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FOREWORD

This report summarizes a research program at the Space Research

Institute in hypervelocity impact and meteoroid-bumper interaction phenomena,

conducted during the period September 1967 through December 1969. The program

was sponsored by the National Aeronautics and Space Administration under

contract NAS3-10299 "Meteoroid-Bumper Interactions Program". The technical

monitor for the program was Mr. Gordon T. Smith of NASA Lewis Research Center,

Liquid Rocket Technology Branch. The program reported herein has been a

continuation and extension of work performed under contracts NAS3-4190 and

NAS3-7946 and reviewed in the final reports for those programs, NASA CR-54857

and NASA CR-54848 respectively.

The program reported herein was conducted under the guidance of

Mr. W . H . Friend, principal investigator. The author wishes to acknowledge

the assistance of Mr. G . W . Kraak and Mr. L. McCourt in the performance of the

experimental program and to express his indebtedness to Dr. G . V . Bull for his

continued support and guidance throughout the program.



- 11 -

SUMMARY

An investigation has been made of the interaction of meteoroids

with shielded structures. The interaction has been simulated by the impact

of Lexan cylinders onto lead shields in order to provide the vaporous debris

believed to be created by meteoroid impact on a space vehicle.

The investigation has included several different, but related tasks.

The first of these has consisted of determining shock compression data for

Lexan. This, in combination with the known shock compression data for the

lead shield, has permitted the definition of the initial high pressure states

in the impacted projectile and shield.

The debris from such impact events has been permitted to interact

with aluminum main walls. The walls were chosen to be sufficiently large to

be effectively infinite in diameter compared to the loaded area. The thickness

of the wall and the spacing from the shield were varied to determine the

effect of these parameters. In addition, the effect of having a body of

water behind the wall has been assessed. Measurements of the stagnation

pressure in the debris cloud have been made and correlated with the response

^

of the main wall.

The response of cryogenic insulation panels to impact debris has

been studied. A nominal no-damage threshold has been defined and used with

extrapolated debris cloud pressure data to provide design data appropriate

to the near-earth environment. The protection provided to the main wall by a

face-mounted cryogenic panel has been assessed.

The data from events involving the impacts of Lexan projectiles onto

lead grids have been examined and compared with data determined from impacts
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onto equivalent weight per unit frontal area solid shields. Little difference

has been found in the protection potential of solid and perforated shields,

indicating that the interference of the shield with the radiation balancing

of a vehicle can be reduced without sacrificing protection and with no

additional weight penalty. Finally, an attempt has been made to understand

the structure of the debris cloud generated by impact onto a Grid-Bumper.
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time.



1.0 INTRODUCTION

In the design of space vehicles, an account must be taken of the

risk due to meteoroids. This aspect of the design confronts the engineer

with several difficulties: the environment is still not well known and the

physics which govern the response of the spacecraft structure to impact by

a meteoroid are not yet fully understood. Most meteoroids are very small,

having masses of the order of 10 gms, or less. The probability of

encountering a large meteoroid (one having a mass of the order of one gram)

is very small, in the near-earth environment. However, the expectation of

such an impact cannot be neglected when dealing with a vehicle of large

area, such as a space station, which is exposed to the environment for a

long time. Early investigations have made it clear that protection by pure

armor requires very heavy structures for missions involving large area-time

products. Alternative solutions have been sought and the concept of a

sacrificial exterior skin or shield was first proposed by Whipple (re-ference 1)

It was suggested by Whipple that a thin shield spaced some distance

from the main wall of a space vehicle would completely fragment a fast

moving meteoroid and disperse the debris over a 'large area on the main wall.

At the relative impact velocity believed to be typical of meteoroids in the

near-earth environment 20 km/sec (65,600 ft/sec), the fragmentation is

expected to be complete to the point of total vaporization of the meteoroid

together with a local portion of the shield. The ensuing load in the main

wall would then be substantially lower than that experienced in direct impact.

It is generally believed that the total weight per unit frontal

area required to defeat a sufficiently fast moving meteoroid is less in a
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double wall structure than in a single wall structure. Clearly this can only

be true when the velocity at which the meteoroid impacts the shield is

sufficiently high to produce good fragmentation and when the spacing between

the shield and the main wall is made sufficiently large to permit expansion

of the debris. It is believed that both these requirements can be satisfied

in practical structures. The possibility of saving weight in a structure is

always attractive to a designer; particularly so when preliminary estimates

of the thickness of single wall armor required for lengthy missions indicate

excessive weight. Accordingly, considerable attention has been given to the

possibility of utilizing double wall structures in space vehicles.

A continuing hypervelocity impact research program directed towards

double-wall meteoroid protection systems for space vehicles has been carried

out since 1961 at McGill University, the Space Research Institute of McGill

University and presently at the Space Research Institute (Quebec) Inc.

The early development of the impact research from the Spring of

1961 to the Spring of 1964 is outlined in the introduction of reference 2.

The period June 15, 1964 to September 15, 1965 is reported to the text of

reference 2. In reference 3 is given an account of the work performed in

the period December 1965 to June 1967. The report presented here covers the

period September 1967 until December 1969.

The work reported herein has consisted primarily of experimental

investigations into various aspects of hypervelocity impact phenomena.

Accordingly, the work has been divided into several different but related

tasks. Each major section of the report deals with one such task and each

such section is more or less self contained. In addition, we provide some



- 3 -

background material in sub sections 1.1 and 1.2.

In section 2.0 we report on testing to define shock compression

data for Lexan. A considerable body of such information exists for most

metals, ceramics and a large number of plastics (references 4, 5, 6, 7, 8,

9, 10). However, data of this type was lacking for Lexan. Since the bulk

of the test projectiles used at SRI has consisted of Lexan cylinders, it was

considered desirable to obtain this information, especially where it was

required by earlier theoretical investigations (reference 11). Lexan targets

were fabricated with metallic sensors which registered the passage of the

impact shock wave. Subsequent analysis of the shock trajectory permitted a

calculation of the pressure and density in the shocked material.

In section 3.0 of the report we discuss the results of investigations

into the nature of the debris cloud and the response of the main wall to the

debris. Measurements were made of the detailed distribution of stagnation

pressure near the centre of the asymmetric debris cloud. These revealed a

departure of the radial distributions of stagnation pressure and impulse

from the Gaussian form reported by the coarser measurements of reference 3.

The dependence on spacing from the shield of the ballistic limit

thickness of main walls constructed of 2024-T3 aluminum was established for

a fixed impact configuration. The ballistic limit thickness was found to

vary as the spacing to the -1.67 power and was found to correlate linearly

with the total impulse in the centre line of the debris cloud. An explanation

for this correlation was advanced by considering energy balancing at the

centre of the main wall .

The Beckman and Whitley 192 series framing camera was used to
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provide quantitative data concerning the response and failure mode of the

main wall . It was observed that for main walls fabricated from 2024-T3

aluminum failure occurred only after considerable deformation. Comparison

with records of the load history showed that the time to failure was com-

parable to the loading time.

The effect of having a body of water behind the main wall was

studied. The deflection of the main wall when loaded by the debris cloud

was found to be greatly reduced. A brief investigation of the ballistic

limit thickness indicated that a water backed wall need be approximately

one half the thickness of the unsupported wall. However, this conclusion

requires further testing over a wide range of impact conditions before it

can be accepted as a design recommendation.

In section 4.0 we report on the response of cryogenic insulation

panels to debris cloud loading. The panels were of two types, SEMI (Self

E_vacuated Multilayer Jnsulation) and aluminized mylar. Both types of panel

consisted of alternating layers of high thermal conductivity and low thermal

conductivity. Such a structure will then have high conductivity in a

direction tangential to its surface and low conductivity normal to its surface.

Solar radiation incident on a cryogenic tank shrouded with insulation will be

conducted tangentially to the shaded side of the tank where it will be re-

radiated into space, thus keeping the fuel cold.

Both types of insulation were found to be capable of sustaining a
2

gaseous debris pulse having a maximum stagnation pressure equal to 63.5 kg/cm

(900 psi). The damage changed rapidly at this threshold from complete

penetration of the panel to tearing of the outer sheet. Further reduction of



the debris load intensity (effected by increasing of the spacing from the

shield) produced no further reduction in damage. Particulate penetration

was present at all spacings.

Some ballistic limit tests were performed in which the aluminized

mylar panels were face-mounted on 2024-T3 aluminum main walls. No detectable

protection was provided by the panel when loaded by vaporous debris. The

same conclusion was reached when the main wall was supported from behind by

a body of water. The resistance of the cryogenic insulation panels as

defined by laboratory tests was used together with an extrapolation of the

peak cloud pressure into the meteoroid regime to provide design data for

cryogenic panels in the near-earth environment.

In section 5.0 we report on an analysis of the direct impact of a

projectile onto a main wall supported by a body of water. The projectile

was assumed to penetrate the wall completely and the blast wave in the water

is analysed by a quasi-similarity technique due to Rae (reference 12). A

comparison was made with the experimental data of reference 13 and good agree-

ment was observed when not too close to the shield.

In section 6.0 we evaluate the performance of a Grid-Bumper used

as a shield. The Grid-Bumper was suggested in reference 3 as a refinement

of the solid shield which would provide less interference with the radiation

field. The Grid-Bumpers used in the current studies have been woven out of .

fine lead wire in such a way as to provide the same mass per unit frontal

area as a solid lead shield having a thickness equal to 0.25 mm (0.010 in).

The characteristics of the debris formed by impact onto a Grid-Bumper have

been evaluated and compared with those typical of the solid shield. Little
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difference was observed in the maximum cloud stagnation pressures and,as one

might therefore expect,in the protection provided to a main wall. The Grid-

Bumper was observed to produce a debris cloud having a much greater axial

escape velocity than the solid shield. An explanation has been advanced in

the form of the interaction of material jetting through the interstitial gaps

in the grid. Some substantiation for this theory was provided by the results

of a detailed experimental study of the interaction process.

1.1 Simulation of the Debris Cloud Due to Meteoroid Impact

In order to simulate meteoroid impact, it is desirable to select

experimental parameters which provide a vaporous debris after the impact event.

Consideration of the manner in which the original kinetic energy of the pro-

jectile is redistributed among the various energy modes of the projectile and

target indicates that a like material impact will only produce fully vaporized

debris when the kinetic energy is an order of magnitude greater than the

tabulated vaporization energy of the impacting materials. For a discussion

of this vaporization requirement, we refer to reference 10.

It is desirable to use a gram sized proJLectile in order to facilitate

observation of the impact phenomena. A gram sized projectile may be easily

detected and photographed to verify integrity and orientation. Under the

current limitations on the velocity to which gram sized projectiles may be

coherently launched (^10 km/sec (32,800 ft/sec)), the experimentalist must

therefore sacrifice other material properties in favor of low vaporization

energies, since even at 10 km/sec (32,800 ft/sec) only a few materials may be

expected to vaporize upon impact. Lead, cadmium and Lexan polycarbonate have

been used extensively in meteoroid simulation studies as these materials are
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believed to provide vaporous debris at impact velocities of the order of

8 km/sec.

This conclusion is substantiated by the results of pressure probe

measurements of debris clouds reported in references 2 and 3.

In figure 1.1Ca) we have indicated a pressure probe located on

the centre line of the impact event. Figures 1.1 (b) through (d) represent

various stagnation pressure versus time distributions obtained in the

debris cloud under varying impact conditions.

(a)

(c) (d)

Figure 1.1 Schematic of Centre Line Pressure Pulses in Debris Cloud

When the velocity of the projectile is such that the kinetic

energy is less than the tabulated energy 'of'vaporization, the pressure

pulse is as in figure l . l (b) . The 'amplitude is high and the width is
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perhaps 2-3 ysec. Upon increasing the kinetic energy to a level somewhat

higher than the vaporization energy, the pulse appears as in figure l . l(c).

Two distinct peaks are visible. The earlier pulse is interpreted as being

due to vapor while the later pulse is interpreted as being due to the more

slowly moving solid/liquid debris. Further increases in velocity cause the

vapor pulse to increase in magnitude at the expense of the solid/liquid

pulse until the latter disappears. This condition is reached for a Lexan

on lead impact at about 8.5 km/sec (28,000 ft/sec). The ratio of kinetic

to tabulated vaporization energy is roughly 7. The relatively low energy

ratio requirement is due to the fact that the mismatch between the light

projectile and heavy target produces a high internal energy in the projectile

at the expense of the shield. This mismatch in internal energy per unit

mass is, however, compensated by a similar mismatch in the vaporization

energies of Lexan and lead (5.0 x 10 and 0.83 x 10 joules/kg, respectively).

We note that the progression of pulses 1.1(b) - 1.1(d) can also be effected

by using a high impact velocity and varying the bumper thickness (reference 3).

As discussed in reference 14, the thinner target causes more substantial

decay of the shock wave in the projectile, loweising the final shocked

internal energies below the values required for vaporization.

