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ABSTRACT

This volume reports the results of a study of guidance and navigation
requirements for unmanned missions to the outer planets, assuming
constant, low thrust, ion propulsion. Theobjective of the studyis to examine
the navigational capability of the ground based Deep Space Network in
relation to the improvements in navigational capability brought about by
the addition of guidance and navigation related onboard sensors. Relevant
onboard sensorsinclude the optical onboard navigation sensor, the attitude
reference sensors, and highly sensitive accelerometers. _

~ The totally ground based, and the combination ground based and
onboard sensor systems are compared by means of the estimated errors
in target planet ephemeris, and the spacecraft position with respect to the

planet. Comparisons are made for two missions:
a) Jupiter Orbiter,
b) Saturn Orbiter,

and each mission is divided into interplanetary and near planet legs. The
. near planet leg does not include the orbital phase.

The results show that onboard navigation produces substantial
fractional reductions in planet arrival errors based on purely DSN data,
but these are already small. Consequently onboard navigation cannot be
justified purely from a navigational standpoint. Onboard accelerometers
are shown to reduce navigation errors by aiding in the reduction of thrust
vectoring errors and spacecraft mass uncertainty. The results assume
one arcminute attitude control by the attitude control system. It is also
shown that first perturbation guidance is adequate to null reasonable

trajectory perturbations,
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CHAPTER 1
INTRODUCTION

The study reported in this volume represents the second phase of a
séquence of studies funded by NASA under contract NAS2-5043, and directed
by the Mission Analysis. Division of the Office of Advanced Research and
Technology. The first part (or Phase A) of the study was concerned with
guidancé and navigation requirements for outer planet missions in which
trajectory corrections are made exclusively by means of short duration,
impulsive velocity changes after transplanetary injection. Missions studied
under Phase A included a Jupiter flyby, a Jupiter swingby to Saturn, and a
four planet grand tour. The second (or‘Phase B) part of the study, reported
in this volume, is also concerned with guidance and navigation requirements, -
but for rhissions involving spacecraft with constant low-thrust propulsion.
The Phase B studies considered direct missions to Jupiter and Saturn,
The analysis of a Neptune mission was not completed due to computational
.problems and contract time limitations., The total trajectory for each
missionis an optimized combination of chemical propulsion and low thrust
propulsion. The chemical propulsionisused for planet departureand planet
arrival while the low thrust is used for the interplanetary stage. The use
of high thrust chemical propulsion avoids the need for a spiral type of
planetary departure and arrival maneuver. This report concentrates on

the low thrust portion of the missions.

For the Phase B studies, the general objectives have been the same

- as for Phase A, namely:

1) determine the characteristics associated with (a) totally Earth-
based,' and (b) a combination of Earth-based and onboard
navigation concepts;

2) determine the associated navigation énd guidance subsystem
weight, power, and volume for representative navigation and

guidance subsystem concepts applied to mission objectives;



3) determine the accuracy requirements placed on the midcourse
propulsion and attitude control subsystems by each of the above
combinations;

4) perform trade off analyses which compare on a total guidance
and navigation subsystem basis, the three navigation concepts
for each nominal mission, considering both thé heliocentric and

near planet portions of the missions.

In addition to these general objectives, there was a requirement in Phase
B to develop a suitable guidance control algorithm for the low thrust

missions.

Some of the interesting characteristics of the low thrust missions
are listed in Table 1.1, The ion thrusters to be used for these missions

3 lbs, of thrust. Applied to a spacecraft with a 103 kg

develop about 6x10°
mass this thrust gives about 10_5g of acceleration, or about one millionth
of the acceleration of a typical high thrust case. The small acceleration
levels are offset by the long thrust periods of one to four years as shown
in the fourth row of Table 1.1. The combinatioﬁ of low thrust level and
long thrust periods produces the substantial AV's shown in the last row of
the table., These in turn lead to the shorter flight times listed near the
top. For a Jupiter mission, the ion thrust mission is slightly longer than
the high thrust, but for Saturn there is a time-savings of over 25%. For
flights to planets beyond Saturn, the time savings would increase substan-:

tially.

The low constant thrust, with changing direction in the celestial sphere,‘
complicates the equations of motion (see Appendix A) of the spacecraft
sufficiently so that they must be integrated numerically. The associated
trajectories were supplied by the NASA Mission Analysis Division for these
missions. However, the trajectories were reproduced for this study by
the MIT Draper Laboratory in order to have nominal trajectory reference
points for arbitrarytime during the flight, rather than at specific preselected

times. This allows changes in measurement schedules and key navigation



Table 1.1

L.ow Thrust Mission Characteristics

Launch Date
Arrival Date _

Total

Low Thrust
Flight Time (Yr)

Direct .
Ballistic Flight (Yr)

Total Thrust
on Time (Yr)

Periplanet Radius
(planetary radii)

Time Within
Sphere of Influence (Days)

Approximate Total
AV (km/sec)

Jupiter

23 Sept. 1979

Missions

Saturn

10 August 1980

13 Oct. 1981 1 July 1983
2.0 2.7
1.7 3.7
1.0 1.7
2 3
65 69
9.2. 20. 8



and guidance systems parameters to be analyzed. The trajectories are

fully described in Appendices B and C.

Chapter 2, following this introductory chapter, presents a discussion
of the navigation simulation. Included in Chapter 2 are discussions of the
computational procedure, the way in which thrust vector misalignment
affects the navigation results, problems of extrapolating error covariance
matrices, and guidance algorithms that could be applied to these missions,
Chapter 3 discusses general problems associated with the design of those
onboard sensors which are closely related to guidance and navigation.
These sensors include accelerometers, optical attitude control reference
sensors, and onboard navigation instruments. Only onboard navigation
instrurhents of the scanning photometer type have been considered for Phase
B.

In Chapter 4 the navigation results are presented. Feedback effects
onnavigation errors are not represented in the results because of an inability
to achieve coupling of navigation and guidance simulations within allotted
time and computer availability constraints, Results listed inélude errors
in spacecraft position, planetary ephemeris, velocity, spacecraft mass and
thrust vector alignment. The listed errors represent the errors at the

target planet sphere of influence and at periplanet.

Chapter 5 presents general conclusions, a results summary, and

recommended further studies,

The Appendices are in seven sections, and contain the more detailed
information about calculations, derivations, trajectories etc. In Appendix
A mathematical symbols are defined including coordinate systems and

control angles, and the equations of motion of the spacecraft are displayed.

Appendix B contains system related curves for the interplanetary
leg of the missions. The curves include trajectories in solar system

coordinates, time varying aspect angles between the spacecraft and various



navigation and attitude reference objécts, and ranges-to planetary satellites.
Appendix C contains similar information for the near planet portion of the

missions.,

In Appendix D the equationsused for propagation of statistical errors
are derived, including contributions from onboard névigation instruments,
the Deep Space Network (DSN), accelerometers, and the uncertainties
considered. |

Appendix E contains guidance derivations including a derivation of
thenominal optimal control, and descriptions of the candidate perturbation
guidance schemes,

Appendix F presents a series of éurves from which guidance ac-
curacies may beobtained. Since guidance and navigation were not simulated.
simultaneously for the reasons cited above, the navigational accuracies
" must be used in conjunction with these plots to approximate the obtainable
guidance accuracies. Three pieces of information can be obtained from
these curves: 1) the maximum deviation from the reference trajectory
which can be corrected by the end of the mission as a function of time to
go; 2) the position error which will resultat arrival if the maximum deviation
is exceeded; 3) the perturbationin the control required to cancel the effects

of the deviation from the reference trajectory.

Finally, Appendix G presents system related information on specific

accelerometer types and problems in thrust vectoring,
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CHAPTER 2

THE SIMULATION MODEL

2.1 General Remarks.

In this chapter is a general discussion of the simulation. The model
used, uncertainties considered, the navigational and guidance aspects of
the simulation and the organization of the computer program used in the
simulations are described. The mathematical details are omitted here

and are presented instead in Appendices D and E.

In Phase B, interplanetary propulsion is achieved using the fixed low
thrust level which would be characteristic of a nuclear powered ion engine,
The nominal trajectories were furnished by the NASA Mission Analysis
Division and were detérmined as the solution to a minimum fuel, fixed
terminal time, position, and velocity optimization problem, wherethe Earth
.departure and the planet arrival are partly performed by chemical stages.
These trajectories are characterized by a long thrusting period, a long
coast period, and another thrust period. Since the thrust magnitude is
fixed, trajectory error correction is accomplished by steering or varying

the thrust on/off switch times.

One aspect of this phase of the study was to develop and incorporate
into the simulation a guidanée system appropriate to the low thrust missions,
and to see if with such a guidance system, deviations from the nominal
could be kept sufficiently small. Since there is no control during the coast
period and since the missions are long, small velocity errors at the beginning
of a coast can grow into large positional errors at the end of the coast

period.

As with the high-thrust phase of this study, the navigational aspect

of the study involved the relative value of using Earth based radar



measurements (DSN), onboard measurements, or combinations of these two,
In addition accelerometer measurements were considered with various
combinations of DSN and onboard measurements,

2.2 Statistical Model

In the present phase of the study, a statistical error analysis was
performed similar to that done in Phase A. We consider the statistics of
first order deviations from a reference trajectory. Since all random
processes were assumed Gauss-Markov processes, only second order
statistics were necessary. The reference ti‘ajectory was the nominal
minimum fuel trajectory. Measurements were linearized about thenominal

values which were obtained using the mission reference trajectory.

Since for these missions we were using piecewise continuous thrusting,
the ""mid-course velocity corrections' also represent a piecewise continuous
process. Thus, discrete velocity corrections were 'not incorporated as
they were for Phase A. The extrapolation of statistics and the course
corrections are combined as the solution of a set of differential equations
describing the statistics.

As with Phase A the statistics of interest are E(t) = e(t) _e_(‘c)T and
X(t) = §x(t) 6§_(t)T where 6x(t) is the deviation from the nominal and e(t) is
the errorin the estimate,é_gg, i.e. e(t) = 6_A>g(t) - §x(t). The overbar indicates
we are taking the expected value over the ensemble., E is thus the estimation
error covariance and X the covariance matrix of deviations from the
reference trajectory. In order to write the differential equation for X and
E, one must also define other correlation matrices. These are given in

Appendix D.

A statistical analysis is required to see what the effects of various
initial errors are on the mission outcome. The various uncertainties
considered were in thrust vector alignment, mass flow rate, thrust

magnitude, planetary or solar mass, destination planet position, and the



spacecraft injection state. Thetwo-dimensional thrust vector misalignment
was made part of the 12 dimensional state and was assumed to be driven
by white noise with a known covariance. The uncertainty in thrust magnitude
was modeled as whitenoise. Theuncertainty in mass flow rate.was modeled
as white noise plus a bias.- The planet. and sun mass uncertainties were
considered as biases,as were the two dimensional station location errors,
which are uncertainties in the longitude and off spm axis distance of the

radar stations which make DSN measurements
2,3 Navigational Uncertainties

Besides the uncertai’n"cies which affect the dynamical behavior of the
spacecraft there were uncertainties in the quantities which were used for
onboard measurements, These were, for example uncertainties in planetaryv

‘radii, satellite radii, planetary horizon altitude, and planet and satellite
ephemerides. The incorporation of those uncertainties and the source of
" values used is discussed in Vol. 11, Ch. 2, Sec. C.

2.4° Navigation ' ' \

The navigational technique and program used for iic !ow-thrust
mission simulations is essentially identical to that used in Phase A for
the high thrust missions with the exception that accelerometer measur ements
were used here for navigation purposes. As in Phase A of this study,
radar measurements from Earth (DSN) and onboard measurements (e.g.
star and plénet sightings, planet radii) were used for navigation and their

 relative worth was compared.

The incorporation of these measurements wasdone inthe same general
way as in Phase A, where a nine dimensional state made up of spacecraft
position and velocity and target planet position was used. In this phase
the state has the above nine components plus the spacecraft mass and two
thrust vector misalignment angles. The onboard navigation sensor (except

accelerometer) and DSN measurements do not directly measure these last



three components of the state, so that the equations used for navigation
were altered only so as to use the 12 dimensional state with zeroes added

to the relevant matrices to make them dimensionally consistant.

Accelerometers measure the thrust acceleration. Since a low thrust
spacecraft is thrusting over long periods of time and since small deviations
in the thrustdirection and magnitude would significantly affect the trajectoi‘y
over these long periods, it was of interest to see how accelerometer

measurements affect the navigation error.

Two cases of accelerometer measurement incorporation were
considered. In the first it was assumed: that 3 accelerometers were used.
This gives an estimate of the vector thrust acceleration. The elements of
the state directly influenced by this measurement are the mass and the
thrust vector misalignment angles. In the second case it was assumed
that one accelerometer was mounted along the nominal thrust vector
direction. One accelerometer yields information about mass flow rate but
little about the misalignment angles. Accelerometer measurements were
added to both the DSN only and tothe DSN and onboard measurement cases.

The derivations and equations are given in detail in Appendix D,
2,5 The Nominal Trajectory

This section discusses the solution of the optimal control problem
which results in thenominal trajectory used in the study. Some discussion

of the boundary value problem which results is also included.

The problem can be stated as follows, Assume we are given a
spacecraft which starts at a given fixed initial time, position and velocity
and with a given initial mass, and we wish to find the trajectory which
takes the spacecraft to a fixed terminal position and velocity at a fixed
terminal time and minimizes fuel consumption. The spacecraft moves in
the gravitational field of the sun and one (target) planet. Thrust can be

turned on and off and the thrust directions varied, but thrust magnitude is

10



fixed. This is a well posed problem in optimization theory and is treated
mathematically in detail in Appendix E. To solve this problem a seven
dimensional state is defined which includes the position and velocity and
mass of the spacecraft. The planet positionisobtained from an ephemeris.1
In solving the optimization problem, one also defines a seven dimensional
costate. Applying necessary conditiohs leads to a two point boundary value
problem in the state and costate where some components of the state and
costate are specified at the initial time and some are specified at the final
time. This two point boundary value problem was solved numerically by

the NASA Mission Analysis Division, in providing the nominal trajectories,
2.6 Guidance
2.6.1 General Remarks

In this section the nonoptimal guidance system used, and also other
guidance schemes which were considered are discussed. "Deterministic'
guidance schemes were considered which could be applied to a statistical

analysis.

