MSC INTERNAL NOTE NO. 71-FM-241

June 30, 1971

SUN COMPASS ERROR MODEL

Mathematical Physics Branch
MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER
HOUSTON, TEXAS
MSC INTERNAL NOTE NO. 71-FM-241

PROJECT APOLLO

SUN COMPASS ERROR MODEL

By T. J. Blucker, Mathematical Physics Branch, and W. W. Ferry, TRW Systems Group

June 30, 1971

MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

Approved:

James C. McPherson, Chief
Mathematical Physics Branch

Approved:

John P. Mayer, Chief
Mission Planning and Analysis Division
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>3.0 DISCUSSION</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Error Model Description</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Sun Compass Field Test</td>
<td>4</td>
</tr>
<tr>
<td>4.0 CONCLUSIONS</td>
<td>6</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>LANDMARK SIGHTING DATA</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Landmark number 1 (MSC building number 32)</td>
<td>7</td>
</tr>
<tr>
<td>(b)</td>
<td>Landmark number 2 (MSC water tower)</td>
<td>8</td>
</tr>
<tr>
<td>(c)</td>
<td>Landmark number 3 (double water towers)</td>
<td>9</td>
</tr>
<tr>
<td>(d)</td>
<td>Clear Lake water tower</td>
<td>10</td>
</tr>
<tr>
<td>(e)</td>
<td>Clear Lake Hospital</td>
<td>11</td>
</tr>
<tr>
<td>(f)</td>
<td>Nassau Bay water tower</td>
<td>12</td>
</tr>
<tr>
<td>II</td>
<td>SUN AZIMUTH AND ELEVATION ANGLE RATES</td>
<td>13</td>
</tr>
<tr>
<td>III</td>
<td>INDIVIDUAL OBSERVER STATISTICS</td>
<td>14</td>
</tr>
</tbody>
</table>
SUN COMPASS ERROR MODEL

By T. J. Blucker, Mathematical Physics Branch, and W. W. Ferry, TRW Systems Group

1.0 SUMMARY

An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

2.0 INTRODUCTION

The Apollo 15 crew will have available for contingency navigation a sun compass under development by the Flight Crew Support Division. This device is used to measure the azimuth of known lunar landmarks to provide an observer position fix and also to supply a heading direction for guiding the return to the LM. The Mathematical Physics Branch has completed a study under TRW task A-169 to define an error model for this sun compass instrument.

A proposed error model for the sun compass angle readout includes the following additive terms.

a. A random error, independent of landmark azimuth, caused by observer sighting error and readout quantization

b. A random error, dependent on landmark azimuth, caused by a random tilt in leveling the sun compass

c. A bias error, dependent on landmark azimuth, caused by a mean tilt introduced by the observer in leveling the device
d. A bias error in the sun compass, independent of landmark azimuth
e. A bias error, independent of landmark azimuth, caused by leveling the device by reference to the local terrain slope

This error model assumes a mechanical leveling aid is not included with the device.

A sun compass, representative of the one to be included on Apollo 15, was obtained and a "field" test of the device was conducted at the Manned Spacecraft Center (MSC), which consisted of seven observers taking sightings on surveyed landmarks, with the sun elevation angle in the approximate range defined for the Apollo 15 lunar traverses (15° to 25°). The significant results of the test were as follows.

a. Repeated handling of the device caused the vertical flap (shadow generator) to become dislodged from its restraint, a condition which went unnoticed by several observers. This structural perturbation introduced an estimated 4° to 8° azimuth readout error and consequently it is recommended that the flap position be verified prior to each set of sightings.

b. The mean error for the total sighting set was 2.3°.

c. The standard deviation for the sightings on each landmark varied from 0.99° to 2.29° with a total root mean square (RMS) value of 1.60°.

d. The test provided no quantitative data for the bias errors caused by a leveling error. However, it was noticed that individual observers will introduce several degrees of pitch tilt in the device because of poor leveling cues about the horizontal axis perpendicular to the sighting line of sight (LOS). For a sun elevation of 25°, the maximum azimuth error is approximately 40 percent of the leveling tilt.