1.2 Qualitative Response of the Main Wall to Debris Cloud

In considering the response of the main wall to the impact generated

debris cloud, one must distinguish between the gaseous and the solid/liquid

phases of the cloud. The response of the main wall and the dependence of

that response on spacing from the shield can be quite different for the two

distinct phases. (We are not distinguishing between the solid fragments and
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the!liquid'droplets. They present a similar hazard to the main wall due to

a local concentration of momentum within the cloud). Particles may always

be expected in the debris due to decay of the radially propagating shock

wave in the shield. In addition, particles may be born in the projectile

due' to underdesign of the shield or because of a low impact velocity.

In figure 1.2 we have indicated a schematic dependence on spacing

of the ballistic limit thickness of the main wall. The ballistic limit

represents a configuration corresponding to incipient failure of the structure.

It is customary to speak of a ballistic limit velocity or a ballistic limit

thickness where it is understood that all the other system parameters are

held constant while the velocity or the target thickness is varied to bring

the structure to incipient failure.

I

E
• H

o
• H

rt
00

defeat of gaseous debris

defeat of particulate debris

Spacing from Shield

Figure 1.2 Schematic Dependence of Ballistic Limit Thickness of
Main Wall on Spacing
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The solid line represents defeat of the gaseous debris and the

broken line represents defeat of small particles. We expect the hazard

presented by the gaseous phase to decrease rapidly with spacing and to

approach zero as the spacing becomes large. The main wall is observed to

fail in any one of several ways. At very small spacings, the gas has not

expanded appreciably, the dynamic pressures are orders of magnitude greater

than the strength of the main wall and the loading on the wall is similar

to that of a direct impact. Depending on the thickness of the main wall,

one may find total perforation (material punch-out), cratering of the surface

and/or spallation of the rear surface. Moving further back, the cloud has

had time to expand and the dynamic pressures are of the order of the material

strength. The wall is accelerated by the rapid deposition of momentum on its

surface. Again depending on the wall thickness, bending or membrane stresses

dominate and the wall may suffer a large deformation failure.

A different situation exists for the hazard presented by the solid/

liquid phase of the cloud. The lethality of the small particles may decrease

somewhat over small spacings from the shield. At very small spacings, overlap

of individual craters in the sheet will add to the hazard. As the spacing is

increased, we expect interaction of the damage patterns to become small so

that the particles may be considered separately. The hazard to the main

wall will then level off with spacing as the lethality of an individual par-

ticle will remain constant. At large spacings, a main wall sufficiently thick

to support the loading produced by the gaseous phase may nonetheless fail due

to penetration by individual particles. Thus the graph of ballistic limit

thickness versus spacing will correspond to the gas curve in figure 1.2 up

to the cross over point when the particle curve begins to apply.



- 11 -

The above discussion of main wall response was based on the

supposition of a well vaporized debris cloud. If, in fact, the cloud con-

sists entirely of particles in the solid/liquid phases, the ballistic limit

thickness will have much the same dependence as that indicated in figure 1.2.

The spacing at which the debris becomes constant and the final limiting

thickness of the main wall will clearly depend on the size and energy of

the constituent particles.
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2.0 THE DETERMINATION OF SHOCK COMPRESSION DATA FOR LEXAN

When impact occurs at hypervelocity, shock waves are created which

strongly compress even solid materials in the neighborhood of the area of

contact. At impact velocities of the order of 10 km/sec, the compression

will be roughly two-fold for most solid materials and the stresses associated

7 2 8with the compression will be of the order of 10 kg/cm (1.4 x 10 psi). An

investigation of-hypervelocity impact must logically begin with a study of the

relations governing the processing of material to these extreme conditions.

The maximum difference between the principal stresses that a solid can support

is of the order of the yield stress. For most materials the yield stress is

of the order of 103-104 kg/cm (1.4x10 - 1.4xl05 psi). Thus the difference

between the principal stresses in the highly compressed state typical of

hypervelocity impact is small compared to the magnitude of the stresses them-

selves. It is customary to ignore the difference and to assume that the

principal stresses are equal. This is sometimes referred to as the hydrodynamic

analogy in that the highly compressed solid is treated as though it were a

fluid.

The basic equations to be studied are the Rankine-Hugoniot conservation

relations across a shock wave. The shock wave is regarded, from the macroscopic

point of view, as a mathematical surface across which the mechanical and ther-

modynamic state of the fluid may change in a discontinuous manner. In reality,

the shock wave has a finite thickness which is determined by the relaxation

mechanisms in the fluid. In the frame of reference of the shock wave, fluid

is seen to .approach the wave front with high mechanical and low internal energy.
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At the shock front the material exchanges the mechanical for internal energy

and is seen ^to recede from the shock wave with low mechanical and high internal

energy. Thus material crossing the shock front is retarded and the thickness

of the surface is determined by the rate of processes which largely randomize

the orderly motion of the influx to produce thermal energy at the expense of the

kinetic energy. In a gas the parameter of length associated with the funda-

mental intermolecular forces is the mean free path and the thickness of the

shock front is found to be, both theoretically and experimentally, of the

order of a few mean free paths (references 15, 16). Under normal conditions,

therefore, the shock wave in a gas may be very well approximated by a

mathematical surface. In a solid, the picture is somewhat different as the

atoms are bound into a lattice and the internal energy is determined by

proximity of the lattice sites and the degree of excitation of the nuclei in

those sites. There is in addition an electronic contribution to the internal

energy. The quantum particle associated with lattice excitation is the phonon

and hence, energy can be exchanged from one vibrational mode to another by

phonon-phonon scattering. The mean free path for the phonon is considered

to be the fundamental length appropriate to the thickness of a shock wave in
i

a solid. The thickness of the shock front estimated in this manner is of

the order of 10~ cm (0.4 x 10" in) (reference 17).

It is therefore reasonable to regard the shock wave front as a

mathematical surface moving with velocity D into a medium initially having

velocity, density, pressure and internal energy u , p , p and &• .
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Because there is no accumulation of mass or energy within the front,

we may write

P I (D - up = po(D - UQ) (2.1)

P! - PO = po (D - uo)(ul ' V ( 2 ' 2>

ei • eo= (PI * PO^-T ' -t C2-3)

These equations reflect the conservation of mass, momentum and

energy, respectively. They relate the state of the material behind the

shock wave to that of the material ahead without any reference to the

microscopic process responsible for effecting the change in state. Often,

one may eliminate the internal energy by means of*the equation of state

e = e(p,p) (2.4)

When this is done one may determine the Hugoniot relation for the

material

H(P1, Pl; PQJ PO) = e(Pl, PI) - e(pQ, PO) - (Pj + pQ)M L-) (2.5)
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The requirement that

H(Pr Pa: P0, PQ) - 0 (2.6)

generates a curve in the (p,p) plane known as the Hugoniot. The Hugoniot is

a process equation for shock wave compression, just as the requirement of

constant entropy yields a process equation for adiabatic behaviour.

Let us now regard the unshocked material as being at rest so

that u = 0 and equations (2.1), (2 .2) , and (2.3) become

P1/P0 « D/(D - Uj) (2.7)

Pj - P0 = PO^UJ (2.8)

el ' eo = (Pl * P0
)(1/po - 1/pp C 2 - 9 )

It is observed experimentally that for many materials, a linear

relationship exists between the velocity of the shock wave relative to the

undisturbed medium and the particle velocity of the shocked fluid.

|D| - c + s j i i j l (2.10)

where c and s are constants for any given material over a wide range of shock

wave velocities. ;

It is possible to use equation (2.10) to derive a Hugoniot relation

from equations (2 .7) and (2.8) without reference to the internal energy. This

becomes essential when the function e(p,p) is not known. After substitution

of equation (2.10) into equations (2.7) and (2.8) and elimination of D and

u, we have:

Plc2(pl /po - D •
P! - P0 2 (2 'U)

[(s - l)p /p - s]Z
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A useful approach to the analysis of shock waves involves the

(p,u) plane. From equations (2.8) and (2.10) we have for a right running

shock wave (D - u >. 0, u. - u > 0)

= po[cul su (2.12)

Equation (2.12) connects the shocked particle pressure and

velocity for material originally at rest. In the case of impact phenomena

at meteoroid velocities p1 » p so that it is customary to neglect p .

! Consider figure 2.1 in which equation (2.12) is denoted schematically
I

by the curve H . Material originally at rest in the laboratory frame of
' ^

reference and having pressure p will be processed by a right running shock

wave to pressures and particle velocities which are related by H_.

V)o>
Ma.
a>i—i
a

JH
n)
a.

4)

ô
o
in

Projectile

Particle Velocity

Figure 2.1 Schematic of Hugoniots in (p,u) Plane Corresponding
to Right and Left-Running Waves
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From equation (2.8) it is easy to see that the same material originally

at pressure p and having particle velocity V will be processed by a left

running wave to states lying on H which is a mirror image of HD.
L R

Now consider a like material impact (figure 2 .2)

Projectile Shock
(left running wave)

D - V,

Contact Surface
(ri

u,

Target Shock
t running wave)

Projectile Target

Figure 2.2 Schematic of Wave System Created by Impact

Both the target and the projectile are regarded as having initial

pressure p =0. The target is initially at rest and is accelerated by a

right running shock wave. Consequently, the shocked target material is

described by a wave in the (p,u) plane of the form HR.

Similarly, the projectile material, originally having velocity V,

is decelerated by a left running wave and the process is described by H.. At

the contact surface separating the shocked target and projectile material we

have the requirements that the particle velocity and pressure be continuous.

Thus the shocked state corresponds to the point of intersection of H and H .

For like materials, the symmetry of HD and H. demands that the shocked particle
K Lt

velocity be one half the impact velocity.
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The properties of the shocked material are determined in general,

by measuring either the shock wave velocity or the particle velocity,

(references 4.5,6,7,8,9). A review of recent practice is contained in reference 10

We suppose that we have a like material impact:

Pj/P0 = D/(D - Uj)

pl = poul° (2.13)

u1 = V/2

Equations (2.13) describe the target which is initially at rest. If

we measure V and D (p is presumed known), we can solve for p1 and p... Thus

we will have determined one point in the Hugoniot curve. By varying V from

test to test, we may generate the Hugoniot curve for the material.

The impact velocity was determined in the usual manner (reference 2)

from flash x-ray measurement. To determine the shock wave velocity in the

target, we instrumented a Lexan rod (1.27 cm (0.5 in) diameter by 3.8 cm

(1.5 in) long) with five detectors. Figure 2.3 shows the orientation of the

detectors in the target. l

Each trigger consisted of two 0.075 mm (0.003 in) diameter enamelled

copper wires mounted side by side. The target was split in half and the five

sets of trigger wires were mounted on the exposed diameter. The two halves of

the target were bonded together with Eastman 910 cement and the rear of the

target with the output connections was potted i° epoxy. Figure 2.4 is a

photograph of an instrumented target.
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LEXAN CYLINDER —-

\

3.18mm (.125 in.)
„ 9.51_mm. iC-375 in.)

*' I

1.59cm (.625 In.)---'•• i
...875 _in._)_

DETECTORS # 1 - 5

Figure 2.3 Locations of Triggers in Instrumented Target

Figure 2-4 Photograph of Instrumented Target
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Because of the high conductivity of the shocked material as compared

with the very low conductivity of Lexan under ordinary conditions, the shock

wave behaved like a switch, closing the circuit between each pair of wires as
i

it passed by. The closing event triggered a pulse amplifier which delivered

a 0.03 ysec pulse to an oscilloscope. The first such pulse served to trigger

the scope while the remaining four appeared as a very sharp spike on the

scope record. The sensor units had an inherent delay of .03 ysec and a pulse

width of 0.05 Psec. The delay was of little consequence as it was equal for

all the triggers and the short pulse width made for a clear display on an oscil-

loscope sweeping at a fast rate (0.5 ysec/cm). The sensor unit circuitry and

a schematic of the trigger monitoring hook-up are shown in figure 2.5. A

schematic of the overall instrumentation set-up is shown in figure 2.6. A

typical scope record is shown as figure 2.7. The record is from shot N67-362

which involved a Lexan on Lexan impact at 7.28 km/sec (23,900 ft/sec). Both

the upper and the lower trace were triggered by the first sensor. Sensors 1

and 3 were monitored on the upper and 4 and 5 on the lower trace. Both

traces were swept at 0.5 ysec/cm and because of the rapid decay of the wave

in the target, the fifth sensor pulse is apparently off scale to the right

and is not seen. Figure 2.8 consists of two frames of the Beckman and Whitley

coverage of the event and illustrates the normality of the impact. In

figure 2.9 we have reduced the data of figure 2.7 into graphical form. Little

decay is observed in the first centimeter (0.4 in) of travel of the shock

wave. However, strong decay is observed between the third and fourth sensors.

