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SECTION IV

SYSTEM DESIGN STUDIES

INTRODUCTION

This section summarizes various guidance and control design studies that were

performed for three specific space shuttle candidate vehicles: The McDonnell

Douglas Low Cross-Range Orbiter, designated MDAC-1 and MDAC-2 (two versions which

evolved from April 1970 through November 1970), the Lockheed Missile and Space

Company Delta Wing Orbiter (LSC-8MX) and the North American Rockwell Twin-Fin,

Delta Wing Orbiter, designated SSV-134C. Additional design studies with the

McDonnell Douglas High Cross-Range Delta Wing vehicle will be covered in a sepa-

rate supplementary report. Descriptions of the various vehicles are given in

Section IIIA on "Vehicle Mission and Performance Requirements".

The study results reported here were obtained with three types of simulations.

They were:

* Small perturbation 3 degree of freedom (lateral-directional and

longitudinal separated) for fixed point autopilot and stability

augmentation system design.

* Quasi 5-degree-of-freedom simulations for trajectory segments -

100,000 to 20,000 feet; 20,000 feet to first flare; 20,000 feet

to touchdown. These simulations used velocity axis equations

and approximated lateral-directional dynamics with closed loop

transfer functions. Winds were approximated with gusts only.

* 6-degree-of-freedom simulations using body axis equations for

vehicle dynamics. All aerodynamics were stored in look-up tables.

Complete wind models (high altitude, low altitude, and turbulence)

were included. This simulation was used for final system refine-

ment and performance verification with trajectories run from

100,000 feet to touchdown.

4-1



Additional studies and performance verification in the NASA ARC visual scene

simulator are summarized in Section V of this report.

A. MDAC LOW CROSS-RANGE, STRAIGHT WING VEHICLE SYSTEM DESIGN STUDIES

1. Vehicle Aero Summary

The above table compares salient characteristics of the latest MDAC LCR

configuration with the early MSC straight wing reference design (MSC-245). Per-

tinent information regarding landing characteristics is the relatively low a for

peak L/D (compared to delta wing vehicles), the high wing loading, and the excel-

lent control power obtainable from the aerodynamic surfaces. The control power

parameter is torque to inertia ratio or degrees per second2 of vehicle angular

acceleration per degree of surface deflection (at a reference Q). Table 3-1 in

4-2

Characteristics MDAC-2 MSC "245"

Circa 7/70 Circa 1/70

Weight (landing) - pounds 210,000 155,000

Wing Span (b) - feet 114.94 113.5

MAC (c) - feet 17.86 17.53

I - (slug-foot x 10 6) 1.85 0.778
xx u 2 6
I - (slug-foot

2
x 10 6) 16.4 5.85

I - (slug-foot x 10
6
) 16.6 5.95

I - (slug-foot x 10 ) -0.028 -xz
Ref Area (S) feet 1,900 1,850

Wing Loading (W/S) - pounds/foot
2

110 83.7

Peak L/D at Landing Condition 6.15 6.83

a for L/Dp - degrees 6.0 7.5

*Pitch Control Power - M
S

(1/sec) -1.24 -3.20

*Roll Control Power- L (1/sec2 ) 2.44 3.04

*Yaw Control Power - NS (1/sec ) -0.430 -0.289
R

*For Land Condition - Q = 150 pounds/foot2



Section IIIA compares these aerodynamic characteristics for all candidate space

shuttle vehicles that were studied.

The interesting aerodynamic characteristics of this class of vehicle are

in the erratic and severely unstable variations in lateral-directional moment and

force coefficients in the region of 40 degrees > a > 10 degrees at transonic and

subsonic speeds. As discussed in the previous section on Transition Maneuver

Concepts, this region was only penetrated for 2.5 seconds when dynamic pressures

had still not risen to above 50 pounds per foot2. A complete description of the

aero model and the tabulated data for the digital simulation table look-up rou-

tines are given in Reference 29.

The important aerodynamic properties that establish the approach flight

path equilibrium angles and speeds for the MDAC LCR vehicle are the L/D charac-

teristics. These are converted to the glide angle versus airspeed curves as

shown in Figures 4-1 and 4-2. The minimum and maximum weight bounds for the pre-

liminary vehicle design (MDAC-1) corresponded to a wing loading range of 84.5

pounds per foot to 124.5 pounds per foot . An equilibrium speed of 300 knots is

considered a reasonable speed that would allow surplus energy for coping with head-

wind conditions. From the MDAC-1 data of Figure 4-1, a -12 degree glide angle

could handle minimum to maximum weight vehicles with an equilibrium speed range

of 275 to 350 knots. When the updated LCR vehicle design data was obtained, the

-12 degree approach glide path should have given a 280-knot equilibrium speed for

the (MDAC-2) (as shown in Figure 4-2). Since an equilibrium velocity is never

attained (because the drag equation is never in equilibrium as explained in

Section IIIB), and the calculation procedure that defines the curves on Figures

4-1 and 4-2 involves some approximations, the actual speed obtained in the simu-

lation flights by the MDAC-2 vehicle on the -12 degree approach path was about

300 knots.

Control surface characteristics are:

-A - Aileron Deflection Limits = +20 degrees

5
R

- Rudder Deflection Limits = +30 degrees

6
E

- Elevator Deflection Limits = +30, -40 degrees
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Figure 4-1
LCR (Straight Wing) MDAC-1 Glide Angle

versus Airspeed Characteristics
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Figure 4-2
LCR (Straight Wing) MDAC-2 Glide Angle
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6F - Flap Deflection Limits = < 50 degrees

6SB - Speed Brake Deflection Limits = < 25 degrees

2. Attitude Stabilization and Autopilot Parameters

a. Pitch Stabilization and Vertical Flight Path Control

The closed loop control equations and gains used for the MDAC-2

vehicle are:

6
ECOMMAND

= [( q rS S1 +) (1 + INT]E/ ko 7l/ (4-1)

where:

300
ko = 2 Q ... max = 4.0

k
q = 0.75

z = 2.0 seconds

kIN
T
= 0.05 to 0.1

On the various glide paths the closed loop control equation is:

F a2

C = k (TREF - ~) + kh he (1 +-) (4-2)

where:

kh = 0.067 V degree per foot

a2 = 0.05 to 0.08

ky = 1.0 to 1.5 degrees per degree

(V in feet per second)
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b. Lateral Directional Stabilization

The roll control equation is:

where:

k
_R = 0.5k

k = 2.5 Q
The rudder or yaw control equation is:

The rudder or yaw control equation is:

RC kr r - sin
R =

k

+ Y A +[ 
C 4S + 1 T S+1 y kARA (T6S + S+1) (4 4 )/ + -5 - - - A + 6 A 6 +

where:

k = 2.0( 300or - Q-/

r4 =2.5
4

kA
y

=02 ( 300 )

5 =0.1

kRAA=

r6 = 5.0

T = 0.2
7

The reaction control system gain and the transition maneuver gains were given in

Section IIIC. Manual control system gains were defined in Section IIID.

4-7
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The high altitude nominal trajectory that defines the nominal poten-

tial and kinetic energy errors for the pitch guidance [see Section IVC,

equations (3-102), (3-103) and (3-104)] involves a stored table. That table is

given as Table 4-1 below.

TABLE 4-1

NOMINAL TRAJECTORY

DK C1 (DK) C2(DK)
(ft) (ft) (ft/sec)

568

580

575

525

370

440

490

600

680

770

880

960

1,080

1,200

1,385

1,600

1,740

1,920

2,120

2,240

2,360

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

70,000

75,000

80,000

85,000

90,000

95,000

100,000

25,000

27,200

31,000

37,500

45,000

53,000

60,000

66,000

72,000

77,000

82,000

86,000

91,000

95,000

100,000

106,000

109,000

113,000

118,000

122,000

126,000
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The nominal elevator program that establishes a reference elevator

trim position for each a and Mach number [SE (at, M) of equation (3-109), Section

IIIC.8] is given in Table 4-2.

TABLE 4-2

PROGRAMMED ELEVATOR COMMAND ('E ), PRETRANSITION MANEUVERING

5E (degrees)

M = 0.3 M = 0.6 M = 0.9 M = 1.1 M = 1.5 M = 2.0

40 -18.0 -4.4 21.3 -8.3 -8.0 -13.3

50 -20.4 -3.6 26.0 -4.7 -14.2 -21.1

60 -23.1 -10.8 -0.2 -7.1 -21.3 -28.9

70 -25.0 -26.0 -29.0 -31.5 -33.8 -36.7

3. Terminal Glide Acquisition

In studies with the MDAC LCR vehicle, speed brakes were used on the

approach glide path only to reduce airspeed when speed exceeded the desired nomi-

nal value.

Acquisition trajectories for the -12 degree glide path with the MDAC-2

vehicle are shown in Figure 4-3. Initial conditions are a -12 degree glide angle,

dynamic pressure of 295 pounds per foot , and angle of attack of 2-1/2 degrees at

20,000 feet of altitude. Various glide slope acquisition runs that result in

nominal and off-nominal velocities (in 5-percent increments) at flare to shallow

glide slope initiation are shown on this figure. The guidance law imposes maximum

angle of attack, maximum speed, maximum and minimum flight path angle constraints,

and maximum acceleration constraints. The down-range or overshoot window for a

-10 percent off-nominal velocity is 4.8 nautical miles. Run 1 shows the imposi-

tion of an angle-of-attack constraint that limited the intercept angle to the a

corresponding to the maximum L/D (ca = 6 degrees).
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A large overshoot capture of the glide slope would actually be achieved

by turning 360 degrees and approaching the glide slope from below. Runs 7 and

10 demonstrate the apparent limit for which a dive into the glide slope from an

overshooting initial condition can be employed (for operation without and with

speed brakes respectively). The range errors for an approach in which the vehicle

has +10 percent velocity error at flare is 2.8 nautical miles. This window can be

extended by deploying full speed brakes (cases 8, 9, 10 of Figure 4-3). Note

that the total window at 20,000 feet is about 10 nautical miles if the flareout

system can cope with ±15 percent velocity errors.

Figure 4-4 shows velocity versus altitude histories for these acquisition

trajectories. The nominal velocity decreases since equivalent airspeed tends to

remain constant as air density increases. All trajectories converge toward the

nominal after the glide path is intercepted. Figure 4-5 shows the dynamic pres-

sure transients associated with the acquisition trajectories. The dynamic pres-

sure histories diverge from the nominal until the glide path is acquired. All

pressure trajectories converge once the terminal path is reached. The' consequence

of flying at the peak L/D is shown to effectively establish a minimum dynamic

pressure in runs Q, , and Q of Figure 4-5. Speed brake deployment for

attenuation of excess velocity is shown in run Q. Speed brakes not only extend

the maximum permissible range, but they reduce the peak dynamic pressure transient.

4-11
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Figure 4-4
MDAC-2 LCR Orbiter Velocity for

Glide Path Acquisition Trajectories
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4. Flareout and Glide Path Geometry
'
Trade-Offs

a. First Flare and Shallow Glide Path Tracking

The geometric relationship between the steep angle approach glide path

and the shallow glide path is dependent upon the equilibrium approach speed, the

desired normal acceleration in the first flare maneuver and the speed brake and

flap deployment techniques. These trade-offs were done with the MDAC-1 vehicle.

Flareout trajectories for several modes of flap and speed brake deploy-

ment are shown in Figure 4-6 for landing touchdowns at a nominal angle of attack

of 4 degrees and vertical velocity of -2 feet per second.

Noting that the trajectories on Figure 4-6 represent the lightest

weight version of the MDAC-1 vehicle, it is seen that a landing speed as low as

135 knots is attained at the nominal landing a of about 4 degrees. (Final designs

gave landing speeds of 165 to 180 knots.) Figure 4-6 shows four different glide

path geometries that start and complete the landing phase with the same speeds.

Case 1 starts the first flare at about 1100 feet and acquires the shallow (2-1/2 ° )

glide path at 800 feet. It is capable of this extended run on the shallow glide

path because it delays flap deployment until an altitude of 200 feet. Flaps are

deployed at 5 degrees per second and full flaps = 50 degrees. It is probably an

operationally unacceptable procedure to delay deployment until 200 feet. This is

especially true because, to minimize the number of variables, landing gear was

deployed concurrently with flaps.

Case Q shows a landing with only 20 degrees of flaps (40 percent),
deployed at 300 feet. This gives a 600 foot shallow glide path run. Case O uses

only 400 feet of shallow glide path but uses full flaps. Case ( delays acquis-

ition of the shallow glide path until an altitude of 300 feet but it requires 50

percent speedbrakes in addition to full flaps to achieve the landing speed. (Note

that final flare starts at an altitude of 60 feet, c.g. height.)

In theory, more or less speed brake could be employed during the

flare to attenuate off-nominal velocity errors. In practice the MDAC-1 vehicle

required an unobtainable speed brake deflection to eliminate modest off-nominal

velocities. For example, a plus five percent off-nominal velocity required 136

percent speed brake deployment to establish a nominal touchdown. It appears that

4-14
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speed brakes can be used more effectively during the equilibrium glide descent

but they should be retracted for the nominal flareout. Removal of the nominal

speed brake deployment adds an additional 100 feet of altitude to the shallow

glide slope traverse.

If we select the glide path geometry of case Q of Figure 4-6, how

well would that system cope with the maximum weight (W/S = 124.5) configuration

which must arrive at first flare with a significantly greater speed. There are

several techniques available to cope with this problem including speed modulation

with speed brakes. Figure 4-7 shows that a variable altitude flap deployment

strategy can provide good speed convergence and a successful flareout. The speed

difference at touchdown is about 24 knots whereas the speed difference at first

flare was about 63 knots. The higher speed vehicle deployed flaps at 340 feet

while the lower speed vehicle deployed flaps at 200 feet.

b. Final Flare

The nominal landing procedure used was:

* -12 degrees glide slope to first flare at 870 feet

* Shallow glide path acquired at 520 feet

* Landing gear and full flaps deployed at 5 degrees per second at

an altitude of 200 feet

* Final flare starts at 60 feet (c.g. height)*

* Touchdown at -2 foot per second, h, 167 knots, V at an angle

of attack of approximately 6 degrees

Figure 4-8 show landings for nominal and ±50 foot errors in the first flare ini-

tiating altitudes which result in negligible range and speed errors and vertical

velocity error. Figures 4-9 and 4-10 show terminal trajectories and h and h

phase plane results for sustained step vertical wind gusts of 10 fps applied at

altitudes of 100, 300, 500, and 700 feet. Touchdown dispersions are small with

the exception of a wind gust applied at 100 feet of altitude which resulted in

a touchdown h error of about -2 feet per second.

*Height of c.g. at touchdown = 1.5 + 10.9 sin 0 + 13.4 cos 0 or about 15.9 feet
for a nominal touchdown.
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Figure 4-7
LCR (Straight Wing) MDAC Flareout Trajectories,
W/S= 84.5 and 124.5, Control Laws Updated for

Maximum Weight Orbiter from Minimum Weight Baseline
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MDAC-2 LCR Orbiter, h and h Phase Plane for

10-foot-per-second Vertical Wind Gusts
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The touchdown h for the different altitudes at which the severe

gust was applied was:

Altitude at
Run Which 10 FPS

(Figures 4-9 Gust (sustained) Touchdown
and 4-10) is Applied h

1 500 feet -1.6 ft/sec

2 300 feet -3.0 ft/sec

3 100 feet -4.4 ft/sec

4 700 feet -2.4 ft/sec

The Acceleration Flareout Controller (Section III.C-4) was used. Al-

though this performance is acceptable for vertical gusts as large as 10 feet per

second; final simulations with wind and turbulence models indicated that the

acceleration controller did not perform as well as an h controller.

Figure 4-11 displays the flareout trajectories for nominal and ±10

percent off-nominal velocity errors at first flare altitude and Figure 4-12

shows the corresponding h and h phase planes for a control law employing updating

of the predictive commands for the velocity error. The vehicle touches down

within ±0.1 foot per second of the desired rate of -2 feet per second for forward

speed spreads of +10 percent and -13 percent. Range spreads are ±400 feet. This

performance is achieved at the expense of an angle of attack variation of 9 de-

grees. The peak a for the low speed off-nominal reached the wing stall region.

It is therefore apparent that a more elaborate speed control procedure prior to

first flare would have been needed to avoid this penetration of an unacceptable

a region. To avoid this low speed problem, the nominal landing speed could have

been raised about 10 knots. This was ultimately done in the final simulator veri-

fication of LCR vehicle performance.

5. LCR Vehicle Performance Summary 100,000 Feet to Touchdown

Complete 6-degree of freedom runs from 100,000 feet to touchdown are doc-

umented in Figures 4-13 through 4-17. These runs include the blended reaction

and aerodynamic controls, the transition maneuver, acquisition of the terminal

glide path, first flare, shallow glide path tracking, final flare, and lateral

flight path tracking. The vertical (altitude-range) profile for a straight-in

approach is shown in Figure 4-13. Note that the zero range coordinate is at the

4-21
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Figure 4-11
MDAC-2 LCR Orbiter Flareout Trajectories Predictive Commands

Updated for ±10 percent Initial Flare Velocity Errors
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Figure 4-15
LCR (Straight Wing) MDAC-2 Orbiter Straight-In Flight from

100,000-foot Altitude to Touchdown with Large

Off-Nominal Initial y (Q, VE VT, and NZ Profiles)
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steep angle glide path intercept with the ground. This trajectory is initialized

with relatively severe off-nominal conditions. The initial flight path angle (7)

is about -50 degrees rather than a nominal value of about -40 degrees. The initial

angle of attack (a) is about 50 degrees. The angle of attack reference is immed-

iately changed to 60 degrees as the run starts. The C and y histories are shown

in Figure 4-14 which provides a clear picture of the transition maneuver. This

maneuver starts at 45,000 feet. The angle of attack is reduced to a low value

before 40,000 feet is reached and the pull-out is completed at about 25,000 feet.

The trajectory approaches the terminal glide path with an offset that is eliminated

as that glide path is acquired with a pull-up maneuver. For these runs the 0.5g

incremental acceleration constraint was not used so that the terminal glide acqui-

sistion maneuver results in excessive g's (about 1.1g incremental). An altitude

history for this trajectory showing dynamic pressure, Q, equivalent airspeed,

VE, true airspeed, VT, and normal acceleration NZ, is shown in Figure 4-15. Note

that the landing speed has been increased to about 178 knots (300 feet per second)

as suggested by the previous flareout discussion.

To complete the documentation of the LCR guidance and control performance

in the descent from 100,000 feet, a set of recordings are presented that illustrate

an interesting and somewhat embarassing phenomenon that has always been recognized

by designers of guidance and control systems. That phenomenon is the fact that

inner loops of a guidance system may be oscillatory and very objectionable from

the viewpoint of handling qualities but the response of the guidance or outer loop

may still be excellent. This is shown in Figure 4-16, the downrange and crossrange

altitude histories of an LCR descent starting with a 2000 foot lateral off-

set at 100,000 feet. The lateral guidance for this initial lateral position

commanded a right and then left roll maneuver to align with the desired straight-in

path. As seen in Figure 4-16, the lateral guidance was precise and well damped

with the reference path acquired before the nose-down transition at 45,000 feet

begins. A record of the lateral-directional inner loops during the time of the

turning maneuvers does not reveal the same excellent performance. As shown on

Figure 4-17, roll stability is relatively poor and sideslips are excessive. All

lateral-directional control is provided by the RCS (described in Section III.C)

but errors in programming the control laws were not observed until the recording
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of Figure 4-17:was obtained since all guidance objectives were met. The errors

consisted of the following:

* The yaw control laws did not included the yaw rate washout or yaw rate

command proportional to (g sin 0c cos 0). These terms are essential

for sideslip minimization. The large values of P (sideslip) caused

entry into poorer aerodynamic stability regions.

* The reaction control firing thresholds on the yaw and roll reaction

rockets were smaller than the nominal values, thereby causing excessive

limit cycle activity.

· Roll rate gains were lower than nominal.

These errors were corrected at the time that program redirection abandoned further

work on LCR vehicles.

6. High Altitude Energy Management Windows

The very limited high altitude energy management window that exists for

the LCR vehicle in a straight-in approach is shown in Figure 4-18. The initial

heading is toward the runway. The shaded region represents the area that can be

penetrated at an altitude of 100,000 feet and with the limited turning maneuvers

and L/D modulation, the vehicle can be brought through transition so that it

reaches alignment with the terminal glide path at 20,000 feet. The second shaded

region is the area used for the transition maneuver during which no turns or

range modulation is permitted. Arrows represent typical paths followed for the

initial points indicated.

This window as well as the windows for other initial headings was deter-

mined empirically by varying initial conditions and running trajectories using

the LCR Energy Management guidance laws described in Section III.C.

Figure 4-19 shows the shape of the window for initial headings that are

oriented 90 degrees with respect to the runway. A most pessimistic view is shown

of the LCR vehicle's energy management capability in Figure 4-20. As shown, an

extremely small window exists for initial headings of 180 degrees with respect to

the runway. (A symmetrical window also exists on the right side.) This result
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is pessimistic because the window size is smaller than thelaccuracy of many of

the navigation devices proposed for use in this altitude region. The purpose of

the energy management is to correct for navigation errors as well as other factors

that produced an off-nominal trajectory. The implication of this illustration is

that a 180-degree approach to the landing runway will require that all of the

energy management be accomplished below 20,000 feet. This requirement reduces the

range adjustment capability of the unpowered LCR vehicles to a point where unpowered

landings are feasible but very marginal for some combinations of reentry errors

plus adverse wind effects. This problem does not exist for HCR vehicles.

The marginal situation can be improved if we permit turning maneuvers

during the latter part of the transition maneuver. During this part of the trans-

ition, a fixed angle of attack is maintained to provide a maximum pull-up maneuver

consistent with vehicle acceleration limits. The pull-up g's are developed as

speed and hence dynamic pressure builds up. When Q's reach about 100 pounds per

square foot, reasonable aerodynamic control capability in the lateral-directional

axis is. available. Turning maneuvers could therefore be initiated at this time

even though the pull-out has not yet been completed. If such turns are allowed,

the window can be expanded by perhaps 2 NM (12,000 feet) for each of the three

initial headings.

The total window for the LCR vehicle may therefore be summarized as

follows:

100,000 to 25,000 feet: Initial heading dependent per Figures

4-18 through 4-20

25,000 to 20,000 feet: 4 NM down-range }

2 NM cross-range Estimate

20,000 to touchdown: 10 NM down-range

6 NM cross-range Estimate
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B. LMSC HIGH CROSS-RANGE, DELTA BODY ORBITER SYSTEM DESIGN STUDIES

1. VehiCle Aero Summary

The significant information (from the guidance and control viewpoint)

contained in this table are the large inertias and relatively low control power.

This is most important for the roll control case. A roll acceleration capability

of 0.258 degree per second2 per degree of aileron (differential elevon) will re-

quire 2-seconds to achieve a 10 degree per second roll rate for an instantaneous

20 degree SA deflection. This limitation would require very high surface actuator

rate capability in order to achieve reasonable roll stabilization characteristics.