The navigation system is used to determine where the spacecraft is.
This informationisthenacted onbythe guidance system to get the spacecraft
to its target while meeting various mission criteria, For the missions
considered in this study, the targét was a particular position and velocity
in space at a particular final time, In addition we would like to use as

little additional fuel as possible.

The object of the guidance scheme was to determine what the
deviational control should be if deviations from the nominal path occur,
The deviational or variational contirol could be either a change in the thrust
direction or the switching of the thrust on or off at non-nominal times. It

was desired to get a feedback law given by a gain matrix A(t) such that

su(t) = A(t) 5x(1),

11



where §x(t) is the deviation from the nominal state at time t. Methods
were considered for obtaining a change inthe switch times, Ats, as a function
of §x(t), but the guidance scheme utilized assumed that switches occurred
at the nominal times and all guidance was by steering only. Once the gain
matrix is developed for the deterministic problem it can be applied to the
statistical problem by assuming

A .
du(t) = A(t)6x(t)
where 6%('5) is the estimate of §x. This expression is substituted into the

variational differential equations for 6% and §x from which the matrix

differential equations for the error covariance matrix

E=§gT

(e = 6X - 6x)

and the deviational covariance matrix

X = 6x 6§T

are formed.
2.6.2 A Nonoptimal Scheme

A nonoptimal guidance scheme was developed which had as its object
the nulling of the components of the deviation in position which are
perpendicular to the nominal velocity direction at the final time. The
component of position in the direction of velocity is uncontrollable by steering
alone. This component could however be diminished by altering the switch
times if the last switch has not already occurred.. If during the last thrust
period we find that we are further from the target than the nominal distance,
due to revised spacecraft position knowledge or because the planet is not

where we originally thought it to be, it is impossible to arrive at the final

12



position at the fixed final time using constant thrust. If we are closer
than anticipated, however, the engine could be turned off early. The
nonoptimal scheme reéults in a gain matrix (Appendix E) which, when
multiplied by the state deviation, gives the constant (in time) control which
would null the components of position_perpendicular to final nominal velocity
at the final timeassuming that §x wasnot later altered bynew measurements

or other "random'" influences.

Guidance was not included in the statistical results. However, it is
possible to get some useful information from the guidance scheme directly
(see Appendix F), For example it is possible to specify the maximum
state deviations which can be "nulled" (i.e. the positional components
per'pendicular to the nominal velocity at the final time can be nulled) given
a maximum value for the magnitude of the variational control. We can
also obtain the values for the two positional components if those maximum
state deviations are exceéded. Given a state deviation we can also get the
- perturbed control angles that would result.

2.6.3 Optimal Perturbation Guidance Schemes

One possibility considered was using a second variation scheme as
discussed in Ch, 6 of Bryson and Ho.2 Under the assumptions needed for
this scheme, a perturbed trajectoryis extremal in the sense of the nominal
trajectofy. For our case this would be a minimum fuel trajectory. However,
because we have a constant thrust engine and a fixed terminal time, after
the last thrust switch, when the thrust is on for the rest of the trajectory
for the nominal case, it is impossible to meet the terminal conditions for
certain perturbations, In fact, over this part of the trajectory there cannot
be any pert'urbed‘ optimization of fuell, since the fuel consumption is fixed,
the thrust is on until the final time. Thus there are no 'neighboring
extremals", and the second variational scheme cannot be used over this
part of the trajectory. In an actual mission, there would be some ability

to throttle the thrust level, although that was not considered in this study.
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Another possible optimization schemeis touse a terminal controller,
(See Ref. 2, Sec. 5.2.) Herewe would fix the switch times at their nominal
values. The system would be the linearized variational state equations
and the performance index would be made up of a positive definite quadratic
form in the terminal deviational state plus an integral of positive definite
forms in the deviational state and control. It is possible to get an exact
explicit feedback law for this problem. The gain matrix is the solution to
a Ricatti equation. Although this method was attempted, (see Appendix
E.) it was given up in favor of the nonoptimal scheme discussed earlier
due to numerical difficulties in solving the Ricatti equation and lack of
time to resolve this difficulty.

2.7 Organization of Computation Procedure

Three programs were used in addition to the main program which
performed the error analysis. The first created and stored the reference
trajectory. Using this stored information the guidance program then created
gain matrices which val'so were stored. These matrices were used to get
the variational control as a function of the state deviations. The third
program generated cost matrices used for the measurement selection.
Thus the nominal trajectory, gains matrices, and cost matrices were stored

for each mission prior to the running of the main program.

Figure 2.1, shows a flow chart of the major elements of the main
computer program. The input is the various correlation matrices for the
initial injection or the terminal correlation matrices for a previous leg of
the same mission, The number of ''decision points' is preselected at the
time of input. At each decision point the program determines if a DSN or
onboard measurement should be taken, If accelerometer measurements
are taken during a leg, these are incorporated "continuously'', there being
no decision on whether or not to incorporate them.

The first step was to extrapolate the correlation matrices to the first

decision point.' This is done by numerically integrating the matrix dif-

ferential equations for the various correlation matrices, The effect of the

14
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guidance is included in these differential equations, After this, if it is
time to incorporate a DSN measurement, this is done. Then the onboard
measurement options. are considered, i.e., whether to take an onboard
measurement or not, and if so, whether to incorporate a predetermined
measurement or sequence of measurements, or enter the measurement

selection process.

The selection of individual measurements is determined by minimizing
the mean squared position estimation error at a preselected target point
(usually the destination point). This criterion utilizes the cost matrices
which had been computed and stored before running the main program.
The details of this process are discussed in the Measurement Selection
section of Appendix D. The measurements were chosen from the same
typesas listed in Vol. II, Ch, II, Sec. E. Namely, 1) planet/moon diameter
2) planet/moon center to star, 3) star occultation, 4) planet/moon limb to
star 5) sun-star. Lists of navigational stars and of planetary satellites
are given in Vol. II, Table II-7 and 8 respectively. The error associated
with making each type of measurement is modeled as an appropriate
combination of the basic instrument pointing error and the uncertainty
involved in definirig a planet limb., Different numerical values are used
for each planet and for the dark and light edge sightings. Once the best
measurement is found, it is incorporated if it gives a sufficient reduction
in the selection criterion. Once the required number of measurements
for this decision point have been selected and incorporated, the statistics
are extrapolated tothetime of the next decision point and the entire process

is repeated until all decision points have been processed.
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CHAPTER 3

SENSOR SYSTEM STUDIES

In relation to the high thrust outer planet missions, the functional
requirements of onboard sensors for the low thrust spacecraft remain
essentially unchanged. The same types of sensors are required for attitude
control, thrust vectoring, navigation, etc. However, changes in the sensor
operational environment due to the long period continuous thrusting have a
number of new implications for the system design. For example the changing
thrust vector orientation throughout the flight implies that the thrusters
and communications antenna have to be gimballed with respect to eachother.
Arbitrary beam pointing with respect to a fixed spacecraft attitude will
lead to unwanted torques, and therefore communication antenna gimballing
appears likely. Thisraisesthe possibility that the locationof the spacecraft
inertial centroid will be changed as the antenna is rotated, and a feedback
problem involving torque reduction, thrust vectoring, and antenna pointing
will be produced. Changes in the sensor operational environment for ion
thrust missions also imply long life requirements for certain other design
changes. Requirements placed on the various navigation and guidance related

sensors are the subjects of this section.
3.1  Onboard Accelerometers

The placing of highly sensitive accelerometers on the ion thrusted
spacecraft results in improved navigation by means of reduction in the
thrust vector misalignment., The accelerometer sensitive axes can be
precision aligriéd with respect to attitude control optical sensors to within
a few seconds of arc. Thrust direction with respect to the accelerometer
axes can then be accurately determined depending on accelerometer ac-
curacy, and can be referenced to celestial coordinates via the attitude control
system. Although the low thrust acceleration places requirements on the

accelerometers that depend on the mode of usage, the accelerometer

17



sensitivity levels necessary to achieve a given thrust vectoring accuracy
aredirectly established by the nominal thrust acceleration level of 10-5g's.
From Figure G.2 of Appendix G it can be seen that 2 arcsecond thrust
vectoring (assuming that the attitude control system is good enough) requires
an accelerometer with 10'10g sensitivity. Requirements on null bias
measurement and scale factor accuracy depend on the attitude control system
accuracy and the details of the measurement process. First order null
bias effects can be calibrated to sufficient accuracy by allowing momentary
thrust interruptions, In time there will, of course, be bias drifts, and as
a consequence, the null calibration rate will have to be geared to drift
rates, These in turn may have to be determined in flight under actual
working conditions. Second order null variations will be caused by
fluxuations in the thermal environment control, and also there will be
apparent second order null fluxuations related to the limiting accuracy of
null calibrations. Ina pulsed type accelerometer, null calibration accuracy
is limited by pulse rate variations and pulse energy variations which are
due to fluxuations in the trigger level voltage, the pulse generating
electronics, and the pulse counting device. One of the driving sources of
these fluxuations will be temperature variations., To decide how to calibrate
null with maximum expediancy it will benecessary to study the trade between
short thrust shutdowns and their associated small smoothing time, and long
thrust interruptions which would allow larger samplesto be taken, but which
might require that a separate attitude control system be turned on, which
would in turn degrade thrust pointing from a previously well established
vectoring. However null is calibrated, there will result a residual null
uncertainty which will be an estimated noise source for thrust vectoring

at a level of some small percentage of the null measurement,

Accelerometer scale factor accuracy determination presents a
similar, and in some ways more difficult problem to that of null bias
measurement, There will be mechanical scale factor errors which at a
given output is equivalent to a null bias. Unfortunately there is no simple
independent standard against which scale factor errors can be calibrated.

Several possibilities suggest themselves. The gravity gradient could be

18



used in the period just after trajectory injection, however, there would be
drifts in the resulting value later in the flight when gravity gradient was
too small-to use as a reference. Accelerometers could be mounted on
tracks allowing them to be moved outward from the spacecraft center of
mass by precision amounts, thus using the self gravitation of the craft as
a reference. This procedure would be seriously complicated by complex
gravitational fields caused by spacecraft asymmetries for a 3-orthogonal-
accelerometer system. Scale factor bias errors are unimportant with
regard to thrust pointing 'as long as they are identical for each accelero-
meter of the set. This suggests that the accelerometers might be gimballed
as a set and placed and calibrated in identical positions to make the scale
.factor biases equal. Residual scale factor fluxuations are treated as a

random noise source.

Although it is easy to speculate on the process of calibrating ac-
celerometers at the 10-10g level, examination of some of the g levels
intrinsic to theion propulsion situation illustrates the smallness of 10-10g
" inrelation to some of the other force levels that might occuf. For example

3 kg sphere witha 1 meter radius is about 10—8g's.

the surface gravityofa 10
If the sphereisrotating at 1 arcsecond/second, the centrifugal acceleration
is roughly 10_7g'_s. This implies that spacecraft rotational oscillations
within an attitude control deadband would result in strong accelerometer
outputs that varied over the deadband cycle unless, of course, the ac-
celerometers are located at the center of rotation., Gravity gradient force
near earth, with a 1 meter separation between the spacecraft center of

mass and the accelerometer, would be of the order of 10_7g.

Processing of the accelerometer output represents another problem
area,- For pulsed rebalance accelerometers, pulses would be counted and
averaged over aninterval the length of which depends onthe pulse frequency
and variability, and also on the drift rates, The variance on null and scale
factor fluxuations could be determined early in the flight, and would serve
to establish the sampling interval from a statistical standpoint, Bias drifts

could be determ ined only by independent measurements. If thrust magnitude
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is relativelyfdrift free it might be used to detect scale factor bias drift.
As a basis for this study it has been assumed that accelerometer pulses
would be counted and stored for several days and then be transmitted to
earth along with null bias calibration data taken at the beginning and end
of each sampleinterval. Fluxuationsinnull and scale factor were assumed
to haire an rms value of 3x10-7g, Uncalibrated bias errors were assumed
to beabout 1% of the rms noise or 3x10-9g and were not treated separately
in the mathematical model. Figure 3.1 illustrates the rate of decrease of
thrust vector misalignment as governed by the accelerometers, Because
of numerical problems in the DSN incorporation, the ability of DSN
measurements to decrease thrust vector misalignment uncertainties was
fixed around the one arcminute level. The significant feature of the figure
is that the three accelerometer system drops the thrust vectoring error

down very rapidly immediately after injection.
3.2 Attitude Control Sensors

The results presented in Chapter 4 show marked decreases in position
and ephemeris errors when accelerometers are added to the spacecraft
system. Implicit in these improved values are two assumptions regarding
the attitude sensor accuracy. First, that the attitude sensor accuracy is
as good as, or better than, theangular accelerometer thrust vectoring and,
secondly, that the aftitude sensors have one arcminute absolute accuracy
early in the mission. The point of these assumptions is that the Deep
Space Network can establish thrust vectoring eventually to an accuracy of
about three arcminutes, but for this source of control it is only required
that the attitude sensors be capable of few arcminute relative accuracy.
Conversely, with accelerometers as the source of thrust vector control, it
is required to have sufficient absolute accuracy to give thrust vectoring
with respect to celestial coordinates. Thus, the addition of accelerometers
to the system is seen to strongly affect attitude sensor design. Further
improvement in the results can be obtained if the accelerometers canoperate

-10

at or near the ultra low g region. At 10 g,the accelerometersare yielding

two arcsecond thrust alignment according to Figure G.2. The limiting
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attitude, and therefore thrust pointing accuracy, would then depend on how
accurately the attitude sensors and accelerometers could be aligned, and
how accurate theattitude sensors were. The attitude control system would
not necessarily be cailed upon to maintain a tight, few-arcsecond deadband
but would be required to keep the deadband accurately centered and

predictably oscillatory.

The attitude reference bodies will presumably be the sun and the
star Canopus. Numerous sensors have been designed around these two
objects, and there should be only a moderate problem obtaining sufficiently

-10
accurate sensors to match a 10 , two arcsecond, accelerometer output.

