
helMek
a Division of ttxtronl Inc. 12500 Gladstone Ave.,Sylmar, Calif. 91342 / Tel. (213)365-4611 / TWX: 910-496-1488

DEVELOPMENT OF INTEGRAL COVERS ON SOLAR CELLS

CASE FILE
COPY

P. Stella
H. Somberg

Heliotek, a division of Textron Inc.
12500 Gladstone Avenue
Sylmar, California 913*4-2

July 1971

Final Report for Period June 1970 - June 1971
Contract Number NAS5-21510
Technical Monitor: Luther W. Slifer, Jr.
National Aeronautics and Space Administration
Gbddard Space Plight Center
Greenbelt, Maryland 20771



:•'*

88M-ae^-Or9:XWT\ ,i6m!y3,.9vA9noiab6lOOOeS? .onl fmrifxit to noieiviO s

3JJ30 HAJ05 MO 833VOO 10

a .H

noict-xsT lo noiaxvif) B ,
aunevA OO^SX

9nuL - boils'! iort chcoqsH

B .W isrfchAl jiOoinoM XeoinriosT
sosqS Sns aoi JuenoisA

ITT02 iBl^ .cMednssiO



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Development of Integral Covers on Solar Cells

5. Report Dole

July 1971
6. Performing Organization Code

7. Author(s)

P. Stella, H. Somberg
8. Performing Organization Report No.

9. Performing Organization Name and Address

Heliotek, a division of Textron Inc.
12500 Gladstone Avenue
Sylmar, California 913̂ 2

10. Work Unit No.

11. Contract or Grant No.

NASS-23S1Q

12. Sponsoring Agency Name and Address

Goddard Space Flight Center
Greenbelt, Maryland 20771

13. Type of Report and Period Covered

III

June 1970 - June 1971
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The electron-beam technique for evaporating a dielectric material
onto N/P solar cells is investigated. A process has been developed
which will provide a highly transparent, low stress, 2 mil thick
cover capable of withstanding conventional space type qualification
tests including humidity, thermal shock, and thermal,cycling. The
covers have demonstrated the ability to withstand 10 1 MeV
electrons and UV irradiation with minor darkening. Investigation of
the cell AR coating has produced a space qualifiable titanium oxide
coating which will give an additional 6% current output over
similar silicon oxide coated cells when covered by glass.

17. Key Words (Selected by Author(s))

Integral Covers for Silicon Solar
Cells Aluminosilicate Glass
Electron irradiation

18. Distribution Statement

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages

57
22. Price

•For sale by the Clearinghouse for Federal Scientific and Technic. 'iformation, Springfield, Virginia 22151.



SUMMARY

The objective of this contract is to evaluate the electron-beam tech-

nique for evaporating a dielectric shielding material onto N/P solar

cells. The deposited covers are to be optimized for high cell

efficiency and reliability so that they will meet conventional space

type covered solar cell qualification requirements. The program

efforts will examine cleaning processes, coating materials, and the

evaporation process necessary to provide a transparent, low stress,

integral cover capable of surviving space-type environmental quali-

fication testing. This includes humidity, abrasion, U.V. and 1 MeV

electron irradiation, plus thermal shock and cycling. The economical

manufacturability of the process will be demonstrated through the

fabrication of state-of-the-art samples.

During the program efforts TiO was shown to be a more desirable cell
X

anti-reflection coating; satisfying space type qualification require-

ments, and providing approximately 6$ more cell output than SiO AR
X

coated cells when covered by glass cover materials. Integral cover

experiments with #1720 Corning glass showed a deposition rate vari-

ation with substrate temperature and an output power loss for sub-

strate temperatures greater than 300°C. Further, initially poor cover

performance in humidity, thermal shock and cycling, and transmission

tests, were shown to be related to that phase of the evaporation

process in which the dielectric material is premelted. Correction

here provided significant improvement in the cover transmission (com-

parable to conventional glued on platelets), resistance to thermal

shock and cycling, and humidity. Deposited cover stresses were shown

to be dependent upon the electron gun power input to the crucible,

with higher power levels providing reduced cover stresses. Consequently

the evaporation parameters were adjusted to provide minimally stressed

covers. Parameters for providing an optimized cover comparable to

conventional platelet systems in performance and environmental stability

are reported herein.

iii



TABLE OP CONTENTS Page

SUMMARY

TABLE OP CONTENTS iv

LIST OP FIGURES v

LIST OP TABLES vi

•1.0 INTRODUCTION 1

2.0 TECHNICAL DISCUSSION - ^

2.1 SOLAR CELL ANTI REFLECTIVE (AR) COATING 5

2.1.1 Cerium Oxide AR Coatings 7

2.1.2 Titanium Oxide AR Coatings 11

2.2 INTEGRAL COVER INVESTIGATIONS 13

2.2.1 Effects of Substrate Temperature l6

2.2.2 Integral Cover Absorption Vs. Cover Thickness, 21
Cell Resistivity

2.2.3 Source pre-melting and Cover Absorption 25

2.2.1* Cover Stresses 28

2.2-5 Optimized 1720 Glass Cover Summary 35

2.3 ENVIRONMENTAL TESTS 36

2.3.1 Humidity and Thermal Testing 36

2.3.2 Ultraviolet Radiation Degradation 39

2.3.3 1 MeV Electron Radiation Tests ^

2.4 INTREPRETATION OF #1720 GLASS PERFORMANCE ^

2.5 EVAPORATION OF 7070 GIASS AND 1720-7070 GLASS 6̂
MIXTURES

3-0 NEW TECHNOLOGY 5°

U.O CONCLUSIONS 50

5-0 RECOMMENDATIONS 52

iv



LIST OP FIGURES

Figure Title Page

1. SiO AR Coating Transmission Curve I1*

2. Electron Beam Evaporation Apparatus 17

3 Deposited Cover Thickness vs. Cell Substrate Temperature 18

k. Covered Cell Current Change vs. Cell Substrate Temperature 20

5. Cell Short Circuit Current Loss vs. Cover Thickness 22
(2 ohm cm cells)

6. Cell Short Circuit Current Change vs. Cover Thickness 2k
(10 ohm cm cells)

7. Cover Stress vs. Electron Gun Power 30

8. Cover Absorption vs. Electron Beam Power 32

9. Transmission of Optimized 1720 Covers 1.5 Mils 1720 37
Evaporated onto 12 Mils Fused Silica

10. Typical Cells with 1720 Integral Glass 38

11. UV Radiation Degradation to Solar Cells with 2 Mil Thick ^3
Evaporated 1720 Glass Covers

12. Cover Transmission of 1 MeV Electron Exposure 2 Mil Thick ^5
1720 Cover on 12 Mil Thick Fused Quartz

13. Typical Cells with 7070 Integral Glass 9̂



List-of Tables

Table :'.Title Page

I. Theoretical AR Coating Influence 8

II. CeOp AR Coating Performance 10

III. SiO and TiO AR Coating Comparison 15
X x

IV. Pre-melting Influence on Cover Absorption 27

V. Glass Cover Thermal Shock and Cycling Test Results **0

VI. Comparison of Solar Radiation and G.E. GH6 Mercury 2̂
Lamp Radiation

VII. Heavy Metal Analysis of #1720 Glass 7̂

vi



1.0 INTRODUCTION

It is the purpose of this contract to examine the electron-beam tech-

niques for evaporating a dielectric material onto N/P r.olar cells.

The deponJ ted covers will be optimized for high cell efficiency arid

reliability so that they will meet conventional space-type covered

solar cell qualification requirements.

The scope of these efforts has included examination of the cell anti-

reflection coatings and dielectric material deposition parameters,

including cleaning operations, so as to provide a coating system opti-

mized for high cell output. Furthermore, the evaporation process has

been examined with the intent of developing cell covers which will

meet typical space flight qualification requirements for humidity,

thermal shock and cycle, abrasion, and UV and 1 MeV electron

irradiation. The study included examining evaporation parameters

such as substrate temperature, cell and source cleaning procedures,

evaporation and substrate deposition rate, residual atmosphere com-

position and pressure, and dielectric material.

