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ABSTRACT

This volume reports the results of a study of guidance and navigation

requirements for unmanned missions to the outer planets, assuming

constant, lowthrust, ion propulsion. The objective of the study is toexamine

the navigational capability of the ground based Deep Space Network in

relation to the improvements in navigational capability brought about by

the addition of guidance and navigation related onboard sensors. Relevant

onboard sensors include the optical onboard navigation sensor, the attitude

reference sensors, and highly sensitive accelerometers.

The totally ground based, and the combination ground based and

onboard sensor systems are compared by means of the estimated errors

in target planet ephemeris, and the spacecraft position with respect to the

planet. Comparisons are made for two missions:

a) Jupiter Orbiter,

b) Saturn Orbiter,

and each mission is divided into interplanetary and near planet legs. The

near planet leg does not include the orbital phase.

The results show that onboard navigation produces substantial

fractional reductions in planet arrival errors based on purely DSN data,

but these are already small. Consequently onboard navigation cannot be

justified purely from a navigational standpoint. Onboard accelerometers

are shown to reduce navigation errors by aiding in the reduction of thrust

vectoring errors and spacecraft mass uncertainty. The results assume

one arcminute attitude control by the attitude control system. It is also

shown that first perturbation guidance is adequate to null reasonable

trajectory perturbations.

111



Page intentionally left blank 



ABSTRACT

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

PAGE

CHAPTER 2.

2. 1

2. 2

2.3

2 .4

2.5

2. 6

THE SIMULATION MODEL

General Remarks

Statistical Model

Navigational Uncertainties

Navigation

The Nominal Trajectory

Guidance

2 . 6 . 1 General Remarks

2 . 6 . 2 A Nonoptimal Scheme

2.6 .3 Optimal Perturbation Schemes

2. 7 Organization of Computation Procedure

7

7

8

9

9

10

11

11

12

13

14

CHAPTERS.

3.1

3.2

3.3

ONBOARD SENSOR STUDIES

Accelerometers

Attitude Control Sensors

Onboard Navigation

17

17

20

26

CHAPTER 4.

4.1

4.2

4.3

4.4

4.5

4 .6

CHAPTER 5.

MISSION SIMULATION RESULTS

Introduction

Tables of Results

Jupiter Interplanetary Results

Jupiter Near Planet Results

Saturn Interplanetary Results

Saturn Near Planet Results

CONCLUSIONS AND RECOMMENDATIONS

29

29

29

34

37

38

39

43

APPENDIX A DYNAMICS

APPENDIX B INTERPLANETARY TRAJECTORY GEOMETRIES

47

51



APPENDIX C PLANETARY PASSAGE TRAJECTORY GEOMETRIES 67

APPENDIX D

D. 1

D.2

STATISTICS

State

Vari.ati.onal Equations

D.3 Statistical Propagation

D. 4 Coordinate Change

D. 5 Accelerometer Measurements

D. 6 DSN Measurements

D. 7 Onboard Measurements

D. 8 Measurement Selection

87

87

88

94

98

99

102

105

107

APPENDIX E GUIDANCE

E. 1 Nominal Suboptimal Control

E. 2 A Non optimal Perturbation Guidance Scheme

E. 3 Terminal Controller with Quadratic Cost

113

113

117

123

APPENDIX F GUIDANCE SENSITI VI TY RESULTS

F. 1 Introduction

F. 2 Characteristics of the Plots

F. 3 Example 1

F. 4 Example 2

APPENDIX G ONBOARD SYSTEMS CONFIGURATIONS

G. 1 Navigation Sensor, Weight, Power, Volume

G. 2 Low Thrust Accelerometers

G. 3 Thrust Vector Misalignment

REFERENCES

125

125

126

128

131

191

191

192

198

203

VI



CHAPTER 1

INTRODUCTION

The study reported in this volume represents the second phase of a

sequence of studies funded by NASA under contract NAS2-5043, and directed

by the Mission Analysis Division of the Office of Advanced Research and

Technology. The first part (or Phase A) of the study was concerned with

guidance and navigation requirements for outer planet missions in which

trajectory corrections are made exclusively by means of short duration,

impulsive velocity changes after transplanetary injection. Missions studied

under Phase A included a Jupiter flyby, a Jupiter swingby to Saturn, and a

four planet grand tour. The second (or Phase B) part of the study, reported

in this volume, is also concerned with guidance and navigation requirements,

but for missions involving spacecraft with constant low-thrust propulsion.

The Phase B studies considered direct missions to Jupiter and Saturn.

The analysis of a Neptune mission was not completed due to computational

problems and contract time limitations. The total trajectory for each

mission is an optimized combination of chemical propulsion and low thrust

propulsion. The chemical propulsion is used for planet departure and planet

arrival while the low thrust is used for the interplanetary stage. The use

of high thrust chemical propulsion avoids the need for a spiral type of

planetary departure and arrival maneuver. This report concentrates on

the low thrust portion of the missions.

For the Phase B studies, the general objectives have been the same

as for Phase A, namely:

1) determine the characteristics associated with (a) totally Earth-

based, and (b) a combination of Earth-based and onboard

navigation concepts;

2) determine the associated navigation and guidance subsystem

weight, power, and volume for representative navigation and

guidance subsystem concepts applied to mission objectives;



3) determine the accuracy requirements placed on the midcourse

propulsion and attitude control subsystems by each of the above

combinations;

4) perform trade off analyses which compare on a total guidance

and navigation subsystem basis, the three navigation concepts

for each nominal mission, considering both the heliocentric and

near planet portions of the missions.

In addition to these general objectives, there was a requirement in Phase

B to develop a suitable guidance control algorithm for the low thrust

missions.

Some of the interesting characteristics of the low thrust missions

are listed in Table 1.1. The ion thrusters to be used for these missions
-3 3develop about 6x10 Ibs. of thrust. Applied to a spacecraft with a 10 kg

mass this thrust gives about 10 g of acceleration, or about one millionth

of the acceleration of a typical high thrust case. The small acceleration

levels are offset by the long thrust periods of one to four years as shown

in the fourth row of Table 1.1. The combination of low thrust level and

long thrust periods produces the substantial AV's shown in the last row of

the table. These in turn lead to the shorter flight times listed near the

top. For a Jupiter mission, the ion thrust mission is slightly longer than

the high thrust, but for Saturn there is a time-savings of over 25%. For

flights to planets beyond Saturn, the time savings would increase substan-

tially.

The low constant thrust, with changing direction in the celestial sphere,

complicates the equations of motion (see Appendix A) of the spacecraft

sufficiently so that they must be integrated numerically. The associated

trajectories were supplied by the NASA Mission Analysis Division for these

missions. However, the trajectories were reproduced for this study by

the MIT Draper Laboratory in order to have nominal trajectory reference

points for arbitrary time during the flight, rather than at specific preselected

times. This allows changes in measurement schedules and key navigation



Table 1.1

Low Thrust Mission Characteristics

Missions

Periplanet Radius
(planetary radii)

Jupiter Saturn

Launch Date

Arrival Date

23 Sept. 1979

13 Oct. 1981
10 August 1980

1 July 1983

Total

Low Thrust
Flight Time (Yr)

2. 0 2. 7

Direct
Ballistic Flight (Yr)

1. 7 3.7

Total Thrust
on Time (Yr)

1.0 1. 7

Time Within
Sphere of Influence (Days)

65 69

Approximate Total
AV (km/sec)

9 .2 20. 8



and guidance systems parameters to be analyzed. The trajectories are

fully described in Appendices B and C.

Chapter 2, following this introductory chapter, presents a discussion

of the navigation simulation. Included in Chapter 2 are discussions of the

computational procedure, the way in which thrust vector misalignment

affects the navigation results, problems of extrapolating error covariance

matrices, and guidance algorithms that could be applied to these missions.

Chapter 3 discusses general problems associated with the design of those

onboard sensors which are closely related to guidance and navigation.

These sensors include accelerometers, optical attitude control reference

sensors, and onboard navigation instruments. Only onboard navigation

instruments of the scanning photometer type have been considered for Phase

B.

In Chapter 4 the navigation results are presented. Feedback effects

on navigation errors are not represented in the results because of an inability

to achieve coupling of navigation and guidance simulations within allotted

time and computer availability constraints. Results listed include errors

in spacecraft position, planetary ephemeris, velocity, spacecraft mass and

thrust vector alignment. The listed errors represent the errors at the

target planet sphere of influence and at periplanet.

Chapter 5 presents general conclusions, a results summary, and

recommended further studies.

The Appendices are in seven sections, and contain the more detailed

information about calculations, derivations, trajectories etc. In Appendix

A mathematical symbols are defined including coordinate systems and

control angles, and the equations of motion of the spacecraft are displayed.

Appendix B contains system related curves for the interplanetary

leg of the missions. The curves include trajectories in solar system

coordinates, time varying aspect angles between the spacecraft and various



navigation and attitude reference objects, and ranges to planetary satellites.

Appendix C contains similar information for the near planet portion of the

missions.

In Appendix D the equations used for propagation of statistical errors

are derived, including contributions from onboard navigation instruments,

the Deep Space Network (DSN), accelerometers, and the uncertainties

considered.

Appendix E contains guidance derivations including a derivation of

the nominal optimal control, and descriptions of the candidate perturbation

guidance schemes.

Appendix F presents a series of curves from which guidance ac-

curacies may be obtained. Since guidance and navigation were not simulated

simultaneously for the reasons cited above, the navigational accuracies

must be used in conjunction with these plots to approximate the obtainable

guidance accuracies. Three pieces of information can be obtained from

these curves: 1) the maximum deviation from the reference trajectory

which can be corrected by the end of the mission as a function of time to

go; 2) the position error which will result at arrival if the maximum deviation

is exceeded; 3) the perturbation in the control required to cancel the effects

of the deviation from the reference trajectory.

Finally, Appendix G presents system related information on specific

accelerometer types and problems in thrust vectoring.
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CHAPTER 2

THE SIMULATION MODEL

2.1 General Remarks

In this chapter is a general discussion of the simulation. The model

used, uncertainties considered, the navigational and guidance aspects of

the simulation and the organization of the computer program used in the

simulations are described. The mathematical details are omitted here

and are presented instead in Appendices D and E.

In Phase B, interplanetary propulsion is achieved using the fixed low

thrust level which would be characteristic of a nuclear powered ion engine.

The nominal trajectories were furnished by the NASA Mission Analysis

Division and were determined as the solution to a minimum fuel, fixed

terminal time, position, and velocity optimization problem, where the Earth

departure and the planet arrival are partly performed by chemical stages.

These trajectories are characterized by a long thrusting period, a long

coast period, and another thrust period. Since the thrust magnitude is

fixed, trajectory error correction is accomplished by steering or varying

the thrust on/off switch times.

One aspect of this phase of the study was to develop and incorporate

into the simulation a guidance system appropriate to the lowthrust missions,

and to see if with such a guidance system, deviations from the nominal

could be kept sufficiently small. Since there is no control during the coast

period and since the missions are long, small velocity error sat the beginning

of a coast can grow into large positional errors at the end of the coast

period.

As with the high-thrust phase of this study, the navigational aspect

of the study involved the relative value of using Earth based radar



measurements (DSN), onboard measurements, or combinations of these two.

In addition accelerometer measurements were considered with various

combinations of DSN and onboard measurements.

2.2 Statistical Model

In the present phase of the study, a statistical error analysis was

performed similar to that done in Phase A. We consider the statistics of

first order deviations from a reference trajectory. Since all random

processes were assumed Gauss-Markov processes, only second order

statistics were necessary. The reference trajectory was the nominal

minimum fuel trajectory. Measurements were linearized about thenominal

values which were obtained using the mission reference trajectory.

Since for these missions we were using piecewise continuous thrusting,

the "mid-course velocity corrections" also represent a piecewise continuous

process. Thus, discrete velocity corrections were not incorporated as

they were for Phase A. The extrapolation of statistics and the course

corrections are combined as the solution of a set of differential equations

describing the statistics.

TAs with Phase A the statistics of interest are E(t) = e(t) e_(t) and
TX(t) = <5x_(t) 6x.(t) where &x(i) is the deviation from the nominal and e(t) is

the error in the estimate, 6x, i.e. e(t) = &x.(t) - $x(t). The overbar indicates

we are taking the expected value over the ensemble. E is thus the estimation

error covariance and X the covariance matrix of deviations from the

reference trajectory. In order to write the differential equation for X and

E, one must also define other correlation matrices. These are given in

Appendix D,

A statistical analysis is required to see what the effects of various

initial errors are on the mission outcome. The various uncertainties

considered were in thrust vector alignment, mass flow rate, thrust

magnitude, planetary or solar mass, destination planet position, and the



spacecraft injection state. The two-dimensional thrust vector misalignment

was made part of the 12 dimensional state and was assumed to be driven

by white noise with a known covariance. The uncertainty in thrust magnitude

was modeled as white noise. The uncertainty in mass flow rate.was modeled

as white noise plus a bias. - The planet and sun mass uncertainties were

considered as biases, as were the two dimensional station location errors,

which are uncertainties in the longitude and off spin axis distance of the

radar stations which make DSN measurements.

2.3 Navigational Uncertainties

Besides the uncertainties which affect the dynamical behavior of the

spacecraft, there were uncertainties in the quantities which were used for

onboard measurements. These were, for example, uncertainties in planetary

radii, satellite radii, planetary horizon altitude, and planet and satellite

ephemerides. The incorporation of those uncertainties and the source of

values used is discussed in Vol. II, Ch. 2, Sec. C.

2.4 Navigation •,

The navigational technique and program used for tuc low-thrust

mission simulations is essentially identical to that used in Phase A for

the high thrust missions with the exception that accelerometer measurements

were used here for navigation purposes. As in Phase A of this study,

radar measurements from Earth (DSN) and onboard measurements (e.g.

star and planet sightings, planet radii) were used for navigation and their

relative worth was compared.

The incorporation of these measurements was done in the same general

way as in Phase A, where a nine dimensional state made up of spacecraft

position and velocity and target planet position was used. In this phase

the state has the above nine components plus the spacecraft mass and two

thrust vector misalignment angles. The onboard navigation sensor (except

accelerometer) and DSN measurements do not directly measure these last



three components of the state, so that the equations used for navigation

were altered only so as to use the 12 dimensional state with zeroes added

to the relevant matrices to make them dimensionally consistant.

Accelerometers measure the thrust acceleration. Since a low thrust

spacecraft is thrusting over long periods of time and since small deviations

in the thrust direction and magnitude would significantly affect the trajectory

over these long periods, it was of interest to see how accelerometer

measurements affect the navigation error.

Two cases of accelerometer measurement incorporation were

considered. In the first it was assumed that 3 accelerometers were used.

This gives an estimate of the vector thrust acceleration. The elements of

the state directly influenced by this measurement are the mass and the

thrust vector misalignment angles. In the second case it was assumed

that one accelerometer was mounted along the nominal thrust vector

direction. One accelerometer yields information about mass flow rate but

little about the misalignment angles. Accelerometer measurements were

added to both the DSN only and to the DSN and onboard measurement cases.

The derivations and equations are given in detail in Appendix D.

2.5 The Nominal Trajectory

This section discusses the solution of the optimal control problem

which results in the nominal trajectory used in the study. Some discussion

of the boundary value problem which results is also included.

The problem can be stated as follows. Assume we are given a

spacecraft which starts at a given fixed initial time, position and velocity

and with a given initial mass, and we wish to find the trajectory which

takes the spacecraft to a fixed terminal position and velocity at a fixed

terminal time and minimizes fuel consumption. The spacecraft moves in

the gravitational field of the sun and one (target) planet. Thrust can be

turned on and off and the thrust directions varied, but thrust magnitude is

10



fixed. This is a well posed problem in optimization theory and is treated

mathematically in detail in Appendix E. To solve this problem a seven

dimensional state is defined which includes the position and velocity and

mass of the spacecraft. The planet position is obtained from anephemeris.

In solving the optimization problem, one also defines a seven dimensional

costate. Applying necessary conditions leads to a two point boundary value

problem in the state and costate where some components of the state and

costate are specified at the initial time and some are specified at the final

time. This two point boundary value problem was solved numerically by

the NASA Mission Analysis Division, in providing the nominal trajectories.