Star trackers with accuracies in the few arcsecond i'ange are
r:xvailable.3 The field of view of star trackers in this range is generally
on the order of 10 by 10 arcminutes which would be adequate for attitude
control at the one arcminute level or lower. A simple sun sensor of the
critical angle prism type has been built and tested for the Apollo Advanced
Application Program‘ by Honeywell. This devicehas a demonstratedaccuracy
of 2.5 arcseconds at one astronomical unit, but would degrade proportionally
to the solar-spacecraft range. Maintaining high accuracy over a greater
range would probably require a masking device using matched detectors
which can be matched to within 1% thereby making the sensor accurate to
within 1% of its approximately one-dimensional field of view, A number

of sun sensors of this variety are described in Koso and Kollodge.4

Strapped-down ion thrusters, thrusting over a wide range of spacial
directions for long periods, require‘the addition of wide total field of view
coverage by the optical attitude sensors. Figs. 3.2 and 3.3 show respectively
the motions of the star Canopus and the sun with respect to sun-velocity
coordinates. ©Since the thrust vector is held at a relatively fixed angle
with respect to the spacecraft velocity vector, the Canopus-velocity system
(Fig. 3.2) gives a picture of how Canopus would move with respect to
coordinates fixed on the spacecraft. The graphs are in polar coordinates

with the polar arigle indicating azimuth with respect to the indicated direction,
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and the radius indicating the out-of-plane component of angle with zero
angle in the plane., The plane on the paper is essentially the ecliptic plane
since it is defined by the vector product of the sun-spacecraft vector and
the spacecraft velocity vector. Canopus (Fig, 3.2) is about 80° out of the
ecliptic plane, and moves oven an azimuth of about 80° during the first
burn, and 1200 during the second. The out-of-plane motion amounts to
only a few degrees., If there were no thrust vector control for guidance
purposes, the attitude reference star tracker would be required to have
gimballing about just one axis. However, guidance thrust control could
add 10° to each direction thus requiring two rotational degrees of freedom
for the star tracker to cover the area indicated in Fig, 3.2 by the dashed
lines. Figure 3.3 shows that a sun sensor would need to have the capability
of covering about half the in-plane circle, and +15° out of plane. The
out-of-plane coverage is about at the limit attainable by a strapped down
sun sensor. Since these devicesare small, the possibility exists of placing
a gang of sun sensors around the craft to give the required azimuthal field
of view, In effect, the azimuth sensing problem would be handed off from
one strapped down sensor to the next, thus stepping the thrust vector in
discreet increments over the flight, The total weight of a gang of strapped
down sun sensors would probably weigh about as much as a single gimbaled

sensor, and would have the advantage of no moving parts,

Some other general problems with attitude optical sensors include
the requirements for reliable continuous operation for periods of years,
problems of shielding from the radio thermal generator power source, a
changing solar signal level by a factor of one thousand ona Neptune mission,
and the design of a feedback control system for attitude control using the
ion thrusters, For purposes of alignment, and the avoidance of launch
stress problems, it would be ideal to assemble and check out the attitude-
thrust vectoring system in earth orbit. In addition to the low thrust control
there will probably bea requirement for a separate set of attitude thrusters
and an inertial attitude reference unit to handle the craft during wake up

or reaquisition sequences, and during solar occultation at planet passage.
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3.3 Navigation Sensor

Examination of. the navigation results given in Chapter 4 shows that
onboard navigation has limited utility for error reduction. Position errors
with respect to the target planet are reduced by factors of 2 to 15, but the
errors that are being reduced are already in the few kilometer range, and
it is therefore questionable whether further reductions are necessary,
The onboard navigation system also reduces ephemeris errors early in
the mission, and this reduction is directly related to the instrument
accuracy. A onearcsecond instrument reduces ephemeris error bya factor
of twoduring the Jupiter interplanetary leg, however, the ultimate reduction

is limited by the uncertainty in spacecraft position as determined by the
A Deep Space Network,

The strongest argument for the inclusion of onboard navigatidn on
- these missions is that thenavigation sensor can also be used as a scientific
instrument. A scanﬁing photometer navigation sensor can gather extremely
important data about the upper atmosphere of the outer planets by means
of planet limb scans. Onboard navigation may also play a useful role in

the guidance scheme by reducing ephemeris errors early in the mission.

Given, as a result of overall mission considerations, that onboard
navigation is used with the low thrust spacecraft, a few design implications
are seen., First, because of spacecraft orientation changes throughout the
flight, the navigation instrument will require full gimbaling. Even if the
instrument is restricted to measurements during the second burn, there
will still be a gimballing requirement because navigation stars will move
up to 120 degrees with respect to coordinates. A second implication is
that extreme accuracy may not be necessary. In Fig. 3.4 it can be seen
that thereis little reduction in position error when the instrument accuracy
isincreased tolarcsecond from 10 arcseconds, waever, if early reduction
of ephemeris error is important, the more accurate instrument becomes
important, evsp'ecially in the Jupiter mission where Deep Space Network

related position errors are not large.
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Generally, the same navigation instrument problem areas exist for
these missions as existed for the high thrust missions v_reported in Volume
II of thisreport. Close-inmeasurements are still more useful for position
error reduction than those obtained further out. Increased measurement
frequency does result in further error reduction. Spacecraftattitude changes
can affect the results as in the high thrust missions, and co-mounting of
the navigation and science instruments may lead to conflic’cs.5 Figure G.1

presents whatare felt to be realistic estimatesof navigation sensor weights,
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CHAPTER 4 -
MISSION SIMULATION RESULTS
4.1 Introduction

This chapter presents the navigation results which are derived from
the statistical simulation in the form of an error covariance matrix.
Tabulated resultsare the square roots of the diagonal elements of the error
covariance matrix and represent lo uncertainties in spacecraft position,
velocity, mass and thrust vector alignment, and the lo uncertainty in the
target planet ephemeris, Results for Jupiter and Saturn missions are
presented in tabular form, and the tables are followed by discussions of

the meaning of the results in terms of navigation related systems.
4.2 Tables of Results

Resultsarelisted in Tables 4.1, 4.2, 4.3, 4,4, Eachof thetwomissions
is divided into interplanetaryand near planet legs, and the listed lo errors
represent the terminal conditions for each leg. For the interplanetary
leg,theterminal timeisthenominal time of arrival at one Laplacian sphere
of influence from the target planet, and for the near planet leg the terminal

time is the nominal time of closest approach.

The lefthand column of each of the resulis tables, entitled
"configuration', lists the characteristics of the modeled systems or the
deviations of the system from the nominal case. The term nominal has

the following meaning for the parameteral systems:

a) nominal DSN doppler noise — 1 mm/sec (10)
b) nominal DSN station location bias — . 1 meter off of spin axis
2 meters longitude (10)

c) nominal visible navigation instrument noise — 10 arcseconds (10)

o . e ", t
Thus when the configuration column says 'uncertainty x n''it means '"n'

times the nominal value.
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RMS Terminal Estimation Error

Table 4.1

Jupiter Interplanetary

Misalignment
Configuration Position Velocity Ephemeris Mass Angles
DSN OB (km) (km/sec) (km) (kg) (milliradians)
Nominal X 149 6.45E-5 504 7.03E-2 . 283
Nominal X b4 149 6.45E-5 486 7.03E-2 . 283
1 Accelerometer X 145 4, 26E-5 510 2.01E-2 .116
1 Accelerometer X X 144 4. 26E-5 492 2.01E-2 .116
3 Accelerometers X 64.1| 4.58E-6 482 2,.02E-2 .314E-2
3 Accelerometers b'd X 64.0| 4.56E-6 463 2.02E-2 .314E-2
Onboard Instrument
Uncertainty = 17 X b'e 136 6.45E-5 223 7.03E-2 . 283
.Onboard Instrument
Uncertainty = 100§ x X 149 6.45E-5 503 7.03E-2 . 283
DSN Dopler ‘
Noise x 10 X 216 8.18E-5 523 7.17TE-2 . 234
DSN Dopler
Noise x 10 X X 214 8.18E-5 506 7.17TE-2 . 234
DSN Dopler
Noise x 100 X 811 1,12E-4 551 7.17TE-2 . 290
DSN Dopler
Noise x 100 X X 690 1,11E-4 537 7.17TE-2 . 290
Station Locatidn
Error x 10 X 153 6.46E-5 507 7.04E-2 . 283
Station Location
Error x 10 X X 152 6.46E-5 490 7.04E-2 . 283
Station L.ocation
Error x 100 X 153 6.46E-5 507 7.04E-2 . 283
‘Station Location
Error x 100 X X 152 6.46E-5 490 7.04E-2 . 283
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Table 4.2

Jupiter Near Planet

RMS Terminal Estimation Error

Misalignment

Configuration Position Velocity Ephemeris Mass Angles

DSN OB (km) (km/sec) (km) (kg)  (milliradians)
Nominal X . 12.9 8.16E-3 305 7.156. 2 . 188
1 Accelerometers -X X . 681 3.05E-4 236 2.17E-2 . 116
3 Accelenrometers b4 _ 2.00 1.33E-3 79.5 2.32E-2 . 284E-2
3 Accelerometers X X .302 1.83E-4 | 50.0 2.21E-2| . 284E-2
Onboard Instrumen;r_ , . ;
Uncertainty = 1007 x x {3.07 . 1.27E-3 282 6.63E-2 . 188 %
DSN Doppler : 5
Noise X 100 X 32.6_3 1.73E-2 388 8.30E-2 . 290
DSN Doppler .
Noise X 100 x X 2,27 7.14E-4 368 6.33E-2 . 290
Station Location
Error X10 X 14, 23 8.85E-3 325 7,29E-2 . 188
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Table 4.3

Saturn Interplanetary

RMS Terminal Estimation Error

Misalignment
Configuration : Position Velocity  Ephemeris Mass Angles
DSN OB (km) (km/sec) (km) (kg) (milliradians)
Nominal X [ I 1.54E3 1.90E-4 1.15E 3 9.66E-2 . 171
Nominal | X ‘a X ‘ 1.33E3 1.76E-4 1.10E3 9.66E-2 171
; !
1 Accelerometer ‘ X 1. 21E3 1.47E-4 1.15E3 1.82E-2 . 182
1 Accelerometer * x  x ¢ 1,13E3 1.42E-4| 1.08E3 1.82E-2| .182
3 Accelerometers = x 82.0 5.26E-6 1,15E3 1.82E-2 .002
3 Accelerometers  x x ° 81.9 5.26E-6| 1.08E3 1.82E-2| .002
Onboard Instrur;'r}gnt . : _
Uncertainty = 1 x x i 878 1.43E-4 840 9.65E-2 .171
Onboard Instrumept »
Uncertainty = 100 X X ¢ 1,53E3 1.90E-4 1.15E3 ! 9.65E-2 L171
DSN Doppler ' ; ‘
Noise x10 x { 2.06E3 ¢ 2.65E-4 1.15E3 9.74E-2 .213
DSN Doppler _ . P ! !
Noise x10 X X © 1.70E3 ; 2.39E-4 1.11E3 9.74E-2 . 213
DSN Doppler
Noise x100 x { 3.85E3 i 3.82E-4 1.15E3 7.89E-2 . 342
DSN Doppler : ) !
Noise x100 X X ;1. 99E3 . 2.98E-4 1.13E3 7.89E-2 . 342
Star Elevation ! i § :
Measurements only ;x !x i 1.33E3 i 1.76E-4 1.10E3 | 9.66E-2 .171
d s J— - SO SRR L1
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Table 4.4

Saturn Near Planet

RMS Terminal Estimation Error

Misalipnment

Configuration Position Velocity Ephemeris Mass . Angles
DSN OB (km) (km/sec) (km) (kg) (milliradians)

Nominal x 772 | 9. 12E-44 540 3.17E-2 144

Nominal x | x 7.55 9.10E-4 591 3.41E-2 144

1 Accelerometer x 6.80 7.75E-4 490 1. 82E-2 .138

1 Accelerometer x | x | 6.26 7.14E- 4 504 1.82E-2 | .138

3 Accelerometers x | x .. 644 9.62E-5 974 1. 68E-2 .002

Onboard Instrument
Uncertainty=1" x | x 2.39 3.11E-4 543 2.98E-2 171

Onboard Instrument | - ~
Uncertainty=100 x | x 8.55 1.03E-3 550 - 3.28E-2 .17

DSN Doppler
Noise 10x nominal x 17.5 3.12E-3 757 4, 23E-2 . 213

DSN Doppler ' '
Noise 10x nominal x | % 10.0 1.23E-3 7 3.72E-2 . 213

DSN Doppler
Noise 100x nominal | 35.9 300E-3 894 4.46E-2 . 2581

DSN Doppler
Noise 100x nominal | x | x 11. 3 1.38E-3 862 3.T4E-2 . 251

Star Elevation
Measurements only
(24 M easurements) x | x 2.59 3.13E-4 555 3.24E-2 L1771

Star Elevation
Measurements only
(16 Measurements) x | x 8.00 9.62E-4 595 3. 34E-2 .17
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The RMS values for theinitial covariance matricesaregivenin Table
4.5.6 The RMS mass errors should have beenthe sameinall cases; however,
since the mass errors were quickly "reduced by measurements, this

numerical error had negligible effect on the navigation results.

Low thrust accelerometers were added to the systerﬁ models either
singly or in an orthogonal set of three. The singleaccelerometer is assumed
to be aligned with the thrust vector and is assumed to yield only thrust
magnitude information while the set of three also produces information
about thrust direction. |

The second two result table columns indicate whether or not Deep’
Spac;e Network and onboard navigation systems were used by means of an
"x". The fourth, fifth, and sixth columns list position, velocity and ephemeris
errorsat the terminal time for the mission leg associated with each table.
Position error isrelative to the earth for the interplanetary legs and relative
to the target planet for the near planet legs. The last two columns list
mass and thrust vector misalignment uncertainty, The latter wvalue
represents the uncertainty in the value of the difference in direction of the
actual thrust vector and the desired thrust vector. To avoid numerical
difficulties for DSN only and DSN with onboard navigation it was necessary
to fix thrust vector misalignment at the first sample level that occurred
" below one arcminute, Although this makes quantitative comparison between
DSN only and DSN aided by onboard accelerometersdifficult after this limit
is reached, the significant conclusion remains (see Fig. 3.1) that the addition
of onboard accelerometers gives an early and rapid reduction of thrust

vector misalignment errors,
4.3 Jupiter Interplanetary Results

This discussion is based upon the results listed in Table 4.1, Results
related to systems that are augmented by onboard instruments are compared

to thenominal DSN case, and comparisons are made between systems with

differing values of noise parameters. Comparing, at the top of the table,
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the nominal DSN case with the DSN plus nominal onboard case one sees no
improvement when adding onboard navigation except for a small insignificant
improvement in the ephemeris value. Further down the table it can be
seen that if the onboard navigation instrument has a 100 arcsecond or 10
times nominal uncertainty even the ephemeris value is unimproved.
Howéver, the table shows that an onboard navigation instrument with an
uncertainty of one arcsecond can drop ephemeris uncertainty by more than
half. This is the only significant change of ephemeris error occurring
among the various combinations of systems and system errors examined
onthis mission legand indicates that to obtaina useful reduction of ephemeris
error at the large planetary ranges encountered on this interplanetary leg

requires an extremely accurate onboard instrument.