3.0 DISCUSSION

3.1 Error Model Description

The sun compass intended for use on the Apollo 15 lunar surface traverses is a hand-held device for measuring the azimuth of a landmark relative to a reference line (probably lunar north). The observer holds the device approximately chest high in a level orientation and points a reference line toward the desired landmark. A disk, to which is attached a vertical flap for projecting the shadow of the sun, is then rotated to align the shadow edge with a predetermined point on the disk. The azimuth
angle is finally read off the disk at the point of intersection with the sighting reference line. It is presently not certain if the sun compass will be outfitted with a mechanical leveling aid (most likely a dome bubble level).

A proposed error model for the sun compass azimuth readout, assuming no leveling aid, is presented in the following expression.

\[\Delta \theta_A = \eta_s + \eta_\theta + b_s + b_t \]

where

\(\Delta \theta_A \) = the error in the measured azimuth angle

\(\eta_s \) = a random error caused by the observer azimuth pointing deviation and sun compass readout quantization. This term is assumed to be independent of landmark azimuth.

\(\eta_\theta \) = a random error caused by a random tilt in leveling the sun compass. Without a leveling aid, an observer can still adjust the level about the sighting LOS axis by equalizing his hand height. Leveling the device about the axis perpendicular to the LOS (pitch axis) is considerably more difficult because of poor leveling cues. Assuming the total random leveling error is essentially in pitch, the azimuth error is given by

\[\eta_\theta = T_A \tan \alpha \sin (\theta - \beta) \]

\(T_A \) = random pitch angle tilt

\(\alpha \) = sun elevation angle

\(\theta - \beta \) = difference between landmark azimuth and sun azimuth

\[(1)^a \]

\(^a \)This expression was developed by L. J. Miller, TRW Systems Group.
The error term \(\eta_\theta \) is azimuth dependent as expressed in equation (1), with a maximum value for sighting perpendicular to the sun azimuth. Also, \(T_A \) may have a larger variance for sightings in the down-sun quadrants because the device must be held up and away from the body to avoid the observer's shadow.

\(b_\theta \) = a bias error term caused by a mean pitch tilt introduced by the observer in leveling the device. The expression for \(b_\theta \) is given in equation (1), where \(T_A \) now represents the mean pitch angle. The inclusion of this error term was motivated by the fact that an astronaut may have to operate the sun compass in a bent posture which could induce a mean tilt.

\(b_s \) = a bias error term contributed by the sun compass and independent of sighting azimuth

\(b_t \) = a bias error term caused by leveling the device by reference to the local terrain slope. The azimuth error is given by an expression similar to equation (1).

\[
b_t = \delta_s \tan \alpha \sin \phi \tag{2}
\]

where

\(\delta_s \) = terrain slope

\(\phi \) = angle between sun azimuth and terrain slope gradient

3.2 Sun Compass Field Test

In order to generate some statistical data for the sun compass error model, a field test was conducted on the device. The test sightings were performed by seven observers in a field behind MSC building 14 on May 11, 1971, in the time interval from 0800 to 0910 c.d.t. The sun elevation angle during this time varied from approximately 18° to 33°. Sightings were made on the following set of six landmarks (LMK).

LMK no. 1 - MSC building no. 32
LMK no. 2 - MSC water tower
LMK no. 3 - double water towers
LMK no. 4 - Clear Lake water tower

LMK no. 5 - Clear Lake Hospital

LMK no. 6 - Nassau Bay water tower

The "true" landmark azimuths were determined using a transit and are presented in figure 1. The sun azimuth and elevation angles were also measured at selected time points. A reference azimuth was defined as 90° = sun azimuth at 0830 c.d.t.

The basic sighting schedule consisted of each observer, in turn performing a single azimuth measurement on each of the six landmarks. The sequence was repeated twice for a total of 126 sightings (7 observers times 3 sightings times 6 landmarks). It was discovered, however, during the third sequence of sightings that the vertical flap on the sun compass had become dislodged from its restraint, introducing several degrees of bias in the data. An investigation of the sighting data for that round indicated that the misadjustment was unnoticed by several observers. Consequently, the data for that round were not included in the statistical analysis, leaving two sightings per observer per landmark.