2.6 Guidance

2.6.1 General Remarks

In this section the nonoptimal guidance system used, and also other

guidance schemes which were considered are discussed. "Deterministic"

guidance schemes were considered which could be applied to a statistical

analysis.

The navigation system is used to determine where the spacecraft is.

This information is then acted on by the guidance system to get the spacecraft

to its target while meeting various mission criteria. For the missions

considered in this study, the target was a particular position and velocity

in space at a particular final time. In addition we would like to use as

little additional fuel as possible.

The object of the guidance scheme was to determine what the

deviational control should be if deviations from the nominal path occur.

The deviational or variational control could be either a change in the thrust

direction or the switching of the thrust on or off at non-nominal times. It

was desired to get a feedback law given by a gain matrix A (t) such that

•8u(t) = A(t) 6x(t),

11



where 6x(t) is the deviation from the nominal state at time t. Methods

were considered for obtaining a change in the switch times, At , as a functions
of 6x.(t), but the guidance scheme utilized assumed that switches occurred

at the nominal times and all guidance was by steering only. Once the gain

matrix is developed for the deterministic problem it can be applied to the

statistical problem by assuming

6u(t) = A( t )6x( t )

where 6x(t) is the estimate of <5x. This expression is substituted into the

variational differential equations for 6x. and 6.x from which the matrix

differential equations for the error covariance matrix

T
E = e §/

(e = 6x - 6x)

and the deviational covariance matrix

X = 6x Sx

are formed.

2.6.2 A Nonoptimal Scheme

A nonoptimal guidance scheme was developed which had as its object

the nulling of the components of the deviation in position which are

perpendicular to the nominal velocity direction at the final time. The

component of position in the direction of velocity is uncontrollable by steering

alone. This component could however be diminished by altering the switch

times if the last switch has not already occurred. If during the last thrust

period we find that we are further from the target than the nominal distance,

due to revised spacecraft position knowledge or because the planet is not

where we originally thought it to be, it is impossible to arrive at the final

12



position at the fixed final time using constant thrust. If we are closer

than anticipated, however, the engine could be turned off early. The

nonoptimal scheme results in a gain matrix (Appendix E) which, when

multiplied by the state deviation, gives the constant (in time) control which

would null the components of position perpendicular to final nominal velocity

at the final time assuming that 6xwas not later altered by new measurements

or other "random" influences.

Guidance was not included in the statistical results. However, it is

possible to get some useful information from the guidance scheme directly

(see Appendix F). For example it is possible to specify the maximum

state deviations which can be "nulled" (i.e. the positional components

perpendicular to the nominal velocity at the final time can be nulled) given

a maximum value for the magnitude of the variational control. We can

also obtain the values for the two positional components if those maximum

state deviations are exceeded. Given a state deviation we can also get the

perturbed control angles that would result.

2.6.3 Optimal Perturbation Guidance Schemes

One possibility considered was using a second variation scheme as
2

discussed in Ch. 6 of Bryson and Ho. Under the assumptions needed for

this scheme, a perturbed trajectory is extremal in the sense of the nominal

trajectory. For our case this would be a minimum fuel trajectory. However,

because we have a constant thrust engine and a fixed terminal time, after

the last thrust switch, when the thrust is on for the rest of the trajectory

for the nominal case, it is impossible to meet the terminal conditions for

certain perturbations. In fact, over this part of the trajectory there cannot

be any perturbed optimization of fuel, since the fuel consumption is fixed,

the thrust is on until the final time. Thus there are no "neighboring

extremals", and the second variational scheme cannot be used over this

part of the trajectory. In an actual mission, there would be some ability

to throttle the thrust level, although that was not considered in this study.

13



Another possible optimization scheme is to use a terminal controller.

(See Ref. 2, Sec. 5,2.) Here we would fix the switch times at their nominal

values. The system would be the linearized variational state equations

and the performance index would be made up of a positive definite quadratic

form in the terminal deviational state plus an integral of positive definite

forms in the deviational state and control. It is possible to get an exact

explicit feedback law for this problem. The gain matrix is the solution to

a Ricatti equation. Although this method was attempted, (see Appendix

E.) it was given up in favor of the nonoptimal scheme discussed earlier

due to numerical difficulties in solving the Ricatti equation and lack of

time to resolve this difficulty.

2.7 Organization of Computation Procedure

Three programs were used in addition to the main program which

performed the error analysis. The first created and stored the reference

trajectory. Using this stored information the guidance program then created

gain matrices which also were stored. These matrices were used to get

the variational control as a function of the .state deviations. The third

program generated cost matrices used for the measurement selection.

Thus the nominal trajectory, gains matrices, and cost matrices were stored

for each mission prior to the running of the main program.

Figure 2.1, shows a flow chart of the major elements of the main

computer program. The input is the various correlation matrices for the

initial injection or the terminal correlation matrices for a previous leg of

the same mission. The number of "decision points" is preselected at the

time of input. At each decision point the program determines if a DSN or

onboard measurement should be taken. If accelerometer measurements

are taken during a leg, these are incorporated "continuously", there being

no decision on whether or not to incorporate them.

The first step was to extrapolate the correlation matrices to the first

decision point. This is done by numerically integrating the matrix dif-

ferential equations for the various correlation matrices. The effect of the

14
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Fig. 2. 1 Simulation Logic Diagram
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guidance is included in these differential equations. After this, if it is

time to incorporate a DSN measurement, this is done. Then the onboard

measurement options, are considered, i.e., whether to take an onboard

measurement or not, and if so, whether to incorporate a predetermined

measurement or sequence of measurements, or enter the measurement

selection process.

The selection of individual measurements is determined byminimizing

the mean squared position estimation error at a preselected target point

(usually the destination point). This criterion utilizes the cost matrices

which had been computed and stored before running the main program.

The details of this process are discussed in the Measurement Selection

section of Appendix D. The measurements were chosen from the same

types as listed in Vol. II, Ch. II, Sec. E. Namely, 1) planet/moon diameter

2) planet/moon center to star, 3) star occultation, 4) planet/moon limb to

star 5) sun-star. Lists of navigational stars and of planetary satellites

are given in Vol. II, Table II-7 and 8 respectively. The error associated

with making each type of measurement is modeled as an appropriate

combination of the basic instrument pointing error and the uncertainty

involved in defining a planet limb. Different numerical values are used

for each planet and for the dark and light edge sightings. Once the best

measurement is found, it is incorporated if it gives a sufficient reduction

in the selection criterion. Once the required number of measurements

for this decision point have been selected and incorporated, the statistics

are extrapolated to the time of the next decision point and the entire process

is repeated until all decision points have been processed.

16



CHAPTER 3

SENSOR SYSTEM STUDIES

In relation to the high thrust outer planet missions, the functional

requirements of onboard sensors for the low thrust spacecraft remain

essentially unchanged. The same types of sensors are required for attitude

control, thrust vectoring, navigation, etc. However, changes in the sensor

operational environment due to the long period continuous thrusting have a

number of new implications for the system design. For example the changing

thrust vector orientation throughout the flight implies that the thrusters

and communications antenna have to be gimballed with respect to each other.

Arbitrary beam pointing with respect to a fixed spacecraft attitude will

lead to unwanted torques, and therefore communication antenna gimballing

appears likely. Thisraisesthe possibility that the location of the spacecraft

inertial centroid will be changed as the antenna is rotated, and a feedback

problem involving torque reduction, thrust vectoring, and antenna pointing

will be produced. Changes in the sensor operational environment for ion

thrust missions also imply long life requirements for certain other design

changes. Requirements placed on the various navigation and guidance related

sensors are the subjects of this section.

3.1 Onboard Accelerometers

The placing of highly sensitive accelerometers on the ion thrusted

spacecraft results in improved navigation by means of reduction in the

thrust vector misalignment. The accelerometer sensitive axes can be

precision aligned with respect to attitude control optical sensors to within

a few seconds of arc. Thrust direction with respect to the accelerometer

axes can then be accurately determined depending on accelerometer ac-

curacy, and can be referenced to celestial coordinates via the attitude control

system. Although the low thrust acceleration places requirements on the

accelerometers that depend on the mode of usage, the accelerometer

17



sensitivity levels necessary to achieve a given thrust vectoring accuracy
-5are directly established by the nominal thrust acceleration level of 10 g's.

From Figure G.2 of Appendix G it can be seen that 2 arcsecond thrust

vectoring (assuming that the attitude control system is good enough) requires

an accelerometer with 10 g sensitivity. Requirements on null bias

measurement and scale factor accuracy depend on the attitude control system

accuracy and the details of the measurement process. First order null

bias effect scan be calibrated to sufficient accuracy by allowing momentary

thrust interruptions. In time there will, of course, be bias drifts, and as

a consequence, the null calibration rate will have to be geared to drift

rates. These in turn may have to be determined in flight under actual

working conditions. Second order null variations will be caused by

fluxuations in the thermal environment control, and also there will be

apparent second order null fluxuations related to the limiting accuracy of

null calibrations. In a pulsed type accelerometer, null calibration accuracy

is limited by pulse rate variations and pulse energy variations which are

due to fluxuations in the trigger level voltage, the pulse generating

electronics, and the pulse counting device. One of the driving sources of

these fluxuations will be temperature variations. To decide how to calibrate

null withmaximum expediancy it will benecessary to studythe trade between

short thrust shutdowns and their associated small smoothing time, and long

thrust interruptions which would allow larger samples to betaken, but which

might require that a separate attitude control system be turned on, which

would in turn degrade thrust pointing from a previously well established

vectoring. However null is calibrated, there will result a residual null

uncertainty which will be an estimated noise source for thrust vectoring

at a level of some small percentage of the null measurement.

Accelerometer scale factor accuracy determination presents a

similar, and in some ways more difficult problem to that of null bias

measurement. There will be mechanical scale factor errors which at a

given output is equivalent to a null bias. Unfortunately there is no simple

independent standard against which scale factor errors can be calibrated.

Several possibilities suggest themselves. The gravity gradient could be
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used in the period just after trajectory injection, however, there would be

drifts in the resulting value later in the flight when gravity gradient was

too smallto use as a reference. Accelerometers could be mounted on

tracks allowing them to be moved outward from the spacecraft center of

mass by precision amounts, thus using the self gravitation of the craft as

a reference. This procedure would be seriously complicated by complex

gravitational fields caused by spacecraft asymmetries for a 3-orthogonal-

accelerometer system. Scale factor bias errors are unimportant with

regard to thrust pointing as long as they are identical for each accelero-

meter of the set. This suggests that the accelerometers might be gimballed

as a set and placed and calibrated in identical positions to make the scale

factor biases equal. Residual scale factor fluxuations are treated as a

random noise source.

Although it is easy to speculate on the process of calibrating ac-

celerometers at the 10 g level, examination of some of the g levels

intrinsic to the ion propulsion situation illustrates the smallness of 10 g

in relation to some of the other force levels that might occur. For example
3 — 8the surface gravity of a 10 kg sphere with a 1 meter radius is about 10 g's.

If the sphere is rotating at 1 arcsecond/second, the centrifugal acceleration

is roughly 10 g's. This implies that spacecraft rotational oscillations

within an attitude control deadband would result in strong accelerometer

outputs that varied over the deadband cycle unless, of course, the ac-

celerometers are located at the center of rotation. Gravity gradient force

near earth, with a 1 meter separation between the spacecraft center of
-7

mass and the accelerometer, would be of the order of 10 g.

Processing of the accelerometer output represents another problem

area. For pulsed rebalance accelerometers, pulses would be counted and

averaged over an interval the length of which depends on the pulse frequency

and variability, and also on the drift rates. The variance on null and scale

factor fluxuations could be determined early in the flight, and would serve

to establish the sampling interval from a statistical standpoint. Bias drifts

could be determined only by independent measurements. If thrust magnitude
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is relatively drift free it might be used to detect scale factor bias drift.

As a basis for this study it has been assumed that accelerometer pulses

would be counted and stored for several days and then be transmitted to

earth along with null bias calibration data taken at the beginning and end

of each sample interval. Fluxuations innull and scale factor were assumed
_7

to have an rms value of 3x10 g0 Uncalibrated bias errors were assumed
_Q

to be about 1% of therms noise or 3x10 g and were not treated separately

in the mathematical model. Figure 3.1 illustrates the rate of decrease of

thrust vector misalignment as governed by the accelerometers. Because

of numerical problems in the DSN incorporation, the ability of DSN

measurements to decrease thrust vector misalignment uncertainties was

fixed around the one arcminute level. The significant feature of the figure

is that the three accelerometer system drops the thrust vectoring error

down very rapidly immediately after injection.

3.2 Attitude Control Sensors

The results presented in Chapter 4 show marked decreases in position

and ephemeris errors when accelerometers are added to the spacecraft

system. Implicit in these improved values are two assumptions regarding

the attitude sensor accuracy. First, that the attitude sensor accuracy is

as good as, or better than, the angular accelerometer thrust vectoring and,

secondly, that the attitude sensors have one arcminute absolute accuracy

early in the mission. The point of these assumptions is that the Deep

Space Network can establish thrust vectoring eventually to an accuracy of

about three arcminutes, but for this source of control it is only required

that the attitude sensors be capable of few arcminute relative accuracy.

Conversely, with accelerometers as the source of thrust vector control, it

is required to have sufficient absolute accuracy to give thrust vectoring

with respect to celestial coordinates. Thus, theaddition of accelerometers

to the system is seen to strongly affect attitude sensor design. Further

improvement in the results can be obtained if the accelerometers can operate

at or near the ultra low g region. At 10 g, the accelerometers are yielding

two arcsecond thrust alignment according to Figure G.2. The limiting
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attitude, and therefore thrust pointing accuracy, would then depend on how

accurately the attitude sensors and accelerometers could be aligned, and

how accurate the attitude sensors were. The attitude control system would

not necessarily be called upon to maintain a tight, few-arcsecond deadband

but would be required to keep the deadband accurately centered and

predictably oscillatory.

The attitude reference bodies will presumably be the sun and the

star Canopus. Numerous sensors have been designed around these two

objects, and there should be only a moderate problem obtaining sufficiently

accurate sensors to match a 10 , two arcsecond, accelerometer output.

Star trackers with accuracies in the few arcsecond range are
3

available. The field of view of star trackers in this range is generally

on the order of 10 by 10 arcminutes which would be adequate for attitude

control at the one arcminute level or lower. A simple sun sensor of the

critical angle prism type has been built and tested for the Apollo Advanced

Application Program by Honeywell. This device has a demonstrated accuracy

of 2.5 arcseconds at one astronomical unit, but would degrade proportionally

to the solar-spacecraft range. Maintaining high accuracy over a greater

range would probably require a masking device using matched detectors

which can be matched to within 1% thereby making the sensor accurate to

within 1% of its approximately one-dimensional field of view. A number
4.

of sun sensors of this variety are described in Koso and Kollodge.

Strapped-down ion thrusters, thrusting over a wide range of spacial

directions for long periods, require'the addition of wide total field of view

coverage by the optical attitude sensors. Figs. 3.2 and 3.3 show respectively

the motions of the star Canopus and the sun with respect to sun-velocity

coordinates. Since the thrust vector is held at a relatively fixed angle

with respect to the spacecraft velocity vector, the Canopus-velocity system

(Fig. 3.2) gives a picture of how Canopus would move with respect to

coordinates fixed on the spacecraft. The graphs are in polar coordinates

with the polar angle indicating azimuth with respect to the indicated direction,
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and the radius indicating the out-of-plane component of angle with zero

angle in the plane. The plane on the paper is essentially the ecliptic plane

since it is defined by the vector product of the sun-spacecraft vector and

the spacecraft velocity vector. Canopus (Fig. 3.2) is about 80 out of the

ecliptic plane, and moves oven an azimuth of about 80° during the first

burn, and 120 during the second. The out-of-plane motion amounts to

only a few degrees. If there were no thrust vector control for guidance

purposes, the attitude reference star tracker would be required to have

gimballing about just one axis. However, guidance thrust control could

add 10 to each direction thus requiring two rotational degrees of freedom

for the star tracker to cover the area indicated in Fig. 3.2 by the dashed

lines. Figure 3.3 shows that a sun sensor would need to have the capability

of covering about half the in-plane circle, and +15 out of plane. The

out-of-plane coverage is about at the limit attainable by a strapped down

sun sensor. Since these devices are small, the possibility exists of placing

a gang of sun sensors around the craft to give the required azimuthal field

of view. In effect, the azimuth sensing problem would be handed off from

one strapped down sensor to the next, thus stepping the thrust vector in

discreet increments over the flight. The total weight of a gang of strapped

down sun sensors would probably weigh about as much as a single gimbaled

sensor, and would have the advantage of no moving parts.