The lower portion of the table contains variations in the DSN noise
parameters, It can be seen that increases in station location biases do
not significantly alter position uncertainties. However, increases in the
doppler noise levels result in considerable increases in position uncertainty
particularly in the 100 times nominal case where it can be seen that the
position uncertainty is raised by a factor of five. The addition of onboard
navigation to the higher DSN noise systems has little effect except when
DSN doppler noise gets to the extremely large value of 100 times nominal.
At these doppler noise levels the onboard system tends to hold position
errorsdown somewhat, indicatinga limited need for onboard instrumentation
onthe interplanetary leg if use of low thrust propulsiondegradesthedoppler

tracking accuracy by a factor of 100 or greater.

The addition of three accelerometers causes the most significant
decrease in all RMS uncertainties. Position error values are cut in half
compared to similar configﬂrations without accelerometers. Velocity error
‘values are significantly decreased. Mass errors are decreased by a factor
of four when either three or one accelerometer is added. With three
accelerometers, thrust vector misalignment uncertainty is about 100 times
less than with other configurations. This early and significant reduction
in thrust vector misalignment and in mass uncertainty eliminatesa principle

source of error in position and velocity,
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One accelerometer gives very little information about thrust vector
misalignment and therefore leads to larger errors in position and velocity
than occurred with three accelerometers. However, the addition of one
accelerometer to nominal DSN or DSN and onboard slightly decreases the
uncertainty in position and velocity as a result of the increased knowledge

of mass from the no ac‘celerometén case.
4.4 Jupiter Near Planet Results

The discussion in this section is based on Table 4.2. Looking first
at DSN by itself, it can be seen from the first and last row that station
location biases donot s'ig}nificantlyalter any of the error values. However,
a doppler noise level of 100 times nominal raises position and velocity

uncertainty by a factor of three and slightly increases the other uncertainties,

Addition of onboard navigation to the systein, as in row five, causes
a decrease in position and velocity uncertainties with a factor-of-four
decrease in position and a factor of six in velocity. This case uses a 10
times nominal or 100 arcsecond instrument error, and therefore the nominal
onboard instrument would be expected to yield further improvement as can
be seen in row seven where onboard navigation has been added to the DSN
systems having 100 timesnominal doppler noise. As expected, the onboard

system becomes more important as the DSN noise levels increase.

Minimal errorsinall of the listed quantities occur when the spacecraft
system includes three accelerometers and onboard navigation, Contributions
to the reduction of position error are made by the accelerometers which
reduce the spacecraft mass uncertainty, and by both the DSN and onboard

navigation systems,

The primafy contribution to the reduction of the ephemeris error is
made by the threeaccelerometers which reduce thrust pointing errors and
spacecraft massuncertainties very early in the mission, and thus markedly

reduce a major error source in the equations of motion. Given early and

37



accurate thrust pointing, the DSN system can determine the trajectory at
shorter ranges where its accuracy is greatest; however, perfect thrust
pointing would still leave planet mass and spacecraft mass errors. The
relatively small ephemeris errors are, of course, dependent on the small
associated position errors. The system configuration with the next smallest
ephemeris error (79.5 km) has three accelerometers but no onboard
navigation. The ephemeris error is still markedly reduced from the other
listings. Since there is no onboard navigation, this case emphasizes the

importance of the accelerometers for ephemeris error reduction.

When the system with onboard navigation and three accelerometers
is reduced by dropping the two accelerometers perpendicular to the thrust
axis, one observes a small increase of position error to 0.68 km from
0.36 km, and a large increase in ephemeris error from 50 km to 236 km.
This is because one accelerometer cannot provide early, accurate thrust
vectoring. The single accelerometer does aid in reducing the spacecraft
mass uncertainty, and therefore produces some improvement over the

system with no accelerometers.
4,5 Saturn Interplanetary Results

This section discusses the results given in Table 4.3. Most of the
‘comments givenin the discussionof the Jupiter interplanetary results also
apply here. Examining first the cases involving DSN by itself it is seen
that increasing doppler noise increases errors significantly with the
100-times-nominal doppler noise increasing position errors by a factor of
three. For a doppler noise variance of 10 times the nominal, the addition
of nominal onboard navigation reduces position uncertainty from 2060 km
to 1700 km and for a doppler noise 100 times the nominal improvement is
from 3850 km to 1990 km, almost halving the value, For nominal DSN the
position uncertainty is 1540 km which is reduced to 1330 km for a 10
arcsecond instrument and to 878 km for a one arcsecond onboard instrument.
Comparing thisto the Jupiter interplanetary leg, shows the significant effect

of using onboard instruments beyond the orbit of Jupiter. This is because
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DSN measurements become less accurate at greater distances. Unlike
the ballistic case, the advantage gained through accurate initial tracking

near earthis partially lost because of the unknown low thrust perturbations.

~.Ephemeris error was not appreciably reduced from its initial value
by any configuration excepf that with the most sensitive onboard instruments
(one arcsecond accuracy) it is r_edtlxced.-t.o 340 km, This again points to
the need for extremely accurate instruments if early ephemeris error
reduc{ion is desirable. The accelerometers greatly.improve position and
velocity. egti'mates. The sensitivity« of mass uncertainty to the use of one
or three accelerometers and of thrust vector misalignment to the use of
three, is 'signi‘fica_nt and similar to that for the Jupitef Interplainetary results.
Mass and thrust vector misalignment are not particuiarly sensitive to other
confi_gurafcibns; the differences that dooccur arenot thought to be significant

due to the approximating numerical methods used.
4.6 Saturn Near Planet Results

Results for the near planet leg of the Saturn Mission are shown in
Table 4.4. In general, the Saturn near planet results parallel the cor-
responding Jupiter results, however, there are several additional cases
for Saturn which allow direct comparisons that were not obtained for the
Jupiter Mission, and there are cases showing the importance of the DSN

noise level,

- Looking first at the DSN only cases, rows one, eight, and ten show
the expected increasein positionand velocity uncertaintiesas doppler noise
is -inc,reésed. The one arcsecond onboard instrument is shown to yield a
very slight improvement over the 10 arcsecond instrument; however, when
the instrument error is increased to 10 arcseconds, a significant' increase
in position error, by a factor of four, results. The 100 arcsecond instrument
does not cause a corresponding increase in ephemeris error because, as
expected, this value is dependent primarily on DSN (assuming no accelero-

meters) for the near planet leg.
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Some other results related to onboard navigation include the
observation that onboard navigation only slightly improves the DSN with
one accelerometer configuration., The larger DSN noise level related errors
tend to swamp out contributions made by the onboard system. For example,
a doppler noise of 10 times nominal moves position up to 10 km from the
2.6 km level with nominal doppler noisein spite of the presence of onboard
navigation, However, the contribution of onboard navigation to the nominal
doppler noise case is to reduce position error from 7.7 km to 2.6 km.
Onboard navigation does, however, reduce the effects of increasing doppler
noise. This is illustrated by a reduction, in the case with a doppler noise
of 100 times nominal, of position error from 36 km to 11.3 km by the
addition of onboard navigation. (Resulis from the near planet leg of the
Saturn Mission related to the DSN only system show that the'or"deri of
magnitude increase in DSN noise show a corresponding increase in position
and ephemeris errors.) Onboard navigation 'vwith DSN yields a two-to~one
improvement in position uncertéinty over the one accelerometer case as
long as the onboard instrument is capable of 10 arcsecond accuracy or
greater, but that the accelerometer improves ephemeris uncertainty by
20%. It is significant that the 10 arcsecond onboard instrument case uses
star-planet limb angle measurements only, and therefore that theré is no
requirement to design the instrument as a planet center finding device, if

the radius of the planet can be determined to within a few kilometers.

The Jupiter results show that the system configuration yielding by
far the smallest position and ephemeris errors has onboard navigation and
three accelerometers. The significant five to one reduction in ephemeris
error is ‘repeated in the Saturn results, and there is a general scaling of
ephemeris errorsaccording to the greater distance to Saturn, Theseresults
also show that a system 'using one accelerometer along with onboard
navigation and DSN would yield position errors that were the next lowest

to the three accelerometer systems.

As in the Jupiter mission, all configurations reduce mass and thrust

vector misalignment error by about the same amount except the case of
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added accelerometers. For the cases of one and three accelerometers
mass error is reduced to about half that for all other configurations, and
with three accelerometers thrust vector misalignment is reduced by two

orders of magnitude,
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

The simulation results evoke several conclusions in the areas of
guidance and onboard sensor systems. As can be seen from the guidance
plots in Appendix F, the constant control guidance algorithm can null out
reasonable deviations in positionand velocity although, since the navigation
and guidance loop was not closed, additional study is necessary to prove

the adequacy of this algorithm,

| From the standpoint of the navigation results, the onboard navigation
system proves to be of marginal value except in two particular situations.
First, if the Deep Space Network doppler noise is large (100 mm/sec for
a one minute smoothing time) the onboard system makes a significant
reduction in position error with respect to the planet for the Jupiter near
planet case. The reduction is from 33 km to 2.3 km. Secondly, during the
interplanetary leg of the Jupiter mission, the onboard system can reduce
ephemeris errors substantially from the 500 km level down to the vicinity
of 150 km. Outside of these two special cases, on the basis of the limited
data available, the onboard system can only be justified in relation to its
potential use as a scientific instrument, its interaction with the guidance

proceés, and small improvements in the general body of navigation errors.

One of the more interesting results is the marked effect that highly
accurate accelerometers have on the position and ephemeris errors, and
on the spacecraft mass uncertainty. At the end of the Saturn mission,
interplanetary leg, for example, the spacecraft position uncertainty is
reduced by a 3 accelerometer system to 82 km from the no accelerometer
value of 1540 km. This occurs because two of the dominant error sources
in the equatiohs of motion are reduced by the accelerometers, namely the
spacecraft mass uncertainty and the thrust vector misalignment., One
accelerometer is much less useful than three mainly because it cannot

distinguish thrust vector misalignment from thrust magnitude variations,



However, the single accelerometer was assumed to be strapped down,
Precision gimballing of a single accelerometer with two axis freedom and
precisionalignment with respect to the attituae control system would allow
it to function in the same way as a set of three orthogonal strapped down

accelerometers.

The navigation results given in Chapter 4 are consistent with a one
arcminute attitude control system accuracy. One afcminute thrusting does
give good results even in the absence of highly sensitive accelerometers.
Adding accelerometers that are accurate at the 10-9g level causes the one
arcminute value to be realized immediately after trajectory injection which
is one to two months earlier than the case relying on the Deep' Space Network
by itself. Allowing the attitude control system to be better than one arcminute
would cause some further im provérn ent in the results, although it is expected
that planet and solar mass uncertainties would allow only small

improvements in what are, in many cases, already very small errors.

Further studies are indicated in the areas of guidance algorithm
development, simulation structuring, and pafametric variations., A number
of guidance schemes should be investigated including optimal guidance.
These would include allowing thrust to be switched on and off at times
other than the nominal trajectory times as considered for the present
scheme. Inaddition, a study to determine the linéa'r'range of such schemes

is desirable.

The statistical simulation should be restructured to produce the
desired coupling between the guidance and navigation results and to eliminate
the numerical problems which limited the results of this study. Part of
the solution to the numerical problem involves the development of new
covariance matrix propagation schemes. With this restructured simulation,
the wvalue of onboard instruments, particularly accelerometers, for-

decreasing guidance errors could be more accurately specified,

In the area of onboard sensor studies, it would be useful to complete
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the parameter variations that were limited in the low thrust phase of the
study by numerical difficulties, In addition, the range of variation of some

parameters should be extended.

The problem of accelerometer output, sampling rate, and period should
be investigated to determine how problems of data processing of outputs
onboard or on the earth interact with error propagation from one set of
measurements to the next, and how these factors affect the statistical
modeling, The assumed white noise error model for accelerometers is
proportional to the sampling rate, and the bias errors grow with time from
last calibration.

Attitude control system importance should be determined by
parameterizing the limit on thrust vector misalignment, Present results
arerepresentative of onlya onearcminute system for the no accelerometer

cases,

If the small improvement in navigational accuracy which results
from onboard instruments is desired, then the effects of restricting the
totalnavigational star field, and thetypes of navigation measurements should
be investigated. Navigation errors are known to decrease with increased
measurement frequency, but these effects have not been examined explicitly.
Similarly, the navigation measurement range from the targe’tv planet is known
to have a strong effect on the value of the measurement, but the effects of
restricting the range have not been determined. Curves showing error

growth versus range and time would be helpful in this area.
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APPENDIX A
DYNAMICS

Inthis appendix aredefined the coordinate systems and control vectors
used; the equations of motion are given.These basic relationships are used
throughout this volume in the mathematical description of both the guidance
and navigation schemes,

We are considering a spacecraft traveling under the influence of the‘
sun, a single target planet, and its own constant low thrust engine. The
trajectory begins in interplanetary space where a sun-centered coordinate
system is used. The x axis is in the direction of the vernal equinox, the y
axis 1s perpendicular to the x axis in the ecliptic and the z axis is
perpendicular to the ecliptic. At the sphere of influence of the target planet,
a planet-centered coordinate system is used whose orientation is the same
as that of the sun-centered system. The dynamical equations and any
expressions derived from them will be dependent on the coordinate system.
Planet location information is obtained from an ephemeris program which
is based on a 1960 January 1.5 epoch.