4-35

Lockheed
Characteristics Lockheed

8MX

Circa 1/70

Weight (landing) - pounds 300,000

Wing Span (b) - feet 164.0

MAC (c) - feet 109.0
2 6

I - (slug - foot x 10 ) 4.7
xx

I - (slug - foot x 10 ) 12.0
yy

I - (slug - foot2 x 106) 15.0
zz

I - (slug - foot x 10 ) 0.34
xz

Ref Area (S) - foot 2 5,740

Wing Loading (W/S) - pound/foot2 52.3

Peak L/D at Landing Condition 4.7

ca for L/Dp - (degrees) 17.0

*Pitch Control Power - M (1/sec2 ) -0.745
6
e

*Roll Control Power- La (1/sec2 ) 0.258
A

*Yaw Control Power - N6 (1/sec 2 ) -0.378
R

*For Landing Condition - Q = 150 pounds/foot2



It is noted that the subsonic rolling moment characteristics of the rudders

for this vehicle indicate that the rudders are more effective rolling moment pro-

duces than differential elevons. For example, the rolling moment due to rudder

(at subsonic speeds) is:

CQp = 0.00027 per degree at a = 150

R

C£ = 0.00065 per degree at a = 60

R

In contrast, the rolling moment due to differential elevon at these speeds is:

C£ = 0.00017 per degree (at a = 0 to 15 degrees)

5A

In the design of the lateral-directional autopilot loops, no attempt was

made to exploit the rudders' rolling moment capability to improve the speed of a

roll command response. The rudders are used in turn coordination and to a limited

extent, when the turn coordination system attempts to yaw the vehicle into a turn,

it can contribute a sideslip rolling moment that tends to speed up response. How-

ever, if the low rolling power of the differential elevons proved to be a problem,

some attempt at roll maneuver augmentation through the rudders would have been

attempted. This did not prove necessary.

The detailed aero characteristics for this vehicle are summarized in Ref-

erence 12. The vehicle as defined in this reference is statically and dynamically

stable at all flight regimes associated with terminal control and landing. (It

is also stable throughout its reentry flight regime.) The stabilization loops

associated with the autopilot can nevertheless cope with considerable ranges of

vehicle instability. This is discussed later in the section on parametric studies

of lateral-directional stability.

The vehicle dynamic characteristics along the terminal trajectory from

100,000 feet to touchdown are summarized in Tables 4-3 through 4-6. Linearized

perturbation coefficients were established for the following flight conditions:

M = 3.5, h = 100K feet

M = 1.5, h = 70K feet
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M = 1.0, h = 55K feet

M = 0.5, h = 27.5K feet

M = 0.25, h = S.L.

An angle of attack of 15 degrees corresponding to the approximate peak L/D con-

dition was used for all flight conditions. Since all coefficients are extremely

dependent upon angle of attack, these linearized characteristics can only be used

to provide an approximate scoping of the stabilization system design problem.

Tables 4-3 through 4-6 show this vehicle to be not unlike many supersonic

aircraft in regard to pitch and lateral-directional mode frequency and damping

characteristics.

The status of this vehicle design was too preliminary for a detailed de-

finition of total surface deflection or rate capability. Values for these para-

meters were selected in accordance with design practices in present day supersonic

aircraft. These assumptions may have been somewhat optimistic in regard to dif-

ferential elevon control limits and rates.

The important aerodynamic properties that establish the approach flight

path equilibrium angles and speeds for the LMSC delta body vehicle are the L/D

characteristics. These are converted to the glide angle VS airspeed curves as shown

in Figure 4-21. The range of acceptable glide angles shown on this figure are

somewhat arbitrary. The -15 degree minimum is fairly close to the peak L/D condi-

tion and leaves very little margin for glide path acquisition maneuvering. The

-30 degree maximum provides a higher speed (above 275 knots) for energy management

flexibility but requires a much more severe flare maneuver. The -20 degree nominal

implies problems of inadequate speed margin at the time of flare but it is consid-

ered to be a reasonable compromise over the other two extremes. The basic problem

with this vehicle's aerodynamic characteristics in regard to the unpowered landing

problem is not so much its relatively low L/D but its high drag (CD of equation
0

3-7). This causes the steep roll-off of the a vs V curve at speeds above

V(L/D MAX).
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TABLE 4-3

LATERAL DIRECTIONAL TRANSFER FUNCTIONS ALONG TERMINAL TRAJCETORY

Condition [ P/hA r/R A

M = 3.5 0.255(S - 0.0025) S2 + 2(0.05)(0.44)S + 0.442 -0.147(S + 0.036)[(S2 + 2(0.037)(0.66)S + 0.6- 2 1 0.00005(S + 0.037)(S + 0.01)(S + 1418)

h = 100K' D1 D1 01

M = 1.5 0.19(S - 0.0058)[ S2 + 2(0.08)(0.63)(S + 0.63 1 -0.347(S + 0.085)| S + 1(0.11)(0.39)S + 0.39 1 0.00009(S + 0.085)(S + 0.2)(S + 572)

h = 7OK' D2 D2 2

M =1.0 0.278(S - 0.0086)1 S2 + 2(0.097)(0.59)S + 0.T92
]

-0.17(S + 0.12)1S2 + 2(0.05)(0.42)S + 0.4221 0.00026(S + 0.13)(S + 0.026)(S + 283)

h = 55K' D3 D 3 D3

M = 0.5 0.37(S - 0.016)1 S + 2(0.19)(0.68)S + 0.682
]

-0.23(S + 0.25)[(S2 - 2(0.088)(0.92)S + 0.92 0.00041(S + 0.25)(S + 0.058)(S + 237)

h=27.5K D4 D4 D4

M = 0.25 0.37(S - 0.024)1 S2 + 2(0.44)(0.39)S + 0.21 -0.23(S + 0.44)1 S2 + 2(0.095)(1.2)S + 1.2 ] 0.00062(S + 0.44)(S + 0.1)(S + 157)

h=SL D5 D5 05

D1 through 5 =(S2 + S DR DR
5 + 2 R) (S + 1/TR)(S + 1/TS) (See Table 4-4.)

r-is
I
w%D
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TABLE 4-4

SUMMARY OF LATERAL DIRECTIONAL DYNAMIC CHARACTERISTICS

Flight* DR DR 1/TR 1/TS
Condition Dutch Roll Frequency Dutch Roll Damping Roll Subsidence Spiral

M= 3.5
M = 3.5 0.88 0.028 0.043 0.006h = 100K'

M = 1.5 0.85 0.058 0.095 0.0055
h = 70K'

M= 1.0hM = K0 0.905 0.048 0.118 0.013
h = 55K'

M = 0.5
h = .5K' 1.29 0.084 0.252 0.036
h = 27.5K'

M = 0.25 1.33 0.099 0.44 0.094
h = SL

* a = 15 degrees all flight conditions.



LONGITUDINAL

TABLE 4-5

TRANSFER FUNCTIONS ALONG TERMINAL TRAJECTORY

Flight p/ 80/6 NZ /
Condition e e e

M - 3.5 -0.67(S + 90)(S - 0.057) -1.77(S + 0.046)(S + 0.019) -34.2(S + 3.3)(S - 3.2)1 S2 + 2(0.149)(0.017)S + o.-T721

h- 100K D6 D6 D6

M - 1.5 -1.86(S + 27)(S - 0.1) -1.05(S + 0.1)(S + 0.07) -33.8(S + 2.7)(S - 2.6)[S 2 + 2 (0.21)(0.04)S + 0.021

h - 70K D7 D7 D7

M - 1.0 -5.68(S + 18.9)(S - 0.1) -1.54(S2 + 2)(0.93)(14)S + 0.1 4 2 -54.6(S + 2.6)(S - 2.4)1 S2 + 2(0.17)(0.067)S + 0.067-1

h = 55K D8 D8 D8

M - 0.25 -4.3(S + 54.5)(S - 1.25) -19.8(S + 0.3)(S + 0.18) -0.41(S + 57)(S - 79)1 S2 + 2(0.028)(0.19)S + o.T921

h - SL D9 D9

M = 0.5

h = 27.5K

D6 through 9 = (2 + 2 ISPWSP+ SSp2)(S2+ 2 IPH$H + 'H ) (See Table 4-6.)

.-



TABLE 4-6'
SUjARY OF LONGITTABLE 4-6D

SUMMARY OF LONGITUDINAL DYNAMIC CHARACTERISTICS

Flight wSP SP H PH
Condition* Short Period Frequency Short Period Damping Phugoid Frequency Phugoid Damping

M = 3.5
h = 3OOK 0.985 0.076 0.017 0.15h = 100K

M = 1.5 1.41 0.13 0.042 0.21
h = 70K

M 1.0
h 55K 11.54 0.174 0.065 0.182h = 55K

M = 0.5
h = 27.5K

M = 0.25
M - 0.25 0.70 0.53 0.155 -0.001
hX = SL

* X = 15 degrees for all flight conditions.



2. Attitude Stabilization and Autopilot Parameters

a. Pitch Stabilization and Vertical Flight Path Control

The control equations are identical to those used for the straight

wing vehicle in its aerodynamic flight regimes [equations (4-1) and (4-2)]. The

gains are different for the LMSC delta body vehicle for two reasons. They are:

· Lower elevator effectiveness required increase in k0,

pitch control static gain [equation (4-1)1.

* Larger acceleration response lags (greater influence

of CL ) necessitated lower flight path control gains

[kh in equation (4-2)].

The gains used for the LMSC vehicle were:

k = 3 (Q- ) ... Max = 5.0

k = 1.0

ko

T = 2.0 seconds

kI T = 0.05 to 0.1

kh = 0.025 (5 ) deg/ft

a2 0.05 to 0.08

k = 1.0 deg per deg

b. Lateral Directional Stabilization

The roll and yaw control equations are identical to those of the

straight wing vehiclle [equations (4-4) and (4-5) respectivelyl. In the design of the

autopilot for lateral-directional control of this vehicle, a constant gain stabil-

ization system was synthesized. Although improvements are attainable with gain

programming as a function of dynamic pressure, these were not needed for the spe-

cific aerodynamic configuration under study. (Note that guidance gains do include

the velocity (V) gain programs).
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Figure 4-22 is a lateral axis block diagram used to evaluate lateral

control system performance. This diagram indicates all gains used and also iden-

tifies the surface rate and position limiting simulation. Referring to equations

(4-4) and (4-5), the lateral directional gains used for the LMSC delta body vehicle

were:

k = 3.0 to 5.0 deg per deg/secr

k = 1.5 to 2.0 sec

k = 2.0 deg per deg
k0 = 2.0 deg per deg

kA = 5.0 deg per ft/sec
2

kRA = 0.2 deg per deg

In comparing these control gains with the gains determined for the

straight wing vehicle, a significant difference in the ratio K /KE is noted.
E

The delta vehicle requires a larger rate to displacement gain than the straight

wing vehicle. This is a consequence of the low aileron control power effective-

ness on the delta vehicle. Lower Kp/K0 gains would have allowed more rapid

maneuvering responses in some cases, but sensitivity to saturation instabilities

are increased. The assumption of 6A limits of ±40 degrees and 30 degrees/seconds

for 86 is somewhat optimistic considering that the control surfaces are elevons.

Even with these limits, some degraded response was necessary.

The results obtained from 3-degree of freedom simulations at the

five reference flight conditions are summarized in Table 4-7. Figures 4-23 and

4-24 are recordings of the command and disturbance responses. Sluggish roll

command response is a consequence of the surface limit constraints and the need

for high roll rate damping.

The sideslip experienced for the 20 degree roll command is small,

ranging from 0.3 to 0.5 degrees for the typical flight conditions studied. Con-

sequently, peak side acceleration is also reduced for this vehicle.
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Kr = 3.0 - 5.0 °/°O/EC

Kp/Kt = I.5 - 2.0 SEC

Kt= 2.0 O/o

KRA = 0.2 /o

KA = 5.0 °/FT/SEC2

LATERAL-AXIS SIMULATION DIAGRAM

30 O/SEC

Figure 4-22
Lateral Axis Block Diagram
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Table 4-7 and Figure 4-24 summarize the vehicle damping for a 2

degree beta gust. In general, the vehicle responds very well to gusts with damp-

ing ranging from 0.3 to 0.4. However, larger gust inputs did tend to present

some problems since actuator rate limiting began to produce instabilities.

Based on these preliminary results, it appears that the rate limits are critical

design parameters and in particular, the 6A rate limit will dictate the per-

formance attainable.

3. Final Approach and Flareout

a. Performance of Basic System

Nominal values of Nz, Q, V, x, and a for an approach to the first

flare maneuver from 20,000 feet of altitude for the delta wing orbiter are shown

in Figure 4-25. The vehicle is initialized at 20,000 feet considerably out of

trim. The initial response allows the closed loop steering law to establish the

trim elevator. (This is done primarily by the integral term in the flight path

steering law.) The vehicle is flown to the ground to demonstrate the trend in

speed, Q and a. Note that the finite N z is due primarily to the V sin U con-

tribution to N
Z.

The equilibrium speed is about 260 knots corresponding to a Q

of about 235 pounds per foot2

Flareout trajectories for the delta orbiter are shown in Figure 4-26

for a flare from an approach on an equilibrium glide path of -20 degrees. The

first flare occurs at an altitude of 805 feet and for this 0.5g maneuver the

shallow glide path is not acquired until 70 feet of altitude. Final flare em-

ploying a terminal controller occurs at 40 feet of altitude for a landing at

153 knots and a of 22 degrees with a vertical velocity of -2 feet/second. It

is apparent from this performance that the segmented glide paths or two phase

flareout concept is not even discernible since the shallow glide path is ac-

quired and tracked for an altitude duration of only 30 feet.

One of the advantages of an extended run on the shallow glide path

is the ability to make a final correction for position and velocity errors. The

absence of a reasonable traverse time on a shallow glide path makes flareout with

this vehicle sensitive to off-nominal velocities.
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LMSC Delta Orbiter Nominal Flareout Trajectory



Figure 4-27 shows flareout trajectories for nominal and ±10 percent

off-nominal velocity errors at first flare altitude with a first flare altitude

correction. Whereas the touchdown range dispersions of ±300 feet are not ex-

cessive, refinements are necessary to reduce the spread of ±2.5 feet/second for

vertical touchdown velocities, angle-of-attack spreads of 9 degrees, and final

velocities of ±8 percent. Moreover, note that the angle of attack at touchdown

for the low speed case is academic since the tail would have scraped prior to

touchdown. A first flare maneuver in which 0.5g is exceeded would permit ac-

quisition and flight on the stabilizing shallow glide slope for a longer

duration.

The main problem is a consequence of the inability to acquire and

sustain flight on the shallow glide path. There are two alternatives that were

investigated to correct this problem. First, acquisition of the shallow path

was attempted using maneuvers as high as 2.0g (incremental normal accelera-

tion). Then, a single flare scheme was investigated with the terminal Controller

guidance law initiated with this first and only flareout.

b. Performance with Single Flareout System

Landing trajectories for off-nominal initial velocities for a

single flare maneuver are shown in Figure 4-28. An iterative acceleration term-

inal controller with ten percent integral action is employed. A predictive

pitch command system acts in parallel with the closed loop terminal controller.

The pitch control laws are (as in the previous cases):

[3 (2S + 1 q + 3 E] [1 1 (4-5)

where:

0 = 0 - 0
E c

(REF ) (0) ( + + CPREDICT4-6)

and RREF is the continuously computed vertical acceleration required to satisfy

the terminal condition that the touchdown h = -2 feet per second. [ The terminal

controller equations were derived as equations (3-77) to (3-80) in Section IIICI.
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Flareout Trajectories for ±10 percent Off Nominal Initial Conditions

LMSC Delta Orbiter (Altitude Correction for Initial Flare)
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As illustrated in Figure 4-28, the flare maneuver is initiated at

about the same altitude that the two stage flare was initiated in Figures 4-26

and 4-27 with this vehicle. In these previous flareouts the peak incremental

normal acceleration reached 0.5g whereas in the maneuvers illustrated in i

Figure 4-28 the acceleration level peaks at 0.93g. Compared to these previous

results with a two-stage flare that did not incorporate compensations for speed

errors, the single flare technique achieves good results. Touchdown vertical

velocity dispersions are reduced to ±0.5 feet per second and range dispersions

are ±375 feet. The nominal touchdown occurs 750 feet down-range of the inter-

cept of the shallow glide path (if we used a shallow glide path). The nominal

touchdown speed is 170 knots and the nominal angle of attack is about 20 degrees.

The spread in angle of attack and landing speed is very large for off-nominal

initial velocities.

c. Improved Two Phase Flareout System

The first improvement over results described by Figures 4-26 and

4-27 is obtained by adjusting the first flare initiation altitude and the pre-

dictive pitch command as a function of initial speed error. The results are

summarized in Figure 4-29. A nominal 0.5g maneuver is used in the initial

flare to acquire the shallow glide path. It is apparent that we are still not

on that shallow path for any significant distance. However, the touchdown

vertical velocity dispersion is good; (total spread of 0.6 feet per second)

with the off-nominal conditions resulting in softer landings but longer run-

way consumptions. Also, the angle of attack and touchdown speed dispersions

are considerably improved over those obtained with the single flareout system.

The nominal landing speed, however, is greater than for the single flare system.

A second improvement aimed at achieving longer times on the shallow

glide path was also investigated. Higher g-maneuvers were used to acquire the

shallow glide path.

The altitude and range histories of Figure 4-30 depict various

acquisition maneuvers from 0.5g to 1.5g in which the shallow glide slope was

flown into the ground for an aT = 15 degrees. These trajectories show that a

point of diminishing returns is reached at about 1.25g. (That is, higher
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Figure 4-29
Improved Flareout Trajectories for LMSC Delta Orbiter
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g-maneuvers permit flaring at lower altitudes but result in higher drag and

therefore increased decelerations during the maneuver. The shallow glide slope

is acquired at an altitude of 175 feet with a 1.5g maneuver; an increase in

altitude on the shallow path of 100 feet over that obtained with the 0.5g maneuver.

Figure 4-31 shows the results in touchdown performance. Vertical velocity touch-

down spreads are now +0.35 feet per second with range dispersions of ±300 feet,

angle of attack spreads of 7 degrees and final velocities of ±10 percent. In

conclusion, satisfactory touchdowns for the LMSC-HCR orbiter have been demon-

strated which approach the performance levels achieved with the LCR-straight

wing orbiters. The performance criteria on which this conclusion is based are

touchdown vertical velocity and fore-aft (x) dispersion as tested by off-nominal

velocity conditions at flareout. The LMSC vehicle was not tested in simulations

that included turbulence, winds, and wind shears.
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4. Lateral Stabilization Parametric Studies

