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ABSTRACT

BENNETT, ROBERT MERRILL. An Analytical Investigation of an Oscillating

Wedge in a Supersonic Perfect Gas Flow. (Under the direction of ROBERT

W. TRUITT).

Several aspects of the oscillating wedge are Investigated to evalu-

ate both the resulting trends for the wedge and methods of analyzing

unsteady flows.

The existing hypersonic small disturbance theory for the oscillat-

ing wedge is considered. Algebraic expressions are obtained for the low

reduced frequency aerodynamic forces. Series expansions of the result-

ing forces in powers of 1/Mew reveal weak similarity parameters for the

pitching rate derivatives that indicate that a simple scaling of flutter

with ratio of specific heats is not apparent. The importance of the

reflections of the waves generated by the surface from the shock is

reemphasized. Aerodynamic damping terms are found to have significant

influence on flutter even for large values of the mass ratio parameter.

The corresponding effects of angle of attack are shown to be small for

the thin wedge.

The equations are developed for linearized perturbations about the

known steady flow conditions that can be applied for any wedge angle or

Mach number for which the local flow is supersonic. The method of

integral relations is applied to the resulting equations in a one-strip

approximation. Algebraic expressions for low reduced-frequency aero-

dynamics are obtained and a set of ordinary differential equations are

obtained for general oscillatory motion. The method gives accurate



results for low reduced-frequency. However, for cases in which the

aerodynamic forces vary rapidly with frequency the results are qualita-

tively correct but of limited accuracy. Calculations indicate that for

a range of inclination angles near shock detachment such that the flow

in the shock layer is transonic, the aerodynamic forces vary rapidly

both with inclination angle and with reduced frequency indicating

potentially serious flutter problems near detachment.

The governing nonlinear flow equations are formulated in a body-

fixed axis system. The first order numerical finite-difference method

of Lax is applied and discussed with simplified treatments of the

boundaries. Although the formulation is suitable for numerical treat-

ment, and may have merit for unsteady blunt body investigations, the

need is indicated for further refinement of the treatment of the bound-

ary conditions and for use of a second order difference scheme. A brief

quasi-static analysis of oscillating wedge flows indicated that signifi-

cant nonlinear effects may exist near detachment and for large amplitude

motions of a thin wedge at high Mach numbers.
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1. INTRODUCTION

Aeroelastic problems such as flutter have been a design considera-

tion for aerospace vehicles for many years, and as such, have been the

subject of considerable research. The need still exists for further

refined analytical techniques as the potential economic savings of

careful design of advanced vehicles can be significant. Recent develop-

ments in computer technology have led to several highly-developed aero-

dynamic methods for the analysis and computation of steady flow fields.

The corresponding unsteady aerodynamics for analyzing flutter, loads,

and stability have not been as well developed. In this thesis some of

the techniques that have been applied to the calculation of steady flow

fields are applied to a simplified configuration - an oscillating two-

dimensional wedge in a supersonic or hypersonic flow of a perfect gas.

The steady supersonic flow over a sharp two-dimensional wedge is

one of the few exact solutions of the nonlinear governing equations of

inviscid flow. No such corresponding solution for unsteady flow is

available. However, the uniform steady wedge flow permits significant

simplification of perturbation methods. This fact has been used to

advantage in several phenomenological investigations, perturbation

analyses, and approximating techniques in order to evaluate such

processes as unsteady wave reflections. Herein the oscillating wedge is

treated both to gain insight into the application of several methods of

analysis and computation,and to examine the resulting trends for the

wedge airfoil.

First, after discussion of the problem and literature, an existing

hypersonic small distrubance theory for an oscillating thin wedge is
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extended and applied. A perturbation method involving linearization

about the known steady flow is then derived and discussed. Subsequently,

a finite difference technique for calculating the complete unsteady flow

field of the wedge in motion is presented and discussed in conjunction

with some calculated quasi-static nonlinear trends. Emphasis herein is

given to the high supersonic and hypersonic Mach number range and to the

effects of the ratio of specific heats.



2. DISCUSSION OF PROBLEM AND RELATED LITERATURE

The literature of the general area of aeroelasticity is extensive

and has been recently reviewed, for example, by Ashley (1970). Various

aspects of aeroelasticity have also been discussed by Bisplinghoff and

Ashley (1962) and Garrick (1969). Supersonic-hypersonic unsteady

problems have also been reviewed by Wood (1966) and Ashley and Zartarian

(1961). Thus, the discussion here will be principally concerned with

several aspects of the specific problem treated in this thesis.

2.1 The Oscillating Wedge

The effect of airfoil thickness on flutter at supersonic-to-

hypersonic speeds can be large and destabilizing (for example, see

Ashley and Zartarian, 1956; Morgan, et al., 1958; and Runyan and Morgan,

1962). This effect generally results primarily from a forward chordwise

shift of the aerodynamic center with increasing thickness. Other

factors such as lift-curve-slope and pitch damping are also involved,

however. In order to assess the role of thickness before the destabi-

lizing effect of thickness was well known, the wedge airfoil was

attractive for further treatment since the exact steady flow field

was known. In more recent years, it has also been a basic check case

for evaluating simplified theories and for phenomenological studies.

Although the wedge airfoil is often studied for research purposes only,

such airfoils are infrequently used such as on the vertical tail of the

X-15 airplane.

Carrier (1949b) presented a perturbation analysis of the oscillat-

ing wedge in supersonic flow as based on his earlier study of the
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stability of the strong and weak shock solutions for steady wedge flow

(Carrier, 1949a). The analysis was further developed and applied by

Van Dyke (1953), who gave some brief results. It had been shown (e.g.,

Garrick and Rubinow, 1946) from linearized supersonic flow theory, that

unstable values of damping-in-pitch of a flat plate exist for forward

locations of the pitch axis and for Mach numbers less than V.

Van Dyke (1953) demonstrated that the range of Mach numbers and of pitch

axes for unstable pitch-damping was enlarged for a thin wedge.

The results of the above-mentioned analysis were used by Van Dyke

(1954a) to verify the low-frequency results obtained from second order

theory. Van Dyke (1954a) also presented a solution obtained from second-

order theory for a thin wedge oscillating at arbitrary frequency. A

sample comparison with linear theory indicated that the effects of

thickness on the damping-in-pitch (for k -* 0) are alleviated at higher

values of k.

With the development of the relatively simple piston theory, which

is applicable to thin surfaces and high Mach numbers, Hayes (1947),

Lighthill (1953), and Ashley and Zartarian (1956), the wedge airfoil

was again treated (e.g., Chawla, 1958). Piston theory is limited to

values of M8
w
< 1 and it has also been noted that stable values of

the damping-in-pitch are inherent in the piston approximation.

McIntosh (1965a , 1965b) presented a perturbation solution for the

oscillating wedge as based on hypersonic small disturbance theory

(Van Dyke, 1954b), that is essentially a generalization of piston theory

to include the effects of the shock wave on the local external flow

properties and the effects of reflections of surface motion-generated



waves from the shock wave. McIntosh's analysis indicated that inclusion

of the wave reflection process was essential; otherwise the perturbation

in pressure approaches infinity as 7 -* 1. Such was observed by Miles

(1960) in a local flow perturbation analysis. The wave reflection

process had been earlier studied by Chu (1952). An analysis similar to

McIntosh's was presented by Appleton (1964) and discussed by Orlik-

Rickemann (1966b, 1969). The results of McIntosh (1965a) have been

applied to pitch-plunge flutter of wedge airfoils by Bailie and McFeely

(1966) and to panels mounted on wedges by Bailie and McFeely (1968).

The hypersonic small disturbance theory for the oscillating wedge of

McIntosh (1965a) is again applied and discussed in this thesis in

Chapter 3.

Hui (1969a) developed an exact perturbation theory for pitching

motions of a symmetrical wedge for angles up to detachment and has also

applied the method to the caret wing. Unstable values of damping-in-

pitch for the wedge were shown to exist at any Mach number if the wedge

angle was sufficiently large. For the caret wing, this result was

eliminated by three-dimensional effects. With an approximate perturba-

tion solution, Hui (1969b) also indicated that waves generated by the

moving shock wave can be significant for large wedge angles. A perturba-

tion method is developed here in Chapter 4 that is quite similar to

that of Hui; however, the method of solution is quite different and the

analysis is done in more general terms such that any rigid-body motion

of an inclined-flat compression surface can be described.

Kuiken (1969) has presented a higher-order perturbation solution

based on hypersonic small disturbance theory. The quasi-static wedge
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flow, that is based on the effective wedge angle at the vertex including

motion, was perturbed to give an effective phase shift of the quasi-

static solution. The surface pressure was calculated for constant-

amplitude harmonic motion. As the quasi-static solution is nonlinear,

the resulting pressure waves are unsymmetrical, indicating the presence

of higher harmonics, and a shift in mean pressure level was noted.

Curve fits to Kuiken's results have been given by Orlik-Rickemann

(1969). The quasi-static solution will be subsequently discussed in

Chapter 5. In a similar analysis, Kacprzynski (1968) has treated the

full equations of motion in an approximate solution giving similar

results. Hui (1970) has subsequently given an exact solution with no

further numerical results.

Several other simplified theoretical developments have been given

that could be applied to the wedge airfoil such as Newtonian flow theory

(i.e., Zartarian and Sauerwein, 1952). Some have been examined by

applying them to a diamond airfoil by Yates and Bennett (1971).

An important aspect of hypersonic flow, at least, is the inter-

action of the boundary layer with the steady flow field. Some research

into unsteady effects of a laminar boundary layer on wedges in the weak

interaction regime is given by King (1966), Orlik-RUckemann (1966a,

1970), and Hui and East (1971). The general trend is to shift the

moment center forward and to reduce the damping-in-pitch for forward

locations of pitch axis.

Several investigators have also given experimental data relating

to the overall aerodynamic forces for the pitching wedge. Pugh and

Woodgate (1963) give the results of two-dimensional tests at supersonic
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speeds in air. East (1962) has presented some results of measurements

in air at M = 10, but with some tip effects. Orlik-Rickemann (1970)

has also given some hypersonic results measured in helium. Martuccelli

(1958) has also presented some measured results at low supersonic speeds.

Unfortunately, the author is unaware of corresponding two-dimensional

flutter data as available data. are generally for swept-tapered wings

(i.e., Hanson, 1961).

2.2 Flow Field Calculations

Several numerical methods have recently been developed which permit

computation of highly-complex, steady flow fields over various types of

bodies using the governing nonlinear flow equations and a modern digital

computer. The proceedings of a recent symposium (NASA publ., 1970)

gives a broad survey of several of the available techniques. An

annotated bibliography has also been given by Harlow (1969) and a survey

volume given by Chu (1968). These methods generally consist of (1)

direct solution by constructing finite difference approximations to the

partial differential equations and then solving the resulting system of

equations numerically, or (2) reducing the governing partial differ-

ential equations in some approximate manner and then integrating the

ordinary differential equations.

Methods of the first type as based on a characteristics approach

have been given, for example, by Sauerwine (1964, 1965, 1966) and also

by Rakich (1969). Various other finite-difference approaches have been

developed and applied, for example, by Barnwell (1971), MacCormack

(1969), Moretti and Abbett (1966), Lax andWendroff (1964), and Lax (1954).
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Many of these methods involve determining the steady flow field by the

time evolution from an assumed approximate initial solution.

Examples of methods of the second type are the method of integral

relations (see for example, South, 1968, and Belotserkovskiy and

Chushkin, 1962) and the method of lines (Klunker, et al., 1971, for

example). These methods usually treat the boundary or initial value

problem directly or iteratively in contrast to the time-asymtotic

approach.

Very little work has been done in relation to applying any of these

methods to unsteady flows except for some simplified one-dimensional

problems such as given by Bohachevsky and Rubin (1966), although they

have been occasionally discussed (i.e., Ashley and Zartarian, 1961).

In this thesis two of the above methods are applied to the unsteady

aerodynamics of the oscillating wedge, the method of integral relations

is applied to the perturbation equations (Chapter 4) and a first-order

difference method of Lax (1954) is applied to the full nonlinear

unsteady flow equations written in a body-axis system (Chapter 5).

2.3 Comments on Nonlinear Aeroelastic Analysis

Aeroelastic problems have generally been treated with linearized

analyses that essentially consider initial tendencies for infinitesimal

amplitudes. For example, flutter is conventionally posed as a linear

eigenvalue problem based on linear representations of both struture and

aerodynamics. The resulting eigenvalues are then independent of

initial conditions or initial disturbance by the assumption of linearity.

A nonlinear problem requires considerably more effort to determine the

overall characteristics as the stability characteristics are dependent
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on the level of input, etc. Furthermore, the nonlinear characteristics

are not generally as well known as the level of effort of testing or

analysis is considerably increased. However, some aeroelastic analyses

have been performed that consider nonlinearities. Some simplified

structural nonlinearities have been considered by Woolston, et al. (1955)

both experimentally and by analog computation. Nonlinear structural

representations of panels in the problem of panel flutter have recently

been considered by Dowell (1970) and Morino, et al. (1969).

The corresponding aerodynamic nonlinear considerations are also

sparse. However, Landa and Gtrelkov (1963) have given some results of

an analog computation using Newtonian aerodynamics at high angle of

attack and including the second harmonic resulting from the derivative

of Cp = 2 sin2 B. A second dip in the flutter speed was demonstrated

as a/ha -+ 2 in addition to the usual dip for ~h/) -4 1. The implica-

tions of such a trend are potentially serious in a multimodal situation

if such nonlinear effects in the aerodynamics generate large second or

higher harmonics. Zartarian and Sauerwine (1962) have indicated the

presence of second harmonics for large amplitude oscillations of a

biconvex airfoil as calculated from third order piston theory and from

a local shock-expansion theory, but no application was made. As

previously discussed the analyses of Kuiken (1968), Kacprzynski (1968),

and of Hui (1970) give nonlinear aerodynamic forces on a wedge executing

simple harmonic motion of low frequency. The quasi-static solution is

briefly analyzed in Chapter 5 in order to determine where nonlinear

effects might need consideration for the oscillating wedge. The

analysis of the quasi-static results is discussed with the results of
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the finite-difference calculation which has the potential for calculating

nonlinear forces. It might also be noted that for second order piston

theory (small Mew), the second harmonic cancels (Lighthill, 1953). Such

would not be the case for a flat plate at high angle of attack, for

example, where only one surface would be effective.

It might also be noted that Muhlstein (1971) has measured large

second harmonics in the pressure distribution over a wavy wall in the

transonic range.
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3. A STUDY OF HYPERSONIC SMALL DISTURBANCE THEORY
FOR AN OSCILLATING WEDGE

3.1 Aerodynamic Forces for Pitching and Plunging
Oscillations

A thin, two-dimensional wedge undergoing small oscillations in a

perfect gas flow has been treated by McIntosh (1965a, 1965b) from the

standpoint of the hypersonic small disturbance theory given by Van Dyke

(1954b). McIntosh's solution differs from piston theory, which is also

based on hypersonic small disturbance theory, in that it considers the

change in the local external flow field resulting from the bow shock

wave; considers the effects of reflection of acoustic waves generated by

the surface motion from the bow shock onto the surface; and is not limited

to M8 << 1. The resulting surface pressure coefficient for linearizedw

oscillatory motion about the nonlinear steady flow field (in somewhat

different notation) is:

2FK (

Cp(X,t)= M- '(x) + 2ik fw(X)

+ 2 (_e)n e2ik(rn-1) fw(rnx) + 2ik fw(rnx3) e

n=l
3.1

where f (x) and f'(x) are the normalized wedge deformation mode shape

amplitude (f /), and slope; 5 is modal amplitude, h or e here;

k is reduced frequency, cwV ; K
v
= MT where M is Mach number and

sl27 -(7 -1) 1/2
T is steady shock wave slope; F = l ; A is the

2 + y - ) K

attenuation factor for disturbances reflected from the shock; and r is
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a reflection length coefficient. The physical interpretation of (3.1)

is that the pressure at point x is proportional to the effective local

slope at x, (f' + 2ik fw), multiplied by the linearized slope-pressure

relation 2 and the factor that gives the local flow correction, FKT;

plus the additional portion given by the sum which results from acoustic

reflection effects, made up of the reflection attenuation (-_)n, a phase

factor e2ik( n-1), and the effective slope at point (rnx). Thus the

point x is affected by points upstream rx, rx, ... , (as r < 1).

The surface pressure, coefficient is integrated over the chord of

airfoil. The resulting aerodynamic forces are expressed as coefficients

in the form given by Garrick and Rubinow (1946) and subsequently dis-

cussed and defined herein in section 4.3.3. The resulting expressions

for the coefficients for pitching about the leading edge and for plunging

motions are (multiplied by factors of M and k, and with moments taken

about the vertex):

(1- cos )

ML1 = 4FKT Z ()n (1- p_ in) 2
n=l n

kML
2

= MT[ l + 2 (-\)n n

, ', [~ I- _ sin in 
n=l

[cos 8n 'sin n

M = 8FKT (_)n(1 1 - 1) - n

n=l n

kMMI = 2klL2- FKT1 +4 . (-_)n (1- cos pni
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s 0 2 - sin 2n

k M= kL
2

+ 8k2 FKT (- e)(- 1) L 2sn 2n(1

2
On

kML4 = - (ML,) + FK + 4 (-p)n(Dn

kMM4 (M~~~~~~~~~~j)~n

+ 4 rFK 3+ 2 l (-A)n(I)
n=l

+2

132
sin 3n0

(08 n n (.2)

(3.2)

The transfer of the moment coefficients to axes other than the lee

edge is discussed in section 8.3.

As 1n = 2k (
n

- 1), and X and r are functions of Me

w

only, the coefficients written in the form of equations (3.2) are

tions of Y, MO
w
, and k, and are valid for M >> 1, e << 1,

o < Me <~ , and k < 1 (for the restriction on k see Hayes and

Probstein (1966, pp. 113-116)). These coefficients have also beer

by Bailie and McFeely (1966) and McIntosh (1965b) in somewhat difJ

form. The form given herein is such that each term should be fini

eding

and y

func-

n given

ferent

ite as
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k - 0. However, note that as k -e 0, n -e 0 and each of expressions

(3.2) involve indeterminant forms and must be given special attention

for the sma11 values of k of interest in the hypersonic speed range.