The lettersr and v will be used for the position and velocity vectors,
respectively, in the coordinate system being employed. p is the vector
from sun to spacecraft, a is the vecter from the target planet to the
spacecraft. d is the vector from the sun to the target planet. (See Fig.
A.l) /ﬁ is the three dimensional unit vector of directional cosines which
defines the direction of the thrust. T is the magnitude of the thrust and is
equal to the mass flow rate 5 (= 0 when the engine is off), times the exhaust
velocity of the ion engine c (= g6 ISp where g, is the standard acceleration
of gravity and ISp is the specific impulse of the rocket). M is the
gravitational constant of the sun, up, that qf the target planet. m is the
mass of the spacecraft. The equation of motion for the spacecraft in the

sun~centered coordinate system is:
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for planet-centered coordinates:
—“’SR ) u-p_ja_ + us.g + Bca

53 a8l e m

r =

The direction of the control can be specified by two angles 6 and ¢ defined

by Fig. A.2 where ¢ is measured in the x-y plane.
Thus,
cosf cosy
AE = sin g cosy
sing

The control parameters are &, 6, ¢ where g = ’Bmax when the engine

is on and = 0 when the engine is off.
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APPENDIX B

INTERPLANETARY TRAJECTORY GEOMETRIES

The purpose of this appendix is to present the geometrical properties
of the interplanetary leg of each of the two missions used as examples in
this study. The plots included herein are invaluable to the scheduling of
the onboard navigation system. Inaddition, they display mission phenomena
such as distances to navigational targets afld sun angles which are basic

to the design and implementation of the onboard navigation system.

There are five plots included for each interplanetary leg., The first
ineach series displays the overall mission geometryand is used primarily
to provide geometrical support for the other plots. The markings on the
spacecraft and planet trajectories are at the same equal time intervals to
aid in determining the relative positions of the planets and spacecraft.
Circles and arcs of circles represent planetary orbits with the innermost

representing the orbit of Venus,

The second plot in each group of five gives the range to the planets
of possible interest. This is valuable for deciding which planet to use for
navigation sightings as the spacecraft proceeds along its trajectory. In
the absence of other constraints which would prohibit the measurement,
those measurements which employ the closest near body are potentially
the most useful. This plot is also used to decide during what periods the
various planets are too far away to detect with an IR instrument and to
provide the navigation system design with information about the target ranges

his sensors must deal with.

The third plot in each series gives the spacecraft-Earth-sun angle.
The purpose of this plot is to identify those phases of the mission where
the spacecraft line-of-sight (from Earth) comes too close to the sun

line-of-sight to permit tracking of the vehicle from Earth. A check of all



these plots reveals the fact that there are very few times when the ground
based antennas will not be able to track the spacecraft because it is behind
the sun. Note that only on the Jupiter flyby does one of these periods even
come close toan encounter time and this could be further avoided by slight
changes in the thrust history.

The fourth graph in each group provides the sun-spacecraft-planet
angle for each leg. Thisisofmuch use in setting up the onboard measurement
schedule because it displays those periods in which the line-of-sight to
the planet is too close to the line-of-sight to the sun to permit use of the
planet for navigational purposes. It also informs the sensor designer what

range of sun angles his instrument will encounter.

The final plot in each group gives the Earth-spacecraft-planet angle
for each leg. This is of interest to the systems designer because he must
be aware of the relative location of the planet and Earth so that functions
related to each body can be coordinated. Asan example of such coordination
consider the problem of orienting the spacecraft, communications antenna,
star tracker, and/or planet sensor such that a navigational sighting can be

performed without 1o'sing communication with the Earth.

. Tables B.1 and B.2 provide the results of using these plots to develop
candidate onboard measurement schedules for all the interplanetary legs
of the three missions used in this study. The actual measurements used
in the results presented in Chapter IV were selected from those indicated

as available in these tables.

An example of using these plots to create a candidate onboard

measurement schedule is given in Appendix A of Volume II.
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Interplanetary Trajectory Geometries

Summary of Figures

1. 1979 Jupiter Flyby

Fig.
Fig.
Fig.
Fig.
Fig.

B1l.1 Trajectory for Jupiter Mission.

B1.2 Ranges to Solar System Planets for Jupiter Mission,
B1.3 Spacecraft-Earth-Sun Angles for Jupiter Mission.
B1l.4 Sun-Spacecraft-Planet Angles for Jupiter Mission.
B1l.5 Earth-Spacecraft~Planet Angles for Jupiter Mission.

2. 1981 Saturn Flyby

Fig.
Fig.
Fig,
Fig.
Fig,

B2.1 Trajectory for Saturn Mission.

B2.2 Ranges to Solar System Planets for Saturn Mission.
B2.3 Spacecraft~Earth-Sun Angles for Saturn Mission.
B2.4 Sun-Spacecraft-Planet Angles for Saturn Mission.
B2.5 Earth-Spacecraft-Planet Angles for Saturn Mission.
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~ APPENDIX C
PLANETARY PASSAGE TRAJECTORY GEOMETRIES

In this appendix are presented those physical parameters which are,
indispensable for a preliminaryanalysis of theuse of an onboard navigation
system during the period in which the spacecraft is well within the sphere
of influence of a planet. These characteristics are illustrated here for
the two planetary encounters of the two missions used as examples in this
study. The value of the data contained in these plots should not be
underestimated—the overall scheduling and measurement selection which
can be performed with this information eliminates the need for a costly
computer search through a much larger set of possible measurement

combinations,

The format of the presentation of the planetary passage geometries
presented in this appendix is a sequence of seven plots for each mission,
These plots were created by a computer program designed for use on flyby
missions such as those discussed in Volume II, Since these missions are
potentially orbiter missions, no post-perihelion region would exist and only
the pre-perihelion part of the plots should be used. This means that the
right half of the first plot and the left half of the other six contain the data

tobe used if thetwo example missionsare considered to be orbiter missions.

The first plot in each series is a plane view of the hyperbolic pass
of the planet, It provides an overall Viéw of the passage. The direction of
the sunis indicated in each case. By using this plot, one determines which
is the sunlit side of the terminator line'(shown drawn on the planet). In
all cases passageis from right to left around the planet, thus in the Saturn
case the approach is made from the direction of the sun. This results in
anapproach to the’light side and a retreat from the dark side of the planet,

In the case of Saturn, the inner edge of the rings is drawn on the plane
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view. The dotted edge is below the plane of the paper. The plane view is
also useful for determining when star occultations might be available.
Star occultationsare potentially useful measurements only when the relative
motion is such that a dark edge of the planet passes into the star field.
Note that until the spacecraft is very close to the planet there is little
relative motion of this type. If the planet has an atmosphere, as the outer
planets have, the intersection of the star with the edge of the planet must
occur far enough from the terminator line so that there is no light leakage.
If we assume a central angle value of about 20° for this distance, we see
that when the approach is made from out of the sun there isn't much
opportunity to find good star occultations. The final use to be mentioned
here is that by simply noting whether a light edge is available at any given
time one can determine whether or not an IR capability is required to make

a measurement at that time.

The second plot in each group gives the range to the planet in planet
radiiand kilometers. Note that in each case very little time is spent close
to periplanet. Use of this plot together with the ranges to the planetary
satellites given in the sixth plot of each group, enables one to determine
whether or not a satellite might be a better navigational target than the
plénet. This could be the case if the distance to the satellite is much less

than the distance to the planet.

The third graph gives the angle subtended by the planet versus time,

Againthe tremendous speed at which the probe passes periplanetisapparent
| from this plot. This plot and the previous one have much meaning to the
instrument designer as they provide information on the size and distance
of the near body. In addition, this plot is useful to determine during what
period planet diameter measurements will be useful. The geometry is
favorable only durin’gr the time the subtended angle is large—which isn't

very long.
The fourth plot gives either the Earth-probe-planet angle, or sun-

probe-planet angle, or both, for each case. Besides giving information to

the systems designer and mission planner, the Earth-probe-planet angle
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plot reveals during what period the spacecraftis behind the planetasviewed
from Earth., Note that it is never occulted for more than a few hours.
The sun-spacecraft-planet angle is extremely useful to onboard system
scheduling because it reveals when the lines-of-sight to the planet and sun
are too close to permit using the planet for sightings. For the near planet

passages this doesn't occur for any significant length of time,

The fifth plotineach group gives theranges to the principle satellites
of each planet. A use of this plot was discussed above in conjunction with
the planetary range figure. The code for the satellites is given in Table
C.1. For example, moon 3 at Jupiter is Ganymede. It is interesting to -
note that on the Jupiter mission the approach to Europa is actually closer
than to the planet itself, The mission might be planned either to avoid
such a close encounter in order to limit the perturbation on the trajectory,
or tocapitalizeupon it for scientific information. In either case, the orbital
period of Jupiter's satellites is so small compared tothetrip time to Jupiter
that fixed-time-of-arrival guidance would be a necessity for mission

success,

The sixth graphineach group gives the moon-spacecraft-planet angle
and thus reveals the location of the satellite relative to the planet. Although
satellite-planet measurements have been eliminated due to the large
phenomena error that would result, this plot is still useful because it
identifies those times when the satellite is not visible from the spacecraft,
The sun-satellite-spacecraft angle is used to determine whether or not
the satellite is sunlit at a potential navigation sightingtime. This information,
which is given in the seventh plot of each group, reveals whether or not an

IR capability is required to make a measurement,

The final plot in each group gives the sun-probe-satellite angle,
This has precisely the same uses as the sun-probe-planet angle. For
example, on the Jupiter mission moon 1 (Io) might still be useful before
periplanet but the line-of-sight to themoonis too close to the line-of-sight

to the sun for this to be a useable measurement.
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Tables C.2 and C.3 give theresults of using these plots to determine
candidate onboard measurement schedules. The measurements actually
used to generate the results given in Chapter IV were selected from those
indicated as available in these tables. These tables correspond to Tables
B.1 and B.2 and the selection of individual entries in Tables C.2 and C.3
is performed in the same way as outlined in the example in Appendix A of
the Volume II. As an example of how to read these tables, note in Table
C.2 that in the period from 21 hours before pericenter to pericenter the
following measurement types are searched for the optimum measurement

every hour using Jupiter, lo, and Europa as near bodies:

1. Planet/moon diameter measurement.
2. Planet/moon center to star measurements.
‘3. Planet/moon limb to star measurements,
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Table C.1

Code For Planetary Satellites

Planet Satellite Code Number

Jupiter ' Io 1
Europa- 2
Ganymede 3
Callisto 4

Saturn Titan 1

71



m‘m%

sak

sok

mQ‘o,u:m ‘01

somw g ysuerdiraad] - say 12-
0} sfep _
01 wouay aduanyjur
, fu1sesdoap J0 aasydg
sak sok ou auou L1tenpeas [say 12- Jandnp
. (say)
Jjuswaanseayy JUSWLINSBAIN . TeAxajug (514) (s4)
. JBj}S Jejg juswsansesyy Jojg TeaJalug TeAadaur
0} quuiTg 0} J9yua) Jojowmiel(y pasn mem Jo B 10/
UOOI\ /1ouelg UOOJN /38uelg UOOI /3auelg So}Ideg duly, Puyg Surumidag

. UOISSIN Ja31dnp ayy jo gar jsueld Jean
Sy} 403
Inpayog Juswsanseay paeoquQ

¢ JaIqer,

72



say 9¢ -

sak sak. sak sduia ay 1 joueidiaad
aouanqul
. Jo aaaydg
sak sak ou auou "ep G '] sJay g¢- uanjesg
(s14)
JUDUWIDINSEIIN JusWaINSLIN TeAIa3ul (s11) Am.m.cc
. I8 Je)s JUBUWIDINSBIN JoJ Teaaalu] TeAJajU]
0} quuiir] 03 J9jud)d Jo9jawrel(g pasn dasg Jo .. 30
OOl /39UR[d UOOA /1oueld UOOJAl /}3ueld s9311121eS awy, pus Sumumdag

. UOISSI]A uanjes ayj jo 3o joueld JeaN
Yy} J0j
a[NPaYos juswWaINSEIN pIeoquO

€0 vigqelL

73



Planetary Passage Geometries

Summary of Figures

1. 1979 Jupiter Mission

Fig.

Fig.
Fig.

Fig.
‘Fig.
Fig.
Fig.
Fig.

Fig.

Cl.1 Trajectory Plan View During Jovian Passage on Jupiter
Mission. '

C1l.2 Rangeto Planet During Jovian Passage on Jupiter Mission.
Cl.3 Angle Subtended by Planetary Limbs During Jovian Passage
on Jupiter Mission. '
Cl.4a Earth-SC-Planet Angle During Jovian Passage on Jupiter
Mission., '

C1l.4b Sun-SC-Planet Angle During Jovian Paséage on Jupiter
Mission. _ |

C1.5 Rangeto Principle Moons During Jovian Passage on Jupiter
Mission.

C1.6 Moon-SC-Planet Angle During Jovian Passage on Jupiter
Mission., ‘

C1.7 Sun-Moon/SC Angle During Jovian Passage on Jupiter
Mission,

C1.8 Sun-SC-Moon Angle During Jovian Passage on Jupiter

Mission.

2. 1981 Saturn Mission

Fig.

Fig.
Fig.

Fig.

Fig.

C2.1 Trajectory Plan View During Saturn Passage on Saturn
Mission. |

C2.2 Rangeto Planet During Saturn Passage on Saturn Mission.
C2.3 Angle Subtended by Planetary Limbs During Saturn Passage
on Saturn Mission,

C2.4a Earth-SC-Planet Angle During Saturn Passage on Saturn
Mission. '

C2.4b Sun-SC-Planet Angle During Saturn Passage on Saturn

Mission,
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Fig.

Fig.

Fig.

Fig.