Very similar results are seen in figure 2.10 which corresponds to a round at

somewhat lower impact velocity.
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1st
Sensor

2nd
ensor

o *

5rd

1st Sensor 4th

line - ysec

Figure 2.7 Oscilloscope Trace of Shock Wave Sensors
from Shot N67-362. Lexan on Lexan at 7.28 km/sec (23,650 ft/sec)

(a) (b)

Figure 2.8 Frames from B £ W 300 Photo Coverage of N67-362.
(a) Just before and (b) just after impact.
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The decay in shock wave velocity is due to interaction with the

free surfaces of the target and projectile. As may be seen from figure 2.8(b),

the interference causes ejection of the shocked material into the ambient

vacuum. The reflection of the shock wave at the boundaries generates rare-

faction waves which eventually overtake the shock wave (references 14, IU) .

In order to obtain an accurate measurement of shock wave velocity, it is cus-

tomary to use very thin targets together with only two sensors. We have

relied, however, on the accumulation of several points on the trajectory in

order to reconstitute accurately the initial velocity. Apparently, referring

to figures 2.9 and 2.10, the change in shock velocity is small over a distance

equal to approximately 1,3 cm (0.5 in]) (which is equal to the diaoeter of

the target).

Figure 2.11 shows the Hugoniot data for Lexan in terms of shock wave

velocity versus particle velocity. The values of c and s determined from

figure 2.11 compare reasonably with values for other plastics (reference if ).

In figure 2.12 we have shown the Hugoniot curve in the (p.p) plane.

The bulk of the rounds fired in the experimental programs has
;

involved Lexan projectiles striking lead targets. For reference we have

used the above values of c and s for Lexan together with values appropriate

to lead (reference 20) to determine the shocked pressure and particle velocity

as a function of impact velocity (figure 2.13).

An attempt was made to determine Hugoniot data in a different manner.

The flash x-ray units were deployed directly over the impact point so as to
- .

obtain radiograms very shortly (^1 ysec) after the impact. The shocked

material would then be distinguishable as a relatively darkened area on the
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Figure 2.11 Hugoniot for Lexan
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s = 1.22
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Figure 2.12 Hugoniot for Lexan —
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Figure 2.13 Shocked Particle Velocity and Pressure
Versus Impact Velocity for the Impact of Lexan Upon Lead
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Figure 2 -14 X-rays of Impact of Lexan Cylinders at Approximately 8.25 km/sec
(27,000 ft/sec), Showing Shocked Region

Figure 2 -15 X-rays of Impact of Lexan Cylinders at Approximately 8.25 km/sec
(27,000 ft/sec], Showing Shocked Region
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film and a determination of the compression could be made. As discussed in

reference 21, the main technical obstacle lay in triggering the x-rays with

the required precision. No quantitative data was gathered by this technique.

However, the radiograms of successful rounds are of qualitative interest.

Figure 2.14, for example, is taken essentially at the instant of impact and

reveals quite clearly the one-dimensional character of the shock waves in

the target and the projectile. Figure 2.15 consists of two radiograms of the

shock wave system taken 0.3 ysec and 1.8 psec after impact. The second

x-ray was taken too late to permit reduction of data as the initial one-dimen-

sionality of the impact evident in the first x-ray has been lost through the

mechanisms of free surface effects. It is interesting to compare this

observation with the information of figures 2.9 and 2.10 which indicate the

presence of strong decay in the shock wave velocity after approximately

2 ysec.

The first x-ray of figure 2.15 can be analysed by reference to

figure 2.16.
IMPACT POINT

r.
CONTACT SURFACE

w -v W

\
V- TARGET

PELLET BOUNDARY AT IMPACT

Figure 2.16 Method of Data Reduction from a Single Flash X-ray
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The impact was due to a 1.27 cm (0.5 in) diameter by 0.76 cm (0.3 in)

long Lexan pellet striking a 1.27 cm diameter (0.5 in) Lexan target at approximately

8.23 km/sec (27000 ft/sec). The velocity was not measured in the usual manner

as the x-ray units were required to monitor the impact. The velocity is

inferred from the gun parameters by reference to other firings. From figure

2.15 we find, in the terminology of figure 2.16*

a = 0.3 + (W - V)T

b = WT + (W - V)t

c = 2.0 + (W - V)T

so that W _ (b - (a - 0.3))
V (b - 2(a - 0.3))

and W . (b - (c - 2 . 0 ) )
V (b - 2(c - 2 .0))

Values of W/V of 1.09 and 1.00 were obtained from the values of a and c

respectively.

These values are in fair agreement with the value of 0.9 which we

may obtain from the data of figure 2.11. An impact velocity equal to 8.23

km/sec (27000 ft/sec) implies a shocked particle velocity equal to 4.12

km/sec (13,500 ft/sec), when the impacting materials are identical. From

figure 2.11 we find that this corresponds to a shock wave velocity equal to

7.38 km/sec (24,000 ft/sec). The ratio is thus 7.38/8.23 = 0.9. It wi l l

be observed in reference to figures 2.14 and 2.15 that the compressed

area appears to be substantially darker than the unshocked material. In

fact, the darkening is substantially greater than can be explained on the

basis of increased absorption due to increased density. By comparison with
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a reference cone, it is found that the apparent density is approximately

four times greater than the original. The explanation lies in the presence

of two mechanisms for scattering of x-rays in solids, namely by the photo-

electric effect (ejection of a bound electron) and by scattering by free

electrons. The cross section for photo-electric absorption by carbon atoms

is quite small in comparison to that for scattering by free electrons for

x-ray energies equal to 30 Kev. (reference 22, pg. 160). In the uncom-

pressed state, Lexan is a dielectric material and absorption occurs

principally by the photo-electric effect. After processing by shock waves,

the material is heated sufficiently to free outer shell electrons. Then

absorption is also effected by scattering due to free electrons. This

remark is appropriate to x-rays having energies greater than 25 Kev.

However, for somewhat lower energies, the cross section due to the photo--

electric effect is substantially greater than the free electron scattering

cross section and we may anticipate a correspondingly smaller relative

contribution of free electrons to the total absorption. Thus for x-ray

energies, somewhat less than 25 Kev, we may expect the absorption per unit

length to be approximately proportional to the density.
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3.0 INTERACTION OF TOE MAIN WALL AND THE IMPACT DEBRIS

The loading on a main wall (simulating the spacecraft hull) has been

examined in reference 3. We present here some additional experimental results

together with some data concerning the response of the wall. The main walls

used in the experiments were sufficiently large (46 cm by 46 cm)(18 in. x 18 in.)

that the boundaries played no part during the loading and fracturing time.

Consequently, the results are appropriate to analyses which assume that the

main wall has no finite boundaries. The wall is also unsupported and free of

additional protection beyond the shield. This distinction is important as we

will be concerned, in subsequent sections, with the effect on impact penetration

of having a cryogenic insulation panel in front of the main structural wall and/

or having the wall supported from behind by a body of water.

In addition to the photographic records of time sequenced displacements

of the main wall, we present some ballistic limit data. The acquisition of

ballistic limit data has not been a primary concern of the program, but has been

required in order to evaluate better the interaction of cryogenic panels with

impact debris and to provide a standard against which the Grid-Bumper could be

evaluated.

3.1 Measurements of Stagnation Pressure in the Debris Cloud

Measurements of the stagnation pressure in the cloud were made using

the piezo-bar pressure probe described in references 2 and 3 . In all cases,

the gauges were flush-mounted in a rigid witness sheet. The pressures recorded

can therefore be correlated with the response of a main wall. As we show

presently, the main wall may displace somewhat during the loading cycle; however
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the velocity of the wall is small compared with the incident particle velocity

in the cloud so that the effect of the motion on the stagnation pressure is

thought to be negligible. Consequently, it will be supposed that the loading

on a main w a l l is independent of the thickness of the wall for all cases of

practical interest.

The gauge described in reference 3 was modified slightly in order to

permit the sensors to be placed closer together. A single multi-gauge housing

was fabricated to permit close spacings of the gauges. The module, illustrated

in figures 3.1(a) and 3.1(b), is also more convenient to set up than a cluster

of individual gauges. Records from a five gauge assembly are shown in figure 3.2,

The debris is due to the impact of a Lexan cylinder onto a lead shield at

8.2 km/sec (26,800 ft/sec) and the witness sheet is spaced 15.2 cm (6 in)

downstream from the shield. The configuration is illustrated in figure 3.1(c).

It will be observed that the impact has not centered on gauge E as would be

desired. Instead, the impact has apparently centered near gauge A.

We can locate approximately the center of impact by reference to

figure 3.3. Since D and E give the same peak reading, we assume that they are

equidistant from the center which must therefore lie on the right bisector of

the line joining D and E. Also we can locate by linear interpolation on the

line segment EC, an approximate location in which the peak pressure is equal

to that at gauge B. Then by construction of a second right bisector, we can

locate the apparent center of impact. In figure 3.4 we have treated data

from the following round (N67-366) in precisely the same manner. The conditions

which produced the pressure readings in figure 3.4 are almost identical to

those of figure 3.3: the only difference being in the angle of orientation of

the projectile onto the shield. The projectile was tilted 13 degrees from
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3 OR 5 PRESSURE PROBE CLUSTER ASSEMBLY

OSGLLOSCOPE

STEEL CAP

AUUMMJMBOOT

POLY. WSULATOR BN8S

0-HM6 KSULATORS

ROD

pOUr.MSULATOR
RM8S

POLY. WSULATtm

2 MC OU ART? CRYSTAL

SPRMG CONNECTION

B.N.C. CONNECTORS

STEEL CONNECTOR BASE

Figure 3. la Cross-Section of Multiple Piezo-Bar Gauge Module

Figure 3 .lb Photograph of Assembled Piezo-Bar Gauge Module
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Figure 3.2 Pressure gauge records from round N67-365. Impact of a
1.27 cm (0.5 in) diameter by 0.75 cm (0.3 in) long Lexan cylinder onto
a 0,25 mm (0.010 in) thick lead shield at 8.2 km/sec (26,800 ft/sec ).
Gauges flush-mounted with rigid witness sheet spaced 15.2 cms (6 in )
downstream from shield.
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Figure 3.3 Diagram of gauges showing peak recorded pressures and construction
to locate apparent impact center of round N67-365.
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Figure 3.4 Diagram of gauges showing peak recorded pressures and construction
to locate apparent impact center of round N67-366.
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normal in N67-365 and 6 degrees in N67-366.

In figure 3.5 we have plotted the peak pressure reading from each

gauge versus the distance of the gauge center from the apparent impact center.

We observe that the dependence of pressure on spacing is close to linear in

the range 1.27 cm (0.5 in) to 2.54 cm (1-10 in) (from gauge E to

gauge C), justifying the assumption of linear interpolation. Higher accuracy

could be obtained iteratively, interpolating with the help of figure 3.5,

locating a new center of impact and so on. However, more accurate location of

the center of impact does not appear warranted as the uncertainty in location

is small compared to the diameter of the gauges. We have, of course, assumed

in the above that the debris cloud possesses rotational symmetry. It should

be noted that this is not strictly true due to the tilting of the projectile

on impact.

As we indicate in figure 3.5, the experimental data are quite wel l

described by a decaying exponential curve. This is of interest as it has been

occasionally assumed that the radial pressure distribution would be described

by a Gaussian distribution (references 3, 23, 2 4 ) . In figure 3.6 we have

represented the total impulse per unit area registered by the pressure probes

in shots N67-365 and N67-366. A Gaussian distribution of impulse has been

observed in references 25 and 26 and assumed in reference 27. We have plotted

in figure 3.6 the best fit (in the sense of mean square deviation) Gaussian.

We also indicate the result of approximating the data by a distribution of
,r,n

the form Ae ^~ . As may be seen, the fit is better, with the mean square

deviation being about one half of the value obtained with a Gaussian curve fit.
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Figure 3.5 Peak stagnation pressure versus spacing from impact center.
Debris cloud due to impact of 1.27 cm (0.5 in) diameter by 0.75 cm
(0.3 in) long Lexan cylinder onto a 0.25 mm (0.010 in) thick lead shield
at 8.2 km/sec (26,800 ft/sec ). Gauges flush-mounted with rigid witness
sheet spaced 15.2 cm (6 in ) downstream from shield.
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3. 2 Quantitative Response of the Main Wall to Debris Cloud

As discussed in the introduction, the main wall may respond to the

debris cloud loading in a variety of manners, depending on the thickness and

material properties of the wal l , the distance from the shield and projectile

material, dimensions and velocity. In figure 3.7 we indicate the quantitative

dependence on thickness of the center line deflection of 2024T3 Aluminum main

walls. The pressure pulse responsible for the deflection is indicated on the

same figure. All the curves have been referenced to the same initial time.

However, an uncertainty exists in the zero time for the main wall response as

the very early time response was not clearly visible in these particular tests.

Three distinct types of response are reflected in the data of figure 3.7.