The efforts undertaken during the contract can be most clearly de-

scribed in two phases. The first phase, comprising essentially two

months of effort, was principally devoted to developing and comparing

cell AR coating systems composed of silicon monoxide, titanium oxide,

and cerium oxide. The second phase was devoted to examining the process

of depositing dielectric materials onto N/P solar cells in order to

determine the optimum material and procedure. In each phase electrical

output tests were made on samples with an X25 Spectrosun solar simulator

(except where noted) to determine space-type performance. Furthermore,

environmental tests were conducted in order to demonstrate the covers'

compatibility with typical space-type requirements. A summary of each

phase is presented in this introduction.

PHASE I. Cell Antireflection (AR) Coating Optimization

Theoretical analysis had indicated that with a dielectric interference

coating on silicon solar cells, AR coatings such as Ce00 and TiO
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with refractive indices on the order of 2.2 when placed at the cell-

cover interface should yield a greater cell output than an SiO AR
X

coating with its lower index of 1.85- The results of this investi-

gation showed that indeed both CeO and TiO could be deposited with
C. X

indices of refraction on the order of 2.2. Difficulties with the

CeO coatings in environmental qualification testing, specifically

soft erasible coatings, led to the choice of TiO , which could pass

the boil, eraser rub, and humidity tests, as the optimized AR coating.

Both CeO and TiO AR coated cells showed substantially greater cell
^ X

efficiency, when a glass cover was placed on the cells, than the SiO
X

coated cells. Approximately 6$ more power was available from the

glass covered TiO and CeO cells than from the glass covered SiO
X £-. X

coated cells. This increase was approximately 3$ greater than had

been theoretically determined, and spectral analysis indicated that

the source of the extra increase was due to the greater transparency

of the TiO and CeO AR coatings at shorter wavelengths (less than
X £.

.50 micron).

PHASE II. Integral Cover Evaporation Process Studies

At the beginning of this contract a number of specific problem areas

in the electron beam deposition of dielectrics were identified and

selected for the major emphasis in the development of a potential

flight-qualified integral cover. Of these, excessive optical absorption

in the cover, peeling in humidity qualification tests, and high cover

stresses were felt to warrant the major research emphasis.

The first area investigated was that of the optical absorption. The

effects of substrate temperature, evaporation rate, source preparation,

cover thickness, and residual gas pressure were examined to determine

the effect on cover transmission. The results clearly indicated that

the dominant contribution to the cover absorption was the formation

of a cell surface contamination due to the first step in the deposition

process in which the source material was pre-melted so as to prevent

-2-



subsequent spattering onto the cells. Even though the substrates

were shielded from any line of slight deposition during this stage,

an absorbing surface layer formed. A number of approaches such as

premelting the source in a furnace prior to being placed in the

vacuum chamber, and pre-melting the source in the vacuum chamber

before placing cells in the chamber provided a significant decrease

in the coating absorption. Qualitatively the best evaporated covers

fabricated by this improved process were comparable to conventional

glued-on platelets with respect to transmission (in the wavelength

region UOO mp. to 1200 up), with an estimated maximum optical absorption

of 0.5$ per mil thickness.

As an added benefit of this change in the evaporation procedure, a

marked improvement in the cover's ability to withstand severe humidity

environments (95$ HH, 65°c) and thermal shock and cycling tests was

observed.

Additional studies showed that coating thickness decreased as sub-

strate temperature increased for constant electron beam power levels.

At substrate temperatures above 300°C the cell curve shape degraded.

B<?th of these results indicated that relatively low substrate temper-

atures should be maintained. (Due to thermal radiation from the

crucible, 200°C was the lowest substrate temperature attainable with-

out major modifications of the vacuum system.)

Tlie third problem area, cover stress, was shown to be dependent upon

tfte electron beam power level. Increasing this parameter caused a

reduction in the cover stress and consequently reduced the amount

of cell bowing. 3y tripling the input beam power, a five fold re-

duction in cover stress was achieved. Tests examining different

deposition rates (by altering source-substrate distance) showed that

tne stress change was not due to deposition rate. Preliminary specto-

graphic analysis of the deposited cover showed a composition much
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different than the raw 1720 glass charge (the deposited cover has a

significant reduction in alkalide oxides) and might indicate the

stress reduction is due to a change in evaporated glass composition

produced by the various electron beam power levels in the source.

It is felt that the minimum stress covers are quite compatible with

present day array fabrication techniques and do not incur excessive

stressing in the cell-cover assembly. The results of these studies

led to the determination of parameters necessary for providing an

optimized cover.

The behavior of the optimized cover in additional environmental tests

such as thermal cycle, thermal shock, 1 MeV electron irradiation, and

U.V. irradiation, demonstrates that the deposited cover is comparable

to conventional glue-on covers in the ability to withstand degradation

and of course, the deposited covers will offer the further advantages

of complete cell active area coverage, and reduced fabrication cqqt.

Slight variations in the environmental stability of samples was felt

to be due to problems of scheduling which provided only minimum time

for thorough cleaning of the evaporation equipment. As with all

evaporation processes, system cleanliness must not be minimized and

production capability here will require thorough cleaning. The re-

quirement of low substrate temperature and high electron beam power

both lead to fast deposition rates and at present, it is possible to

deposit 2 mil thick covers in forty minutes using a sample holder

containing 25 cells.

2.0 TECHNICAL DISCUSSION

The efforts undertaken during this contract can best be discussed by

dividing the work into two phases. Phase I, the initial two months, was

principally devoted to developing an anti-reflective (AR) coating for

the silicon solar cell which would optimize the efficiency of the solar

cell-integral cover system. Phase II consisted in examining parameters



of the cover deposition process so as to optimi/.e the cover with

respect to the requirements mentioned in the Introduction (optical

transmission, low stress and environmental survival for example).

Additional efforts during this phase involved the environmental

testing performed to establish the suitability of the covering pro-

cess to space flight requirements. These include humidity, thermal

cycle, thermal shock, U.V. irradiation, and 1 MeV electron irradiation

tests.

2.1 SOLAR CELL ANTIREFLECTIVE (AR) COATING

Based upon the optical properties of silicon and coverglass materials,

earlier studies had shown that an optimum cell antireflecting coating

would need a refractive index somewhat greater than 2.0 and should

have little absorptance in the spectral range from UOO to 1100 mji.

The most commonly used materials for this purpose are silicon oxide

(SiO ), cerium dioxide (CeO ) and titanium oxide (TiO ). The re-
X c. X

fractive index for SiO , the industry standard AR material, is on the

order of 1.85 depending on the method of deposition. For CeO and

TiO , index values in the range 2.0 through 2.k are all possible, de-
x

pending upon the evaporation parameters. The object of the AR study

was to determine what kind of refractive index could be obtained

with the CeO and TiO , decide whether the resultant coatings could
& X

pass space-type qualification tests, and determine what actual solar

cell output current values could be realized.

A brief preliminary analysis was conducted in order to predict the

possible magnitude of current change that could be expected through

the utilization of the high index AR coatings (TiO and CeO ). This
X w

analysis calculated the transmission properties that SiO , TiO and
X X

CeO coatings would provide under air-mass-zero (AMO) sunlight con-

ditions, i.e., extra-terrestrial space sunlight, both for bare cells

and glass covered cells. A refractive index of 1.85 vas assumed for



SiO along with values of 1.50 and 3«^5 for the glass and silicon
Jv

solar cell respectively. Rather than assuming particular values

each for TiO and CeO , calculations were made using indices of
Jv w

2.1 and 2.3, values which could "be expected for either material.