The sighting data for each landmark are presented in table I. Listed first are the individual observer, the measurement time, and the raw (uncompensated) azimuth angle readout. To compensate for the time-varying sun azimuth, each sighting angle was converted to a measurement taken at 0830 c.d.t. using the sun azimuth rate computed in table II from transit readings. The resultant compensated angle is then the landmark azimuth measured relative to the previously defined 90° reference azimuth. The average of the 14 sightings on each landmark is given in the batch summary together with the mean difference from the transit determined ("true") azimuth. The mean square (MS) deviation from the batch mean for each observer's sightings was then tabulated and a batch standard deviation computed for the summary.

Plots of the mean and standard deviation for the sighting error on each landmark are given in figure 2. The average error for the total sighting set was 2.3°. Making the reasonable assumptions that the local terrain was level and individual observer leveling biases averaged out, the mean sighting error can be attributed to the sun compass.

The standard deviation for the sightings on each landmark varied from 0.99° to 2.29° with a total RMS value of 1.60°. The batch standard deviations tended to be larger for sighting azimuths cross-sun (LMK no. 3 and LMK no. 6), and also showed an increase for sightings in the down-sun quadrants (LMK no. 4, no. 5, and no. 6). These variations with azimuth appear to correspond to the predicted effects of the random tilt error previously discussed in the error model.
The standard deviation for the sightings taken by each observer are given in table III. The data show fairly good consistency among observers (except for Mr. Stimmel whose efforts shall not be criticized since he drove) and indicate a high correlation between sighting accuracy and the time interval in which the observations were taken.

4.0 CONCLUSIONS

An error model for the Apollo 15 lunar surface contingency navigation sun compass has been presented. The errors reported include a random error due to tilt in leveling, a random error due to observer sighting, a bias error due to mean tilt in leveling, a bias error in the sun compass itself, and a bias error due to leveling the device to the local terrain slope.
TABLE I - LANDMARK SIGHTING DATA
(a) Landmark number 1 (MSC building number 32)

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG)</th>
<th>MS*DEVIATION FROM BATCH MEAN (DEG²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNCOMPENSATED</td>
<td>COMPENSATED</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>0800</td>
<td>72.75</td>
<td>69.42</td>
</tr>
<tr>
<td></td>
<td>0822</td>
<td>69.00</td>
<td>68.11</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0805</td>
<td>71.00</td>
<td>68.23</td>
</tr>
<tr>
<td></td>
<td>0825</td>
<td>69.00</td>
<td>68.45</td>
</tr>
<tr>
<td>L. Miller</td>
<td>0807</td>
<td>70.00</td>
<td>67.45</td>
</tr>
<tr>
<td></td>
<td>0828</td>
<td>70.00</td>
<td>69.78</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0809</td>
<td>72.00</td>
<td>69.67</td>
</tr>
<tr>
<td></td>
<td>0831</td>
<td>71.00</td>
<td>71.11</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0812</td>
<td>70.50</td>
<td>68.50</td>
</tr>
<tr>
<td></td>
<td>0833</td>
<td>68.00</td>
<td>68.33</td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0815</td>
<td>70.00</td>
<td>68.34</td>
</tr>
<tr>
<td></td>
<td>0837</td>
<td>68.75</td>
<td>69.53</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0820</td>
<td>69.67</td>
<td>68.56</td>
</tr>
<tr>
<td></td>
<td>0842</td>
<td>66.25</td>
<td>67.58</td>
</tr>
</tbody>
</table>

BATCH SUMMARY:
Mean Sighting Angle = 68.79 deg.
True LMK Azimuth = 66.18 deg.
Mean Sighting Error = 2.61 deg.
Standard Deviation = 0.99 deg.