In hypersonic flight and at high angles of attack, there is a trend

toward loss of static directional stability N(t becomes negative). Whether the

negative trend in Np results from masking of vertical tail area at high values

of a, or forward shift of the aerodynamic center at hypersonic speeds, it would

appear that dutch roll stability can be retained if the dihedral effect, Lp, is

sufficiently stable. That is, the vehicle dutch roll frequency is approximately

equal to

~~~~~~2 I
D = N cos a - Ls sin = C cos C sina

whr sal p is neIgaie 1R 

where stable L is negative. Recognizing this phenomenon as

I

C4-7)

C C os a -C sin a, (4-8)
np(dynamic) nP Ix 1p

aerodynamicists tended to consider a positive C as an acceptable de-
sP (dynamic)

sign obiective. A vehicle with positive C and negttivP C. will nnt
np (dynamic) np

provide acceptable handling qualities nor will it accept conventional roll and

yaw dampers to improve dutch roll damping. The relationships of the various

lateral coefficients to handling quality criteria in the presence of negative

C have been identified in many handling quality studies (See reference 31,

for example.)

The problem can be described intuitively as follows:

· The yawing moment due to sideslip is divergent

* Build-up of sideslip causes a stable rolling moment that causes

roll angle to build-up in a direction that tilts the lift vector

to produce a corrective lateral acceleration (with respect to the

velocity vector)

· The lateral acceleration integrates into a lateral velocity op-

posite to the lateral velocity resulting from the original side-

slip build-up
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* This reduces the original sideslip and with the proper combina-

tion of other lateral-directional coefficients, a convergent

dutch roll oscillation results.

* A roll damper or roll attitude constraint prevents the build-up

of the corrective rolling motion. The vehicle therefore diverges

in yaw.

To cope with this problem artificial directional stability must be

achieved by yawing the vehicle to oppose the build-up of sideslip. The lateral

acceleration feedback loop achieves this objective. Thus, the acceleration loop

not only serves to improve turn coordination, but it makes an essential contri-

bution to lateral directional stability when NP becomes negative. The LMSC delta

body orbiter was used to define a baseline vehicle from which all the critical

lateral-directional coefficients could be varied to determine the sensitivity

and capability of the recommended lateral-directional control system. It was

demonstrated that the lateral acceleration loop creates a wide stability window

that permits good stabilization characteristics for a wide range of possible Np,

iL and o variations.

Table 4-7 is a summary of figures that demonstrate the relationship be-

tween control loop parameters and vehicle lateral directional characteristics at

the M = 0.5, h = 27.5K flight condition.

Figure 4-32 demonstrates the nature of the C problem discussed
n, (dynamic)

above. Np is made significantly negative (-0.5). The nominal normal value of

Np is +0.463. Figure 4-32 shows that a convergent dutch roll exists with both

the yaw and roll dampers off (Kr = Kp = 0). This illustrates the fact that

C is positive at the 15 degree angle of attack. The damping ratio,
np (dynamic)

however is below 0.1. Now if we increase the yaw damper (yaw rate feedback to

rudder) by itself we only deteriorate damping. A short period oscillation be-

comes divergent if we increase the roll damper (roll rate feedback to roll

surface) by itself. We also decrease damping; this time by making a long period

oscillation divergent. The closure of both damper loops simultaneously, however,
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TABLE 4-7

LATERAL DIRECTIONAL PARAMETRIC STUDY
FIGURE SUMMARY

Description

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K versus
r

K
p

K
p

NP

Ng

N

Lp

Lp

K
p

K
p

K
p

for N = -0.5, K = K = 0

for

for

for

for

for

for

for

for

for

for

for

N = -0.5, K = K = 2

K = K = K =0

K =4, K= , K =0
p A 

KP =4K~ =24

K 'K K = 0
K =4, K 2 K 0
p Ay 0Kp K0 = K ' Ky 0

= 0°, K=0 KA = 2

K =4,K =2,K 0
p A 

K =4,K =K 2
p A 

a=0 0 , K Ky =2

x = 15°, K0 = KA =2

a = 3 0 , K= KA =2

NOTES: 1. Parametric studies show curves of constant damping ratio
represented by the symbol 6.

2. All figures are for M = 0.5, h = 27.5K feet where the
nominal L~ = -4.56 and the nominal NE = + 0.463 and

nominal a = 15 degrees.
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results in good stability. Gains of 2 or 3 for both dampers result in excellent

stability. This stability is deceptive and has nothing to do with handling

qualities or autopilot stability. If we now attempted to apply a roll angle con-

straint, even at a relatively low gain, the lateral directional system will be-

come divergently unstable. With low gain roll constraints a long period divergent

oscillation will develop. With higher gain roll constraints, a flat sideslip

divergence will occur.

Figure 4-33 shows the dramatic elimination of the instability boundaries

when the A feedback into rudder is closed. The narrow stability window of
y

Figure 4-32 disappears. This figure includes a roll loop closure with a gain of

2.0. Such a loop was divergently unstable for any combination of Kp and Kr gains

without the A feedback. Now some relatively high roll rate gains are needed to
y

achieve a well damped response with a roll loop gain of 2.0 but this roll rate

gain requirement can be lowered with a lower roll gain or increased A and yaw

rate gains.

The role of the A feedback is illustrated in a different form with a
Y

parametric plot of stability regions for variable Np. Figure 4-34 shows the case

for zero roll control and no A feedback. This figure shows how low directional
Y

stability makes a sharply increasing demand on yaw damper gain until in negative

Np regions a yaw damper becomes totally ineffective. Figure 4-35 shows that the

addition of a roll damper opens the stability window a little wider, but again,

high yaw damper gains are needed to cope with small values of negative Np, but,

as discussed previously, this apparent stability is meaningless if we attempted

to constrain roll angle. Figure 4-36 shows the wide opening of the window of

acceptable unstable NP with the addition of the A into rudder feedback. It is

noted however, that although good stability is theoretically possible for NP as

large as -3, the yaw damper gain requirement is unrealistic. The practical limi-

tations of high gain augmentation loops (structural instabilities, actuator limit

problems, etc) preclude the consideration of these electronic augmentation systems

for very unstable vehicles.

Figures 4-37 through 4-40 define the stability region characteristics

when the vehicle parameter being varied is i%. As long as L is not too stable,
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Figure 4-37
Yaw Damper Stability Regions for

Variable LP (K = Kp = KA = 0)
Y
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Figure 4-38
Yaw Damper Stability Regions for
Variable Lo (Kp = 4, K = KAy = 0)
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Figure 4-40
Yaw Damper Stability Regions for

Variable i (K0 = 2, KA = 2, K = 4)
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a yaw damper does an excellent job of providing dutch roll stability (Figure

4-37). A roll damper allows the use of reasonably low yaw damper gains for the

high stable Lp's (Figure 4-38). Lateral acceleration feedback does not help

cope with an unstable Lp (Figure 4-39). What is required for unstable L 's is

an artificial roll constraint (roll spring). This is provided by the roll feed-

back which allows stable operation into regions of unstable (positive Lp's)

(Figure 4-40). The results associated with variation in Lp are somewhat

academic because obtaining stable Lp in an aircraft or reentry vehicle is not

as difficult as obtaining stable Np's.

Figures 4-41 through 4-43 show the influence of angle of attack on the

dutch roll damping ratio provided by the yaw and roll controls. At the nominal

gains (Kr = 3 to 5, K = 4.0), the performance remains adequate for the full

range of a from 0 to 30 degrees although the a = 0 case gives the poorest results.

At lower values of a, the reduction in the A gain can improve dutch roll damping.
y

One of the problems with the use of A feedback is its extreme sensitivity to
Y

changing flight conditions. In the vehicle studied here, an A gain of 5.0 was

used at the higher Mach numbers. This gain would cause stability problems at

lower a's and lower speeds. In work done with the other delta configurations

described later in this report, two gain controls were used on the A feedback:
Y

a Q control and a Mach control with the high gains used only at high Mach, low Q

flight conditions.
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C. NAR HIGH CROSS-RANGE, DELTA WING ORBITER, SYSTEM DESIGN STUDIES

1. Vehicle Aero Summary

The most interesting aerodynamic characteristic identified in the above table

is the high landing L/D capability. During the early phases of study with this

vehicle it became apparent that this L/D was quite optimistic because of errors

in the drag data. Although North American Rockwell was continuously updating

its HCR configuration and eventually even changed to a center fin configuration

4-79

NAR
Characteristics SSV-134C

Circa 8/70

Weight (landing) - pounds 207,000

Wing Span (b) - feet 119.3

MAC (c) - feet 68.4

I - (slug-foot2 x 106 ) 3.35
xx 2 6
I - (slug-foot x 10 ) 13.3
YY

I - (slug-foot
2
x 106 ) 14.4

zz

I - (slug-foot2 x 106) 0.95
xz

Ref Area (S) - foot2 6,086

Wing Loading (W/S) - pound/foot2 34

Peak L/D at Landing Condition 9.4

a for L/Dp - (degrees) 10.5

*Pitch Control Power - MN (1/sec 2 ) -1.66
e

*Roll Control Power - L (1/sec ) 3.89

*Yaw Control Power - NR (1/sec 2 ) -0.756
R

*For Landing Condition - Q = 150 pounds/foot2



in place of the twin fin design used in this study, it was decided to retain

the data in its original form. The motivation to continue the design studies

with a vehicle model having unrealistically high L/D (or low drag) was the recog-

nition that high L/D's pose a unique set of problems that are different from

those of the high drag, low L/D vehicle studied previously (Lockheed 8MX). The

low drag vehicle does not converge rapidly to equilibrium speeds. In flaring to

the shallow glide path it does not lose speed as rapidly as do the moderate or

low L/D vehicles. Speed management is therefore more difficult especially with-

out speed brakes. This vehicle did not have speedbrakes but the landing gear

caused a significant drag increase. Varying the altitude of landing gear deploy-

ment could therefore have been used as a method of speed management during the

final part of the landing approach. This technique was considered, but rejected

after discussions with pilots experienced in unpowered landings of high perfor-

mance vehicles. The consensus of these discussions was that this technique

would be operationally undesirable. In general, therefore, this vehicle should

have tendencies to land at excessive speeds (under tailwind conditions) and

higher speed landings tend to increase longitudinal runway dispersions.

All control was done with elevons and rudders. The elevons were defined as

separate "elevator" and "aileron" controls in accordance with the following

definitions:

=6 =6 +6(4-8)EL-L ELEVON E A (4-8)
(left) COMMAND COMMAND

EL-R ELEVON E A (49)
(Right) COMMAND COMMAND

EL-L EL-R
E 2

6 - EL-L 2 EL-R
A 2 (4-11)

where 6
E
and 6

A
are the synthetic elevator and aileron surfaces used in the

simulations.
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The surface rate and position constraints were;

Range of 6 E = 0 to -45 deg; I5X|
=

20 deg/sec

s a + 10deg; S6 | 20 deg/sec

6 = + 10 deg; = 20 deg/sec

Neither speed brakes nor flaps were used. It is noted that the elevator and

aileron limits should be applied to the elevon deflections of equations

(4-8) and (4-9). When elevons are near their symmetrical deflection limits,

the effective aileron rate limits become asymmetrical.

The stability and control characteristics of this vehicle are poor if

considered from the viewpoint of manual handling qualities. The lateral-

directional dynamics include such unacceptable phenomena (again from the

manual handling quality viewpoint) as dutch roll poles and ( A/6A) zeroes in

the right half plane. The closure of the roll and yaw control augmentation

loops provide a properly responsive aircraft for both the automatic guidance

inputs or manual control. The key to the lateral-directional stabilization is

the A into rudder feedback.
y

The L/D characteristics for this vehicle in the terminal area are summarized

in terms of peak L/D (trim) at various Mach numbers along the descent

trajectory:

ANGLE
MACH PEAK OF
NO. L/DT ATTACK

0.3 9.4 10.5

9.9 5.5 10.5

1,2 3.0 11.0

2.5 11.5
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The subsonic data can he used to compute the equilibrium glide angle versus air-

speed. The resultant curve is shown in Figure 4-44 which also includes the

corresponding curve for the MDAC high cross-range, delta wing configuration. The

MDAC configuration is shown as a comparison because it is more representative of

this type of delta wing configuration since it is acknowledged that the NAR aero

model is in error because of its low drag/high L/D at the final approach condition.

Figure 4-44 predicts an equilibrium speed (on a -10 degree glide path) of

310 knots for the higher L/D NAR vehicle model while the MDAC vehicle's equili-

brium speed would be 280 knots.

2. Attitude Stabilization and Autopilot Parameters

a. Pitch Guidance and Control

The autopilot control laws for aerodynamic phases of flight are

identical to those used for the previous vehicles described in Sections IVA

and IVB [Equations (4-1) and (4-2)]. The gains used for the NAR vehicle are:

3OO
k = 2.0 -Q degrees per degree

k
- = 1.0 seconds

kh = 0.050 -0- degrees per foot to 0.067 50V V

a2 = 0.05 to 0.08

ky = 1.5 to 1.0 degrees 0 per degree 7

T = 2.0 to 2.5 seconds

At high altitudes, prior to attaining the final descent 7, a fixed dynamic pres-

sure (Q) guidance loop was used as defined in Section IIIC, Equation (3-92). The

energy references used in the energy management system are based on a nominal

trajectory.
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The potential energy reference, C C(DK) and the kinetic energy reference, C2 (DK)

as a function of the distance to the low keypoint, DK, are given in Table

4-8.

TABLE 4-8

NOMINAL TRAJECTORY

b. Lateral-Directional Stabilization

The roll and yaw equations are identical to those of the straight

wing vehicle and the LMSC delta body vehicle [Equations (4-4) and (4-5),

respectively]. In the design of the lateral-directional control system,

several iterations were needed to determine acceptable gain programs for the

lateral acceleration feedback. Roll instabilities at relatively high frequency

(above 2 Hz) were encountered and the cause was in a combination of servo

dynamics, servo rate limiting and the digital simulation frame time. The

internal simulator integration instability should not have dictated control

4-84

D, (FT) 1C (DK)(FT) C2 (DK)(FT/SEC)
K hi [ v]

0 54,000 979.2

50,000 62,800 1,180

100,000 70,000 1,450

150,000 76,300 1,720

200,000 83,000 1,950

250,000 88,000 2,160

300,000 91,000 2,400

350,000 94,200 2,660

400,000 98,500 2,990

450,000 102,000 3,150

500,000 105,500 3,276.7

550,000 109,000 3,370

600,000 112,500 3,450



gains but unfortunately a complete solution to these problems could not be

obtained except through the arbitrary and safe technique of lowering gains.

Consequently, the autopilot gains used in the system performance verification

tests accomplished on the NASA ARC simulations were somewhat lower than the

gains used in the Sperry perturbation analog simulations or 6-degree of freedom

digital simulations. Guidance system performance did not seem to be affected by

these gain differences.

The same lateral-directional control equations that were used for the previous

vehicles were also applicable to the NAR HCR vehicle. However, to show the

required gain programming, these equations are rewritten in the following

form:

R , = [Kr(r - g sin 0cRe L 

(4S
4 +1)

4
+ 5AY1 K]7-S + 1

A = p k +
C com P (O - com)

where:

2.5 deg/deg/sec

2.5 deg/deg

deg rud
K = M + 1 ft/sec

ZAY t/sec2

4 deg/deg/sec

= 2.5 sec

Roll rate gain

Roll gain

Lateral acceleration gain

Yaw rate gain

Yaw rate wash out

T5 =5

Qo =

0.1 sec Acceleration noise filter

130

Q = Dynamic pressure

M = Mach number

4-85

(4 12)
Qo

Q

K

K
p

K) =

(4-13)

K =
r



c. Autopilot Performance Summary

Lateral-directional stabilization system performance with step gust

excitations and roll command responses at Mach 0.3, 0.6 and 3.0 is shown in

Figures 4-45, 4-46 and 4-47. Also shown in these figures is the free aircraft

transient response for each of these flight conditions. The free aircraft is

unstable in every case. In general the roll command responses are adequate for

the guidance loops. (The command incorporates a 1.0 second lag). Roll rates

that occur during these command responses reach only about 4.0 degrees per

second. For roll rates as low as this the sideslip performance is not out-

standing; sideslip angles reaching as high as 1.0 degree. The main cause of

the sideslip is the fact that at the angles of attack involved, a significant

body axis yaw rate is needed to roll about the velocity vector (zero sideslip

roll). The yaw damper opposes this yaw rate but does not oppose the steady

state yaw rate of the turn (g/V sin 0 ). A number of solutions are used in

practice. The yaw rate gyro can be tilted so that the input axis is rotated

an amount equal to the average U. Another approach is to compute the body

axis yaw rate required to roll at the desired rate about the velocity vector.

Neither of these approaches were used at this time since performance was adequate

for the automatic and manual steering tasks being evaluated.

Pitch command responses at various Mach numbers along the nominal trajectory

are shown on Figure 4-48. In every case, the responses are well damped and

sufficiently rapid to meet all required automatic or manual steering

requirements.

Tables 4-9 and 4-10 summarize the autopilot performance obtained at five

reference points along the terminal control trajectory. Table 4-9 describes

the manual mode and automatic mode.pitch response characteristics while Table

4-10 summarizes the manual and automatic roll response characteristics.
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TABLE 4-9

AUTOPILOT PERFORMANCE SUMMARY,
HCR VEHICLE, PITCH

MACH NUMBER

M=3.0 M-2.0 M 1.0 M-0.6 M-0.4
h = 100.000 FT h = 82,000 FT h = 52,000 FT h = 10,000 FT h - 400 FT

/ d MANUAL 90 PERCENT 0.4 0.3 0.2 0.2 0.2
'MANEUVER SEC)

\ 6C/RESPONSE

TC PROPORTIONAL tMIN 0.7 0.8 0.8 0.7 0.8
TO STICK FOR w < 8 RAD/SEC

DISPLACEMENT FROM
DETENT MAXIMUM <20 <20 <20 <20 <20

SURFACE
RATES REQUIRED
(DEG/SEC)

/(o IAUTOMATIC tOPERCENT 2 2.5 2 2 2
(-J GUIDANCE (SEC)

CJ RESPONSE
(g CONSTRAINTS PERCENT 5 5 0 5 0
ARE APPLIED SO THAT OVERSHOOT
RESPONSE TIMES (%)
REFER TO LINEAR
OPERATING REGIONS) IMIN 0.7 0.8 0.8 0.7 0.8

FOR w < 6 RAD/SEC

MAXIMUM <20 <20 <20 <20 <20
SURFACE
RATES
REQUIRED
(DEG/SEC)

TABLE 4-10

AUTOPILOT PERFORMANCE SUMMARY,
HCR VEHICLE, LATERAL

MACH NUMBER

PARAMETER M-3.o M-2.0 M - 1.0 M - 0.6 M - 0.4h -100.000 FT h - 82,000 FT h - 52,000 FT h - 10.000 FT h- 400 FT

i \MANUAL '90 PERCENT 1 0.7 0.5 0.5 0.5
I-JMANEUVER
\ RESPONSE (SEC)

(MAXIMUM TMIN
COMMAND TIMES FOR w < 6 RAD/SEC 0.4 0.5 0.6 0.7 0.715 DEG/SEC)

MAXIMUM AILERON<40 AILERON < 40 AILERON < 40 AILERON <40 AILERON < 40
INCLUE SURFACE RATESLATERALDIRECTIONAL REQUIRED RUDDER < 30 RUDDER < 3 UDOER<30 RUDDER < 30 RUDDER < 30

STABILIZATION (D/SEC)
SYSTEM

( )GAUTOMATIC 90 PERCENT a5 3.2 3O 3.0 3.0
rIOCGUIDANCE (SEC)

-RESPONSE

INCLUDES FULL PERCENT 68 0 0 0
LATERAL OVERSHOOT
DIRECTIONAL (MAXIMUM)
STABILIZATION (%)
SYSTEM

#,MAX FOR 1.2 1.5 1 1 2.5
26 DEG 'C
(DEG)

NMIN 0.4 0.5 0.6 0.7 0.7
FOR . < 6 RADISEC
FOR ALL
COMMAND OR
GUST
DISTURBANCES

MAXIMUM AILERON<40 AI LERON< 400 AILERON < 4 0 AILERON < 40
SURFACE
RATES REQUIRED RUDDER <30 RUDDER < 30 RUDDER <30 RUDDER <30 RUDDER < 30
(DEG/SEC)
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3. Final Approach and Flareout

a. Terminal Approach Paths

Section IIIB, discussing the theory of the equilibrium glide path as

a means of satisfying the energy and position requirements of an unpowered land-

ing, illustrated glide path acquisition and tracking with the NAR HCR orbiter

(Figures 3-18 and 3-19). Those figures showed a 12.5 NM window at 20,000 feet

based on velocity convergence to within ±10 percent of nominal by the time the

first flareout altitude is reached. In these figures dive acquisitions are

arbitrarily limited to a maximum flight path angle of -25 degrees. Airspeed and

dynamic pressure converge toward the nominal value after the glide path is cap-

tured but the speed convergence is not as rapid as it was for the lower L/D,

higher drag vehicles that were studied. The effects of speed limiting are to be

noted for dive approach number ( on Figure 3-18 and 3-19. Dynamic pressures

were permitted to range from 100 to 575 pounds/foot2 . Closed loop constraints

per equations (3-38) through (3-41) prevented a, 7 and Q from exceeding the

specified limits.

b. Flareout

Flareout trajectory trade-offs showing landing speed versus initial

flare altitude are shown in Figure 4-49. The vehicle acquires the shallow glide

slope with a 0.5g maneuver and landing gear is deployed at 300 feet of altitude.

A final flare maneuver occurs at an altitude of 60 feet and the nominal touchdown

vertical velocity is -2 feet/second.

This figure illustrates four successful landings using different

steep glide slope, shallow glide slope geometries. The first flare starts at

various altitudes. The resultant trajectories ride the shallow glide path for
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varying durations and as a consequence touchdown with different velocities and

a's as summarized below:

Run First Flare Touchdown Touchdown
No. Altitude Velocity a

O 1660 ft 156 kt 16 deg

O 1500 ft 168 kt 14.5 deg

O 1320 ft 182 kt 12.5 deg NOMINAL

Q 1150 ft 198 kt 11.0 deg

The selection of a nominal trajectory specifies the two glide path

geometrical relationships. The trajectories shown on Figure 4-49 are for a no-

wind case. If we had to cope with headwinds, it is apparent that case Q which

gives the longest shallow glide path traverse would be unacceptable. Moreover,

nominal touchdowns at a = 16 degrees are excessive. In addition to tail scrape

margins, the high a condition causes degradation in the lateral-directional

dynamics. Although lateral maneuvering is minimized during the final phase of

flight the decrab maneuver could be seriously compromised by poor lateral-

directional stability.

Trajectory Q with a landing speed of 182 knots is selected as the
nominal trajectory.

It is noted that in the final 6-degree-of-freedom, full-trajectory

simulations to verify system performance, the nominal trajectory had to be

modified slightly. These final simulations used aero data in their table look-up

routines that incorporated a drag coefficient error as large as 20 percent below

Mach 0.6. This drag coefficient error did not exist in the simulation that pro-

duced Figure 4-49. The result of the lower drag in the final simulations was a

nominal speed increase at touchdown to about 195 knots. Also, the first flare

altitude had to be raised about 180 feet.

Runs for nominal and ±10 percent off-nominal velocities at flare in

which no updating of the predictive commands is employed are shown in Figure 4-50.
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Vertical touchdown speed spreads are a little larger than desired at 1.2

feet/second. Angle of attack spreads are 4 degrees. Forward speed variations

are ±10 percent, and range dispersions are ±175 feet. Updating of predictive

commands for the velocity errors improves landing performance. Figure 4-51 dis-

plays terminal trajectories in which updating of the predictive commands for the

±10 percent off-nominal velocities has been employed. Range, angle of attack,

and forward velocity spreads are comparable, but vertical touchdown rate spreads

are reduced to 0.6 foot/second. Figure 4-52 shows the rapid convergence to the

nominal for ±50 foot flare altitude errors. The system's ability to tolerate

a large error in the first flare initiate altitude is a consequence of the sus-

tained flight on the shallow glide path where sufficient time exists for correct-

ing the initial position error. If the shallow glide path were acquired below

300 feet, this capability would not have been as good (note problems with LMSC

vehicle, Section IV.B.3).

The flareout control law used in Figure 4-49 through 4-52 was the

Acceleration Terminal Controller described in Section IIIC [Equations (3-77)

through (3-80)]. Off-nominal velocities were used in these runs to partially pre-

dict the system's capability of handling headwind and tailwind conditions. In

the final simulations the winds and turbulence were added. The acceleration

controllers ability to cope with the turbulence was not as good as expected.

Consequently, the flareout system was changed to the Vertical Velocity Flare

Controller [See discussion in Section IIIC and Equations (3-81) through (3-83.)]

The specific flare equation found optimum for the NAR HCR vehicle model (with

the low drag error) was:

Final flareout is initiated when the following equation is

satisfied:

h + h - 45 <0

At that time, the following flareout control equations is initiated:

( EF ) S) h + Up )(t, h) (4-14)c % R ( S K 
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where:

K
1

= 0 until hRE
F

- h < 3 feet/second (4-15)

hREF = -2 feet/second

K1 = 0.5 or 0 as defined above

= 0.25 degree/foot/second

= 0.1 degree/foot/second2

t

(t, h) = 1.5 + 0.16 dt (4-16)

o

The predictive term is written as a function of time and height, t

and h. Only the time function, however, has been used thus far. A maximum con-

straint is placed on the integral (ramp) part of the 0p term by limiting t of

the integration to one second above the nominal flareout time.

4. High Altitude Energy Management

Section IIIC, Figures 3-34 and 3-35 describe the theoretical 100,000

feet window for the North American vehicle. This window is based on vehicle limi-

tations and on certain ground rules for the system but is not a function of the

guidance laws. The ground rules used include the following:

* Bank angles not to exceed 45 degrees.

* Operation is restricted to the front side of the L/D curve with

sufficient margin so that the vehicle will remain on the front

side for 45 degree bank turns.

* The aircraft will be on the terminal glide path by 20,000 feet.

The guidance system described by Equations (3-92) through (3-101) has been

evaluated to determine its capability to meet the theoretical window.
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Trajectories were run from a variety of directions and initial positions.

The window achieved, which is shown in Figure 4-53, is based'on the assumption

that the vehicle is initially aimed at the target point and is at nominal speed

at 100,000 feet. The window also does not include the effect of winds, off-

nominal air density conditions, or off-nominal vehicle characteristics. The

shaded area represents the window area included in the theoretical window but not

achieved with the guidance system. This area represents about 2 percent of the

entire window. The small circular area in the center is excluded in both the

theoretical and achieved window since a vehicle in that region at 100,000 feet

would be in a non-recoverable overshoot condition.

Note that the shaded area in Figure 4-53 is not symmetrical. This con-

dition is the result of the restriction in the guidance equations that require

clockwise turning circles. By providing the capability in the guidance laws for

counterclockwise turns as well as clockwise, the realizable window could be in-

creased by about 0.7 precent.

Trajectories from a variety of initial positions are shown in Figures

4-54, 4-55 and 4-56. In each case the vehicle is initially headed toward the

aiming point. These runs are typical of the runs used to determine the realiz-

able window. They illustrate typical turning patterns used to provide energy

management. Run C in Figure 4-54 illustrates the problem for an overshoot case.

Because the vehicle turn rate is low due to the initial high speed, a large

overshoot of the target circle results. Runs in which the initial heading is

180 degrees from the runway heading are shown in Figure 4-54; trajectories with

the vehicle heading due west, in Figure 4-55 and performance with the initial

vehicle heading equal to the runway heading in Figure 4-56.

In every case these trajectories terminate with the final flareout and

touch down on the runway. The lateral error is always zero at the time the tra-

jectory is terminated. The few cases in these figures that show small deviations

from runway alignment result from calibration errors in the recorder. The

digital printout for these runs shows approximately zero lateral error in all

cases.

4-100



~~~.. ~~~:......... ... ......... .. ... ... . .. s! i. . .. .. ...11.iii!ii! i ::l!t! F 1i s l··i· ?i· i:!! i~i!) !f! i i, ... ..... _iii i .. , _. ..;jijf _j7:::rl:::- T· · ~ ~+..T:r rt ~f...... ..: il: ::I:::: ;;:I:::: :!:: I: .. i: -.... !-,j-...::::; i:mi,.!! !i!!iji iiiii-i~!iij ,'? i:..;! !Tii ii i~i ?!iiiiiii- ' i !?!ii :i:iIiiiUI:i'lN iF
!i::' !!:! ii! !illi iili :iiiil ill ' :: !!111 iiill i ?::'~ ~:':'::: I:Iii i

i
!!~ Ii': !!11 ! !': ~! !X FE T '::, :!: ii : ! !! 11 :ii::i'11 i ! !' :1 :'':'::1i'::i'1i!! ii)!! :1 ::'ii:ii11ii

:| : :: |. : -.-! !, !:!I N : ::: !i I'I.... EDI .... , . .. ................. I ................. I . .. .. .. ....... _ _........0

iiliiii i i!!:11ii iiii~i~i !!iii iiiiii:; :!i!:::': ::! i!!!ii :ii i!i:~:u-' . ~:::'::': ii~i!!!iiiXE E ) 1: ;~ a;1:i iii::i1:i:ii i ! iiiii::1ti: i:iii iiii }:~1 ::ii!Fi l :!::: '::'i:I:: ::ii ::'i:::: ::::::::::::::::::::::::::::: :::~: ::::: :::; ::' : :: ::::; ::I ;;: .'.'.:: i ;:;':::I: ;: ; '4 ;';;':=,i;::':':::::;: ::::;;;;::: :::::1:11:::: 1; :::: 1:.:::::::;: : ::::::: :::':i :~ili

...... ,: ........ WINDOW ,+ '. i.. u .... . ..... ........ .... .