Some other general problems with attitude optical sensors include

the requirements for reliable continuous operation for periods of years,

problems of shielding from the radio thermal generator power source, a

changing solar signal level by a factor of one thousand on a Neptune mission,

and the design of a feedback control system for attitude control using the

ion thrusters. For purposes of alignment, and the avoidance of launch

stress problems, it would be ideal to assemble and check out the attitude-

thrust vectoring system inearth orbit. In addition to the low thrust control

there will probably be a requirement for a separate set of attitude thrusters

and an inertial attitude reference unit to handle the craft during wake up

or reaquisition sequences, and during solar occultation at planet passage.
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3.3 Navigation Sensor

Examination of the navigation results given in Chapter 4 shows that

onboard navigation has limited utility for error reduction. Position errors

with respect to the target planet are reduced by factors of 2 to 15, but the

errors that are being reduced are already in the few kilometer range, and

it is therefore questionable whether further reductions are necessary.

The onboard navigation system also reduces ephemeris errors early in

the mission, and this reduction is directly related to the instrument

accuracy. A onearcsecond instrument reduces ephemeris error by a factor

of two during the Jupiter interplanetary leg, however, the ultimate reduction

is limited by the uncertainty in spacecraft position as determined by the

Deep Space Network.

The strongest argument for the inclusion of onboard navigation on

these missions is that the navigation sensor can also be used as a scientific

instrument. A scanning photometer navigation sensor can gather extremely

important data about the upper atmosphere of the outer planets by means

of planet limb scans. Onboard navigation may also play a useful role in

the guidance scheme by reducing ephemeris errors early in the mission.

Given, as a result of overall mission considerations, that onboard

navigation is used with the low thrust spacecraft, a few design implications

are seen. First, because of spacecraft orientation changes throughout the

flight, the navigation instrument will require full gimbaling. Even if the

instrument is restricted to measurements during the second burn, there

will still be a. gimballing requirement because navigation stars will move

up to 120 degrees with respect to coordinates. A second implication is

that extreme accuracy may not be necessary. In Fig. 3.4 it can be seen

that there is little reduction in position error when the instrument accuracy

is increased to 1 arcsecond from 10 arcseconds. However, if early reduction

of ephemeris error is important, the more accurate instrument becomes

important, especially in the Jupiter mission where Deep Space Network

related position errors are not large.
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Generally, the same navigation instrument problem areas exist for

these missions as existed for the high thrust missions reported in Volume

II of this report. Close-in measurements are still more useful for position

error reduction than those obtained further out. Increased measurement

frequency does result in further error reduction. Spacecraft attitude changes

can affect the results as in the high thrust missions, and co-mounting of

the navigation and science instruments may lead to conflicts. Figure G.I

presents what are felt to be realistic estimates of navigation sensor weights.
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CHAPTER 4

MISSION SIMULATION RESULTS

4.1 Introduction

This chapter presents the navigation results which are derived from

the statistical simulation in the form of an error covariance matrix.

Tabulated results are the square roots of the diagonal elements of the error

covariance matrix and represent la uncertainties in spacecraft position,

velocity, mass and thrust vector alignment, and the la uncertainty in the

target planet ephemeris. Results for Jupiter and Saturn missions are

presented in tabular form, and the tables are followed by discussions of

the meaning of the results in terms of navigation related systems.

4.2 Tables of Results

Results are listed in Tables 4.1, 4.2, 4.3, 4.4. Each of the two missions

is divided into interplanetary and near planet legs, and the listed Icr errors

represent the terminal conditions for each leg. For the interplanetary

leg, the terminal time is the nominal time of arrival at one Laplacian sphere

of influence from the target planet, and for the near planet leg the terminal

time is the nominal time of closest approach.

The lefthand column of each of the results tables, entitled

"configuration", lists the characteristics of the modeled systems or the

deviations of the system from the nominal case. The term nominal has

the following meaning for the parameteral systems:

a) nominal DSN doppler noise — 1 mm/sec (la)

b) nominal DSN station location bias — 1 meter off of spin axis

2 meters longitude (la)

c) nominal visible navigation instrument noise — 10 arcseconds (la)

Thus when the configuration column says "uncertainty x n" It means "n"

times the nominal value.
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Table 4. 1

Jupiter Interplanetary

RMS Terminal Estimation Error

Configuration

DSN OB

Position .Velocity

(km) (km/sec)

Ephemeris Mass

(km) (kg)

Misalignment
Angles

(milliradians)

Nominal

Nominal

1 Accelerometer
1 Accelerometer

3 Accelerometers
3 Accelerometers

Onboard Instrument
Uncertainty = ln

• Onboard Instrument
Uncertainty = 10017

DSN Dopier
Noise x 10
DSN Dopier
Noise x 10

DSN Dopier
Noise x 100
DSN Dopier
Noise x 100

Station Location
Error x 10
Station Location
Error x 10

Station Location
Error x 100
Station Location
Error x 100

x

x

x
x

x
x

x

x

x

x

x

x

x

X

X

X

X

X

X

X

X

X

X

X

X

140

149

145
144

64. 1
64.0

136

149

216

214

811

690

153

152

153

152

6.45E-5

6.45E-5

4.26E-5
4.26E-5

4.58E-6
4.56E-6

6.45E-5

6.45E-5

8. 18E-5

8. 18E-5

1. 12E-4

1. 11E-4

6.46E-5

6.46E-5

6.46E-5

6.46E-5

504

486

510
492

482
463

223

503

523

506

551

537

507

490

507

490

7.03E-2

7.03E-2

2.01E-2
2.01E-2

2.02E-2
2 .02E- -2

7.03E-2

7.03E-2

7. 17E-2

7. 17E-2

7. 17E-2

7. 17E-2

7 . 0 4 E - 2

7 .04E-2

7.04E-2

7.04E-2

. 283

. 283

. 116

. 116

.314E-2

.314E-2

. 283

. 283

. 234

. 234

.290

. 290

. 283

.283

. 283

. 283
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Table 4.2

Jupiter Near Planet

Configuration
DSN

RMS Terminal Estimation Error

Position Velocity Ephemeris Mass

OB (km) (km/sec) (km) (kg)

Misalignment
Angles

(milliradians)

Nominal

1 Accelerometers

3 Accelerometers

3 Accelerometers

Onboard Instrument
Uncertainty = 10(r

DSN Doppler
Noise X 100

DSN Doppler
Noise X 100

Station Location
Error X10

x .

-x

X

X

X

X

X

X

X

X

X

X

12.9

.681

2.00

.302

3.07

32.63

2 .27

14.23

8.16E-3

3.05E-4

1.33E-3

1.83E-4

1.27E-3

1. 73E-2

7. 14E-4

8.85E-3

305

236

79.5

50.0

282

388

368

325

7.156.2

2. 17E-2

2.32E-2

2.21E-2

6.63E-2

8.30E-2

6.33E-2

7.29E-2

. 188

. 116

. 284E-2

.284E-2

. 188 !
I

.290 i
<

. 290

. 188
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Table 4.3

Saturn Interplanetary

RMS Terminal Estimation Error

Configuration Position
DSN OB (km)

Velocity Ephemeris
(km/sec) (km)

Misalignment
Mass Angles

(kg) (milliradians)

Nominal
Nominal

1 Accelerometer
1 Accelerometer

3 Accelerometers
3 Accelerometers

Onboard Instrument
Uncertainty = }.""
Onboard Instrument
Uncertainty = 100

DSN Doppler
Noise xlO
DSN Doppler
Noise xlO

DSN Doppler
Noise xlOO
DSN Doppler
Noise xlOO

Star Elevation
Measurements only

x 1 j 1.
i

[

x I 1.
j I

» x 1 i.
: x x 1.

: x 82

x x 8 1

x x 8 7

X X 1.

x ; 2.
x ' x 1.

x 3.

X X 1 .

t.(

lx JLX L1 '

54E3
33E3

21E3
13E3

.0
.9

8

53E3

06E3

70E3

85E3

99E3

33E3

1.

1.

1.

1.

5.
5.

1.

1.

2.

2.

3.

2.

i
i

1 !•

90E-4
76E-4

47E-4
42E-4

26E-6
26E-6

43E-4

90E-4

65E-4

39E-4

82E-4

98E-4

76E-4

1

1

1

1

1
1

8

1

1

1

1

1

1

. 15E 3

.10E3

. 15E3

.08E3

, 15E3
. 08E3

40

. 15E3
•

. 15E3

. 11E3

. 15E3

. 13E3

. 10E3

9.

9.

1.

1.

1.
1.

9.

9.

9.

9.

7.

7.

9.

66E-
66E-

82E-
82E-

82E-
82E-

65E-

65E-

74E-

74E-

89E-

89E-

66E-

2

2

2

2

2

2

2

2

2

2

2

2

2

.171

. 171

. 182

.182

.002
.002

.171

.171

.213

.213

.342

. 342

. 171
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Table 4. 4

Configuration

Saturn Near Planet

RMS Terminal Estimation Error

Position Velocity Ephemeris Mass

DSN OB (km) (km/sec) (km) (kg)

Misalignment
Angles

(milliradians)

Nominal

Nominal

1 Accelerometer

1 Accelerometer

3 Accelerometers

Onboard Instrument
Uncertainty^!77

Onboard Instrument
Unc er tainty=10 0

DSN Doppler
Noise LQx nominal

DSN Doppler
Noise lOx nominal

DSN Doppler
Noise lOOx nominal

DSN Doppler
Noise lOOx nominal

Star Elevation
Measurements only
(24 Measurements)

Star Elevation
Measurements only
(16 Measurements)

X

X

X

X

X

X

X

X

X

X

X

1

X

I

X

X

X

X

X

X

X

X

!

X [ X

7. 72

7.55

6.80

6.26

.644

2.39

8. 55

17.5

10.0

35. 9

11.3

2. 59

8.00

9.12E-4

9.10E-4

7. 75E-4

7.14E-4

9.62E-5

3. HE- 4

1. 03E-3

3.12E-3

1.23E-3

300E-3

1. 38E-3

3.13E-4

9.62E-4

540

591

490

504

974

543

550

757

717

894

862

555

595

3.17E-2

3.41E-2

1. 82E-2

1. 82E-2

1. 68E-2

2.98E-2

; 3.28E-2

4.23E-2

3. 72E-2

4.46E-2

3. 74E-2

3.24E-2

3.34E-2

.144

.144

.138

.138

.002

.171

.171

.213

.213

.251

.251

.171

.171
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The RMS values for the initial covariance matrices are given in Table
r*

4.5. The RMS mass errors should havebeenthe sameinall cases; however,

since the mass errors were quickly reduced by measurements, this

numerical error had negligible effect on the navigation results.

Low thrust accelerometers were added to the system models either

singly or in an orthogonal set of three. The single accelerometer is assumed

to be aligned with the thrust vector and is assumed to yield only thrust

magnitude information while the set of three also produces information

about thrust direction.

The second two result table columns indicate whether or not Deep

Space Network and onboard navigation systems were used by means of an

"x". The fourth, fifth, and sixth columns list position, velocity and ephemeris

errors at the terminal time for the mission leg associated with each table.

Position error is relative to the earth for the interplanetary legs and relative

to the target planet for the near planet legs. The last two columns list

mass and thrust vector misalignment uncertainty. The latter value

represents the uncertainty in the value of the difference in direction of the

actual thrust vector and the desired thrust vector. To avoid numerical

difficulties for DSN only and DSN with onboard navigation it was necessary

to fix thrust vector misalignment at the first sample level that occurred

below one arcminute. Although this makes quantitative comparison between

DSN only and DSN aided by onboard accelerometers difficult after this limit

is reached, the significant conclusion remains (see Fig. 3.1) that the addition

of onboard accelerometers gives an early and rapid reduction of thrust

vector misalignment errors.

4.3 Jupiter Interplanetary Results

This discussion is based upon the results listed in Table 4.1. Results

related to systems that are augmented by onboard instruments are compared

to the nominal DSN case, and comparisons are made between systems with

differing values of noise parameters. Comparing, at the top of the table,
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the nominal DSN case with the DSN plus nominal onboard case one sees no

improvement when adding onboard navigation except fora small insignificant

improvement in the ephemeris value. Further down the table it can be

seen that if the onboard navigation instrument has a 100 arcsecond or 10

times nominal uncertainty even the ephemeris value is unimproved.

However, the table shows that an onboard navigation instrument with an

uncertainty of one arcsecond can drop ephemeris uncertainty by more than

half. This is the only significant change of ephemeris error occurring

among the various combinations of systems and system errors examined

on this mission leg and indicates that to obtain a useful reduction of ephemeris

error at the large planetary ranges encountered on this interplanetary leg

requires an extremely accurate onboard instrument.

The lower portion of the table contains variations in the DSN noise

parameters. It can be seen that increases in station location biases do

not significantly alter position uncertainties. However, increases in the

doppler noise levels result in considerable increases in position uncertainty

particularly in the 100 times nominal case where it can be seen that the

position uncertainty is raised by a factor of five. The addition of onboard

navigation to the higher DSN noise systems has little effect except when

DSN doppler noise gets to the extremely large value of 100 times nominal.

At these doppler noise levels the onboard system tends to hold position

errors down somewhat, indicating a limited need for onboard instrumentation

on the interplanetary leg if use of low thrust propulsion degrades the doppler

tracking accuracy by a factor of 100 or greater.

The addition of three accelerometers causes the most significant

decrease in all RMS uncertainties. Position error values are cut in half

compared to similar configurations without accelerometers. Velocity error

values are significantly decreased. Mass errors are decreased by a factor

of four when either three or one accelerometer is added. With three

accelerometers, thrust vector misalignment uncertainty is about 100 times

less than with other configurations. This early and significant reduction

in thrust vector misalignment and in mass uncertainty eliminates a principle

source of error in position and velocity.
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One accelerometer gives very little information about thrust vector

misalignment and therefore leads to larger errors in position and velocity

than occurred with three accelerometers. However, the addition of one

accelerometer to nominal DSN or DSN and onboard slightly decreases the

uncertainty in position and velocity as a result of the increased knowledge

of mass from the no accelerometer- case.

4.4 Jupiter Near Planet Results

The discussion in this section is based on Table 4.2. Looking first

at DSN by itself, it can be seen from the first and last row that station
i

location biases do not significantly alter any of the error values. However,

a doppler noise level of 100 times nominal raises position and velocity

uncertainty by a factor of three and slightly increases the other uncertainties.

Addition of onboard navigation to the system, as in row five, causes

a decrease in position and velocity uncertainties with a factor-of-four

decrease in position and a factor of six in velocity. This case uses a 10

times nominal or 100 arcsecond instrument error, and therefore the nominal

onboard instrument would be expected to yield further improvement as can

be seen in row seven where onboard navigation has been added to the DSN

systems having 100 times nominal doppler noise. As expected, the onboard

system becomes more important as the DSN noise levels increase.

Minimal error sin all of the listed quantities occur when the spacecraft

system includes three accelerometer s and onboard navigation. Contributions

to the reduction of position error are made by the accelerometers which

reduce the spacecraft mass uncertainty, and by both the DSN and onboard

navigation systems.

The primary contribution to the reduction of the ephemeris error is

made by the three accelerometers which reduce thrust pointing errors and

spacecraft mass uncertainties very early in the mission, and thus markedly

reduce a major error source in the equations of motion. Given early and
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accurate thrust pointing, the DSN system can determine the trajectory at

shorter ranges where its accuracy is greatest; however, perfect thrust

pointing would still leave planet mass and spacecraft mass errors. The

relatively small ephemeris errors are, of course, dependent on the small

associated position errors. The system configuration with the next smallest

ephemeris error (79.5 km) has three accelerometers but no onboard

navigation. The ephemeris error is still markedly reduced from the other

listings. Since there is no onboard navigation, this case emphasizes the

importance of the accelerometers for ephemeris error reduction.

