual elements are then assembled into a mechanically
consistent whole, and finally the resulting system of equations is solved for
nodal point displacements. Computation of strains and stresses follows.
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FIGURE 2. - Typical Triangular Element.

The equations of interest are the displacement relationships assumed for
the elements, the geometry of strain, the constitutive equations, and the
final system of equations for the entire body. Constant strain triangles were
employed, so that the displacements throughout an element are linear functions
of the nodal point displacements; thus

{U}9 = [N] {U, }e , (1)

where { } indicates a column matrix; [u] is a listing of the displacement com-
ponents at a point within the element e; [N] is a matrix linear in position,
and [uj} is a listing of displacements at the nodal points as shown for a
typical element in figure 2. From the geometry of strain and equation 1

= [B] (2)

where fe] are the components of strain ,and [B] is a matrix of constant terms.
The elastic-plastic constitutive equations relating increments of stress
{da} to increments of strain are



F [E]

or
{da} = ( [EJ - [Ep] ) {de},

where [E] is a matrix of elastic moduli and f^Y/dcr] is a column matrix whose
elements are derivatives of the yield function Y with respect to the com-
ponents of stress. The superscript T means transpose. Equations 3 are the
matrix form of an inverted stress-strain relationship for elastic-ideally
plastic media. A similar relationship can also be obtained for hardening
materials, provided an appropriate hardening rule is available (2T.-28) . If
an element remains elastic during a load increment, then only the first term
on the right of equation 3 applies. Elements that undergo transition from
the elastic to the elastic-plastic regime or the reverse during a load
increment are strained elastically for only a portion of the increment.
Otherwise equation 3 applies during the entire increment of load.

The nodal point forces {F} are made work equivalent to the surface
tractions, body forces, and initial stresses acting on an element through
an application of the virtual work identity. , One thus obtains for the system

fAFt} + fAFf] + {AFJ} = [K] (Auj, (4)

where the terms on the left are column listings of increments in externally
applied nodal forces, nodal forces due to gravity, and nodal forces due to
initial stresses, respectively. The matrix [K] reflects the material response
to load, and {Aut } is a listing of nodal point displacement increments. One
has for the nodal forces

[Ff } = /„ [N]T [X] dV ' (5a)
and

{F«}' = -/v[B]
T{a°} dV, (5b)

where [X] and {cr0} are listings of body force components and initial stresses,
respectively, and V signifies volume of an element. Also '

[K] = (S M Mi [Lit), (6)
1=1

where M is the number of elements in the mesh, the [L]t are partition matrices
of a master' location matrix [L] that enables one to assemble the individual
elements into an equilibrated whole, and

PC] = /V[B]
T ([E] - [Ep]) [B]dV. (7)

Equation 7 refers to an individual element, whereas equation 6 applies to the
system. Again for a purely elastic deformation [Ep ] .= [0] following the
notation in equation 3.



Once the system equation 4 has been solved for the unknown displacement
increments {AUj}, applications of equations 2 and 3 yield the corresponding
strain and stress changes. Increments of nodal forces are then applied once
again and the corresponding displacement, strain, and stress changes are
added to the previously computed values. The process continues until the
nodal forces, in effect, obtain their prescribed values. During each incre-
ment of load, all elements are tested as to whether they undergo transition
or not; that is, whether they are to be included in the elastic-plastic domain
or not at the end of the loading increment. The final.result is a complete
approximate solution to a problem in time-independent, elastic-plastic theory.

Alternative procedures, some of only historical interest, are available
(1̂ , 12, 18, 42_-43_). However, the one presented7here seems'to be in current
favor amongst the competing small displacement-small strain formulations.
A more complicated large displacement-large strain formulation has been
described (16).