Computational forms for k << 1 are developed by using series expansions

for the sine and cosine converting the summations of (3.2) to double

summations. For example ML1 becomes,

X0 co 2(m-1)

ML= 4FKT X (-,)n(1 - ') Z (l)m 2ml
n=l m=l

The expressions for KT, }, and r from McIntosh (196 5a) are func-

tions of K = MO and 7 as follows.
w

K = B +/1 + B
T

where,

B =(7 +41)K

C - D
C + D (3.4)

where
2(KT2 + 1)

C=
(7 + 1)K

2

D - +4
( + 1)F

and
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where 1/2

2+(2
2 + ( - 1) K

Note that the expression for KT as given above is that of thin shock

theory (for example, see Truitt (1959), eqs. 2-153 and 2-156).

3.2 Low Reduced-Frequency Limiting Case

In the low frequency (k) expansions for the aerodynamic forces (3.2),

each inner sum for the sine and cosine expansions is of the form of the

series of (3.3) involving only even powers of pn = 2k (rn - 1). If one

neglects the terms of O(k ) and higher and retains only the constant

term, the series over n sum in closed form. The following simplified

expressions are then obtained.

ML =- 2FK( +- Q ))

kML2 = FK

kML = - ML + FKT r) (3.5)

k2Li = k2% = kM1 = kL2

L 4 
Mj = - L1

kM= 4 kL'

Only the three coefficients ML1, kML2, and kML4 are required

with (8.12) for a complete description of aerodynamic forces for small

values of k. As subsequently discussed in Chapter 4, computations have
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also shown that the effect of frequency is negligible for the applicable

range of k < 1 except for a k2 variation in k
2
L' and k2M' for

7 < 1.2. Thus, the above results can be considered the complete solu-

tion for the normal range of reduced frequencies for hypersonic flutter.

Some of the above relations, in different notation, and some approximat-

ing functions have also been given by Orlik-R'dckemann (1966b and 1969).

Substituting for A, F, and K
T

from equations (3.4) gives

7 K + (7+1)2 K+8 (3.6)

kML+ 2)2 + 1 16

which gives a result that can be obtained by differentiating the well

known thin shock layer result, that is, equation (2-156) of Truitt (1959).

Thus, a closed form solution is obtained for the major portion of the

aerodynamic forces. However, no such reduction has been obtained for

ML
1

or kMLo .

It might also be noted that the flutter derivatives used herein,

and stability derivatives are related for k -e 0 and to first order in

k as (for example, see Van Dyke (1954 a)):

C = 4KL2 Cm = - 2kM2
a a

C2 =- 4 Lh Cm. = 2M
la a

Cl. + CZ = 4kL4 C + C = - 2kMA (3.7)
q a q

3.3 Limiting Case for Large MO

For M8 >> 1 for which the effects of wave reflections become

more significant, limiting forms of (3.5) can be obtained that reveal
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the role of the shock reflection process and 7. Expanding F, KT, X

and r as series in 1/K and substituting in (3.5) gives

kML
2
= (7 + 1) K + b(1/K3) (3.8)

1
(7 + 1) (2 - 7) (3 + 147 - 77- ) 1 + O(1/K3

)

1 2 -~7 r (72 + 1)(27 - 1)2 K

1 ML k=(27 - 1) (r7 + 1)(2K - 1)2 K + (1/K

ML + M4 2(27 - 1) (7 + 1)(27 - 1)2 K

The result for kML
2

is given by the well-known limiting case of thin

shock layer theory (Truitt, 1959, eq. 2-157) for large Miw with

Cp = (7 + 1) e. The parameter (7 + 1)K is thus a similarity parameter

for static pressure and thus for lift-curve slope. The above expressions

are the consistent relations for the stability derivatives to the same

level of approximation and the leading terms are identified as similarity

parameters. Results from the complete expressions (3.5) are compared

in figure 3.1 with the results from (3.8) retaining terms O(K) and also

retaining terms 0(1/K). The use of the leading terms of (3.8) as

similarity parameters gives results comparable to the results shown in

figure 3.1 for retaining only MOw terms. These similarity parameters

are thus somewhat weak. It has been noted that the use of the leading

term for ML and for (kML4 + ML1 ) is somewhat better than for kL1

which implies that the similarity parameter for a-type terms (see
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eq 3.7) is of different form than for i-type terms.

3.3.1 Limiting Forms for A and r

Series expansions for A and r in 1/K give:

_ 1 - - 1)/7+ o(/K2 )
1 + T2(2 - 1)/7

r 2 - 2( )/ + o(1/K2)
2 + 2(7 - 1)/7

These are the expressions used in deriving (3.8) and are the limiting

forms for K >> 1 given by Chernyi (1961, p. 189). The strong effect

of 7 on X is apparent as 0.0557 < _ < 1 for 5/3 < 7 < 1.

3.3.2 Effect of Wave Reflections on Aerodynamic Forces

For no wave reflections X = 0 in equations (3.5) such that:

nL = MM1 = O

k 2 = kL = k = k 3- k=MM=FK (3 9)

These are the results given by linearized piston theory (see, for

example, Ashley and Zartarian, 1956) multiplied by FKT which accounts

for local external flow effects. Series expansion for FKE for K > 1
T

gives,

FK (7 + 1) K + ( + l) 372 - 67 - ] 1 +0(1(/K3)
T-2~(7 - 1/7 -V2(7 - )/7 L7(7 _ 1)(7 + 1)2 1



20

Thus all aerodynamic terms are singular as 7 - 1 and wave reflec-

tions are essential for the theory to yield reasonable results as

7 -*1. This singular behavior has been discussed by Miles (1960).

For MO -, ?J -X 0.14 for 7 = 1.4. The modification of the

above results for kML
2

resulting from the inclusion of wave reflec-

tions is, from (3.5), a multiplying factor of 1 - 2? + 0(? 2 ) = 0.72

for 7 = 1.4. Thus the correction to lift curve slope can be more than

25 percent for large values of MOw for 7 = 1.4 and a "local flow

theory" which would neglect this effect could be considerably in error

for MO > 1.
w

Omitting the wave reflections also gives ML1 = M MM = 0 which is

also the case with piston theory in which the local pressure depends

only on the local effective piston velocity. These terms are essentially

CI. and C , respectively, which result normally from downwash lags.
a, a

The wave reflection process is one mechanism for generating an effect

like a downwash lag, resulting in nonzero values for these coefficients

when the reflections are included. A further discussion of d effects

at hypersonic speeds had been given by Ericsson (1968).

3.4 Comparison With Other Theories

Chawla (1958) has given the corresponding aerodynamic forces for

third order piston theory for a wedge as:

L = ME = O

kML = 1 + ( + 1) K 1 +

kML= = kML. = k1M = k10MM = kML2

kMK '4 k4 L (310)
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For Mw << 1 expansion of equation (3.6) gives,

kML2 = + (7 1) K [+3( ) K+ O(K3)

which agrees with (3.5) to O(K). The coefficients of K2 are slightly

different, as they should be, as piston theory is based on the series

for an expansion wave which differs slightly in the third order term

from the series for a shock wave (Lighthill, 1953). For small K the

effects of wave reflections become small so that L1 and Mi also

become negligibly small. Thus, it is demonstrated that piston theory

is a small K subcase of equations (3.5).

Van Dyke (1954b) has shown that the Newtonian plus centrifugal

force (sometimes called Newtonian snowplow theory) is one limit of the

hypersonic small disturbance theory. For Newtonian conditions, 7 - 1

and K > 1, the leading term of equations (3.8) give the results for

Newtonian theory with centrifugal forces included. Letting 7 = 1 and

using equations (3.8) it can be shown that results agree with those of

Aroesty, et al. (1966) which were obtained by an expansion about 7 = 1

in a different fashion. The results for the wedge (3.8) can be regarded

as a generalization of the Newtonian plus centrifugal force theory to

arbitrary 7 and somewhat small values of K.

The pitch rate derivatives are often computed on tangent wedge

basis, or Newtonian theory omitting centrifugal force effects, by

assuming that the local pressure is that of a wedge having the same

slope as local effective slope of the airfoil including motion effects.

The effective slope of a lower surface is given by:
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e =e + h + 0 + x
e w

where superscript dot indicates d-, and V~ is used as the reference
dt

external velocity consistent with small disturbance theory. Using

C = (Y + 1) e
p e

and performing the appropriate integrations, the relations (3.9) are

obtained with kML
2
= (7 + 1) K. Thus the dependence upon 7 and K

is considerably different than that given by (3.8) for the rate deriva-

tives. The value of a tangent wedge method for large K for the

dynamic derivatives would be heuristic in view of this comparison.

Piston theory, however, is one form of a tangent wedge theory which is

satisfactory for K < 1.

3.5 Flutter of a Typical Section

An analytical model that has been extensively used to examine

flutter trends is a rigid, two-dimensional airfoil restrained in an

airstream by torsional and translation springs. The dynamical equations

and an exact solution for the neutral stability boundary based on piston

theory aerodynamics are well known (for example, Bisplinghoff and Ashley,

1962, chapter 6). No such exact solution can be obtained using aero-

dynamic forces that vary with frequency such as equations (3.2) and the

flutter condition must be sought by an iterative or other technique.

However, if frequency independent aerodynamic forces such as (3.5) are

used, the following exact solution results:
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2 2 1/2
f f N

b W L V Lu 2Y ~

+ kNM3P-M

2
_ = 

< a :5

N= 1 12
r
a .. 22 (1 -

-D= 1 a2 [2x (1 - 2x0 ) -

a2o
r

2x%) - (4 - 2x0 ) ~

kML44
]

2kxL

The above solution can be applied with aerodynamics from (3.5),

(3.8), or (3.9). If piston theory (3.10) is used, then the same result

as Chawla (1958) is obtained. The present solution (3.11) includes

El and M{, which are zero in piston theory, and thus retains terms

of one higher order in k. The solution (3.11) is a function of the

%h 2
structural parameters - , xa, Xo, ra and of the aerodynamic

a a
similarity parameters K = Mew, 7, and NM only. The parameter pM

and

where

D = [1 - 2xC[1 j -'" x + -'
~=G2C~f 3-·M 3PM~
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gives an equivalence between Mach number and altitude (C = mf c) which

has previously appeared in piston theory results (see Bisplinghoff and

Ashley 1962, p. 253).

Some results are presented in figure 3.2 to indicate the relative

importance of ML1, or a terms, and kML, or q = 2 terms. The

effect of ML1 is apparent at low values of pM and as can be seen

from (3.11) where it appears only in the ratio ML1 /WM. However,

kML4 has an effect even for large values of pM as it appears in (3.11)

independent of pM. (Similar results have been presented for low speed

flutter by Lambourne (1967).) The results are accentuated for large

values of 'hlh/ and inclusion of kML4 is essential for flutter

prediction. A decrease in 7 to 1 (not shown) also affects the result

by about 10 percent. It is also of some significance that at flutter, k

decreases rapidly as pM increases, and is small for large values of

pM; the approximations (3.8) are thus applicable for practical cases of

large pM.

One consequence of the different effects of 7 on each of MkL,

MkL2, and NI1, as indicated by the similarity parameters of equations

3.8 is that a combined similarity parameter for flutter is not apparent.

Thus, boundaries such as given in figure 3.2 must be calculated for

each value of 7 and MO

With an attached bow wave, the upper and lower surfaces of the wedge

are independent. The preceding development can thus be applied for

determining the effects of initial angle of attack for ao < 8w and

1O << 1 by taking half of (3.2), (3.5), or (3.8), using 8e = ew + a.
c w 0O
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for the lower surface, and adding similar results based on e = e - aOc w

for the upper surface. For K >> 1, the leading terms of (3.8) are

proportional to K and the resulting expressions involve only the

average K, which is MOw, and there is no effect of angle of attack on

any of the aerodynamic forces. The effect of the terms O(1) would give

a very small modification of this result as O < < 1. From piston

theory for Mw << 1, including initial angle of attack gives (Chawla,

1958):

kML2 = 1+ 2 K + ()]

where IK ± Mao < 1. For K ~-O and Ma = 0.5, for example, the

effect of Mag is 15 percent for 7 = 1.4. Thus the effects of a small

initial angle of attack for a thin wedge airfoil varies from a modest

effect for MO
w
< 1 to no effect for MO >> 1. The initial flutter

speed gradient can, however, be sizeable if M is very large and e

is small.
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4. LINEARIZED PERTURBATIONS ABOUT STEADY FLOW CONDITIONS

A two-dimensional flat surface with a sharp leading edge and exposed

to a supersonic freestream flow of a perfect gas at a mean inclination

angle of Ow is considered while undergoing a specified time-dependent

motion (figure 4.1). Three types of simple-harmonic oscillations are

considered separately - pitching about the leading edge e, translation

normal to the mean position of the surface by, and translation parallel

to the mean position of the surface hx . The motion is considered to be

an infinitesimal perturbation about the mean or steady-flow condition

which leads to a linearized analysis describing the region between the

moving surface and shock-wave boundaries beginning at the wedge tip and

extending a preassigned distance downstream. Linearization of the

governing equations permits the application of the boundary conditions

at the mean position of the moving boundaries and also permits treatment

of any rigid-body, time-dependent motion of the flat surface by super-

position of the three motions considered. There are essentially three

criteria that govern the amplitude limits for "small" oscillations:

(1) fraction of So = 1 o - ew (2) fraction of Ow (or for very small

8w, fraction of pa), or (3) fraction of Od - ew where Ed is the

detachment angle. It might be noted that only compression surfaces are

treated; however, in a linearized analysis of an expansion surface, the

linear theory of Garrick and Rubinow (1946) can be applied considering

the mean surface flow to be the effective freestream. Also for

application to wedges, the base pressure is assumed constant and thus

does not enter into the motion-related force and moment coefficients.
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The hypersonic small distrubance theory treated in Chapter 3 also

considers perturbations about the steady flow for thin wedges and hyper-

sonic Mach numbers. Here both supersonic and hypersonic Mach numbers

are treated, both large and small inclination angles are considered,

and the fore-and-aft translational motion hx, which is not significant

for hypersonic small disturbance conditions, is also analyzed.

4.1 Development of Perturbation Equations

The governing equations written in divergence form for the x-y

coordinate system (e.g., Leipmann and Roshko, 1957, Chapter 7):

continuity:

(4. la)

x-momentum:

y-momentum:

energy:

E [ + (u(2 + V2)]'R Y 2y

+ 6[U F ( Y - 1) -P U +: =)) 

27

+ + ( - )2+V2) ,-
+ E v + 27 D(~2 + -V2 = 0

4. )

(4.1c)

(4. ld)

where the barred quantities are dimensional.
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Small variations about the steady flow are considered by substitut-

ing in equation 4 .1:

P= PO + P (X'Y) e
i

ix t
P Po + e l (X,y) e

im t
U = u + e U (x, ) e

it t
v = e vl (xY) e

where e is a small quantity; w is the frequency of oscillation;

Pl, and so forth, are complex-valued perturbations in the flow variables

(subscript 1); and po, and so forth, pertain to the steady or mean

wedge flow. Neglecting terms o0(2) and higher gives, for the

y-momentum equation, for example

_1 
po u0 -[ + -X + ie o v1 = 0

The equations are simpler in form if normalized by the shock-layer

variables p0 and uO and if the shock-layer wavelength, u 0 /w is used

as the characteristic length. Setting Pl = 1P/(P O 2), pl = Pl/Po)

uI = ul/UO, vI = vl/uO, x = x1/uo' and y = ~/uo

the resulting equations are:

y-momentum:

aVl Pl
-~ + -E + ivI = 0 (4.2a)

x-momentum:

+ ap u = (
CX + --;i + iul = O (4.2b)
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energy:

®l 'i (MO2 Pl _ ul)
2 + i 02 = (4.2c)2 '2

B0 B0

continuity:

ap1 aul avl
(4.2d)7x - +- + + i P1 = (4.2d)

where Bo = Mo
2
- 1. Equation (4 .2c) is obtained by subtracting (4.2b)

from the complete energy equation. Note that the continuity equation

(4.2d) is not needed except to calculate p and will be disregarded

here. Thus, (4.2a-c) is a system of three simultaneous, linear partial

differential equations for Pl, ul, and vl as functions of x and y

and with complex, constant coefficients.

4.2 Boundary Conditions

4.2.1 Boundary Conditions at the Wedge Tip

For the assumed attached leading edge shock, the shock displacement

boundary condition at the wedge tip for pitching motion is

a (0) = O (4 .3a)

for plunging motion normal to surface (omitting hy eiW t)

8 (0) = - cos 0o (4.3b)

and for translation parallel to surface

5 (0) = sin 0o (4.3c)

4.2.2 Boundary Condition at the Wedge Surface

The tangent flow condition at the wedge surface (subscript s) for

infinitesimal pitching motion is (also omitting 8 ei! t)
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v, s= - (1 + ix) (4.4a)

for plunging motion normal to the surface

Vl,s = - i (4.4b)(4.4b)

and for translation parallel to the surface

vls 0 (4.4c)

4.2.3 Boundary Conditions at the Shock Wave

The perturbations of the flow variables at the moving oblique shock

wave are discussed in Section 8.2. At the shock boundary (subscript 8)

the changes in the flow variables are given by equations (8.2 - 8.5) in

the following form

Pl,8 = P0 0 + i Pv 8 (4.5a)

U1,8 = up P + i Uv 8 (4.5b)

Vl, 5 = V0 0 + i Vv 8 (4.5c)

where

d5
= cos Mo (4.5d)

and P~ = a P1,8/a and so forth, are derivatives of the shock relations

evaluated at the steady or mean conditions.

