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INTRODUCTION

The equation

y" + afy' - ay + ty 3 = (1)

has been proposed by H. Lashinsky' as an analog to the Van der. Pol

equation2 to describe nonlinear saturation of aperiodic instabilities

such as the Benard instability in fluids3 and related plasma instabilities4.

In the Van der Pol equation, the saturation is described by a

nonlinear dissipation term of the form (- C -+ by + y y2 )y'. The

instability corresponds to the negative sign of the coefficient a:

This negative dissipation feeds energy into the system. The nonlinear

terms saturate the instability.

In the Lashinsky equation, on the other hand, the saturation is

described by a nonlinear restoring force of the form (- a + by2 )y.

The instability itself corresponds to the negative sign of the coefficient

a in the restoring force. The dissipation term consumes energy in this

case.

OSCILLATORY SOLUTIONS

First we wish to determine whether equation (1) has periodic or

oscillatory solutions for a > O, a > O, b > O. The equation (1) is

a special form of the more general Lienard equation

y" -+ f(y) . y' + g(y) = 0 (2)

which has been investigated extensively5 '6.



The Lienard Theorem6,7' 8 gives sufficient but not necessary conditions

for the existence of a strictly periodic solution y(t). The conditions

to be satisfied are:

1. f(y) = a, g(y) = - ay + by3 analytic, which is satisfied for (1).

2. g(y) an cdd function, g(O) = 0 and yg(y) > O, so that a restoring

force exists. This condition is also satisfied, depending on the

values of the coefficients a and b.

3. f(y) an even function and f(O) < 0 (regative damping at the origin,

so that there is an unstable singular point at the origin). For

(1) f(O) is positive, however, and the damping term is not a source

of energy.

F(y) Jo f(y)y = y G(y) = Jg(y)dy = y 2 + goto y
4. F(y) = jo f(y)dy = ay, G(y) = Jog(y)dy 2 b g to as

y - m, which insures periodicity. This condition is satisfied.

5. F(O) = 0 has a unique root at yo, Yo > 0 and is a monotonically

increasing function for y = Yo. Since we have yo = 0, the condition

yO > 0 is not satisfied.

Since all the conditions for periodicity are not satisfied, the

Lashinsky equation cannot possess a periodic solution. Also the Bendixson

Theorem5, the Frommer Theorem8, the Levinson-Smith Theorem5 ,6 show that

(1) has no periodic solutions in the sense

y(t + to) = y(t) (3)

This result, however, does not preclude the existence of oscillatory

solutions, i.e. solutions with several maxima and minima. Apparently

these oscillatory solutions are damped.



In order to investigate these solutions, we use the phase plane

method . We write (1) in the form of two first order equations

y' = u -P (u, y)

u' = - au + ay - by3 = Q (u,y)

Critical (equilibrium) points are then given by y' = O, u' = 0;

these points are i.e.

y' =u =O y = ± ,0

so that y" = 0 at these points. The characteristic equation that

determines the nature of these critical points is then

2 _ (P +I Q)x + PQ PU Q

From (4) we have Py = O, PU = 1, Q = a - 3by2 , = - C, so that

(6) becomes

x 2 + aX - a + 3by2 = 0

which gives for the point y = O, u = 0

=V / C + aXi2 = -±- 4

so that the origin of the phase plane is a saddle point (two real roots X

with opposite signs), so that this solution is unstable and y - A,

3

(4)

(5)

(6)

(7)

(8)



a
u - ~ for t - a. The critical points y = ± J, u = 0 give

1 ,2 = - 4- 2a (9)

so that these points are either a stable focus (complex l1, 2 with negative

real parts) for c2 < 8a, indicating a damped oscillation, or a stable

mode (both X are real and negative) for a2 > 8 a, indicating that no

oscillation occurs and y - const or zero, u - 0 for t - a.

In the case given by Lashinskyl, a - 10, a P 1 and we have no

oscillating solution, see section 3. In this section we investigate

oscillatory solutions, assuming a z O1, l,a P 1. It is of interest that

the value of b does not enter directly into this discussion which is

based on a linearized stability analysis. This feature is noteworthy,

since both terms ay' and - ay are nonoscillatory and the only term that

produces oscillations is by3 . The coefficient b enters the discussion

only through (5).

In order to eliminate b completely, we make the transformation

y(x) = a1/2 b- 1/2 u(t) (10)

which gives

u" + au' - au + au3 = O (11)

In the oscillatory case a2 < 8a and the smaller a the weaker the

dissipation. Neglecting au' as a first approximation, by multiplying (11)
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by u' and integrating we find

a2 au2 4

u au ±au= E (12)
2 4

where E is an integration constant (the energy). In this conservative

system no energy is lost and energy oscillates between kinetic and

potential energy. If a small dissipative term au' is now introduced,

then E decreases slowly and E = const must be replaced by E(t). This

procedure can be used to establish a perturbation method based on the

averaging process

From (12) we have

du
t(u) + q = du (13)

2 au4
V2E + au2 - au

where p is another integration constant. The integral is an elliptic

integral and may be solved by standard methodslo.