Specific Features of the Plane Strain Model

A plane strain formulation was followed in the present investigation.
Hoppers analyzed were assumed to be V-shaped and fitted with slot outlets.
The outlet is assumed to be long in comparison to its width, so that varia-
tions in stress, strain, and displacement are negligible in the length or
z direction. An order of magnitude argument suffices here also, although in
practice length-to-width ratios as low as four have been found satisfactory
(31_,_33) . The small displacement (small strain) formulation restricts the
analysis to small increments of load during the hopper fill stage and to the
early or initial phases of hopper drawdown. Thus, in contrast to previous
binhopper investigations utilizing plasticity theory (13, 20_-2l_, 23-24,
2_2-34_, 3_7-3_8), the elastic components of strain are not considered negligible
in comparison to the plastic components, nor is steady-state flow assumed.
However, inertia forces are considered negligible during the application
of load increments. The loads are supposed to be applied slowly. As before,
the analysis is time- and temperature-independent, and the material is con-
sidered to be homogeneous, isotropic, and to obey a linear yield condition
in plane strain.

Hopper fill sequences are simulated by adding horizontal layers of
elements having weight to existing layers of prestressed material lacking
weight. Displacement, strain, and stress changes are computed and then added
to the initial displacement, strains,, and stresses. The material body within
the hopper is thus formed by accretion; the body forces are treated accord-
ingly (2_, 14). During the fill sequence, zero displacements normal to the
hopper centerline, outlet, and walls are specified. Additionally, a sliding
friction condition is applied to any unbalanced nodal force along the hopper
wall. Thus, if a nodal point on the wall moves, it must move tangential to
the wall; and nodal point reaction forces, if present, obey a sliding-
friction condition. l

Hopper drawdown is initiated by considering the material to be in an
initially stressed but unstrained state. Zero displacements normal to the



hopper centerline and walls are again specified. The reaction forces at the
outlet nodes due to the presence of initial stresses are then diminished
incrementally to zero after zeroing all other nodal forces. Changes in
displacement, strain, and stress are computed for each increment and accumu-
lated until the end of the last load increment (actually a decrement).
Application of the last load increment corresponds to a fully open outlet and
the establishment of the final stress, strain, and displacement fields.

The material properties required for the analysis are the elastic and
plastic moduli, the coefficient of wall-powder friction, and the unit weight
of material (lunar gravity is approximately one-sixth earth gravity). Young's
modulus and Poisson's ratio are the elastic moduli utilized in the analysis
and are obtained from the one-dimensional compression test data described in
part 1 of this paper (3(3). The uniaxial tensile and compressive strengths are
the plastic moduli that were employed and were 'computed from the cohesion and
angle of internal friction. The latter strength parameters were determined
from direct and torsional shear data also described in part 1 (30). The
coefficient of wall-powder friction was determined from a direct-shear test.

Solution of the system of equation 4 was obtained through a Gauss-Seidel
iterative scheme (K)_-l_l) using an overrelaxation factor between 1.8 and 1.9:
Local inversion of the stiffness matrix for nodes along the inclined hopper
walls and a simultaneous iteration for both displacement components, utilizing
effective flexibility coefficients, was employed (26, 41). Iteration on all
other nodes is direct and separate. The program exits from the "solve" sub-
routine whenever the norm of the residual matrix is reduced below a .specified
amount, exceeds a specified number, or a specified number of iterations has
occurred. Accordingly, convergence is obtained, lost or in-between. The in-
between situation may be converging, or diverging at exit time, which is
apparent from program output information. Well-posed problems will always
converge, but unrestrained displacements, which may arise in different situa-
tions, will lead to loss of convergence. Run times vary with the number of
elements that yield, but drawdown runs seldom exceed 1-1/2 minutes for a
purely elastic analysis and 5 minutes for a typical elastic-plastic computa-
tion, with 30 pet of the several hundred elements in the mesh failing.