The 0.159 cm (0.0625 in.) main wall suffered a gross deformation and ultimate

rupture, several petals being formed. The 0.318 cm (0.125 in.) wall suffered

a large permanent deformation but did not rupture. Finally, the 0.635 cm

(0.25 in.) wall suffered a deformation under the load but enjoyed considerable

recovery upon release. The final deformation of the 0.635 cm wall was small.

In order to gain further insight into the response of the main wal l

to the debris cloud loading, several rounds were fired in which a Beckman and

Whit ley 192 camera was used at a high framing rate. Figures 3.8 and 3.9 are

two representative series of photographs. From the photographs one may con-

struct the center line history of the main wall. This is done in figures 3.10

and 3.11. In figure 3.12 we have indicated the center line pressure pulse

which is associated with the plate displacements of figures 3.10 and 3.11.

The information in figures 3.10 through 3.12 should find application in the

evaluation of theoretical models of the response of the main wall .

In order to correlate the main wall response with the debris load,
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t = Q ysec t = 1.3 psec

t = 2.6 .Msec t = 3.9 jjsec

t = 5.2 psec t = 6.5 ysec

t = 7.8 ysec t = 9.0 ysec

Figure 3.8 Response of 1.6 nun CO.063 in) 2024-T3 aluminum main wall to
debris of impact of 1.27 cm (0.5 in) diameter by 0.76 cm (0.3 in) long Lexan
pellet onto a .25 mm (0.010 in) lead shield at 7.8 km/sec (25,500 ft/sec).
Spacing between wall and shield was 15.2 cm (6 in). The debris cloud makes
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Figure 3.8 CCont'd)

t = 1Q.3 ysec t s 11.6 jjsec

t = 12,9 t = 14.2 >isec

t = 15.5 ysec t = 16.8 psec

Figure 3.8 (Cont'd)

contact at t = 0. Motion of the wall is not visible until approximately
10 psec later. Note that the displaced portion of the wal l is small compared
to the area loaded by the debris cloud.
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t = Q ysec

= 1 1 . 3 -see t = 12.6 usec

t = 16.3 psec t = 17.6 ysec

Figure 3.9 Response of 3.2 mm (-125 in) 2024-T3 aluminum plate to debris of
impact of 1.27 cm (0.5 in) diameter by 0.76 cm (0.3 in) long Lexan pellet onto
0.25 mm (0.010 in) lead shield at 7.9 km/sec (26,000 ft/sec). Spacing
between shield and plate was 15.2 cm (6 in)
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we considered a very simple energy balancing at the center of the wall. The

momentum per unit area added to the center of the wall in time T is given by

rT
p(o,t)dt (3.1)

o

Taking p and h as the density and thickness of the main wall, respectively,

the energy added in time T is given by

C3.2)

We assume the wall to be bent symmetrically and ignore stretching of the

midplane. The assumption of a linear distribution of strain throughout the

thickness of the wall is good up to radii of curvature approximately four

or five times the thickness of the plate (reference 28) . We assume the wall

to be perfectly plastic and to be yielding at constant stress ° . It is

observed in reference 29 that the yield stress of aluminum alloys is not

rate dependent so that the static value may be used.

If the maximum fibre strain is e , the distributions of hoop and

radial strain through the thickness of the wall are given by

ee : er = ~T

Where z is the distance from the midplane, the strain energy per unit area

at the center of the main wall is given by

hf e a
zdz = e a h (3.3)

h 0 0

h_
2

Then equating (3.3) and (3.2) we have for a wall which comes to rest with

maximum fibre strain e ,

(3.4)
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If we now suppose that e is the fracture strain, we may convert (3.4) into

a ballistic limit equation:

_/
~/
V

1 ™ " (3.5)
'w~o-o Q

In practice e wil l not be known as it is the fracture strain in biaxial

tension at some elevated rate of strain. Consequently, we may as well

consider the entire term under the radical to be unknown and simply regard

equation 3.5 as indicating a proportionality between the ballistic limit

thickness of the main wall and the impulse loaded at the center. In evaluating

the pressure integral we restricted the integration to the first peak, i.e.

the gaseous debris. The secondary debris, which consists largely of par-

ticles, has a flat distribution at the center and only contributes to the

bending of the main wall through interaction with fixed boundaries. In all

the ballistic limit studies, the main walls were sufficiently large that

failure occurred in a time substantially less than the time required for an

acoustic wave to reach the center from the edge. Thus, it is assumed that

the particulate debris does not contribute to the observed failure of the

main wall at the center. ;

An effort was made to accumulate a body of ballistic limit data for

configurations such as those in figures 3.10 and 3.11. Herein, the ballistic

limit is defined to be the thickness of the main wall that just resists

penetration by a given debris cloud. This definition is substantially in

agreement with that in reference 30, but differs from that used in references

31 and 32. We attempted to hold constant:

(1) Projectile geometry - 1.27 cm (0.5 in.) diameter by 0.76 cm (0.3 in) long

Lexan cylinder
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(2) Shield - 0.25 mm (0.010 in.) lead

(3) Impact Velocity -7.6 km/sec, (25,000 ft/sec.)

(4) Main wall material - 2024-T3 aluminum

The parameters subject to variation were:

1) Downstream spacing of main wall - 7.61, 15.2, 22.9 or 30.5 cm (3, 6, 9

or 12 in).

2) Main wall thickness at each spacing.

The experimental results are summarized in Table 3.1.

Table 3.1

Impacts onto Unbacked 2024T3 Aluminum Plates Protected by Lead Shields.
Nominal Impact Conditions: 1.27 cm (0.5 in.) dia. by 0.76 cm (0,3 in.) Long
Lexan Cylinder Impacting onto a .25 mm (0.010 in.) Thick Lead Shield at
7.6 km/sec (25,000 ft/sec)

Shot No.

N67-110

114

100

197

163

119

102

106

196

164

104

249

109

Spacing

cm (in)

7.6 3

7.6 3

15.2 6

15.2 6

15.2 6

15.2 6

15. 2 6

22.9 9

22.9 9

22.9 9

22.9 9

30.5 12

30.5 12

Thickness

mm (ins)

3.22 0.127

6.55 0.258

1.55 0.061

1.73 0.068

2.08 0.082

2.38 0.090

3.25 0.128

0.89 0.035

1.04 0.041

1.27 0.050

1.55 0.061

0.41 0.016

0.89 0.035

Impact Velocity

km/sec (ft/sec)

8.6 28,200

8.23 27,000

7.76 25,500

7.13 23,400

7.13 23,400

7.78 25^500

7.92 26,000

7.76 25,500

7.75 25,400

7.80 25,600

6.70 22,000

8.45 27,700

7.20 23,600

.
Final Plate
Condition

Failed

Failed

Failed

Failed

No Failure

No Failure

No Failure

Failed

Failed

No Failure

No Failure

Failed

No Failure

Momentum Scaled
Plate Thickness
mm (ins)

2.87 0.113

6.07 0.239

1.52 0.060

1.85 0.073

2.24 0.088

2.24 0.088

3.13 0.123

0.94 0.037

1.02 0.040

1.24 0.049

1.75 0.069

0.36 0.014

0.94 0.037
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The first five columns of the table are self-explanatory. In

column six we have listed a "momentum scaled plate thickness". This was

necessitated by the scatter in impact velocity around the nominal 7.6 km/sec

(25,000 ft/sec.) value. Equation 3.5 above indicates the ballistic limit

thickness is proportional to the center line impulse in the gas cloud. For

small changes in projectile velocity, it is reasonable to expect the impulse

to scale directly with momentum. This leads to the parametric dependence

of references 33 and 34. If the projectile mass is held constant, this

becomes equivalent to velocity scaling. Consequently, the momentum scaled

thickness h.. is related to the actual thickness h by the simple relation
M

"„ • ̂  »•«

where V is the impact velocity in km/sec. Equation 3.6 simply states that

to the first order, one may regard a slightly slow impact on a given main

wall as producing the same terminal condition (failure or no failure) as an

impact at nominal velocity on a slightly thicker wall.

In figure 3.13 we have plotted the experimental quantity
rT

I = j p(o,t)dt against spacing, S, in log - log form. It then appears that

I - S'1'67 (3.7)

This, in combination with equation (3.5) indicates that

h B.L. °C S"1 '6 7 ^ 'V

This result is more conservative than theoretically determined ballistic

limit results which usually possess an inverse square dependence on spacing.

It may well be, however, that the exponent depends on the impact velocity or

the target characteristics. Upon determining the structural constant in

equation (3.5) by reference to the experimental result at 15.2 cm (6 in),
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I = pdt a S-1.67

I

10 15

Spacing from Shield - cm

20 25 30 40

Figure 3.13 Center line impulse in- gaseous debris versus spacing from
shield. Debris due to impact of 1.27 cm (0.5 in) diameter by 0.76 cm
(0.3 in) long Lexan cylinder onto 0.25 mm (0.010 in) lead foil at
7.6 km/sec (25,000 ft/sec ).
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a spacing dependent equation results for nominal impact conditions and for a

particular main wall material (in this case 2024-T3 aluminum)

h B.L. = 0 . 2 2 4 ( - - (3.9)

where h_ . and S are in cm. It must be emphasized that the coefficients
D • l_j .

in equation 3.9 pertain only to the cited impact configuration as only the

effects of spacing have been investigated.

In figure 3.14, equation 3.9 is plotted out as a solid line. The

data of Table 3.1 are included for comparison. It should be noted that

momentum scaled values of the main wall thickness have been used. The

agreement is seen to be good, well within the experimental accuracy and

supports the idea that the ballistic limit thickness is proportional to the

center line impulse. A similar result is found in reference 34. As no

experimental measurement was available for the distribution of impulse,

reference 34 assumed a distribution and the response of a beam was analysed

and related to the problem of the loaded main wal l .

In figures 3.15, 3.16 and 3.17 we have illustrated some main

walls used in the ballistic limit series. Figure 3.15 is a good example

of a catastrophically ruptured main wall. Note the symmetry of the

petals. It was found in general that only a very small change in thickness

was required to change the ballistic event from no- rupture to catastrophic

rupture. The Beckman and Whitley photographic records revealed that when

failure occurred, it occurred in a time comparable with the loading time.

The failure was detectable on the Beckman and Whitley records by the

appearance of a plume of debris transmitted through the rupture in the

in the wal l . Figure 3.16 shows a main wall that did not fail and
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Figure 3.15 Photograph of 1.55 mm
(0.001 in) thick 2024-T3 aluminum plate,
loaded by debris from impact of 1.27 cm
(0.5 in) dia. by 0.76 cm (0.3 in) long
Lexan pellet onto 0 .25 mm (0.010 in)
thick lead shield at 7.76 km/sec
(25,500 ft/sec). Spacing from shield
was 15.2 cm (6 in)

Figure 5.16 Photograph of 1.27 mm
(0.050 in) thick 2024-T3 aluminum
plate, loaded by debris from impact
of 1.27 cm (0.5 in) dia. by 0.76 cm
(0.3 in) long Lexan pellet onto
0.25 mm (0.010 in) thick lead
shield at 7.80 km/sec (25,600 ft/sec)
Spacing from shield was 22.9 cm (9 in)

Figure 3.17 Photograph of 0.89 mm (0.035 in)
thick 2024-T3 aluminum plate, loaded by debris
from impact of 1.27 cm (0.5 in) dia. by 0.76 cm
(0.3 in) long Lexan pellet onto 0 .25 mm (0.010 in)
thick lead shield at approximately 7.5 km/sec
(25,000 ft/sec). Spacing from shield was 30.5 cm
(12 in)
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demonstrates the fineness of fragmentation of the debris.

Figure 3.17 also shows a witness plate that did not fail and is of

particular interest because of the configuration into which it is deformed.

The configuration can be described by imagining a volcano situated in a

valley. This deformation is seen only at large spacings and proved to be

quite repeatable. The deformation may be in qualitative agreement with the

integrated momentum profiles of reference 35, which show a central minimum

for unvaporized debris at large spacings (figure 3.18a). The vaporized

debris, however, does not present this behaviour to the same extent and

retains a central maximum at large spacings (figure 3.18b). Since the

debris which loaded the witness plate of figure 3.17 is expected to have

contained both vaporized and unvaporized material, it is possible that the

plate was loaded by a combined profile as indicated in figure 3.18c.

Radius

(a)

Low velocity impact
(particulate debris)
from reference 35

(b)

High velocity impact
(vaporous debris)
from reference 35

(c)

Combined profiles for
particulate and vaporous
debris

Figure 3.18 Schematics of Integrated Momentum Profiles Versus Radial Spacing
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3. 3 Response of Main Wall When Supported by Water

The study of the response of witness sheets to debris cloud loading

was completed by a brief investigation of the effect on the response of

having a body of water behind the witness plate. In order to observe the

approach of the debris cloud as well as the response of the witness plate,

a tank having plexiglass sides was fabricated. The tank is illustrated in

figure 3.19. The Beckman and Whitley coverage of a typical event is shown

in figure 3.20. We see the impact of the projectile onto the shield and the

subsequent expansion of the debris cloud. When the debris makes contact

with the witness plate, the familiar "impact flash" is observed. No motion

of the plate is observed. This agrees with the conclusion of reference 23

that the deflection of a water backed plate will be an order of magnitude

less than that of an unbacked plate. Towards the later stages of the coverage,

we observe a wave front progressing into the water.