The inverse function u(t) - and also y(t) - may be expressed by

Jacobi elliptic functions whose modulus k depends on the energy constant

El12. If E varies slowly because of the dissipative term au', then

k - k(t) and we can use the averaging method we have described elsewhere9 .
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NON-OSCILLATORY SOLUTIONS

This is the case discussed by H. Lashinsky'. Fobr c 10, a ~ 1

the non-oscillatory condition c2 > 8 a is satisfied. We start from (11) using

the, tran sformation at = g, so that

U + U - gu + gu3 = O (14)

where u = du/d7 and g = a/c 2 = 102 . Now the perturbation problem is no

longer singular (as it was for c2 < 8 a) and we may set up a Poincare

expansion of successive approximations

u(g) = u (l) + g u.() + p2 U2 (9 ) + . -

Substituting into (14) we obtain

'%,+ %o= o

(15)

(16)

U, + 11 = u - u
0 o

U2 + u2 = ul - 3 u U1

neglecting higher orders than £2. Integ~ration yields

uo(4) = Ae
-

C +B

(17)

(18)

(19)
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-" i3 e 3' 3AeB -2- 2 ;3
ul(A) = e - A3e 

-
- e + 3AB2 e-

g - (-B+B3 ) + Ce + D (20)

For -a, the terms containing B , B3g tend to infinity, so that the

expansion (15) does not converge for a finite number of terms. These

terms are typical secular terms. In the oscillatory solution the secular

terms are avoided by the averaging process . In the present case the

secular terms are eliminated by appropriate adjustment of the arbitrary

integration constants (Lindstedt methodl3 ). To do this we put B = 0,

D = 0. The terms ge
-

: etc. are not secular. For u2(g) we have

U2(5) =18 A3e 3 e + Ae + 2A3 e +

(21)

-- _ A2 C e-3 + Ee-Z + FA~e - C2e

For g - O we now have from (15) and (19) - (21)

u(m) = 62F, u'(-) = 0, u'"(-) = 0 (22)

so that from (14) F = & 2 follows.

The following two initial conditions are of physical interest:

u(0) = d, u(0) = f

where

a) f = 0, d given; b) f given, d = 0.

We then have two equations for the three remaining constants A, C, E so

that one constant may be chosen arbitrarily e.g. to give a better fit
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to data obtained from a numerical integration. However, in order to adjust

a solution of the type (15) to the solution obtained from a numerical

integration, higher powers of e than the second must be taken into

account. Thus a straightforward numerical integration is simpler than the

expansion (15). The expansion, however, gives more physical insight into

the phenomena. The energy fed into the system at t = 0 is used to excite

several modes - the higher the initial energy, the greater the number of

modes that are excited. The higher the order of the mode, the more rapidly

it decays, so that after a certain time only the asymptotic value 1 remains.

The result of the numerical integration for & = 10- 2 , f = 0,

d = 0.2 are shown in Fig. 1; the values are given in Table 1. For g = 102,

f = 0.2, d = 0 we find the values in Fig. 2 and Table 2.
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Table 2

x y

0 0.20000

0.09999 0.20009

0.49999 0.20020

0.99999 0.20070

4.99986 0.20776

9.99969 0.21783

19.9973 0.23928

39.9863 0.28779

59-9757 0.34410

79.0148 0.40493

100.003 0.47911

120.992, 0.55836

126.988 (a) 0.58143.

139.981 0.63125

160.020 0.70539

180.009 0.77259

200.998 0.83272

219.987 0.87670

250.021 0.92699

280.004 o.95840

309.989 0.97684

343.984 0.98959

375.912 0.993722

400.000 0.99621

(a) Here we have a maximum of y'.
(b) Near here we have a minimum of y'.

x

0

0. 04999

. 09999

o.99999

4.99986

9.99969

19.9973

39.863

59.9755

79.0148

100.003

120.992

127.988 (E

1539.981

160.020

180. 009

200.998

219.987

250.021

280.004

309.989

349.984

375 .012

400.000

(b)

y

0

0.009754

0.019033

0.126628

0.20461

0.21584

0.23713

0.285267

0.34120

0.40169

0.47556

o.55466

0.58156

0.62758

0.70149

0.76956

0.83022

0.87471

0.92570

0.95763

0.97639

0.98939

0.99360

0.99614

Table 1

a)
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