The program with slight modification was written by H. D. Dahl (3_) . It
is clear that such a program is not restricted to the solution of binhopper
problems, although it is believed that this investigation is the first appli-
cation of finite element techniques to such problems. Additional features in
the program, but not pertinent to the present discussion, enable one to solve
a great variety of elastic-plastic boundary value problems. These features
include provisions for possible anisotropy, nonhomogeneity, nonzero displace-
ment and force boundary conditions, and purely elastic analyses. '

CASE STUDY PROCEDURES AND RESULTS

Features of importance to the present case study include the hopper
geometry, material properties and fields of stress, strain, and displace-
ment. Hopper geometry was specified for convenience; material properties
were determined experimentally. Of dominant interest were the procedural



features and results of the finite element analysis. Three procedures were
utilized: (1) drawdown from an initial state of stress due to a layer-by-
layer fill sequence (computed initial stress procedure) (2) drawdown from an
initial stress due to gravity applied to a laterally constrained material
(estimated initial stress procedure), and (3) drawdown as a result of gravity
turn-on (no initial stress procedure). The three procedures lead to signi-
ficantly different final states of stress, strain, and displacement.

Computed Initial Stress Procedure and Results

In this procedure, horizontal layers of material having weight are added
sequentially to the material previously contained in the hopper. The load
exerted by the new layer of material on the old is brought to its final value
in 10 increments. After each increment of load, the displacement, strain, and
stress changes are computed; the stress changes are then added to the previous
stresses, and a test for yielding is made. If yield occurs, the appropriate
changes in element properties are made. Subsequent behavior of a failed
element may be elastic-plastic if loading continues, or elastic if unloading
occurs. The process is repeated for each layer until the hopper is filled.
In this way, the state of stress in a filled hopper prior to drawdown is
computed. Strains and displacements may be computed in the same manner.

Elastic moduli obtained from the loading portion of the first load-unload
cycle of the one-dimensional compression tests are used during the fill
sequence. Usually, such tests show a nonlinear first cycle response over an
extended range of loading. However, over a relatively small range of stress,
as encountered in the hopper analysis (generally less than 1 psi), the moduli
may reasonably be considered as constant. Thus, in this preliminary investi-
gation the same elastic moduli were used for all elements during the fill
sequence.

The results of the computed initial stress procedure are shown in
figures 3 and 4. Figure 3 shows the orientation and magnitudes of the major
and minor principal stresses in rosette form. All stresses are compressive,
and the horizontal stress is always less than the vertical stress. The major
principal stress (largest compression) is generally within 15° of the vertical.
A small zone of failed elements develops and grows during the filling opera-
tion and is outlined in final form in figure 3. Figure 4 shows the distribu-
tion of vertical and horizontal stresses. The similarity between the form of
the distribution of vertical centerline stress and reported measurements is
striking (19).

Results of drawdown from the computed initial state of stress are shown
in figures 5, 6, and 7. Figure 5 shows the principal stresses and extent of
the failure zone after opening the hopper outlet. Opening of the hopper
outlet is achieved by application of 10 increments of load removal at the
nodes along the outlet. The removal of load by increments corresponds to a
slow opening of the hopper gate. The first increment of load removal initi-
ates drawdown. The last increment opens the gate fully. During the drawdown
process, the elastic moduli are those obtained from the unloading portion of
the first cycle of the cue-dimensional compression tests. Figure 6 shows the
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FIGURE 3. - Principal Stresses in a Hopper Filled Sequentially Layer by Horizontal Layer
and Extent of Failure Zone After Filling (Computed Initial Stress Procedure).

FIGURE 4. - Distribution of Vertical (orxx) and Horizontal (ffyy) Stresses After Hopper
Filling (Computed Initial Stress Procedure).

distribution of horizontal and vertical stresses after the hopper gate is
fully open. The redistribution of stress relative to the initial state
(fig. 4) is qualitatively as one might anticipate; that is, the vertical
stress ( G X X ) is greatly reduced in the vicinity of-the outlet, whereas the
horizontal stress (ayy) tends to increase. Figure 7 shows the principal
strains and displacement field obtained after opening the hopper outlet.
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FIGURE 6. - Distribution of Vertical (axx) and Horizontal (oyy) Stresses After Hopper
Drawdown (Computed Initial Stress Procedure).