C2.5 Rangeto Principle Moons During Saturn Passage on Saturn
Mission,
C2.6 Moon-SC-Planet Angle During Saturn Passage on Saturn
Mission.
C2.7 Sun-Moon-SC Angle During Saturn Passage on Saturn
Mission.
C2.8 Sun-SC-Moon Angle During Saturn Passage on Saturn

Mission,
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APPENDIX D

STATISTICS

The purpose of this appendix is to derive and present the equations
used for the statistical propagation, for accelerometer, DSN, and onboard

measurement incorporations and for measurement selection.
D.1 State

For the combined navigation and low thrust guidance system a 12

dimensional state was used, where

—6r T
, sV
6x = sd

ém

u
—ma |

rand vare the spacecraft position and velocity, respectively, in whichever
coordinate system we are operating, and m is the mass of the spacecraft.
The differential equations for r, v and m, which will be needed below for

the development of the statistical navigation equations, are:

L
r = v

{, - -“%B _ u’p_a. _ upg ‘ Bcﬁ
- p3 a3 d3 m

for the interplanetary or sun centered leg, and by

I <e

- T3 3

kP »up? , P9 pel
P a d m
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for the near planet or planet centered leg,

It will be assumed that the thrust vector mis'alignment, Yna is composed
of independent brownian motions. Its driving noise will be represented by
_vy_d(t) which hasa known covariance. The ephemeris error, éd, is modeled
as a constant bias with known initial covariance. It is added to the state
vector with a zero time derivative.

D.2 Variational Equations

From the state differential equations given in the previous section,

one finds that the variational state satisfies the following differential equation

sk . ¥ . sk
. _ X d% 4+ Ox 5
(D.1)
dx * dx * X *
+ — Sy + —= 6 + —=
Sl MU EE | P Tae, |

where * indicates the expressions are evaluated on the reference or nominal
trajectory. Note that 61_1C is the deterministic deviation in control where
no variation in switch time is considered; § T is the variation in thrust
magnitude and is modeled as an unbiased white noise; § #is the variation
in the gravitational constant of the sun (for the interplanetary leg of the
mission) or of the target planet (for the near planet leg) and is modeled as
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a bias; 68 is the variation in mass flow rate and is modeled as the sum of

a bias and an unbiased white noise.

The partials are given by

— ]
03x3 I3x3 03x3 O3x1 03x2
§é = ﬁ 03x3 dy 3y _B_X
ox T : od om ou o
03x3 03x3 03x3 03X1 03x2
3x12
I -0 |
and
T T
ay | D Bugpp”  pp I 3paa
d3r 3 5 - 3t 5
- P p a a
T -
3y | uPI - 3“P§§ - upI + 3"‘p('ig interplanetary
od | a3 20 d3 q° .
~u I 3uppt KI 3 T ‘near planet
- S S== S S= =
) 3 " 5 t—3 - 5 leg
p p d d
—g%n - -_% o o =1, thrust on
i o = 0, thrust off
9.—i = _T_ .a_ﬁ_ o
dUma m 9Yc
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A
[~ 03x2
9_):_('_ ai{" a_ﬁ- = _'1: .a_'t—l g
duc b ay_c m du,
L 06)r:2
.
where [ A A ]
V3 V1
_AV e e
2 [y2 a2
Vi Vg
A -szkv3
du 1 A, —
34, AT L Va2 e
Vi V2
0 Ag +x2
L 1 2 B
ax _ &
o T m o
o0x . 03x1 interplanetary leg
ou .
-2
3
p
6x1
L 0]
- [
=10 ] near planet leg
-8
a3
i 06X1_j
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[ }
09x1
3% -
— == = -1
28 ’
2x1
L o]
. ~
09X S 010x2
oWq
I2x2
L :
A
Following is a derivation of 22 where we recall that {i is a three
Yo : :

dimensional unit vector of directional cosines defining the direction of the

control and u, is the two dimensional vector of angles (6,¢). Noting that

Ay
8- g

=V

from Fig. A2

cos & = Avl/ \[X31+>\2,2
sin@ = -xv2/ *31 + '7\2,2
cos P = A31‘+A32 A-
Hagth
sin ¢ = >‘v3/”2‘-v“
% = [ cos® cosy

sin & cos P

sin ¥
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ou [

- cos P sin 8
c

L 0 cos ¥
. -
or from Eq. E. 1 in terms of A v's
Ay, A 7
[ V3V
_lv
2 >L2 +>\‘27
1 2
“A, A
A vy “Vg
ol _ 1 N
°u, HAg v \/;\2 +A,2_
Vy o Vg
0 \/xz +k3
V1 2
a * L —
The derivation of -85 can also be shown in more detail,
“ma
Since
*
u =u_+u
— = -ma
3y .2y 3 Ok
dupa 0 du. . dup,
where
Bgc - Isz
%Uma
and
dt m
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The variational equation, D.1, can be rewritten grouping the state,

command, biases, and white noise components by defining

~ -
§T
cwit) = Wy white noise
L. Br_
™ n ' ' biases
B
Y = b
| Su
(where 68 = ,Br + ,Gb)
then
5% = At) 8x+ B (1) du_ + B_(1) w(t)+D(t) (D.2)
where |
_ 3x
A(t) = a—.}_(
_ 3%
Bu(t) = u,
~ . I
B () - 03x1 1 | (9%l
| 010X2 I
A
_l;l-_g l l -0
m 2x2
bl | 2x1
06x1 04*
L J
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[ 49x1 | 03x1

1
=

w

D) = |-o |

=

2x1 [ 6x1

If we assume that we have a continuous estimate of the state, 6g(t),

and that the control is a linear functional of this estimate, then
Su, = Mb) skt

If
e(t) = 5%(t) - 8x(t)

then we have the following differential equations for §x, 5_% and e
Sx=Aéx+BASK+B, wt)+Dy
52=A 5%+ B AR
ety =Ae-B Wt -Dy |

§x(t), J_%(t)', and e(t) are considered stochastic processes,

D.3 Statistical Propagation

We are interested in getting the differential equations for the covar-
iances associated with the error e(t) and with the deviation in state §x(t).
These will be denoted

E(t) = a(t) e~
and '

X(t) = éx .6§T
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where the overbar indicates we are taking the expected value. In order to
develop the differential equations,three additional correlation matrices are
needed:

V(t) = e(t) ¥ (12 x 2),

sx(®) »T (12 x 2),

J(t)

Clt) = 6%(t) e®)T (12 x 12).

The derivation of the differential equations follows,

T

=AerT -B_ wit)y -D "

V =AV-Drr' , V(0)=0 (D.3)
. _d_T_. T . T
E = 3t €€ ee’ + ee

Since the 2 terms composing the above equations are transposes of each
‘other, only one term needs to be calculated.

§T=A§§ -B.we -D e

1o
.
[
=

T

- DV

AE+1/2B. ww! BY
w W

where, note that if &(t,s) is the state transition matrix for the system y =
Ay then -
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t
e(t) = &, to)-ei(to) - t'f <I>(t,' s) Bw(s)vl(s) ds
o .

t
- \r &t, s) D(s) y ds
t

o

t‘.—_-———-—
we®T = -] w® we) B, o7 &t o7 as
¢ |
(o)

=-1/2 w(t) _vg(t)T B, (t)T

‘Where the other termsin e(t) are eliminated when taking the expected value.
Thus '

E - aE+EAT+B ww' B T pvT - vpT (D.4)

where E(0) is given,

J=SoxsT=6x)"
=A6x) +BMe+6x) 1 + B wyT 4Dy )T
= AJ + Bu/\;zf"'Bu ang+DkkT
J=(A+BA)J+BAV+ D;—fr (D.5)
where J(0) = 0
c =S5k e
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= sxem) + 5% el
-asfe' +B AskeT+ okt AT -2 wT BT - 5%, T DT
. T T
C=(A+BNC+CA" -(V+I)D (D.6)

where C(0) = 0.

X =S 6x(t) Sx(1) = 5k 6x° + 6% 5%°
5% x' = A bxdx’ + B A 62 sx’ o+ B, w(t) sx* +D yox’

Asx 6x +B Asxéx’ + B Aesx!

—

AT T T T T
(A+Bu/\)X+Bu/\(g éx gg )+ 1/2 Bw WW BW+DJ

thus
X = (A+B X + X(A + Bu/\)T + B_AC - )T +(C - E)/\TBI

T T T T : ’ .
+B, ww" B +DJ" +JD (D.7)

where X(0) is given. The differential equation for the matrix S(t) = g(t)ET,
where b is a two dimensional bias vector associated with DSN tracking
station location errors is needed.

> _ d T _ -
S = qr eb” = eb
= Aeb’ - B wb' - Dyb’
S = AS S(0) = 0 (D.8)

Equations I 3 through D. 8 are the differential equations for the propagation
of the six correlation matrices.
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The following initial covariance matrices must be given: x(0), E(0),

~ —— -
§T2 olx2 0
T T
ww 0 WaWg 0
0 ol1x2 82
L .
T sb2 0
Yy = 3
0 S

p—

where 6/12 is the mean squared uncertainty in the u of the sun for the
interplanetary leg and the uncertainty in the « of the target planet for the
near planet leg,

For refere-nce we will include a summary of the dimensions or units
of theterms in WV_VT and _}_f_kT. Here M implies units of mass, L units of

lengthand T units of time (thus 6T2 hasunits of force squared or (MLT-2)2.

TABLE D.1

5—T2 (MLT2)?
Wd wd? (r~1)2
8.2 T )2
8,2 T )2
su” L3772)2

D.4 Coordinate Change

The E, X, etc., matrices are affected by measurements and by the
coordinate change. At the sphere of influence of the target planet we changed
from sun centered coordinates to planet centered coordinates. The effect

on the 12 dimensional éx is that - .
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-6>_<' = Qéx

at the time of coordinate éhange'.

Where

~ h

I 0 -1 0

1

Q _ 0 0 0

0 0 1. 0

0 0 0 I
L i

where each 0 and I is a 3x3 block. Likewise e' = Q e and 6%' = Q4R. It
follows that '

D.5 Accelerometer Measurements
In the simulations various measurements or combinations of measure-
ments are optional. For example, accelerometers, various kinds of onboard

measurements or DSN measurements could be incorporated.

The formulas for onboard and DSN measurement incorporation are

essentially the same as those for Phase A with the accomodation of the
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- higher dimensional state. Thus the matrix H —(ax) will have zeros in the
last 3 columns. The H (%E> for the accelerometer measurement will have
zeros inall but the last 3 columns.Measurements by three accelerometers
perpendiéular to each other and by one accelerometer measuring in the
direction of the nominal thrust were considered. Since accelerometer
meésurem ents can be taken continuously, expressions can be derived which
are added directly into the matrix differential equations. This method led
however to numerical difficulties, so expressions were derived which
incorporate accelerometer measurements discretely.

If E' is the error covariance matrix before a measurement and E
after the measurement, then it is well known that

El=g"1,u5Tr1x
(for example Ref. 2, Eq. 12.2.8).

If we approximate the accelerometers continuous measurements by
several discrete measurements at intervals Atothen

-1 -1 -1

E|" = E; + HyR;'H,

S T T |

E,  =E'+HR]H
1 1 ° 1

Ey” = Byl + He  RyeliHeg
1 , Ko

E - =E. + SH.R, H.

k 0 JE:OJ il

And if we assume HiRi-lHl is the constant over an interval AT then

-1 -1 AT

- T -1
E"=E At

H "R "H

This is identical to the expression for onboard measurementsif R is replaced
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At : :
byA_’I(‘) R. Thususing the analogous relationships for onboard mea»surements

in Vol. II,

At
- T T —o,-1
W= EH' (HEH + RS
At
E=(-WH) E' (- wH)?T + W2 RW T

V= (- WH V'

S=(I-WH) S

c=cu-wint
J and X are unchanged.

Three accelerometers give a measure of the thrust acceleration.
Thus

I=>

2= l+z
m

where zis themeasurement and 7 is theerrorin the measurement. Taking

the variation

N
5z = 2Z sx + L 5T 4
Jlanel a}_{ puin m )
and
. . \ A
g - %2 . 03x%9 | _Izﬁ.'_r_g_%
dx ¢ m% ' m du
21

where auc is known and all expression are evaluated on the nominal. R

is given by

3 ! . m7T

R =(Z8T+M(L 8T+ M)
_ T, 8TP AT
'+ T4
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_ _ Forthe caseof oneacceleromter, which measuresthe thrustaccelera-
tions in the nominal thrust direction, the measurement is the component

. . . A . . A
of the three dimensional measurement z in the u direction or z . u.

z = z.1 = -I- GTG + 'ﬂ'
— — m — —
Z 5T /
6z = =2 8x + —— +
z dx % m "
pT - 3z _ (olx9, 12’ aaz )
X m Uma
where
a/\
dz _ T AT Bﬁ Y _
3u " m 2 3o 3du =0
=ma m L 2ma
pT = (o1%9 I, 01%2)
m
and R is given by o
8 5§T.
R = (22 + 99 2L + 71
m m
— -
5T 12
= 2=+
5 Ll

D.6 DSN Measurements

The DSN measurement incorporation'is done similarly to Phase A

except the H-matrix and the weighting matrix, W, must have zeros added
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to make them dimensionally consistant with the 12 dimensional state.

as in Phase A,

6% = 6X' + W(sz - H §%")

e=(I-WH)e'+W(Gb+ p)

§x = 6x'

b is the station location bias
G is a rotation matrix

7 is noise

8 = bbl

N = 278

In the derivations following, we will need the expression

%>

65,-H6

" =-He + Gb + 1

which follows from

On
>
[f]
(s %N
x>
]
1)

O
N
]
a s
(=2
<
i
oy
o
+
Q)
o
+
AN

In Vol. II, Appendix E, it is shown that the weighting matrix is

w = (EHY - SGY)(HEHT + GeGY + N - gsTHT

A
using the expressions for 4§x, e, éx,
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((L- WH) ¢’ + W(Gb + 1)) (1 - WHe' + W(Gb + 1)) ©

(I-WH) E' (I- WH)?T + WGBGTWT_-F WNWYL + (1- wH) S GW?T
+was't @ - wT (D.9)

—

Ve

=(I- WH) V'+ W (G b+7) )1

V =(I- WH) V! (D.10)
J =6x) =J° (D.11)
C = 6§ceT

= (6%' + W (=He' + Gb +7)) ((I - WH)e' + W(Gb + 7)) T

= 5%t (1 - wmT - WH e’ (1 - wi)T

+ WGbe'? (@ - wi)T + 54T gT wT

-wH e'bT¢WT + wasaTwT + wrrT wT
=c' (1 - wH)T - WHE' + WHE'H W' + was'T
-was' TyTwT

+s'cTwT - was'cTwT + wa saTwT + wawT
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T T

=cta-wm?t +s6TwT - WHE' + was' ¥

T

+WHE'HT +6oGT +N - ' THT - us'gT)ywT

then substituting for

T

wr = mE'HT + Q,GGT +N-as'THT - as'¢T)"! HE'- 6s'7T)
c=ca-wm’+saTwT (D.12)
X = §x 6§T = X! (D.13)
S=gb’
= (I~ WH) e' + WGb + W) b T
S = (I - WH) S'+ WGS (D.14)

Thus equations D.9 thru D.14 show the effect of a DSN measurement on
each of the correlation matrices.