When plate failure occurred, it occurred in the same manner as that

observed for unbacked plates. Fracture occurred at the center of loading

and small petals were formed. Occasionally, however, blow-back occurred,

sometimes with sufficient force to rip the entire, witness sheet from the

tank. In figure 3.21 we have plotted the results of the ballistic limit tests

with water backed witness plates. As may be seen, the water provides sub-

stantial support for the witness plate. The required thickness for a water

backed plate appears to be approximately one half that required for an

unbacked plate. However, a more substantial investigation is required to

establish this conjecture over a wide range of impact conditions.
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t = -1.2

t = 6.2 ysec = 7.4 >isec

Figure 3.20 Beckman and Whitley coverage of response of a .238 cm (3/32 in)
thick 2024-T3 aluminum wall, supported from behind by a body of water, to
the loading of debris due to the impact of 1.27 cm (0.5 in) diameter by
0.76 cm (0.3 in) long Lexan cylinder onto a 0.25 mm (0.010 in) thick lead
shield at 8.0 km/sec (26,200 ft/sec). The wall was spaced 7.6 cm (3 in)
from the shield. The projectile impacts onto the shield at t = 0. The
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Figure 3.20(Cont'd)

t = 16.0 ysec t = 17.2 usec

Figure 3.20 (Cont'd)

resulting debris contacts the main wall approximately 4.0 psec later.
Note the impact flash at t = 7.4 ysec and the development of the shock
wave in the water after t = 12.3 ysec
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2.0
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1.0
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• r-H
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Legend

No Failure

Failure

_L J.
10 15

Spacing from Shield

20 25

- cm

Figure 3.21 Ballistic limit data for water backed 2024-T3 aluminum main
wall . The loading in each case was due to the impact of a 1.27 cm (0.5 in)
diameter by 0.76 cm (0.3 in) long Lexan cylinder onto a 0 .25 mm (0.010 in)
thick lead shield at 7.6 km/sec (25,000 ft/sec ).
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4.0 THE IMPACT CHARACTERISTICS OF CRYOGENIC INSULATION PANELS

The cryogenic tanks used to contain fuel in space missions are

shrouded by insulation structures. In order to evaluate the response of

typical insulation structures to meteoroid impact, we were furnished with a

large number of panels by NASA Lewis Research Center. Each of these panels

was approximately 30.5 cm (12 in) in diameter and of the order of 2.5 cm

(1 in) in thickness. The panels were of two different types, namely SEMI

(Self-Evacuated Multilayer Insulation) and aluminized Mylar. In addition,

the aluminized Mylar panels were constructed with layers of either silk or

paper. We shall refer to these panels as SEMI, A/M silk and A/M paper

respectively. The panels are illustrated schematically in figure 4.la.

The investigation of the impact characteristics of the panels was

divided into three phases. The schematic configuration for each phase is

illustrated in figure 4.1b. In the first phase, panels were mounted on rigid

main walls and loaded by the debris from the impact of a 0.63 cm (0.25 in)

diameter by 0.38 cm (0.15 in) long Lexan projectile onto a 0.13 mm (0.005 in)

thick lead shield at a nominal impact velocity of 7.6 km/sec (25,000 ft/sec).

The spacing between the shield and the panel was then varied and the resulting

damage to the panel recorded. The main walls in this phase of the program

were instrumented with flush-mounted pressure gauges so that the transmitted

pulse could be compared with that observed without the insulation panel.

In the second phase, the rigid main wall was replaced by a

flexible wall (a sheet of 2024-T3 aluminum 0.159 cm (0.063 in) in thickness).

Only A/M paper panels were used, the debris load was as in phase one and the

object of the tests was to vary the spacing from the shield and determine the

response of the main wall. The response of the main wall when protected
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Figure 4 . la Schematics of SEMI and Aluminized Mylar Silk/Paper Cryogenic
Insulation Panels as used in Impact Evaluation Testing.
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Phase 1 Definition of Damage to Panel

B
Projectile

Shield •ebris Cloud Formed
by Impact of Projectile
onto Shield

Pressure Gauges Flush-
Mounted (Optional)

Rigid Main Wall

Cryogenic Insulation Panel

Phase 2 Protection of Main Wal l by Face-Mounted Panel

Projectile

Shield
Debris

lexible 2024-T3 Aluminum Sheet
to Simulate Spacecraft Hull

Cryogenic Insulation Panel

Phase 3 Protection of Water Backed Main Wall by Face-Mounted Panel

Projectile

Shield Debris

Body of Water

Flexible Main Wall

Cryogenic Insulation Panel

Figure 4.1b Schematic of experimental configurations used in the three phases
of investigation of the impact characteristics of cryogenic insulation panels
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by the A/M paper panel was then compared with the response without the

panel. The third phase was similar in intent to the second phase, the only

difference being that the main wall was further supported by a body of

water. The water tank described in Section 3.3 and illustrated in figure 3.19

was utilized for this phase of the program.

Originally, the investigation had called for debris clouds generated

by 1.27 cm (0.5 in) diameter Lexan projectiles. However, it was quickly dis-

covered that the panels were far too fragile to support the debris except at

very large spacings O90 cm ) . At such large spacings, the debris cloud is

substantially larger in cross-section than the insulation panel and the panel

no longer models a large surface. Consequently, it became necessary to study

the response of the insulation panels to the debris produced by 0.63 cm

(0 .25 in) diameter Lexan projectiles. This was unfortunate as a large body

of experimental data existed to characterize the debris associated with 1.27 cm

(0.5 in) diameter projectiles (viz. Section 3 and references 2 and 3 ) and

the response of flexible main wall to the debris load. No such body of

information was available for the 0.63 cm (0.25 in) projectile and thus it

was necessary to divert some of the effort in the investigation into the

characterization of the debris clouds produced by these smaller projectiles.

Experimental difficulties in launching the 0.63 cm (0.25 in) diameter

projectile at a consistent velocity and in obtaining reliable instrumentation

triggering marred the investigation. As indicated above, the intention was to hold

the projectile velocity at a nominal value of 7.6 km/sec (25,000 ft/sec). Observed

values ranged from 6.5 km/sec (21,300 ft/sec) to 8.7 km/sec (28,600 ft/sec).

The low velocity impacts frequently struck the shield obliquely with the result that

a "dirty" debris cloud was formed containing a higher percentage of particulate debr:
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than would be obtained at nominal conditions (see figure 3.16 as an example of

a main wall loaded by clean or substantially vaporous debris). The absence

of a muzzle trigger on the other hand precluded the successful measurement

of impact velocity in several cases.

In figure 4.2 we present photographs of several of the impacted

cryogenic insulation panels. We have included a sufficient number from each

phase of the investigation to indicate the manner in which the response

changes with spacing.

In analysing the results of the first phase of the task, careful

interpretation of the damage to the panel was required. Particles are always

present in the expansion cloud because of the shock diffraction within the

target. Consequently, at close spacings, one may obtain simultaneous per-

foration of the panel by the vapor and by small particles. As the spacing

downstream of the thin shield is increased, the gas cloud damage reduces

rapidly until only the particulate penetration pattern is observed. This

latter damage is generally confined to a narrow annulus centered about the

original flight axis of the projectile. Asymmetries may result, however,

from projectile tilt at impact. Nonetheless, particle penetration is always

characterized by a narrow and relatively deep hole in the panel. The depth

of penetration apparently remains independent of spacing once the spacing is

sufficiently large.

The gas cloud damage is identified at close spacings by a hole

which has a substantial diameter. As the spacing is increased, the depth of

the hole decreases while the diameter increases somewhat. With further

increases in spacing, we determined a limiting gas cloud damage which

involved tearing of only the outermost one or two layers of the panel. In
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N67-131 SEMI RIGID BACKING
VELOCITY = 6 . 7 km/sec (22,000 fps)
SPACING = 30.5 cm (12 in 1

N67-319 SEMI RIGID BACKING
VELOCITY = ?
SPACING = 30.5 cm (12 in )

N67-320 SEMI RIGID BACKING
VELOCITY = 7.35 km/sec (24,100 fps)
SPACING = 30.5 cm (12 in )

N67-132 SEMI RIGID BACKING
VELOCITY = 6 . 6 km/sec (21,600 fps)
SPACING = 45.6 cm (18 in )

Figure 4.2 Photographs of impacted cryogenic insulation panels.
Debris from impact of a 0.63 cm (0.25 in) dia. by 0.38 cm (0.15 in)
long Lexan projectile onto a 0.13mm (0.005 in) thick lead shield
at a nominal impact velocity of 7.6 km/sec (25,000 ft/sec)
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N67-306 SEMI RIGID BACKING
VELOCITY - ?
SPACING = 7.6 cm (3 in )

N67-130 SEMI RIGID BACKING
VELOCITY = 6.9 km/sec (22,700 fps}

L. SPACING = 22.9 cm C9 in., i

N67-314 SEMI RIGID BACKING
VELOCITY = ?
SPACING = 22.9 cm (9 in J

N67-307 SEMI RIGID BACKING
VELOCITY =8.0 km/sec (26,200 fps)
SPACING = 15.2 cm (6 in )

N67-157 SEMI RIGID BACKING

N67-318 SEMI K1U1U BACKING
VELOCITY = ?
SPACING = 22.9 cm (9 in )
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N67-103 A/M PAPER RIGID BACKING
VELOCITY = 7.15 km/sec (23,500 fps)
SPACING = 7.6 cm (3 in )

N67-1G1 A/M PAPER RIGID BACKING
VELOCITY = 7 . 8 5 km/sec (25,700 fps)
SPACING = IS.2 cm (6 in )

Nil

N67-90 A/M PAPER RIGID BACKING
\/ni Ar*TTV _ *? r\ i - -_^_- ._ /*^r
»L»JL.«Jox i I • - / . y Mil/ ^CC ^-i-O

SPACING = 22.9 cm (9 in )

N67-128 A/M PAPER RIGID BACKING
VELOCITY = 7 . 5 ksi/sec (2^
SPACING = 22.9 cm f9 in 1

J/.JC.3

N67-92 A/M PAPER RIGID BACKING N67-135 A/M PAPER RIGID BACKING
VELOCITY = 8.1 km/sec (26,500 fps) VELOCITY = 7.0 km/sec (23,000 fps)
SPACING = 30.5 cm (12 in ) SPACING = 63.5 eat (24 in j
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N67-116 A/M SILK RIGID BACKING
VELOCITY = 7.0 km/sec (23,000 fps)
SPACING * 7.6 cm (3 in.')

BACKING
km/sec (28,600 fps)

SPACING = 15.2 cm (6 in )

.

N67-117 A/M SILK RIGID BACKING
VELOCITY = 6.45 km/sec (21,100 • fps)
SPACING = 22.9 cm (9 in )

N67-126 A/M SILK RIGID BACKING
VELOCITY = 8.6 kin/sec (26,100
SPACING = 30.5 cni (12 in }

N67-133 A/M SILK RIGID BACKING
VELOCITY = 6 . 5 5 kffl/sec (21,500 fps)
SPACING = 45.6 cm f!8 in 1

N67-134 A/M SILK RIGID BACKING
VELOCITY = 6 . 8 km/sec (22,400 fps)
SPACING = 63.S cm (24 in )
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I N67-216 A/M PAPER FLEXIBLE BACKING
VELOCITY = 7.2 km/sec (23,600 fps)
SPACING = 3.8 cm (1.5 in )

N67-206 A/M PAPER FLEXIBLE BACKING
VELOCITY = 8 . 0 km/sec (26,150 fps)
SPACING = 7.6 cm (3 in-)

N67-215 A/M SILK FLEXIBLE BACKING
VELOCITY = 7.05 km/sec (23,100 fps)
SPACING = 3.8 cm (1.5 in )

N67-251 A/M PAPER FLEXIBLE BACKING
VELOCITY = 7 . 0 km/sec (22,950 fps)
SPACING = 6.4 cm (2.5 in )

N67-213 A/M SILK FLEXIBLE BACKING
VELOCITY = ?
SPACING = 3.8 cm (1.5 in

N67-160 A/M SILK FLEXIBLE BACKING
VELOCITY = 8 . 7 km/sec (28,500 fps)
SPACING = 22 .9 cm (9 in )
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N67-146 A/M PAPER WATER BACKED N67-224 A/M PAPER WATER BACKED
VELOCITY = 7 . 1 km/sec (23,300 fps) VELOCITY = 7.55 km/sec (24,700 fps)
SPACING = 3.8 cm (1.5 in ) SPACING = 3.8 cm (1.5 in)

$r

N67-223 A/M PAPER WATER BACKED

SPACING =6.7 cm (2.625 in )
fos) N67'143 A/MPAPER WATER BACKED

VELOCITY =6.7 km/sec (22,000 fpsj
SPACING = 7.6 cm (3 in.)