4.3 Approximate Solution by the Method of Integral Relations

For the one-strip integral-relations approach used here, a linear

y-variation of p, u, and v is assumed. For example

pl(x,y) = Ps(x) + [P8(X) - Ps(x)] y/8(X)tota (4.6)total ~ 4.6



where subscripts s and 8 refer to the surface and to the shock wave,

respectively, 8(x)total = 80 + 5(x)/cos ?0 is the total shock layer

thickness, and ps and pb are perturbation variables (subscript 1

omitted). Equation (4.6) and similar relations for u and v are used

in (4.2a-c) and integrated in the y-direction. Sample terms in (4.2)

are:

J P1 (xY) dy = [p p(x ) + p()] (x)/2 + 0(E2 )

8 6pl(x

'

y)
0 -6- dy = p5(x) - PS(X) + o(e2)

and using Leibnitz's rule,

J1 o ax dy = dx J P 1(Xy) dy - P8 (x)

[dPs(X) + dp(x)] 8(x)

dx dx 2

+ [Ps
(
x

)
p(x)] d (x)

2 1 ad

This procedure leads to:

d. 1 rib0
dx (P8 +

Ps + Us) = 8 (P8 - Ps + ui(u 8 + us) = 0
d9 a s 50 s dx

d2 1 d0 2d (v + vs ) (V8 - Vs) d + (P -Ps) + i(v + vs) = o

d (P8 Ps) 8 dx80 2

O~ ~ ~80 BO

+ i [M0 2 ( + ps) - (u8+ Us)] =o
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Now
50(x) = x tan k0

d S0(X)

dx = tan A0

Furthermore, the 8-terms are given by the boundary conditions at the

shock wave (eq. 4.5). For example,

p8 (x) = Po 3(x) + i Pv 8(x)

and thus

dx P d (x) + i (x) = p d (x)
dx = ddx v dx f dx + i Pv g(x)

COs h0

as 0 = d8 cos0 . Using similar terms for U8 and vb, and so forth,

gives the followilg equations.

xd + [v cot ho - 1
dx'

+ i x + cos
VO3

V
cot h0 - (1 - i x) Y 8

V 0

x

v--

dv
s

dx

v
5

(1 + i x)

+ (1 + i x) Us +

+ (1 -

da s

x +
Cix

i x) U -

p s + x (P + U) x

(Pv + U)cos 
cos O

- i [Pv + Uv (1 - i x)] 8 = O

2 cot '
0

Vr

du
s

Ps

(4.7a)

-2 P
+ i L v

V P

(4.T7b)



+ + ix P-i u +xPC
Ps 2 s PdxB0

+ 2 2V 

2 V

LBo tan ?0
MO2)

Bo2- P -ix 

+ i x ( -0 B
o

U 2 v
s

i x v- = v

Bo
2 B0 2 tan 

(4.7c)

(4.7c)

dx = 8/cos 
0dxd /··h (4.7d)

The partial differential equations (4.2) and their boundary conditions

have been transformed to four inhomogeneous, complex, variable-

coefficient, ordinary differential equations, in Ps, us, 8 and 3.

The known surface velocity, vs(x), appears as a forcing function, and

the required initial conditions are also contained in (4.7) as will be

subsequently shown.

4.3.1 Initial Values at the Wedge Tip

Taking the limit as x -+O in (4.7) gives

v (o)
)(o) = (0)V 3

V
i v 8(0) (4.8a)

(4.8b)PS(O) = P P(O) + i Pv 5(0)

us(o) = U 3(0o) + i Uv 8(0)

dPs
x dx

35

with

-P -i xM O2
0 T22

(4.8c)
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These conditions are the exact quasi-static linearized conditions from

oblique shock theory.

4.3.2 Initial derivatives at the wedge tip

Differentiating (4.7) with respect to x, taking the limit as

x - O, and applying (4.8) gives an algebraic system which can be solved

for

dp/dXlx=0, dPs/dXlx=O, and dus/dXlx=

The results are as follows:

d x= O A= 1 - B0 2 tan2 -0) x
dx dx x=O

i tan B 2 tan -AO v (O) + i (2 P -U + V 2 tan b(0)

& 2 f s 0 + V tan s + coJ ) (O }(4.9a)

where

A = V + PP 0 tan BI2 (4.9b)

and

dp- i tan a0?vdv

x =O P Jdx x=O+ ° dx x=O

tan 02 P

tan 2 [(0)+i Vs(O) + i Pv a n (4.9c)

dx =- d _ i us(°) (4.9d)
dx x=O dx x=O·(· s 4~
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4.3.3 Definition of Force and Moment Coefficients

The motion-related aerodynamic force and moment coefficients are

defined for a single (upper, see fig. 4.1) surface by

Lix' = (x) = 4q ck
2

( + it2) 

+ (L' 3 + iL'4 ) 0 + 2 (' + iL8) 7jeit (4.10a)

M' = x p (x) x = - + iM 2) k

+ (M'3 + iM'4) 0 + 2 (M' 7 + iM'8) ]ei
t

(4.10b)

These definitions are similar to those often used in two-dimensional

supersonic flutter analysis (e.g., Garrick and Rubinow, 1946). Here,

however, the force L is normal to the surface, rather than in the

lift direction (indicated by - over the L), and subscripts 7 and 8

pertain to fore-and-aft translation parallel to the mean surface position.

(The symbol N and the subscripts 5 and 6 are often used for unsteady

flap hinge moments and for pertaining to a flap, respectively, see

Garrick and Rubinow, 1946.) It might also be noted that no forces

along the surface are generated, since the effects of viscous skin

friction have been neglected and the base pressure has been assumed to

remain constant. The aerodynamic coefficients for a wedge are given in

terms of the above definitions in Section 8.3.



4.3.4 Low-k Solution Based on Initial Conditions

The surface pressure for small values of x (i.e., /-uO ) can be

approximated as
dp

ps(x) = Ps(O) + dxfO x (4.11)
x=O

Using the boundary conditions (4.3) in equations (4.8) and (4.9) and

integrating for the forces and moment coefficients as defined by

equation (4.6) gives for small values of k

L1 = M'
1

=- 2 h

k L2 = k M'2 = -2 Ps (o)

L= k M 2 s,e( ° )

~3 PoUo dps,
k Lt = vk M'

4
. 2 °2 dx

x=O

L =p 03_shx_
L7 = 7 2 dx x=O

kL =k M'8 = 2 Ps,hx(O) (4.12)

where the above coefficients are given for a single exposed surface.

Evaluating equations (4.12) using equations (4.3, 4.4, 4.8 and 4.9)

leads to the following algebraic expressions for the coefficients

involving only the properties of the steady flow pO, UO, and so forth,

and the shock-wave derivatives PV, Vv, and so forth.
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PoUo

k2 L = 

-~ pOuo

k L8 = 2 VP A1 sin 'O

L7 = PO tan +O -(Vv + MO
2

pa sin O)A1l P A
2

sin O

l = - cot - L7 - PO A3/2

k Ll =PUOUo [tan .O + P+ (1 - Bo2 tan2 -,O)/ + A31 (4.13)

where

A1 P V - P VP

A 2 U Vv Uv V¢

A
3
=tan ' VA [sn P (- M02 P-V B 2 tan -BO

and A is given by equation (4.9b).

4.3.5 Numerical Solution of One-Strip Equations

To determine the variation of the force and moment coefficients with

k, equations (4.7) are numerically integrated using a computer sub-

routine for first-order, real, ordinary differential equations. The

complex equations (4.7) are converted to a system of eight coupled,

first-order equations relating the real and imaginary parts of
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5, i, us, and ps. Initial values and derivatives at a small value of

x are calculated from (4.11), for example, which requires using (4.8)

and (4.9) for starting the numerical integration of the differential

equations. As k = 2 V = u O x/2, running integrals over x of the

real and imaginary parts of the pressure give the variation of the

aerodynamic coefficients with k. Using the definitions (4.10) the

coefficients are related to the integral of the pressure for a single

exposed surface for the

-LI Re () dt

1or7 [h or = hx

for pitch, 2

kkL PoU0 x I r
k2 or 8 - [2x or 1

Loo Ae I2[Phy or h ()] 

Ml or 7 : x= dx1Mh or 7hoh x

where 5 is the variable of integration in the x-direction. Similarly,

for pitch,

k = o02 oxRep (R)] d522x

4 x 2 10 I
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x2

k2 =- °2 J Re [p e)W dt

k M = x3- Im [PO d (4.15)

A computing program is given in Section 8.4 which calculates twice the

above integrals. The trapezoidal rule is used for numerical integration

of the surface pressures in the integrals to determine to coefficients.

4.4 Results and Discussion

4.4.1 Comments on the Method

One result of applying the method of integral relations is a change

in the region of influence of the governing differential equations.

Disturbances propagate along the normal coordinate rather than along

characteristics and the description of wave-type phenomena is thus

altered. The application to steady supersonic flow over pointed bodies

has been discussed by South and Newman, 1965. It was found that

although the results of the method differed in detail, the exact wave

behavior was approximated as a result of compensating effects. The

integral method has also been applied to the perturbation of plane

entropy layers which involves extensive wave effects with favorable

results (George, 1967). As discussed in McIntosh (1965a), and Hui

(1969b), the acoustic waves generated by the surface and shock wave are

important factors in determining the unsteady forces on the wedge. The

description of this wave phenomena by the one-strip integral method



(eqs. 4.7) is investigated by applying it to a steady angular perturba-

tion of a wedge surface. The results are compared in figure 4.2 with

the exact solution from hypersonic small disturbance theory of McIntosh

(1965a). The results of the one-strip method do not follow the exact

wave pattern, but approximate it in a smoothed oscillatory fashion.

This is, thus, an important limitation of the method if local details

are important. However, it might also be noted that the example cited

contains a slope-discontinuity. For cases with continuous slopes, this

smoothing should be less severe.

4.4.2 Low Reduced-Frequency Aerodynamic Forces

4.4.2.1 Comparisons with other analytical results and experiment

The exact solutions for low-frequency or stability-derivative-type

of aerodynamics of Van Dyke (1953) and Hui (1969a) are available for a

symmetrical wedge pitching about an axis located on the chordline at any

chordwise location. Direct algebraic comparisons with these results

would be rather lengthy. The equations of Van Dyke (1953) were

programmed and calculations made for an extensive range of M, y, and

Ow. The results obtained were identical to the results from using

equations (4.13) and the transformation equations of Section 8.3.

Furthermore, the results presented in the figures of Hui (196 9a) were

also reproduced using the one-strip equations. However, no results for

L1 are available for comparison. Although not rigorously demonstrated,

the results of the one-strip approximation (eqs. 4.13) are thought to be

exact for the low-frequency aerodynamics. Further comparisons with the

linear theory of Garrick and Rubinow (1946) and the second-order theory
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of Van Dyke (1954a) were also made by expanding the one-strip results

in powers of e
w

and obtaining identical results. Similar expansions

for hypersonic small disturbance conditions agreed with the results of

McIntosh (1965a,b).

With the previously noted smoothing of the wave behavior by the

method of integral relations, the degree of validity of these results

may seem surprising. It was found by Hui (1969a), however, that linear

functions in x and y satisfied the perturbation equations for the

pitching wedge and the caret wing. The linear y-function is the form of

solution assumed by the one-strip method of integral relations (i.e.,

eq. 4.6) and the linear x-function assumed for the low frequency

approximation (eq. 4.11).

Calculated results using (4.13) are compared with the experimental

data of Pugh and Woodgate (1963) for a symmetrical pitching wedge in

figures 4.3 and 4.4. Generally good agreement is obtained with the best

agreement for the thinner wedge and higher Mach number.

4.4.2.2 Selected Analytical Results

The six normal-force coefficients (eqs. 4.12-4.13) for a single,

inclined surface are presented in figures 4.5 and 4.6 for M = 2 and a,

and for several values of the ratio of specific heats y. All coeffi-

cients vary considerably with inclination angle, particularly for

M = O, and approach infinity as detachment is approached. The coeffi-

cients L1 and k L'4 also change sign as detachment is approached.

As the damping-in-pitch (about the leading edge) is related to k L'4

(i.e., see eq. 4.12), the damping-in-pitch thus changes to an unstable
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value near detachment. This unstable pitch-damping has also been

discussed by Hui (1969a).

The effect of y (figs. 4.5-4.6) is primarily to shift the detach-

ment angle and thus has large effects near detachment even for small

changes in the value of y.

The fore- and aft-coefficients L and k L8 are, of course,

zero for 0w = 0 and are somewhat small until the detachment angle is

approached.

It appears that the detachment condition leads to singular behavior

in each stability derivative. That such is the case for the static

forces is apparent from the charts of Ames Research Staff (1953) which

show that dps/dDw is infinite at detachment. For sonic local embedded

flow the static derivatives are not infinite, but are extremely large.

For the small range of 0
w

for subsonic but attached flow, theories for

an infinite wedge are no longer valid as the subsonic flow field between

the shock and the surface is not uniform for a finite wedge (e.g.,

Johnston, 1953). Some implications of the approach to detachment on

the flutter characteristics of diamond airfoils have been discussed by

Yates and Bennett (1971).

Generally, in linear aerodynamics, the presence of a singularity

such as that shown here indicates a need for a more complete treatment

of the nonlinear governing flow equations in order to describe a more

realistic behavior. Here, however, at least up to conditions of sonic

local flow, the exact infinitesimal amplitude results are obtained.

Furthermore, the usual transonic refinement to linear theory retains a

local x-derivative of the steady flow field as a variable coefficient in
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the unsteady equations (e.g., Landahl, 1961); here the term is zero.

The results presented here suggest that infinitesimal motion has limited

practical significance near detachment since even small finite amplitudes

result in rapidly varying aerodynamic forces. Near detachment the

condition for infinitesimal motion is that the amplitude of motion must

be small compared to Od - ew' where Od is the detachment angle.

4.4.3 Variation of Aerodynamic Forces With Reduced Frequency

4.4.3.1 Comparisons with other results

There are no results known to the author for the variation of the

aerodynamic forces with reduced frequency as computed from the super-

sonic flow solution for the wedge of Carrier (1949b) or the extension of

Van Dyke (1953). Furthermore, such computations would be a rather

lengthy task. Consequently, typical results of the integration of

equation (4.7) are compared for Ow = 0 with supersonic linear theory

for the flat plate (Garrick and Rubinow, 1946) are compared for small

G
w

with second order theory of Van Dyke (1954 a), and are compared with

supersonic small disturbance theory (McIntosh, 1965a) in figures

4.7-4.9. In general, the one-strip integral method predicts the correct

trands, but is accurate only when the frequency effects are small, such

as in hypersonic small disturbance theory (fig. 4.9). Such a result

might be anticipated in view of the previously discussed treatment of

wave behavior by the integral method.
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4.4.3.2 Selected Results

The results of integrating equations (4.7) for M = Y, 7 = 7/5,

and ew = 25° are given in figure 4.10. The frequency effects are

small for k < 1 which is the usual range of interest for hypersonic

speeds.

As previously discussed, the low frequency aerodynamic coefficients

vary rapidly with inclination angle as detachment is approached. Corre-

sponding frequency effects are presented in figure 4.11. A very strong

frequency dependence even at low reduced frequencies is evident as

detachment is approached. In view of the previous comparisons with

other theories (figs. 4.7-4.9), these results may be considered only

qualitative in nature. The trends indicated are important ones, however.

For example, the coefficient k L'4 for Ew = 220 (fig. 4.11) varies so

rapidly as to suggest that the linear results may be physically unreal-

istic. If a nonlinear analysis were required for this region, then the

phenomena of subharmonics or higher harmonics may occur which are

rejected by the linear theory. In fact the quasi-static results of

Kuiken (1969) and Kacprzynski (1968) indicate that for some conditions,

the unsteady pressure waveform is not a single harmonic of the frequency

of oscillation, and shifts in the mean pressure level can occur even for

moderate amplitudes of motion. Taking such nonlinear phenomena into

account in a full dynamic analysis would require considerably more

effort than would be required for a conventional linear analysis. A

further discussion of these effects is given subsequently in Chapter 5.
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Rapidly varying coefficients may also lead to rapidly varying

flutter speed-indices with parameters that affect the resulting k at

flutter such as the mass ratio (e.g., see Lambourne, 1967).
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5. CALCULATION OF THE UNSTEADY FLOW FIELD BY A NUMERICAL
FINITE DIFFERENCE TECHNIQUE

5.1 General Considerations

A numerical finite-difference calculation of the complete unsteady

flow field of the wedge is presented in this chapter. The basic motiva-

tion is to provide a means of calculating nonlinear aerodynamic forces

to assess the range of validity of perturbation analyses and gain insight

into the types of phenomena that may be encountered when the full

nonlinear governing flow equations are treated. Of particular interest

would be a method that could be applied to blunt bodies in order to

evaluate the effects of oscillations in the subsonic embedded flow

around the nose on the after body. The data of Muhlstein (1971) indicate

that even low-amplitude, static perturbations may generate significant

nonlinear effects in a transonic flow. Large frequency effects have

also been demonstrated in Chapter 4 for wedge flows as the embedded

flow field becomes transonic near detachment.

As previously indicated in Section 2.2, several investigators

(e.g., Barnwell, 1971 or Moretti and Abbett, 1966) have evaluated

steady flow fields from time evolution of an assumed initial flow field.

One might anticipate that suitable modifications for motion boundary

conditions, unsteady flows could be treated. Moving boundaries,

however, become quite difficult to treat numerically if the boundaries

move with respect to the grid network. A key factor of the analysis

used herein is a formulation of the problem in a body-fixed axis system.

The grid network thus moves with the body and the body boundary condition
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is considerably simplified. For the wedge in supersonic or hypersonic

flow, only the near triangular region bounded by the vertex, by the

moving shock wave,and by the wedge surface needs to be treated. Thus

the flow field of interest is considerably more confined than a transonic

or subsonic flow field. A body-axis formulation of the unsteady flow

over a cone has previously been used in a perturbation analysis by

Brong (1965).

The use of a body-fixed axis system leads to the inclusion of body-

force-type terms in the flow momentum equations that are proportional to

, hy, 8y, and so forth. Various types of motion can be treated by

performing calculations similar to the time asymtotic steady flow

calculation. For example, pure pitch rate effects can be obtained by

considering e = constant without applying the real world constraint of

0 = 8 0 dt. Similarly, if 0, 8, and 8 are constrained appropriately

at each time step an oscillation can be executed. Oscillations, however,

would require a converged initial flow field for 0 and 8, and so

forth, at t = O. One of the chief merits of this procedure is the

potential for determining steady flows aerodynamics, stability-derivative

type aerodynamics, and oscillatory aerodynamics, all out of a single

computer program, and thus potentially effecting considerable savings

in the writing and debugging of programs.