D.7 Onboard Measurements
After a measurement
5% = 6% + w(sz -nTs%)

I-v_th)se_'H_vv

|
n
~~

z is the measurement
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w = E'l_}(QTE'Q + r)_1 , Weighting vector

71is white measurement noise, and

’ET e' +7 =46z - h' 6x'
where againaccomodationis made for the large state vector by the addition
of zeros in the last 3 places of the h vector. Then

E =§§T

- ((T- whDe' + wr ) ((I- whie + wr)

E=(- \_A_/QT) E'(I- V_LQT)T + \ﬂr_VET (D.15)

V=esl= (- v_th)g' + Wy] _PT

V=(-whl)V (D.16)
J=6xt =g | (D.17)
C=sel

(%' + w(-h ' + 2 D1 - wh') e + W]T

= 656" (1 - wn )T - whTEl - wh )T + wrw?

T

ciaI - ‘ELIT)T - wbEh + r) wl wh' E
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substituting

wl = (T Eh+r) ! pTE
c=ca-wh’ (D.18)
X =6x 5§T = X' . _ - (D.19)
S =e ‘r_)T
= (@ -whD)e' +wnb®
=(I-wh’) S | (D.20)

Equations D.,15 thru D.20 then show the effect of an onboard
measurement on each of the correlation matrices. The h vector is dependent
on the specific measurement taken and it, with the measurement noise,
determines the weighting vector, w,

D.8 Measurement Selection

The following measurement selection criteria to be minimized were

implemented
1) the trace of the covariance matrix of estimation errors,
2) the mean squared position error at a preselected target point

(usually the destination point).

The first is the sum of the diagonal elements of the E matrix which would

result from the measurements.

For the second criterion, we need an expression for E(T) where T

is fhe preselected target time. The cost is then given by the trace of
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: .LE(T)LT where L is a 3x12 matrix which picks off the top 3x3 block of E,
i.e.

L = (13x3 ’ 03x9

)
From the differential equation for E and V we can get expressions which
extrapolate E(t), V(t) where t is the measurement time, forward to time

T, assuming no other measurements are made afterwards. From

ﬁ=AE+EAT-DvT-VDT+wawTB

€4

V=AV-D T

- thus

E(t) = &(T, t) E(t) (T, t)T

T .
+ ] @(T,s) (-DV' + VD' +B_ww' BL}&(T,s) ds
t

| ) L
V(s) = &(s,8) V() - [ @(s,0) Dy’ at
t

‘where "‘P(t,tl) is the transition matrix for the system 2z = Az,

Since neither the terms BWv_vv_vT BV'E nor DXZT contributes to the cost,
the termsinvolving them in the formulas for E(T) and V(S) can be dropped.
Thus

T T T, &T T
E(T) = ®(T,t) E(t) € (T,t) - [ &(T,s)D(s) V (1) ® (s,t) @ (T,s) ds
: T t
T ST
- [ @ (T,8)@(s,t) V() D(s)” @ (T,s)ds
t

t
= (T,t) E() & (T,t) + 1[ @ (T,s) D(s) ds V(&L (T,1)
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t
+(T,) V) [ D) @T(T,8) ds
T

let
K(t) = LE(T,t)

and o ‘

M(t) = [ L&(T,s) D(s) ds
then T _

K = L&(T,t) = -L&(T,t) A

or : .

K=-KA , K(T)=(,0%9
and .

M(t) = K()D(t) , M(T)=0
and

cost = tr[K(t) E®) K®T + Kt) vt) M) T
+ M) v T kT ] (D.21)
The K and M matrices can be precalculéted.

The K matrix is affected at the coordinate change since K = L&(T,t)
and ®(T,t) has a discontinuity there. At the coordinate change

+ =
et ) =Balt )

c
where
I 0 -1 0
B = 0 1 0 0
0 0 I 0
0 0 0 1
also

e(t) = ®(T,t) e(t) + driving terms,
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thus
- + L+
e(t) = (T,t" ) e(tcc) + gd(t )

cc’ = cc
= @(T,tcc) elt )+ gd(tcc)-
- + -
=®(T,t )B elt. )+ ey
implies that
- +
@(T,tcc) = @(T,tcc) ‘B
®(T,t) is the solution to

&(T,1) = -®(T,1) A(t) , &(T,T)=1

- If @ is partitioned into four 3x12 matrices

<I>1
(-] = <I:2
¢3
| 7
then
5 = _ 3x9
¢'1 = (1>1 A s @1 (I,0 )
= - - (n3x6 3x3
<I>3— (I>3A s ‘1>3 (0 I, 0 )
and
-\ _ + . +
QI(T’tCC) - QI(T’tCC) ¢3(T,tcc)
but
K = <I>1

Therefore at the coordinate change
- + St
Kltg) = Kltg ) - K(t7)

where K = ‘53 is the solution of
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~

K=-aR , R -=(3*61, 03%3

The K and the M matrices were precomputed and stored to be used in the
main program for measurement selection when this mode of selection was

desired,
Repeating Eq. D.21
cost = tr[(K(t) E®) Kt)T + K(t) vit) M(t)T

+ M) v T k]
The following procedure is used to select the set of measurements which
will be incorporated: The various possible combinations of measurements
are used to calculate new E(t) and V(t). The above cost function is then
evaluated using the stored K(t) and M(t). The combinationof measurements

is then selected for incorporation which minimizes the cost.
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APPENDIX E

GUIDANCE

This appendix contains the details of the derivationsof various aspects
of the guidance problem, including the derivation of the nominal optimal

control and descriptions of the candidate perturbation guidance schemes.

Note that there are two separate aspects of the guidance of the
spacecraft to be considered. First is the derivation of the optimal control
for the nominal trajectory. The control history includes the direction of
the thrust and the times at which the thrust is turnéd on and off., Once the
nominal trajectory and the accompanying nominal control history is
determined, the perturbed control or guidance must be determined. Here
We assume we arenear thenominal butnot quite on it, what slightly perturbed
control should be used to get the spacecraft near the desired terminal
conditions? Thisanalysisisdoneby 1ineafiz'mg about the nominal trajectory
and coﬁtrol. There are various kinds of perturbation controls that could
beused. In the first section of the appendix the nominal control is derived.
In the second section the perturbation control which was used in this study
is derived. In the remaining section the use of a ''terminal controller' as

a perturbation guidance scheme is discussed.
E.1 Nominal Optimal Control

In this section we will apply opﬁmization theory to derive the
deterministic nominal optimal control. Inderiving the deterministic nominal
control a seven-dimensional state will be used made up of spacecraft
position, velocityand mass. Using this seven-dimensional state, the target
planet's location is obtained from an ephemeris and thus its gravitational

effect is just a known function of time and spacecraft position.
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The differential equation satisfied by the state of the system under

consideration is

r v
L] . e
X = v| = T
m

Wwhere

Hp

r = - p-— a+
™73

O

3%

G+ B d

and Where B is the mass flow rate, equal to Bmax or 0, cis fhe exhaust
velocity of the rocket (c = g, Iép where g, is the standard acceleration of
gravity and Isp is the specific impulse of the rocket), m is the spacecraft's
mass. In sun centered coordinates r and v are the spacecrafts position
and velocity relative to the sun and y = -y _, the gravitation constant of the
planet. In planet ce.ntered coordinates r and v are the spacecraft's position
and velocity relative to the planet and y = T the gravitational constant of
the sun. p is the spacecraft position relative to the sun, a is the spacecraft

position relative to the planet. (See Fig. A.1.)

For the problem considered here the initial position, velocity, mass,
and time are specified as are the final position, velocity, and time. For
this system, "optimal control" will refer to the control which causes the
spacecraft to go from the initial conditions to. the final conditions while
minimizing fuei. The control parameters are 9, ¢, and 8 where the control

angles 0, and ¥ were defined in Fig A.2, We will use the nomenclature Yo
= eﬁo refer to the two dimensional control angles and

cos 6 cos Y
A .
u = sin 6 cos Y

sin ¥

~
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is the three dimensional unit vector of directional cosines.

Let the cost functions be

J= —m'(tf)

which is to be minimized. This is equivalent to maximizing final mass or

minimizing fuel. Applying the maximum principle, one forms the Hamiltonian

3T, -3 T T.. _
H=Xx=2, v+ £-A_B8
where ) is the costate which satisfies
. M TR Su_pp L 3p T
R
p-3 a p3 293
A, = -2,
A =£‘£{_}f2\_
m m - =V

The only part of the Hamiltonian containing the control angles is
m -V

To maximize this, the control angles should align {;1 withﬁv, i.e.

This implies

sin® = X /4r2 +2
v v v

cos ® = A /A2 +22 (E. 1)
v A" Va4 ’

sin ¥

I
>
<
w
~
1>
<
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cos Y

]
>
< N

J—t
+
>
< N
) .
S—
$

or
8 = (X /A
$ = tan (k /\/ )
where
A
V1
Ay B lv2
XVS
The portion of H containing B is
B _ Bc T A _
H = '—r—n- AV u XmB
“(m Magtl-ap)e
To maximize this let
P = B ax ifK > 0
=0 ifK < 0
where
- C -
K=~ HLVH A

is the switching function. Applying transversality conditions we get

A () =1
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There is a discontinuity in x at the sphere of influence; \ is continuous

across this point (see Ref. 2,Section 3.7).

The above conditions are necessary conditions for an extremal. We
have a two point boundary value problem in 14 variables (x;A). With the
initial and final time specified, there are seven variables specified at the
initial time and seven at the final time. The solution to this problem gives
an extremal control and extremal trajectory. The NASA Mission Analysis
Division derived the initial conditions for the state and co state for the optimal
trajectory. These werethen supplied tothe MIT Draper Laboratoryallowing
the reproduction of the optimal control and trajectory.

E.2 A Nonoptimal Perturbation Guidance Scheme
This section describes the nonoptimal perturbation guidance scheme
which was used to get the guidance plots in Appendix C. The scheme is

derived and the motivation for the plots is given.

The deterministic variation equation has the form

6x = A(t) 6x + B(t) Su,
where
[ 4 . *
A = 2X and B) = X
o0X du,

where the * indicates the expressioné are evaluated on the nominal
trajectory. If the thrust switching timesare not allowed to vary, but occur
at the times specified by the nominal. trajectory, then the only control
available in the event we get off the nominal is steering, i.e., changing the
angles in the two-dimensional control u.. Thus there is no control during
the coast periods and the system is not completely controllable during the
thrusting phases. In particular, it is not possible to eliminate positional

errors in the direction of the velocity vector. Since we are interested in
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minimizing the terminal position error, one criterion we could use is to
try and eliminate the components of terminal position error perpendicular
to the final velocity vector. We could ask: given a deviation from the
nominal state at the current time, 6 x(t), what is the constant control, su,
which would cause the positional components perpendicular to the final
velocity to be nulled at the final time? Positional error in the direction of
the final velocity could be reduced by turning off the control earlier or
later than the nominal final time. '

Let <I>(t,t0) be the transition matrix for the system g = A(t) z, then
: v

f .
,5§(tf) = <I’(tf, to) 6x (to) + tI <1’(1:,f,s) B(s) su_ ds » (E.2)
0
where tf is the final time and tb is the present time. Let C be the 2x12

rotation matrix which takes the positional components of §x and results in
the two .positional components perpendicular to the final nominal velocity

vector, e.g.
2 » T I

(rf X \_rf)

C = I o

|

2x9
' T
(v x (x; x ¥p))
We would like the constant control §u which causes C 6Zf = (0, Since
bu is assumed constant it can be taken outside the the integral in E,2 and

thus :
t

f .
0 = C 6§f = C<I>(tf,to) 6;{_0 +Lf C@(tf,s) B(s) ds]&g_
o.
Solﬁng for 6u gives
tf'
- -1 ‘
6u —» [t£ C<l>(tf, s) B(s) dg] C@(tf,to) 8%,

co(t £ t) is the solution obtained by integrating the differential equation

Co(ty, t) = -CHtyt) At)
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backwards from t,, where at t

f f

Define the 2x2 matrix

te

T = - [ Cé&t,s) B(s)ds
t

T (1) is the solution found by integrating backwards from t, the differential

f
equation

L) = Co(t, 1) B(Y) , T(t) =0
Inverting I (t) and letting
AR = TN C et )

gives a 2x12 gain matrix which can be precalculated and used as a feedback
guidance law, i.e.

8u = A(t) 6x(t)
Again, this is the constant control that would null two components of position
which are perpendicular to the nominal velocity at the final time. If at a
later time, 6x(t) were to be changed due to revised measurements or
disturbances other than the control, then a different constant 6 y would result.
This guidance scheme was tested by integrating the system

8x = (A + BA) 6x

with an initial 625('(0) given and also using a random number generator to

alter 6x(t) at the end of each integration step, then rotating the resultant
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- 6§f to see if the off-velocity components of position were nulled.

As t=>t, the gain matrix gets very large (r(t) =>0, T (t)-l -> o );
the larger sx(t), the larger sy. We want to limit the magnitude of su to
represent operational or physical constraints and in order that the linear
analysis remain valid, In the deterministic test runs 6u = A(t) 8x was
evaluated and in the statistical simulation runs the diagonal elements of
A(t) 6x 6_>£T A(t)T = su 61_1T were evaluated to see if the magnitude was
greater than a prescribed limit. If so the magnitude of su was set to that
limit,

~Because of numerical difficulties, the guidance scheme was not utilized

. in the statistical simulation. However, a number of results can be obtained

by looking at the characteristics of the guidance equations. By using the
gain matrix, given a maximum value for the magnitude of the components
of 6u, one can determine the approximate maximum deviation of the state
at a- given time, &x(t), which results in the positional components
perpendicular to the final velocity being nulled. Let

r61.11

Sy 8 u2

rbxl"

_8x

2‘

A

11°° 771,12

1]

A(t) A

2177 772,12

Then

—

2

du., = T A, bx. , i =1, 2
. i. .
! j=1 J ]

If all the 6xj = 0 except for j = k then
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éui- = Aik 6XJ.