The transmission properties of the cover-AR coating cell structure

were calculated using the following relations:

T = 1 - R (l)

2 2b_ cos a + b-_sin a

2b_ cos a _ bi sin a

with T = transmission at a given wavelength

R = reflection at a given wavelength

V(\-V8 \'(\ ~ -

b = (H +T) )* b, = (1L + "o"£3 o s , ! ^

1\ =refractive index of cover glass

T| = refractive index of AR coating

7] = refractive index of silicon

t = thickness of AR coating = l623°A

"i '
\ = given wavelength

Following this, the transmission at a given wavelength was multiplied

by the amount of incident solar energy in a narrow band centered at

that wavelength. This provided a value for the amount of energy in

a wavelength band which would then be available to the solar cell.

Multiplying this by the spectral response of the cell, at the given

wavelength, then provided the ambunt of cell generated energy in a
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narrow bandwidth surrounding the given wavelength. By dividing the

spectral region from UOO ran to 1250 mji into a continuous series of

50 m(i wide bands and by calculating the solar cell generated energy

produced in the bands (according to the above method) a simple sum-

mation yielded the total energy theoretically produced by the solar

cell under AMD conditions. The relative output values for the various

configurations are summarized in Table 1. These values served not

only as an indication of the possible cell current change which could

be expected through the use of optimized refractive index coatings,

but also served as initial guidelines in evaluating the performance

of the experimental coatings deposited on actual cells.

2.1.1 Cerium Oxide AR Coatings

The first material examined was CeO . Samples were prepared by de-

positing the CeO by a resistance-heating technique. The effects of

the following process variables were examined:

1. Cell substrate temperature: 200°C r*~ 400°C

2. 0 pressure: ~10~ *- 8 x 10~ torr

3- Glow discharge: none, before, and after coating.

4. Source materials:

(a) Vendor: Balzers and Sylvania

(b) Pre-evaporation bake-out at 1055°C
- to remove any water vapor, no bake out

5. Post coating treatment:

(a) Sintering in Ê  at 605°C

(b) Bake-out in air at 250°C

(c) None

The cells obtained from the application of the above variable matrix

were all subjected to a number of tests examining cell output and

environmental capability. In no instances were consistently hard CeO

coatings obtainable, i.e., the standard AR coating erasure test con-



TABLE I

THEORETICAL AR COATING INFLUENCE ON SOLAR CELL PERFORMANCE

AR Coating
Reflective Index

1.85(SiOx)

2.1

2.3

Relative Short Circuit Current (AMO)
Bare cell

1.000

0.991

0.967

cell with glass cover

1.000

1.025

1.030
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sisting of 20 rubs across the surface with an eraser applied at 2

pounds downward force could remove the coating to some degree. The

most consistently hard coatings of CeCL were obtained using para-
-4meters of 300°C substrate temperature, 5x10 0 pressure, and no

glow discharge. These samples received the most extensive measure-

ments of cell output and coating optical parameters.

Examination of glass witnesses in a Beckman DK-2A spectrophotometer

showed that the deposited CeO coating's refractive index was on the

order of 2.2. However, not all witnesses had measurable refractive

index values due to AR coating inhomogeneity. Rather than behaving

as a single quarter wave thickness, the deposited material behaved

similar to a multilayer coating, consisting of extremely thin layers

with slightly differing refractive indices. This was due to fluc-

tuations in the evaporation rate of the source during the deposition

process. For samples with inhomogenous coatings, no accurate re-

fractive index measurement could be obtained.

Electrical measurements on all coated cells did show, however, the

expected change; i.e., whereas typically an SiO AR coated cell will
X

maintain or decrease slightly its I (short circuit current) upon being
sc

covered with a coverglass, the CeOp AR coated cell exhibited average

increases of 3«1$ (the average I of a group of 2k cells increased
SC

from lUl.l mA to 1̂ 5•5 mA upon covering with glass - see Table II).

In these tests, differences in the transmission properties of individual

glass platelets were eliminated by using the same cover on each cell.

This procedure is accomplished by using an uncured adhesive layer

between the cell and platelet. In this way the platelet can be re-

moved from the cell after testing, and placed on another cell with

adhesive (uncured). The refractive index of the uncured adhesive is

close to its cured value of l.U and prevents the occurrence of any

large reflection losses that would occur if an air gap existed between

the cell and the glass. This same technique was applied throughout

-9-



CELL NUMBER
SHORT CIRCUIT CURRENT

BARE
SHORT CIRCUIT CURRENT

COVERED (GLUE-ON PLATELET)

i
2

3
U

5
6

7
8

9
10
11
12

13
Ik

15
16

17
18

19
20
21

22

23

143-5 mA

11(6.5

11(8.2

25
Average

Table II

AR Coating Performance
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the AR coating testing programs -whenever the effect of a coating on

electrical properties was required. It provides accurate electrical

output values that would be equivalent to a cured flight-ready

platelet-cell system with the advantage of allowing for the recovery

of the cell-AR coating for other tests.

The CeOp AR coating study did indicate that a significant cell effi-

ciency increase could be affected through the use of the higher index

material. However, due to the relative softness of the particular

coating, efforts at hardening it were delayed so as to examine the

TiO system and determine its merits.
x

2.1.2 Titanium Oxide AR Coatings

In contrast to the CeO coatings, the TiO coatings readily satisfied
^ ' .X

the environmental requirements for space qualifiable coatings. In

particular, after a parameter test sequence similar to that for CeO

the following deposition parameters:

Substrate temperature 200°C + 20°C
-IT0 pressure 5x10 torr

Evaporation rate ~500A/min

Source material TiO

provided coatings which satisfied the following specifications:

humidity 65°C, 95% RH, for one
month

boil in HO 1/2 hour

abrasion 20 rubs across surface
with 2 Ibs. downward force

Optically, refractive indices on the order of 2.1 were measured with

less than 0.5$ absorptance (measurement accuracy) in the region from

mn to 1200 mn.
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The cell electrical output performance measurements consisted of

two sequences. In the first, approximately 200 N/P cells were ob-

tained from Heliotek production line prior.to the AR coating pro-

cess and randomly separated in two groups; one for TiO AR coatings

and one for SiO coatings. The SiO cells were coated using the con-
X Jt

ventional production process and the TiO cells were coated using
JL

the process described above. Comparison of bare cell outputs at

28°C, AMO conditions showed the average output of the TiO cells
JC

to be 1«5$ higher than the SiO cell average. When covered by
X

placing adhesive and a 12 mil glass cover on the cells (as described

in Section 2.1.1), the short circuit current (I ) of the SiO coated
SC X

cells decreased on the average by 1.3$ while the I of the TiO
SC X

coated cells increased by 3-3$« Consequently the glass covered TiO
X

coated cells showed a 6.2$ higher output than similarly covered SiO
X

coated solar cells from the same population of cells. (See Table III.)

Since solar cell outputs within a group will possess some distrib-

ution, it would be necessary to use prohibitively large samples for

determining confidently the output effects of various parameters.

To avoid this, the second series of tests was designed and conducted

so that identical individual cells would be measured both with SiO
x

and TiO AR coatings. This necessitated the removal of one AR coating
A.

and the subsequent deposition of the other coating. In order to ac-

count for any AR coating removal degradations that might have been

biased towards one coating system, the cells were divided into two

groups (approximately 20 cells each) which were processed through the

following coating sequences:

GROUP I SiO rem°V^ TiO rem°Ve. SiO
X X X

GROUP II TiO rem°V! SiO rem°V* TiO
X X X

-12-



It was felt that this procedure would identify and account for any

cell output degradations due to coating removal. These results

showed that on the average each bare cell would produce 1.?$ greater

power with a TiO coating, and when glass covered, 6.0̂  greater power
X

with a TiO coating than with an SiO AR coating. (See Table III.)
X X

This is in agreement with the previous tests on the two 100 cell groups.