5.2 Governing Flow Equations

The governing flow equations are written in divergence form in an

(x' - y') axis system that is fixed in the surface with its origin at

the vertex. That is, the x'-y' axis system is the x-y axis system of
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figure 4.1 except that it rotates and translates with the wedge. Here,

primed quantities refer to the body-fixed axis system whereas unprimed

quantities refer to the x-y system (fig. 4.1). Pitch 0 and both

translational motions hx and hy are treated,and are considered for

combined motions. However, it is considered more natural for an aero-

elastic problem to measure h
x

and hy relative to the undisturbed

position as shown in figure 4.1, rather than in the body-axis system.

The basic transformation equations for the momentum equations are

discussed by Pai (1956), and a somewhat similar development stated by

Brong (1965). In this chapter quantities are nondimensionalized as

vc V'x' =, '/c, y' = y'/c, t = tl(V;lA) and u' = _-, v = =-, p = p/1 ,

and p = p/(P 72).

The velocities in the axis system are related by

u = U + u' + y' 8

v = V0 + v' - x' 8 (5.1)

where U0 , V0 are the velocities of the origin in the x-y system and

are

U0 = - (ix + cos ew) cos 0 + (y - sin ew) sin e

V0 = - (hx + cos Ow) sin e - (h~ - sin Ow) cos 0 (5.2)

The substantial derivatives in the x' and y' directions are (Pai, 1956)

du' u + VO + u -+ vt 

dtv' I "V - + G u'(
C - 6 + U, V+ U.y,`V (5.3)
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Substituting (5.2) into (5.1) to obtain u and v and differentiating

with respect to time and thence substituting into (5.3) gives the

resulting momentum equations. The continuity equation in divergence

form (Pai, 1956) is

continuity

@ t W + 0 = O (5-4a)

Using (5.4a) the momentum equations can be written in divergence form as:

x-momentum

+ (p + pu'2 ) + v' )

- p [hX cos 0- y sin - y' e + x' 2-_ 2v, 8] = 0 (5.4b)

y-momentum:

+ (pu'v') + (P + pv'2 )

-P ['X sin e + 'y cos + x' 8 + y' 6 2 + 2u, ] = 0 (5.4c)

The transformation of the flow equations to arbitrary coordinate systems

has been considered by Walkden (1966) who shows that the energy equation

is essentially invariant under the transformation. For a perfect gas the

energy equation written in divergence form is thus

energy:

E Q+ • p ' P (u2+v2)) + 

v

2

)

t [p + ( uP 2 + V2 )

+ {(v [p 1) p (u' 2 + v[2) =0 (5.4d)
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which readily reduces to the more familar form of (e.g., Sauerwine, 1965):

Dh1 _1 0= O (5.4e)Dt p Dt

5.3 Finite Difference Equations

Motions of the wedge are treated by a numerical finite-difference

calculation using the complete nonlinear flow equations in a body-fixed

coordinate system. The explicit finite-difference scheme used is one of

first order accuracy given by Lax (1954) for hyperbolic equations. It

has been further discussed and applied to aerodynamic problems, for

example, by deJarnett (1966), by Bohachevsky and Rubin (1966), and by

Bohachevsky and Mates (1966). The method is formulated by writing the

governing flow equations in divergence form and replacing them with

finite difference equations that contain implicit artificial viscosity

terms. Although the region of physical interest is the nearly triangular

shock layer beginning at the wedge tip and extending downstream, the

hyperbolic stability criterion for the numerical solution requires that

the flow field must be known at an initial line downstream of the tip.

Furthermore, the technique does not consider a shock wave as a disconti-

nuity but smears the discontinuity over a few mesh points both into the

shock layer and into the freestream. This considerably simplifies the

treatment of the moving shock boundary, but at the expense of flow field

resolution.

Subsequent to Lax (1954), many investigators have presented

refined hyperbolic difference schemes, for example, Lax and Wendroff

(1964), Burstein (1964, 1967a,b), Moretti and Abbett (1966), Sauerwein

(1966), Lapidus (1967), and Gourlay and Morris (1968). Burstein (1964)
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and Emery (1968) have presented comparisons of results from several

methods, and the book by Richtmeyer and Morton (1967) and the proceedings

of a recent symposium (NASA publ., 1970) discuss several methods at

length. Variations of the Lax-Wendroff (1964) scheme such as that of

MacCormack (1969) are often recommended for both temporal and spatial

resolution over the method used herein. The use of Lax's method is

considered warranted, however, as it is conceptually one of the simplest

and is also used for an intermediate step in at least one of the higher-

order methods (Burstein, 1967b).

The flow field is divided into a rectangular grid system for each

time step as shown in figure 5.1 with constant values of At/Ax' and

At/4y' as determined from the stability criterion as discussed later.

The system of equations (5.1) to (5.4) can be written as:

aA
i

aB l ac
i

-7 E + ~ + Di =0 (5.5)

where

Al = P

A
2

= pu'

A = pv'

A4 = [ + 7- pU2]



B
1

B2

B
3

B4

C1

C2

c
3

c4

D1

D2 = - P CO

D3 = - p [2 u

D
4

= pu'

= p + pu' 2

= pu'v'

= [p + -z27 pU2] u'

= pv'

= pu'v'

= p + pv' 2

27 u2]v

=0

o - 'y sin e - y' ' + x' 62 _ 2 v' e]

+ x' 0 + Y' 2 + .x sin e + hy Cos 3

= O

U2 = U,2 + v'
2

68

and

(5.6)
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The procedure of Lax (1954) is to replace time derivatives of time

step k with the averaged forward difference,

k+l [(Ai)
(Ai), m - T' i+l.m + (Ai)Z l m

At

+ (Ai)z m+l + (Ai) m-

where k, Z, and m are indices for t, x', and y', respectively, and

to replace (iBi/2x')k and (6Ci/6y')k with the symmetric difference

expressions

(Bi)+l m- (Bi)kl,m

2 A xt

and

(Ci)km+l (Ci)2
2Im+l i ' ,m-l
2 A y'

and to replace (Di)k with the averaged value

DiZ+l, m
+ (Di)llm + (Di)m+1 + (Di)zm-

Z-l~~2 I~+ ( F)

Substitution of these expressions into (5.5) gives the finite difference

algorithm,

(Ai)izk m = [(Aii)l+lm Ai+ (Ai))l,m+ + (Ai)mml(I'm .T [(I)~1 + (I) ;1 I I I

2 A x' Z+lm )- 2 A y' (Ci), m+ l-(Ci) ,m-lx' [~· k k

- [(Di)z+lm + (Di)z_ ,
m

+ (Di)z,m+l (Di)z,m_1

(i = 1,2,3,4) (5.7)
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Thus, Ai at the k + 1 time step can be determined in terms of the

known variables at the mesh points (k,1+l,m), (k,2-l,m), (k,l,m+l), and

(k,l,m-1) at the previous time step, k. This is a one step, explicit,

alternating, difference scheme as the point (k,l,m) does not appear, and

only values from the previous time step are used to compute the new

point. With the A
i

determined, the fluid properties at a grid point

can be readily determined as can be seen by inspecting the expressions

for the Ai, equations (5.6).

Expansion of equation (5.7) by Taylor's series about the point

(k,Z,m) gives:

fAik 6Bi k C, k 2 Ai

+ + + (Di) --
'lm I'm ( Zm ,)zm 2

,m

+ x2 ,m . +' t + o(A2 ) (i= 1,2,3,4)

(5.8)

The last two terms are somewhat analogous to terms that appear in the

viscous momentum equations and are called "artificial viscosity" terms.

These terms result in a smearing of rapidly varying quantities, such as

fluid properties across a shock wave, over several mesh spaces, and in

some instances excessive smearing or smoothing of transient phenomena

can occur. Barnwell (1967) has applied a modification of this scheme

by using the conventional Lax scheme (eq. 5.7) at odd time steps and

using an alternate scheme containing no "artificial viscosity" terms

for even time steps. The effective smearing of transient phenomena is

thus reduced. In some of the higher order difference schemes,
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artificial viscosity terms are often added for numerical stability

(see, for example, Emery, 1968).

5.3.1 Initial and Boundary Conditions

The oscillating wedge in a supersonic flow with an attached shock

is an initial and boundary value problem. The entire flow field over

the grid network must be specified for t = 0. This is accomplished

by initializing the flow field with one for a steady wedge at the equiva-

lent angle of attack for the motion at t = O. The difference technique

is then applied until the flow variables converge holding the body

forces constant (Di in eq. (5.7)).

Each of the boundaries of the grid network requires special consid-

eration at each time step, both during the initialization procedure and

during computation of the unsteady flow field. As previously noted, the

numerical technique does not consider a shock wave as a discontinuity

but smears the shock over a few mesh spaces to satisfy the jump condi-

tions. Sufficient freestream points must be retained such that the

moving shock remains well within the grid network and such that the flow

variables have approached freestream values. About eight additional

grid points beyond the nominal location of the moving shock are required.

The outermost points are held constant at freestream values of the flow

variables.

At the wedge surface the tangential flow condition in the body

axis system is v' = O. To calculate the body point at (k+l, 1, 1),

an approximation is used that has been used in the past (i.e., Burstein,

1964), referred to as the reflection approximation. An image point at
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a distance ty' inside the body is considered to have associated with

k k k k
it - (v', 2) , (plZ2)k, (u'L,2) and (PZ,2)k . A slight modification

of this approximation is used here to allow for unsteady effects. At

y' = 0, the y-momentum equation (5.4c) reduces to

= P [ sin e + cos 0 + x' e + 2 u' ] , y' = (59)

Thus a pressure gradient at the surface exists that is proportional to

the motion (for the surface considered which has zero curvature). The

pressure for the virtual point is thus modified by setting

Pk,- = Pk,2 - 2 ' 4 (5-10)

It is also noted that one consequence of the use of this approximation

(e.g., deJarnette, 1966) is

avI
0= Oy, y= 0

The values for the initial line are calculated from the steady flow

oblique shock theory based on the instantaneous angle of attack and Mach

number. This is a low reduced frequency approximation which requires

that the reduced frequency based on the distance to the starting line

be small, usually of order 0.1 unless frequency of amplitude effects

are large.

Insufficient data are available to calculate the last line of the

grid network at each time step. Either an extremely large region at

t = 0, or an extrapolation of the data is required. Here the last line

is generated by an extrapolation of the at time step k to provide the

data to calculate Ai at k+l from,
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(Ai (Ai)' + -(Ai) k (Ai)
2(Ai)m = ,m - 1 1)m+ 1 (i -2,m

Moretti (1968) has discussed the importance of accurately treating

the boundaries in fluid flow problems and incorporates characteristic-

type routines for treating the boundary conditionslfor calculating

steady flow fields in a time-asymptotic fashion (see, for exsmple,

Moretti and Abbett, 1966). The methods presented herein for treating

the boundaries are approximate ones. This is considered an area for

possible later development.

5.3.2 Stability Criterion

There is no general stability criterion for nonlinear hyperbolic

equations in three independent variables. In numerical solutions such

as the one being considered, a criterion based upon local linearization

is used as a guide and if instabilities are observed the mesh is suitably

adjusted to eliminate the instability. For linearized equations, Hahn

(1958) has shown that the Courant-Friedrichs-Lewy (or CFL) condition to

be a sufficient condition for stability for simplicial gird networks,

that is, a grid network that would use only three base points in the

previous time surface to determine the properties at mesh point for two-

dimensional unsteady flow. The CFL condition states that the domain of

dependence of the difference equations must include the domain of

dependence of the differential equations, which is the forward Mach cone.

Sauerwein and Sussman (1964) have discussed implementation of the CFL

cirterion for various simplicial grid networks.
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The grid network for equation (5.7) is nonsimplicial. A necessary

condition for the stability of linear, constant-coefficient equations is

the vonNeumann condition which requires that the absolute values of the

eigenvalues of the amplification matrix of the difference scheme must

be less than or equal to one. Heie and Leigh (1965) have applied this

criterion to several nonsimplicial networks and demonstrated that some

nonsimplicial networks that satisfy the CFL condition do not satisfy

the vonNeumann condition and would lead to instabilities in numerical

calculations. Furthermore, Burnstein (1967a) has given an example of

the calculation of a transient flow problem containing stagnation points

and sonic lines, in which the vonNeumann condition was satisfied in a

locally linear approximation, but instabilities were encountered in

the calculation which used the complete nonlinear equations. In this

case the nonlinear effects were considered to be essential to the

instability, thus indicating possible limitations on a stability

criterion based on linearization of the nonlinear equations being

considered. Moretti (1968) has suggested that improper treatment of

boundary conditions can lead to instability. Hence, the heuristic

stability criterion used herein is the simpler CFL criterion with

adjustments made in the grid network as the results dictate.

The application of the CFL condition is illustrated in figure 5.2.

To satisfy the CFL condition the diamond connecting the outer base

points at time k must enclose base of the forward Mach cone about the

particle path from point (k+l,Z,m). The circle of radius a At must be

enclosed by the diamond formed by the outer base points. The ratio of

step sizes is then for a square grid,
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Figure 5.2.- Stability diagram for finite difference technique

(k,k-l,m)/

(k+l,Z,m)

t

I
i



77

At< 1

Zx lu'Il +Iv'I n2 a

where u' and v' include the local translation of the body-fixed grid

network relative to the freestream. The ratio of Ax' to Ay' is

somewhat arbitrary. Here the mesh is chosen to be square for simplicity

and also for a slight reduction in the number of multiply operations.

As a result of the stability criterion, selection of the position

of the initial line and the grid spacing on it sizes the time step and

grid spacing downstream. Consider the initial line to be located at

x
O
' and m

i
grid points on the initial line within the shock layer.

For a specified frequency of oscillation, the resulting value of k at

xO ' is represented by kx . The grid spacing is for the square grid,

Ax' =AY xo tan x (5.13)mi-1

and the corresponding value of k at the body point I is,

kl = kx0 + X - 1 tan X (5.14)

The total number of time steps for a full time step, Nk, is determined

from the period of oscillation, P, and the time step,

P = 2 kt = Nk At = 2 (515)

Substituting into (5.15) from (5.14) and (5.13) gives,

N 2= mi tan 0 [ a +u'I +v'Il (5.16)k X0 ' tan II 1 1
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For initialization or stability derivative-type aerodynamics, the

number of time steps need only be sufficient for convergence of. the flow

field. The values of mi and xO' determine the value of (Ic/2v),

for example, at the body points downstream.

5.4 Results and Discussion

5.4.1 Discussion of the Numerical Finite Difference Results

The effect of increasing time step size as fraction of the CFL

criterion, on converged steady flow results is shown in figure 5.3 for

Ow = 200° , M = (M = 1000 used here) and y = 1.4. Stability was

maintained up to slightly less the 0.8 of the CFL criterion, with the

more accurate results obtained as the step size approaches the maximum.

The results of figure 5.3 required approximately 250 time steps for

convergence with somewhat fewer time steps required for the larger

time step. Convergence proceeds essentially downstream from the initial

line with points near the initial line coverging quite rapidly. The

finite difference scheme used here is of first order and thus requires

a fine grid network to maintain accuracy. In these calculations 16

(unstaggered) grid points were used on the initial line inside the shock layer

in order to maintain the limited accuracy of about ten percent.

The results for several inclination angles are shown in figure 5.4.

The relative accuracy is about the same for each inclination angle.

Thus the difference in pressure level with angle, which would be

required for the static aerodynamic force derivatives, would have about

the same relative accuracy.
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The results for including hy motion are presented in figure 5.5.

The results are comparable to the previous results. Inclusion of hy

is essentially a change in wedge angle and Mach number and is thus

essentially a steady flow calculation as hy does not appear in the

momentum equations (5.4).

The results of the finite difference calculation including e

motion is shown in figure 5.6 for M = 2 and o, = 1.4, and O
w
= 20.

For M = 2 an unstable damping in pitch was calculated by the perturba-

tion method (figs. 4.5 and 5.11). The corresponding slopes of the

pressure (fig. 5.6) is in the stable sense. However the pressure should

extrapolate back to the static value for (0 c/2 V.x) of zero which it

does not in this case. This effect results possibly from a large value

of xA at the initial line in conjunction with the surface pressure

being constrained to static values at the starting line. It appears

that a preferable procedure would be to use the results of the perturba-

tion method of chapter 4 for the starting line in this type of

calculation.

The results of the finite difference calculation presented herein

are shown to be of limited accuracy both from the use of a first order

difference scheme and from relatively simplified treatments of the

boundary conditions. The basic formulation of the problem appears to

be a useable one, however, but the basic difference grid network is

required to be so fine that a significant range of amplitudes, and so

forth, cannot be treated in practical terms. For example, the number

of steps required from equation (5.16) to execute a cycle of oscillation

would be prohibitive for significant results. Second order difference
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schemes such as that used by Barnwell (1971) can give good results with

a relatively coarse grid network.

For further development it is recommended that a second-order

difference scheme be used. Explicit treatment of the shock boundary

condition may also be necessary to reduce the number of grid prints and

increase the accuracy of the calculation. The region between the shock

and body must thence be mapped such that the shock does not cut across

the grid network and reduce the time step severely from the CFL criterion.

Furthermore, the treatment of the body boundary condition should be

improved by using a characteristic-type method such as that used by

Barnwell (1971) or Moretti and Abbett (1966). This would necessitate the

derivation of the appropriate compatibility relations. The recent

solution of Hui (1970) for the perturbation about the quasi-static flow

condition could be used for the initial line to further improve the

capability.