Estimated Initial Stress Procedure and Results

In this procedure, the state of stress prior to drawdown is estimated on
the basis of complete lateral restraint of the material. Accordingly, the
vertical stress at a point is computed as the product of unit weight and
depth, and the horizontal stress is computed as the product of a constant and
the vertical stress. This procedure, although unrealistic for binhopper
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FIGURE 8. - Principal Stresses and Extent of Failure Zone After Opening the Hopper
Outlet (Estimated Initial Stress Procedure).

analyses, is a common assumption in the analysis of soil and rock mechanics
problems that involve cuts. The material properties used were the same as
those in the computed initial stress drawdown procedure.

Results of the estimated initial stress procedure are shown in figures 8
and 9. Figure 8 shows the principal stresses and the extent of the failure
zone, and figure 9 shows the principal strains and displacement field pre-
dicted by the estimated initial stress procedure.

No Initial Stress Procedure and Results

In this procedure, gravity is simply turned on or applied to the material
in the hopper, much as a magnetic field may be applied to a piece of iron by
turning on an electric circuit. This is the classical method of treating
body forces in continuum mechanics. The turn-on here, however, is perforce
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FIGURE 10. - Principal Stresses and Extent of Failure Zone After Opening Hopper Outlet
(No I n i t i a l Stress Procedure).

incremental in order to acco.unt for possible element failures and consequent
change in material response. Material properties during drawdown were the
same as in the previous drawdown analyses.

Results of the no initial stress procedure are shown in figures 10 and
11. Figure 10 shows the principal stresses and extent of the failure zones,
and figure 11 shows the principal strains and displacement field.

DISCUSSION OF RESULTS

The results of this investigation indicate that finite element techniques
are indeed applicable to the analysis of binhopper problems. Although a quan-
titative comparison between the results of physical and computer experimenta-
tion is not possible at this time, qualitative results are encouraging.
Program runs using actual material properties, of a simulated lunar powder,
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a realistic hopper geometry, and three distinct loading procedures resulted in
convergent solutions in every case. An extensive discussion of qualitative
results is prohibited by the lack of experimental data. However, computed
initial stresses along the hopper centerline show reasonable agreement with
measured values (19), and there seems to be no reason to doubt that addi-
tional support for the method will be obtained as the appropriate experi-
mental data are accumulated.

Within the context of the method itself, two important results emerge:
(1) the state of stress in a hopper prior to drawdown has a decisive influence
upon the response of the material to the opening of the hopper outlet, and
(2) the stress changes during drawdown initiation are highly dependent upon
differences in the elastic moduli obtained from the virgin compression and
subsequent unloading-loading curves.

The final stresses obtained by adding the stress changes due to drawdown
initiation (opening of the outlet) to the initial stresses determine whether
or not failure (and thus flow) ensues. If the final stresses satisfy the
yield condition, then at least local failure occurs. If the zones of local
failure grow and coalesce to span the outlet as the hopper gate is opened,
then free gravity flow can reasonably be expected to follow. For a hopper
of specified geometry containing a material with prescribed properties, the
stress changes will be the same in every case, provided the support reactions
of the hopper gate are the same in every case. However, the support reactions
of a closed outlet are determined by factors affecting the hopper filling
operation, including the elastic moduli obtained from the virgin compression
curve. Differences between these moduli and the moduli used during drawdown
will determine the stress changes during drawdown initiation, other factors
being equal.

Even if the material strength is not significantly affected by compac-
tion during hopper filling (as is the present case), the method of filling and
the differences in elastic moduli during filling and drawdown may have a
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drastic effect on the initial state of stress and the subsequent stress
changes. Thus, the initial state of stress and the elastic properties of the
material, in addition to the strength properties, will govern the flow-no flow
conditions pertaining to drawdown from an at-rest state,3 as demonstrated
through the three procedures described in this paper.