When the system with onboard navigation and three accelerometers

is reduced by dropping the two accelerometers perpendicular to the thrust

axis, one observes a small increase of position error to 0.68 km from

0.36 km, and a large increase in ephemeris error from 50 km to 236 km.

This is because one accelerometer cannot provide early, accurate thrust

vectoring. The single accelerometer does aid in reducing the spacecraft

mass uncertainty, and therefore produces some improvement over the

system with no accelerometers.

4.5 Saturn Interplanetary Results

This section discusses the results given in Table 4.3. Most of the

comments given in the discussionof the Jupiter interplanetary results also

apply here. Examining first the cases involving DSN by itself it is seen

that increasing doppler noise increases errors significantly with the

100-times-nominal doppler noise increasing position errors by a factor of

three. For a doppler noise variance of 10 times the nominal, the addition

of nominal onboard navigation reduces position uncertainty from 2060 km

to 1700 km and for a doppler noise 100 times the nominal improvement is

from 3850 km to 1990 km, almost halving the value. For nominal DSN the

position uncertainty is 1540 km which is reduced to 1330 km for a 10

arcsecond instrument and to878 km for a one arcsecond onboard instrument.

Comparing this to the Jupiter interplanetary leg, shows the significant effect

of using onboard instruments beyond the orbit of Jupiter. This is because
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DSN measurements become less accurate at greater distances. Unlike

the ballistic case, the advantage gained through accurate initial tracking

near earth is partially lost because of the unknown low thrust perturbations.

.Ephemeris error was not appreciably reduced from its initial value

by any configuration except that with the most sensitive onboard instruments

(one arcsecond accuracy) it is reduced to 340 km. This again points to

the need for extremely accurate instruments if early ephemeris error

reduction is desirable. The accelerometers greatly improve position and

velocity estimates. The sensitivity of mass uncertainty to the use of one

or three accelerometers and of thrust vector misalignment to the use of

three, is significant and similar to that for the Jupiter Interplanetary results.

Mass and thrust vector misalignment are not particularly sensitive to other

configurations; the differences that do occur are not thought to be significant

due to the approximating numerical methods used.

4.6 Saturn Near Planet Results

: Results for the near planet leg of the Saturn Mission are -shown in

Table 4.4. In general, the Saturn near planet results parallel the cor-

responding Jupiter results, however, there are several additional cases

for Saturn which allow direct comparisons that were not obtained for the

Jupiter Mission, and there are cases showing the importance of the DSN

noise level.

Looking first at the DSN only cases, rows one, eight, and ten show

the expected increase in position and velocity uncertainties as doppler noise

is increased. The one arcsecond onboard instrument is shown to yield a

very slight improvement over the 10 arcsecond instrument; however, when

the instrument error is increased to 10 arcseconds, a significant increase

in position error, by a factor of four, results. The 100 arcsecond instrument

does not cause a corresponding increase in ephemeris error because, as

expected, this value is dependent primarily on DSN (assuming no accelero-

meters) for the near planet leg.
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Some other results related to onboard navigation include the

observation that onboard navigation only slightly improves the DSN with

one accelerometer configuration. The larger DSN noise level related errors

tend to swamp out contributions made by the onboard system. For example,

a doppler noise of 10 times nominal moves position up to 10 km from the

2.6 km level with nominal doppler noise in spite of the presence of onboard

navigation. However, the contribution of onboard navigation to the nominal

doppler noise case is to reduce position error from 7.7 km to 2.6 km.

Onboard navigation does, however, reduce the effects of increasing doppler

noise. This is illustrated by a reduction, in tne case with a doppler noise

of 100 times nominal, of position error from 36 km to 11.3 km by the

addition of onboard navigation. (Results from the near planet leg of the

Saturn Mission related to the DSN only system show that the order of

magnitude increase in DSN noise show a corresponding increase in position

and ephemeris errors.) Onboard navigation with DSN yields a two-to-one

improvement in position uncertainty over the one accelerometer case as

long as the onboard instrument is capable of 10 arcsecond accuracy or

greater, but that the accelerometer improves ephemeris uncertainty by

20%. It is significant that the 10 arcsecond onboard instrument case uses

star-planet limb angle measurements only, and therefore that there is no

requirement to design the instrument as a planet center finding device, if

the radius of the planet can be determined to within a few kilometers.

The Jupiter results show that the system configuration yielding by

far the smallest position and ephemeris errors has onboard navigation and

three accelerometers. The significant five to one reduction in ephemeris

error is repeated in the Saturn results, and there is a general scaling of

ephemeris errors according to the greater distance to Saturn. These results

also show that a system using one accelerometer along with onboard

navigation and DSN would yield position errors that were the next lowest

to the three accelerometer systems.

As in the Jupiter mission, all configurations reduce mass and thrust

vector misalignment error by about the same amount except the case of
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added accelerometers. For the cases of one and three accelerometers

mass error is reduced to about half that for all other configurations, and

with three accelerometers thrust vector misalignment is reduced by two

orders of magnitude.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The simulation results evoke several conclusions in the areas of

guidance and onboard sensor systems. As can be seen from the guidance

plots in Appendix F, the constant control guidance algorithm can null out

reasonable deviations in position and velocity although, since the navigation

and guidance loop was not closed, additional study is necessary to prove

the adequacy of this algorithm.

From the standpoint of the navigation results, the onboard navigation

system proves to be of marginal value except in two particular situations.

First, if the Deep Space Network doppler noise is large (100 mm/sec for

a one minute smoothing time) the onboard system makes a significant

reduction in position error with respect to the planet for the Jupiter near

planet case. The reduction is from 33 km to 2.3 km. Secondly, during the

interplanetary leg of the Jupiter mission, the onboard system can reduce

ephemeris errors substantially from the 500 km level down to the vicinity

of 150 km. Outside of these two special cases, on the basis of the limited

data available, the onboard system can only be justified in relation to its

potential use as a scientific instrument, its interaction with the guidance

process, and small improvements in the general body of navigation errors.

One of the more interesting results is the marked effect that highly

accurate accelerometers have on the position and ephemeris errors, and

on the spacecraft mass uncertainty. At the end of the Saturn mission,

interplanetary leg, for example, the spacecraft position uncertainty is

reduced by a 3 accelerometer system to 82 km from the no accelerometer

value of 1540 km. This occurs because two of the dominant error sources

in the equations of motion are reduced by the accelerometers, namely the

spacecraft mass uncertainty and the thrust vector misalignment. One

accelerometer is much less useful than three mainly because it cannot

distinguish thrust vector misalignment from thrust magnitude variations.
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However, the single accelerometer was assumed to be strapped down.

Precision gimballing of a single accelerometer with two axis freedom and

precision alignment with respect to the attitude control system would allow

it to function in the same way as a set of three orthogonal strapped down

accelerometer s.

The navigation results given in Chapter 4 are consistent with a one

arcminute attitude control system accuracy. One arcminute thrusting does

give good results even in the absence of highly sensitive accelerometer s.
~9Adding accelerometers that are accurate at the 10 g level causes the one

arcminute value to be realized immediately after trajectory injection which

is one to two months ear Her than the case relying on the Deep Space Network

by itself. Allowing the attitude control system to be better than one arcminute

would cause some further improvement in the results, although it is expected

that planet and solar mass uncertainties would allow only small

improvements in what are, in many cases, already very small errors.

Further studies are indicated in the areas of guidance algorithm

development, simulation structuring, and parametric variations. A number

of guidance schemes should be investigated including optimal guidance.

These would include allowing thrust to be switched on and off at times

other than the nominal trajectory times as considered for the present

scheme. In addition, a study to determine the linear range of such schemes

is desirable.

The statistical simulation should be restructured to produce the

desired coupling between the guidance and navigation results and to eliminate

the numerical problems which limited the results of this study. Part of

the solution to the numerical problem involves the development of new

covariance matrix propagation schemes. With this restructured simulation,

the value of onboard instruments, particularly accelerometers, for

decreasing guidance errors could be more accurately specified.

In the area of onboard sensor studies, it would be useful to complete
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the parameter variations that were limited in the low thrust phase of the

study bynumerical difficulties. In addition, the range of variation of some

parameters should be extended.

The problem of accelerometer output, sampling rate, and period should

be investigated to determine how problems of data processing of outputs

onboard or on the earth interact with error propagation from one set of

measurements to the next, and how these factors affect the statistical

modeling. The assumed white noise error model for accelerometers is

proportional to the sampling rate, and the bias errors grow with time from

last calibration.

Attitude control system importance should be determined by

parameterizing the limit on thrust vector misalignment. Present results

are representative of only a onearcminute system for the no accelerometer

cases.

If the small improvement in navigational accuracy which results

from onboard instruments is desired, then the effects of restricting the

total navigational star field, and the types of navigation measurements should

be investigated. Navigation errors are known to decrease with increased

measurement frequency, but these effects have not been examined explicitly.

Similarly, the navigation measurement range from the target planet is known

to have a strong effect on the value of the measurement, but the effects of

restricting the range have not been determined. Curves showing error

growth versus range and time would be helpful in this area.
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APPENDIX A

DYNAMICS

In this appendix are defined the coordinate system sand control vectors

used; the equations of motion are given.These basic relationships are used

throughout this volume in the mathematical description of both the guidance

and navigation schemes.

We are considering a spacecraft traveling under the influence of the

sun, a single target planet, and its own constant low thrust engine. The

trajectory begins in interplanetary space where a sun-centered coordinate

system is used. The x axis is in the direction of the vernal equinox, the y

axis is perpendicular to the x axis in the ecliptic and the z axis is

perpendicular to the ecliptic. At the sphere of influence of the target planet,

a planet-centered coordinate system is used whose orientation is the same

as that of the sun-centered system. The dynamical equations and any

expressions derived from them will be dependent on the coordinate system.

Planet location information is obtained from an ephemeris program which

is based on a 1960 January 1.5 epoch.

The letters£and v will be used for the position and velocity vectors,

respectively, in the coordinate system being employed. p_ is the vector

from sun to spacecraft, a. is the vector from the target planet to the

spacecraft. d_ is the vector from the sun to the target planet. (See Fig.

A.I.) u is the three dimensional unit vector of directional cosines which

defines the direction of the thrust. T is the magnitude of the thrust and is

equal to the mass flow rate & (= 0 when the engine is off), times the exhaust

velocity of the ion engine c (= g I where g is the standard acceleration
o sp o

of gravity and I is the specific impulse of the rocket), u is thesp s
gravitational constant of the sun, 1*1 , that of the target planet, m is the

mass of the spacecraft. The equation of motion for the spacecraft in the

sun-centered coordinate system is:
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Spacecraft

Planet

Sun

Fig. A. 1 Spacecraft and Planet Position Vectors

X

Fig. A. 2 Control Angle and Direction Definition
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m

for planet-centered coordinates:

r = m

The direction of the control can be specified by two angles e and 0 defined

by Fig. A.2 where Q is measured in the x-y plane.

Thus,

COS0 COS(/J

sin 9

The control parameters are 0, 9, (/> where

is on and /? = 0 when the engine is off.

- 13 when the enginem 3.x
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APPENDIX B

INTERPLANETARY TRAJECTORY GEOMETRIES

The purpose of this appendix is to present the geometrical properties

of the interplanetary leg of each of the two missions used as examples in

thirf study. The plots included herein are invaluable to the scheduling of

the onboard navigation system . In addition, they display mission phenomena

such as distances to navigational targets and sun angles which are basic

to the design and implementation of the onboard navigation system.

There are five plots included for each interplanetary leg. The first

in each series displays the overall mission geometry and is used primarily

to provide geometrical support for the other plots. The markings on the

spacecraft and planet trajectories are at the same equal time intervals to

aid in determining the relative positions of the planets and spacecraft.

Circles and arcs of circles represent planetary orbits with the innermost

representing the orbit of Venus.

The second plot in each group of five gives the range to the planets

of possible interest. This is valuable for deciding which planet to use for

navigation sightings as the spacecraft proceeds along its trajectory. In

the absence of other constraints which would prohibit the measurement,

those measurements which employ the closest near body are potentially

the most useful. This plot is also used to decide during what periods the

various planets are too far away to detect with an IR instrument and to

provide the navigation system design with information about the target ranges

his sensors must deal with.

The third plot in each series gives the spacecraft-Earth-sun angle.

The purpose of this plot is to identify those phases of the mission where

the spacecraft line-of-sight (from Earth) comes too close to the sun

line-of-sight to permit tracking of the vehicle from Earth. A check of all
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these plots reveals the fact that there are very few times when the ground

based antennas will not be able to track the spacecraft because it is behind

the sun. Note that only on the Jupiter flyby does one of these periods even

come close to an encounter time and this could be further avoided by slight

changes in the thrust history.

The fourth graph in each group provides the sun-spacecraft-planet

angle for each leg. This is of much use in setting up the onboard measurement

schedule because it displays those periods in which the line-of-sight to

the planet is too close to the line-of-sight to the sun to permit use of the

planet for navigational purposes. It also informs the sensor designer what

range of sun angles his instrument will encounter.

The final plot in each group gives the Earth-spacecraft-planet angle

for each leg. This is of interest to the systems designer because he must

be aware of the relative location of the planet and Earth so that functions

related to each body can be coordinated. As an example of such coordination

consider the problem of orienting the spacecraft, communications antenna,

star tracker, and/or planet sensor such that a navigational sighting can be

performed without losing communication with the Earth.

Tables B.I and B.2 provide the results of using these plots to develop

candidate onboard measurement schedules for air the interplanetary legs

of the three missions used in this study. The actual measurements used

in the results presented in Chapter IV were selected from those indicated

as available in these tables.

An example of using these plots to create a candidate onboard

measurement schedule is given in Appendix A of Volume II.
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Interplanetary Trajectory Geometries

Summary of Figures

1. 1979 Jupiter Flyby

Fig. Bl.l Trajectory for Jupiter Mission.

Fig. B1.2 Ranges to Solar System Planets for Jupiter Mission.

Fig. B1.3 Spacecraft-Earth-Sun Angles for Jupiter Mission.

Fig. B1.4 Sun-Spacecraft-Planet Angles for Jupiter Mission.

Fig. B1.5 Earth-Spacecraft-Planet Angles for Jupiter Mission.

2. 1981 Saturn Flyby

Fig. B2.1 Trajectory for Saturn Mission.

Fig. B2.2 Ranges to Solar System Planets for Saturn Mission.

Fig. B2.3 Spacecraft-Earth-Sun Angles for Saturn Mission.

Fig. B2.4 Sun-Spacecraft-Planet Angles for Saturn Mission.

Fig. B2.5 Earth-Spacecraft-Planet Angles for Saturn Mission.
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Fig. B-- 2.1 Trajectory Diagram for Saturn Mission
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APPENDIX C

PLANETARY PASSAGE TRAJECTORY GEOMETRIES

In this appendix are presented those physical parameters which are.

indispensable fora preliminary analysis of the use of an onboard navigation

system during the period in which the spacecraft is well within the sphere

of influence of a planet. These characteristics are illustrated here for

the two planetary encounters of the two missions used as examples in this

study. The value of the data contained in these plots should not be

underestimated—the overall scheduling and measurement selection which

can be performed with this information eliminates the need for a costly

computer search through a much larger set of possible measurement

combinations.

The format of the presentation of the planetary passage geometries

presented in this appendix is a sequence of seven plots for each mission.

These plots were created by a computer program designed for use on flyby

missions such as those discussed in Volume II. Since these missions are

potentially orbiter missions, no post-perihelion region would exist and only

the pre-perihelion part of the plots should be used. This means that the

right half of the first plot and the left half of the other six contain the data

to be used if the two example missions are considered to be orbiter missions.

The first plot in each series is a plane view of the hyperbolic pass

of the planet. It provides an overall view of the passage. The direction of

the sun is indicated in each case. By using this plot, one determines which

is the sunlit side of the terminator line (shown drawn on the planet). In

all cases passage is from right to left around the planet, thus in the Saturn

case the approach is made from the direction of the sun. This results in

an approach to the light side and a retreat from the dark side of the planet.

In the case of Saturn; the inner edge of the rings is drawn on the plane
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view. The dotted edge is below the plane of the paper. The plane view is

also useful for determining when star occultations might be available.