5.4.2 Discussion of Quasi-Static Wedge Flows

At high supersonic or hypersonic speeds, the value of k at

flutter is generally very small, 0.01 or less. The resulting phase lags

from motion are quite small. Although even the small phase lags may

be important in the dynamics of an aeroelastic system, the general

character of the flow may be assessed by considering instantaneous

response of the flow field or a quasi-static flow. Consider a Taylor's

series expansion of the steady wedge flow pressure coefficient

2a C 2 + c 3 64C 4
Cp p e+ P --+ p 3- + .. (5.17)

P0 w2 ce 3 - 2
+dw w w
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where the partial derivatives with respect to t, x, and y are assumed

to be zero in accordance with the previous comments. Let e be described

by simple harmonic motion at infinitesmal frequency,

e = s0 sin wt (5.18)

Substituting (5.18) into (5.17) and using trigometric formulas for

reducing sin2 at, and so forth, gives for the difference in pressure

from the steady flow value,

[2 + 4 - + ) cos 2 2t

ew 3

w + ) .. - ajsin 3 t

Now from Ames Research Staff (1953)

+Cp = -1 s i n
2 - / (5.20)2 

where the relation between j3 and ew is a cubic equation in sin2 f

with coefficients as functions of MI,7 and ew. The derivatives of

(5.19) can be evaluated by repeated differentiation of (5.20) and the

cubic equation relating 3 and 3
w .cubic equation relating 0 and 0 W 
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Inspection of equation (5.19) indicates, first a zero shift if

second or higher even-derivatives are large; and higher harmonic terms

(i.e., other than involving aCp/e0w) occur if second or higher deriva-

tives are significantly large. By evaluating these derivatives, the

regions of Mmt, ?, and e
w

where significant nonlinear effects of zero

shifts and higher harmonics occur can be observed.

In figure 5.7, Cp vs ew is given for M = 2 and 0 and for

several values of 7. The derivatives through the fourth are presented

in figure 5.8. (It might be noted that indeterminant froms of 0/0 are

encountered as ew - 0 and of increasing order for the higher deriva-

tives. These were circumvented by letting ew - e , a small value, for

M = 2 and using Cp = (+ l) sin2 at w = 0 for M = ). The

character of the derivatives (figure 5.8) is quite different for varying

7 and Ma. All derivatives become infinite as detachment is approached

suggesting that nearing detachment leads to large nonlinear effects.

The results of hypersonic small disturbance theory were given by

Kuiken (1969) for MOw = 2 and 5 which indicated large nonlinear effects.

For small angles and high Mach numbers the nonlinear effects are also

shown here to be large as the higher derivatives are larger in comparison

to the lower derivatives.

One implication of (5.19) is that the coefficient of the first

harmonic contains contributions from the 3,5,... derivatives. Compari-

sons of filtered experimental data with a linear theory would be

inappropriate if nonlinear effects are large.
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It appears from these brief results that significant nonlinear

effects are to be encountered near detachment at all Mach numbers and

for large amplitude motions of wedgeEs of small angle at hypersonic speeds.
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6. CONCLUDING REMARKS

To evaluate both the methods of treating unsteady flows for super-

sonic flows and the resulting trends, several aspects of the oscillating

wedge have been considered. The two perturbation. methods-hypersonic

small disturbance theory and the more general method-involve only a

moderate level of effort for analysis and computation for the oscillating

wedge. Further extensions to treat more general configurations would

involve considerably more effort as the entire region of interest of the

steady flow field must be known in detail. A nonuniform steady flow

would lead to variable coefficients in the differential equations

governing the perturbation quantities such that interpolation of the

steady flow would be required for numerical integration. Methods are

of course, available that describe the steady flow field in detail. It

would appear that direct numerical solution of the unsteady flows may

be practical for complex configurations along the lines of the formula-

tion presented in chapter 5. However, further development is required

to assess this possibility in practical terms.

The trends presented for the wedge indicate that for inclination

angles near detachment, large nonlinear effects may be anticipated at

least for motions occurring at low reduced frequencies. The practical

implications of detachment requires further investigation. In particular,

the implications for three-dimensional wings and bodies from the two-

dimensional wedge may be limited to large aspect ratio surfaces.
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8. APPENDIX

8.1 List of Symbols

A partial list of the principal symbols used with their principal

definitions is given here. Some of the symbols are defined locally

where used. It should be noted that different nondimensional factors

are used in Chapter 5 than in Chapter 4. Some symbols also have differ-

ent meanings in different contexts.

AI,Bi,Ci,Di see equation 5.6

a local speed of sound

B0 O -- l

b airfoil semichord

p
Cp pressure coefficient, (P0 ' P)/q~

reference length

F see equation 3.4

h
x

displacement parallel to surface (fig. 4.1)

hy plunging displacement normal to surface (fig. 4.1)

i

K Me
w

KT MT, where T(also 3) is shock wave angle

k reduced frequency, c /2V,

k,l,m finite difference grid indices for t,x,y respectively
(fig. 5.1)

L. coefficient in normal force expression (see eq. 4.10a)
j = 1,2,3,4,7,8

M Mach number, V/a

M coefficient in moment expression (see eq. 4.10b)

j = 1,2,3,4,7,8



101

m airfoil mass per unit span

mi number of grid points on initial line within shock layer

PvP ap6/avn, a'P/a8

p pressure

q dynamic pressure

R,R R ap,/avn, ap6//a

r section radius of gyration about xo, units of b

t time

t/c thickness/chord ratio

Uv,U aU8 /aVn, aU8/a

u velocity component in x-direction

V total speed

Vv,vr av/av/n, 6av/a

v velocity component in y-direction

x coordinate distance (fig. 4.1)

xO pitching axis, fraction of c measured from leading edge

y coordinate distance (fig. 4.1)

shock angle (fig. 4.1)

On 2 k(rn - 1) where k is reduced frequency, n = 1,2...

IA quantity defined by equation 4.9b

8 shock displacement perturbation measured normal to steady
shock

80 shock layer thickness in y-direction (fig. 4.1)

8 wedge angle (5
w
= 1/2 tan

-
1 (t/c) for symmetrical wedge

airfoil)

e perturbation parameter

r see equation 3.4
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k
0

CD

pP

e

w

Subscripts:

f

n

s

v

w

8

0

1

Superscripts:
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ratio of specific heats

see equation 3.4

included angle between shock and surface (fig. 4.1)

circular frequency of oscillation

natural frequency in plunge

natural frequency in pitch

density

pitch angle

surface inclination angle

mass ratio, m/p c2

pertaining to flutter

normal to shock wave

evaluated at surface

pertaining to upper or lower surface respectively, for a
symmetrical wedge

pertaining to normal velocity of shock wave

pertaining to symmetrical wedge

pertaining to change in shock wave slope

evaluated at shock wave

steady flow value in shock layer

perturbation quantity

freestream value

pertaining to pitch (or pitching moment) about leading
edge or pertaining to body-fixed axis system

pertaining to forces normal to surface
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Bar over variable indicates dimensional quantity

Dot over variable indicates d/dt

8.2 Perturbations of Flow Variables at a Moving Oblique Shock Wave

The incremental values of p, p, u, and v resulting from perturba-

tions of slope and normal velocity of the moving oblique shock wave are

required as the boundary conditions for a perturbation analysis. The

shock wave perturbation is measured normal to the steady shock wave

position as shown in figure 4.1. The appropriate perturbations of the

Rankine-Hugoniot conditions in a coordinate system aligned with the

steady shock wave have been developed by Carrier (19 4 9a). They have also

been given in the surface coordinate system used here (fig. 4.1)

specialized to 7 = 7/5 (Carrier, 1949a and Van Dyke, 1953), and for

general values of 7 but in somewhat different nondimensional units by

Carrier (1949a) and Hui (1969a).

With the normal velocity of the shock wave given by:

v = i8(x) (8.1)

the perturbations are written in the following form (omitting eit):

P8 = Pad + iPva

P5 = R, + iRv8

(8.2)
U = USA + iU8

v
8

= Va + iVV8

where

Pr = ap8A, Pv = ap/8 vn, etc.
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evaluated at the steady shock wave position and subscript 8 denotes

conditions just aft of the shock wave. Letting

Mn = M sin 0

2(M2 + 1) (8.3)

n (Y + 1)nM

then the shock derivatives can be written as

P= 4 sin 0
Pv (Y + 1)POU o

4 PO
Rv = ( + ) uM2 sin P

ln 0 (8.4)

Uv - Un sin h0

Vv Un cos A0

and
P

P u cos 0

R = R cos 0

Un (8.5)

U = Uo sin e PO Pv cos ~0

U

V = cos ew POv sin h0

The above relations reduce to those given by McIntosh (1965a) in the

hypersonic small disturbance limit. It can also be shown with a similar

development, that perturbations of the shock wave tangential to the

steady shock position results in second order perturbations in the flow

variables.
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The steady flow values of pressure, density, and velocities within

the shock layer are given in Ames Research Staff (1953) as functions of

7, MI, and p0. The corresponding relation between ~0 and ew is

also given as a cubic in sin2 0 with coefficients as functions of 7

and e . These relations are solved numerically for the steady flow
w

field parameters.

8.3 Calculation of Aerodynamic Coefficients for a Wedge
from Surface Coefficients

The unsteady aerodynamic coefficients for a single isolated surface

have been derived in the body of this report (Chapter 4) for rigid body

pitch and translation perpendicular and parallel to the surface. The

coefficients and k were based on c, the length of the surface and the

pitch axis was located at the leading edge. The coefficients for a

symmetrical wedge at an angle of attack are given here in terms of the

surface coefficients. The pitch axis is assumed to be on the wedge

midplane or chordline. The derivation of these relations are briefly

outlined and the results summarized.

8.3.1 Force and Motion Transfer

The forces and moments for a symmetrical wedge (subscript w) are

related to the previously given coefficients for a single surface by

L = + L cos §w w

C = - L sin 5
w w (8.6)

M' = + M'
w
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where the upper sign is for an upper surface. The pitch axis is dis-

placed from the surface and the chords related by

c -c%/cos %c /Cos8

=x-ow wcos (8.7)

0 = - Xo,w sin w

The perturbation displacements are related by

h = + h cos 8 - h sin 6 - xw cos 8 0
y yw w x w 0,w w

Yw 

H = h cos +a h sin - sin w (8.8)
x x w yw w Xww w

u, w

where again the upper sign pertains to the upper surface.

The force and moment coefficients are defined by equation 4 .1 0 for

a single surface. By defining the coefficients in manner similar to

(4.10) for the wedge, the coefficients for the surfaces and the wedge

can be related through the use of (8.6) for the dimensional forces.

Then substituting (8.7) and (8.8) into the expression for the surface

coefficients, the wedge coefficients can be equated to the equivalent

combination of surface coefficients.

8.3.2 Coefficients for Wedge

The results for the coefficients of lift for the wedge are:

L1 (lu + L) + 7 + ) tan 8w=L (2u + ) + (u + ) tan w

L2 (' 2 u +L 2 2 ) +2 (8u+L8) tanb w



L = (u +

L = (u +

' z)/cos2 8

L4l)/cos 8w

L7 = (7u - i7 Z) - (%u - %Z ) tan w

L 8= u - L8 ) - (L2u - L2 ) tan n w

Mj = [(MI u + Mj5) + (M~u + M71) tan 8w]/cos2 8w

M2 = [(MLu + M~2) + (Mu + MV1) tan 8w]/cos2

M5 = (Mu + Ml)/cos
4

8

4 = (MNu + M4)/cos
4

8

M+ = [(M+U - M+1) - (Miu - Mj2) tan aw]/cos
2 5w

= [(%u - M%1) - (MXu - M2 ) tan 8w]/cos2 w
(8.10)

where the subscript has been omitted from the left hand side of (8.9)

and (8.10). The relationship for reduced frequency for the wedge is

k = ku or I os (8.12

It may also be noted that for zero angle of attack, the coefficients fc

the upper and lower surfaces are equal and thus the coefficients

L7, kL8, M7 , and kM8 are zero. Such would not be the case for nonzex

angles of attack, however.

For pitch axis locations other than Xo1
w
= 0, the transfer rela-

tions are found from the same procedure to be the conventional ones

(e.g. Garrick and Rubinow, 1946) and are

L)
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and

(8.9)

or

ro
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L1 = Li

L 2 = L2

L3 = L 2XOL1

L
4
= L4 - 2x0 L

2

L7= L7

L8 = LA

and Ml = M - 2x0 L1

M2 = M2 - 2x0 L2

M = M - 2x0 (Mj + L1 - 2xoLI)

M4 = M4 - 2xO (MN + L4 - 2x0 L2 )

M7 = M - 2xoL
7

M8 = M - 2xL8 (8.12)

where x
0
= x

w
in (8.12).

8.4 Description of Computer Programs

The two principal programs used to generate the results presented

in chapters 4 and 5. The FORTRAN computer program for numerically

integrating the complex system of equations (4.7) to obtain the aero-

dynamic coefficients as a function of k from the perturbation is

presented first. A library routine, INT2A, for integrating a system of

real, first-order, differential equations is used to integrate (4.7)

after expanding into real form. The pitch and two translational motions

are treated separately. The program for finite difference calculation
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of the unsteady flow field is then presented which can treat steady,

oscillatory, or quasi-static motions. Pitch and the two translational

motions may be treated separately or combined.

These programs were written by the author for use on the Control

Data 6000 - series machines at Langley Research Center using the RUN

compiler and the Langley Research Center version of the SCOPE 3.0

operating system. Approximately 14 significant figures were used in the

computations. The compiler used permits the use of multiple arithmetic

statement on one card when separated by the character $ . It might

also be noted that the quantity 1777000000000000000008 signifies an

indefinite (undefined) quantity.

8.4.1 Program for Perturbation Analysis

8.4.1.1 Input

Each case consists of a single card (80 characters) of identifica-

tion for labeling the printout only, and list of variables in a NAMELIST

called INPDATA. The FORTRAN variables and their definitions are as

follows.

FORTRAN VARIABLE Definition

XM M.

THWD 8, degrees

G 7

XO starting value of k for beginning
numerical integration

XSTOP stopping value of k

CI k - increment for numerically inte-
grating the differential equation

SPEC k - increment for printing results



110

8.4.1.2 Output

The program lists each aerodynamic coefficient for each value of

k requested (by SPEC) and the real and imaginary parts of the perturba-

tion variables. The coefficients are also written on tape in coded (BCD)

form for subsequent use by plotting program.
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8.4.1.3 Listinq of Perturbation Program.

OVERLAY(PFlSTRP,O,01
PROGRAM PFISTRP(INPUT=1,OUTPUTTAPE7,TAPE5=INPUT)

*******4*** 4*****4***4**********4********6***4*4****4*t**4*******4*
* PROGRAM PFISTRP CALCULATES THE UNSTEADY FORCES ON AN OSCILLATING, *
* INCLINED FLAT SURFACE IN A SUPERSONIC PERFECT GAS FLOW. *
* THE LINEARIZED PERTURBATIONS ABOUT THE MEAN STEADY FLOW ARE *
* CONSIDERED, WITH SOLUTION GIVEN BY A ONE-STRIP INTEGRAL METHOD. *
* TWICE THE FORCES AND MOMENTS FOR A SINGLE SURFACE ARE PRINTED. *

COMMON/BLOCK1/CUVAR(9),DER(9),VAR(9),PDB,RODB,UDB,VDB,XM2S,XBOS,
+ RBOS,CVSR,CPLGI,CPTHI,CTNL2,DVSDXR,DVSDXI,RVDB,PDV,UDV,VDV,RCNL

+,DRO,DIO
DIMENSION IDFNT(8),DATE(21,ELE1(8),ELE2(8),ERRVAL(8)
EXTERNAL DrRSUB,CHSUB
NAMELIST/INPCATA/XM,THWD,G,XCK,XSTOPK,CIK,SPECK

C
110 FORMAT(SE15.8)
109 FORMAT(IH1//* RIGID BODY FORE AND AFT TRANSLATION*)
108 FORMAT(/7X*K*4X*KSQL3P*6X*KL4P*4X*KSQM3P*6X*KM4P*9X*BR*BX*BI*

* 8X*PR*8X*PI*BX*UR*8X*UI*8X*DR*SX*DI*/)
107 FORMAT(lHI//* RIGID RODY PITCHe)
106 FORMAT(/7X*K*7X*LI*7X*KL2*7X*MIP*6X*KM2P*8X*BRR8X*BI*

+ 8X*PR*8X*PI*8X*UR*8X*UI*8X*DR*8X*DI*/I
105 FORMAT(IHI//* RIGID BODY PLUNGE NORMAL TO SURFACE*)
104 FORMAT(XF6.4,4G11.4,8G10.3)
103 FORMAT(/7X*K*7X*L7*KL7X*KL8*7X*M7P*6X*KMP*8X*BR*X*BI*

+ 8X*PR*8X*PI*BX*UR*8X*UI4*8X*DR*8X*DI*/)
102 FORMAT(//* PDB=*G16.8,* RODB=*G16.8,* UDB=*GI6.8,* VDB=*G16.8

+/* PDV=*G16.8,* ROOV=*G16.8,* UDV=*GL6.8,* VDV=*G1I.8/)
101 FORMAT(/2X*M2=*G16.8,* P21=*G1S.8,* R21=*G16.8,* V21=*G16.8,* BO=*

+G16.8)
DATA FMTl,FMT2,FMT3/6H(BAlO),1OH(lHIIOAlO)LOH(* IOB*14)/

C
C VAR(1,..,9X=X,BR,BI,PR,PI,URUIDR,DI. RF=.5*V21*X

C
RFWIND 7

I READ FMTI,IDENT S IF(EOF,5)999,2
2 CALL DAYTIM(DATE) $ PRINT FMT2,IDENT,DATE $ READ INPDATA

PRINT INPDATA $ THW=THWD/57.2957795130823
CALL WEDGEIXM,G,THW,XM2,P21,R21,V21,BO,IEOBS)
IF(IEORS.EQ.O)GO TO 3 $ PRINT FMT3,IEOBS $ GO TO 1

3 PRINT 101,XM2,P21,R21,V21,BO
CALL SHKDERV(XM,G,THW,BO,R21,V21,PDV,RODV,UDV,VDV,PDB,RODB,UDB,

+ VDB) $ XM2S=XM2**2 $ XBOS=XM2S-1.
PRINT 102,PDB,ROCB,UDB,VDB,POV,RODV,UDVVDV $ PRINT 105
RBOS=1./XBOS $ RVDRB=I./VDB $ PCON=-R21*V21 $ CONM=PCON/3.
CONTM=-2.*R21/3. $ XO=2.*XOK/V21 $ XSTOP=2.*XSTOPK/V21
CI=2.*CIK/V21 $ SPEC=2.*SPECK/V21
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C
C RIGID BODY PLUNGE
C