Recalling the theoretical calculations in Section 2.1 above which con-

cluded that bare TiO cells should be lower in output than SiO cells
X """""""""""" X

(experimentally they were not) and when covered with glass should be

approximately 3% higher than the SiO cells, these above listed
X

empirical values indicate a discrepancy which appears to be due to

a characteristic optical absorption in SiO films at short wavelengths.
X

. Transmission curve measurements of coatings on glass witnesses indeed

do exhibit absorption at wavelengths below 500 mp. in varying amounts

for the conventional SiO AR films (Figure l). The increased perform-
X

ance of the covered TiO coated cells then is due to both the better
X

refractive index match and the nonabsorbing film characteristics.

These experiments showed that TiO AR coatings can be applied to

silicon solar cells in such a manner that they could pass typical

space type AR coating qualification tests and also provide a substantial

increase in power (approximately 6% when covered) over similar SiO AR

coated cells.

The strong environmental and electrical performance capabilities of

the TiO AR coatings lead to its selection as a state-of-the-art
X

optimized coating for the coverglass-cell system. No further efforts

were expended on the CeO coatings inasmuch as no clear benefit over

TiO appeared to be evident.

2.2 INTEGRAL COVER INVESTIGATIONS

During this program Corning glass #1720 was utilized in the majority

of the cover evaporation tests. This aluminosilicate glass had proven

-13-
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COATING
NUMBER OF
CELLS

AVERAGE SHORT
CIRCUIT CURRENT

BARE CELL'S GLUE-ON PLATELET CURRENT
COVERED CELLS CHANGE

SiO

TiO

96 134.7

136.T

132.9

lU-1.2

-1.2

3-3

Comparison of SiO and TiO Coated Cells
1 — x x

AVERAGE I BARE (mA)sc x '

Cell Group #1 (ik- cells)

COATING

SiO
a

TiO
Jl

SiO

138.7

136.0

AVERAGE I COVERED (mA)
sc x '

139.3

114-2.5

137-0

CURRENT CHANGE

-0.7

+2.7

+0.7

Cell Group #2 (23 cells)

COATING

TiO
>

SiO
a

TiO

AVERAGE I BARE (mA)
sc

137-3

133-0
136.8

AVERAGE I COVERED (mA)
sc v

llH.5

129.0

139.6

CURRENT CHANGE

+3-1

-3-0

+2.3

Comparison of SiO and TiO Coatings on Same Cells
-A. X

Table III

SiO and TiO AR Coating Comparison
X X

(refer to text for test description)
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to be the most promising during Heliotek's earlier survey work and

consequently was employed as a base line system for this contract.

However, some work was also conducted with #7070 Borosilicate glass

and 7070-1720 mixtures.

The first experimental tests conducted examined the effect of sub-

strate temperature during the evaporation process. Although the sub- '

strate temperature could conceivably affect any of the three major

problem areas, the specific task was to determine at what temperature

cell degradation might occur (electrical) and what qualitative cover

effects could be observed. As will be shown below, this test sequence

led directly into the examination of cover absorption. The electron

beam evaporation equipment is shown in Figure 2.

2.2.1 Effects of Substrate Temperature

In examining the effect of substrate temperature on the integral cover,

the following deposition parameters were maintained for all tests:

Source to substrate distance 16 inches

Heating source Quartz infrared lamp

E Gun Current, Voltage 100 mA, 6K volts

Chamber pressure 2 x 10 torr

Evaporation Time 1' hour

These tests indicated that varying the substrate temperature from a

low of 200°C to a high of ljOO°C had no observable effect on the inte-

gral covers' adherence or environmental stability. All substrate

temperature values provided good adhering covers which were stable

at ambient storage conditions for periods of at least one month. Yet,

all sample covers could be peeled off after a half-day exposure at

high temperature, high humidity conditions typical of cell space-type

qualification tests (65°C, 95$ R.H.).

In contrast, a quite pronounced relation between substrate temperature

and coating thickness was identified as is evident in Figure 3- The

slight flattening in the curve between 200°C and 300°C might be real,

-16-



Figure 2 Electron Beam Evaporation Apparatus
.
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indicating some sort of threshold region at 250°C. Such behavior

could be understood in terms of the sticking coefficient. In view

of the relatively low melting point of the glass (approximately

H90°C compared to greater than 1500°C for most common evaporated

materials) and the 200-1»Q00C substrate temperatures, it is quite

reasonable to expect that a significant number of impinging parti-

cles could retain sufficient energy to be re-emitted. It would be

expected that quite different behavior would occur at substrate tem-

peratures substantially lower. However, limitations in the present

evaporation system prohibit obtaining substrate temperatures below

200°C. The strong relationship observed does indicate the require-

ment of maintaining temperature stability during evaporation runs,

if only to obtain predictable coating thicknesses. Similar testing

conducted by Heliotek under Wright-Patterson Contract F33615-70-C-

1619 has also shown this same behavior, although curve flattening

begins at 300°C. In both series of tests a curve slope of 0.2 mil

per 100°C is observed. The samples obtained in the above described

tests were then measured electrically and compared to the uncovered

cells' electrical values.

In Figure U the rectangular data points show the cell short circuit

current change as a function of substrate temperature. The spread

in data does not directly indicate any specific relationship other

than that which might be expected to be associated with the different

cover thicknesses.

Also plotted in Figure k- is the cell current change (uncovered to

covered) at load (hk^ mV) as a function of substrate temperature

(ovals). Here, again, scatter in the data pattern is observed due

to the associated thickness change explained earlier. If the out-

put changes are merely a matter of coating absorption, then the short

circuit and load current changes would all exhibit the same percent-

age changes versus substrate temperature (as related to coating

thickness). For substrate temperatures less than 300°C, this is
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evidently so; however, at 300°C and above the load current exhibits

significantly greater losses than the short circuit current indi-

cating cell degradation due to possible shunting. For this reason

all subsequent evaporations will keep the substrate temperature below

300°C during the coating de-sposition.

2.2.2 Integral Cover Absorption Versus Cover Thickness, Cell Resistivity

Following up the substrate temperature study, a sequence of tests was

conducted in which various integral cover thicknesses were obtained

by varying the deposition time, and not, as done previously, by

varying the substrate temperature. This eliminates any possible sub-

strate temperature-induced absorption effects. Due to the obser-

vation in the previous experiments that high substrate temperatures

(̂ 300°c) were related to unusually high load point current losses,

the substrate temperature was maintained at 250°C for all tests in

this new series of experiments. The deposited cover thickness ranged

from 0.2 mils to 2.0 mils.

The results of the first sequence of tests are shown in Figure 5

where the short circuit current losses are presented as a function

of coating thickness. For a cover system, the short circuit loss

will depend on the glass absorption (a function of cover thickness),

and reflection losses (thickness independent). Consequently, sub-

tracting the constant amount of 6.2% from the losses presented in

Figure 5 leaves what would be expected as the glass absorption con-

tribution to the total short circuit current loss. Assuming an

absorption of the form I (l-e ) where I J.s the incident intensity,

A is the cover absorption constant, and t is the cover thickness,

the slope of the short circuit current loss is then identified with

the absorption coefficient for the glass. This value, as determined

from Figure 5, is 0.5$ absorption per one mil of coating thickness.

Consequently, a 6 mil cover might be expected to exhibit 2% more

short circuit current loss (absorption) than a 2 mil cover.
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This interpretation, although consistent with the known short circuit

current loss mechanisms, does introduce an extremely large constant

loss value of 6.2$. It has already been shown that theoretical consider-

ations indicate that because of the SiO cell AR coating refractive index
Jt

mismatch, and because of the lack of a cover front surface AR coating, it

would be reasonable to expect a thickness independent current drop of

3 to tyjo when covering. The observed 6.2$ drop requires some other loss

mechanism (other than surface reflection) to be present, and it must

also be thickness independent. The most likely possibility postulated

was absorption at either the cell surface or cover surface due to some

contamination during the deposition process. This theory was consequently

investigated and the source of this loss was determined and is discussed

in Section 2.2.3.