.:::::::1::::1:::::::::::::::::::::1:::1::::1::::: :::::::::::::i::::::::: ::::::::::: :::::::::::::::::::1:::!l: ::::I:::: ::::::::::::::::::::::::: :::::::::::::: ii:::i::::::::: iil:::::: ::::.:::':::.::.iiii iii~~~~~~~~~~ ~: !i !!i' .;9~.~:!' i'::..l :,! i ': iii,~:i :~l ii ~i jl i~ l ;iiii i ::;:-:-?: .,'~..=~-~:i:i :;:: ; '.'?::~ : :::~::'::==: :%: ==:-:.~. :: i..:::?~ ::: i::::::.(: ::::.::: ?':: .::i.:::: ::i!: i::::: .i:::

, ::.... .............. . . ~ ... . .... /:: :/ ......

..... ''::;' ....' ':'~: .... -:' ..... '' .......... ...... ' .. ............ ....... ... ' ' ' .... 1 ' ''.'''.1."' ''..

.ii.!iiiiiiiii!iriii!:::;:iI:i: :::i;;;:::';;:: ',::::;: '================================================ . .::::::::,;:

. j +6 4 . ' ' i i . ..... .... ... ... ... ....

..+....... ili m . ........... .... . ...... .. E ......I ......... : ..... ......... 1 .................................. ~ ...... ..................................................................... ...
' ~~~:::' :1 .·.....' ::! ' .4.. ' . :.:!:; :.:::i:::!:.::::,-::i :.,': ~,' ....''. ... .... :

::: . . . . .............. :. ... . . ::: : .... : . ...... ;s : :jO::UTE ::R:E ::; ........................

.:.:.:.... ,- - .. .- .;. .UWA :.0 .. : .i ,..:.:::. :.: .. ., t: : : t:: ...