CVSR=O. S CPLGI=-1. S CPTHr=O. $ II=O $ DRO=-COS(BO-THW) $ DIO=O.
CALL INIC(DPDXRDPDXI,XO,THW,BO,PROO,PIOOTNL) $ CTNL2=2./TNL
CL10=-R21*DPDXR $ CMIPO=4.*CLLO/3. S CKL20=PCON*PIOO $ XK=O.
WRITE(7,110)XK,CLIO,CKL2O,CMIPO,CKL20
PRINT 106 $PRINT104,XK,CLlO,CKL20,CMlPO,CKL20
CALL 'INT2A( II,8,DIJM,CI, SPEC,DUM,DUM VAR,CUVAR, DER, ELE1,ELE2,DUM,

+ ERRVALDERSUBCHSUB,DUM) S XOO=VAR(1)
CLl=-R21*(PROO+VAR(4))/XOO $ CKL2=.5*PCON*(PIOO+VAR(5))
CMLP=CONTM*(PRCO+2.*VAR(4))/XOO $ CKM2P=CONM*(PIOD+2.*VAR(5))
XSAV=VAR(1) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK=.5*V21*VAR(l)
WRITE(7,110)XKCLl,CKL2,CMIP,CKM2P
PRINT 104,XK,CLI,CKL2,CMIPCKM2P,(VAR(1I),=2,9) $ 11=1

7 CALL INT2A(II,8,DUM,CI,SPEC,DUM,DUMVARCUVAR,DER,ELEI,ELE2,DUM,
+ ERRVAL,DERSUB,CHSUR,DUM)
XS=VAR(1) $ RXSQ=I./XS**2 $ DX=XS-XSAV
RX=XSAV/XS $ RX2=RX*RX $ RX3=RX2*RX
CLI =RX2*CLL-R21*DX*(PRSAV+VAR(4))*RXSQ
CKL2=RX*CKL2+.5*PCON*DX*(PISAV+VAR(5))/XS
TXI=VAR(1)+2.*XSAV S TX2=2.*VAR(I)+XSAV
CKM2P=RX2*CKM2P+CONM*RXSQ*DX*(TXL*PISAV+TX2*VAR(5))
CMlP=RX3*CMIP+CCNTM*RXSQ*DX*(TXI*PRSAV+TX2*VAR(4))/XS
XSAV=VAR(1) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK=.5*V21*VAR(1)
WRITE(7,11O)XK,CLI,CKL2,CMIPCKM2P
PRINT 104,XKCLI,CKL2,CMIP,CKM2P,(VAR( I),1=2,9)
IF(XS.LT.XSTOP)GO TO 7 $ ENDFILE 7 $ PRINT 10l

C
C RIGID BODY FORE AND AFT' TRANSLATION
C

CVSR=CPLGI=CPTHI=DIO=O. $ II=0 $ DRO=SIN(BO-THW)
CALL INIC(DPDXRDPDXIXO,THW,BO,PROO,PIOO,TNL) $ PRINT 103
CL70=-R21*DPDXR $ CM7PO=4.*CL70/3. $ CKL80=PCON*PIOO $ XK=O.
WRITE(7,110)XKCL70,CKL8O,CM7PO,CKL80
PRINT 104,XKCL70,CKL8N,CM7PO,CKL80
CALL INT2A(II8,DUM,CISPEC,DUM,DUM,VAR,CUVAR , DER,ELE1,ELE2,DUM,
+ EPRVAL,DERSUB,CHSUB,DUM) $ XOO=VAR(l)
CL7=-R21*(PROO+VAR(4))/XOO $ CKL8=.5*PCON*(PIOO+VAR(5))
CM7P=CONTM*(PRCO+2.*VAR(4))/XOO$ CKMBP=CONM*(PIOO+2.*VAR(5)!
XSAV=VAR(1) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK-.5*V21*VAR(1)
WRITE(7,110)XKCL7,CKL8,CM7P,CKM8P
PRINT 104,XKCL7,CKL8,CM7PCKM8P,(VAR(Ii),=2,9) $ 11=1

8 CALL INT2A(II,8,DUM,CI,SPEC,DUM,DUM,VAR,CUVAR,DER,ELEI,ELE2,DUM,
+ ERRVAL,DERSUB,CHSUBDIJM)
XS=VAR(I) $ RXSQ=1./XS**2 $ DX=XS-XSAV
RX=XSAV/XS $ RX2=RX*RX $ RX3=RX2*RX
CL7=RX2*CL7-R21*DX*(PRSAV+VAR(4))*RXSQ
CKL8=RX*CKL8RCKL+.5*PCON*DX(PISAV+VAR(5))/XS
TXI=VAR(1)+2.*XSAV $ TX2=2.*VAR(1)+XSAV
CKM8P=RX2*CKM8P+CCNM*RXSO*DX*(.TXI.*PISAV+TX2*VAR(5)
CM7P=RX3*CM7P+CONTM*RXSQ*DX*(TXI*PRSAV+TX2*VAR(4))/XS
XSAV=VAR(1) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK=.5*V21*VAR(1)
WRITE(7,110)XK,CL7,CKL8,CM7P,CKM8P
PRINT 104,XK,CL7,CKL8,CM7P,CKMBP,(VAR(I)I=2,9)
IF(XS.IT.XSTOP)GO TO 8 $ ENDFILE 7 $ PRINT 107
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C RIGID BODY PITCH
C

CVSR=-1. $ CPLGI=O. $ CPTHI=-1. $ II=0 $ DRO=DIO=O.
CALL INIC(DPDXR,DPDXI,XO,THW,B0,PROO,PIOO,TNL)$ PRINT 108
CKSL3PO=V21*PCCN*PROO $CKL4PO=PCON*DPDXI SCKM4PO=4.*CKL4PO/3.
XK=C. $ WRITE(7,110)XK,CKSL3FO,CKL4PO,CKSL3PO,CKM4PO
PRINT 104,XK,CKSI.3PO,CKL4PO,CKSL3PO,CKM4PO
CALL INT2A(II,8,DUM,CI,SPEC,DUM,DUM,VAR,CUVAR,DER,ELE1,ELE2,DUM,
+ ERRVAL,DERSUB,CHSUB,DUM) $ XOC=VAR(1)
CKSL3P=.5*PCON*V21*(PROD+VAR(4)1 $ CKL4P=PCON*(PIOO+VAR(5))/XOO
CKSM3P=CONM*V21*(PROO+2.*VAR(4))
CKM4P=2.*CONM*(PIOO+2.*VAR(5))/XfO
XSAV=VAR(1) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK=.5*V21*VAR(1)
WRITE(7,110)XK,CKSL3P,CCLPCKSM3P,CKM4P
PRINT 104,XKCKSL3P,CKL4P,CKSM3PCKM4P,(VAR(I ,I=2,9) $ II=1

9 CALL INT2A(II,8,DUM,CI,SPEC,DUM,DUM,VAR,CUVAR,DER,ELE,ELE2,DUM,
+ ERRVAL,DERSIJB,CHSUB,DUMI
XS=VAR(l) S RXSQ=1./XS**2 $ CX=XS-XSAV
RX=XSAV/XS $ RX2=RX*RX $ RX3=RX2*RX
CKSL3P=RX*CKSL3P+.5*DX*V21*PCON*(PRSAV+VAR(4))/XS
CKL4P=RX2*CKL4P +DX*RXSQ*PCON*(PISAV+VAR(5))
TXI=VAR(1)+2.*XSAV $ TX2=2.*VAR(1I+XSAV
CKSM3P=RX2*CKSM3P+CONM*V21*RXSQ*DX*(TXI*PRSAV+TX2*VAR(.))
CKM4P=RX3*CKM4P +2.*CONM*RXSQODX*(TXl*PISAV+TX2*VAR(5))/XS
XSAV=VAR(t) $ PRSAV=VAR(4) $ PISAV=VAR(5) $ XK=.5*V21*VAR(1)
PRINT 104,XK,CKSL3P,CKL4P,CKSM3P,CKM4P,(VAR(I),I=2,9)
WRITE(7,10 )XK,CKSL3P,CKL4PCKSM3P,CKM4P
IF(XS.LT.XSTOP)GO TO 9 $ ENDFILE 7 S GO TO 1

999 REWIND 7
END PROGRAM PFlSTRP



SUBROUTINE INIC(DPDXR,DPDXI,XO,THW,BO,PRO,PIO,TNL)
*************************************************************************

* SUBROUTINE INIC CALCULATES THE INITIAL VALUES AND DERIVATIVES FOR *
* BEGINNING THE NUMERICAL INTEGRATION AT XO. *
88************* ***********t*Ft78****$******* le***************

COMMON/BLOCKL/CUVAR(9),DFR(9g,VAR(9),PDB,RODB,UDB,VDB,XM2S,XBOS,
+ RBOS,CVSR,CPLGI,CPTHI,CTNL2,DVSDXR,DVSDXI,RVDB,PDV,UDV,VDV,RCNL
+,DRO,DIO
VSR=CVSR $ VSI=CPLGI $ DVSDXI=CPTHI S DVSDXR=O.
TNL=TAN(BO-THW) $ SNL=SIN(BC-THW) $ CNL=COS(BO-THW) $ RCNL=1./CNL
BRO=(VSR+VDV*DIO)/VDB $ PRO=POB*BRO-PDV*DIO
BIO=(VSI-VDV*DRO)/VDB $ PIO=PDB*BIO+PDV*DRO
URO=UDR*BRO-UDV*DIO $ UIO=UDB*BIO+UDV*DRO
PRINT 1,VSR,VSI,BROBIO,PROPPIO,UR ,UIO ,DRO,DIO

I FORMAT(/* VSR=*GI6.8,* VSI=*GI6.8,* BRO=*GI6.8,* BIO=*G16.8/
+ * PRO=*G16.8,* PIO=*G16.8,* URO=*G16.8,* UIO=*G16.8/,
+ * DRO=*G16.8,* DIO=*G16.8/)
BNUtMI=l.-XBOS*TNL*TNL $ BNUM2=.5*XBOS*TNL*TNL
BNUM3=TNL*(XM2S*PDV-UDV+.5*VDV*XBOS*TNL)
BNUt4=TNL*(XM2S*PCB-UDB+VDV/SNL+.5*XBOS*TNL*(VDB+2.*PDV/SNL))
DENOM=VDB+XBOS*TNL*PDB
DBDXR=(BNUMI*DVSDXR+BNUM2*VSI+BNUM3*DRO+BNUM4*BIO)/DENOM
DBDXI= BNUMl*DVSDXI-BNUM2*VSR+BNUM3*DIO-BNUM4*BRO) I/DENOM
DPDXR=PDB*DBDXR+TNL*(DVSDXR-.5*(VSI+VDV*DRO+BIO*(VDB+2.*PDV/SNL)))
DPDXI=PDB*DBDXI+TNL*(DVSDXI+.5*(VSR-VDV*DtO+BRO*(VDB+2.*PDV/SNLiI!
DUDXR=-DPDXR+UIO $ DUDXI=-DPCXI-URO
PRINT 2,DBDXR,DBDXI,DPDXRtDPDXI,DUDXR,DUDXI

2 FORMAT(* DBDXR=*G16.8,* OBDXI=*G16.8,* DPDXR=*G16.8,* DPDXI=*GI6.8
+,/ * DUDXR=*G16.8,* DUDXI=*G16.8/)
VAR(2)=BRO+XO*DBDXR $ VAR(3)=BIO+XO*DBDXI S VAR(1)=XO
VAR(4)=PRO+XO*DPDXR S VAR(5)=PIO+XO*DPDXI
VAR(6)=URO+XO*DUDXR $ VAR(7)=UIO+XOD*DUDXI
VAR(8)=DRO+XG*BRO*RCNL $ VAR(9)=DIO+XO*BIO*RCNL $ RETURN
END SUBROUTINE INIC

SUBROUTINE CHSUB $ RETURN
********************************** ***************************************
* DUMMY SUBROUTINE CALLED BY INT2A. *
************************************************** ***********************

END SUBROUTINE CHSUB



115

SUBROUTINE DERSUB
*t*$********t*$$*******$**********************************************
* SUBROUTINE DERSUB CALCULATES THE FIRST ORDER DERIVATIVES FOR EACH *
* STEP OF THE NUMERICAL INTERGRATION. DERSUB IS CALLED BY INT2A. *

COMMON/BLOCKI/CUVAR(9'),DER(9J,VAR(9),PDB,RODB,UDB,VDB,XM2S,XBOS,
+ RBOS,CVSR,CPLGI,CPTHI,CTNL2,DVSDXRDVSDXI,RVDB,PDV,UDV,VDV,RCNL
+,DRO,DIO
X= CUVAR(I) $ BR=CUVAR(2) S BI=CUVAR(3) S PR=CUVAR(4)
PI=CUVAR(5) $ UR=CUVAR(6) $ UI=CUVAR(7) $ DR=CUVAR(81 $DI=CUVAR(9)

VSR=CVSR S VSI=(CPLGI+X*CPTHI) $ RX=1./X
DER(2)=((VDB*BR+CTNL2*(PR-PDB*BR)+(CTNL2*PDV-VDV)*DI-VSR)*RX

1 -DVSDXR+((VDB+VDV*RCNL)*BI+VSIS+VDV*DR)*RVDB
DER(3)=((VDB*BI+CTNL2*(PI-PDB*BII-(CTNLZ*PDV-VDV)*DR-VSI)*RX

I -DVSDXI-((VDB+VDV*RCNL)*BR+VSR-VDV*DI))*RVDB
DER(4)=(RX*(CTNL2*VSR+(CTNL2*VDV-XBOS*PDV)*DI+(PDB*XBOS-VDB*
1 CTNL2)*BR-XBOS*PR)-XBOS*POB*DER(21+((PDV*XM2S-UDV)*DR-UI
2 +XM2S*PI+(PDB*XM2S-UDB+XBOS*PDV*RCNL)*BI))*RBOS
DER(5)=(RX*(CTNL2*VSI-(CTNL2*VDV-XBOS*PDV)*DR+(PDB*XBOS-VDB*
I CTNL2)*BI-XBOS*PI)-XBOS*PCB*DER(3)+((PDV*XM2S-UDV)*DI+UR
2 -XtM2S*PR-(POB*XM2S-UDB+XBOS*PDV*RCNL)*BR))*RBOS
DER(6)=RX*((PCB+UDB)*BR-PR-UR-(PDV+UDV)*DI)-DER(4)

1 -(PDB+UDB)*DER(2)+(UI+t(UDB+(UDV+PDV)i*RCNL)*BI+UDV*DR)
DER(7)=RX*((PCB+UDB)*BI-PI-UI+(PDV+LIDV)*DR)-DEP(5)

I -(PDB+UDB)*DER(3)-(UR+(UDB+(UDV+PDV)*RCNL)*BR-UDV*DIl
DER(B)=BR*RCNL $ DER(9)=BI*RCNL $ RETURN
END SUBROUTINE DERSUB

SUBROUTINE SHKDERV(XM,GTHWtRO,ROO,UO,PV,ROV,UV,VV,PB,ROB,UB,VB)
*****$**********$*****************$***************$$********************

* CALCULATES SLOPE AND NORMAL VELOCITY DERIVATIVES OF P,RO,U, AND V FOR*
* AN OBLIOUE SHOCK WAVE. DERIVATIVES ARE NORMALIZED BY FLOW VARIABLES*
* BEHIND THE SHOCK WAVE. *
**** ********* *****$************ **** ******************* ***** *

SLO=SIN(BO-THW) S CLO=COS(BO-THW) $ SB=SIN(BO) $ CB=COS(BO)
SQMN=(XM*SB)**2 $ FGl=4./(G+I.) S RUO=I./UO
PN = FGI*SB*RUO $ PV=PN/ROO $ PB=PV*CB*RUO
ROV=FGI*ROO/(SQMN*SB) $ ROB=ROV*CB
UN=. 5*FGI*(SQMN+l.)SQMN $ UB=UN*RUO*SIN(THWI-PN*CLO
UV=-UN*SLO $ VV=UN*CLO S VB=UN*RUO*COS(THW)-PN*SLO
RETURN
END SUBROUTINE SHKDERV



SUBROUTINE WEDGE(XM,G,THW,XM2,P20Pl,R20Rl,V2OVl,BETAO,IER)

* CALCULATES SHOCK WAVE ANGLE BETAO (RADIANS) FOR A WEDGE OF ANGLE *
* THETA (RADIANS) FOR INPUT VALUES OF MACH NUMBER XM AND GAMMA G - *
* FLOW CONDITIONS BEHIND THE SHOCK ARE CALCULATED FROM BETAO,XM,AND G*
************************************************************************

RINDF=01777COO0000000000017 $ IF(XM.GE.1.)GO TO 15 IER=1 $ GO TO 9
1 IF(THW)8,7,2
2 STSQ=SIN(THW)**2 $ SQM=XM*XM $ RSQM=1./SQM
B=-RSQM*-(SQM+2.)-G*STSQ $ D=(STSQ-1.I*RSOM**2
C=(2.*SQM+1.i*PSQM**2*(.25*(G*(G+2.)+I.)+RSQM*(G-1.))*STSQ
CALL WDETACH(XM,G,TDET) $ IF(THW.LE.TDET)GO TO 3 S IER=3 $ GO TO 9

3 X=-.333333333333333*B S TCORR=L. S DO 4 1=1,100
CORR=-(D+X*(C+X*(B+X)))/(C+X*(2.*B+3.*X)) S XT=X $ X=X+CORR
IF(I.NE.1.AND.(TCORR*CORR.LE.O..OR.X.EQ.XTI)GO TO 5

4 TCORR=CORR S IER=4 $ SMN=X*SQM S GO TO 6
5 IER=O $ SMN=X*SQM
6 P20PI=(2.*G*SMN-G+1.)/(G+1.) S R20R1=(G+1.)*SMN/(2.+SMN*(G-1.))
V20V1=SQRT(1.-4.*(SMN-I.)*(G*SMN+I.)/(SMN*SQM*(G*(G+2.1+1.)))
XM2=XM*V20Vl*SCRT(R20R1/P20P1I $ BETAO=ASIN(SQRT(X)) $ RETURN

7 P20Pl=R20R1=V20VI=1. S XM2=XM $ BETAO=ASIN(1./XM) $ IER=O S RETURN
8 IER=2
9 P20PI=R20Rl=V2OVI=BETAO=XM2=RINDF S RETURN

END SUBROUTINE WEDGE

SUBROUTINE WDETACH(XMGDEL) S XMS=XM*XM $ GP=G+1.