Star occultations are potentially useful measurements only when the relative

motion is such that a dark edge of the planet passes into the star field.

Note that until the spacecraft is very close to the planet there is little

relative motion of this type. If the planet has an atmosphere, as the outer

planets have, the intersection of the star with the edge of the planet must

occur far enough from the terminator line so that there is no light leakage.

If we assume a central angle value of about 20 for this distance, we see

that when the approach is made from out of the sun there isn't much

opportunity to find good star occultations. The final use to be mentioned

here is that by simply noting whether a light edge is available at any given

time one can determine whether or not an IR capability is required to make

a measurement at that time.

The second plot in each group gives the range to the planet in planet

radii and kilometers. Note that in each case very little time is spent close

to periplanet. Use of this plot together with the ranges to the planetary

satellites given in the sixth plot of each group, enables one to determine

whether or not a satellite might be a better navigational target than the

planet. This could be the case if the distance to the satellite is much less

than the distance to the planet.

The third graph gives the angle subtended by the planet versus time.

Again the tremendous speed at which the probe passes periplanet is apparent

from this plot. This plot and the previous one have much meaning to the

instrument designer as they provide information on the size and distance

of the near body. In addition, this plot is useful to determine during what

period planet diameter measurements will be useful. The geometry is

favorable only during the time the subtended angle is large—which isn't

very long.

The fourth plot gives either the Earth-probe-planet angle, or sun-

probe-planet angle, or both, for each case. Besides giving information to

the systems designer and mission planner, the Earth-probe-planet angle
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plot reveals during what period the spacecraft is behind the planet as viewed

from Earth. Note that it is never occulted for more than a few hours.

The sun-spacecraft-planet angle is extremely useful to onboard system

scheduling because it reveals when the lines-of-sight to the planet and sun

are too close to permit using the planet for sightings. For the near planet

passages this doesn't occur for any significant length of time.

The fifth plot in each group gives the ranges to the principle satellites

of each planet. A use of this plot was discussed above in conjunction with

the planetary range figure. The code for the satellites is given in Table

C.I,, For example, moon 3 at Jupiter is Ganymede. It is interesting to

note that on the Jupiter mission the approach to Europa is actually closer

than to the planet itself. The mission might be planned either to avoid

such a close encounter in order to limit the perturbation on the trajectory,

or to capitalize upon it for scientific information. In either case, the orbital

period of Jupiter's satellites is so small compared to the trip time to Jupiter

that fixed-time-of-arrival guidance would be a necessity for mission

success.

The sixth graph in each group gives the moon-spacecraft-planet angle

and thus reveals the location of the satellite relative to the planet. Although

satellite-planet measurements have been eliminated due to the large

phenomena error that would result, this plot is still useful because it

identifies those times when the satellite is not visible from the spacecraft.

The sun-satellite-spacecraft angle is used to determine whether or not

the satellite is sunlit at a potential navigation sighting time. This information,

which is given in the seventh plot of each group, reveals whether or not an

IR capability is required to make a measurement.

The final plot in each group gives the sun-probe-satellite angle.

This has precisely the same uses as the sun-probe-planet angle. For

example, on the Jupiter mission moon 1 (lo) might still be useful before

periplanet but the line-of-sight to the moon is too close to the line-of-sight

to the sun for this to be a useable measurement.
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Tables C.2 and C.3 give the results of using these plots to determine

candidate onboard measurement schedules. The measurements actually

used to generate the results given in Chapter IV were selected from those

indicated as available in these tables. These tables correspond to Tables

B.I and B.2 and the selection of individual entries in Tables C.2 and C.3

is performed in the same way as outlined in the example in Appendix A of

the Volume II. As an example of how to read these tables, note in Table

C.2 that in the period from 21 hours before pericenter to pericenter the

following measurement types are searched for the optimum measurement

every hour using Jupiter, lo, and Europa as near bodies:

1. Planet/moon diameter measurement.

2. Planet/moon center to star measurements.

3. Planet/moon limb to star measurements.
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Table C.I

Code For Planetary Satellites

Planet

Jupiter

Satellite

lo

Europa

Ganymede

Callisto

Code Number

1

2

3

4

Saturn Titan
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Planetary Passage Geometries

Summary of Figures

1. 1979 Jupiter Mission

Fig. Cl.l Trajectory Plan View During Jovian Passage on Jupiter

Mission.

Fig. C1.2 Range to Planet During Jovian Passage on Jupiter Mission.

Fig. C 1.3 Angle Subtended by Planetary Limbs During Jovian Passage

on Jupiter Mission.

Fig. C1.4a Earth-SC-Planet Angle During Jovian Passage on Jupiter

Mission.

Fig. C1.4b Sun-SC-Planet Angle During Jovian Passage on Jupiter

Mission.

Fig. C 1.5 Range to Principle Moons During Jovian Passage on Jupiter

Mission.

Fig. C1.6 Moon-SC-Planet Angle During Jovian Passage on Jupiter

Mission.

Fig, C1.7 Sun-Moon/SC Angle During Jovian Passage on Jupiter

Mission.

Fig. C1.8 Sun-SC-Moon Angle During Jovian Passage on Jupiter

Mission.

2. 1981 Saturn Mission

Fig. C2.1 Trajectory Plan View During Saturn Passage on Saturn

Mission.

Fig. C2.2 Range to Planet During Saturn Passage on Saturn Mission.

Fig. C2.3 Angle Subtended by Planetary Limbs During Saturn Passage

on Saturn Mission.

Fig. C2.4a Earth-SC-Planet Angle During Saturn Passage on Saturn

Mission.

Fig, C2.4b Sun-SC-Planet Angle During Saturn Passage on Saturn

Mission.
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Fig. C2.5 Range to Principle Moons During Saturn Passage on Saturn

Mission.

Fig. C2.6 Moon-SC-Planet Angle During Saturn Passage on Saturn

Mission.

Fig. C2.7 Sun-Moon-SC Angle During Saturn Passage on Saturn

Mission.

Fig. C2.8 Sun-SC-Moon Angle During Saturn Passage on Saturn

Mission.
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Fig. C . 1. 1 Trajectory Plan View During Jovian
Passage on Jupiter Mission
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Fig. C. 1. 2 Range to Planet During Jovian
Passage on Jupiter Mission
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Fig. C . 1.3 Angle Subtended by Planetary Limbs During
Jovian Passage on Jupiter Mission
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Fig. C.1.4a Earth-SC-Planet Angle During Jovian
Passage on Jupiter Mission
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SUN-SC-PLANET AN&LE

TIME (HOURS)

Fig. C . 1.4b Sun-SC-Planet Angle During Jovian
Passage on Jupiter Mission
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TIME (HOURS)

Fig. C . 1. 5 Range to Principle Moons During Jovian
Passage on Jupiter Mission
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Fig. C . I . 6 Moon-SC-Planet Angle During Jovian
Passage on Jupiter Mission

; MOQNI x MOON] e room

TIME (HOURS)

Fig. C. 1. 7 Sun-Moon-SC Angle During Jovian
Passage on Jupiter Mission
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Fig. C. 1. 8 Sun-SC-Moon Angle During Jovian
Passage on Jupiter Mission
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Fig. C. 2. 1 Trajectory Plan View During
Saturn Passage on Saturn Mission;

40-Radii Field

u *
z

-* -J O

(HOURS)

Fig. C. 2. 2 Range to IManet During
Saturn Passage on Saturn Mission
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Fig. C. 2. 3 Angle Subtended by Planetary Limbs During
Saturn Passage on the Saturn Mission
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Fig. C. 2. 6 Mo-in-SC-Planet Angle During Saturn
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Fig. C. 2. 7 Sun-Moon-SC Angle During Saturn
Passage on the Saturn Mission
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APPENDIX D

STATISTICS

The purpose of this appendix is to derive and present the equations

used for the statistical propagation, for accelerometer, DSN, and onboard

measurement incorporations and for measurement selection.

D.I State

For the combined navigation and low thrust guidance system a 12

dimensional state was used, where

Sx = Sd

6m

—ma

rand v_are the spacecraft position and velocity, respectively, in whichever

coordinate system we are operating, and m is the mass of the spacecraft.

The differential equations for r, v and m, which will be needed below for

the development of the statistical navigation equations, are:

r = v

v =
P3 a3 d: m

for the interplanetary or sun centered leg, and by

v -
m
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for the near planet or planet centered leg,

m = -x?

It will be assumed that the thrust vector misalignment, u , is composed•~~m &
of independent brownian motions. Its driving noise will be represented by

w,(t) which has a known covariance. The ephemeris error, Sd, is modeled

as a constant bias with known initial covariance. It is added to the state

vector with a zero time derivative.

D.2 Variational Equations

From the state differential equations given in the previous section,

one finds that the variational state satisfies the following differential equation

6x = 6x R ,6u + ——
-c 3T

6T

ax ax
a wd

(D.I)

where * indicates the expressions are evaluated on the reference or nominal

trajectory. Note that 6u is the deterministic deviation in control where

no variation in switch time is considered; <5T is the variation in thrust

magnitude and is modeled as an unbiased white noise; & ^ is the variation

in the gravitational constant of the sun (for the interplanetary leg of the

mission) or of the target planet (for the near planet leg) and is modeled as
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a bias; 6/J is the variation in mass flow rate and is modeled as the sum of

a bias and an unbiased white noise. The partials are given by

and

1$
3x

3x3

3y 03x3"

.03x12

Q3x3 Q3xl Q3x2

3d 3m

Q3x3 Q3x3 Q3x3 Q3xl

ai

3x2

3J
3r ¥ +

3y
3d

V
7"

interplanetary

leg

• u _ I 3u PP° • °~~
-3- + —T-
P P d

near planet

leg

3v
3̂m

T Aucr a = 1, thrust on

a = 0, thrust off

ii = 1
3uma m
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dx Sx 5u
9HC

,3x2

m

6x2

where

i^V1

-X

vl V2

vl V2

/x2
 +x2

Vl V2

BT m

3x1'

,6x1

interplanetary leg

,6x1

near planet leg
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ax
a e

o9x1

-la

2x10

0
10x2

,2x2

-. A

Following is a derivation of —-=F- where we recall that u. is a three

dimensional unit vector of directional cosines defining the direction of the

control and u is the two dimensional vector of angles (0,0). Noting that

from Fig. A.2

cos 6 = X / \|xfr + X

sin 6 =

Vl V2

cos

sin

u = cos 9 cos
sin 6 cos

sin 1
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- cos sin

cos 6 cos

or from Eq. E. 1 in terms of X v's

B v

-x.

o

sin $ cos 9

sin 6 sin 0

cos !/)

A v A
3

vl V2

The derivation of ^-=— can also be shown in more detail.
-ma

Since
u = u + u
—c —c —ma

£v = Sy aji a-c
3 u B u,. 5iima

where

and

= i2x2

Bv _ T
B u m
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The variational equation, D.I, can be rewritten grouping the state,

command, biases, and white noise components by defining

w(t) =
<JT

y =

white noise

biases

(where 6j3 = J3f + /?b>

then

where

Sx = A(t) tfx + Bu(t) 6uc + Bw(t) w(t)+D(t)J: (D .2 )

A(t) = f£

B (t) = ^u a uc

B (t) =w
" 03xl '

|
A

— (T 1m

Q6xl

1 Qx1I Qaxa

n!0x2 ,0 I

I ~CT

j2x2

I Q2xl

93



D(t)

" o9xl

-9

Q2xl

03xl"

-r

Q6xl

If we assume that we have a continuous estimate of the state, <5x,(t),
and that the control is a linear functional of this estimate, then

<5u = A ( t ) «s£(t).

If

e(t) = «$x(t) - «Jx(t)

Athen we have the following differential equations for <$x, $x and e

<Jx = A w(t) + D±

x = A 6x

e(t) = A e - B w(t) - D_k

, and e_(t) are considered stochastic processes.

D.3 Statistical Propagation

We are interested in getting the differential equations for the covar-
iances associated with the error e_(t) and with the deviation in state <$x(t).
These will be denoted

and

E(t) = e(t) e(t)

X(t) = ix 6x
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where the overbar indicates we are taking the expected value. In order to

develop the differential equations,three additional correlation matrices are

needed:

V(t) = e(t) J: (12 x 2),

J(t) = <Jx(t) >- (12 x 2),

C(t) = rfx(t) e(t)T (12 x 12).

The derivation of the differential equations follows.

* d T
v = *>

= A e>T - BW w(t)j; -D^

V = A V - D J : 2 T , V(0) = 0 (D.3)

* j rr\ rrt rr\

E = — ee = ee + ee
dt —

Since the 2 terms composing the above equations are transposes of each

other, only one term needs to be calculated.

• T T T T
ee = A ee - BW we - D le

= AE + 1/2 B ww B - DV

where, note that if <£(t,s) is the state transition matrix for the system

Ay then
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t
e(t) = *(t, tQ)e(to) - J *(t, s) Bw(s)w(s) ds

t
- J 4(t, s) D(s) y ds

t

we(t)1 = -J w ( t ) w ( s ) J B (s)1 «(t, s) ds
t w

o

= -1/2 w_(t) w(t)T Bw(t)T

where the other terms in e,(t) are eliminated when taking the expected value.

Thus

E = AE + EAT + B wwT Bw
T- DVT - VDT (D.4)

where E(0) is given.

• d T TJ = - 6 x ; i = <Jx J

= A 5x ^ + B A(e + <fx) >+ B— — u~ — — w

= AJ

= (A + BuA) J + BuAV + Di } (D.5)

where J(0) = 0

C = 6 x ( t ) e(t)T
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6x e(t)T + 6x

= A 6 e + B u A r f x eT + <5x e_T AT - <J.x wT B^ - ($xJ:
T DT

C = (A + BuA)C + CAT - (V + J) DT (D.6)

where C(0) = 0.

X = <5x(t)

= A (5x rfx + BA <5x rfjcT + B w(t) cJx.T + D ±£x

= A ix (5xT + B uA5x_(5xT + BuAe6xT

w 6xT - B weT + DJT

thus

= (A + B^AJX + B A(e SxT - eeT) + 1/2 &„ wwT BT + DJT

u. u — — ;— W W

X = (A + BuA)X + X(A + BuA)T + BuA(C - E)T + (C -

w wT B + DJT + JDT (D.7)

Twhere X(0) is given. The differential equation for the matrix S(t) = e(t)b ,

where b is a two dimensional bias vector associated with DSN tracking

station location errors is needed.

S = ebT = eb

T T T
= A £b - B _wb - D^^

S = AS S(0) = 0 (D.8)

Equations D. 3 through D, 8 are the differential equations for the propagation

of the six correlation matrices.
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The following initial covariance matrices must be given: x(0), E(0),

ww

6T

0

0

lx2 0

0

lx2

yy'

0

0

2
where 6/y is the mean squared uncertainty in the A/ of the sun for the

interplanetary leg and the uncertainty in the // of the target planet for the

near planet leg.

For reference we will include a summary of the dimensions or units
T Tof the terms in ww and Y^ . Here M implies units of mass, L units of

~ 2 -22lengthand T unitsof time (thus6T has units of force squared or (MLT ) .

TABLE D.I

Wd Wd'

(MLT"2)2

(T"1)2

(MT"1)2

(MT"1)2

(L3T~2)2

D.4 Coordinate Change

The E, X, etc., matrices are affected by measurements and by the

coordinate change. At the sphere of influence of the target planet we changed

from sun centered coordinates to planet centered coordinates. The effect

on the 12 dimensional 6 x is that
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= Q <5x

at the time of coordinate change.

Where

Q

I
0

0

0

0

I
0

0

-I
0

I
0

0

0

0

I

where each 0 and I is a 3x3 block. Likewise e1 = Q e and 6x' = Q<$. It

follows that

E1 = QEQT

V = QV

J1 = QJ

C' = QCQT

X1 = QXQT

S' = QS

D.5 Accelerometer Measurements

In the simulations various measurements or combinations of measure-

ments are optional. For example, accelerometers, various kinds of onboard

measurements or DSN measurements could be incorporated.