TT-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ... .... I .I.. I.I'.'..'I j,
~~~~~~~~~~~.... .... ... . ... .. 

... .... .... .... :.. .... ... .... .' f
.......................... * ......... ....-. 1 1, 1 i.L : , 1...... ... 1 1 '.... .. .11':' ' 11

........................................ :~t: ' '' ' = ' 4Z ; *'0 '' =" ' ' ': . '." .... ...z .. . . . .. .. !

::::':": :::: :::~~~~~~~~~~~t-, ~ "r: ~ ii.- :::: .! 7

' : ,.::: ! :: - -- , ': iF ii~1,,1il,811 1'iil:i:'i'l''i'l'iii'iiiiliii:::iiiliiiiiiiii:::Fi i

"7 - : :!i:!:!:! .i!i:: i iili ii : ! :::.":..14:1:!::: i!!ii~ u :: ~ :!ii :ii! l iii ill :;~j;.i.1'.! :::i :; :!i1 ~ i!iii:!: :!; ::::;:::: : ::: ::!i '1:-11[1III~: !.: :!'::~

:::::::::::::i~~~~ii::::::i~~~i::: i : : ::::::i~~~li:::::::::: ::;',:i::: :: li:',:: : i: i ::I~: : N(TI~' TARGETPOINTCOORDINATES'(0,0): . : I:::::i:
:.::1::::1::.:1::::1:~~· t! i:: i ::; ;;:1:::;!Lii{! !! :1:: :: i::l:mi::l::: :l::: I: ::::1:

... .... ... . .................

iiii i~.... .. | .l ' .li,:'" W::.. .... .|.i .~~~~~~~~~~~~~~~~~~~~~= : = = ::i.. .... .... .. ... .... .................

'P 'iq'; li"!uq :;... . i; +;,; :.; .... . . ;~ +;;, q.. ;;:; ,.? 711.1~114 i ...... . !!Ill ...... .

it ~ ~ ~ ~ ~ 1 t .!!,, ;.;.... . ' .... ....

I:::... .. ... . ~i~ ~,i :1;1 ~i~ i:T::*1:!!! i i!! ! .... !:.::.! i: I :;i: iii : ::,: ! !!i! ! !i..7Ni! 11~Tii! !!!iiiii!!ii: ... . ..: ....:'= lil

??:ii

.,.. ... ,i..,...,..,.i...., t~t ~ 00.00 :::::::1:::1:::1:::1:::1::.. .... .... .... .... .... .... :1:: ::

i: :~liiiiiliiililil iiil[:i: :iJi: i: !iJ:=)i:, '~ JNCil il~!; ii iii! i; ;, ;!l::i1i;;ll; ',i::i:~:h

.... 00 :,:: .. . ...:, i::::I:·:l::::l::: ::::t:!::cc iillilll:~~~~~~~~~~~~~~~~~~~~~~~~~~ro J~ 1 

_iliiiiliiii .:illllliiliiilll ....~~~~~~~~~~~~~~~~~~~~~~~~~~...... ..:77 .r: :::i:~:,;: ..... .... :: I::

... i..,......,.... ,. ::: ::I:::i:; I:;:1 1: !liliilllliiiiI177illl= lii : .... .... .... ... ... I .... . .. .. : :'':: :::. I~lililllllll J::
:::: :::: · ::1:: I .:1:: .1:: I ;: I:. I .... ... I .... .... .... .... .... .... .: l~: :I:: ::·:iii l~.oo 00,00 : :::d" M 

.... .... .... .... .. I 
::::: 1:: Ijii. - . i.i ili l i ... ii

::: i·.::::.::::.::: :: ·i::: ::::'::: ::::~~~~~~~~~~ ~~~~~~~~~1:::I::: 4
·::::·::::::::·: ::: ::::': :::'::::': ::~::::'::: ~ - jjjll~i~iiiiilii I~ii~i-ii il·:li~i ij~...... .... .. '::iii:·li'iiiiil::i~iili~i .:::I:::Ii~i~~i., iI:, i~iiii iii!i:;iil~l~iilil it 7ii , .. .... .... .. .. ... :::i:::I:: .::I::::I: ·:: ::::I::::I::: Illlllilllll~~~~~~~~~lillillI ::::I::::I::::I::::I:::; ··1· ·I···l.·-·i···l·.·.. ........ .

::::1 ::1::::1::::~~~~::::1::::I::::I:: .'.'~ ~ ~ ~F;1i j!:;ij. ..... ..... I iil~! i~ll~illlli~ifIil-ii; i M~ ~ :::: I:: ::I:: :~::I:::: :::illl illlll 111'

7 7 .:T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::::1::1:::.I:

... .... ... ........ .........: ::1:: :::::::: ::1::1: :'1::1 ·:1:: 1:~i::::::::::: ·:::':::::: :

WINDOW RESTRCT 0 WITH: 1:::I::::1i::: I::!: l ::::~: ::::

;PRESENT GUIDANCE .... i:ii"; ~TT.::l! ::::;; .,.. ::1:::r:

::I :: ~~~~~~:: :7:': ·· .

Figure 4-53
Window for HCR Orbiter at 100,000 feet

(Assuming Vehicle Initially Aimed at Target Point)
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Figure 4-54
HCR Orbiter Energy Management Steering (Horizontal View)

for Various Initial Ranges to Target Point
(Initial Heading = Runway Heading +180 degrees)
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Figure 4-56
HCR Orbiter Energy Management Steering (Horizontal View)

for Various Initial Ranges to Target Point
(Initial Heading = Runway Heading)
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A typical view of these energy management trajectories in the vertical

plane is illustrated by Figure 4-57. This figure shows vertical views of the

trajectories illustrated in Figure 4-56 (initial heading = runway heading). It

is seen that the final approach glide path is acquired somewhat below 20,000

feet. This was a consequence of using an approximate guidance computation that

defined the final turn onto the glide path. A more accurate turn prediction

could result in a near perfect capture of the glide path at altitude above

20,000 feet. In subsequent work not documented in this report the final turn

was cued on the basis of distance from the glide path center and velocity. The

guidance computations used to obtain the trajectories of Figure 4-57 used a

crude approximation of the correct altitude for starting the final turn onto the

glide path.

In Figure 4-58, the velocity-altitude histories for the three trajec-

tories of Figure 4-56 and 4-57 are illustrated. Note that D is the undershoot

case, F is an overshoot case and E may be considered nominal. Figure 4-58 shows

that the undershoot case (D) flew a higher Q than the nominal (E) which in turn

had a higher Q than (F). Since the Q loop attempted to maintain Q at the refer-

ence value, the source of the deviations must be the result of a bias in the Q

error Equation (3-92). The source of this bias is the lift compensation term

of Equation (3-92). At a 45 degree bank angle, the lift compensation term com-

manded a nose-up pitch attitude of over 2.0 degrees. This corresponds to a bias

error in the Q loop of near 50 pounds per foot2 (speed reduction). Thus, the

more turning there is in a trajectory, the lower the average Q as verified by

the different h - V trajectories in Figure 4-58.

The time of flight from 100,000 feet to touchdown is approximately 11

minutes. A recording of altitude and incremental normal acceleration versus time

is given in Figure 4-59. The various accelerations prior to reaching 20,000

feet are those associated with the turning maneuvers to achieve the high alti-

tude energy management. Other acceleration transients mark glide path acquisi-

tion, first flare and final flare.
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SECTION V

SIMULATOR VERIFICATION

A. SUMMARY OF SIMULATOR PROGRAMS

As discussed in Section IV, Introduction, there were various simulation

techniques and simulators used in the performance of this study. Table 5-1

summarizes the simulation programs that were performed by identifying each ve-

hicle studied and the types of simulation used. It is seen from this table

that only the MDAC-2 low cross-range vehicle and the NAR high cross-range ve-

hicle were flown and evaluated in the NASA ARC simulator. The NASA ARC simula-

tor was the only one equipped and programmed for evaluation of the manual modes.

This section is concerned with the evaluations that were performed in the NASA

ARC simulator only and the primary subject of this section is the manual control

investigations and the pilot evaluations of the automatic system performance

(from their viewpoint in the cockpit).
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TABLE 5-1

SIMULATION SUMMARY

5-2

Simulations Used

NASA ARC
Sperry Sperry Sperry 6 Degree of Freedom -

Vehicle Studied 3 Degree of Freedom - 5 Degree of Freedom - 6 Degree of Freedom - Body Axis
Perturbation Wind Axis Body Axis Aero Equations
Equations Aero Equations Aero Equations (Digital Computers)

(Analog Computer) (Analog Computer) (Digital Computer) Plus Cab and
Visual Scene

MSC 245 (LCR)

Autopilot Design X

Approach and Landing X
Trajectories

MDAC-1 (LCR)

Autopilot Design X

Approach and Landing X

MDAC-2 (LCR)

Approach and Landing X X X

Transition X X X X

Energy MGMT X X

Complete Trajectory X

LMSC-HCR

Autopilot Design X

Approach and Landing X

NAR HCR

Autopilot Design X X

Approach and Landing X X X

Energy MGHT X X X

Complete Trajectory X X

MDAC HCR* X

*Results will be documented in Supplementary Technical Report.



B. SIMULATOR INSTRUMENTATION

A photograph of the displays and controls used in the NASA ARC simulator is

given in Figure 5-1. Shown on the figure are:

* Sidestick Controller (X-15 Controller) with adjustable preload

characteristics....This controller was always used in the pitch

and roll rate control augmentation modes defined by equations

(3-116) through (3-126) of Section III.D.

* Electronic Attitude Director Indicator (EADI) (with TV super-

position capability) ....The symbology shown on the figure

includes horizon, pitch scale, aircraft symbol, flight path

deviation window, digital airspeed, digital altitude, roll scale,

azimuth scale, cross pointers and flight path angle symbol.

* Airspeed Indicator

· Altimeter

* Angle of Attack (a) Meter

* Flight Path Angle (7) Meter

* Mach Indicator

* Vertical Speed indicator

* Flap or Surface Position Indicator

* Tactical Situation Display (Electro-Mechanical-Optical Projection

Map display) and associated mode controls ....Capable of fixed map/

moving aircraft presentation with variable map scales.

Note that this display was eventually removed and replaced with

an X-Y plotter in lieu of the desired horizontal situation and

moving map presentation.

* Gear Down Lever

* Flap Extension Lever

· Throttle Lever (not used)
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Figure 5-1
NASA Space Shuttle Simulator Cab
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It is apparent from Figure 5-1 that the display layout did not have the

benefit of an optimization study based on the latest human factors expertise,

but nevertheless, this simple approach did not prevent the gathering of very

useful information. The EADI had an extensive symbology repertoire, a large

part of which did not prove to be useful because too much information tended

to clutter and confuse the presentation. The actual EADI scales used were

summarized in Section III.D, Figure 3-57. Table 5-2 summarizes all of the

other available symbols and their characteristics. In early work the EADI's

altitude "tape" presentation was used. This provided a moving altitude scale

(against a fixed index) on the right side of the EADI. For the high rate of

descent of the space shuttle, the moving "tape" display was found to be dis-

concerting. The digital altitude readout was retained but the resolution

(availability of last digits) was changed with altitude to improve the reada-

bility when altitude is changing rapidly or slowly.

Two displays that are essential for a pilot-monitored automatic mode are an

approach progress annunciator and a map display with trend vector (predicted tra-

jectory). The former should be an adaptation of the approach progress annunci-

ators used in conventional transport automatic approach and landing systems. It

displays the phase of the automatic sequence presently engaged (green) and the

phase which is armed (amber) and will be advanced to the next phase automati-

cally at an upcoming mode switching sequence. The trend vector display is

especially desirable for the high altitude energy management display where the

pilot requires some indication of what type of turning trajectory the automatic

system has computed. The cockpit shown in Figure 5-1 provided neither of these

displays but it was recognized that future work should incorporate this

capability.
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TABLE 5-2

EADI SYMBOL CHARACTERISTICS

Symbol I Scale Factor I Reference Dynamics Travel Limits

Reference Airplane

Horizon Line

Horizon Shaping

Normal Pitch Scale

Expanded Pitch SCale

Pitch Reference Bar

Roll Reference Marks

Roll Marker

Airspeed

Airspeed Error

Normal Azimuth Scale

Expanded Azimuth Scale

Pitch Command Bar

Roll Command Bar

Single Cue Command

Flight Path Marker

Potential Gamma

Lateral Path

ILS ? Deviation
Window Vertical Path

Deviation

Selected Heading

Selected Course

Heading Index

Cruise

Altitude) Climb/Descent

Scale Below 1000 ft

Below MDA +100 ft

Altitude Window

Minimum Decision Altitude

Altitude Index

Same as Pitch

Same as Pitch

10 deg/in.

5 deg/in.

10 deg/in.

deg/deg

15 kt/in.

20 deg/in.

10 deg/in.

15 deg/in.

30 deg/in.

15 deg/in. vertical
30 deg/in. horizontal

Same as Pitch

16 ft/sec /in.

0.64 deg/in.

0.604 deg/in.

Same as Azimuth

Same as Azimuth

450 ft/in.

900 ft/in.

180 ft/in.

45 ft/in.

Ref Airplane

Ref Airplane

Ref Airplane

Ref Airplane

Ref Airplane

Roll Ref Marks

Ref Airplane
Left Wing Tip

Heading Index

Heading Index

Ref Airplane

Ref Airplane

Ref Airplane

Ref Airplane

Flight Path Angle

Ref Airplane

Ref Airplane

Azimuth

Azimuth

Alt

Alt

Alt

Alt

Scale

Scale

Index

Index

Index

Index

Fixed*

Pitches

Pitches

Pitches

Pitches

Pitches

Fixed

and Rolls

and Rolls

and Rolls

and Rolls

and Rolls

Rotates around
Ref Airplane

Digital Readout

Moves Vertically
High Means Fast

Moves Horizontally

Moves Horizontally

Moves Vertically

Moves Horizontally

Moves Vertically
and Horizontally

Pitches and Rolls

Pitches and Rolls

Normal Scale

0,±10,±20,±30 deg

±180 deg

0 to 999 kt

±1 in.

3.5-in. window

3.5-in. window

±1 in.

±1 in.

±1 in. vertical
±1 in. horizontal

±1 in.

Moves Horizontally I±1 in.

Moves Vertically

Moves with Scale

Moves with Scale

Fixed

Moves Vertically

Moves Vertically

Moves Vertically

Moves Vertically

Digital Readout

Digital Readout

Fixed

*Reference airplane is vertically positionable with controls on symbol generator.

±1 in.

3-in.

3-in.

3-in.

3-in.

1

window

window

w:

WI

indow

indow
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C. LCR (MDAC-2) VEHICLE PERFORMANCE SUMMARY

This vehicle was flown in both the automatic and flight-director manual mode

from 20,000 feet to touchdown on the NASA ARC simulator. The flights were with

and without winds (see Appendix B for wind model description). The flareout

guidance system used the acceleration controller described in Section III.C

although later work with the HCR vehicles indicated the desirability of changing

to a different flareout control law.

Even in conventional powered aircraft, a flight director display for flare-

out has never been satisfactorily verified as acceptable. Although many flare-

out flight director modes have been studied and tested, considerable controversy

remains regarding the desirability of such a mode or the effectiveness of the

command cues. In the case of the steep angle approach with unpowered shuttle-

craft, the problem is magnified because there is far less margin for error than

in conventional aircraft. Initial attempts with flight director displays for

final flare used the same pitch command presentation technique shown in Figure

3-58 of Section III.D. In final flare, the closed-loop pitch commands were de-

rived from the vertical acceleration control loop and the high gain terminal h

controller. If the pilot does not follow the nominal commands properly or if he

entered final flare with large vertical velocity or speed errors, then he be-

comes dependent upon the acceleration loop for corrective action. The automatic

system uses a considerable amount of pitch rate damping to keep this loop stable.

It is apparent that the pilot requires some additional compensation to handle

this loop. The addition of pitch rate compensation or revision of the flareout

system to a straight vertical velocity control loop could have corrected the

problem. In subsequent work with the HCR vehicle, the vertical velocity flare-

out guidance system provided adequate cues for the flight director mode.

Many flight director landings were attempted with the LCR vehicle. Whereas

the automatic system always touched down with a vertical speed of about -2 feet

per second, the softest flight director landings were about -4 feet per second

with -6.5 feet per second typical.
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Figure 5-2 shows time responses for a flight director landing for the cri-

tical period from prior to first flare to touchdown. (Compare this run with

Figure 5-3 which shows a complete automatic run to touchdown.) Lateral and

longitudinal flight director control during the steep glide slope phase pre-

sented no problems. This run, by an inexperienced pilot, shows a 50-foot over-

shoot in capturing the shallow glide slope and the digital printout (not

included) showed a vertical velocity of -6.7 feet/second at touchdown. Note

that this run was made without flap deployment; hence, the high landing speed

of about 220 knots. Manual flap deployment proved to be a difficult task with

the mechanization of the manual lever. A modification was made to permit a 5-

degree-per-second rate of deployment rather than a step change in flap position

when the lever is set at a given position but its effect on manual performance

was not evaluated.

If we compare the manual landing (Figure 5-2) with the latter part of the

automatic run (Figure 5-3), it is apparent that the pilot was following the

flight director commands during the first flare but he attempted to terminate

the maneuver too soon. This caused a dip in the normal acceleration which was

again increased but the average acceleration was too low so that he penetrated

the shallow glide path, thereby generating a 50-foot overshoot error. He

attempted to correct the shallow glide path offset but never quite returned to

zero error. In the flareout, the flight director manual response is consider-

ably different from the automatic response.

The 50-foot overshoot is just on the edge of the vertical error specifica-

tion defining acceptable guidance errors, but the -6.7 foot/second touchdown

rate of descent exceeds the 4-foot/second which is considered maximum allowable.

It is expected that the overshoot on the shallow glide slope can be reduced sig-

nificantly with a little pilot experience, but the final flare requires some

changes in the control laws in addition to pilot experience, as discussed

previously.

A comparison of the nominal LCR vehicle final approach with no winds (Figure

5-3) and the identical approach trajectory with the standard wind model (Figure

5-4) shows that despite the relatively severe turbulence, position excursions

rarely reach as high as 20 feet and flight path angle and pitch angle variations

do not exceed about 1 degree.
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Figure 5-2
LCR Vehicle Flight Director Landing, NASA Simulation
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Figure 5-4
LCR Vehicle Automatic Mode with Wind Model,
20,000 feet to Touchdown, NASA Simulation
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Although no formal procedure was used to gather and tabulate statistical data

on landing performance with the LCR vehicle, results obtained in about 30

automatic landings were digested into Table 5-3 which summarizes performance for

different conditions of disturbance.

TABLE 5-3

GUIDANCE AND CONTROL ACCURACY LANDING PERFORMANCE
FOR LCR VEHICLE

VARIATION VARIATION 2O
TOUCHDOWN FOR ±20 KT FOR HEADWINDS VARIATIONNOMINAL FOR WIND MODEL
PARAMETER SPEED DEVIATION AND TAILWINDS RBN D

AT FIRST FLARE ±20 KT URBULENCE AND
SHEAR)

hT -2 FT/SEC -1.7 TO -2.2 FT/SEC -1.5 FT/SEC -1.4 TO-4.0 FT/SEC

XT 1000 FT +400 FT +500 FT +700 FT1000 1000 1000
(FROM AIM POINT) -300 FT -400 FT -500 FT

VT 175 KT 175 +15 KT 175 ±20 KT 175 ±25 KT
(AIRSPEED)

AYT 0 0 0 ±20 FT
(LATERAL
DISPLACEMENT)
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D. HCR VEHICLE PERFORMANCE VERIFICATION AND PILOT EVALUATION

1. Introduction

During the period between March 24 and April 2, 1971, a group of flight

research pilots participated in the evaluation of the automatic and manual modes

as mechanized on the NASA ARC visual scene simulator. The pilot evaluators in-

cluded Apollo astronauts and research pilots experienced in unpowered landing

techniques for high speed aircraft. They were:.

Col. Edwin E. Aldrin, Jr. Astronaut

Maj. Donald H. Peterson Astronaut

Maj. Karol J. Bobko Astronaut

Stan Cobb Technical Pilot, Space Shuttle
Pan American Airways

Walter Smith Test Pilot
McDonnell Douglas

Donald Germaraad Test Pilot
Lockheed Space and Missile Company

Fred Drinkwater Research Pilot
NASA ARC

Gordon Hardy Research Pilot
NASA ARC

The vehicle simulated was the particular model of the NAR HCR (delta

wing) vehicle described in Section IV.C. They flew the manual modes and flight

director modes and observed and monitored the automatic modes. A complete de-

scription of these three modes in terms of guidance laws and displays is given

in Section III.D. Note that all manual modes including the so-called manual

raw data mode used the control augmentation system which provided attitude rate

maneuvering of a stabilized vehicle.

2. Simulator Results

The performance of different evaluation pilots on the manual modes de-

pended upon many factors such as familiarity with the simulator and system con-

cepts plus their inquisitiveness relating to how far they can improvise a

solution that deviated from the system design. It would have been most desirable

to allow each pilot evaluator two days on the simulator. The first day would

provide for familiarity with system, simulator, and vehicle idiosyncracies. The
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second day would be used for accumulating statistical performance data. Unfor-

tunately, this amount of time was not available so that the pilot performance

statistics are not too significant. Nevertheless, it was apparent that all of

the pilots participating could become very proficient in the manual modes after

one day of simulator experience.

A summary of results obtained during one day of simulator flights

(3/29/71) is given in Table 5-4. The two participating pilots are identified

as Pilots A and B. Runs are numbered in the sequence in which they occurred.

Run numbers omitted correspond to cases where the problem was aborted prior to

landing; usually because of simulator problems or the desire of the pilot to

experiment with handling qualities or some aspect of the system other than land-

ing performance. The HDG, X, and y columns correspond to the heading and coordi-

nates of the vehicle when initialized at 100,000 feet. When an initial condition

other than 100,000 feet was used, it is noted in these columns. The wind column

indicates the presence or absence of the NASA standard wind (with turbulence) and

the direction of the wind. The final four columns represent the touchdown x, y,

coordinates, vertical speed, h, and forward speed V. The x coordinate is measured

from the beginning of the runway which is about 1600 feet forward of the inter-

section of the shallow glide path with the ground. The mode column identifies

automatic mode (AUTO), flight director mode (FD), and back-up manual mode or raw data

mode (RD).

Table 5-3 only shows the touchdown performance, but the performance dur-

ing other phases of flight are of equal or greater significance. All pilots did

an excellent job in acquiring and controlling to the high energy glide path. The

techniques for flareout with flight director are always a source of controversy.

Manual flareouts using the visual scene are dependent upon getting used to the

simulator. However, arriving at the flareout point with the proper position and

velocity is always essential and this task was readily achieved with both manual

modes. Figure 5-5, for example, is an x-y recording of Col. Aldrin's simulator

flights using the back-up manual mode. The procedure followed was the one de-

scribed in Figure 3-59 of Section III.D. That flight terminated near the runway

(0, 0 coordinate) with a relatively soft touchdown.
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TABLE 5-4

SUMMARY OF SIMULATOR RUNS, PILOTS A AND B

-1.8

-1.8

-1.8

-1.4 X Offset + 500 ft
Y Offset + 1000 ft

X Offset + 500 ft
Y Offset + 1000 ft

200 ft Breakout

500 ft Breakout

Run
No Winds Mode *XT TD YTD h TD RemarksNo. -- TDI 

60

60

Pilot A
Pilot A

Pilot A
Pilot A

Pilot B

Pilot B

Pilot B

Pilot B

Pilot B

Pilot A

Pilot A

Pilot A

Pilot A

Pilot A

Pilot A

Pilot A

Pilot A

Pilot A

Pilot B

Pilot B

Pilot B

Pilot B

Pilot B

Pilot B

Pilot A

Pilot A

Pilot B

*Glide slope intercept coordinate " 1600 ft.

5-19

Auto

Auto

Auto

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

RD

RD

RD

RD

RD

RD

RD

RD

FD

FD

FD

RD

3815

3923

4029

6580

4978

4442

4480

5132

4162

6130

3687

6492

1676

5556

4451

6634

6076

6013

2791

1396

-746

3687

6787

1338

1338

2340

-2.2

-21

-2.6

-3.2

-2.4

-11.7

-7.1

-8.1

-4.1

-2.3

-5.4

-8.6

-8.6

-7.5

-5.6

-14.4

-17.9

-5.6

-7.6

-2.4

-8.4

-5.9

700 ft Breakout

700 ft Breakout

500 ft Breakout

500 ft Breakout
Abort

200 ft Breakout

200 ft Breakout

700 ft Breakout

700 ft Breakout

500 ft Breakout

200 ft Breakout

100 ft Breakout

700 ft Breakout

700 ft Breakout

200 ft Breakout

500 ft Breakout

0

0

393K

0

0

393K

341.4 deg

No

No

No

No

330 deg

330 deg

330 deg

330 deg

330 deg

330 deg

No

No

No

No

330 deg

330 deg

330 deg

330 deg

No

330 deg

330 deg

150 deg

150 deg

240 deg

240 deg

240 deg

240 deg

-18

0

0

16

18

-30

-21

-9

-23

-27

-24

13

4

29

68

43

-83

-50

25

-37

-46

26

62

0

22

42

-25 -9.5

192.8

195

196

176

189

192

183

182

186

170

186

171

195

186

187

166

167

169

199

192

214

191

163

179

189

170

158

deg

deg

1

14

15

16

17

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

257K

257K

20,000 ft

20,000 ft IC

6,000 ft IC

20,000 ft IC

20,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

20,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

20,000 ft IC

20,000 ft IC

5,000 ft IC

5,000 ft IC

5,000 ft IC

-137K

0

0

-137K

150 deg

60 deg

60 deg

150 deg



As mentioned previously, the coordinates of x, the downrange distance at

touchdown on Table 5-3, are offset from the intersection of the shallow glide

path by about 1600 feet. Nevertheless, this indicates that the nominal touchdown

point (as represented by automatic mode performance) is about 2300 feet down-

range of the shallow glide path intersect point. This is considered an excessive

distance. In the Sperry simulations, the identical control parameters resulted

in a nominal downrange touchdown point of about 1900 feet from the shallow glide

path intersect. This discrepancy has been traced to a difference in the verti-

cal speed loop response. It may be that slight differences in the aero simula-

tion model could account for the discrepancy, but this was never resolved. Of

greater significance is the fact that even the 1900-foot downrange touchdown is

excessive. This undesirable consumption of runway is partially a consequence

of the flareout system that favors a soft touchdown over runway dispersion. The

changeover to the vertical speed control flareout scheme in place of the acceler-

ation control scheme tended to sacrifice longitudinal runway consumption prior to

touchdown. However, in more recent work with the McDonnell Douglas high cross-

range orbiter, the vertical velocity flareout controller was designed to give

consistent touchdown h's of -2 feet/second while achieving a nominal longitudinal

position at touchdown which is 800 feet from the intersection of the shallow

glide slope and the ground. This work will be described in the Supplement to the

present report.

Detailed descriptions of the manual mode evaluation runs were recorded

and printed in a summary format. That format described the vehicle state and the

control commands at altitude intervals of 10,000 feet and during critical mode

transition times (first flare, final flare, decrab, touchdown, for example). An

examination of some typical print outs provides many insights into system

capabilities, idiosyncracies and potential problem areas.

Consider two runs made by Major Peterson; one in the raw data mode and

one in the flight director mode. Tables 5-5 and 5-6 are the computer printouts

for these runs. They both start at about 100,000 feet heading initially at

150 degrees. (The runway heading is 240 degrees.) Figure 5-6 is a plot of

the horizontal view of these two trajectories. Note that the evaluation pilot,

Major Peterson is flying these trajectories with no previous simulator practice.
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TABLE 5-5

COMPUTER PRINTOUT OF RAW DATA MODE FLIGHT

RUN NJU;DbE 23

CtNSTANI wIND DIRtCTION a
INITIAL MtAN WIND VELOCITY a

SSV FLIGnl DATA uATL MM/gJL/YY

U.8OU. / DSt
o.830j FT/stc

rLVr.N I

I 4 3 4 t C 7 o 9
I.C. 90 K-'T o;j K-FT 7J ,-FI 6u r-tT 5U K-rl 4u A-FT ou A-F I u K-FT 0 -Ur%u A,;1 L

ALTITUDE ) FROM
X POSITION) RUNNWA
y POSITION) IN Fr

99986.
-lj7u00.

393U00.

9UUll. 80004. /;u07. buUUd. .OOO.b.

-843J2. -151562. -1oU4U. 2-19/ . -z214
i86d42. 15S745. PsoUb. 2019J. ia5i6.

ROLL RATE )
PITCH RATE )DEG/S
.... A RATE )
BETA ) DEC
ALFA 
THETA O
THETA COMMAND,) DE, 0 
PHI ) DEb
PHI COMMAND4 DEG
PSI / 4'L
ELEVATOR DEFLI
AILERON DEFL) DEG 0 O
RUDDER DEFL) a
FLIGHT PATH DEL |

AIR SPEED ) KNOTS
EOUIV A/S )
QbAR LBS/FT.S5

0.00
u.Ou
0.00

-1.51
14.61
9.68
9.66
0.00
0.00

150.00
-3b.6J

0.00
-0.0U
-4.92

1787.7
209.8
149.3

u.22

U.13

;.06
1. 13
7.08
7.72
0.37
U.57

140.34
-25.95

t.02
0.14

-o.07

u.0O)
0.0o

-U.00
0.02
9.19
1.2/
3.5d
0.Jd
0.4J

148.97
-19.27

U.12
0.01

-7.92

1192.5
224.7

171.4

-U.90

1.50

-U.74
U.11

A1.2b
1.44
4.J4

4J9.dd

Av4.47
-i7.17

2.7d
O.Ji

-7.25

958.1
1J0.4
180.d

-U;00
1.01

i.02i
-4.Ub
-4.8U

-4d.0U

60;04
-11.42

-U;Ou

- iZ,2U

Z.Zo

2.22
0.42

-9.94

-d.04

4b.15
46.U-
78.23

-0.41
-17.20

0.57
2.77
1.b8
0. I
1i.61

-5.89

-5.87
49.45
49. b6

cu6.52
-8.96
-0.U5
-03.27

-A3.06

Od6.A 58o.2 466.2
;Ud.5 22.-0 e31.2
t44.0 17/.4 ,81.5

1.i4
1.0U

9. 1i
J.9 

4.94
15.6/
15.71

259.9g
-7.2_
u.1/

-O.Ub
-5.10

A879. 

0.uO
0 .1 a

-J.lo

5.50

-3.7D
-3.o7

1.171. I) 
I.UO

244.74

-3.1a
-J. 1

-9.30

-U o10
U uO

.U;1I
U .J SOU. U9
404

-4.D4

-U.ZO

-U o10

0-./¥

-U.OU
U' 'J9

LOAD FACTOR
....AATERA __ACCL FT/S2

ALTITUDE ERROR FT
GAMMA ERROR DEG

-259.2. -B27.8 -84.1 - 204. 1 -242.
-90.0 -91.7 -91.0 -105.5 -o9i.4

-j86.2 -57.U
-33.5 19.Y

-tj4. - 0UJ.24 - iu i, i

VARIABLE

4O010U.
-z A253.
-i4587.

JouoI.
-ZUJ21Z.

-15911-

20D304.
- 35695.

-224.

-/,Uo .

-. 1.08
2.64

-79796-22
5.08

VERT VELOCITY FT/S
j__ PSR-PSRUNWAY DEG

.29
-0.09

-68654.77
3.93

0.89
-O.0O

-57261.28
2.09

1.34

-0.15
-40J65.2U

2.7D

1.40

-30170.4b
-2120

374.U 437.4
273.u u. .u7
252.9 u.12eu

I -.Z
-0.14

-1i057.40
-7a25

1.76

'0.25
A45.99
-3.609

1.14

600. 51
" 4.64

3.90
-3.0U

-49.91

0.bJ

%,UO

1.J. 01

Cn
I

bo



TABLE 5-5 (cont)

COMPUTER PRINTOUT OF RAW DATA MODE FLIGHT

tVcNI

11 1 13 14 1 o10 17 1o I9

dUOU-FT 6UOU-FT 4uOU-FT iZuu-F1 IbOu-FT ouG-t ovu-rT 4uo-I U jf, -FT

ALTITUDE ) FROM
X POSITION) RUNWAY
y POSITION) IN FT

8002.
-68421.

-31.

OUt1.
-56780.

-k8.

4UU2. Cu01.
-45z92. -jj797.

iU(J. -14.

IUuO. 601.
-2,102. -1690D.

-7. 49.

oGl. 4vU. 2UOJ. lu,.
-lg9u. -474. -Z47 . '/4.

19. S. Oh. ia

ROLL
PITCH
YAh
BErA
ALFA
THETA
THETA

RATE )
RATE )DEG/S
RATE )

DE6

-01MAND) DEL
PHI DEG
PHl COMMAND) DEU
PSI
ELEVATOR UEFL)
AILERON UEFL) DEu
RUDDER DEFL)
FLIGHT PATH DEG

AIR SPEED i KNOTS
EQuIV A/S )
gEAR LBS/FT.SQ

LOA; FACTOR
LATERAL ACCL FT/Si
ALTITUDE ERROR Fr
GAMMA ERROR DEb

351.5
311.0
329.5

1.09
-0.22
9U.0O
u.12

J4U.8 332.d 318.3
311.6 313.0 3u9.u
329.4 3J3.7 J24.1

U.87
-k.55
Jd.71

U-.97

1.04
2.40

12.2o
U.8u

-I.UJ

-13.bu
U.34

VERT VELOCITY FT/S -lul.o
PSI-PSI RUNNAY DEb -U.2

-Y1.7 -69.d
1.0 O.d

-91.Z
-VI * V 3v.0 -0.0

i . -0.:)

un
I

VARIAaLE

zu

Iw- 

U.77
U.1e
L.03
0.03
5.11

-5.10
-5.01
u.94
0.92

239.84
-Z.84

U0.1
U.01

-9.87

-u-16
i3.10
u.14
0.29
4.35

-D.03
-0.09

1.50
1.53

241.04
-ic2Z

U4.34
-U.05
-9.10

-2.2Y
-U.0d
-0.32
-U.(5

4.69
-4.74

-4.82
-2.0/

240.76
-2.40

U. 14
0.37

-9.Z (

U.20
-u. 1J
u.u7
U.44
5.Ub

-4.b1
-4.40
u. 64
u.6D

dJ9.ub
-3.Ue
0.20

-U.UD
-9.00

-U.20
-U OU

-U.25
-U.31
3.70
2;20
2.43

-U. 2

24U.5/

u. Ob
-U.Oo
-3.00

-,J U 9
U; i6

-U.15

6.87
4.01
3.22

239.0J
-4.5b

U./9

-Z.0u

-2.29
0. 32I

-O.U4

7.31
6.18
6.46

-0.74
-O.68

k-O.J3
-5.79
-O.Jo
0.49

-1.70

'.J::

9.4Z

5.01

Z09.i4
-7.84
U.j2

-J. ia
-o. v

3.O!
-1.4/

9.34

7.47

2.0 
2g9.D/
-6. 90

2.I4-. 19
-143

u.Q4

U. / 

I . J*

.4. WC-a~vo

2/0.0

e*4 .0

U.94
U.o

1.10J

260.0
203.3
2JY.Z

1.17
-1.17
91.0u
-U. JU

49.3
'47.1
c07.3

1.U1
1.21

47.17
-0.80

d30.4

187.3

1.23

U.1J
34.oc
CI.9>

236.6
23o.u
144.0

3.90
-1.51

-27.40
- .U/

19.0
&J4. 

-1 . 0
- "Yg

-12.3
0.3

-22i.

-O.o -U.4



TABLE 5-5 (cont)

COMPUTER PRINTOUT OF RAW DATA MODE FLIGHT

LVe . I

VARIABLE

ALTITUDE ) FROM
X PeSITION) RNNWAY
y POSITION) 1:J FT

21
LAPTURE FnOCE

RZcRe

;d C 23 
L.URE LATERAL

IuMil LAPTORt

24
Vth I I .AL

LAW I UR

400uO. 2uu4. 1999s.
-251253. -1330o5. -135o95.
-14587. -,4. -Z24.

2a 20
Fl(bT ShALL04
FLAtL G/S TRALK

27
LAl ING

.EAR

20
IrNAL

1LAHc

29 JO
uECRAu fOUCHIOHi;

23e2. ",44/.
_1j. -;d .

J J. 00. 131/. 161. 5U.
u. -316oJ. -J3093. -754. lbo7.
U. -.a.2. 28. 3.

ROLL RATE )
PITCH RATE )DES/S
yAw RATE )
BETA CEG
ALFA
THETA )
THETA COMMAND) DES
PHI ) DEG
PHI COMMAND) DEG
PSI
ELEVATOR DEFL)
AILERON DEFL) DEG
RUDDER DEFL)
FLIGHT PATH DES

AIN SPEED ) KINOTS
EQUIV A/S )
OBAR L3S/FT.SQ

a

Eo

0

1"0'

49o

u.56
2.74
1.68
L.06
11.69
-5.86
-5.84
49.46
49.74

£U0.69
-d.92
-u.OU
-0.28
-14.66

466.2
231.2
161.5

u.00
u.03
u.01

-u.18
5.58

-0.75
-3.87
1.13
1.06

244.74
-3.65
-U.17

-9.38

14.0
g7).0
dDz.9

U.OU
U.O~
U.Ud

-U. JU
5.b7

-3.1/
-3.87

1.13
1.00

244.74
-J.ol
-0.17
-0.1/

-9.36

374.u
273.U
252.9

u.uu

U.UU

. UL;0.uu
U.Uu

U.UU

U.UU
0l.00L

-,J;61
j .09
U;l/

-u. o
4.Z74

-4.5/
-4.40
2.75
2.71

249.90
-d.74
-U. 8
-u.O0
-9.25

O.U 317.0
C. U JuO.4
0U.i 4d4.8

,./0
2.05
0.14

O.JU

-1l.Z

1.d0
1. bu

239.90
-5.01
U./o

-i·.4s
-7.49

31v;0
314.7
331.9

0.22
0.75

-0.12
1.JU

,2.7i
9.71

40.43
2.34
3.J4

; 8.5e
-8.27
2.J7

-0.81
-2.9d

199.1
048.8

0.4V

L.J/,
-0.64

lo. 4
ll.uo

-14 .d
3.ol

-1 .l
-2.1id

I.uo
2.2u
J.Uu

2.30
14. 434

12.9 

14. O
4.Uu
5.70

238.1I
-15.6 

4.U0
-2.5J
-1.7a

i7o.4 17u.?
176.3 17iU.o
o.D 4d96.o

LOAD'FACTOR
LATERAL ACCL FT/S2
ALTITUDE ERNOR Fl
GAMMA ERROR DE6

VERT VELOCITY FT/S
PSI-PSI RUNNAY DEb

$GO

-185.9
-33.3

-104.0 -104.2
4.7 4.7

O.u
O.u

-86.9 -O9.5
-,J. U -0.0

1.76
-0.27

J25.66
-3.66

U. u

U.o!
U.4/
o. *

0.43
39.3JO

'J. 4

-I .7 

d47.v

637.¥
d4;u

0. 90

-0.009.91
U.63

0.90
-O.GU
-44.50

UO.bi

U.UU

U.OU
U.*UU

U.ii*U

U.99
U;Cb

-0o;87
U;74

1 .21
-2.61

4.99

un
I

~0
LI)

I.J5
-1.89
-3.92

0.46

0.* 6
-1.62

-o7.52
-O.Jl

J.9;
-3. *U

3.7 0J. 7t)J

0.92

-I */J
D. i9uI I. o

-15.4
-1.5

-1 .u
_i. L

-bh.
-1.9

-9U.
-U.0



t.N
I

tofEj TABLE 5-6

COMPUTER PRINTOUT OF FLIGHT DIRECTOR MANUAL MODE FLIGHT

RUN NUMbER 20

CONSTANT WiND DIRECTION 
IlTIAL MEAN kIND VELOCIIY ·

SSV FLIGhF[ AIA LATrL MnriJU/YY

e4u.00 OOuES
u.o3o Fl/SLC

I ;3

VARIALLE I.C. 90 K-FT oJ K-FT

cVcNI

4 0 o 7 o

7u K-F1 6u . -Ir 5k K- 'I 4U A-FT 4U K-F1
9 1U

.u K-FT IU N-;t

ALTITUDE ) FROM
X POSITION) RUNWAY
Y POSITION) IN FT

99986. 9UUu5. 80UUJ.
-137000. -157349. -173011.
393000. 2900U7. 217431.

/UUUo.
-Iog978.
1J3400.

6UJU9.
-16zol0.

6uo00.

50Ouo. 4,0O2. 4uOud.
-101d*Z. -dI944U. -1190UI6

looa, -Zz536. 1473a.

20JU5. U. twU4,
-i5 7 185. -/i4UQo

-5151. .

ROLL RATE )
PITCH RATE )DEG/S
YAw RATE )
BETA ) JE
ALFA
THETA
THETA COMMAND) DEb
PHI / DEG
pHI COMMAND) DEG

PSI
ELEVATOR DEFLI
AILERON DEFLJ DEG
RUDDER DEFL)
FLIGHT PATH DECG

AIR SPEED ) KNOTS
EUulV A/S I
OBAR LBS/FT.bQ

1707.7
209.0
149.3

1474.8
216.6
162.2

1198.9
225.9
1/3.2

944.9 090.U 540. 
d27.J4 4*.u 21o.0
175.3 tos5. 154.0

,70.5
'33.4
184.8

42i.' 419.7
e50.4 303.4
42o.0 412.4

LOAD FACTOR
LATERAL ACCL FT/S2
ALTITUDE ERROR F1
GAMMA ERROR DEG

1.08
2.63

-79790.23
5.o0

VERT vELOCITY FT/S
PSI-PSI RUNWAY JDE

0.58
0.86

-6624 .67
Z.77

U.82

-1 .70
-5347J.0o

5.0d

-U.uJ

-44UI*.ju
J.73

1$09
-U;08

-34740;50
U.0

1.06
-0U.74

-25435.34

I.U9
0.56

-21Ai3.17

1.2i
-0.19

-s1 990. 64
O.i4

1.4u
3.2u

J736.80
-0.30

-259.2 -31.09 -177.9 -173.7 -ua.9 -167.0 -A42.8 -122.4 -t20.1

-90.U -iUo.9 -65.9 -84.1 -01.e -ov.5 25.5 114.9 -47.-

0.00
U.00
u.U0

-1.51
14.60
9.67
9.67
U .OU

O.OO0.00
150.00
-35.10

0.Ou
U.00

-4.92

-1.36
-U.48
-u.22
-0.36
7.43
U.17

-9.72
-3.68
-4.46
4J4.09

-1k.73
1.50
u.95

-7.23

-U.7d

0.79
8.70
3.4 

-7.ba
18e.40
19.4d

154.12
-20.JO

4.24
-1 .90
-5.0u

-u.l4
-U.U1

U.UU
8.44

U. S9U.99
U.65
U.00

-14.11

-U.UO-b .*

-u.Oo
0u;O1

U 00
-0.04

0; 40

-L.60

1;40

10a84
-o.19

U. IU
-U. I,

0.27

0.l1
0.49

-2.i0

205o4
20.dv
170.47
-b./1

-U.4U
-10.44

O.ZJ
0.3e

0.9J
-0.35
7.68
-3.1a
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His familiarity with the system and the simulator was based on a short briefing

and a few trials at the simulator controls. Let us first examine the raw data

mode (Table 5-5). The vehicle is maintained at the initial heading until an

altitude of about 70,000 feet is reached. At that time a left bank (phi) is

initiated in an attempt to align the vehicle with the outbound radial (50°C).

This bank is started somewhat late. The cue to start this bank was nothing

more than the presentation of position information to the pilot. If a ground

controller had used tracking information to communicate the turning cue, he

would have directed that the bank start sooner because of his knowledge of the

vehicle's turn rate limitation. If the pilot had a few more familiarity flights,

he too would have learned to accommodate better to turn rate restrictions. In

this flight he tries to get turned around with a bank angle that reaches over