* CALCULATES WEDGE ANGLE FOR SHOCK DETACHMENT DEL (RADIANS) FOR INPUT *
* VALUES OF MACH NUMBER XM AND GAMMA G *

XMNS=.25*(GP*XMS-4.+SQRT(GP*(XMS*(GP*XMS+8.*(G-I.))+16.)))/G
SINDEL=SQRT((XMS-XMNS*(2.*XMS+I.-XMNS*(XMS+2.-XMNS)))/
+(1.+XMNS*(G-1.+.25*XMS*GP*GP-G*XMNS)))/XMS DEL=ASIN(SINDEL)$RETURN
END SUBROUTINE WDETACH
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SUBROUTINE INT2A(II,N,NT,CI,SPEC,CIMAX, IERR ,VAR,CUVAR,DER,ELEI,
IELE2,ELTERRVAL,DERSUCKBCHKSUB, ITEXT)

t****$*t********* ****$****************t*********** *************

t VERSION OF LRC CDC 6600 LIBRARY ROUTINE D2.4 *

'* USES FIXED INTERVAL, SINGLE PRECISION, 4TH-ORDER ADAMS-BASHFORTH *
* PREDICTOR, 4TH-ORDER ADAMS-MOLLTON CORRECTOR, 4TH-ORDER RUNGE- *
* KUTTA STARTER. NT,CIMAX,IERR,ELT, AND ITEXT ARE DUMMY (UNUSED). *

DIMENSION DER(21),ELEEL 2 LE2(20),ELT(20),ERRVAL(20),TEMP(20),
I DERI(20),DER2(20),DER3(20),SIVAR(21),VAR(21) ,CUVAR(21)
A=O.O S IF(II)1,1,2

C INITIALIZATION SECTION
1 IF(CI) 3,4,3

C SAVE CI
4 PRINT 1000 $ STOP

1000 FORMAT(11HOCI=O STOP)
3 H=CI

18 IERR=1 $ TO = VAR(1) $ MODE=1 S II= 1 S NI=N+1 S DO 5 J=l,Nl
CUVAR(J)=VAR(J)

5 CONTINUE
C EVALUATION SECTION HERE

8 CALL DERSUB $ IF(MODE.LE.1)GO TO 7 S IF(II-3)36,35,7
36 CALL CHKSUB S IF(II.EQ.2) GO TO 1
37 DO 38 J=l,Nl
38 VAR(J)=CUVAR(J) $ IF(II-3)6,7,7

7 RETURN
6 IF(SPEC) 9,7,9
9 DEL= VAR(1) -TO S DELP=DEL*(l.+l.OE-11)
IF(ABS(DELP)-ABS(SPEC)) 2,10,10

10 TO = VAR(1) $ GO TO 7
2 II=1 $ IF(MCDE-4) 11,12,12

C RUNGE-KUTTA
11 DO 20 J=2,N1 S DER3(J-1)=DER2(J-1) $ DER2(J-1)=DERl(J-1)

DERI(J-1)=DER(J) $ ELEI(J-1)=DER(J) $ CUVAR(J)=A
DELT=0.4*ELE1(J-1)*H S S1VAR(J)=VAR(J) $ CUVAR(J)=SLVAR(J)+DELT

20 CONTINUE $ S1VAR(I)=VAR(1) $ CUVAR(1)=SIVAR(1)+0.4*H S CALL DERSUB
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IF(II-3)23,23,7
23 CUVAR(1=S1VAR(1)+0.45573725421879*H $ DO 24 J=2,Nl

ELE2(J-l)=DER(J)
DELT=(0.296¢7760924775*ELEl(J-1)+O.15875964497104*ELE2(J-1l)*H
CUVAR(J)=SIVAR(J)+DELT

24 CONTINUE $ CALL DERSUB S IF(II-3)25,25,7
25 CUVAR(1)=SIVAR(I)+HI $ DO 26 J=2,N1 $ TEMP(J-1)=DER(J)

DELT=(0.2181OC38822592*ELEl(J-1)-3.05096514869293*ELE2(J-1)
1+3.83286476046701*TEMP(J-1))*H $ CUVAR(J)=S1VAR(J)+DELT

25 CONTINUE $ CALL DER'SUB $ IF(II-3)27,27,7
27 DH=H $ CUVAR(1)=VARI(1)+DH $ DO 28 J=2,N1

DOUB= (O.17476028226269*ELEI(J-1)-O.55148066287873*ELE2(J-1)
1+1.20553559939652*TIEMP(J-1)+0.17118478121952*DER(Ji)
CUVAP(J)=VAR(J)+DH*DOUB

28 CONTINUE $ MODE=MO£E+l $ GO TO 8
C AnAMS-MOULTON, ADAMS-BASHFORTH PREDICTOR

12 Ct)VAR(l)=VAR(1I+H $S DH=H/24.0 $ DO 13 J=2,N1
DOUB= (55.0*DER(J)-59.O*DERI(J-1)+37.0*DER2(J-1)-9.O*DER3(J-1))
CUVAR(J)=VAP(J)+DH DOUB

13 CONTINUE $ DO 14 J= ,N $ DER3(J )=DER2(J) $ DER2(J )=DER1(J)
14 DER1(J )=DER(J+1) S CALL DERSUB S IF(II-3)15,15,7

C ADAMS-MOULTCN CORRE CTOR
15 DO 16 J=2,N1 $ TEM =CUVAR(J)

DOUB= (9.0*DER( )+19.*DERL(J-1)-5.0*DER2(J-l)+DER3(J-1))
CIJVAR(JI=VAR(J)+DH DOUR

16 FRRVAL(J-1)=(TEMP- CUVAR[J)) /14.21052631579847
19 GO TO 8

END SUBR UTINE INTZA



119

8.4.2 Program for Finite Difference Calculations

The version of the program discribed here calculates either time

asymtotic steady flows or flows with constant rates or accelerations.

For an oscillation the flow field has to be converged for the initial

rates and accelerations and the results used for the flow field for

k = 1. Thus subroutine INIFLD would have to be modified slightly to

perform an oscillation.

8.4.2.1 Input

Each case consists of 11 cards of input data. Card 1 consists of

80 columns of identification in an 8A10 format. Card 2 contains MSI,

the number of (unstaggered) grid points between the shock and body;

MFRES, the number of (unstaggered) grid points in the freestream on the

initial line; LMAX, the number of grid points in the x-direction; and

KMAX, the number of time steps in a 2014 format. Card 3 contains NFDTX,

the number of CFL fractions; NMACH, the number of Mach numbers; and

NTHW, the number of wedge angles in a 2014 format. Card 5 contains

FDTX, the CFL fraction array, in a 4E20.12 format. Card 6 contains of

THETAD, the wedge angle array in degrees, in a 4E20.12 format. Card 7

contains XO, the x for the initial line, and HXAMP, HYAMP, and THMAMP,

the values of hx, hy, and 0 for oscillations, respectively in a

4E20.12 format. Card 8 contains G, the value of y, in format 4E20.12.

Card 9 contains IOSC, which is 1 for this version, in a 2014 format.

Card 10 contains HXDOT, HXDTDT, HYDOT, and HYDTDT, the values of hx,

hx, hy, and hy respectively in format 4E20.12. Card 11 contains

THMDOT and THMDTDT, the values of 8, and 0 respectively in a 4E20.12
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format. When only part of the card is used, the leading fields are

of course used.

8.4.2.2 Output

All case input parameters, effective wedge flow variables, the loop

indexing for each line and k-step, and the flow variables on the initial

line are printed. The version of the program listed here prints the

flow variables for each body point for every 50th time step and for the

last four time steps.
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8.4.2.3 Listing of Finite Difference Program.

OVERLAY(LAX2DU,0O,0
PROGRAM LAX2DU(INPUT=l,OUTPUT=l,TAPE7=l,TAPE5=INPUT)

*f*********************+**********************************************

* PROGRAM CALCULATES THE SUPERSONIC FLOW FIELD OVER A TWO-DIMENSIONAL *
* WEDGE AIRFOIL UNDERGOING SPECIFIED MOTION IN A PERFECT GAS. *
* THE FINITE DIFFERENCE TECHNIQUE OF LAX IS USED* MAIN PROGRAM
* PRIMARILY CONTROLS THE INDEXING AND LOOPING. SUBROUTINE INIFLD- 
* READS THE CASE INPUT DATA, CALCULATES THE INDICES, AND CALCULATES *
* THE INITIAL FLOW FIELD. *

COMMON/NLOOP/NFDTX,NMACHNTHW
COMMON/INDEX/NME(100),NMO(100),NMTMOD(100),MDIM,LDIMLMAX,KMAX,
+ MSTMFRES

1 NMACH=NTHW=NFDTX=1
DO 300 MACH=1,NMACH $ DO 300 NTHD=1,NTHW S DO .300 NFDT-=1,NFDTX
CALL INIFL0(MACH,NTHDNFDT)
DO 200 K=2,KMAX $ KEVEN=MOD(K,2)
00 100 L=2,LMAX $ LKBDY=MOD(L+K+1,2)
IFRES=MOD(NMTMOD(L)+LKBDY+1,2) $ MFL=NMO(L)-IFRES
IFIKEVEN.EQ.O)MFL=NME(L)-IFRES
IF(LKBDY.EQ.O)GO TO 50 $ IF(L.EQ.LMAX)GO TO 20
CALL RFBDYPT(lL+1,1,L,1,L-1,LK8DYI $ DO 10 M=2,MFL

10 CALL LXFLDPT(ML+l,M,L,M,L-l,M-lLK,LKBDY) $ GO TO 90
20 CALL RFBDYPT(1,Ll,L-,'1,LLKBDY) S DO 30 M=2,MFL
30 CALL EXENDPT(M,LM,L-1,M-1,L,KLKBDY) S GO TO 90
50 IF(L.EQ.LMAX)GO TO 70 $ DO 60 M=1,MFL
60 CALL LXFLDPT(M,L+l,M+1,L,ML-1,M,L,K,LKBDY) $ GO TO 90
70 DO 80 M=1,MFL
80 CALL EXENDPTIM+1,L,M,L-1,M,LK,LKBDY)
90 CALL MAXMPT(IFRESMFL,L,K,LKBDY)

100 CONTINUE
CALL LSHIFT(KEVEN,K)
IF(MOD(K,5O).EQ.O.AND.K.LT.*KMAX-31)CALL FPRINT(KEVEN,K)
IFIK.GE.(KMAX-3))CALL FPRINTIKEVEN,K)

230 CONTINUE
300 CONTINUE S GO TO 1

END PROGRAM LAX2DU
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SUBROUTINE INIFLO(MACHNTHDNFDT)
**************************t********************************************
* THIS SUBROUTINE INITIALIZES THE ENTIRE FLOW FIELD FOR K=1 AND *
* CALCULATES AND STORES THE INDEXING PARAMETERS FOR THE STAGGERED *
* GRID NETWORK AND FOR SUBSEQUENT TIME STEPS. *
* INPUT DATA ARE ALSO READ FOR MULTIPLE CASES. *

COMMON/NLOOP/NFDTX,NMACH,NTHW
COMMON/INDEX/NPEI100),NMO(100),NMTMOD(100),MDIM,LDIMLMAXKMAX,

+ MSI,MFRES
COMMON/FLOWPAR/P(25,100),RO(25,100),U(25,10X),V(25,100),RINDF,

+ G,PF,SINT,COST
COMMON/MOTION/IOSCXOTHMAMPTHMDOT,THMDTDT,SINTHM,COSTHMHXAMP,

+ HXDOT,HXOTDT,HYAMP,HYDOT,HYDTDT
COMMON/GRIDPAR/DXODTDTXGDTXGl2
COMMON/FLINE/XM,THW,SINOT,COSDT,PINI(25),ROINI(25),UINI(25),

+ VINI(25),MFFI,MS12,MS121 I
DIMENSION IDENT(8),DATE(2),AMACH(4),FDTX{4hTHETA(I4)
DATA MDIM,LDIM/25,100/
DATA FMT1,FMT2,FMT3,AlO,14,E20/5Hf(Hl),10H(/XlOA10/),6H(X914),

+ 6H(8ADIO,6H(2014),9H(4E20.12)/
DATA DEGRAD,TWOPI,RINDF/.0174532925199433,6.2831853071796,

+ 0177700000COOOO00013/
DO 1 J=1,LDIM $ NME(J)=NMO(J)=NMTMOD(J)=O $ DO 1 I=1,MDIM

1 PIIJ)=RO(I,J J)(=V(I,J=RINDF S CALL CAYTIM(DATE)
IF((MACH+NTHD+NFDT).GT.3)GO TO 20
READ A1OIOENT S IF(EOF,5)999,2

2 PRINT FMTI
PRINT FMT2,IDENT,CATE S READ I4,MSI,MFRESLMAX,KMAX
READ 14,NFDTXNMACH,NTHW S READ E20,AMACH,FDTX,THETAD
READ E20,XO,HXAMP,HYAMPTHMAMPD,G
READ 14,ICSC $ THMAMP=DEGRAD*THMAMPD
IF(IOSC.EC.1READ E20,HXDOT,HXDTDT,HYDOT,HYDTDT,THMDOT,THMDTDT
SINTHM=O. S COSTIM=1.

20 IF(IOSC.NE.O)GO 10 3 $ HXDTDT=HYDTDT=THMDTOT=THM=O.
HXDOT=HXAMP $ HYDOT=HYAMP

3 WRITE(7,A1O)IDENT,DATE S XM=AMACH(MACH) S DTXF=FDTX(NFDT)
THD=THETAD(NTHD) $ THW=DEGRAD*THD $ COST=COSITHW) S SINT=SIN(THW)
VXE=COST+HXDOT S VYE=-SINT+HYDOT
EM=XM*SQRT(VXE*VXE+VYE*VYE) S THE=ATAN(-VYE/VXE)
CALL WEDGEIEM,GTHEtXMS,P20PI,RSUS,BETA,IEWI $ IFIIEW.NE.OISTOP 1
PF=1/IG*XM*XM)$ PS=PF*P2OPl$S TANBT=TAN(BETA-THE)S THED=THE/DEGRAD
PRINT 100,XM,G,THODTHE,DTXF,XMSP20P1,RS,US,BETA,THED,EM,

+ MDIM,LDIP,LMAX,MSI,MFRES
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CFL1=1./(SQRT(2.)/XM+COST+SINT) $ CFL2=I./(SQRT(2.)*US/XMS+US)
CFL=AMIN1(CFLI,CFL2! $ DTXA=CFL*DTXF $ DX=XO*TANBT/IMSI-1.)
DT=DTXA*DX S IF(IOSC.NE.O)GO TO 4
KMAX=2+TWCPI/DT S DT=TWOPI/(KMAX-1) $ DTXA=CT/DX

4 PRINT 104,XO,DX,DT,CFLKMAX
PRINT 105,IOSCHXAMP,HXDOT,HXDTDTHYAMPHYDOT,HYDTDT,

+ THMAMP,THMDOTTHMDTDT
DTX=.5*DTXA S GDTX=G*DTX $ G12=.5*(G-1.) S PRINT 101C
DC 6 L=1,LMAX S NMS=MSI+(L-11*TANBT
NMT=NMS+MFRES S NMTMOD(L)=MOD(NMT,2) $ MCDL2=MOD(Lt2)
NME(L)=NMT/2+NMTMOD(L)*MOD(L+1,2) $ NMO(L)=NMT/2+NMTMQOO(LIMODL2
PRINT FMT3L,NMO(L)NME(L)NMEL,NT,NMTMOD(LI
MSL=NMS/2+MOD(NMS,2)*MODL2
DO 5 M=1,MSL $ P(ML)=PS $ RO(ML)=RS $ U(MtL)=US

5 V(M,L)=O. S MFL=MSL+1 S MFF=NMO(L) $ DO 6 M=MFL,MFF
P(M,L)=PF $ RO(ML)=1.S U(M,L)=VXE-(2*M-1-MODL2)*DX*THMDOT

6 V(M,L)=VYE+(XO+DX*(L-1))*THMCDT
MFFI=NMO(1) S PRINT 102 00 8 MH=1,MFFI
PINI(M)=P(M,1) $ ROINI(MH)=RO(M,) $ UINI(M)=U(M,1)S VINI(M)=V(M,1)

8 PRINT 103tMPINI(M),ROINI(M)tUINI(M)VINI(M)
MSI2=MSI/2 S MSI21=MSi2+1 S RETURN

100 FORMAT(/* XM=*E21.13* G=*E21.13* THD,DEG.=*E21.13* THE=*E21.13
1/* DTXF=*E21.13* XMS=*E21.13* P2P01=*E21.13/
2 * RS=*E21.13* US=*E21.13* BETA=*E21.13//
3 * THED=*E21.13* EM=*E21.13//
4 * MOIM=*I4* LDIM=*14* LMAX=*I4* MSI=*I4* MFRES=*14//)

101 FORMAT(//3X*L NMO NME NMT NMTMOD*!)
102 FORMAT(////3X*MI*9X*PINI*17X*ROINI*17X* UINI*17X*VINI*)
103 FORMAT(I4,4E21.13)
104 FORMAT(I* XO=*E21.13* DX=*E21.13* DT=*E21.13* CFL=*E21.13* KMAX=*

+ 110// i
105 FORMAT(* MOTION PARAMETERS AT K=1, ICSC=*14//

1* HXAMP=*G21.14* HXDOT=*G21.14* HXDTDT=*G21.14/
2* HYAMP=*G21.14* HYDOT=*GZ1.14* HYDTDOT=*G21.14/
3* THMAMP=*G21.14* THMDOT=*G21.14* THMDTOT=*G21.14//)

999 CONTINUE
END SUBROUTINEi INIFLO
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SUBROUTINE LXFLDPT(MlLl M2,L2,M3,L3,M4,L4,KLKBDY)

* SUBROUTINE CALCULATES FLOW VARIABLES AT A FIELD POINT GIVEN THE *
* INDICES FOR THE FOUR BASE POINTS. ENTRY POINT BNDRYPT IS USED TO *
* PERFORM SAPE OPERATIONS ON BOUNDARY POINTS GIVEN FLOW VARIABLES *
* AT FOUR EFFECTIVE BASE POINTS. *