*Mean - Square
TABLE I. LANDMARK SIGHTING DATA - Continued

(b) Landmark number 2 (MSC water tower)

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG.)</th>
<th>MS DEVIATION FROM BATCH MEAN (DEG²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNCOMPENSATED</td>
<td>COMPENSATED</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>0801</td>
<td>47.50</td>
<td>44.28</td>
</tr>
<tr>
<td></td>
<td>0823</td>
<td>43.50</td>
<td>42.72</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0805</td>
<td>45.00</td>
<td>42.33</td>
</tr>
<tr>
<td></td>
<td>0825</td>
<td>41.00</td>
<td>40.56</td>
</tr>
<tr>
<td>L. Miller</td>
<td>0807</td>
<td>45.50</td>
<td>42.95</td>
</tr>
<tr>
<td></td>
<td>0829</td>
<td>44.00</td>
<td>43.79</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0810</td>
<td>46.50</td>
<td>44.28</td>
</tr>
<tr>
<td></td>
<td>0831</td>
<td>42.00</td>
<td>42.11</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0813</td>
<td>45.50</td>
<td>43.61</td>
</tr>
<tr>
<td></td>
<td>0834</td>
<td>42.00</td>
<td>42.44</td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0815</td>
<td>44.50</td>
<td>42.84</td>
</tr>
<tr>
<td></td>
<td>0838</td>
<td>40.50</td>
<td>41.39</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0820</td>
<td>41.00</td>
<td>39.89</td>
</tr>
<tr>
<td></td>
<td>0842</td>
<td>41.00</td>
<td>42.33</td>
</tr>
</tbody>
</table>

BATCH SUMMARY:

- Mean Sighting Angle = 42.54 deg.
- True LMK Azimuth = 40.02 deg.
- Mean Sighting Error = 2.52 deg.
- Standard Deviation = 1.29 deg.
<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG)</th>
<th>MS DEVIATION FROM BATCH MEAN (DEG²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNCOMPENSATED</td>
<td>COMPENSATED</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>0802</td>
<td>19.0</td>
<td>15.89</td>
</tr>
<tr>
<td></td>
<td>0823</td>
<td>14.5</td>
<td>13.72</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0806</td>
<td>14.0</td>
<td>11.34</td>
</tr>
<tr>
<td></td>
<td>0826</td>
<td>13.0</td>
<td>12.56</td>
</tr>
<tr>
<td>L. Miller</td>
<td>0807</td>
<td>20.0</td>
<td>17.45</td>
</tr>
<tr>
<td></td>
<td>0829</td>
<td>15.5</td>
<td>15.39</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0810</td>
<td>17.5</td>
<td>15.28</td>
</tr>
<tr>
<td></td>
<td>0832</td>
<td>14.25</td>
<td>14.47</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0813</td>
<td>17.0</td>
<td>15.11</td>
</tr>
<tr>
<td></td>
<td>0835</td>
<td>12.5</td>
<td>13.06</td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0816</td>
<td>15.5</td>
<td>13.95</td>
</tr>
<tr>
<td></td>
<td>0839</td>
<td>11.75</td>
<td>12.75</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0821</td>
<td>14.0</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>0843</td>
<td>12.25</td>
<td>13.69</td>
</tr>
</tbody>
</table>

BATCH SUMMARY:

Mean Sighting Angle = 14.12 deg.
True LMK Azimuth = 11.07 deg.

Mean Sighting Error = 3.05 deg.
Standard Deviation = 1.60 deg.
TABLE I. - LANDMARK SIGHTING DATA - Continued