40 degrees at 60,000 feet. Before he can reach the outbound radial, the glide

path capture cue appears. He immediately starts the procedure turn (right) but

he overshoots the center of the reference lateral flight path. He penetrates

the reference lateral flight path with an intercept angle of about 90 degrees.

He now increases his bank angle to about 50 degrees attempting to turn the

vehicle back toward intercept of the reference lateral path. By the time an

altitude of 30,000 feet is reached, the bank angle is moderated to about 15

degrees and a reasonable intercept path (about 20 degrees) has been established.

At that time a reasonable acquisition of the glide slope (within 1,800 feet) has

been accomplished. When the altitude reaches 20,000 feet, the altitude error

(from the glide slope) has been reduced below 50 feet and the lateral error is

only 224 feet (Note that "y position" in the printout represents lateral error

since the x, y coordinates given in this table are runway coordinates.)

From the terminal flight path acquisition results using the raw data

mode, one concludes that the preciseness of the acquisition maneuvers are not

critical. This is certainly a desirable attribute of a raw data system. Con-

tinuing the examination of Table 5-5, it is seen that Major Peterson maintained

reasonably tight glide slope and localizer tracking (altitude error and y

position) until flareout. Since the raw data mode does not provideinformation

for flareout this phase of the flight is performed using the visual cues as

defined by the visual scene. Here the problem of the fidelity of the visual

scene arises. A pilot's performance using cues obtained from the visual scene

was very dependent upon his experience with that specific simulator. NASA ARC
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research pilots who had considerable experience on the simulator and visual

scene used in this study made the best manual landings. As seen on Table 5-5,

Major Peterson's manual landing was "hard" (-9.5 feet/second vertical velocity

at touchdown). After he transitioned to VFR control he maintained lateral

alignment quite well but drifted off 25 feet in the final seconds prior to

touchdown.

A manual flight with flight director steering cues resulted in better

landing performance. Table 5-6 presents the printout of this run and the

horizontal view of the trajectory is also contained in Figure 5-6. The flight

director steering cues are the same as those used in the automatic mode. As

seen in Figure 5-6, the vehicle is steered toward intercept of the R circle,
o

starts to turn around that circle (or cylinder) and then, when it is about

180 degrees outbound from the runway, determines that additional turning on

that circle is no longer possible. It then makes the procedure turn aimed at

simultaneous interception of the glide path and lateral flight path (localizer).

As seen in Table 5-6, the final acquisition of the glide path and "localizer"

occurs later than with the raw data mode. At 20,000 feet, the vehicle is still

in a 45 degree bank attempting to capture the lateral path. Also, at 20,000

feet, the glide slope capture is not yet complete. However, below 20,000

feet, flight path precision is good. Touchdown vertical speed is -2.4 feet/

second and the lateral eroor at touchdown is zero.

3. Pilot Comment

Pilot comment on automatic system performance was generally good but

they all confirmed the need for a horizontal situation display that provided some

clues regarding the intent of the high altitude energy management turning

maneuvers. A trend vector on a moving map display was considered to be the ideal

solution to this problem. A mode annunciator was also suggested.

Handling qualities for the manual modes were generally rated as

excellent. There was some criticism of the large banking maneuver associated with

the high altitude energy management. The fact that a different guidance scheme was

used for the raw data and automatic modes was considered undesirable.
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The EADI was considered to be a definite improvement over equivalent

electromechanical displays and there were many suggestions for improving EADI

symbology and other characteristics. Some of the suggestions are:

* Incorporate vertical speed display....if possible, place the

index for such a display on the bezel, not on the CRT face....

likewise, incorporate other fixed indices on the bezel.

* Change aircraft symbol....remove landing gear symbology.

* Provide runway proximity bar that rises to meet the aircraft

symbol....same as present day electromechanical ADI's.

* Provide additional bank angle indices (to 450).

The raw data mode was considered to be an acceptable minimum back-up

system (with experience and a reasonable HSI display).

Flight director modes were considered satisfactory but some additional

pitch smoothing was desired for critical maneuvers such as flareout. This implies

the need for some pitch rate in the flight director computations.

On the question of what is the minimum acceptable altitude for transition

from instruments to visual control, there were no conclusions obtainable from the

simulator work done thus far. The utility of the visual scene as a means of mak-

ing judgments in this area was questioned and some comment indicated a preference

for flying the flareout heads-down rather than attempt a transition near the

ground.

4. General Comment on Simulator Evaluation of Energy Management System

The success of the back-up, raw data mode in providing energy management

capability without the computation of the turning descent trajectories (as used

in the automatic mode) raised some interesting questions. From the time that the

high altitude guidance was first being designed it was apparent that almost any

turning trajectory could be made to end up on the desired final approach path.

This fact was reported in an interim progress report where it was noted that a

non-pilot, and relatively uncoordinated engineer could use a simple display to

maneuver the vehicle to a near perfect intercept with the final approach path.

5-30



The unusual aspect of his performance was that for the same initial conditions

he flew a different trajectory every time and always arrived at his desired ter-

minal state. With the infinity of solutions to this problem some techniques will

no doubt provide a larger window than others and there may very well be an opti-

mum from the standpoint of window size.

Although the system that steers toward interception of target cylinders

has been documented in this report as providing an excellent energy management

capability, we have concluded that a simpler system that avoids excessive banking

maneuvers can be implemented using the concept of flying outbound on a fixed

radial from the coordinate defined by the intercept of the steep glide path and

ground. Referring to Figure 5-5, for example, the energy management system would

always steer the vehicle to intercept the 50-degree radial (for a right turn) or

the 70-degree radial (for a left turn). Energy management would be accomplished

by controlling the distance flown on these outbound radials. The initial phase

of the energy management guidance computation is the determination of the best

path to intercept and acquire one of these outbound radials. Such a system was

designed after the study reported herein was completed.
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SECTION VI

NAVIGATION AND GUIDANCE SYSTEM MECHANIZATION AND FLIGHT TEST REQUIREMENTS

A. INTRODUCTION

Task 3 of NASA Ames Research Center Specification No. 15698 which is the

statement of work for this study required the recommendation of systems and

equipment, both airborne and ground based, necessary to flight test the guidance

and control concepts for shuttlecraft terminal approach and landing. Included in

this requirement was the recommendation of an aircraft which can be configured

to simulate a space shuttle vehicle, both in its aerodynamic characteristics and

in its ability to accommodate the required avionics and control systems. The

candidate aircraft identified in the NASA specification were:

* F-102

* F-104

* F-106

* F-111

· F-4

· B-58

· CV 990

· Any other suitable aircraft available to NASA

A study was performed in response to this work statement requirement and the

results of that study were reported in a separate document (Reference 32). This

section presents a summary of that study plus some updating of the original

conclusions.

The results of the original study indicated that the F-104 or a drag plate

modified F-106 were the most suitable aircraft for flight testing approach and

landing systems for unpowered shuttlecraft. Their selection was based on their

excellent match with the key aerodynamic characteristics of the candidate space

shuttle vehicles. It was possible to compensate for the significant size dis-

crepancy between the large shuttle vehicles and the relatively small simulator
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aircraft by adjusting the control system characteristics of the flight test

aircraft.

Since completion of the original study report (Reference 32), a second look

at the Convair 990 based on additional CV 990 aero data plus new data on more

recent space shuttle candidates revealed that the CV 990 is also a very good

choice as a flight test vehicle. Its recommendation as a flight test aircraft

is further enhanced by its availability to NASA.

There are several equipment mechanizations that can be used to implement the

shuttlecraft guidance and control concepts defined thus far. In the high alti-

tude region (100,000 to 20,000 feet) the navigation problem is not critical in

that several types of devices offer adequate accuracy with equivalent weight and

cost penalties. The Inertial Navigation System (INS) plus air data information

for vertical navigation may be sufficient in this region. Area navigation tech-

niques using VOR/DME or TACAN can improve this accuracy, although conventional

DME has a velocity limit between Mach 2 and 3. Long range tracking radars with

up-data links can also be used to provide this additonal accuracy improvement.

From 20,000 feet to about 1,000 feet, the navigation information must converge

to an accuracy improvement of about two orders of magnitude. The choice candi-

date for this phase of flight is a microwave scanning beam system sited at the

aim point (forward of the touchdown point). The microwave scanning beam used in

this manner offers a unique capability in that raw data and a simple cross

pointer display could be used to fly a manually controlled descent though a cloud

layer. From 1,000 feet to about 50 feet another set of criteria applies for verti-

cal guidance. Conventional UHF Glide Slopes (ILS), a second microwave scanning

beam, or multilateration beacons could provide the required information for auto-

matic guidance. The final flareout occurs in the remaining 50 feet. A radio

altimeter or the microwave scanning beam is the choice in this region. The INS

is used throughout for data smoothing or as a primary data reference.
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A preferred mechanization would be:

Altitude Region Guidance/NAV References

* 100,000 feet to 20,000 feet INS, Air Data, VOR/DME

* 20,000 feet to 1,000 feet Microwave, Scanning Beam (MSB).
Glide Path sited at aim point
plus MSB Localizer and DME at
end of runway. Plus INS.

* 1,000 feet to 50 feet Second microwave scanning beam
sited behind nominal touchdown
point. Plus INS. Plus MSB
localizer.

* 50 feet to touchdown Same as above or with additional
radio altimeter.

This preference cannot be based on conclusive verification of superior per-

formance in all regions of flight. Also, there are sufficient operational

uncertainties in shuttlecraft to preclude the elimination of other navigational

devices at this time. It is therefore recommended that the flight test program

make provision for evaluating system mechanizations based on the above

recommended complement of equipment but the basic avionics complex should also

be capable of accommodating other navigational references that are considered to

be reasonable candidates for space shuttle applications.

B. NAVIGATION AND GUIDANCE SYSTEM MECHANIZATION

1. Requirements

The terminal trajectory may be divided into four phases as follows:

* 100,000 to 20,000 feet - high altitude energy management and

steering along turning or spiral descent paths aimed at ac-

quiring the terminal glide (or equilibrium glide path) by the

time an altitude of 20,000 feet is reached.

* 20,000 to 1,000 feet - equilibrium glide path descent where

lateral and vertical position errors are converged to a few

feet by the time an altitude of 1,000 feet is reached. Also

velocity is converged to a fixed nominal value at this lower

altitude.
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· 1,000 feet to about 50 feet - flareout to the shallow glide

path where the vehicle decelerates while aligning for the

final flareout.

* About 50 feet to touchdown - final flareout to touchdown.

The navigational accuracy existing at 100,000 feet is assumed to be the INS

error at that altitude. This is variously estimated to be anywhere between 2

and 20 nautical miles depending on alignment and updating prior to de-orbit. The

maximum INS error normally exists in the vertical plane (estimation of altitude).

The INS altitude measurement will probably use some knowledge of vehicle aerody-

namics and the trajectory to update the altitude measurement. The initiation of

the terminal navigation should not, however, depend upon the altitude measurement

to transfer to ground based navigation devices. Vehicle velocity may be a better

indicator of the vehicle's penetration of the terminal area.

The specification of navigation accuracy requirements can start from the

terminal glide (equilibrium) path at 20,000 feet. This may be referred to as a

low key point. The guidance and control system can accommodate errors of about

±5 nautical miles to ±8 nautical miles downrange and cross-range from this low

key point. It can accommodate a downrange and cross-range window of about ±50

nautical miles at 100,000 feet and reduce errors to zero at the low key point if

the high cross-range orbiter is the vehicle under consideration. The energy

management capability of the low cross-range vehicle in this high altitude, pre-

transition region is much smaller but this is an academic point at this time.

These estimates do not include the effects of high altitude winds which modify

the shape of the window as a function of wind direction with respect to the ve-

hicles initial direction of flight.

2. General Description of Navigation/Guidance System Mechanization

Figure 6-1 illustrates the basic avionics configuration that should be

used for a shuttle landing flight research program. The heart of the system is

the general purpose digital computer and its data adapter that permits inter-

facing with other airborne equipment. The computer provides state estimation

from various navigation inputs, guidance and control law computation, display

generation and system test, and status appraisal. The data adapter talks to the
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computer in a fast, parallel data transfer interface. It also provides the sig-

nal conditioning for all associated devices including the usual elements of an

autopilot. It provides A/D, D/A and D/D conversion. The D/D conversion is asso-

ciated with the receipt of serial digital data from the INS and other forms of

digital data from airborne receiver/decoders. The D/D conversion is also asso-

ciated with remote tuning of receivers if that feature is available in the VHF

and UHF receivers used in the flight test aircraft. The data adapter also in-

cludes the servo amplifiers and electronics which drive the autopilot servos and

excite the various autopilot transducers.

A state of the art INS can be used on this program and subsequent evalu-

ations of candidate configurations assume the characteristics of a commercially

available INS such as the ARINC 561 (Carousel IV, etc). The air data computer

and sensors could be limited to only a remote static and total pressure sensor.

The central computer can provide the necessary computations to obtain altitude,

altitude rate, Mach number, airspeed, etc.

Mode select and data entry panel functions are shown in Figure 6-1.

Ideally, a single, integrated panel should be used to optimize cockpit opera-

ting procedures and to minimize the use of cockpit real estate. An integrated

data entry and mode select panel would have to be specially developed for the

flight test program. An alternative is to mechanize this function using several

panels associated with existing subsystems.

A number of radio navigation devices are shown on Figure 6-1. These are

not restricted to only those sensors or devices that are the leading contenders

for application in a shuttle landing avionics system. Figure 6-1 shows most of

the navigation devices that are in general use in military and commercial air-

craft plus some that are special purpose for the specific requirements of the

shuttle landing. The on-board computer programs and interfacing electronics

should make provision for evaluating more than one navigation technique for a

given phase of flight. For example, VOR/DME, INS and air data may be one method

of achieving the high altitude, long range navigation. An alternate could be the

tracking radar and up-data link. The avionics test system should make provision

for both methods if the flight tests are conducted at a facility where the track-

ing radar system is applicable. Likewise provision should be made to interface
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receivers for the trilateration beacon system and appropriate software developed

to permit the use of that data for navigation computations.

3. Description of Candidate Navigation Sensors and Subsystems

The paragraphs that follow provide a brief description and appraisal of

the various navigation devices which have been considered as a source of shuttle

landing system navigation data. Table 6-1 summarizes these descriptions in terms

of accuracies and coverage.

a. VORTAC and TACAN

VORTAC is the most widely used system today for domestic enroute nav-

igation and in many cases, approach. Courses are presently restricted to radials

with baro altitude sensing for aircraft separation. Stations are configured in

three coverage types: H (high altitude) frequencies protected to 130 nautical

miles up to 45,000 feet, 100 nautical miles to 60,000 feet; L (low altitude) pro-

tected to 40 nautical miles up to 18,000 feet; and T (terminal protected to 25

nautical miles up to 12,000 feet. These are guaranteed frequency protection

volumes; generally the coverage extends much further. Individual VORTAC's may be

analyzed and/or measured for coverage beyond these limits. Both VORTAC and TACAN

are limited to elevation angles less than 50 degrees for accurate azimuth sensing;

the DME portion (slant range) is omnidirectional. Advantages are the wide and

increasing deployment of these stations, the availability of low cost, reliable

airborne equipment, and the extensive experience obtained with them by all types

of air carriers from general aviation through the airlines and the military.

Additionally, the techniques of coupling to instruments, flight directors, and

autopilots have been highly developed over the years.

The disadvantage is the marginal accuracy. Depending on the partic-

ular ground and air installation, these accuracies may vary from 1 to 4 degrees

for azimuth and 0.2 to 0.5 nautical mile in slant range.

TACAN provides essentially the same service as VORTAC except the

angular accuracy is improved slightly.
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TABLE 6-1

SYSTEM COVERAGES AND ACCURACIES

VOR
( Bear ing)

I'ACAN
(Bear i ng)

IACAN/DME
(Slant Range)

VIIF Localizer
(Azimuti)

UHF Glide Path
(Elevation)

Microwave Scanning
Beam ILS
(Azimuth)

(Elevation)

(Range)

Coverage

Omnnidirectional in azimuth, but
accuracy degrades within ±40 de-
grees of zenith. Line of sight
limited. "H" facility guaran-
teed to 130 nm at 45,000 feet.
100 nm radius to 60,000 feet.

Same as VOR.

Same as VOR, TACAN, except has
no overhead dead zone (operates
at all elevation angles).

To 25 nm within t10 degrees of
front course line, at an eleva-
tion angle up to 7 degrees
maximum.

To 10 nm minimum from 1.2 to 5
degrees elevation, (2.8 degrees
nominal glide path) within ±8
degrees of localizer center
line.

±20 degrees

0 to +20 degrees

To 50 nm clear weather.
To 10 nm guaranteed in 10 mm/
hour rainfall.

System Accuracy

Varies with both ground and air in-
stallation. Typical good sites and
modern airborne equipment produce
less than ±3 degrees overall (2 a).
Poor facilities up to ±4 degrees or
more.

Typically better than VOR. +3 de-
grees maximum, typically ±1 degree
overall (2 a).

±0.5 nm or 3 percent (2 a) guaran-
teed, ±0.2 nm typical in modern
equipment.

RSS of ground and airborne instru-
mentation errors, 2 a, Category II
System:

At threshold:

At Point C (100 feet
decision height):

At Point B (3500 feet
from threshold):

±36 feet

±40 feet

±48 feet

Subject to overflight, ground
vehicle, reflection perturbations.

RSS of ground and airborne instru-
mentation errors, 2 a, Category II:

Threshold:

Point C:

Point B:

±4.5 feet

±9 feet

±19 feet

±0.3 degree at reference course.

±0.15 degree at reference glide
path.

±100 feet
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TABLE 6-1 (cont)

SYSTEM COVERAGES AND ACCURACIES

6-9

Coverage System Accuracy

Range Instrumentation Line of sight only. ±0.5 milliradian in azimuth and
Radar - MPS-19, Typically 50 nm at 10,000 feet elevation. Subject to elevation
FPS-16, etc. 80 nm at 20,000 feet angle perturbations at low elevation

150 nm at 40,000 feet angles.
200 nm at 60,000 feet
300 nm at 100,000 feet

All azimuths, all elevations. ±5 yards in range.
(Gimbal lock, tracking rate
problems near zenith.)

Optical Trackers Short range, clear weather, line 0.1 to 0.5 milliradian. Use in

(Az and El) of sight, all azimuth and eleva- conjunction with radar range only.
tion angles (low angle fill-in
for radar).

Tri-Lateration Systems 20 nm maximum range, ±1.5 foot position errors claimed at

(Cubic CR-100-3) omnidirectional. 20 nm. Subject to multipath and
geometric dilution of precision
errors.)

Low Altitude Radar 0 to 2500 feet (ARINC 552) ±2 feet or 2 percent (not Including
Altimeters 0 to 5000 feet (AN/APN-171) indicator).
(Absolute Altitude)

Air Data -1,000 to +50,000 feet (ARINC -1,000 feet to sea evel ±15 feet
565). To 70,000 feet available. Sea Level to +10,000 feet ±20 feet

10,000 to 30,000 feet ±40 feet
30,000 to 50,000 feet ±80 feet

Subject to further aircraft static
port errors. Correlation of pres-
sure altitude with true altitude
depends upon atmospheric conditions.

Inertial Navigation Unlimited; depends upon time ±1.0 to 2.0 nm per hour (horizontal
Systems (INS) from initialization or plane - latitude and longitude)

updating.
±20,000 to 40,000 feet per half hour
(vertical plane - altitude)



b. VHF/UHF ILS

VHF/UHF ILS is the standard approach guidance system for both civil

and military flying. Virtually all systems are qualified for Category I (200

feet DH, 2,400 feet RVR). Many, particularly at the larger, busier airports

are being replaced or upgraded to Category II (100 feet DH, 1,200 feet RVR).

No Category III (to touchdown and beyond) has been implemented. Approximately

300 Category I runways are in use but only a dozen or so Category II (1969).

Thousands of airborne receivers, of various degrees of quality, are in use by

all classes of aircraft.

Like VORTAC, the great advantage of this system is its wide deploy-

ment, the vast experience with it, availability of reliable inexpensive airborne

equipment, and the proven coupling techniques.

Accuracy of ILS can be quite good down to the 100 or 200 foot deci-

sion height, but the system is subject to severe siting problems and interference

from moving ground aircraft or vehicles and overflying aircraft.

c. Microwave Scanning Beam Landing Systems

Because of the inherent limitations of any VHF/UHF landing system due

to the wavelength-antenna size-beamwidth problem, much developmental activity has

taken place in the last few years in this area. It is the stated intention of

the FAA to accelerate development of microwave landing systems (RTCA SC-117). By

using wavelengths of an order one or two magnitudes shorter, these systems can

achieve freedom from site effects by use of narrow beams with reasonable antenna

sizes while achieving greatly improved accuracies. By rapid wide angle scanning

of these beams, much greater angular coverage can be achieved which allows a

wider range of approach paths in both elevation and azimuth. By addition of DME

service, complex approach paths are possible with airborne computation. How-

ever, raw data alone may be used.

FAA measurements at NAFEC of a prototype system show angular accu-

racies of 0.03 to 0.05 degree and DME accuracy of 100 feet.
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The disadvantage of the system is its present low availability and

the uncertain nature of its future due to possible funding limitations. Experi-

ence is limited to experimental sites and military deployment. (Navy AN/SPN-41,

AN/TRN-28, and AN/ARA-63.)

d. Range Instrumentation (Radar Optics, Computers, Data Links, etc)

Range instrumentation includes an extremely wide range of equipment

and a large number of operating personnel. Books can and have been written on

the subject. Examples of the complexes available are those at Cape Kennedy,

Wallops Island, Kwajelain, Edwards, Ames, White Sands, P.M.R., Vandenberg,

SPASUR and Spacetrack, NASA and Air Force tracking ships, NASA near space and

deep space instrumentation facilities, and others of both nature. Their present

deployment is almost exclusively limited to government-owned test facilities.

For orbital and earth escape missions these systems are indispens-

able but may be limited to coverage during terminal navigation and approach

guidance.

Where adequate facilities are located in close proximity to the land-

ing area, the high quality of this instrumentation and the trained personnel

associated with them can provide almost unexcelled precision and coverage. A

good radar-optics-computer-data link combination can provide accuracies to a

fraction of a milliradian in angle and a few yards in range. For test purposes

a particular value is the ability of this type of ground complex to simulate

almost any conceivable sensor combination (ILS, VORTAC, altimeters, etc) by

means of proper computer programming and data up-link means.

The disadvantage of these systems is the lack of low altitude cover-

age unless the facility is located at or directly adjacent to the intended oper-

ational landing site.

e. Barometric Altitude

Pressure altitude can be routinely measured to excellent accuracies.

ARINC 565 specs, for example, run from ±15 feet at sea level to ±80 feet at

50,000 feet. Even when one or two hundred feet are added for static port errors,
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this is sufficient for aircraft separation purposes, the primary use in civil

aviation at high altitudes (over 18,000 feet).

Pressure altitude is based on 29.92 inches Hg standard day so that

all aircraft in the same vicinity experience nearly equal errors and thus main-

tain their separation. But separation is not the problem in the SSV. The

problem is elevation sensing with respect to the landing area for guidance

purposes. Conversion to mean altitude above sea level is easily made by com-

pensating for the ground reference pressure referenced to sea level. A further

correction to absolute altitude (above the landing site) may be made with a

knowledge of the landing site altitude. (Alternatively, both these corrections

may be combined into one.) Thus an elevation accuracy (for an idealized atmos-

phere) of 200 to 300 feet should be possible at altitudes of 40,000 to 60,000

feet with an increased accuracy at lower altitudes. This is more than suffici-

ently accurate to guide the SSV to the 20,000-foot key point to acquire radio

NAVAIDS. It will not be sufficient for elevation positioning at lower alti-

tudes, say below 1,000 feet, however. At these altitudes atmospheric anomalies,

static source errors, and instrument errors could cause errors of about 100 feet.

Altitude determination accuracy of about ±10 feet at 1,000 feet is a desired ob-

jective with ±25 feet appearing to be an allowable error if good performance in

the presence of off-nominal conditions is to be achieved.

f. Radar Altimeters

Over the past 6 years, low altitude (O to 2,500 feet) radar altim-

eters have come into wide commercial use as a complement of aircraft equipment

for Category II approaches. Thus they are reliable, widely available, and

reasonably priced. (Military versions up to 5,000 feet are also available.)

Their use has been necessitated largely by the inadequacies of the conventional

ILS glide path below 100- to 200-foot height, and to pinpoint the Category II

100-foot decision height.

Accuracies are typically 2 feet or 2 percent, but obviously they may

incur errors because of the particular terrain directly under the aircraft on

the approach path.
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High altitude radar altimeters (2Q0 to 7Q,000 feet) are available but

much less widely used. They have been used for military reconnaissance, aerial

surveying, and pressure pattern flying over water, not as a vertical guidance

sensor. At high altitudes, terrain variations can lead to serious errors.

g. LORAN C/D

LORAN C/D has no coverage in western U.S. at present. Four "D" sta-

tions might be made available. Three of these are in present use in the Eglin

AFB area and a fourth is in storage. The system is usable at altitudes in ex-

cess of 100,000 feet, possibly up to 50 miles altitude. Recommended deployment

for testing at Edwards AFB would be:

Master Northwest Nevada

Slave 1 Los Angeles

Slave 2 Western Oregon

Another slave would be needed to give the altitude coordinate since three sta-

tions provide only two-dimensional measurement.

Accuracies claimed are in the order of 100 or at most a few hundred

feet. The system is subject to geometric dilution of precision when at great

distances from the baseline but this generally can be minimized by careful choice

of station siting.

h. Inertial Navigation Systems (INS)

These systems include a wide spectrum of combinations of Inertial

Measurement Units (IMU's) and computers. The IMU's may be of the gimballed plat-

form type in which rate sensors and accelerometers are stabilized on a fixed

coordinate frame or strap down configurations, where vehicle body rates and ac-

celerations are sensed, and the computer determines the instantaneous direction

cosine matrix for the desired navigation coordinate frame. The state of the art

in terms of accuracy, size, weight and cost is very dependent upon the specific

application. The space shuttle vehicle will have its own unique requirements

that are not met by an existing inertial navigation systems. The space shuttle,

for example, has considered a strapdown approach where a duodecahedron orienta-

tion of rate sensors is a leading candidate. This orientation is featured not
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because of any inherent accuracy advantages but because of the unique and

interesting properties it provides in regard to redundancy and reliability.

The commercial INS equipment, on the other hand, are gimballed systems using

local vertical coordinate frames but they are not capable of providing naviga-

tion for most of the space shuttle phases of flight. (They cannot provide the

ascent, orbit, and reentry phases.) Various military inertial navigators are

available but they are usually oriented toward specialized problems (fire con-

trol and weapon delivery) although their IMU's could be usable with other com-

puter programs.

All inertial navigators have their own specialized problems in re-

gard to alignment, initializing and in-flight calibration or cancellation of

bias errors. The development of a multipurpose inertial navigation system for

space shuttle vehicle is a technology task of the space shuttle program that is

largely independent of the landing navigation/guidance problem. A landing avi-

onics flight research program can achieve its objectives by using an INS that

provides only those functions associated with aerodynamic flight. Although pro-

vision should be made for the actual initializing errors prior to de-orbit, a

state-of-the-art commercial INS could provide the desired capability at minimum

cost.

4. Definition of Candidate Systems

a. Definition of Candidates

Five candidate systems are defined to permit an evaluation of dif-

ferent methods of synthesizing navigation information during the various phases

of flight. These candidates employ different sensors in the four specified re-

gions of terminal flight (100,000 to 20,000 feet; 20,000 to 1,000 feet; 1,000 to

50 or 60 feet; and 60 feet to touchdown). There are obviously permutations on

the five candidates where the navigation devices for different regions may be

interchanged. It will be apparent from the subsequent system description that

combinations of two of the candidate configurations result in the best approach

for a flight test program.

The following is a summary of the five candidate systems. (Table

6-2 defines the airborne equipment size and weight for various candidate

devices.)
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TABLE 6-2

AIRBORNE SIZE AND WEIGHT

* Candidate No. 1 (Figure 6-2, and Table 6-3 and 6-4)

This system is selected as a combination of standard, contemporary

sensors in proper combinations to cover the various flight regimes. It is com-

posed of VOR, DME, Air Data, ILS, etc. The main advantage of the system is its

economy with respect to ground-based equipment. These have been widely deployed

for many years and long operational experience has been acquired. Additionally,

reliable, low-cost airborne equipments are available for this same reason. The

disadvantages of the system are the varying locations, coverage and accuracy of

the ground stations from one landing site to another. Because of the lack of

coverage under certain conditions (for instance, in the 80-degree cone over a

VOR OR TACAN station) inertial fill-in will be required. The stations have been

developed and deployed assuming straight line, radial, point-to-point navigation

of the present civil system (Rho-Theta). Thus, off-course, complex, three-

dimensional paths must be computed leading to higher errors under unfavorable

conditions.

6-15

Size Weight

(in. ) (lb)

TACAN 1000 40

VHF/UHF Navigation Receiver 700 25

DME 825 37

Marker Beacon 225 5

C-Band Beacon 300 8

Command Receiver 200 10

Radar Altimeter 500 15

Tri-Lateration Interrogator 720 20
(Cubic CR-100-3)

Scanning Beam Receiver 370 15
(ARA-63)

Air Data Sensor 100 4

Airborne Computer 1500 45

Data Adapter 500 25

Inertial System 2000 75
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Figure 6-2
Candidate No. 1
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TABLE 6-3

SYSTEM CANDIDATE NO. 1 CHARACTERISTICS

TABLE 6-4

AIRBORNE EQUIPMENT REQUIRED, CANDIDATE 1

Item Weight, Pounds No. Antennas

VHF/UHF Nav Receiver 25 2

DME 37 1

Radar Altimeter 15 2

Marker Beacon Receiver 5 1

Subtotal Radio Sensors 82 6

Air Data Sensor 4 -

Airborne Computer 45

Data Adapter 25

INS 75

Subtotal Others 149 -

Grand Total 231 6

100,000 to 20,000 feet

Lateral VORTAC or TACAN + off-course computer and slant range correction
using baro data. INS for rates, attitudes, data fill-in during non-
coverage periods.

Vertical Barometric + INS smoothing.

20,000 to 1,000 feet

Lateral Same as (a) except switch to localizer below approximately 10,000
feet.

Vertical Computation of glideslope by DME-Baro, switch to DME-radar altimeter
at 5,000 feet or at appropriate altitude determined by terrain
characteristics.

1,000 to 60 feet

Lateral VHF localizer

Vertical UHF glidepath to 200 to 300 feet, G/P extension (inertial-baro com-
puted) and radar altimeter to 60 feet.

60 to 0 feet

Lateral VHF localizer

Vertical INS glidepath extension, radar altimeter flare (+INS smoothing).
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* Candidate No. 2 (Figure 6-3, and Tables 6-5 and 6-6)

This is similar to Candidate No. 1 except that the 200 glide path

portion now uses a high angle, microwave scanning beam ILS. This adequately

solves the accuracy problem during this phase of flight but incorporates a sys-

tem with less operational experience behind it. The other advantages and dis-

advantages of Candidate No. 1 are retained.

It is the stated intention of the civil aviation community to