COMMON/FLCkPAR/P(25,100)RO(25,100OO)U25,100OOVI25,1OOtRINDF,
+ GPFSINTCOST
COMMCN/GRICPAR/OX,OTtETXGODTX,G12
COMMON/MOTION/IOSCXO,THMAMPTHMDOT,THMDTOT,SINTHMCOSTHMHXAMP,

+ HXDOT,HXDTDTHYAMP,HYDOT,HYDTDT
COMMON/GRIDVAR/PI,P2,P3,P4,ROlRO2,RO3,RO4,U1,U2,U3,U4,VI,V2,V3,V4
P1=P(Ml,Ll) $ RO1=RO(M1,L1) S U1=U(M1,L1) $ Vl=V(M1,L1)
P2=P(M2,L2) $ RO2=RO(M2,L2) $ U2=U(M2,L2) S V2=V(M2,L2)'
P3=P(M3tL3) S PO3=RO(M3,L3) S U3=U(M3,L3) $ V3=V(M3,L3!
PA=P(M4tL4! $ R04=RO(M4,L4) $ U4=U(M4,L41 $ V4=V(M4,L4)
ENTRY BNDPYPT
RCUI=RO1*Ul S ROU2=RO2*U2 S ROU3=RO3*U3 $ ROU4=R04*U4
ROVI=RO1*V1 $ RCV2=R02*V2 S ROV3=RO3*V3 $ ROV4=RO4*V4
ROUSI=ROU 1 *Ul $ ROUS2=ROU2*U2 S ROUS3=ROU3*U3 $ ROUS4=ROU4*U4
ROVS1=ROV1*V1 $,ROVS2=ROV2*V2 $ ROVS3=ROV3*V3 S ROVS4=ROV4*V4
UROAV=.25*(ROU1+RCU2+ROU3+ROU4) $ ROAV=.25*(RO1+RO2+RO3+R04)
VROAV=.25*(ROVl+ROV2+ROV3+ROV4)1 DY=DX
XLM=XO+DX*L3 S YLM=DY*(M2+M4+LKBDY-1)
TRO=ROAV-CTX*(ROUi-ROU3+ROV2-ROV4)
IF(TRO.GT.C)GO TO 1 $ IFD=1 $ GO TC 2

1 RTRO=1./TRO
TU=RTRO*(UPOAV-DTX*(P1-P3+ROUS1-ROUS3+ROUZ*VZ-ROU4*V4)

+ -DT*(ROAV*(HYDTOT*SINTHM-HXDT)T*COSTHM}+THMDTDT*(ROAV*YLM
+ +.25*DY*(R2-R04) )+THMCOT*(2.*VROAV-THMOOT*(ROAV*XLM
+ +.25*DX*(RO1-RO3)))fl
TV=RTRO*(VROAV-OTX*(P2-P4+ROVS2-ROVS4+ROUI*V1-ROU3*V3)

+ +DT*(ROAV*(HXDTOT*SINTHM+HYDTDT*COSTHM)+THMDTDT*(ROAV*XLM
+ +.25*DX*(RO1-RO3))+THMOGT*(2.*UROAV+THHDOT*(ROAV*YLM
+ +.25*ODY*(R2-RC4)))))
TP=.25*(P1+P2+P3+P4)-GDTX*(PI*Ul-P3*U3+P2*V2-P4*V4)

+ +G12*((.25-DTX*UlJ*IROUS1+ROVSI)+(.25+DTX*U3)*(ROUS3+ROVS3)
+ +(.25-DTX*V2)*(ROUS2+ROVS2)+(.25+DTX*V4)*(ROUS4+ROVS4)
+ -TRC*(TU*TU+TV*TV))
IF(TP.GT.O)GO TO 4 S IFD=2

2 PRINT 3,IFCKLKBDY,MlLlMZ,L2,M3,L3,M44,L4 Pl,P2,P3,P4,ROlRO2,
+ R03,R04,Ul,U2,U3,U4,Vl,V2,V3,V4,TPTROTUTV S STOP 6

3 FORMAT(* IFDK,LKBDY,ML1234=*1116/* PRUVi234T=*/(2X4E22.14/))
4 P(M3,L3)=TP $ RO(MH3L3)=TRO S U(M3,L3)=TU $ V(M3iL3)=TV $ RETURN

END SUBROUTINE LXFLDPT



125

SUBROUTINE RFBDYPT(M1,LI,M2,L2,M3,L3,K,LKBDY)

* THIS SUBROUTINEITREATS THE BODY POINTS BY CALCULATING AN EFFECTIVE *
* POINT INSIDE THE BODY USING THE REFLECTICN APPROXIMATION WITH *
* ALLOWANCE FOR DP/DY FROM UNSTEADY EFFECTS. *
************************************************************************

COMMON/FLOWPAR/P(25,100),RO(25,100),U(25,100lOV(25,100,ORINDF,
+ GPFSINT,COST
COMMON/GRIDPAR/DX,DTOTX.GTXX,G12
COMMON/MOTION/IOSCXOTHMAMPTHMDOT,THMDTDT,SINTHM,COSTHMHXAMP,

+ HXDOT,HXDTDT,HYAMPHYDOT,HYDTDT
COMMON/GRIOVAR/PlP2,P3,P4,ROlR02RO3,R04,UlU2,U3,U4,V1,V2,V3,V4
PI=P(MN,L].) $ R01=RO(M1,LL) $ UL=U(M1,L1) $ VI=V(M1,Llt
P2=P(M2,L2) S.$ R02=RO(M2,L2) S U2=U(M2,L2) S V2=V(P2,L2)
P3=P(M3,L?) $ R03=RU(M3,L3) $ U3=U(M3,L3) S V3=V(M3,L3!
R04=R02 S U4=U2 $ V4=-V2 S M4=-M2 $ L4=-1 $ DY=DX
XLM=XO+(L2-1.)*DX
P4=P2-DY*(RO1+RC3)*(HXOTDT*SINTHM+HYDTDT*COSTHP+XLM*THMDTDT

+ +(U1+U3)*THMOOT)
CALL BNDRYPT(M1,L1,M2,L2,M3,L3,M4,L4,K,LKBDY) $ RETURN
END SUBROUTINE PFBDYPT

SUBROUTINE MAXPPT(IFRES,MFL,LK,LKBDY)

* SUBROUTINE TPEATS MAXIMUM Y-POINT FOR A GIVEN L BY SETTING THE FLOW *
* VARIABLES TO FREESTREAM VALUES OR TO INDEFINITES AS APPROPRIATE. *

COMMON/FLOWPAR/P(25,100,}RO(25,100),U(25,1POO ,V(25,100O)RINDF,
+ G,PF,SINT,COST
COMMON/MOTION/IOSCXO,THMAMP,THMOOT,THMDTDT,SINTHM,COSTHM,HXAMP,

+ HXDOT,HXCTDT,HYAMP,HYDOT,HYOTDT
COMMON/GRIDPAR/DX,DTDTXGDTXGT,G2
MF=MFL+I $ LI=L-1 $ IF(IFRES.EQ.O)GO TO 1 $ XLM=XO+LI*DX
YLM=(2*4FL-I-LKBOY)*DX S VX=HXDOT+COST $ VY=HYDOT-SINT
UBF=VX*COSTHM-VY*SINTHM-YLM*THMDOT
VBF=VX*SINTHM+VY*COSTHM+XLM*THMDOT
P(MF,L1)=PF $ RO(MF,L1)=1. $ U(MF,L1)=UBF $ V(MFL1)=VBF $ RETURN

1 MIF=MF+IFRES $ P(M[F,Ll)=RO(MIF,L1)=U(MIFLVMIFLL1)=VF=RINDF
RETURN
END SUBROUTINE MAXMPT
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SUBROUTINE EXENOPT(H2,L2,M3,L3,M4,L4,K,LKBDYI

* THIS SUBROUTINE EXTRAPOLATES THE Al TO DETERMINE THE FLOW VARIABLES *
FOR CALCULATION OF THE LAST L COLUMN OF THE GRID. *

COMMON/FLOWPAR/PI25,100),R0(25,100),U(25,100)1,V25,1001,RINDF,
+ G,PF,SINT,COST
COMMON/GRIDPAR/DX,DT,OTXGDTX,G12
COMMON/GRIOVAR/Pl,P2,P3,P4,RO, R3,R04,Ul,U2,U3,U4,VlV2,V3,V4
P2=P(M2,L2) $ RO2=ROIM2,L2)1 U2=U(M2,L2) $ V2=VIM2,L2)
P3=PfM3,L3) $ R03=RO(M3,L3) S U3=U(M3,L3) $ V3=V(M3,L3) $ M1=-1
P4=P(M4,L4) S RC4 RO(M4,L4) S U4=U(M4,L4) $ V4=V(M4,L4) $ LL=L2+1
R01=RO2+RO4-R03 $ IF(RO1.GT.O.)GO TO 1 S IEND=1 S GO TO 2

1 Ul=(RO2*U2+RO4*U4 R03*U3)/ROI S Vl=(R02*V2+RO4*V4-RO3*V3)/RO1
Pl=P2+P4-P3+G12*( 02*(V2*V2+U2*J2)+RO4*(V4*V4+U4*U4)

+ -R03*(V3*V3+U3*eU -ROl*(V1*VI+Ul*Ul))
IF(P1.GT.O.)GO TO 4 S IEND=2

2 PRINT 3,IEND,K,LKI DY,M2,L2,M3,L3,M4,L4,Pl,P2,P3,P4,RC,RO2,RO3,
+ R04,U1,U2,U3,U4, 1,V2,V),V4 S STOP 10

3 FORMAT(* IEND,K,LI BDYML234=*916/* PRUV1234=*/(2X4E2'2.14/))
4 CALL BNDRYPT(Mi,L ,M2,L2,M3,L3,M4,L4,K,LKBDY) $ RETURN

END SUBROUTINE EXENCPT

SUBROUTINE LSHIFT KEVEN,K)

*******4*****8********C*t*********************************************
* SUBROUTINE SFIFTS FLOW VARIABLES OVER ONE COLUMN IN THE TWO-
* DIMENSIONAL ARRAYS AND CALLS INILINE TO DETERMINE NEW INITIAL LINE
s* FOR L=1.

COMMON/FLOWPAR/P(25,100),ROI25,100),U(25,l00),V125,100),RINDF,
+ GPF,SINTCOST
COMMON/INDEX/NME( 003l,NMC(lOO),NMTMOD(lOC),MDIM,LCIM,LMAXKMAX,

+ MSI,MFRES
DO 1 M=1,MDIM $ PM,LMAX)=RO(M,LMAX)=U(M,LMAX)=RINDF

1 V(M,LMAX)=RINDF $ DO 2 L=2,LMAX S LST=LMAX+2-L S MFLT=NMO(LST)+l
IF(KEVEN.EQ.O)PFLT=NME(LST)+1 S LL=LST-1 S DO 2 M=l,MFLT
P(M,LST)=P(M,LL) $ RO(IM,LST)=RO(M,LL) S U(M,LST)=U(M,LL)

2 V(M,LST)=V(M,LL) -. CALL INILINEIKEVEN,K) S RETURN
END SUBROUTINE LSHIFT

*

*
*
*
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SUBROUTINE INILINE(LKBDY,K)

* THIS SUBROUTINE FILLS THE L=1 LINE FOR EACH TIME STEP. FLOW *
* VARIABLES ARE BASED ON THE QUASI-STATIC WEDGE ANGLE AND MACH *
* NUMBER INCLUDING MOTION. CALLED BY LSHIFT ONLY. *

COMMON/MOTICN/IOSC,XO,THMAMP,THMDOT,THMDTDTSINTHMCOSTHM,HXAMP,
+ HXDOT.HXCTDT,HYAMPHYDOTtHYDTOT
CCMMON/FLCWPAR/P(25,100),RO(25,100I,U(25,100),V(25,100),RINDF,

+ G,PF,SINT,COST
COMMON/FLINE/XM,THW,SINDT,COSDTPINI(251,ROINI(25),UINI(25),

+ VINI(25I,MFFI,MS12,MSI21
COMMON/GRICPAR/DX,DT,DTX,GDTX,G12
IF(IOSC.EQ.O)GC TO 2 S DO 1 M=1,MFFI S P(M,1)=PINI(M)
RO(M,1)=RCINI(M) $U(M,1)=UINI(M)

1 V(M,1)=VINI(M) $ RETURN
2 COSTIME=CCS(DT*(K-1.)) $ SINTIME=SIN(DT*(K-1.))
THM=THMAMP*SINTIME S THMDOT=THMAMP*COSTIME $ THMOTDT=-THM
SINTHM=SIN(THM) $ COSTHM=COS(THM)
HYDOT=HYAFP*COSTIME $ HYDTOT=-HYAMP*SINTIME
HXDOOT=HXAMP*COSTIME S HXDTDT=-HXAMP*SINTIME
VXE=COS(T- W-TH )-HYDOT*SINTHM+HXDOT*COSTHM
VYE=-SIN(THW-THM)+HYDOT*COSTHM+HXOOT*SINIHM
EM=XM*SQRT(VXE*VXE+VYE*VYE) $ THE=ATAN(-VYE/VXE)
CALL WEDGE(EM,G,THEXMS,P20P1,RSUSBETA,IEW) S IF(IEW.NE.O)STOP 3
VX=HXDOT+COST $ VY=HYDOT-SINT S UBFM=VX*COSTHM-VY*SINTHM
VBF=VX*SINTHM+VY*COSTHM+XO*THMDOT
DO 3 M=1,MS12 $ P(M,1)=PF*P2OP1 S RC(M,1)=RS $ U(P,1)=US

3 V(M,1)=O. S DO 4 M=MS121,MFFI S P(M,1)=PF
RO(M,1)=1. $ U(M,1l)=UFM-DX*(2*M-1-LKBDYI*TMDOOT

4 V(M,1)=VBF S RETURN
END SUBROUTINE INILINE

SUBROUTINE FPRINT(KEVENK)
*****************$**************

* SUBROUTINE PRINTS INDEX AND FLOW VARIABLES FOR BODY POINTS AND *
* ALSO WRITES THEM ON TAPE7 FOR USE BY PLOTTING PROGRAM. *
*********$*************************************************************

COMMON/FLCWPAR/P(25,100),RO(25,100),U(25,100),V(25,100),RINDF,
+ G,PF,SINT,COST
COMMON/INDEX/NPEtO1O),NMO(1001,NMTMOD(10C),MDIM,LDIM,LMAX,KMAX,

+ MSI,MFRES
PRINT 100,K S L1=2-KEVEN $ DO 1 L=L1,LMAX,2
IF(KoEQ.KMAX)WRITE(7I,103)LP(1,L),RO(l1L)UXL),V1,L)

1 PRINT 101,LP(1,L),RO(1,L),U(1,L),V(1,L) $ RETURN
130 FORMAT(//* BODY POINTS FOR FINAL FLOW FIELD, L,P,RO,U,V, - K=*16/)
101 FORMAT(2XIA,4E20.12)
133 FORMAT(I8,4E18.8)

END SUBROUTINE FPRINT
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SUBROUTINE WEDGE(XM,GTHWXM2,P20Pl,R20R1,V20V1,BETAO,IER)

* CALCULATES S-CCK WAVE ANGLE BETAO (RADIANS) FOR A WEDGE OF ANGLE *
* THETA (RADIANS) FOR INPUT VALUES OF MACH NUMBER XP AND GAMMA G - *
* FLOW CONDITIONS BEHIND THE SHOCK ARE CALCULATED FROM BETAO,XM,AND G*

RINDF=017770000000000000017 S IF(XM.GE.1.)GO TO 1$ IER=1 $ GO TO 9
1 IF(THW)3,7,2
2 STSQ=SIN(THW)**2 S SQM=XM*XM $ RSQM=1./SCM
B=-RSQM*(SQM+2.)-G*STSQ S D=(STSQ-l.d*RSQM**2
C=(2.*SQM+1.)*RSQt**2+(.25*(G*(S+2.)+1.)+RSCM*(G-1.))*STSQ
CALL WDETACH(XMG,TDET) $.IF(THW.LE.TDET)GO TO 3 $ IER=3 $ GO TO 9

3 X=-.333333333333333*B S TCORR=1. $ DO 4 1=1,100
CORR=-(O+X*(C+X*(B+X)))/(C+X*(2.*B+3.*X)) S XT=X S X=X+CORR
IF(I.NE.1.AND.(TCORR*CORR.LE.O..OR.X.EQ.XT))GO TO 5

4 TCORR=CORR S IER=4 S SMN=X*SQM $ GO TO 6
5 IER=O $ SMN=X*SQM
6 P20P1=(2.*G*SMN-G+1.)/(G+1.) $ R20RI=(G+I.)*SMN/(2.+SMN*(G-1.))

V20VI=SQRT(1.-4.*(SMN-1.)*(G*SMN+1.)/(SMN*SQM*(G*(G+2.)+1.)))
XM2=XM*V2CV1*SQRT(R20R1/P2OP1) $ BETAO=ASIN(SQRT(X)) S RETURN

7 P20P1=R20R1=V20V=h1. $ XM2=XM $ BETAO=ASIN(1./XM) S IER=O S RETURN
8 IER=2
9 P20P1=RZOPI=V2CV1=BETAO=XM2=RINDF S RETURN

END SUBROUTINE WEDGE

SUBROUTINE WDETACH(XM,GOEL) $ XMS=XM*XM $ GP=G+1.
**********t*****************

* CALCULATES WEDGE ANGLE FOR SHOCK DETACHMENT DEL (RADIANS) FOR INPUT *
* VALUES OF MACH NUMBER XM AND GAMMA G *
************F**t*******t*************************************************t*

XMNS=.25*(GP*XMS-4.+SQRT(GP*(XMS*(GP*XMS+8.*(G-1.))+1S.)))/G
SINDEL=SQRT((XMS-XMNS*(2.*XMS+1.-XMNS*(XMS+2.-XMNS)))I
+(11+XMNS*(G-1+.25*XMS*GP*GP-G*XMNS)))/XMS DEL=ASIN(SINDEL)$RETURN

END SUBROUTINE WDETACH