The formulas for onboard and DSN measurement incorporation are

essentially the same as those for Phase A with the accomodation of the
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higher dimensional state. Thus the matrix H =/^=-J will have zeros in the

last 3 columns. The H =(S-=rforthe accelerometer^measurement will have
\dx/

zeros in all but the last 3 columns. Measurements by three accelerometers

perpendicular to each other and by one accelerometer measuring in the

direction of the nominal thrust were considered. Since accelerometer

measurements can be taken continuously, expressions can be derived which

are added directly into the matrix differential equations. This method led

however to numerical difficulties, so expressions were derived which

incorporate accelerometer measurements discretely.

If E1 is the error covariance matrix before a measurement and E

after the measurement, then it is well known that

-1 -1 T - 1
E 1 = E' l + H R H

(for example Ref. 2, Eq. 12.2.8).

If we approximate the accelerometers continuous measurements by

several discrete measurements at intervals At theno

E2 = El + H1R1 Hl

Ek = Ek-l + Hk-lRk-lHk-l
k-1

E"1 = E"1 + Y H.R?1H.k 0 1 3 1
j = o j J J

And if we assume H.R. H. is the constant over an Interval AT then

E-l = E'-1
 +|£ HT R-1 H

o

This is identical to the expression for onboard measurements if R is replaced
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At
by-r~- R. Thus using the analogous relationships for onboard measurements

in Vol. II,

W = EHT (HEHT +

rp At „

E = (I - WH) E1 (I - WH)1 + Wr RW1

V = (I - WH) V

S = (I - WH) S1

C = C'(I - WH)1

J and X are unchanged.

Three accelerometers give a measure of the thrust acceleration.

Thus

T A

z. = _ u + 22
m ~

where z_is the measurement and ^ is the error in the measurement. Taking

the variation

and

6 z =

H =

A

6x + ^-- m

B x
}3x9 | _T A ; T_

' m2 ' m

-.A
O U

where du is known and all expression are evaluated on the nominal. R

is given by
A

R = (=• ( - 6 T +

A AT
m
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For the case of one acceleromter, which measures the thrust accelera-

tions in the nominal thrust direction, the measurement is the component
A A

of the three dimensional measurement z in the u direction or z . u.

A T A T A /z = _z • u = — u U + TI

6z = 5x
Sx m

UT _ Sz _ ,nlx9 T
h - T — - (<J . ~ —

m

where

3z T
uc 9 uma

.T /nlx9 T na = (0 , -- ' Q
m.

and R is given by

R = (il
m. m

—2m"1

D.6 DSN Measurements

The DSN measurement incorporation is done similarly to Phase A

except the H-matrix and the weighting matrix, W, must have zeros added
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to make them dim ensionally consistant with the 12 dimensional state. Then
as in Phase A,

<5x = <5x« + W(<$z - H 6x«)

e = (I - WH) e1 + W (Gb + rf)

b is the station location bias

G is a rotation matrix

V is noise

T

~=TN = #2

In the derivations following, we will need the expression

fi£ .- H 6x' = -He + Gb_ + \

which follows from

rA

x - e

5z = H S x - He + Gb

In Vol. II, Appendix E, it is shown that the weighting matrix is

W = (EHT - SGT)(HEHT + GPGT + N - GSTRT - HSG17)"1

A

using the expressions for rfx, e, ̂ x»
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E = eeT

((I - WH) e' + W(Gb + 11)) ((I - WH)e' + W(Gb + T ] ) ) T

E = (I - WH) E' (I - WH)T + W GPGTWT + WNWT + (I - WH) S' GWT

+ WGS|T (I - WH)T (D.9)

T
V = e /

= (I - WH) V + W (G b + y) 2

V = (I - WH) V (D.10)

J = 6x£f = J1 (D.ll)

C r A j.
= 6xe

Sx1 + W (-He1 + Gb + 7)) (d - WH)e ' + W(Gb + ? ))T

= £x'e|T (I - WH)T - WH ee'T (I - WH)T

WGbe|T (I - WH)T + (Sx'b11 GT WT

TT T^ T1 T* T1 T1 T1

-WH e'b iG vV 1 + WG/?G W 1 + W 1 W 1

- WH)T - WHE1 + WHE'HTWT + WGS'T

WGS'THTWT

S'GTWT - WHS'GTWT + WG 8GTWT + WNWT
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= C' (I - WH)T + S'GTWT - WHE1 + WGS'T

+ W(HE'HT + G/?GT + N - GS'THT - HS'GT)WT

then substituting for

WT = (HE'HT+ Gx?GT + N - GS|THT -HS'G^f1 (HE1- GS|T)

C = C'(I - WH)T + S'GTWT

X = 6x 6xT = X1 (D.13)

T
S = e b1

= ((I - WH) e' + WGb + W/7) bT

S = (I - WH) S1 + WG/3 (D.14)

Thus equations D.9 thru D.14 show the effect of a DSN measurement on

each of the correlation matrices.

D.7 Onboard Measurements

After a measurement

Te = (I - w h ) e1 +

6x = 6x'

z is the measurement
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h =

T -1w = E'h(h E'h + r) , weighting vector

white measurement noise, and

r =

ThT e1 +9 = 6z - h

where again accomodation is made for the large state vector by the addition

of zeros in the last 3 places of the h vector. Then

T
E = ee

= ((I - whT)£' + vv 17 ) ((I - whT)£ + w_

E = (I - whT) E1 (I - whT)T + wrwT (D.15)

V = e iT = [(I - whT)e' + w^j ±T

V = (I - whT) V (D.16)

J = 5x > = J1 (D.17)

C = <5x e

= (6.x1 + w(-hTe' +1 ))Ql - whT) e1 + wtf]T

I - whT)T - whTEtl - whT)T + wrwT

rp rp T » T T /

C'(I - wh1)1 - w(h1Eh + r) w1 + wh E
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substituting

wT = (hT E'h + r)"1

C = C1 (I - whT)T (D.18)

X = <Jx 5xT = X1 . (D.19)

S = eb_J

= ((I - whT) e1 + w?) .bT

= (I - whT) S1 (D.20)

Equations D.15 thru D.20 then show the effect of an onboard
measurement on each of the correlation matrices. The h vector is dependent

on the specific measurement taken and it, with the measurement noise,
determines the weighting vector, w.

D.8 Measurement Selection

The following measurement selection criteria to be minimized were

implemented

1) the trace of the covariance matrix of estimation errors,
2) the mean squared position error at a preselected target point

(usually the destination point).

The first is the sum of the diagonal elements of the E matrix which would

result from the measurements.

For the second criterion, we need an expression for E(T) where T

is the preselected target time. The cost is then given by the trace of
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T
LE(T)L where L is a 3x12 matrix which picks off the top 3x3 block of E,

i.e.

L = (I3x3 , 03x9)

From the differential equation for E and V we can get expressions which

extrapolate E(t), V(t) where t is the measurement time, forward to time

T, assuming no other measurements are made afterwards. From

• rr> rr^ rr\ rrr rri

E = AE + EA1 - DV1 - VD1 + B ww1 B1

w w

V = AV - D ±

thus

E(t) = *(T,t) E(t)*(T,t)T

{-DVT H- VDT + B w w T B } « ( T , s) ds

V(s) - *{s,t) V(t) - J *{s,t) D yy dt
t

where $(t,t,) is the transition matrix for the system z. = A.Z.

T T TSince neither the terms B ww B nor Dyy contributes to the cost,w— w •*-*-
the term s involving them in the formulas for E(T) and V(S) can be dropped.

Thus

T
E(T) = *(T,t) E(t) *T(T,t) - J *(T,s) D(s) VT(t) $T(s,t) *T(T,s) ds

T t

-J $ (T,s)$(s,t) V(t)D(s)T $T(T,s)ds

= $ (T,t) E(t) $ T(T,t) + J * (T,s) D (s) ds V(t)$T(T,t)
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let

and

then

or

and

and

,t) V(t) J D(s)T <pT(T,s) ds
T

K(t) = L$(T,t)

M(t) = J L*(T,s) D(s) ds
T

K = L$(T,t) = -L<S>(T,t) A

K = -K A , K(T) = (I, 03x9)

M(t) = K(t) D (t) M(T) = 0

cost = tr[K(t) E(t) K(t)T + K(t) V(t) M(t)'

+ M(t) V(t)TK(t)T] (D.21)

The K and M matrices can be precalculated.

The K matrix is affected at the coordinate change since K = L$(T,t)

and $(T,t) has a discontinuity there. At the coordinate change

where
• B

B =

" I
0

0

_ 0

0

I
0

0

-I
0

I
0

o"
0

0

I

also

e_(i) = $(T,t) e(t) + driving terms.
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thus

educc)

implies that

, t ) B

$cr,tcc)=

is the solution to

$(T,t) = -*(T,t) A(t) , *(T.T) = I

If $ is partitioned into four 3x12 matrices

*.

*

then

and

but

(T t" )
lu ' cc j

= (I, 03x9)

= (03x6,I, 03x3)

(T t i - $ (T t"" )
' cc; 3U)tcc;

K = *,

Therefore at the coordinate change

Kit" ) = K(t+ ) - Klt+ )cc cc cc

where K = ^o is the solution of
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* • * * < • * * < - w ' 9vfi 9 v ^

K = -AK , K(T) = ( 0 , 1 , 0<JX<3)

The K and the M matrices were precompiled and stored to be used in the

main program for measurement selection when this mode of selection was

desired.

Repeating Eq. D.21

cost = tr[(K(t) E(t) K(t)T + K(t) V(t) M(t)T

+ M(t) V(t)T K(t)T)]

The following procedure is used to select the set of measurements which

will be incorporated: The various possible combinations of measurements

are used to calculate new E(t) and V(t). The above cost function is then

evaluated using the stored K(t) and M(t). The combination of measurements

is then selected for incorporation which minimizes the cost.
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APPENDIX E

GUIDANCE

This appendix contains the details of the derivations of various aspects

of the guidance problem, including the derivation of the nominal optimal

control and descriptions of the candidate perturbation guidance schemes.

Note that there are two separate aspects of the guidance of the

spacecraft to be considered. First is the derivation of the optimal control

for the nominal trajectory. The control history includes the direction of

the thrust and the times at which the thrust is turned on and off. Once the

nominal trajectory and the accompanying nominal control history is

determined, the perturbed control or guidance must be determined. Here

we assume we are near the nominal but not quite on it, what slightly perturbed

control should be used to get the spacecraft near the desired terminal

conditions? This analysis is done by linearizing about the nominal trajectory

and control. There are various kinds of perturbation controls that could

be used. In the first section of the appendix the nominal control is derived.

In the second section the perturbation control which was used in this study

is derived. In the remaining section the use of a "terminal controller" as

a perturbation guidance scheme is discussed.

E.I Nominal Optimal Control

In this section we will apply optimization theory to derive the

deterministic nominal optimal control. In deriving the deterministic nominal

control a seven-dimensional state will be used made up of spacecraft

position, velocity and mass. Using this seven-dimensional state, the target

planet's location is obtained from an ephemeris and thus its gravitational

effect is just a known function of time and spacecraft position.
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The differential equation satisfied by the state of the system under

consideration is

where

r

v
•

=
v

r

r = - + — u +
m

and where P is the mass flow rate, equal to P or 0, c is the exhaustmax
velocity of the rocket (c = g I where g is the standard acceleration ofo sp o
gravity and I is the specific impulse of the rocket), m is the spacecraft'ssp
mass. In sun centered coordinates r and v are the spacecraft^ position

and velocity relative to the sun and ju = -jLt , the gravitation constant of the

planet. In planet centered coordinates r and v are the spacecrafts position

and velocity relative to the planet and u = jj , the gravitational constant of
s

the sun. £ is the spacecraft position relative to the sun, a is the spacecraft

position relative to the planet. (See Fig. A.I.)

For the problem considered here the initial position, velocity, mass,

and time are specified as are the final position, velocity, and time. For

this system, "optimal control" will refer to the control which causes the

spacecraft to go from the initial conditions to the final conditions while

minimizing fuel. The control parameters are 9, i|>> and 8 where the control

angles 6, and l/> were defined in Fig A.2. We will use the nomenclature u
|~b[T C

-L to refer to the two dimensional control angles and

A
U

cos 9 cos

sin 9 cos

sin 0
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is the three dimensional unit vector of directional cosines.

Let the cost functions be

J = -m (tf)

which is to be minimized. This is equivalent to maximizing final mass or

minimizing fuel. Apply ing the maximum principle, one forms the Ham iltonian

• T T T
H = X'x = A/v + X/r - XmP

where A. is the costate which satisfies
T

3u OP 3u ,

X = - u X~m m ~ —v

The only part of the Hamiltonian containing the control angles is

m - v -

To maximize this, the control angles should align u with.X t i.e.

A i.V
U = -r:

This implies

sin 9 - X ' ' ' * * ' * 2

V vl v:

cos 9 = X / / X 2 + X2 (E.I)
v1 v.

sin «/) = .X / | | X\r ' ' ' —T

Vl Vl V2

'3
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cos • A^+xfm;

or

6 = tan'1 ( X T r / X T r )

I/) = tan"1

V V2

V3 Vl V2

where

The portion of H containing 3 is

To maximize this let

max

= 0

if K > 0

if K < 0

where

• £ l i i v l i - *m

is the switching function. Applying transversality conditions we get

(tf> =
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There is a discontinuity in x at the sphere of influence;^ is continuous

across this point (see Ref. 2,Section 3.7).

The above conditions are necessary conditions for an extremal. We

have a two point boundary value problem in 14 variables (x;X). With the

initial and final time specified, there are seven variables specified at the

initial time and seven at the final time. The solution to this problem gives

an extremal control and extremal trajectory. The NASA Mission Analysis

Division derived the initial conditions for the state and costate for the optimal

trajectory. These were then supplied to the MIT Draper Laboratory allowing

the reproduction of the optimal control and trajectory.

E.2 A Nonoptimal Perturbation Guidance Scheme

This section describes the nonoptimal perturbation guidance scheme

which was used to get the guidance plots in Appendix C. The scheme is

derived and the motivation for the plots is given.

The deterministic variation equation has the form

6x = A(t) 6x + B(t) 6u
\^

where
•

*A(t) = and B(t) - -^
3u-c

where the * indicates the expressions are evaluated on the nominal

trajectory. If the thrust switching times are not allowed to vary, but occur

at the times specified by the nominal trajectory, then the only control

available in the event we get off the nominal is steering, i.e., changing the

angles in the two-dimensional control u . Thus there is no control during
C

the coast periods and the system is not completely controllable during the

thrusting phases. In particular, it is not possible to eliminate positional

errors in the direction of the velocity vector. Since we are interested in
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minimizing the terminal position error, one criterion we could use is to

try and eliminate the components of terminal position error perpendicular

to the final velocity vector. We could ask: given a deviation from the

nominal state at the current time, 6x.(t), what is the constant control, 6_u,

which would cause the positional components perpendicular to the final

velocity to be nulled at the final time? Positional error in the direction of

the final velocity could be reduced by turning off the control earlier or

later than the nominal final time.

•

Let $(t,t~) be the transition matrix for the system z - A(t) z, then

t.

6x( t f ) = *(tf,t0) 6S J *(tf,s) B(s> Su^ ds (E .2)

where t. is the final time and tn is the present time. Let C be the 2x12

rotation matrix which takes the positional components of £x and results in

the two positional components perpendicular to the final nominal velocity

vector, e.g..
(rf x vf)

02x9

rf x vf

We would like the constant control 6u which causes C fix- = 0. Since

6u. is assumed constant it can be taken outside the the integral in E.2 and

thus
tf

0 = C 6xf = C*( t f J t Q ) 6xQ +[ J C*(t f , s) B(s) d

o

Solving for 6u gives

6.U = -
1 1

C*(tf, s) B(s) dsj "-1 C*(tf,to) 6x

C * (t „, t) is the solution obtained by integrating the differential equation

C*(t f,t) = -C«(t f,t) A(t)
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backwards from t., where at t~

C4( t f , t f ) = C

Define the 2x2 matrix

*f
T(t) = - f C$(t,, s) B(s) ds

t f

F (t) is the solution found by integrating backwards from tf the differential

equation

f ( t ) = C4(t f , t) B(t) , T(t f) - 0

Inverting F (t) and letting

A( t ) = r( t)"1 C 4(t f , t)

gives a 2x12 gain matrix which can be precalculated and used as a feedback

guidance law, i.e.