rapidly implement microwave scanning ILS systems. Yet much testing remains to

be done and the uncertainity of the funding of the project leads to the conclu-

sion that operational civil use is at least five years away. However, such

systems will inevitably come into being, with vastly increased coverage and

accuracy compared to conventional VHF/UHF ILS. From this standpoint alone,

consideration of the system becomes attractive.

This candidate continues to use conventional ILS, radar altimeters,

and conventional glide slope extension and flare during the last two flight

regimes, 1000 to 60 feet and 60 to zero feet.
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Figure 6-3
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TABLE 6-5

SYSTEM CANDIDATE NO. 2 CHARACTERISTICS

TABLE 6-6

AIRBORNE EQUIPMENT REQUIRED, CANDIDATE 2

6-20

100,000 to 20,000 feet

Lateral VORTAC or TACAN + off-course computer and slant range correction
using baro data. INS for rates, attitudes, data fill-in during non-
coverage periods.

Vertical Barometric + INS smoothing

20,000 to 1,000 feet

Lateral Microwave scanning localizer

Vertical Microwave scanning glidepath properly sited up range

1,000 to 60 feet

Lateral VHF localizer

Vertical UHF glidepath to 300 feet; G/P extension and radar altimeter to 60
feet.

60 to 0 feet

Lateral VHF localizer

Vertical INS glidepath extension; radar altimeter flare

Item Weight, Pounds No. Antennas

VHF/UHF Nav Receiver 25 2

DME 37 1

Marker Beacon Receiver 5 1

Radar Altimeter 15 2

AN/ARA-63 15 1

Subtotal Radio Sensors 97 7

Air Data Sensor 4 -

Airborne Computer 45

Data Adapter 25

INS 75

Subtotal Others 149 -

Grand Total 246 7



* Candidate No. 3 (Figure 6-4, and Tables 6-7 and 6-8)

Whereas Candidates 1 and 2 have the great advantages of prepaid

ground equipment, the high altitude coverage of VORTAC may be inadequate.

Candidate No. 3 puts its dependence upon precision range radar instrumentation,

ground-based computation, and telemetry up-link of simple displacement, position,

or command signals. High and medium altitude coverage and accuracy problems are

virtually non-existent. Low altitude coverage is obtained by conventional ILS.

For light traffic and only a few landing sites, this system seems excellent. It

does require highly trained ground operators and an expensive array of elegant

ground equipment. At high altitudes this is nothing more than an extension of

manned orbiting or lunar vehicle techniques and has successfully proven itself

for high angle glide paths at Edwards AFB with test vehicles.

On the other hand, many landing sites or high traffic will drive

up the cost of ground equipment and maintenance/operating personnel.

Additionally, the ground facility must be located in close proxim-

ity to the landing area (within a few miles) to assure accurate tracking down to

glide path capture.

An alternative to ILS is to switch to optical angle tracking at

very low angles where radars will suffer from multipath. (Continue radar rang-

ing.) This requires even more highly skilled operators and has no all-weather

capability. It should only be considered as a back-up or flight test device.
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TABLE 6-7

SYSTEM CANDIDATE NO. 3 CHARACTERISTICS

TABLE 6-8

AIRBORNE EQUIPMENT REQUIRED, CANDIDATE 3

6-23

100,000 to 20,000 feet

Lateral and Range instrumentation radar, ground based computer, and telemetry
Vertical up-link (INS smoothing)

20,000 to 1,000 feet

Lateral and Range instrumentation radar, ground based computer, and telemetry
Vertical up-link

1,000 to 60 feet

Lateral VHF localizer

Vertical UHF glidepath to 300 feet; G/P extension and radar altimeter to
60 feet.

60 to 0 feet

Lateral VHF localizer

Vertical INS glidepath extension, radar altimeter flare

Item Weight, Pounds No. Antennas

C-Band Beacon 8 1

Telemetry Receiver 10 1

VHF/UHF Nav Receiver 25 2

Radar Altimeter 15 2

Marker Beacon Receiver 5 1

Subtotal Radio Sensors 63 7

Air Data Sensor 4 -

Airborne Computer 45 -

Data Adapter 25 -

INS 75 -

Subtotal Others 149 -

Grand Total 212 7



* Candidate No. 4 (Figure 6-5, and Tables 6-9 and 6-10)

This is similar to No. 3 except that the requirement to site the

range instrumentation radars in close proximity to the landing site is relieved

by use of a microwave scanning beam ILS (with precision DME) from 20,000 feet

down to zero. Thus a single range instrumentation radar and associated equip-

ment could service the high altitude region for numerous landing sites within a

100 NM or greater radius. High traffic and/or the desire for redundancy might

dictate two or three installations however.

Other advantages and disadvantages of instrumentation radar and

microwave ILS remain. The system has the advantages of overlapping coverage by

the two sensor types during the critical 20,000 to 1,000 feet region if siting

is selected properly.

The system preferably uses a single microwave localizer with pre-

cision DME and two microwave glide path transmitters, one in line with the steep

angle path and the second in line with the low angle path. This provides fur-

ther redundancy and back-up modes by allowing either airborne path computation

via DME and the second glide path scanner, or the flying of raw data and switch-

ing from the first to second glide path scanner at the transition from steep to

low angle glide path.
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TABLE 6-9

SYSTEM CANDIDATE NO. 4 CHARACTERISTICS

TABLE 6-10

AIRBORNE EQUIPMENT REQUIRED, CANDIDATE 4

Item Weight, Pounds No. Antennas

C-Band Beacon 8 1

Telemetry Receiver 10 1

ARA-63 15 1

Radar Altimeter 15 2

Subtotal Radio Sensors 48 5

Air Data Sensor 4 -

Airborne Computer 45 -

Data Adapter 25 -

INS 75 -

Subtotal Others 149 -

Grand Total 197 5

100,000 to 20,000 feet

Lateral and Range instrumentation radar, ground based computer, and telemetry
Vertical up-link (INS smoothing).

20,000 to 1,000 feet

Lateral and Microwave scanning localizer, including precision DME. Microwave
Vertical scanning glidepath.

1,000 to 60 feet

Lateral Microwave scanning localizer, including precision DME

Vertical Second microwave scanning glidepath

60 to 0 feet

Lateral Microwave scanning localizer, including precision DME

Vertical Second microwave scanning glidepath (radar altimeter as backup).
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* Candidate No. 5 (Figure 6-6, and Tables 6-11 and 6-12)

This candidate introduces the concept of an omni-directional tri-

lateration airborne sensor-computer complex for below 20,000 feet. The range

instrumentation radar concept is retained above 20,000 feet since the short base

line tri-lateration system has excessive errors at long range and would require

much higher powers to work reliably beyond 20-nautical mile slant range.

The tri-lateration system has proven accurate in some applications,

notably geodesy and aerial surveying. It is a low traffic density system but

does not require human operators. Being omni-directional and narrow band, it is

subject to multipath errors unless siting is done with care. It has not had the

wide operational experience of conventional VHF/UHF systems nor does it seem

destined for such wide adoption as microwave scanning beam ILS. It is con-

sidered to embody some technical risk and little eventual economy.

An alternate is two tri-lateration ground systems, one deployed in

close proximity to the landing site to cover 20-nautical mile range as above,

and the second widely deployed and of higher power (including dual purpose, switch-

able airborne higher power interrogators) to give coverage to 100,00.0 feet and 150

to 200-nautical miles.

The multi-lateration system has the further disadvantage that raw

data is not available in a form that may be used directly.
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TABLE 6-11

SYSTEM CANDIDATE NO. 5 CHARACTERISTICS

TABLE 6-12

AIRBORNE EQUIPMENT REQUIRED, CANDIDATE 5

Item Weight, Pounds No. Antennas

C-Band Beacon 8 1

Telemetry Receiver 10 1

Tri-Lateration Interrogator 20 1

Radar Altimeter 15 2

Subtotal Radio Sensors 53 5

Air Data Sensor 4 -

Airborne Computer 45 -

Data Adapter 25 -

INS 75 -

Subtotal Others 149 -

Grand Total 202 5

100,000 to 20,000 feet

Lateral and Range instrumentation radar, ground based computer, and telemetry
Vertical up-link.

20,000 to 1,000 feet

Lateral and Tri-lateration interrogator (air), transponders (ground), and
Vertical airborne computer.

1,000 to 60 feet

Lateral and Tri-lateration interrogator (air), transponders (ground), and
Vertical airborne computer.

60 to 0 feet

Lateral and Tri-lateration system. Tri-lateration (radar altimeter backup
Vertical for flare).
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b. Conclusions

Candidate system No. 4 was selected as the best method of performing

operational space shuttle approach and landing guidance, but perhaps with addi-

tional VOR/DME capability for high altitude as in Candidate 2. This system,

which has adequate accuracy, a low technical risk, and reasonable costs, is

capable of being flight tested at Edwards in the near future (less than one

year) without excessive expense.

During the Edwards flight test however, serious consideration should

be given to VORTAC use for the high altitude (above 20,000 feet) region with a

view to eventual economics should space shuttle traffic become more frequent

than one or two operations a month. Tests should be directed to this end.

Specifically, high altitude (above 60,000 feet) VORTAC tests for accuracy,

coverage, and interference should be made. Offset navigation techniques by

airborne computation of VORTAC signals with barometric altitude should be veri-

fied. Should the results of these tests prove favorable, it is envisioned that

the ultimate system would be a combination of candidates 2 and 4; VORTAC/Baro

down to 20,000 feet and microwave scanning ILS from 20,000 feet to full stop on

the runway.

C. CANDIDATE AIRCRAFT REQUIREMENTS FOR SPACE SHUTTLE SIMULATION

1. Introduction

A study of the seven aircraft listed below and shown in Figure 6-7 was

made to determine which aircraft could best be used for investigating unpowered

Space Shuttle Vehicle (SSV) terminal area and landing approach problems.

F-104

F-106

F-111

F-4

T-38

CV-990

B-52
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F 104

F-111

TF38

F-102

8-52

711-19-131

Figure 6-7
Candidate Aircraft to Simulate Space Shuttlecraft Vehicle
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This list includes two aircraft which were not listed in the statement of work

(T-38 and B-52) and does not include the F-102 and B-58 which were listed. For

the purposes of selecting an aircraft to simulate an SSV the F-102 would have

similar idle thrust lift-to-drag characteristics as the F-106 since the wing

area is identical. The B-58 was eliminated from the study because of predicted

high operational costs, high maintenance costs, and the fact that all aircraft

except one are in "moth balls" at Davis Monthan AFB. The T-38 aircraft was

added as a candidate vehicle because it exhibited many of the desirable qual-

ities such as low operating cost and low maintenance cost. The B-52 aircraft

was included because it is representative of the size and gross weight of many

of the SSV's.

Both high and low cross-range vehicle configurations were considered in

seeking an aircraft to simulate space shuttle vehicle characteristics. At the

time this study was performed, the LCR vehicle was still a strong space shuttle

candidate. Many of the conclusions reached in the original study (Reference 32)

were based on matching LCR vehicle characteristics. One of the criticisms of

the CV-990 as reported in Reference 32, for example, was the fact that it could

match the reference HCR vehicle better than it could match the LCR vehicle. It

will be shown later that the second look at the CV-990 revealed an excellent

match for both the MDAC and NAR HCR vehicles that were studied on this program.

2. Performance Criteria for an Aircraft to Simulate an SSV

a. L/D Versus Speed

In order to best simulate the performance of the SSV, the most im-

portant criteria for the selection of an aircraft is the ability to match the

front side of the equilibrium lift-to-drag (L/D)* versus equivalent airspeed

curve. A match of these curves provides the same flight path angle, the same

airspeed, the same speed stable energy management response, and thus the same

flight path trajectory.

*The L/D data is defined as the lift divided by drag minus idle thrust.

L/D = L
idle
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b. Handling Qualities - Difference Between Large and Small Aircraft

Related to the problem of manual handling quality simulation is the

basic question of whether a small aircraft can adequately simulate the flight

path control characteristics of a large aircraft. The previous discussion

stated that duplicating L/D versus airspeed curve will result in the same tra-

jectory at the same speeds. Will control response dynamics to these trajec-

tories be the same for large and small aircraft? There are two factors-that

determine the flight path control dynamics:

· Lag in flight path angle change following pitch change

* Dynamics of pitch response to pitch command

The first of these lags is the time constant Tz given by

Q )C S S S Q gCL (6-1)

It is seen that at a given speed that would be flown by both the

large and small aircraft, the lag is proportional to wing loading W/S. Ideally,

therefore, to simulate a space shuttle vehicle, we should also match wing load-

ing and lift curve slope characteristics (CL). A small aircraft and a largeL

aircraft can produce a good match and in the various simulator aircraft that

were considered the match of the SSV's Ty was relatively good.

The second factor, the pitch response dynamics shows a larger varia-

tion between large and small aircraft. The ability to obtain a responsive pitch

to pitch command (0/0 ) characteristic depends upon the torque-to-inertia ratioC
(pitch angular acceleration per degree of elevator). Figure 6-8 shows this

parameter for various aircraft (normalized to 280 knots at about 5000 feet). It

is interesting to note from this figure that lifting bodies have the control-

lability of very large aircraft but because of their small size they have the

gust response of the small aircraft. The conclusion we can draw from this

figure is that it would be very difficult (if not impossible) to make a large

aircraft respond like a small aircraft. Fortunately, in the problem under

6-33



u 100,000 200,000 300,000 400,000 500,000

WEIGHT (POUNDS)

Figure 6-8
Pitch Acceleration Capability of Aircraft as Function of Weight

26

24

22

20

wu 18

i 16

-i

4 14

o10

CD 84) 0
. ua

-JM 6

z 4

2

0

F-5

WF-104

F-4

. . \~CV990 MDAC LCR

B-47
M'DAC HCR

' .X-24' ..
;- . X-24 --- _ _SST 747_

_ _ . ~~~~~~- _ 

W- -__

.I I I I .I . . . . . . .i . . . . . . . . . ._ , 72F NA _C

600,000

711-19-132

6-34

1
--T

-- _---NAR HCR

I

- -- ---

___ It _ 

na

, M2F3



consideration we must achieve the reverse effect if we intend to use an aircraft

such as an F-104 to represent the much larger SSV. (It is noted, however, that

the CV-990 is quite representative of candidate space shuttle vehicles.) Slow-

ing down an attitude response is readily accomplished by inserting the necessary

lags into the autopilot or augmentation system.

c. Multiple Seat Capability

It is important to have an SSV simulator that has two seats to allow

for evaluation of simulated IFR operation. One pilot could fly the manual

steering mode while the other pilot monitored the flight.

3. Analysis of Flight Test Candidate Aircraft

In Reference 32, the L/D versus airspeed characteristics for the various

candidate aircraft in various configurations of flap, landing gear, and speed

brake deployment were compared with the L/D versus airspeed curves for two

candidate space shuttle vehicles. The representative space shuttle characteris-

tics were those of the LMSC Delta body HCR orbiter and the MDAC-1, Straight Wing,

LCR Orbiter. Both of these vehicles were described in Sections III and IV of

this report. As stated previously, the F-104 was found to give the best match

for both of these vehicles. Figure 6-9 shows the F-104A characteristics super-

imposed on the straight-wing orbiter characteristics, and Figure 6-10 shows the

F-104A curves superimposed on the delta-wing orbiter curve. The nominal L/D or

operating point is shown in both figures. For the straight-wing orbiter, full

flaps will not be deployed until final flare and touchdown; therefore, this will

be a transient situation for which an equilibrium glide path will not be estab-

lished. The F-104A is a good match for either the straight-wing or delta-wing

orbiter. Other versions of the F-104 such as the two seat version (F-104B)

would have identical L/D characteristics.
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Subsequent to the analyses that produced reference .32, the CV-990 was

studied in great depth to determine whether it can be made representative of

some of the newer SSV configurations. The fact that the CV-990 had been used to

demonstrate simulated SSV unpowered approaches at Edwards AFB was a strong moti-

vation to take a closer look at that aircraft. Figures 6-11 and 6-12 show an

extremely good matching capability when the CV-990's spoilers are deflected

symmetrically in the speedbrake configuration. Figure 6-11 illustrates the high

altitude part of the descent trajectory. The CV-990's aero data for Mach 0.84

was used to generate the L/D versus airspeed curves. At Mach 0.84 the aircraft

would be at 40,000 feet, the start of the descent trajectory. At that altitude

it would be in the high altitude energy management phase of the terminal guid-

ance. It will therefore be operating near (L/D) maximum of the space shuttle.

From Figure 6-11, it is seen that a perfect match with the MDAC vehicle is ob-

tained with a 10-degree speedbrake deflection.

In the terminal glide region (assuming a -10 degree glide path), the

CV-990 with 20 degrees of speedbrake deflection again is a near perfect match of

the MDAC HCR orbiter as shown in Figure 6-12. This figure also shows the

spoiler blow-down limit and demonstrates that adequate speed margin exists with

the speedbrake requirement for simulating either the MDAC or NAR vehicles.

Figures 6-11 and 6-12 therefore demonstrate that the CV-990 would be an

excellent choice as an SSV approach and landing simulator. To verify the capa-

bility of that aircraft and to determine whether any unique control requirements

may exist, the CV-990 was flown on Sperry's 6-degree-of-freedom digital simu-

lator using the recommended SSV energy management and terminal approach and

landing guidance and control system. The complete CV-990 aero model including

the tab/elevator hinge moment equations were included in the simulations.

Figures 6-13, 6-14, and 6-15 illustrate one of the trajectories obtained.

Figure 6-13, the horizontal view of the trajectory, shows that it starts in the

final phase of the high altitude energy management guidance, moving outbound

from the runway, and about 7 nautical miles from the final turn, onto the termi-

nal approach flight path. Note that the CV-990 is in its maximum speed descent

configuration; that is: gear down but zero speed brakes. The descent on the
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Figure 6-11
CV990 with Speedbrakes, 'y versus VE, Match to

MDAC and NAR HCR Orbiters (High Altitude)
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terminal glide path for this configuration involves speeds greater than 300

knots. This speed would correspond to the early, twin fin NAR vehicle rather

than the more recent MDAC vehicle configuration. This speed is probably an

upper bound for the CV-990.

The vertical view of the trajectory shown in Figure 6-14 demonstrates a

near perfect prediction of the final turn maneuver onto the glide path. The

velocity history demonstrating the relatively high speeds on the final approach

path is shown in Figure 6-15.

4. Flight Test Vehicle Recommendations

The CV-990 is recommended as the SSV simulator for flight test evalua-

tion of SSV terminal approach and landing techniques. Reasons for this recom-

mendation are:

· Background of demonstrations of unpowered, high energy ap-

proaches with CV-990 at Edwards AFB

* Capable of providing excellent match of more recent SSV

aerodynamic characteristics

· *Adequate space for installing the required avionics

· Existing autopilot servo actuator installation can be used

... sufficient control authority is available and system

can be operated with required safety constraints. (See

Reference 32.)

* Availability of aircraft to NASA

*More detailed descriptions of avionics mechanizations were given in
Reference 32.
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations derived from the simulations, analyses,

and evaluations of terminal approach and landing techniques for five candidate

space shuttle vehicles of both the low and high cross-range variety are sum-

marized in the following paragraphs.

1. Consistent automatic instrument landings of unpowered space shuttle

vehicles can be made with the same level of performance that is attained today

in the landing of conventionally powered transport aircraft. The recommended

guidance and control system can achieve nominal touchdown sink rates of 2 feet

per second with the 2-sigma performance in the presence of winds and turbulence

held below 5 feet per second. The nominal longitudinal position at touchdown

can be 800 to 1000 feet beyond the intersection of a -2-1/2-degree glide path

and the ground. The 2-sigma longitudinal dispersion in the presence of winds and

turbulence is about +1000 and -500 feet from the nominal. Manual and augmented

manual landing performance was not sufficiently evaluated to determine a quanti-

tative level of attainable performance. Additional study is needed to fully

evaluate the effect of pilot simulator practice on the landing performance.

2. Nominal landing speeds for unpowered space shuttle vehicles range be-

tween 165 and 195 knots depending upon the availability of drag brakes for speed

management and the range of headwind and tailwind uncertainty which must be

accommodated.

3. The segmented or two-phase glide path is the recommended landing tech-

nique for both the automatic and augmented manual modes. The use of a fixed

shallow glide path following the high energy, steep glide path is most effective

with higher approach speeds and high L/D vehicles. For vehicles with lower sub-

sonic L/D's (below about 4.5), and with approach speeds below about 250 knots,

a single flareout provides performance approximately equivalent to that which

can be obtained with the two-stage flareout technique.

4. As in the case of flareout systems for conventional jet transports,

several types of flareout control laws are applicable to the unpowered space
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shuttle landing, but the key factor in the flareout system is the predictive or

open loop part of the control law. The predictive terms should be updated for

off-nominal conditions of velocity, weight, and vertical speed.

5. A flat skid decrab maneuver is recommended. It should be initiated

about 8 feet from touchdown to align the vehicle with the runway during cross-

wind landings. The maneuver is performed with a combination of closed loop and

predictive commands to the rudder with feedforward compensation into the roll

axis to help keep wings level. The skid decrab technique is favored over a for-

ward slip alignment technique for space shuttle because it offers greater accu-

racy and does not complicate speed management.

6. The HCR energy management window at an altitude of 100,000 feet is a 100-

nautical mile radius circle with its center at a 20,000-foot low key point which

is located about 23 nautical miles forward of the runway. This represents the

adjustable range capability from an altitude of 100,000 to 20,000 feet. An ad-

ditional range capability of about ±7 nautical miles downrange and ±4 nautical

miles cross-range exists from 20,000 feet to the first flare altitude.

7. The LCR's energy management capability from an altitude of 100,000 feet

until the completion of the high to low angle-of-attack transition maneuver is

small and of the same range as the potential navigation errors in that region.

The range adjustment window from about 25,000 feet to touchdown is approximately

14 nautical miles downrange and ±4 nautical miles cross-range.

8. The LCR's transition maneuver should be performed at an altitude of about

45,000 feet using a combination of reaction and aerodynamic controls to achieve

a nose-over re-orientation in the shortest possible time. The vehicle should

then be stabilized at the maximum permissible angle of attack consistent with an

adequate margin below wing stall onset. Pull-out of the dive can be achieved by

the time an altitude of 25,000 feet is reached if the angle of attack reference

is held between 6 and 8 degrees.

9. All of the space shuttle vehicles studied had some degree of inherent

lateral-directional instability. Some configurations were severely unstable and

unflyable without stability augmentation. A single lateral-directional control
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law and a single pitch control law could be used for all vehicles studied with

only the gain functions adjusted to accommodate individual vehicle differences.

This provided adequate stability and good maneuvering command responses (for

both automatic and manual control) throughout each vehicle's terminal area

flight envelope.

10. Stabilization of the lateral-directional modes of some space shuttle

configurations necessitated high gain augmentation loops that need relatively

large surface rate and deflection authorities. Realistic actuator constraints

were used in this study, but such high gain loops may pose some potential prob-

lems in a practical system.

11. High altitude energy management can be achieved with a guidance scheme

that alters the shape of a turning trajectory as a function of departure from a

nominal energy program. This system can work with almost any combination of gain

parameters that, in turn, give a variety of different trajectories, all of which

satisfy the requirement that the vehicle be brought to a specific position at an

altitude of 20,000 feet.

12. A simpler high altitude energy management guidance scheme that elimi-

nates much of the requirement for a turning descent can also be used to exploit

all of the range adjustment capability of HCR space shuttles. Such a system can

be used as the basis of a raw-data manual backup guidance system. In the raw-

data mode initial steering to the required heading is provided using a GCA voice

communication technique. Required displays are an attitude-director indicator,

horizontal situation indicator and air data instruments. Raw deviation data from

the steep angle glide path and localizer are presented on a cross-pointer display.

After some practice with these techniques in the simulator, pilots can land space

shuttle vehicles in IFR conditions without requiring any on-board guidance com-

puters. Good manual handling qualities are required, and they can be provided

through a separate control augmentation system.

13. To monitor the performance of the automatic system, the pilot should be

provided with a map display that includes a trend vector (predicted trajectory)

presentation. He also requires a mode annunciation display which indicates the

existing and forthcoming control mode status so that he can follow the progres-

sion of automatic mode sequences.
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14. Various combinations of navigation devices can provide the information

needed for terminal area guidance and control. The recommended navigation sys-

tem uses microwave scanning beams for lateral and vertical flight path informa-

tion below about 20,000 feet. A radio altimeter may also be required for final

flareout (depending upon the availability and siting of a second vertical scan-

ning beam). At high altitudes conventional NAVAIDS (VOR, DME) and air data are

used. INS is used throughout the descent trajectory for either data smoothing

or as primary navigation information.

15. The Convair 990 aircraft is recommended as a flight test space shuttle

simulator for evaluating terminal area guidance and control techniques. The

CV 990 with speed brakes deployed (spoilers) can provide an excellent aerody-

namic match of the more recent HCR SSV configurations. An F-104B or a drag

plate modified F-106 can also provide the desired aerodynamic characteristics

needed to simulate SSV unpowered landings.
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APPENDIX A

EQUATIONS OF MOTION SUMMARY

This appendix presents the equations utilized in simulating the various

vehicles under investigation. Figure A-1 illustrates the versatility of the

simulation to accurately model the vehicles aerodynamic characteristics through

the use of two and three variable table look-ups. As noted from the figure,

all aero coefficients are functions of at least two variables, with many coef-

ficients a function of three variables, i.e., angle of attack, Mach number, and

elevator position. Note that velocity information (from which position deter-

minations are made) is defined in terms of a flat earth coordinate frame. This

approximation is acceptable for terminal area studies. Figure A-2 provides ad-

ditional air data information required for the computation of Q, a, P and true

airspeed. These supplementary equations also illustrate how the mean and turbu-

lent components of the winds are incorporated into the simulation. Note that

the wind components are added into the body axis coordinate system but wind

models are specified with respect to an earth-oriented frame. This requires an

intermediate coordinate transformation to obtain uw, v and w in body coordi-

nates. This transformation and information regarding the wind model is discussed

in Appendix B.
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Figure A-2
Digital Simulation Aero Data and Wind Model

Additions to Equations of Motion

A-5

11 = Ixl
Z

-lXZ2 M - MASS

12 = IXZ (X - ly + IZ
) S - SURFACE AREA

13 = IZ (lY -I IXZ 2

14 = I X (IX - Iy) + IXZ2

b = WING SPAN (FT)

c = MEAN AERO CHORD (FT)

CONSTANTS

VT = (u'2+ 1 /
2

M =VT/VA /VA = SPEED OF SOUND AS A

(\ FUNCTION OF ALTITUDE/

Q = 1/2 PVT2 (p = AIR DENSITY)

ac =TAN- 1 w
U

= SIN-1 V
VT

7 =TAN-1 
(Ue + Ve2)12

Ve= (2Q/Po 1/2)

AIR DATA COMPUTATIONS

U = U + U
W

V = + V
W

= W + W
W

uw, vw , ww ARE WIND COMPONENTS EQUAL TO

Uw = Umean + Ugust

VW Vmean + Vgust

WW =Wmean + Wgust

WIND COMPONENT ADDITIONS*

*WIND COMPONENTS ENTER BODY MOMENT AND
FORCE EQUATIONS THROUGH 0o 3, Q AND MACH.
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APPENDIX B

WIND MODEL FOR SPACE SHUTTLE SIMULATIONS

1. INTRODUCTION

The wind model defined herein was developed from various references as indi-

cated in the following discussion. The model and its rationalization was pre-

pared by the NASA ARC Guidance and Navigation Branch (Full Scale and Systems

Research Division). The wind model for the space shuttle vehicle simulations

consists of a mean wind and a turbulent wind. The model for the mean wind

satisfies the FAA specifications (Ref B-1) for headwinds, crosswinds and tail-

winds. The model also provides an estimate to the mean wind data based on world-

wide in-service operation of the United Kingdom Airlines (Ref B-2). A model for

this data was presented in Ref B-7. The model for mean wind at high altitudes

was obtained from Ref B-3 and B-4. The mean wind is described in a local level

coordinate system.

The turbulent wind model was taken from Ref B-3 (Section 3.7, Atmospheric

Disturbance). The Dryden model is used to describe ug, vg and wg, the gust com-

ponents along the X, Y and Z axes of the body, respectively. One variation to

the Dryden model was made. The scale lengths (L , Lv, Lw) being used are con-
2 2

stant for an altitude less than 100 feet, which implies the variances a aV
2.

a are also constant over that altitude range. The turbulent wind is described
w
in the body axis coordinate system.

2. MEAN WIND

The mean wind is described by

[V VM 2 e Sh2 (B-l)mw o0
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where

V = mean wind, ft/secmw

h = altitude of vehicle cg, ft

V = ground wind speed plus wind shear, ft/sec
o

hj = altitude of center of jet stream, ft

D. = thickness of jet stream, ft
3

S = solar activity constant determining high altitude winds, ft/sec/ft

Vj = jet stream velocity, ft/sec

The term V describes the very low altitude mean wind and shear for approach
o

and landing. For h > 10 feet,

h

V (A + B cos AMW + C cos2 AMW) H(B-2)
0 (D log

1 0
10 + E) o

and for h < 10 feet,

10
(A + B cos AMW + C cos AMW) e h B3

Vo= 0V e h (B-3)

where

A = 25.3171 ft/sec (15 knots)

B = 12.6585 ft/sec (7.5 knots)

C = 4.2195 ft/sec (2.5 knots)

D = 0.43 )
D numerical data from Ref B-7

E = 0.35)

AMW = angle describing the direction from which the wind is blowing,

radians (indepentent of altitude). Note that AMW is selectable

prior to each simulator run if one wishes to evaluate performance

with known wind conditions.
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VO (AMW = 0 DEG)

L- vo (AMW = 90 DEG)

LANDING

The constants A, B and C are chosen so that at h = 10 feet (approximately

touchdown), the term (A + B cos AMW + C cos 2 AMW) will be representative of the

FAA specification (Ref B-1); i.e., headwinds up to 25 knots, crosswinds up to

15 knots and tailwinds up to 10 knots. The upper limits specified by the FAA

document are assumed to represent the 3-sigma value. Consequently, the term

(A + B cos AMW + C cos2 AMW) is multiplied by V which has a normal distribution
OS

with m = 1/2 and a = 1/6. If, for example, AMW = 0, the term

(A + B cos AMW + C cos2 AMW) V
Os

results in a headwind with a mean of 12.5 knots and 3-sigma values of 0 and 25

knots.

The mean wind, Vmw, at low altitudes, is shown in Figure B-1 for the numeri-

cal data given in Table B-1. The mean wind has the following shear variation:

The last two terms of equation (B-1) contribute mainly to the description of

the mean wind at higher altitudes. Figure B-2 shows the mean wind specification

from Ref B-2. For h < 32,800 feet, the specification represents the 99-percentile

wind shear buildup envelope. For h > 32,800 feet, the specification represents

the 95-percentile design wind speed profile for the eastern test range. Also

B-3

h Shear

(ft) ft/sec/100 ft kt/100 ft

10 39.2 23.2

100 3.92 2.32

300 1.31 0.77
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shown in Figure B-2 is the mean wind described by equation (B-1), using the

numerical values given in Table B-1.

TABLE B-1

NUMERICAL CONSTANTS FOR MEAN WIND CALCULATIONS
PRESENTED IN FIGURES B-1 AND B-2

A = 25.3171 ft/sec

B = 12.6585 ft/sec

C = 4.2195 ft/sec

D = 0.43

E = 0.35

H = 10,000 ft

AMW = 00

= 1/2

= 40,000 ft

= 13,000 ft

= 230 ft/sec

= 1.35 x 10- 8 ft/sec/ft2

V
os

h.

D.

S

S

3. TURBULENT WIND

The turbulent wind model was taken from Ref B-5. The Dryden model is used

with the exception that the scale lengths are held constant for h < 100 feet.

a. Scale Lengths

The scale lengths are defined as follows:

L = L = L = 1750
u v w

L = L = 145 h
1
/
3

u v

, h > 1750 ft

100 < h < 1750 ft

B-6
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L = L = 145 (100)1/3
u v

L =h
w

h < 100 ft

h < 1750 ft

b. Variance

The standard deviation, au , was obtained by approximating the data given

in Figure 8, page 435, of Ref B-5. The approximations are

0 < h < 100 ft

30 = 6.8 ft/sec
u

(B-6)

100 < h < 60,000

3a = -0.720 log1 0 h + 8.240
u1°1'

(B-7)

600,000 < h < 90,000

3a = -27.259 log1 0 h + 135.046
u 1g 

(B-8)

h > 90,000

a =0
u (B-9)

The variances, a0 and a , can be obtained fromv w

a2 02 02
U v w

LL L
u v w

Since L = L , then a = a andu v u v

a = a
w L u

1 00

= 145 (100)1/3 u

h > 100 ft

h < 100 ft

B-7
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c. Simulation

The power spectra densities, ~ (S, for the three turbulent components

(Ug, Vg, Wg) are given in Table B-2. Also, the linear filters, G(s), necessary

to mechanize the gust components are given in the table. For an analoge com-

puter simulation, u would be derived as follows:
g

White Noise G (S)
Generator ug 

For a digital computer simulation, u would be obtained from
g

Random No. K G (Z) u
Generator gn

where the gain 1 E is required because the output of the random number generator

is a discrete signal (Ref B-6). The gain K is defined as

KE=4a2z

where

T = sampling time

a = variance of random number generator
z
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TABLE B-2

SPECTRA AND FILTERS FOR TURBULENT WINDS

B-9

Spectra Filters

a
U

uu z + 

g g V

L