(d) Clear Lake water tower

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG.)</th>
<th>MS DEVIATION FROM BATCH MEAN (DEG²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNCOMPENSATED</td>
<td>COMPENSATED</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>0803</td>
<td>296.0</td>
<td>293.0</td>
</tr>
<tr>
<td></td>
<td>0824</td>
<td>294.0</td>
<td>293.3</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0806</td>
<td>294.0</td>
<td>291.34</td>
</tr>
<tr>
<td></td>
<td>0826</td>
<td>292.0</td>
<td>291.56</td>
</tr>
<tr>
<td>L. Miller</td>
<td>0808</td>
<td>297.0</td>
<td>294.45</td>
</tr>
<tr>
<td></td>
<td>0830</td>
<td>294.0</td>
<td>294.00</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0811</td>
<td>295.75</td>
<td>293.64</td>
</tr>
<tr>
<td></td>
<td>0832</td>
<td>293.0</td>
<td>293.22</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0814</td>
<td>294.5</td>
<td>292.72</td>
</tr>
<tr>
<td></td>
<td>0836</td>
<td>292.0</td>
<td>292.67</td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0816</td>
<td>294.0</td>
<td>292.45</td>
</tr>
<tr>
<td></td>
<td>0840</td>
<td>290.75</td>
<td>292.97</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0821</td>
<td>291.75</td>
<td>290.75</td>
</tr>
<tr>
<td></td>
<td>0843</td>
<td>287.75</td>
<td>289.19</td>
</tr>
</tbody>
</table>

BATCH SUMMARY:

Mean Sighting Angle = 292.52 deg.
True LMK Azimuth = 290.82 deg.

Mean Sighting Error = 1.70 deg.
Standard Deviation = 1.40 deg.
TABLE I.- LANDMARK SIGHTING DATA - Continued

(e) Clear Lake Hospital

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG.)</th>
<th>MS DEVIATION FROM BATCH MEAN (DEG?)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNCOMPENSATED</td>
<td>COMPENSATED</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>0803</td>
<td>254.0</td>
<td>251.00</td>
</tr>
<tr>
<td></td>
<td>0824</td>
<td>251.0</td>
<td>250.33</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0806</td>
<td>252.0</td>
<td>249.34</td>
</tr>
<tr>
<td></td>
<td>0826</td>
<td>249.0</td>
<td>248.56</td>
</tr>
<tr>
<td>L. Miller</td>
<td>0808</td>
<td>252.0</td>
<td>249.56</td>
</tr>
<tr>
<td></td>
<td>0830</td>
<td>250.0</td>
<td>250.00</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0811</td>
<td>252.5</td>
<td>250.39</td>
</tr>
<tr>
<td></td>
<td>0832</td>
<td>251.25</td>
<td>251.47</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0814</td>
<td>251.0</td>
<td>249.22</td>
</tr>
<tr>
<td></td>
<td>0836</td>
<td>248.0</td>
<td>248.67</td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0816</td>
<td>251.0</td>
<td>249.45</td>
</tr>
<tr>
<td></td>
<td>0840</td>
<td>249.5</td>
<td>251.72</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0821</td>
<td>247.0</td>
<td>246.00</td>
</tr>
<tr>
<td></td>
<td>0843</td>
<td>243.0</td>
<td>244.44</td>
</tr>
</tbody>
</table>

BATCH SUMMARY:

Mean Sighting Angle = 249.29 deg.
True LMK Azimuth = 246.90 deg.

Mean Sighting Error = 2.39 deg.
Standard Deviation = 2.00 deg.
TABLE I. - LANDMARK SIGHTING DATA - Concluded

(f) Nassau Bay water tower

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>TIME</th>
<th>SIGHTING ANGLE (DEG.) UNCOMPENSATED</th>
<th>COMPENSATED</th>
<th>MS DEVIATION FROM BATCH MEAN (DEG²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Dashiell</td>
<td>0804</td>
<td>203.0</td>
<td>200.11</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>0825</td>
<td>199.5</td>
<td>198.95</td>
<td></td>
</tr>
<tr>
<td>J. Blucker</td>
<td>0807</td>
<td>202.0</td>
<td>199.45</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>0827</td>
<td>197.0</td>
<td>196.67</td>
<td></td>
</tr>
<tr>
<td>L. Miller</td>
<td>0808</td>
<td>201.0</td>
<td>198.56</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0831</td>
<td>197.0</td>
<td>197.11</td>
<td></td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>0812</td>
<td>202.0</td>
<td>200.00</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>0833</td>
<td>199.5</td>
<td>199.83</td>
<td></td>
</tr>
<tr>
<td>S. Crigler</td>
<td>0815</td>
<td>200.0</td>
<td>198.34</td>
<td>6.74</td>
</tr>
<tr>
<td></td>
<td>0837</td>
<td>193.5</td>
<td>194.28</td>
<td></td>
</tr>
<tr>
<td>W. Ferry</td>
<td>0817</td>
<td>200.5</td>
<td>199.06</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>0841</td>
<td>199.0</td>
<td>200.22</td>
<td></td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>0822</td>
<td>196.0</td>
<td>195.11</td>
<td>14.68</td>
</tr>
<tr>
<td></td>
<td>0844</td>
<td>191.75</td>
<td>193.30</td>
<td></td>
</tr>
</tbody>
</table>