6u = A(t) 6x(t)

Again, this is the constant control that would null two components of position

which are perpendicular to the nominal velocity at the final time. If at a

later time, &x(t) were to be changed due to revised measurements or

disturbances other than the control, then a different constant 6 u. would result.

This guidance scheme was tested by integrating the system

6x = (A + BA) 6x

with an initial 6x(t ) given and also using a random number generator to

alter 6x(t) at the end of each integration step, then rotating the resultant
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6xf to see if the off-velocity components of position were nulled.

As t—> t- the gain matrix gets very large (r (t) —> 0, r (t) —>.» );

the larger 6x(t), the larger 6 u. We want to limit the magnitude of 6u_ to

represent operational or physical constraints and in order that the linear

analysis remain valid. In the deterministic test runs 6ju = A(t) 6.x, was

evaluated and in the statistical simulation runs the diagonal elements of
T T TA (t) 6x 6x_ A(t) = 6u 6u were evaluated to see if the magnitude was

greater than a prescribed limit. If so the magnitude of 6ii was set to that

limit.

Because of numerical difficulties, the guidance scheme was not utilized

in the statistical simulation. However, a number of results can be obtained

by looking at the characteristics of the guidance equations. By using the

gain matrix, given a maximum value for the magnitude of the components

of 6u, one can determine the approximate maximum deviation of the state

at a given time, 6x(t), which results in the positional components

perpendicular to the final velocity being nulled. Let

6u =

6x =

A(t) =

6 U

6x r

A i r - - A i , i 2
LA21. . . A2j 12

Then

12
6u. = .

3 = 1 3 J

If all the 6x. = 0 except for j = k then
J

A; 6x. , i = 1, 2
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6ui= % 6xj

If A., i- 0 , we can plot

6u.

as a function of time.

These plots are given in Appendix F for i = 1,2 and for the k of

interest. This set of plots will be referred to as the "first set". Given a

deviation in the state at a particular time, the required deviation in control

is given by the product of the state deviation and the inverse value of the

curve at that time.

If |6x(t)| is larger than the maximum|6x|that can "be nulled" (i.e. the

positional components perpendicular to the final velocity can be nulled), it

would be of interest to know what values of z. = c bXr. would result. Say

there is a deviation 6x, (t) that would result in a 6u. greater than allowable
iC X

for i = 1 or 2 or both, and that 6x, is the extreme value that can be nulled,

then

0 - C 6 x , = C* (t., t) 6x. (t) + Ck(t) 6u
I XX-i I K.

z = CSxf = C* (t,, t) 6x, (t) + Ck(t)6ji
I XX-i I K

whereat least one component of 6_uis equal to the corresponding component

of £iT. Then

.z = C * ( t f , t ) [6xk(t) - 6 x k ( t ) ] + C k ( t ) [6u, - 6u.]

To find the effect on z_ of excess state deviation, that is of (6x, -

& x , ) the second set of curves are plots of each element of C$(t,.,t). The
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effect of the nonzero component of (t>u - 6u) is given by the elements of C$

corresponding to thrust vector misalignment since both control deviations

and thrust vector misalignment propagate identically.

z 1 / (6x k ( t ) - 6x k ( t ) ) = [c*(tf,t)]lk

for 1 = 1, 2

k = 1, 2, . . . , 12

This is the second set of plots given in Appendix F. One way of using

these plots would be: giventhemax|8u.|and a deviation in the k component

of 6x, 6x,(t..) at time t.., go to the "first set" of plots corresponding to k,

read the value of the curve for time t. for both control components. Multiply

this value by max |flu.|to get 6x^(0.

'If |6xk(t1)|<|6xk
n(t1)|then|6xk(t1)!can "be nulled". If

then there would be a terminal position error perpendicular to the final

velocity which can be obtained from the second set of plots.

Let

A = 6 x k ( t 1 ) - 6 x k
n .

On the two plots corresponding to k (one for each component of z) read the

value of the curve at time t... This value multiplied by A gives the resultant

value of z due to this deviation. To it must be added the effect of the

excess control deviation in the control component which did not saturate.

Its effect on z is found from taking the product of the excess and the value

for the time t, given on the appropriate curve for thrust vector misalignment.

Thus, using the two sets of plots, if we assume a maximum magnitude

on the variational control, max |ftu.|, we can find the effect of a deviation
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in one component of the state at any time during the flight. The first set

of plots tells us if we can null the final positional components perpendicular

to the final velocity. If not, the second set of plots tells us what these

positional components will be. Also using the first set of plots, given the

state deviation one can get the resultant deviation in control by forming

the product of the state deviation and the inverse of the value on the curve.

The gain matrices and plots were formed over two legs of a trajectory

rather than over the whole trajectory. Thus gain matrices were computed

from the initial time to the time of the coordinate change at the sphere of

influence of the target planet. The "final time" for this leg is thus the

time of arrival at the sphere of influence, and these gain matrices are

those which would null the positional components perpendicular to the

velocity vector at the nominal time of arrival at the sphere of influence.

Then gain matrices and corresponding plots were done for the leg of the

trajectory from the sphere of influence to the final conditions at the terminal

time. Plots for these two legs are given separately for each mission.

E.3 Terminal Controller with Quadratic Cost

Another perturbation guidance scheme studied was a terminal

controller with a quadratic penalty function on the terminal error. The

switch times were fixed at the nominal values. The system was linearized

about the nominal and the idea was to minimize deviations from that nominal,

weighting heavily the quadratic function of the terminal position. We have

the variational equation

6x = F(t) 6x + G(t) 6uc

We want 63f(tf)«* Q

So minimize

I" rp Pf T T "I

t- 6u B6U ) dtJ = l /2 [ (6x : T S f 6 x) t + J
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where Sf, A(t), B(t) are positive definite matrices. This problem has an

exact explicit solution which is given in Ref. 2 Section 5.2. A suggestion

for picking S-, A, and B is given there.

One method of solution is using a sweep method where the matrix

Ricatti equation

s = -SF - FTS + SGB"IGT s - A

with S(tf) = S. is integrated backwards from i.. The control is then given

by

6uc(t) = -C(t) 6x(t)

where the feedback gain matrix is

C(t) = B(t)"1 GT(t)S(t)

In attempting to implement this scheme, numerical problems prevented

the solution of the Ricatti equation and before these problems were resolved

the nonoptimal scheme of the previous section was developed and utilized.
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APPENDIX F

GUIDANCE SENSITIVITY RESULTS

F.I Introduction

This appendix contains the plots associated with the guidance scheme.

Their derivationand use are discussed in AppendixE. In the following pages

are a summary of possible uses and examples and some comments about

special characteristics of the actual curves.

The plots are given for interplanetary and the near planet legs of

the Jupiter and Saturn missions. For each of these divisions there are

two kinds of plots. One set is the inverse of each component of the gain

matrix, A(t), versus time to go. Actually only those elements corresponding

to position and velocity are plotted for this set. Thus there are twelve

plots for each leg of a mission; six correspond to the in-plane control

angle e and six to the out- of-plane control angle 0. From these plots can

be obtained the control angle deviation resulting from a perturbation in

position or velocity (note that the control deviation resulting from a thrust

vector misalignment would just be the negative of the thrust vector

misalignment). Also, given a maximum value for the thrust deviation

magnitude, the greatest magnitude of position or velocity deviation which

can be nulled can be obtained.

The second group of plots given for each leg of a mission gives the

two position components perpendicular to the nominal velocity at the end

of each leg which will result per unit excess deviation in a component of

the state. These are denoted z.. and z?. By excess deviation is meant the

difference between the actual deviation and that which can be nulled out,

given a limit on the magnitude of the deviation in control angles. These

plots are given for deviations in position, velocity, and thrust vector

misalignment. The plots corresponding to thrust vector misalignment can

also be used to find the effect of a deviation in control since they propagate

identically. They can be used to find the effect of the deviation control
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component which does not saturate when the other component of deviation

control has reached its limit in magnitude due to a large state deviation.

Note that the plots for thrust vector misalignment are given in units of

kilometers per radian and not kilometers per degree. Plots corresponding

to deviation in ephemeris and mass are not included since their effect is

very small.

F.2 Characteristics of the Plots

In this section, some of the unusual results illustrated in these plots

are identified and discussed. The next three paragraphs discuss some of

the unusual characteristics of the state deviation per control deviation plots.

The last three paragraphs are concerned with the final position per state

deviation plots.

For the interplanetary phase, during the coast there is no thrust,

thus the curves are fairly flat through this phase, usually showing that a

larger deviation can be nulled out the closer the time is to the thrust on

period. This is because deviations earlier would have more time to build

into larger deviations before any control could be used to start diminishing

the deviations. This is illustrated in Fig. F3.1.1. During coast, the perturbed

control angle has no meaning until thrusting begins again.

When a curve goes through infinity, this implies that the control angle

component has no effect in nulling out deviations in the state component at

that time. (See Fig. Fl.l.la.) If curves for both control components for a

state deviation component go through infinity at the same time, this implies

any resulting final position deviation would be in the direction of the final

nominal velocity vector which this guidance scheme is not designed to null

except by changing the arrival time.

When a curve goes through zero this indicates that at that time

deviations in that component of the state are uncontrollable. (See Fig.

F2.1.1.) A curve may not be monotone since the uncontrollable final
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direction component varies with time due to the curvature of the trajectory.

The guidance scheme equations are based on the assumption that the two

deviation components of position, perpendicular to the final nominal velocity,

can be nulled given a large enough deviation in control. Because of the

curvature of the trajectory, singularities exist and so this is not always

possible.

Another phenomena which warrants some explanation is displayed in

the near planet extrapolation plots for the effects on z1 and z? of the earlier

deviations in position. (See e.g., Figs. F2.3.1, F2.3.2, and F2.3.3.) The

appearance of these curves is due to the rapid curvature of the trajectory

during the last few days of the flight and to peculiarities of geometry.

For both missions, the final velocity is nearly lined up with the y-axis.

The directions of z.. and z? are perpendicular to the final velocity. In fact

z- in all cases nearly lines up with the plantocentric z-axis (out of the

ecliptic) and z~ with the x-axis. Early near planet out-of-plane deviations

are "stable" in that a unit out-of-plane deviation propagated to the final

time has less than unit magnitude. This is reasonable since any deviation

out of the original plane of motion will tend to be pulled in toward the

center of the planet and thus toward the original plane of motion. Thus

the plots show that near pericenter, as time-to-go increases, the effect of

out-of-plane position deviation decreases. Further from pericenter, the

trajectory is curving much less and the vehicle is moving much more slowly.

Thus the curves tend to flatten out.

By examining the transition matrix which gives the effect of early

position deviations on all three components of position, one finds that for

the Jupiter near planet case deviations in both the x and y directions have

the most effect on the final y direction and less on the final x direction.

Since the y direction corresponds closely with the final velocity direction,

this is the component which is not illustrated in the plots. If there were

three additional plots showing the effect of position deviations on the final

position component in the direction of the final velocity, the curves would

show a magnitude increase as time to go increased. A similar situation

would hold for the other mission.
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When one of the final position per state deviation plots passes through

zero it indicates that deviations in that component of state have no effect

on that component of final position. (See Fig. F 1.3.1.)

F.3 Example 1

Consider the Saturn near planet case and a time to go of 40 days.

First assume that a deviation exists in the y component of velocity which

is equal to .02 km/sec. From Fig. F4.1.5 the in-plane control deviation,

A9, is given by the product of the inverse value of the curve at 40 days

and AV = .02,y

* 2 °

From Fig. F4.2.5 the out of plane control deviation, Aiii, is given

by

All) = -i ( . 02 ) ~ .067°

Thus if

AV = .02 km/sec
<J

then

Ae = 2°

A i/) = .067°

Now say that there is a limit imposed on the magnitude of A 9 and A0 of

1 . Since 2 exceeds the 1 limit the AV = .02 km /sec cannot be nulled.
J

This one degree limit is used here for example purposes only.

If such a limit is not imposed by operational or vehicle design constraints

it would be necessary to satisfy the linearization assumption of the first
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Using Fig. F4.1.5 and Fig. F4.2.5 the greatest value of AV that can be
J

nulled can be found. The product of the value of the curve at 40 days in

Fig. F4.1.5 and A9 = 1° is

(.0105) 1° ~ .01 km/sec

The product of the value of the curve at 40 days in Fig. F4.2.5 and A0 =

1° is

(.3) (1°) = .3 km/sec

Thus the limit imposed on Al/) would allow a deviation AV = .3 but the

limit on AS allowsonlyAV = .01 km/sec. Thus, in order for the deviation

in V to be nulled, | AV | < .01 km/sec. That is |A9 | < 1° , JA^| < 1°

implies maximum | AV f < .01 km/sec.
*/

At the beginning of this example, we hypothisized a AV = .02. This

is greater than the maximum nullable value if |A0 | < 1°, |A^| < 1°.

The maximum nullable AV = .01. The excess is then
«7

.02 - .01 = .01 km/sec.

There is also a difference in the A|/> which would result from a AV =
«/

.02 and a AV = .01. Both the excess AV and the excess Aj/> will have an
y «/

effect on the two components of position perpendicular to the nominal final

velocity. A 0 for AV = .01 is found from Fig. F4.2.5.
J

. 033°

For AV = .02
J

order perturbation technique. The latter limit will be greater than one

degree but further study is necessary to determine what it should actually

be.
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-°2 HR7°
—3" w • °67

The excess A0 is then

,067 - .033° = .034°

First we can get the effect on one component of the final position by looking

at Fig. F4.3.5 and Fig. F4.3.8. The product of the value of the curve at 40

days in Fig. F4.3.5 and the excess AV of .01 gives the effect on z.. of
t/

excess AV
•7

(.01) (130.000) = 1300 km.

The product of the value of the curve at 40 days in Fig. F4.3.8 and the

excess A0 of .034 gives the effect on z.. of the excess A0.

. 034 (600 ,000) /57° / rad = 400km

The total effect on z^ is

z: = 1300 + 400 = 1700 km

Similarly the effect on the other component of position z~ can be found

using Fig. F4.4.5 and Fig. F4.4.8. The effect of excess AV is
«7

(.01) (1,900,000) = 19,000.

The effect of excess A0 is

(-300, 000) (. 034) / 57° / rad = -200 km.

The total effect on z~ is

= 19,000 - 200 = 18,800 km.
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To summarize, given a deviation in A V = . 02 km/sec. This would

result in A9 = 2° and A0 = .067°. If there is a limit on A9 and A 0

of 1 then the maximum nullable AV is .01 km/sec. The maximum nullable

AV would result in A9 = 1° and AI/J = .033°. The actual value of AV =

.02 would result in the maximum A 9 = 1° and a A0 = .067°. The excess

A V = .02 - .01 = .01 and the excess A0 = .067° - .033° = .034° will have
J

an effect on the two components of position perpendicular to the nominal

final velocity. The effect of excess AV on z.. is added to the effect of
<J

excess Aj/> on z.. and similarly for the effect on z?.

F.4 Example 2

In this example one possible method of obtaining the effect of deviations

in two components of the state will be shown. This method could be

generalized to deviations in more than two components. Look again at the

Saturn near planet case and a time to go of 40 days. Say there is a AV =
«/

.02 km /sec as in the previous example and in addition a deviation in the

z-velocity AV = .001 km/sec. The A9 and A0 which would result from

the AV was calculated in the previous example using Fig. F4.1.5 and

Fig. F4.2.5.

A 9 = - ( . 02 ) = 2°

= 4- ( - 0 2 ) = -0670
• O

The A 9 and Ail) due to AV can be added to the above. From Fig. F4.1.6,
Zr

take the product of the inverse value of the curve at 40 days and AV .
Z

Ae = - (.001) = .0005°

Similarly from Fig. F4.2.6
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The total A9 and A$ is found by adding the effects due to both deviations.