Again, recalling the current losses observed in the substrate temperature

experiments discussed previously, the average short circuit current loss

observed for 10 ohm-cm cells ranged from 3»0$ "to 5-3$ for cover thicknesses

up to 0.9 mils. In contrast -the average loss values observed during the

thickness effect tests, which were conducted on 2 ohm-cm cells entirely,

varied from 6.2$ to ?•!$• The increase in current losses posed a serious

question as to a possible cause, without, however, any apparent signifi-

cant changes in the deposition process or materials. Comparison of the

loss distribution for individual covered cells showed that not only were

2 ohm-cm cells exhibiting greater losses on the average, but that the

maximum and minimum current losses exhibited by the 2 ohm-cm group ran

higher than the 10 ohm-cm cells maximum and minimum losses in all com-

parable cases (i.e., similar cover thicknesses). Consequently the

absorption versus cover thickness sequence of experiments was repeated,

this time employing 10 ohm-cm cells.

In Figure 6, the short circuit current loss versus cover thickness is

presented for the tests on 10 ohm-cm cells. By comparing Figure 6 with

Figure 5 it is apparent that at any given cover thickness the average
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current loss in 10 ohm-cm cells is less than in 2 ohm-cm cells. In

fact, by examining the distribution of all 10 ohm-cm cell losses

observed during all tests (substrate temperature, thickness, etc.)

and of all 2 ohm-cm cell losses observed, the 10 ohm-cm distribution

exhibits a maximum loss, a minimum loss, and an average loss of

1-1/2 to 2% smaller than the corresponding 2 ohm-cm cell losses.

Clearly there exists a current loss mechanism dependent in some manner

on the cell resistivity. An examination of the manufacturing process

for each cell resistivity shows only a few subtle differences in

cleaning procedure plus the principle difference of material

dopant levels. Brief tests comparing the spectral response of 2

and 10 ohm-cm cells did not show any major differences which would

explain the differences in short circuit current losses. It is

possible that a comprehensive sequence of spectral response tests

could provide sufficient data for explaining the difference behavior;

however, such a task is well beyond this program's scope.

2.2.3 Source pre-melting and Cover Absorption

An examination of the coating process indicated that the most likely

occurrence of surface contamination would be during the source pre-

melting stage. This is a process step whereby the ground glass is

heated with the electron beam until it has been melted down to a

molten charge in order to drive off volatiles that make the glass

spatter. During the pre-melting process a shutter is closed between

the source crucible and sample substrates to prevent spatter from

impinging upon the cells. The cells are not, however, shielded to

the extent that they would be isolated from escaping gases and/or

glass material from secondary scattering. In order to examine the

effect of the pre-melting stage on cell performance, a number of

cells were tested by subjecting them to the glass evaporation pro-

cedure up to and including the pre-melting step and then terminating

.the process. These cells were subsequently measured to determine if

any short circuit current losses did in fact occur during the process
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step. Using six solar cells in two pre-melting tests, an average

current loss of 5.1$ + 1.3$ was measured. This value was quite a

significant loss and was very close to the high and unaccounted for,

thickness-independent loss observed earlier. See Table IV, experiment A.

This particular test was conducted prior to the observation that different

amounts of current loss could occur for 2 ohm-cm and 10 ohm-cm cells.

Consequently the 5.1$ loss is only for 2 ohm-cm cells. With the possi-

bility existing that since pre-evaporation losses were the major loss

source for the cells, pre-melting could also manifest different losses

for 2 ohm-cm and 10 ohm-cm cells, a pre-melting test was conducted

using cells of both resistivities.

The results of this test showed a clear difference in cell losses,

with the 10 ohm-cm cells experiencing an average 5«5$ current loss

and the 2 ohm-cm cells an average loss of 6.8$. This 1.3$ loss

difference between the two compares well to the 1.5$ to 2.0$ dif-

ference in total covered cell current loss observed between the

total lot of 2 ohm-cm and 10 ohm-cm cells. (See the preceding

Section 2.2.2.) See Table IV, experiment B.

The ensuing series of tests then consisted of depositing a cover on

cells without exposing them to any pre-melting step. In the first

approach, the crushed glass charge was pre-melted in a furnace set at

1055°C (Np atmosphere). Thus when the evaporation procedures were

initiated on test cells, evaporation of the source began immediately

after pump down. For a run consisting only of 2 ohm-cm cells an

average current loss of 5-3$ was measured (6 cells). Although still

relatively high, it was approximately 1 to 2$ less loss than had

been observed in the previous covered 2 ohm-cm cell tests. See Table

TV, experiment C.

A second test series tried a different approach at avoiding the pre-

melting loss by reusing a charge from a previous evaporation. In

the first run which was conducted with the normal pre-melting phase,

2 ohm-cm and 10 ohm-cm cells lost an average I of 7-2$ and 5«1$
sc
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A. Effect of Fre-melting exposure (six 2 ohm-cm cells)

Average cell Isc
before pre-melt

Average I after^ sc
pre-melt exposure -

no cover

Average I
sc

change (percent)

Standard

deviation

137.lt mA 130 A mA -5-1$

B. Comparing pre-melting effect on 2 ohm-cm and 10 ohm-cm cells

Type

2 ohm- cm

10 ohm- cm

Quantity

3

3

Average Isc
before pre-melt

135.9 mA

137.1

Average Isc
after pre-melt

126.7 mA
129.6

Average I
SC

change

-6.856

-5-5$

Standard

deviation

+0.2$

±0.6$

C. Fused source experiment (six 2 ohm-cm cells)

Average I
before covering

138.0 mA

Average I^ sc
after covering

130.7 mA

Average I

change

Standard

deviation

+0.6$

D. Single charge - Double evaporation experiment

With pre-melting
Cell

Type

2 ohm-cm

10 ohm-cm

Second evaporst ion 2 ohm-cm
No pre-melting 10 ohm-cm

Qty Average ^c
before covering

2

3
3
2

13*. 8 mA
138.2
13*. 0 mA

137-5

Average Isc
after covering

125.1 mA

131.1
126.1 mA

133.2

Average

I change

-7.2$
-5-1
-5-9$
-3-1

Deviatii

+0.2$

±o.k
+1.6$

±0.5

Table IV

Pre-melting Influence on Cover

Absorption - Four Experiments
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respectively. Replacing those' test cells with new cells and again

evaporating the same source (no pre-melting) both 2 ohm-cm and 10

ohm-cm cell groups exhibited reduced I losses of 5-9$ and 3.1$
sc

respectively. See Table IV, experiment D.

Although insufficient time was available for an in-depth examination

of the actual degradation process and its peculiar resistivity-

dependent behavior, a number of observations are readily available.

First, the loss difference between 2 ohm-cm and 10 ohm-cm cells

appears to occur during the pre-melting phase. This finding could

relate to the different material dopant levels or different cleaning

procedures for the two resistivities. Second, the loss value for the

best 10 ohm-cm cells, at 3-2$, is equal to the loss that would "be ex-

pected by a platelet system with no MgF AR coating, i.e., essentially

no optical absorption; just front surface reflection.

Consequently, preliminary efforts at avoiding a pre-melting stage in

which the cells are subject to exposure has significantly reduced

the cover absorption. In fact, examination of Figures 5 and 6 which

show the I loss versus cover thickness for 2 ohm-cm and 10 ohm-cmsc
cells, respectively, indicate the elimination of the pre-evaporation

loss mechanism leaves a cover system with, at most, 0-5$ absorption

per mil thickness.

2.2.k Cover Stresses

Two techniques have presently been utilized in measuring cover stresses.

Both require the measurement of the amount of bending a substrate-

cover system exhibits after, the glass deposition. The bending is then

related to the stresses in the cover glass by one of the following

relations .