BATCH SUMMARY:

- Mean Sighting Angle = 197.93 deg.
- True LMK Azimuth = 196.17 deg.
- Mean Sighting Error = 1.76 deg.
- Standard Deviation = 2.29 deg.
TABLE II.- SUN AZIMUTH AND ELEVATION ANGLE RATES

AZIMUTH ANGLE

<table>
<thead>
<tr>
<th>TRANSIT SIGHTING</th>
<th>TIME</th>
<th>AZIMUTH ANGLE (θ_A)</th>
<th>$\frac{\Delta \theta_A}{\Delta T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0832</td>
<td>77.15 deg.</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>0841</td>
<td>78.12 deg.</td>
<td>.107 deg/min</td>
</tr>
<tr>
<td>#3</td>
<td>0850</td>
<td>79.13 deg.</td>
<td>.112 deg/min</td>
</tr>
<tr>
<td>#4</td>
<td>0900</td>
<td>80.25 deg.</td>
<td>.112 deg/min</td>
</tr>
</tbody>
</table>

Average Rate = 0.111 deg/min

ELEVATION ANGLE

<table>
<thead>
<tr>
<th>TRANSIT SIGHTING</th>
<th>TIME</th>
<th>ELEVATION ANGLE (θ_E)</th>
<th>$\frac{\Delta \theta_E}{\Delta T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0832</td>
<td>25.00 deg.</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>0841</td>
<td>25.87 deg.</td>
<td>.208 deg/min</td>
</tr>
<tr>
<td>#3</td>
<td>0850</td>
<td>28.83</td>
<td>.218 deg/min</td>
</tr>
<tr>
<td>#4</td>
<td>0900</td>
<td>30.95</td>
<td>.212 deg/min</td>
</tr>
</tbody>
</table>

Average Rate = .213 deg/min
TABLE III. - INDIVIDUAL OBSERVER STATISTICS

<table>
<thead>
<tr>
<th>OBSERVER</th>
<th>SIGHTING TIME INTERVAL</th>
<th>SIGHTING ERROR STANDARD DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Ferry</td>
<td>8 min.</td>
<td>1.18 deg.</td>
</tr>
<tr>
<td>S. Crigler</td>
<td>7 min.</td>
<td>1.21 deg.</td>
</tr>
<tr>
<td>J. Dashiell</td>
<td>8 min.</td>
<td>1.22 deg.</td>
</tr>
<tr>
<td>J. Blucker</td>
<td>5 min.</td>
<td>1.33 deg.</td>
</tr>
<tr>
<td>L. Miller</td>
<td>4 min.</td>
<td>1.44 deg.</td>
</tr>
<tr>
<td>M. Gelberg</td>
<td>5 min.</td>
<td>1.48 deg.</td>
</tr>
<tr>
<td>T. Stimmel</td>
<td>4 min.</td>
<td>2.71 deg.</td>
</tr>
</tbody>
</table>

The standard deviation is computed as the RMS deviation from the batch means for two sightings on each of the six landmarks.
The Reference Azimuth is defined as the Sun Azimuth at 0830 CDT on 11 May 1971.

Figure 1.- Landmark sighting geometry.
Figure 2. - Mean and standard deviation for sighting error on each landmark.