N67-237 A/M PAPER WATER BACKED
VELOCITY = 1
SPACING = 15..3 cm (6 in )

N67-141 A/M PAPER WATER BACKED
VELOCITY = 7.15 km/sec (23,400 fps)
SPACING = 22.9 cm (9 in )
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N67-148 A/M SILK WATER BACKED
VELOCITY = 7.0 km/sec (23,000 fps)
SPACING = 3.8 cm (1.5 in )

N67-144 A/M SILK WATER BACKED
VELOCITY = 7.6 km/sec (24,850 fps)
SPACING = 7.6 cm (3 in )

N67-238 A/M SILK WATER BACKED
VELOCITY = ?
SPACING = 6.4 cm (2.5 in )

N67-142 A/M SILK WATER BACKED
VELOCITY = 7.65 km/sec (25,100 fps)
SPACING = 22.9 cm (9 in )
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figure 4.3 we have plotted the number of layers penetrated by the gas cloud

versus the downstream spacing. A fairly complete picture of the resistance

of the panel to the gas cloud is provided in this manner.

From figure 4.3 it is clear why we chose a no-damage criterion

involving damage only to the one or two outer layers. The damage drops very

quickly to this level and then remains more or less constant with spacing.

In figure 4.4 we have plotted the peak axial pressure versus spacing

in log-log form. A comparison has been made between the debris clouds due to

the 1.27 cm (0.5 in) and the 0.63 cm (0.25 in) diameter projectiles. In addition,

we observe the effect on the pressure experienced by the main wall of having a cryo-

genic panel mounted on the plate. It is apparent that the panels have no appreciable

effect on the peak pressure. The scatter in pressure reflects the scatter in

the impact velocity mentioned previously.

We would expect from this result that the insulation panel would

provide negligible protection when mounted on a main wall. This expectation

was confirmed by the second phase of the investigation.

We investigated the ballistic limit spacing for a 1.59 mm (0.063 in)

thick 2024-T3 aluminum main wall when subjected to the debris from the impact

of a 0.63 cm (0.25 in) diameter by 0.38 cm (0.15 in) long Lexan cylinder onto

a 0-013 mm (0.005 in) thick lead shield at a nominal velocity of 7.6 km/sec

(25,000 f t / sec . ) . The ballistic limit spacing was found to be between

3.8 cm (1.5 ins) and 6.35 cm (2 .5 ins) both with a face mounted A/M panel and

without one.

Similar testing with water backed main walls also showed no detec-

table protection by the cryogenic panel. The data were not sufficiently
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Figure 4.3 Damage to cryogenic insulation panels vs spacing. Damage
caused by debris from the impact of a 0.63 cm (0.25 in) diameter by
0.38 cm (0.5 in) long Lexan cylinder onto a 0.12 mm (0.005 in) thick
lead shield at a nominal velocity of 7.6 km/sec (25,000 ft/sec ).
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complete, however, to permit a definition of the ballistic limit thickness.

4.1 Design Charts for Cryogenic Panels in Near-Earth Meteoroid Environment

At the specific request of the NASA Lewis technical monitor, the

data available from tests performed in this investigation were extrapolated

into design charts. No analysis was made of the shield requirements. It

was assumed that a shield would be provided so as to substantially vaporize

all meteoroids encountered during a given mission. Thus the extrapolation

was based only on the measured pressure distributions. It should also be

borne in mind that no cognizance has been taken of particulate penetration

of the insulation panel although such effects will be present at all velocities

and shield to panel spacings.

If we attempt to correlate the nominal no damage threshold spacing

of figure 4.3 with the peak axial pressure, we find from figure 4.4 that

S = 22.9 cm (9 in) corresponds to a pressure of ^ 63.5 kg/cm (900 psi) when

the 0.63 cm (0.25 in) diameter projectile is used. Further, if d is the

diameter of the projectile, the data of figure 4..4 indicate that

P ocS-V'8

max

In section 6.0 of this report, we present data for the Grid-Bumper

which indicate a linear dependence of peak pressure on velocity. Further

it is assumed that P has a linear dependence on projectile density.
THciX

Hence we write

P = ApVS"2d3 '8 (4.1)max ^ J
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2
where P = peak center line pressure in kg/cmnicix

p = density of projectile in gm/cm

V = velocity of projectile in km/sec.

S = spacing between shield and main wall in cm

d = projectile diameter in cm

A = constant of proportionality

We may determine A by reference to a point on either of the curves of

figure 4 .4 . We have

p = 1.2 gm/cm

V = 7.6 km/sec.

S = 22.9 cms

d = 0.625 cms

so that A = 21,800

We represent the particle mass in the form

where M is in gms .

Then, using equation (4.1)

C4.2)

Equation (4.2) specifies the largest particle mass of known

density and velocity which will be defeated by a panel spaced S cms from

a shield. To select a spacing which will provide a given mission success

probability, we require information about the meteoroid environment.

From reference 36, the design environment is represented by the
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cumulative flux shown in figure 4.5 together with the conditions

(4.3)
p = 0.5 gm/cm3 (0.0181 lbm/in3)

V = 20 km/sec. (66,500 ft/sec.)

We represent the flux distribution of figure 4.5 by the equations

fS.75 x 10~9M~°'32 M i l O ~ 7 g m
N = i 15 -1 2 -7 (4'4)

(^3.98 x 10 M M 2 1 0 gm

Substituting P = 63.5. kg/cm and p and V as specified inin 3.x

equation (4.3) into equation (4.2) yields

M = 0.45 x 10"3S1>58 (4.5)

Equation (4.5) may be substituted into equation (4.4) to determine
2

the number of particles per meter -sec which will substantially or completely

penetrate an insulation panel spaced a distance S from a shield

r6.79 x 10"8S"°'505 Si 4 .72 x 10"3 cm

N = 1 -11 -1 9 -3 (4'6)

(^4.16 x 10 1AS y Si 4 .72 x 10 cm

2
Then, if E is the mission area-time product in meter - sec, EN(S) ,

where N(S) is defined by equation (4 .6 ) , represents the expected number of

particles sufficiently large to damage the insulation system spaced a distance

S from the shield. We fit the distribution to a. Poisson form with mean

u = EN. * .

i.e. P(n) = i-jJT- (4.7)

gives the probability that n punctures will occur. The probability of

zero punctures (n = o) is given by

P(o) = e"y = e"EN (4.8)
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For the 90%, 99% and 99.9% probabilities of mission success, we put

P(o) = 0.9, 0.99 and 0.999 respectively. From equation (4.8) we have

log1()P(o) = -EN log1Qe

N = |{ ±Z ) (4.9)

But equation (4.6) may be written as

[-7.169 - 0.505 log i nS, Si 4 .72 x 10"3 cm
1U (4.10)

-10.381 - 1.9 log1QS , S*4 .72 x 10"3 cm

Hence, combining equations (4.9) and (4.10) we have

I log P(o)1 f-7.169 - 0.505 loR1QS , S f4.72xlO" 3 cm

-log1QE + log10 |- log e J "[-10.381 - 1.9 log1()S , S24.72X10'3 cm

The graphs generated with P(o) = 0.9, 0.99 and 0.999 are shown in figure 4.6

in log-log form.
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5.0 DIRECT IMPACTS ONTO WATER FILLED TANKS

In the early phases of the experimental program, some firings were

performed using an unprotected, water-filled tank. This phase of the program

was subsequently deleted in order to provide more firings against protected

tanks. The tank utilized was the same as that illustrated in figure 3.19

and used for the protected shots. The tank was instrumented with pressure

gauges, and for one shot a pressure record was obtained 7.6 cm (3 in J from

the point of impact. The probes were located as in figure 5.1 below.

Blow Out

1.27 cm CO. 5 in)
Aluminum Top

On Axis Probe

Hemispherical Shock in Water

Pressure Probe

Figure 5.1 Arrangement of Pressure Probes Within Water Tank
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It was assumed, in placing the probes in the indicated manner,

that the blast due to impact of the projectile would be hemispherical in

nature. Evidence to support this expectation was found in Stepka et al

(reference 13). The subsequent similarity of the gauge records also verified

the anticipated spherical symmetry of the shock wave. It was therefore decided

to use an existing computer code to predict the pressure at the shock front

on the basis of a spherically symmetric flow field and to compare the theoretical

results with the experimental datum.

5.1 Analysis of Decaying Blast Wave

The flow behind the blast front is assumed to b"e governed by the

equations reflecting conservation of mass, momentum and energy in an inviscid

fluid. The Eulerian representation of these equations is:

<5-2'

where p = p(r,t) = density of the fluid

u = u(r,t) = particle velocity

p = p(r,t) = pressure

e = e(r,t) = internal energy

r = radial position

t = time

0 for planar symmetry

and j = ^ 1 for cylindrical symmetry

2 for spherical symmetry
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We have the equation of state

e = e(p,p) (5.4)

In the analysis of strong blast waves, one may assume self-similarity of

the flow to obtain solutions which agree well with the early time response

of the fluid (reference 18, 37, 38, 39). In the event that the shock wave

decays in time, self-similarity is not observed. We attempt a "quasi-

similarity" description due to Oshima (reference 40) and modified slightly

by Rae (reference 12). The decaying blast wave has also been examined in

references 41, 42, 43, and 44.

Let R (t) be the position of the shock front at time t. R CO) = 0.

Let E, = r/R be the usual similarity variable. We transform equations C5.1)

to (5.4) from (r,t) space to (£,R ) space and we introduce non-dimensional

variables by:

u = Rs<K£,Rs) (5.5)

p = P0KS,RS) (5.6)

p = poRs f(5,Rs) (5.7)

. 2
e - eo = Rs g(C,Rg) (5.8)

Equations (5.1) - (5.3) become:

aw, ^* AI/I 3>d
(5.9)

(5.10)
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The boundary conditions at the shock front are the usual Rankine-Hugoniot

relations. We write them in dimensional form as:

• •

PoRs = Pl(Rs - uj) (5.12)

po * poRs2 = ?! * pl(*s ' V2 (5-13)

e - e0 = I(Pl + p ) ( I - I ) (5.14)

where the subscript o refers to conditions in the undisturbed medium and 1

refers to conditions directly behind the shock wave. In terms of the non-

dimensional variable, equations (5.12) through (5.14) become

tjij(l - 4j) = 1 (5.15)

fl =

We now introduce the shock wave Mach Number

Ms = Rs/cQ (5.18)

where co is the speed of sound in the undisturbed medium. We restrict the

discussion, henceforth, to media which may be described by the ideal gas

equation of state

e = -E -- L- (5.19)
P Y-l

It is recognized that water is well described by (5.19) with y = 7 (reference 18)

Thus we write

g = -4 -^T (5.20)
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• •We note that c = YPO/PQ so that the term po/(po R *) in equations (5.16)

(5.17) may be written as:

Po

We now write the boundary conditions as :

2 (̂ ±\ MS*

-s' ?
(Y-1)MS^2

(5.21)

(5.22)

(5.23)

(5.24)

In order to solve equations (5.9) through (5.11) we transform them into a

set of ordinary differential equations by means of the Oshima assumption:

" 1 3
(f,<|>,t|0 is independent of C, Oi£-l

We note that (5.25)

and introduce the notation

RCR,. = a (5.26)

We refer to a as the "decay coefficient". Hence the derivatives in Rg may

be evaluated at the boundary by means of equations (5.22) through (5.26).

The values at interior points are determined by means of the Oshima assumption

which simply requires that the derivative be proportional to the quantity

itself. Now noting that equation (5.20) implies:

Y-l

(5.27)
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We have the governing equations for the fluid behind the shock front:

' * **'

_l_k»+ ». 3_2_, r 2

2*-2Hlil

(5.28)

(5.29)

of(5.30)

where the prime indicates differentiation with respect to £ and we have

introduced variables 6., g-, S,. On solving equations (5.28) through (5.30)

for the derivatives we have:

'" L̂ - (5.31)

f' = (5.32)

*'
^ ^3 (5.33)
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We now turn to the problem of evaluating the decay coefficient a. We use

an iterative technique due to Rae ('reference 12). The method of solution

is as follows:

1) Choose a series of values of Ms

2) For each Mg calculate the boundary values at 5 = 1 from equations

(5.22) to (5 .24) .