(l) Chopra, Kasturi L. "Thin Film Phenomena" McGraw-Hill, New York,
1969
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"FT)
S = 5 used when t < D (l)

S = aED2 fl + f£ ) (2)

where
S = film stress

D = substrate thickness

t = coating thickness
11 2

E = Young's moduli of substrate » 6.1 x 10 dynes/cm for quartz
in Q

9-5 x 10 dynes/cm for silicon

v = Poissons ratio for substrate « 0.25

L = free length of substrate

a = deflection of the substrate

r = radius of curvature of bent substrate
e = Young's modulus of glass deposit «8.9 x 10 dynes/cm

For slightly bent substrates, equation (2) is employed; however, for

severely bent substrates it is much easier to measure the radius of

curvature and use equation (l).

Typically, glass witnesses 1.5 to 6.0 mils thick have been employed

for test substrates.

Preliminary experiments had indicated that the stresses in the de-

posited glass covers were related to the electron beam power level,

and that higher power levels produced lower stressed covers. At the

same time, it appeared that covers produced with high power levels

also exhibited high absorption (approximately 20$). Figure 7 plots

cover stress versus electron beam power level. Clearly cover stresses

have been reduced by increasing the beam power.

Defining a safe maximum stress level is a difficult procedure requiring

considerable knowledge of the material properties and environmental

conditions which will be experienced by the integral cover-solar cell
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system. Consequently Heliotek attempted to incorporate all techni-

ques for minimizing the cover stress without incurring any signi-

ficant loss in given environmental stability and transmission. As a

reference position, all covers fabricated previous to this study

phase have used an electron beam setting of 100 mA and 6.2 kV. This

was found to correspond to a stress level of approximately 1.4 x 10
O

dynes/cm . These covers have shown the ability to withstand severe

thermal shock and cycling tests, and high humidity exposures without

damage or degradation. Such a stress level has not been found to be

detrimental to the cover-cell system. Consequently by utilizing beam

power levels necessary to give cover stresses on the order of
8 2

U x 10 dynes/cm a safety factor of 3 is obtained. A possible ex-

planation for the stress versus beam power level dependence is dis-

cussed in Section 2.̂ .

A second set of data obtained in the stress versus power level experi-

ments is the cover absorption versus power values exhibited in Figure 8.

Although there appears to be a slightly greater amount of absorption

with the higher power level covers, it is not so significant as the

amounts observed in the preliminary experiments which indicated losses

on the order of 20$. The absorption values plotted are obtained by

measuring the solar cell short circuit current loss when the cover

is deposited. A constant loss of 3$ is subtracted from the current

loss values to account for first surface cover reflection and cell

AR coating mismatch (inasmuch as these cells were coated with SiO ).
n

Consequently, the remaining current loss should be equivalent to the

cover absorption.-

The data in Figure 8 does indicate some increase in absorption for

high power levels. However, a number of power level independent

possibilities exist which can affect absorption enough to explain

the small losses observed in Figure 8. One absorption source is
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associated' with the proximity of the substrate to the source. It is

felt that stray electrons can impinge upon the substrate-glass samples

possibly producing low energy defects and causing the deposit to have

a brown coloring. This is evident from a number of tests wherein fixed

evaporation parameters of 200 mA at 6.2 kv were used. Samples at 6 inches

source-to-substrate distance exhibited 10-12$ short curcuit current loss

and samples at 11 inches exhibited 5-6$ short circuit current loss (in-

cluding glass reflection losses in both cases). Furthermore, the pre-

liminary tests which exhibited near 20$ loss were conducted at approxi-

mately 6 inches source-substrate distance. Consequently, the larger

distances are desirable. Of course, more source material and evaporation

time is required to offset the inverse square loss.

A second loss mechanism appears to lie in the contamination of the lower

levels of the source material, possibly due to glass falling back into

the crucible from regions of the bell jar interior. The evidence for

this phenomenon arises from tests using fixed source to substrate dis-

tances and fixed electron gun parameters. Generally, all evaporations

taking some time duration "t" or less will exhibit 5$ short circuit

current loss, whereas a slight lengthening of the evaporation time will

be marked by significantly higher current losses. The threshold time

appears to correspond to a utilization of approximately 70$ of the source

material. In these situations, up to 100$ greater cover absorption can

be obtained by evaporating only 12$ longer. Consequently, the absorption

doesn't appear to be related to cover thickness, but rather is related to

the amount (percentage) of source material used. It is felt that either

through the use of crucible reloaders, larger crucibles, or multiple

crucibles, longer evaporation times can be obtained without contaminating

the covers.

A third possibility also exists for affecting cover absorption. This is

cleanliness of the bell jar interior. With the work schedule imposed

by the contract tasks, the length of time to completely clean the bell
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jar interior of glass deposits' prohibited cleaning between each

evaporation. Experience indicated that two cleanings per week were

sufficient in preventing any gross contamination of the cover

system. It is not impossible, however, that in some instances a

small amount of contamination might occur.

This problem is compounded by the use of TiO AR coatings. TiO has
X X

clearly been shown to enhance the covered solar cells output current.

However, due to scheduling it is necessary to perform the TiO AR
X

coating in the same chamber in which the glass cover is deposited.

During the preparation of state-of-the-art sample cells, it was

observed that cells covered after the chamber had been utilized for

TiO AR coating showed particularly large current losses. Further
X

tests do indicate the TiO provides a major contaminant source for
X

the cover process and unless sufficient time is allowed for cleaning,

AR coating and glass covering must be accomplished in separate systems.

Consequently, all present loss mechanisms, since they appear predict-

ably in relation to the situations mentioned above, should be con-

sidered matters of equipment design and scheduling. It is important

to realize that the best covered cells compared favorably to conven-

tional platelet covered cells in transmission, and environmental

testing (see Section 2.3).

The efforts aimed at reducing cover stresses have provided a cover

system with an acceptable low stress. Initial thermal and humidity
9 2tests showed that the high stress covers (1.4 x 10 dynes/cm ) could

withstand typical space-type requirements. The low stress cells

(typically having a third to a fourth the stress of the high stress

covers) have performed as well in these tests and would be expected

to have a greater margin of stability because of the lover stresses.
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2.2.5 OPTIMIZED 1720 GLASS COVER SUMMARY

With the completion of the work on minimizing cover stresses, a

cover system exhibiting high transmission, humidity stability, and

low stress has been produced. High evaporation rate samples have

low stresses and high transmission and have shown the ability to

withstand humidity and thermal shock environments in preliminary

tests (environmental test results are in following sections). The

major process parameters of the optimized 1720 glass integral cover

system are summarized below.

A. AR Coating.- TiO has provided the highest output cells with
A

integral covers. In order to facilitate coating reproducibility

the electron gun technique is being utilized for evaporations

rather than the resistance heating method used earlier in this

contract.

B. Dielectric Cover.- The evaporated 1720 glass has exhibited an

excellent combination of humidity and thermal shock and cycle

endurance along with good transparency and low cover stresses.

The following evaporation parameters have been determined to be

near optimum and will be used for fabricating covers for further

environmental testing.

Substrate Temperature 200°C - 275°C

Source to Substrate Distance ll"

Electron Gun Power 225 " 275 mA. at 6.2 kvolts
-5 -kBell Jar Pressure 2 x 10 to 5 x 10 torr

Evaporation Time Approximately 35 minutes for
2 mil thickness.

The source to substrate distance and electron gun power level were

chosen to minimize the cover darkening mechanisms described earlier,
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provide a constrollable and repeatable evaporation rate, and allow a

reasonably short evaporation time for attaining 2 mil thick covers.

The cleanliness requirements of the deposition process unfortunately

prohibit the use of a one-step AE coating-glass cover deposition pro-

cedure. It has been found necessary to thoroughly clean the interior

of the bell jar between AR coating depositions and glass cover de-

positions to prevent excessive cover absorption (approximately 6-10$).