Of the three procedures described, the computed initial stress procedure
is preferable. In fact, there would appear to be no substantial reason for
using either the estimated initial stress procedure or the no initial stress
procedure when the computed initial stress option is available. The computed
initial stress procedure is certainly more in the spirit of actual hopper
operation than the other two. It is not necessary to use horizontal layers
and the same material properties in every layer. Chevron-shaped layers would
do just as well, and material nonlinearity, nonhomogeneity, and anisotropy
(elastic and plastic) can be incorporated in the analysis without difficulty.
In principle, geometric nonlinearities can also be treated.

It is worthwhile to note explicitly that the computed initial stress
procedure, although developed primarily for analysis of flow initiation, does
provide one with a much improved technique for computing bin wall loads during
both filling and emptying operations. It is no longer necessary to resort to
one of the numerous approximate models for estimating bin wall loads (22).

Two additional features of interest but not direct objects of the present
investigation are the wall boundary conditions and the appropriateness of the
underlying mathematical model.

It is common practice in binhopper mechanics to prescribe a Coulomb fric-
tion boundary condition over the hopper walls, and in some cases Coulomb yield
is prescribed for the material within. These conditions imply that the mate-
rial is sliding and possibly yielding at the binhopper wall. Neither may be
the case. In fact, these conditions are precisely the events one wishes to
predict. The writer also suspects that the prescription of sliding friction
over an interface between a particulate medium and solid wall may be an over-
simplication of the actual phenomena. What is really known a priori at the
hopper walls is that material does not flow across the wall. The appropriate
boundary condition is therefore one of displacement rather than stress. In
any event, an incremental solution will be required.

Strictly speaking, the results obtained in the present investigation
apply only to the idealized material. The reasonableness of the underlying
mathematical model will determine the utility of the results in engineering
practice. There seems to be general agreement that particulate media behave
elastic-plastically in some sense (8), although agreement is not unanimous

These results may be compared with prevailing analysis (20, 36, 40) based on
a hypothetical arch that is assumed to span the outlet and to be in a state
of limiting equilibrium. The difficulty, of course, is that one has no
assurance that such a state of stress will ever be obtained. This is pre-
cisely the problem: to compute the state of stress as one attempts to
initiate drawdown by opening the hopper gate.
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(25). However, existing experimental evidence is based mainly upon observa-
tions of large strain phenomena, and hence no decision is possible concerning
the small displacement-small strain (1(T4 or less) analyses described here.
It is known that particulate materials are frictional to a degree, and are
therefore not stable in the sense of Drucker (5_-6_) . Associated flow rules in
conjunction with Coulomb yield do not appear to lead to useful results in the
analysis of large strain phenomena (15, 20, 23, 32_-33) . Nevertheless, small-
strain problems may perhaps be profitably analyzed using an associated flow
rule and a properly determined yield condition. Simple hardening rules may
also prove useful (7.). What is obviously required is fundamental research
concerning constitutive equations for particulate media.

CONCLUSION

Simulation of actual hopper filling and emptying sequences is possible by
the finite element method. Detailed predictions of stress, strain, and dis-
placement are readily obtained. In particular, bin wall loads during filling,
at rest, and during drawdown initiation, are easily calculated.

Although complicated material behavior can be handled with relative-ease
at the present time, the full potential of the method remains to be exploited.
One possibility is that of attaching structural elements to the solid elements
at the hopper boundaries, introducing suitable design criteria, and proceeding
to a fully automated binhopper design program. However, the utility of the
results of such a computation will be restricted by the physical appropriate-
ness of the underlying mathematical model, and by the reliability of the
material properties that constitute an important program input. The perennial
problems of engineering thus remain, but at a considerably increased level of
sophistication.
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