3) Assume a value of a and integrate numerically (using Runge-

Kutta and/or a predictor corrector technique) equations (5.31) through (5.33)

back to £ = 0. If <f> does not tend to zero at the origin, change a and repeat,

The solution is completed by determining the shock front trajectory. The

energy integral is given by:

o o

R R I - - k - (5.35)

where k = f 1 if j = 0

2n if j = 1

4TT if j = 2
««^

We introduce a characteristic length:

= E0/kjPo (5.36)

Then equation (5.35) may be written as:

R °Y 2*1 . VM ^T (5.37)

where

I = J / J t f -+ ^TT J? Jd^ (5.38)

o
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Thus the position of the shock front corresponding to a given Mach number

may be established from equations (5.37) and (5.38). The corresponding time

is given by:

VRo
Ro J Ms

5.2 Comparison of Numerical and Experimental Results

Apart from a series of Mach Numbers, the computer program requires

values of y and j. As indicated in the previous section, water is well

described by y = 7, We set j = 2 to reflect spherical symmetry. The program

then provides master curves in non-dimensional form. Reference to specific

cases is then made by identification of values for p , c and E .

The value of p was taken from a handbook, while the ambient

pressure is determined from

C5.40)

2
in which PQ, Y and c are presumed known. With y = 7 we find p = 3020 kg/ cm

(43,000 psi) . Since the blast is produced by a projectile colliding with a

thin wall we take the energy release E to be the kinetic energy of the

projectile. Also, we assumed the blast to be confined to a half space by
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the inertia of the wall, we further multiply the kinetic energy by a factor

of two. Hence

EQ = MV
2 (5.41)

In figure 5.2 we present the non-dimensional trajectory of the blast wave. It

is appropriate to the description of a spherical blast in any fluid medium

characterized by ratio of specific heats y = ?• In figure 5.3 we present

graphs of non-dimensional static and stagnation pressures versus distance.

As we indicated in section 5.0, a pressure datum was obtained in

one round. The impact involved a Lexan cylinder weighing 0.155 gm impacting

at 8.25 km/sec (27,000 ft/sec). From equation (5.41) we find that

E = 1.19 x 103 kg m2/sec2

Hence it is found from equation 5.36 that

RO = 1.42 cm (0.56 in)

Then from figure 5.3 we find that the stagnation overpressure 7.6 cm (3 in )

from the point of impact is given by

PTOT
-^ - 1 = 0.273
PO

2
Hence the theoretical peak pressure reading is 824 kg/cm (11.7 kpsi) which is

2
in. good agreement with the experimentally determined maximum 774 kg/cm (11.0 kpsi)

In figure 5.4 we present some Beckman and Whitley photographs of the blast wave

in a water filled tank due to impact by a Lexan projectile.

Because of the good agreement, further substantiation of the

theoretical curve was desired. A body of data is available in reference 13 .
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t = - 1.4 us.ec t = Q }jsec

t a 1,4 ps.ec

t = 5.7 psec

t = 9.9 usec = 11.4 psec

Figure 5.4 Direct impact of 0 .65 cm ( 0 . 2 5 in) dia by 0 .76 cm C O . 3 in) long
Lexan projectile onto .159 cm (O.OCo in) a l u m i n u m cover of water tank. Impact
velocity was 8.5 km/sec [27,800 f t / sec) . Photo coverage by Beckman and
Whit ley with framing rate 7.05 x 105 frames/sec. Times are referenced to
impact
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Figure 5.4 CCont'd)

t = 25.6 psec

t = 38.3 psec t = 41.1 vsec'
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In figure 5.5 we have plotted the data of reference 13 against non-dimensional

distance in order to effect a comparison with the theoretical curve (the

solid curve). As may be seen, the theoretical curve is in good agreement

with much of the data, especially at larger spacings. It is to be understood

that the theory does not apply for values of R comparable to the dimensions

of the projectile. Further sources of error may be found in a failure of the

projectile to yield all its kinetic energy instantaneously (deceleration

curves are plotted in reference 13) and premature blow out of the wall.
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6.0 EVALUATION OF IMPACT CHARACTERISTICS OF THE GRID-BUMPER

An area of concern in the application of solid shields to the protec-

tion of space vehicles against meteoroids has been the interference of the

shield with the radiative environment. The Grid-Bumper, described in

reference 3, was suggested as a possible solution. It is apparent that the

presence of interstitial gaps in the Grid-Bumper will alleviate, to some extent,

the interference of the shield with the radiation. It also seems reasonable to

expect good protection against projectiles which are large compared to the aper-

tures in the grid. Consequently, an experimental program has been conducted in

order to gain further insight into the impact characteristics of a Grid-Bumper.

The evaluation of the Grid-Bumper has.included two different, but

related approaches. In the first approach, measurements of the debris cloud

expansion velocities (radial § axial) and internal pressure distribution have

been compared with results obtained using an equivalent weight per unit frontal

area solid bumper. In addition, the relative protection afforded by the grid

and solid shields have been compared by determining the ballistic limit

thicknesses of 2024-T3 aluminum alloy witness sheets at two spacings (15.2 cm

and 22.9 cm) downstream of the shield.

The bulk of the tests performed has involved Grid-Bumpers constructed

of lead wire in such a manner as to have the same mass per unit frontal area

as a solid lead shield 0.25 mm (0.010 in) in thickness. This standard Grid-

Bumper consisted of two orthogonal layers of lead wire, 0.38 mm (0.015 in) in

diameter, spaced 0.51 mm (0.020 in) apart. In figure 6.1 we present some

photographs of the debris cloud due to the impact of a Lexan cylinder onto

a Grid-Bumper. It will be observed that the debris cloud is quite different

in appearance from that due to a solid shield (figure 3.20, for example).

A number of firings was used to obtain a map of the dependence of the peak
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t = 16.7 ysec t = 20.0 usec

Figure 6.1 Beckman and Whit ley coverage of the impact of a 1.27 cm (0.5 in)
diameter by 0.76 cm (0.3 in) long Lexan cylinder onto a lead wire grid at
9.45 km/sec (31,000 ft/sec). The grid is constructed of two orthogonal
layers of wire 0.38 mm (0.015 in) in diameter, spaced 0.51 mm (0.020 in) apart
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Figure 6.2 Peak center line pressure recorded on rigid witness plates
loaded by debris from the impact of a 1.27 cm (0.5 in) diameter by 0.76 cm
(0.^3 in) onto a Grid-Bumper. The grid was constructed of two orthogonal
layers of lead, 0.38 mm (0.015 in) diameter, spaced 0.51 mm (0.020 in) apart
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cloud pressure on impact velocity and distance downstream of the shield.

The results are summarized in figure 6.2.

The first comparison between the grid and solid shields involved

measurements of the rate of expansion of the debris cloud. Consider

figure 6.3 in which the debris cloud is indicated at two points in time,

T and T-

Impact Vector

»»—«,«•• Debris Cloud

Shield

Figure 6.3 Sketch of Debris Cloud at Two Points in Time

We define

Uesc, r =

Uesc, z =

T - T2 1

AZ
T - T1 l

From Beckman and Whit ley photographic coverage of the impact event, it was

possible to determine the radial and axial.escape velocities of several
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debris clouds. In figure 6.4 we have indicated the ratio of Uesc, z to

impact velocity, V, versus impact velocity. The full line indicates measure-

ments made on debris clouds formed by impacts of 1.27 cm (0.5 in) diameter

by 0.76 cm (0.3 in) long Lexan pellets onto Grid-Bumpers and the dashed line

which represents impacts on the equivalent weight solid shield (0.25 mm

thickness) is taken from reference 2. It may be seen that the value of

Uesc, z/V is in all cases substantially higher for the grid than for the

solid shield. It also appears that the value of Uesc, z/V is tending towards

a limiting value of 1.75 for the grid as compared with a uniform value of

1.4 for the solid shield.

In figure 6.5 a comparison is made between the lateral expansion

rate of the debris cloud for shots at approximately the same velocity onto

grid and equivalent weight solid shields. It is clear that the escape

velocities are very close for the two cases.

The second comparison made between the grid and solid shields

involved the pressure distribution internal to the cloud. Figure 6.6 indicates

the peak pressures determined from a number of impacts of 1.27 cm (0.5 in)

diameter by 0.76 cm (0.3 in) long Lexan pellets ionto 0.25 mm (0.010 in) lead

shields and equivalent weight Grid-Bumpers at 7.6 km/sec (25,000 ft/sec). The

indication is that at the close spacings ("v<15 cm ) pressures are generally

lower in the grid generated cloud than in the cloud produced by the solid

shield. At larger spacings (̂ 22 cm ), however, the pressures are fairly

close although the grid appears to be somewhat higher. In all cases, the

pressure was measured by probes flush-mounted in a rigid witness sheet.

Hence, figure 6.6 is a representation of the peak total pressure in the

clouds at various radial and axial spacings.
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Grid-Bumper

Solid Shield
(NASA CR-54857)

8 9
Impact Velocity - km/sec

Figure 6.4 Ratio of Axial Escape Velocity to Impact Velocity vs Impact Velocity
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•H

30

20

10

Legend
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Half Diameter of Debris Cloud - cm

14 16

Figure 6.5 Radial expansion of debris clouds produced by impacts of
1.27 cm (0.5 in) diameter by 0.76 cm (0.3 in) long Lexan cylinders onto
0.25 mm (0.010 in) thick solid lead shield and equivalent weight Grid-
Bumper at 8.7 km/sec (28,500 ft/sec ).
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It is interesting to compare the peak pressure data of figure 6.6

with some ballistic limit results.

TABLE 6.1

Comparison of Ballistic Limit Thickness of 2024-T3 Aluminum
Witness Plate When Protected by 0.25 mm (0.010 in) Solid Lead
and Equivalent Weight Grid-Bumper. Projectile is 1.27 cm (0.5 in)
Diameter by 0.76 cm (0.3 in) Long Lexan Cylinder Impacting at
7.6 km/sec (25,000 ft/sec).

Spacing

cm in

15.2 6.0

22.9 9.0

Ballistic Limit Thickness

Grid-Bumper Solid

0.190 cm < hDT < 0.195 cm
DL

(0.049 in) (0.050 in)

0.125 cm < hDf < 0.160 cm
DL

(0.032 in) (0.040 in)

0.185 cm < h

(0.047 in)

0.102 cm < h

(0.026 in)

Shield

D, < 0.195 cm
DL

(0.050 in)

DI < 0.125 cm
DL

(0.032 in)

From this limited amount of data, it appears that there is no

significant difference in protection at 15.2 cm whereas at 22.9 cm, the

solid shield seems slightly superior to the Grid-Bumper. This apparent

gain in protection with the solid shield at larger spacings is qualitatively

in agreement with the peak pressure data of figure 6.6.

One should not, however, expect a good correlation between the

dependence on spacing of peak pressure and ballistic limit as the center line

pulses are quite different for the two types of shields. One expects to find

a better correlation between the total center line impulse (i.e. the integral

of the center line pressure pulse with respect to time) and the ballistic

limit of the witness sheet. If one is considering the hazard associated with

clouds having similar pulse shares in time, then the peak total pressure

becomes a suitable quantity to correlate with damage. This, however, is not

the case when dealing with clouds as dissimilar as those produced by impacts

onto Grid-Bumpers and solid shields.
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In figure 6.7 we have indicated the center line pressure pulses

associated with the impacts of a 1.27 cm (0.5 in) diameter by 0.76 cm (0.3 in)

long Lexan cylinder at 7.6 km/sec (25,000 ft/sec) onto a 0.25 mm (0.010 in)

thick solid lead shield and an equivalent weight Grid-Bumper. It must be

noted that two peaks are present for each curve. The presence of the second

peak in the solid shield pressure distribution has been previously explained

as particulate debris.

This explanation does not appear satisfactory for the Grid- Bumper

pressure distribution. If , «in fact, the second (i.e. the larger peak

occurring at ̂  11 psec) is due to particulate debris, we should expect it to

travel more slowly than the gaseous pulse associated with the solid shield.

It is found for impacts onto solid lead shields that the peak of the gaseous

pressure travels at approximately the impact velocity while the peak of the

particulate debris pressure pulse travels at roughly one half the impact velocity,

From figure 6.7 we see that the time for the leading edge of the debris cloud

produced by an impact at 7.6 km/ sec (25,000 ft/sec) or.to a Grid-Bumper to
i

reach a probe spaced 15.2 cm (6.0 in) downstream is given by

Again from figure 6.2 we see that the time required for the leading

edge of the debris cloud produced by the impact onto the solid shield to

reach a probe spaced 15.2 cm (6.0 in) downstream of the shield is given by

T . »-j'»:5 - 15.4 MS.C2 1.3x7.0
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Now the primary peak of the solid profile of figure 6.7 occurs at a time

6.8 Msec after the leading edge of the cloud reaches the probe, i.e. at a time

equal to 15.4 + 6.8 = 22.2 usec after impact. Thus the velocity associated

with the gaseous pulse is given by 15.2 cm/27.2 ysec = 6.9 km/sec (22,600 ft/sec),

or slightly less than impact velocity. A similar calculation applied to the

secondary pulse of the Grid-Bumper pressure profile indicates that the velocity

associated with the peak is given by 15.2/(10.5 + 11) cm/ysec = 7.1 km/sec

(23,300 ft/sec). The closeness of the two velocities suggests that the secondary

pulse of the Grid-Bumper pressure profile is associated with a gaseous

phenomenon. Further, the primary pulse in the Grid-Bumper profile is travel-

ling faster than the secondary pulse so that it seems reasonable to associate

it with gaseous debris.