Consequently, a two-step evaporation is utilized. A transmission

curve for a typical optimized 1720 cover evaporated onto a blue-filtered

12 mil thick quartz substrate is shown in Figure 9« No AR coating has

been applied to the cover's top surface or witness1 rear surface. Such

coatings would provide approximately k$> increase in transmission. A

typical platelet with blue reflecting filter and AR coating is presented

for comparison. Typical cells with optimized 1720 evaporated covers are

shown in Figure 10.

2.3 ENVIROBffiNTAL TESTS

2,3.1 Humidity and Thermal Testing

A beneficial side-effect of the investigation of pre-melting and cover

absorption was the improvement in the cover's ability to withstand

high humidity, thermal shock, and thermal cycle environments. Through-

out the entire testing period a few cells from each test group (sub-

strate temperature tests, cover thickness tests, etc.) have been placed

in a humidity chamber set at 95$ RH, 65°C conditions. The solving of

humidity problems is one of the program's major goals and, consequently,

and improvements made here would provide the basis for a series of

experiments designed to solve the humidity problem.

Typically for all systems in which cells were exposed to a pre-melting

step four to six hours of exposure in the severe humidity environment

caused peeling of 80$ to 100$ of the cover. The examination of dif-

ferent cell substrate temperatures, cover thicknesses, cell resisti-

vities, and AR coatings, all proved to have no significant impact
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Figure 10. Typical Cells with 1720 Integral Glass
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on the cover's humidity resistance. In sharp contrast, cells that

have been covered without exposure to the pre-melting step have ex-

hibited marked improvement in humidity resistance as described below.

Cell covers were 2 mils thick with the exposed contact regions covered

with solder. These samples are representative of the cells submitted

to Goddard as state-of-the-art items and include TiO AR coatings.
A.

Of five cells tested for a period of one month, two have exhibited no

visible peeling or other cosmetic changes, and three have exhibited

approximately 5$ peeling. These samples are significantly more

humidity resistant than samples prepared at the beginning of this con-

tract. For the peeled cells, all cover loss occurred during the first

week of exposure.

It is felt that the slight peeling (5$) was due to incomplete system cleaning

prior to evaporation. The sensitivity to the pre-melting exposure

points out the requirement for clean cell surfaces and contamination

free vacuum systems in order to provide good integral covers.

The second environmental aspect examined was thermal shock-thermal

cycle behavior. This test used covered cells both from groups which

had experienced pre-melt exposure and groups without pre-melt exposure.

The cells were subjected to a number of test sequences, with the low

temperature limit of -196°C provided by immersion in LN,.,. As sum-

marized in Table V , the cells not exposed to pre-melting showed up

substantially better than the cells subjected to pre-melting con-

tamination.

2.3.9 Ultraviolet Radiation Degradation

Experiments conducted at Heliotek indicate that evaporated 1720

covers are not significantly degraded by ultraviolet radiation.

-39- •



TABLE V

Glass Cover Thermal Shock and Cycling Test Results

Number of Cells
in Test

1+

2

Test Conditions

Evaporation
Conditions

Pre-melt exposure

No pre-melt ex-
posure; source
melted in furnace

;

!

;

2

Number of
Cycles

25

25

25

25

25

No pre-melting 25
exposure; source
premelted in
vacuum chamber

25
25

without cells ;

Temperature
Range

-195 °c — ~ 100 °c

-195°C - — 100 °C

-i95°c ~— ioo°c

-I95°c —̂  250°c

Test Observations

All cells show 25$
to 35$ cover peeling.

Slight peeling
(~ 556)

Increased peeling
(~ 10$)

No further change

-195 °c — *• 300 °c

-195 °c ~~~ 100 °c
-195°C — *• 200°C

-195 °C — - 250°C
-195°C -.— • 300 °c

No further change

No measurable
peeling
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In these experiments an ellipsoidal Shannon luminescence reflector,

with a 1000 watt mercury arc was used to radiate samples in air.

The G.E. BH6 quartz bulb lamp was air cooled while the samples were

cooled to 30°C by mounting them on a water cooled aluminum block.

Measurements were taken of the covered cell assemblies with a model

1206 Spectrosun solar simulator. In these measurements the short

circuit current was recorded.

The sample radiation dosage can be estimated by computing the total

incident power for various bandwidths, comparing these with the cor-

responding power for the Johnson curve and then multiplying by the

total exposure time.

These lamp-Johnson curve comparisons are exhibited in Table VI

where \ indicates the high end of the included band. The lower
IJld J\.

limits can be taken as approximately 0.25 microns for all.

All covers consisted of 0.002 inch evaporated #1720 glass. Figure 11

exhibits the resulting degradation for samples versus lamp exposure

time. The asymptotic degradation for the samples was approximately

1.h% in short circuit current which is comparable to glue-on platelet

systems.

2.3-5 1 MEV Electron Radiation Tests

The purpose of conducting electron radiation tests on integral cover-

slips was to establish what effect this environment would have on the

optical transmission (i.e. darkening or absorption). A high voltage

Van de Graaff generator was used to produce the 1 MEV electrons and a

Faraday cup to count and integrate the electron flux. The solar cells

and coverslip samples were mounted on a rotating wheel behind a shield

which had a cut-out portion upon.which the electron beam was focused.
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Max

(Microns)

0.1*5

0.1*0

0.32

Solar
Energy

/ 2raw/ cm
(Johnson)

22

12

4

Lamp Radiant
Energy at

Specimen Position
mw/cm

220

158

7*

Equivalent
Sun
AMO

10

13

19

COMPARISON OF SOLAR RADIATION AND

G.E. BH6 MERCURY LAMP RADIATION

TABLE VI
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As the samples rotated into the cut-out, each received its radiation

dosage and subsequent shielding while each of the other samples were

irradiated. The samples were mounted on a copper heat sink so that

a test temperature of ~30°C was maintained.

The samples consisted of glass covers, 2 mils in thickness, evaporated on-

to 6 mil thick blue-filtered quartz platelets. Transmission curves were

obtained for all samples prior to irradiation. These samples were sub-
1kjected to 10 1 MeV electrons, after which transmission curves were ob-

14tained. Following this, an additional exposure to 9x10 1 MeV electrons

was performed followed by a third series of transmission measurements.

After 10 1 MeV electrons, approximately 2.5$ transmission loss was

observed in the region UOO to 700 ima with approximately 1-5$ loss from

700 imi through 1100 mn, including darkening in the quartz substrate.

This degradation is considered to be quite reasonable and will allow

1720 glass covers to be excellent candidates for lightweight array

utilization. Transmission curves for a typical sample are showji in

Figure 12, This particular cover is slightly more absorbing than

the best covers achieved during this program, but does represent the

type and extent of radiation darkening observed.

INTREPRETATION OF #1720 GLASS PERFORMANCE

Major findings under this study include the critical nature of the

source pre-melting phase on cover absorption and humidity resistance

and the reduction of cover stresses with increasing electron beam

power. The first finding can be understood in terms of cell surface

contamination. The original evaporation process step which pre-melted

the source at the same time shielded cells were present in the vacuum

system most likely deposited an absorbing amphorous layer on the cell

surface. Altering the pre-melting procedure essentially solved
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problems of cover absorption and humidity induced peeling.

The second finding is not as well explained. In order to gain more

information, samples of the raw #1720 glass, source residue and de-

posited glass cover were subjected to a spectrographic analysis in

order to determine if any composition change had occurred. Although

time was not available to run extensive analyses against various pro-

cess parameters, such as beam power, it is evident that the de-

posited glass differs significantly from the raw glass and source

residue. The spectrographic analysis shows that the deposited cover

has much lower concentrations of alkalide oxides (< 1$) and is higher

in silicon oxides. The results of the heavy metal analysis are shown

in Table VII. It is assumed that in addition to these elements listed,

the remaining composition is primarily oxygen. This finding is quite

compatible with the results of this program's radiation test results.