~~~~~~~~~~~~~L:

L 1+3 ( 2 L 1+ v S
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r 2 v 2v 2T 2
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4. CONVERSION OF WIND COMPONENTS TO BODY AXIS

Since the gust components are generated in a local level coordinate system

and the mean wind components are generated in an earth axis system, an interme-

diate step is required to convert the gust components into earth axis. Denoting

the earth axis components as u g
N

v , and w ; and the local level components

as u , v , w , the transformation is
gL gL 

u
gN

v
gE

gD

cos O

sin v

O

0-sin v

cos v o

0 1

u

g

gL

w
_L_

(B-10)

With both gust and mean

wind component is generated

wind components in earth axis, a total earth axis

through a direct addition

u
WN

v
WE

w
WD

u + u
MN gN

v +v
mE gE

w +w
mD gD

(B-11)

where u , v , and w are the total north, east, and down components of wind,
WN wE wD

respectively. Since the wind components are summed into the equations of motion

in body axis, the final transformation required is summarized below, where u
WB

v , and w are body axis components.
WB wB

u
WB

ce So

WvE = (-CASH + COSOSS) (Co
WB

Lww B (SOS + OPCCSO) (-C

where CO = cos 0, SO = sin A, etc.

iC~, + SOSSOs)

COST + COSTSO)

B-10
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co soe

co-co

u

WN

v
WE

w
WD
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