A9 = 2° + .0005° ~ 2°

Al/> = .067° - .007° = .060°

If there is a limit on A 9 and A0 of 1 and since the above A0 exceeds

that limit, the total of these deviations cannot be nulled. Actually, since it

is clearly the AV which is causing A9 to exceed 1 , the maximum nullable
»/

AV would just be .01 km/sec as in the previous example. The maximumz .
nullable AV would be determined by the limit on Aj/> and can be found

Z

from Fig. F4.2.6.

max |AVz | = 0.014 (1°) = .014 km/sec

Suppose there is a AV = .02 km /sec and a AV = .001 km /sec and

that A9 is saturated at A9 = 1° and that A0 = -.06°. The effect on z^

and Zp can be found in a different fashion than given in the previous example.

In this case "excess" values will not be considered but rather, using the

propagation plots for thrust vector misalignment, the effect on z.. and z«

from a AV , AV , A 9 , A$ will be found separately, then added to give the
»/

total resultant z., and Zg. First looking at z^ the effect of AV = .02 is

found from Fig. F4.3.5 by taking the product of the value of the curve at

40 days and the AV „
J

(.02) (130,000) = 2600 km.

Similarly the effect of AV is obtained from Fig. F4.3.6.
2*

.001 (800,000) = 800 km

The effect of A0 is found from Fig. F4.3.8
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(1°) (-100,000)/57°/rad - -2000 km

The effect of A0 is found from Fig". F.4.3.8

. 060 (600, 000)/57°/rad = 600 km

The resultant value of z.. is then

2600 + 800 - 2000 + 600 = 2000 km.

Note that if A 9 =2° then its contribution to z~ would have been -4000 and

the resultant z1 would have been zero as expected. A similar procedure

can be used to find the effect on z?.
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APPENDIX G

ONBOARD SYSTEMS CONFIGURATIONS

G.I Navigation Sensor, Weight, Power, and Volume

Most of the mass of a scanning photometer would be composed of

berylium, with the exception of the servomotors, electronics and drive

gears. The mirrors would be of berylium as would the structure for

precision angle encoder mounting. Estimated total weight of the navigation

sensor is shown in Fig. G. las a function of aperture area. The dependence

is approximately linear for larger areas, and reduces to angle encoder,

servomotor, and electronics weight for small apertures. It is assumed

that the angle encoder is a +5" device which is 9 cm in diameter, and is

built of berylium.

The. weights estimated here are considerably lower than those

presented in Volume II, and this is because the Volume II weights were

taken to be the maximum possible in order to demonstrate onboard navigation

system generated fuel and weight savings for the worst case. The weights

listed here are closer to expected actual weight.

Weight breakdown and power requirements for the single degree of
2

freedom sensor with 100 cm aperture are shown in Table G.I.

Table G.I

Weight Breakdown and Power Requirements

for. Single Degree of Freedom

Scanning Photometer

Telescope Barrel 0.5 kg

Mirrors and Supports 0.5 kg
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Supporting Structure 1.0 kg

Angle Encoder Body 0.25 kg

Servo Motor and Gears 0.25 kg

Electronics 0.5 kg

Power Requirement 9 watts
(including servomotor)

The addition of two more degrees of freedom would add about 1 kg. If the

navigation system includes a computer, 10 kg should be added.

G.2 Low Thrust Accelerometers

Currently under development are a number of accelerometers that

will, or could have the capability to sense accelerations at and below the
-8 -910 to 10 g range. At these levels, considered a minimal requirement

for usefulness for these ion thrusted missions, thrust accelerations could

be sensed with one percent or better accuracy, and thrust vectoring could

be sensed with one arc minute or better accuracy (given a comparably

accurate attitude control system). The accelerometers, which will be

described individually below, have not been developed specifically for this

type of mission, and some could be improved considerably if they were to

be recast in light of the expected sensitivity and dynamic range requirements.

As a group, the accelerometers suitable in projection for these

missions have a number of common characteristics. Bias and scale factor

errors are temperature dependent at a level of about 10 g/ F and

10 g/g/ F respectively. This implies that to sense accelerations ac-

curately in the area of say 10 g's it will be necessary (unless the bias

scales with maximum measurable input) to maintain thermal control between
-4othe time of bias calibration and acceleration measurement to within 10 F.

What is important is not absolute temperature accuracy, but having enough

thermal heat capacity with respect to the flow rates in and out of the heating

system to maintain temperature stability for sufficient time. Another

characteristic common to the accelerometers is a drifting bias error that
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is a time dependent result of various electro-mechanical factors specific

to each different mechanization. In the pendulus type accelerometer it

results from changes in magnetic permeability of the float, and in the

vibrating string it is related to aging of the "string". Regardless of the
— fi

source of the bias, it is sufficiently large ( 10 g) that it must be calibrated

shortly before making each thrust measurement. The exact meaning of

"shortly" depends on bias stability. For example, in one experiment with

the vibrating string accelerometer in a Ig environment, a bias drift of
— fi 7

1x10 g/deg was found. Assuming linearity of drift for small times, the

bias value of 10 g would occur just 9 seconds after calibration for that

particular instrument. To function over a large dynamic range, these

accelerometers are designed to work over a small displacement from the

null position, and, except for the vibrating string, are nulled with a series

of force pulses which allow the dynamic range requirements to be met.

For the ion thrust missions the dynamic range requirements may be lower,

and therefore it is not known presently whether the formerly used pulsing

techniques are the optimal solution. Some arrangement may be desired

for making bias calibrations during the 1/3 second thrust interruptions

caused by high voltage arcing. This would avoid the need for planned

thruster shutdown for calibration purposes. However the arcing may cause

electronic disturbances in the accelerometer through transients or

electromagnetic pulse which are severe enough to preclude calibration during

this period.

Size, weight, and power requirements for this accelerometer group

are of the same order of magnitude as is shown in Table G. 2, and so are

the characteristic errors. They differ mainly with regard to mechanization.

The pulsed integrating gyroscopic and the vibrating string devices have

actively moving mechanical parts. They are therefore mechanically slightly

more complex, however each accelerometer type has several parts that

present extensive design and precision fabrication problems.

In the area of operational experience, the vibrating string has been
-9 8tested extensively on surface gravity measurements down to 10 g the pulsed
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Table G. 2

Accelerometer Weight, Power, Volume

-j-

Volume

200 cm2

1200 cm2

800 cm2

*
does not include heater power which depends

upon environment. At room temperature with

the accelerometer at 140°F, approximately

PIPA

V.S.

MESA

Weight

0. 5 kg

2.5 kg

1 kg

Power

4.7 watts

1 0 watts

3 watts

1/2 watt is required for heating.

integrating pendulum has had extensive, successful, operational use on

Apollo flights; and the electrostatic suspension device is currently being

space tested on the ion thrusted SERT II vehicle, and has been specifically

developed .for low thrust applications.
i.

The possible merits of assembling and checking out these spacecraft

on a space station have been occasionally questioned. For the low thrust

accelerometers this procedure would have the advantages of allowing for

a study of bias drift in a zero g environment, and for the avoidance of

misalignment errors between accelerometer and optical attitude sensors

caused by launch stresses. However, a new technique would have to be

devised for aligning attitude sensors and accelerometers in the absence of

a well determined g vector.

Q

The Vibrating String Accelerometer measures the frequency difference

between a pair of matched natural frequency vibrating strings that are

coupled through a pair of identical suspended inertial masses. This

frequency difference is then converted to acceleration via the instrument

scale factor. An early version of the vibrating string accelerometer (D4E)

has been tested by Ed Spitzer of NASA ERG. He was able to obtain a

— fisensitivity of about 10 g which was determined mainly by an apparent

temperature sensitivity of 5 ppm/°F. It was observed that there was a
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tendency for the two strings to synchronize at very small frequency

differences which could lead to problems at very small acceleration levels.

Bias error was found to increase with temperature while the scale factor

decreased. By carefully controlling the temperature environment, Charles

Wing of the M.I.T. geology department has been able to measure changes

in gravitational force with the D4E vibrating string to within an error of

5x10 g. He has been operating the device at 70 f inside a double walled,

thermister controlled oven, which maintains the temperature to within
-4o10 F. Temperature control to this precision requires the use of specially

_ Q
selected and aged thermistors. At the 5x10 g level, and with temperature

-4controlled to within 10 deg, bias errors due to mechanical aging are
— R

predominant. In a new D4E one observes about 10 ff/day change in the

bias level. Wing observed a tendency for the strings to synchronize under

zero g conditions along the input axis. One of the D4E's has been operating

for two years, and to date string breakage has not occurred. The vibrating

string electronics has been designed for automatic bias calibration. It

appears to have a linear bias drift for small time intervals so that the

bias drift is predictable accordingly. The main problems seem to be a

high bias temperature sensitivity, and a lack of space testing.

The Miniature Electrostatic Accelerometer (MESA) has an electrostatically

suspended float and electrostatic pulse rebalancing. It has been designed

specifically for low g applications, and is currently being space tested
19 fi

on an ion engine thrusted vehicle. Dynamic range is designed to be 10 ,
-4with the upper limit set at 10 g for the current SERT II mission. Maximum

measurable input is Ig, and the upper limit is adjustable down to a

— fidesiderative 10 g. Measurement accuracy is designed to be 0.1% of the

reading value, however the SERT II results are showing 1%. The null bias

— fiis designed to scale (including temperature biasing) as 10 times the

maximum input setting. On the SERT II mission with amax. reading setting
-4 -10of 10 g one would expect a 10 g null bias, however the results show

-9more like 10 g, and this may be an indication that bias is not easily scaled

away at the ultra low g levels.

On the current SERT II mission, the MESA was turned on several

days before the thrusters. It failed to work at first, then gave 4 days of
— c

good output measuring gravity gradient forces at about 0.75x10 g.p after

196



the thrusters were turned on the MESA continued to function for 1 day,

then began to give spurious output which has continued as of 4/13/70.

Cause of the malfunction is currently unknown, but ion engine arcing is

suspected to have generated damaging transients.

The Pulsed Integrating Gyroscopic Accelerometer, (PIGA) . determines

acceleration by counting the number of torque pulses required to null the •

torque resulting from rotating a gyro wheel axis about a line in the gyro

wheel plane. The rotation is induced by acceleration forces which rotate

an unbalanced mass to which the gyro is fixed. Capability for this device
-7 -7

by mid 1970 is expected to be 5x10 g of bias stability, and 2x10 g of

scale factor stability, and resolution. The instrument will be designed for

100,000 hour life. Operating temperature will be in the 125° - 140°

Fahrenheit range, with about 1x10 g error caused by a 1 F temperature
— Qchange. The long term design goal for scale factor for this device is 10

-10"9 gby 1972.

The.Pulsed Integrating Pendulous Accelerometer. (PIPA) determines ac-

celeration by counting the number of pulses needed to torque the pendulum

back to its null position. This is done via electromagnetic induction. Present
- R

capability for this device is about 10 g scale factor and sensitivity. One

of the main problems with this device is the change of permeability effect

which results from large float excursions. This could be combatted by

redesigning the accelerometer so that it is restricted to a small dynamic

range, hence to small excursions. The larger g forces present during

launch would be measured by a separate instrument. It has been estimated

that with a restricted dynamic range the PIPA could be designed to sense
-8 -91 0 - 1 0 g without a major redesign effort. No program to develop the

PIP accelerometer for these small accelerations has been funded at the

MIT Draper Laboratory. Thermal sensitivity for the PIPA is currently

10 g/ F. Operating temperature is around 140° F.

The weight, power and volume values shown in Table G.2 are of specific

designs and are not optimized for these missions. All are capable of being

reduced by redesign and should therefore be taken only as an indication of

the order of these quantities.
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G.3 Thrust Vector Misalignment

There are a number of misalignment possibilities occurring in the

various combinations'of thrust vector, accelerometer, spacecraft, attitude

sensors, and celestial references. Two types of thrust vector misalignments

are important to the system design and guidance capability, namely

misalignment of the vector with respect to the vehicle inertial cemroid,

and misalignment of the thrust vector with respect to inertial space.

Misalignment with respect to the vehicular inertial centroid results in a

torque which probably cannot be tolerated for burn times lasting years. It

has been estimated that the uncertainty in thrust vectoring for an ion engine
13freshly assembled and mounted is of the order of a couple of degrees.

For a misalignment of this magnitude it is interesting to see what attitude

control system jet requirements would be to maintain attitude for a Jupiter

mission. The torque is of course dependent on engine-inertial centroid

distance, and if this distance could be reduced to zero the problem could

be transformed into a different misalignment problem. If one assumes a

1 meter separation between thruster and inertial centroid on a 700 kg

spacecraft, with 2° misalignment and .081 newton thrust (18 millipounds),

then the torque is 0.0027 newton meters. Over the thrust time of a Jupiter
7 4mission (about 3x10 seconds) the total rotational impulse is 8x10 newton

meter seconds. This would be 100 times the estimated requirement for a
14high thrust mission using the TOPS spacecraft configuration. Clearly it

will be necessary to reduce this level of gas expenditure by either moving

the thruster close to the inertial centroid, or by adding thrust vector control

as has been done on the experimental ion engine SERT II mission. Thrust

vector control in the sense that the vector passes through the vehicle inertial

cemroid could be obtained via control moment gyros, while the inertial

space pointing was accomplished with reaction wheels or rotation thrusters.

However, a more attractive system would result if electrostatic or thermal

expansion thrust vectoring were used, coupled directly to the attitude sensor

output. This would eliminate the use of gyros and gas jets during the thrust

on cruise mode (however these mechanisms would probably still be required

during the thrust off period). Pitch, roll, and yaw rates within the attitude

sensor deadband would be affected by charging appropriate plates or heating

various mounting pads. Expected rotational accelerations are of the order

of 0.0001P deg/sec2 for a spacecraft that:

198



a) has a mass of 1000 kg;

b) is a sphere of uniform density and 2 meter radius;
-5c) has thrusters which yield an acceleration of 10 g;

d) has thrusters placed 2 meters from inertial centroid.

e) has thrust vector pointing 1 away from centroid.

with this rotational acceleration level it would take about two minutes to

rotate the spacecraft through an angle of about 1°, while a 90 , torqued up

and down rotation would take about 14 minutes which is very close to the

time required for this rotation using the TOPS proposed reaction wheels.

The second form of thruster misalignment is with respect to celestial

coordinates. This error has several sources including star and sun sensor

electrical bias and mechanical misalignment with respect to spacecraft

mechanical coordinates, thermal bending of the structure, uncertainty in

the location of the inertial centroid with respect to the thruster beam center,

and structural deformation due to launch stresses. Launch stresses and

thermal bending are the major problems here, and could lead to arcminute

sized misalignments. A one arcminute misalignment between thrust vector
7

and celestial coordinates over a 400 meter/sec AV input lasting 10 seconds
• • 3( first Jupiter burn) produces a 0.5x10 km position error. Experience on

the Orbiting Astronomical Observatory program showed that

misalignments of 2 to 5 arcminutes occurred due to launch stress, and 0.5

to 1.5 arcminute misalignments were the result of thermal strain.

One possible scheme to account for these errors would consist of

mounting three orthogonal accelerometers accurately with respect to the

star and sun sensors, and carefully aligning these in a lab. Then thrust

misalignment with respect to the celestial sensors would be indicated by

off axis accelerometer output using the orthogonal axis output ratio to

eliminate thrust magnitude uncertainties, and corrections could be made

by biasing the attitude sensor output. This would require alignment of the

accelerometers with respect to the radiation sensors with arcsecond

precision, and it would require extremely sensitive accelerometers. If
~5 ~8the nominal thrust is 10 g's, then a 10 g accelerometer would sense an

"off axis" thrust angle as small as 3.5 arcminutes, but it would take a

10 g accelerometer to sense arcsecond like thrust misalignments. The

DSN alone can drive celestial thrust misalignments down to the few arcminute

level. Figure G.2 shows the various alignment capabilities in relation to
-5accelerometer sensitivity based upon a 10 g thrust acceleration.
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Another possible accelerometer scheme uses a single low g ac-

celerometer mounted on two degree of freedom gimbals with precision angle

readout. If the single accelerometer were strapped down its output would

be of little use because of the uncertainty in the thrust vector magnitude

which would be indistinguishable from a misalignment uncertainty (unless,

of course, by chance the accelerometer sensitive axis happaned to be

perfectly lined up with the thrust vector). If the accelerometer were,

gimballed, it could be moved to maximize its output thus insuring alignment

with respect to the thrust vector. Accelerometer alignment with respect

to the altitude sensors could then be achieved with precision angle encoders.
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