It would normally be expected that large quantities of alkalide

oxides in a glass would lead to severe darkening under electron and

U.V. irradiation. The performance of the deposited covers being quite

to the contrary would then be explained by the low occurrence of the

alkalide oxides. In view of the change in glass composition during

the evaporation, it is quite reasonable to expect the deposited glass

composition, and hence cover stress, could be a function of the electron

beam power. During this program insufficient time was available for

running correlations between these two items, but this could prove to

be a worthwhile aspect of further investigations in the near future.

2.5 EVAPORATION OF 7070 GLASS AND 1720-7070 GLASS MDCTURES

Since 7070 Glass has been considered a radiation resistant cover,

experiments were conducted in evaporating #7070 Glass. Starting

with the evaporation parameters initially used for evaporating 1720

Glass (100 mA at 6.2 kvolts), the electron-gun current levels were

varied in a number of evaporations so as to observe any effects on the
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Si

Al

Ca

Mg

Na

Fe

Zr

B

Mn

Pb

Ga

Cu

Ti

Co

Sr

Cr

Ag

MANU-
FACTURER ' S
DATA

26.6
Ik

U-9
2.6

0.7

—
—
0.17
--

—
—

—
—--

—
—
--

RAW GLASS

23- 1°

11.

7-2

10.

1.2

0.19
0.15

0.37
0.0063
0.0082
Trace

0.0017
0.0090

0.0029

0.026

0.0082

Nil

SOURCE
RESIDUE

21. %

13-

8.2

9-9

0.95

0.16

0.18

0.31

0.0072

0.021

Trace

0.0055

0.012

0.0026

0.02k

0.0071

Nil

DEPOSITED
COVER

U6. #

0.025

0.0098

0.068

Nil

0.052 |

Nil

0.029

Nil

Nil

Nil
i

0.00015 i
0.031
Nil

Nil

0.0021

Trace

HEAVY METAL ANALYSIS OF #1720 GLASS

TABLE VII



cover. Electron beam current 'levels vere varied from 60 .to 200 mA.

In all cases glass fibers are deposited on the solar cells producing

high short circuit current losses. Cell current losses for 2 mil

thick covers were typically on the order of 10$. In those regions

where fibers were not deposited, visual inspection did indicate a

highly transparent glass cover. However, this finding is merely

academic unless fiber formation can be eliminated. In most instances

these fibers did not appear to affect the cover's mechanical integrity,

although for thin covers (approximately 0.5 mils) the fibers could be

removed by rubbing with an eraser, leaving the cell uncovered by glass

immediately underneath the fiber's original position. Humidity tests

of the 7070 cover (65°C 95$ EH) show this material to have good

humidity resistance, comparable to the best 1720 covers. A number

of the 7070 samples evaporated at 100.mA beam current were also

measured so as to determine cover stresses. The results were quite

comparable to the 1720 glass with stresses found to be on the order
Q 2

of 1.3 x 10 dynes/cm. . (See Figure 7») Typical cells with evapor-

ated 7070 glass are shown in Figure 13.

In a second sequence of tests, a number of mixtures of 7070 and 1720

glass were evaporated which did provide a transparent and adherent

cover. The evaporating source characteristically exhibited properties

of both materials. For instance, the small surface bubbles of 7070

glass and the spitting and larger bubbling of 1720 glass were both

evident. Mixtures of 7070 glass in 1720 glass ranging from 33$ to

75$ by weight, although reducing the formation of fibers (no fiber

formation is observed where 7070 glass constitutes approximately 60$

of the mixture or" less), did provide deposited covers having high
Q 2

stresses (1.6 x 10̂  dynes/cm for the 70$ 7070-30$ 1720 glass mixture).

In lieu of the above described work it is felt that the 7070 glass

does not compare favorably to the 100$ 1720 glass covers and further

work with 7070 was discontinued.



Figure 13. Typical Cells with 7070 Integral Glass
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3.0 NEW TECHNOLOGY

A. Integrally glassed cell of improved efficiency through the use

of TiO cell AR coating,
x

B. Optimized parameters for electron evaporated integral shields

on solar cells.

U.O CONCLUSIONS

In the study of cell AR coatings, TiO was shown to be a more desirable

solar cell antireflection'coating than Ce00 or SiO . Both CeO^ and
C. jC £-

TiO AR coatings provided significantly more cell output (up to 6%}
.A.

than SiO AR coated cells, when covered by cover glass materials.

CeOp coatings, however, were not capable of surviving space-type

qualification requirements, in particular, abrasion tests.

Evaporation of TiO coatings was observed to be a potential glass .

cover contamination source when a single vacuum system is employed

for both evaporations, necessitating a two step process with a thorough

system cleaning between AR and glass depositions.

For the evaporated dielectric coating part of the program efforts, three

major problem areas.were defined for investigation. These were high

cover absorption, poor humidity resistance and high cover stress. The

cover absorption and humidity resistance problems have been corrected

with the identification of a degradation mechanism occurring during the

pre-melting phase of the cover evaporation. Correction of this situation

provides covers which exhibit no more than 0-5$ absorption per mil thick-

ness with greatly improved humidity resistance. Furthermore, this

improvement has been manifested in improved thermal shock-thermal cycling

results.

The cover stress has been shown to decrease with increasing beam power

level. This is thought to be due to a slight change in the chemical

composition of the deposited glass. Spectrographic analysis has shown

that the deposited glass differs significantly from the raw glass in

that the deposited cover has a higher percentage of silicon oxides and
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very small amounts of alkalide oxides (<!$>) . Cover stresses obtained by

optimizing the beam power vere considered sufficiently low to be accept-
D p

able for space -type hardware use ( r~h x 10 dyne s/ cm ) .

Evaporation parameters for optimized covers were determined, and samples

so prepared were subjected to environmental tests. The covered samples

survived humidity, thermal cycles, and thermal shock tests with no

peeling in most cases. Some partial failures were noted in humidity

testing, although this was felt to be attributable to contamination of

the vacuum chambers. Minimal cover darkening was noted in 1 MeV elec-

tron and U.V. irradiations tests. At 10 1 MeV electron irradiation

levels, approximately 2-3$> cover darkening was noted and U.V. degradation

appeared to plateau at a total loss of 1.4$. These are all reasonable

levels.

Additionally, investigation of the effect of the cell substrate tem-

perature during co^yer deposition showed a strong -relationship between

coating deposition rate and temperature with faster coating buildup

occurring for lower substrate temperatures. A' power point degradation

at substrate temperatures of 300°C and greater was also observed, so

that all present covering is done at lower temperatures.

Results of those efforts indicate that the electron beam evaporation

of 1720 glass can provide space qualifiable cell covers. They should

offer the significant advantages, over glue-on platelets, of complete

cell active area coverage and low cost.

Random poorer performance of covers in electrical and environmental

tests appears to be attributable to contamination of the vacuum

system by materials during the TiO AR coating of cells, indicating
Jt

that the vacuum system be thoroughly cleaned between AR coating and

glass evaporation or that, even better, separate systems be employed.

Cells using 7070 glass or 7070/1720 glass mixtures showed no advantages

over the 1720 glassed cell and, in fact, were of poorer quality.
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5.0 RECOMMENI&TIONS

A. It is recommended that the source of the occasional cover con-

tamination noted within be further investigated so that procedures

can be determined for elimination of the problem.

B. It is recommended that analysis of the glass composition be ex-

tended and the effects of various operational parameters, such

as electron beam power level and substrate temperature, be so

examined.

C. The examination of the electron beam technique for evaporating

dielectric covers should be extended so that a large quantity

of covered cells can be fabricated over a period of time in

order to do a comprehensive qualification test of the system.

This step should follow after steps A and B above.

D. Since a large number of space missions are in high radiation environ-

ments where thick shielding is required, the work should be extended

to cover thicknesses greater than 2 mils.
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