In figure 6.8 we have indicated the center line pressure profiles

for impacts onto Grid-Bumpers at similar velocities and for center line pressure

probes located 15. 2 and 30.6 cm (6.0 and 12.0 in) downstream of the shield. At

the impact velocities involved (9.2 km/sec (30,200 ft/sec) at 15.2 cm (6.0 in)

and 8.76 km/sec (28,800 ft/sec) for the 30.6 cm (12.0 in) case respectively),

the equivalent weight per unit area solid shield would have totally vaporized

the projectile so that only one pressure pulse, the gaseous pulse, would have

appeared.

It is clear, however, in figure 6.8 that two peaks are present. In

the case of the 15.2 cm (6.0 in) spacing, the primary pulse is partially merged

in the secondary pulse. At 30.6 cm (12.0 in), the pulses are separate and

distinct.

We summarize the comparative study of the solid shield and the

equivalent weight per unit area Grid-Bumper as follows:

1. At a given impact velocity, the debris cloud associated with
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the Grid-Bumper is characterized by an axial escape velocity

substantially in excess of that associated with the solid

shield while the radial expansion rates are quite close for

the two.

2. At close spacings, the peak total pressure in the Grid-Bumper

debris cloud is lower than in the solid shield debris cloud

while at larger spacings, the reverse is true.

3. No appreciable difference in protection is observed at close

spacings while at larger spacings, the Grid-Bumper appears to

be slightly less effective than the solid shield.

4. Two peaks are observed in the center line pressure profile

associated with the Grid-Bumper debris cloud. The peaks

resolve themselves at a spacing of about 30 cm (12 in). Both peaks

appear to be associated with gaseous debris.

The second approach has been devoted to an investigation of the

very early time impact characteristics of the grid in order to obtain an

explanation of differences observed in the comparative study of the first

approach. It is suggested that an interaction or" material jetting through

the interstitial gaps in the grid might be responsible for the very high

axial velocity. It is in any case clear that a directed, non-isotropic

phenomenon is occurring as the high axial velocities (relative to the solid

shield) are not accompanied by similarly high radial velocities. Further,

the presence of two separate peaks indicates that the first peak might be

identified with jetted material while the second peak would correspond to

normal expansion of shocked material.
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The impact model, tentatively suggested is indicated in figure 6.9(a)

through (d) . For simplicity, the projectile is depicted as impacting an array

of parallel wires, rather than a Grid. The extension of the model to the case

of a Grid can 'then be performed later. In figure 6.9(a) we see the configuration

at the instant of contact. The wires are considered to be normal to the page.

Shortly after impact, an array of cylindrical waves is observed in the pro-

jectile (figure 6 .9 (b ) ) . These waves will expand and interact with the free

surfaces between the wires. The highly compressed plasma wil l - then escape

around the wires in the form of a cylindrical jet. Note that in figures 6.9(a)

to 6 .9(d) , the shocked material is represented by darkened areas. The jet

formed in this way when a cylindrical or spherical surface impacts on a plane

is well known (references 45, 46, 4 7 , ) - At a still later time, we expect

adjacent pairs of jets to interact and, by symmetry, combine to an axially

directed jet (figure 6 .9(c) ) . It is the combined, axially directed jet which

©

(a)

Figure 6.9 Schematic of Impact Onto Parallel Wires at Impact
and Several Times Shortly Thereafter

is responsible for the high axial escape velocity. This effect is analogous

to the Munroe effect well known in explosives (reference 48) .

In the meantime, we expect the expanding cylindrical waves in the

target to interact and to form an essentially planar wave (figure 6.9(d)). It
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now becomes possible to visualize the debris cloud formed by the impact onto

a Grid-Bumper as consisting of material processed in two different manners.

The front part of the cloud would consist of material involved in the jet

interaction, possibly travelling at higher velocities than these obtained

with a solid shield. The latter portion of the cloud would resemble a solid

shield debris cloud, having been processed by an essentially planar wave.

In order to evaluate this model of the Grid-Bumper, we performed.a

series of firings in which 1.27 cm (0.5 in) diameter by 0.75 cm (0.3 in) long

Lexan cylinders were impacted onto single and double strands of 0.32 cm

(0.125 in) diameter lead wire. The experimental configuration is shown in

figure 6.10.

X-Ray Head

27 cm Diameter by 0.76 cm Long
Lexan Cylinder

X-Ray Head

0.316 cm Diameter Lead Wire

Figure 6.10 Schematic of Experimental Configuration
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The target wire (or wires) was located quite close to the muzzle

to assure accurate alignment. Since the x-ray heads were used to obtain

radiograms of the shocked debris, it was not possible to obtain confirmation

of the velocity. Gun parameters suitable to the desired velocity were

chosen and this velocity was assumed to have been-realized. In practice, it

must be understood that the velocity is observed to scatter by - 0.3 km/sec

(1,000 ft/sec) about the nominal velocity.

In figure 6.11 we show radiograms taken just after the impact of a

Lexan cylinder onto a single lead strand. Figure 6.11(a) is a view along the

axis of the wire while figure 6.11(b) is a view normal to the plane containing

the wire and projectile flight axis.

(a) (b)

Figure 6.11 Radiograms of the Impact of a Lexan Cylinder onto a Lead
Wire at Approximately 7.0 km/sec (23,000 ft/sec).
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The impact velocity is approximately 7.0 km/sec (23,000 ft/sec). From the

two orthogonal views of the event, one may construct a sketch of the debris

cloud (figure 6.12).

*

9

/ /
Propectilef Flight

Jdirection

^

\
\

Axis of Lead Wire

Figure 6.12 Sketch of Debris Cloud Constructed from Radiograms of
figure 6.11.

•

In order to determine whether the form of the debris was due to the low impact

velocity, we chose gun parameters suitable to an impact velocity of 8.5 km/sec

(28,000 ft/sec). In figure 6.13 we show the radiograms of the impact of a

single wire shortly after impact. The views are as in figure 6.11. The

radiograms are very similar to these presented in figure 6.11 in which the

impact velocity is considerably lower. As in figure 6.11(b), the view from

above(figure 6.13(b)) appears to represent the debris cloud as being hollow.
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Such a conclusion has been reached by Swift (reference 49). However, x-rays

of a Lexan on Lexan impact failed to register any photographic impression of

the cloud. It is likely, therefore, that the projectile has dispersed

sufficiently to be completely transparent to the x-rays.

In figures 6.14(a) and 6.14(b) we have radiograms of an impact

onto a pair of wires. The lines of sight are again as in figures 6.11(a)

and 6.11(b). Figure 6.14(a) provides good substantiation of the jetting

aspect of the proposed impact model. At the center of the photograph, we

may see quite clearly the interacting jets. The center jet is evidently

moving more rapidly than the peripheral jets as it has progressed further

from the point of impact.

Figures 6.15(a) and 6.15(b) represent views along the axis of a

pair of wires (0.32 cm (0.125 in) diameter spaced 0.51 cm (0.2 in) apart).

The radiogram of 6.15(a) was taken 1.7 vsec after that in figure 6.15(b).

Knowing the time between x-rays, one may measure the distance that the

central jet has moved. The velocity determined in this manner is found to

be ^ 16.5 km/sec (54,000 ft/sec).
1

From figure 6.4 one finds that the axial escape velocity for an

impact onto a Grid-Bumper at 8.5 km/sec (28,000 ft/sec) is given by

1.8 x 8.5 km/sec = 15.3 km/sec (50,300 ft/sec). The closeness of these

two velocities tends to substantiate further the idea that jet-interaction

is responsible for the high axial velocity associated with the Grid-Bumper.
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(a) (b)

Figure 6.13 Radiograms of impact of 1.27 cm (0.5 in) dia by 0.76 cm (0.3 in)
long Lexan cylinder onto 0.32 cm (0.125 in) dia lead wire at 8.5 km/sec
(28,000 ft/sec). Figure (a) is view along axis of wire. Figure (b) is
view normal to wire axis and impact direction.

(a) (b)

Figure 6.14 Radiograms of impact of 1.27 cm (0.5 in) dia by 0.76 cm (0.3 in)
long Lexan cylinder onto tv:o 0.32 cm (0-125 in) dia lead wires spaced 0.51 cm
(0.200 in) apart at 8.5 km/sec (28,000 ft/sec). Figure (a) is view along
axis of wire. Figure (b) is view normal to wire axis and impact direction.

(a) . (b)
Figure 6.15 Radiograms of impact of 1.27 cm (0.5 in) dia by 0.76 cm (0.3 in)
long Lexan cylinder onto two 0.32 cm (0.125 in) dia lead wires spaced 0.51 cm
(0.200 in) apart at 8.5 km/sec (28,000 ft/sec) both views along axis of
wires.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

1. The Hugoniot for Lexan has been determined using Lexan targets

instrumented with several shock wave sensors. The data indicate

that it is not necessary to use very thin impact specimens as

shock decay is not visible over a distance comparable to the

diameter of the target. From the known Hugoniot for lead, we have

determined the initial pressures created by the impact of Lexan

projectiles onto lead shields.

2. Multigauge measurements of the pressure distribution imposed on a

rigid witness plate by a debris cloud reveal that neither the peak

pressure nor the total impulse are well described by a radial

Gaussian dependence.

3. Beckman and Whitley photo-coverage of the response of witness sheets ,

whose thicknesses are close to the ballistic limit thickness, to

the load imposed by a debris cloud indicate that the plate moves a

distance of the order of its own thickness during the time in which

the load is applied- For ductile specimens, however, this distance

is small compared with the deflection to fracture. Fracture, when

it occurred, occurred in a time comparable to the loading time.

All the fractures observed involved a rupture at the center of the

witness plate and were accompanied by petalling.

4. From ballistic limit tests, it appears that the ballistic limit

thickness of a witness plate of a given material is proportional

to the center line impulse due to the gaseous debris. This may be

understood by balancing the mechanical energy loaded into the plate

with the strain energy in plastic deformation.
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5. Beckman and Whitley coverage of the response of a water backed

main wall loaded by the debris cloud indicated that the displace-

ments were too small to be detected. This was in qualitative agree-

ment with the theoretical conclusion of reference 23. The support

of the water permitted the ballistic limit thickness of the plate to

be approximately half that of an unsupported wall, similarly loaded.

Failure, when it occurred, occurred in the same manner as for

unsupported plates. Fracture occurred at the center and petals

were formed. In some tests, the plate was subsequently blown away

from the water tank by the pressure wave in the water.

6. The resistance of SEMI and aluminized mylar cryogenic insulation

panels to vaporous debris loading has been defined. Damage to the

fragile panels was considerable at close spacings O15 cm (^6 in)

when the debris w'as formed by a Lexan cylinder 0.63 cm (0.25 in)

in diameter). At approximately 20 cm (^9 in), however, the damage

reduced to tearing of the outermost one or two layers of the panel.

This amount of damage was observed even at much larger spacings

(̂ 60 cm) and was defined to be a nominal "no-damage" condition.

Considerable numbers of pin holes were observed at all spacings

due to the presence of particulate debris in the cloud. No definition

was made of the hazard due to particulate debris.

7. From the determined resistance of the cryogenic insulation to vaporous

debris, we have computed design data showing the required spacing of

the panel from the shield versus mission area-time product for success
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probabilities of 90%, 99% and 99.9%.

8. A theoretical calculation of the pressure behind the blast created

in a body of water by the impact of projectile has been effected.

Good agreement was obtained with an experimentally determined datum.

The theoretical calculations have been compared with a body of data

due to Stepka et al (reference 13). The agreement was found to be

quite good at larger spacings.

9. An investigation of the debris cloud formed by the impact of a

projectile onto a Grid-Bumper having the same mass per unit frontal

area as a reference solid bumper has revealed that no significant

difference in protection may be expected. Thus the interference

of a meteoroid screen with the radiation balancing of a space vehicle

can be reduced without sacrificing protection and with no additional

weight penalty.

10. The differences between the debris clouds formed by solid shields

and Grid-Bumpers are apparently attributable to the jetting of

material through the apertures of the grid during the early stages

of the impact.

11. Two areas of uncertainty in the Grid-Bumper involve the interaction

with particles whose size is comparable to the aperture and the

interaction with the radiation field. It is recommended that these

areas be investigated.

12. There exists no quantitative understanding of the effects of par-

ticulate debris nor of the generation of such debris. Apart from

the resolution of uncertainties in the extrapolation of data obtained
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in the laboratory to meteoroid velocities, the question of particulate

debris may be considered the area in greatest need of experimental

and theoretical investigation in order that the meteoric risk to

space vehicles be thoroughly understood.
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