If Ay # 0 , we can plot

-1

bx, [ du; = Ay

as a function of time,

These plots are given in Appendix F for i = 1,2 and for the k of
interest. This set of plots will be referred to as the ''first set'". Given a
deviation in the state at a particular time, the required deviation in control
is given by the product of the state deviation and the inverse value of the

curve at that time,

If [&x(t)| is larger than the maximum|6x|that can "be nulled" (i.e. the
positional components perpendicular to the final velocity can be nulled), it
would be of interest to know what values of z = ¢ ng would result., Say
there is a deviation 6xk(t) that would result in a bu, greater than allowable
for i =1 or 2 or both, and that 632'k is the extreme value that can be nulled,
then

f XX

0 = Cox, = C&__ (1) 6X (t) + Ck(t) 6T
k k -

z = Cix; = CO_ (t, ) bx (1) + Ck()én

=k

where at least one component of duisequal to the corresponding component
of 4. Then

z = Co(ty,t) [6x (1) - 6§k(t)]+Ck(t) [8u - 8% ]

To find the effect on z of excess state deviation, that is of (éxk -

6§k) the second set of curves are plots of each element of Cq(tf,t). The
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effect of the nonzero component of (su - 61) is given by the elements of C &
corresponding to thrust vector misalignment since both control deviations

and thrust vector misalignment propagate identically.

2/ B3, © - 8%, @) = [Catn],

for 1=1,2

This is the second set of plots given in Appendix F. One way of using
these plots would be: giventhe maxléui|and a deviationin the kth component
of 8%, 8x, (t;) at time t,, go to the "first set' of plots corresponding to k,
read the value of the curve for tirnet1 for both control components, Multiply

this value by max |6ui| to get 6xlr<n(t1).
If |5xk(t1)|<|6xlr{n(t1)|then|6xk(t1)!can "be nulled". If
lox, () >[8x.( )]

then there would be a terminal position error perpendicular to the final
~velocity which can be obtained from the second set of plots.
Let

_ P <
A= éxk(tl) éxk .

On the two plots corresponding to k (one for each component of z) read the
value of the curveat time ty This value multiplied by A gives the resultant
value of z due to this deviation. To it must be added the effect of the
excess control 'deviation in the control component which did not saturate.

Its effect on z is found from taking the product of the excess and the value

for the timet 1 givenonthe appropriate curve for thrust vector misalignment.

Thus, using the two sets of plots, if we assume a maximum magnitude

on the variational control, max ‘éui| , Wwe can find the effect of a deviation
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in one component of the state at any time during the flight. The first set
of plots tellsusif we cannull the final positional components perpendicular
to the final velocity. If not, the second set of plots tells us what these
positional components will be, Also using the first set of plots, given the
state deviation one can get the resultant deviation in control by forming

the product of the state deviation and the inverse of the value on the curve.

The gain matrices and plots were formed over two legsof a trajectory
rather than over the whole trajectory. Thus gain matrices were computed
from the initial time to the time of the coordinate change at the sphere of
influence of the target planet. The ''final time' for this leg is thus the
time of arrival at the sphere of influence, and these gain matrices are
those which would null the positional components perpendicular to the
velocity vector at the nominal time of arrival at the sphere of influence.
Then gain matrices and corresponding plots were done for the leg of the
trajectory from the sphere of influence tothe final conditions at the terminal

time. Plots for these two legs are given separately for each mission,
E.3 Terminal Controller with Quadratic Cost

Another perturbation guidance scheme studied was é terminal
controller with a quadratic penalty function on the terminal error. The
switch times were fixed at the nominal values. The system was linearized
about thenominal and the idea wasto minimize deviations from that nominal,
weighting heavily the quadratic function of the terminal position. We have

the variational equation
% = F(1) 6x + Gl) 8u,
We want 6&(tf) ~ 0
So minimize
t

J = 1/2[(6)_:T,Sf6_>g)tf + tJ‘f (8%

T T
Agx + s Bagc)dt]

(o]
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where Sf, A(t), B(t) are positive definite matrices. This problem has an
exact explicit solution which is given in Ref. 2 Section 5.2. A suggestion

for picking S¢, A, and B is given there.

One method of solution is using a sweep method where the matrix
Ricatti equation

$=-SF-Fis+sagB lgTs-a

with S(tf) = Sf is integrated backwards from te. The control is then given
by _

buft) = ~C(t) 8x(t)

where the feedback gain matrix is

cw =BwW ™ aTw s

In attempting to implement this scheme, numerical problems prevented

the solution of the Ricatti equationand before these problems were resolved

‘the nonoptimal scheme of the previdus section was developed and utilized.

124



APPENDIX F
GUIDANCE SENSITIVITY RESULTS

F.1 Introduction

This appendix contains the plotsassociated with the guidance scheme,
Their derivationand use are discussed in Appendix E. In the following pages
are a summary of possible uses and examples and some comments about

special characteristics of the actual curves.

The plots are given for interplanetary and the near planet legs of
the Jupiter and Saturn missions. For each of these divisions there are
two kinds of plots. One set is the inverse of each component of the gain
matrix, A(t), versus time to go. Actuallyonly those elements corresponding
to position and velocity are plotted for this set. Thus there are twelve
plots for each leg of a mission; six correspond to the in-plane control
‘angle o and six to the out- of-plane control angle ¢. From these plots can
be obtained the conirol angle deviation resulting from a perturbation in
position or velocity (note that the control deviation resulting from a thrust
vector misalignment would just be the negative of the thrust vector
misalignment). Also, given a maximum value for the thrust deviation
magnitude, the greatest magnitude of position or velocity deviation which

can be nulled can be obtained.

The second group of plots given for each leg of a mission gives the
two position components perpendicular to the nominal velocity at the end
of each leg which will result per unit excess deviation in a component of
the state. These are denoted Zy and Zg. By excess deviation is meant the
difference between the actual deviation and that which can be nulled out,
given a limit on the magnitude of the deviation in control angles. These
plots are given for deviations in position, velocity, and thrust vector
misalignment. The plots corresponding to thrust vector misalignment can
also beused to find the effect of a deviation in control since they propagate -

identically. They can be used to find the effect of the deviation control
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component which does not saturate when the other component of deviation
control has reached its limit in magnitude due to é large state deviation,
Note that the plots for thrust vector misalignment are given in units of
kilometers per radian and not kilometers per degree. Plots corresponding
to deviation in ephemeris and mass are not included since their effect is

very small,
F.2 Characteristics of the Plots

In this section, some of the unusual results illustrated in these plots
are identified and discussed. The next three paragraphs discuss some of
the unusual characteristics of the state deviation per control deviation plots.
The last three paragraphs are concerned with the final position per state
deviation plots. -

For the interplanetary phase, during the coast there is no thrust,
thus the curves are fairly flat through this phase, usually showing that a
larger deviation can be nulled out the closer the time is to the thrust on
period. This is because deviations earlier would have more time {0 build
into larger deviations before any control could be used to start diminishing
the deviations. Thisis illustratedin Fig, F3.1.1. During coast, the perturbed

control angle has no meaning until thrusting begins again.

When a curve goes through infinity, this implies that the control angle
component has no effect in nulling out deviations in the state component at
that time. (See Fig. F1.1.1a.) If curves for both control components for a
state deviation component go through infinityat the same time, this implies
any resulting final position deviation would be in the direction of the final
nominal velocity vector which this guidance scheme is not designed to null
except by changing the arrival time.

When a curve goes through zero this iﬁdicates that at that time

deviations in that component of the state are uncontrollable. (See Fig.

F2.1.1.) A curve may not be monotone since the uncontrollable final
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direction component varies with time due to the curvature of the trajectory.
The guidance scheme equations are based on the assumption that the two
deviation components of position, perpendicular to the finalnominal velocity,
can be nulled given a large enough deviation in control. Because of the
curvature of the trajectory, singularities exist and so this is not always
possible.

Another phenomena which warrants some explanation is displayed in
the near planet extrapolation plots for the effectson Zq and Zq of the earlier
deviations in position. (See e.g., Figs. F2.,3.1, F2.3.2, and F2.3.3.) The
appearance of these curves is due to the rapid curvature of the trajectory
during the last few days of the flight and to peculiarities of geometry.
For both missions, the final velocity is nearly lined up with the y-axis.
The directions of 2y and z, are perpendicular to the final velocity. In fact
zy in all cases nearly lines up with the plantocentric z-axis (out of the
ecliptic) and z, with the x-axis., Early near planet out-of-plane deviations
are '"'stable" in that a unit out-of-plane deviation propagated to the final
time has less than unit magnitude. This is reasonable since any deviation
out of the original plane of motion will tend to be pulled in toward the
center of the planet and thus toward the original plane of motion. Thus
the plots show that near pericenter, as time-to-go increases, the effect of
out-of—plané position deviation decreases. Further from pericenter, the
trajectoryis curving much lessand the vehicle is moving much more slowly.

Thus the curves tend to flatten out.

By examining the transition matrix which gives the effect of early
position deviations on all three components of position, one finds that for
the Jupiter near planet case deviations in both the x and y directions have
the most effect on the final y direction and less on the final x direction.
Since the y direction corresponds closely with the final velocity direction,
this is the component which is not illustrated in the plots. If there were
three additional plots showing the effect of position deviations on the final
position component in the direction of the final velocity, the curves would
show a magnitude increase as time to go increased. A similar situation

would hold for the other mission.
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When one of the final position per state deviation plots passes through
zero it indicates that deviations in that component of state have no effect

on that component of final position. (See Fig. F1.3.1.)
F.3 Example 1l

Consider the Saturn near planet case and a time to go of 40 days.
First assume that a deviation exists in the y component of velocity which
is equal to .02 km/sec. From Fig, F4.1.5 the in-plane control deviation,
A9, is given by the product of the inverse value of the curve at 40 days -
and AV_ = ,02,

y

Ae = —0'%"0'5' (.02) ~ 20

From Fig. F4.2.5 the out of plane control deviation, Ay, is given
by

ab = 5 (:02) ~ .067°

Thus if
AVy = .02 km/sec
then
Ae = 2°
ap =.067°

Now say that there is a limit imposed on the magnitude of A8 and Ay of

*
1°. Since 2° exceeds the 1° limit the AVy = .02 km/sec cannot be nulled.

" :
This one degree limit is used here for example purposes only,
If such a limit is not imposed by operational or vehicle design constraints

it would be necessary to satisfy the linearization assumption of the first
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Using Fig. F4.1.5 and Fig. F4.2.5 the greatest value of AVy that can be
nulled can be found. The product of the value of the curve at 40 days in
Fig, F4.1.5 and A6 = 1°is

(.0105) 1° ~ .01 km/sec

The product of the value of the curve at 40 days in Fig, F4.2.,5 and A =
1° is '

(.3) (1°) = .3 km/sec

Thus the limit imposed on Ay would allow a deviation AVy = .3 but the
limit on A8 allowsonly AV_ = .01 km/sec. Thus, in order for the deviation
in v'y to be nulled, |AV_|'< .01 km/sec. Thatis|ae | < 1°, |ap| <1°

implies maximum IAVy < .01 km/sec.

At the beginning of this example, we hypothisized a AVy = .02, This
is greater than the maximum nullable value if |Ag| < 1°, |Ap| < 1°,

The maximum nullable AVy = .01. The excess is then
.02 - .01 = .01 km/sec.
Thereisalsoa difference in the Ay which would result from a AV_ =
.02 and a AVy_ = .01, Both the excess AVy and the excess Ay will have an

effect on the two components of position perpendicular to the nominal final
velocity., Ay for AVy = ,01 is found from Fig. F4.2.5.

For AV_ = .02
y

order perturbation technique. The latter limit will be greater than one

degree .but further study is necessary to determine what it should actually
be.
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Ayy = 292 . 067°
The excess Ay is then
.067 - .033° = ,034°
First we can get the effect on one component of the final position by looking
at Fig. F4.3.5 and Fig, F4.3.8, The product of the value of the curve at 40
days in Fig., F4.3.5 and the excess AVy of .01 gives the effect on z, of
excess AVy

(.01) (130,000) = 1300 km.,

The product of the value of the curve at 40 days in Fig. F4.3.8 and the
excess Ay of .034 gives the effect on z, of the excess A Y.

. 034 (600, 000) /57° /rad = 400 km
The total effect 6n z1 is
51

= 1300 + 400 = 1700 km

Similarly the effect on the other component of position z4 can be found
using Fig. F4.4.5 and Fig. F4.4.8. The effect of excess AVy is

(.01) (1,900,000) = 19,000.
The effect of excess AY is
(-300, 000) (.034)/57° /rad = -200 km,
The total effect on Z, is

z'2 = 19,000 - 200 = 18,800 km,
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To summarize, given a deviétion in A Vy =.02 km/sec. This would
result in A9 = 2% and Ay = .067°, If there is a limiton As and A
of 1° then the maximum nullable AV_ is .01 km/sec. The maximum nullable
AVy would result in A8 = 1° and AY = .033°, The actual value of AVy =
.02  would result in the maximum A¢ = 1% and a AY = .067°. The excess
AV =.02-.01=.01and the excess A} = .067° - .033° = ,034° will have
an effect on the two components of position perpendicular to the nominal

final velocity. The effect of excess AVy on z, is added to the effect of

1

excess AY on zq and similarly for the effect on Zge

F.4 Example 2

~In this example one possible method of obtaining the effect of deviations
in two components of the state will be shown. This method could be
generalized to deviations in more than two components. Look again at the
Saturn near planet case and a time to go of 40 days. Say there is a AVy =
.02 km/sec as in the previous example and in addition a. deviation in the
z-velocity AV = .001 km/sec. The A8 and Ay which would result from
the AV_. was calculated in the previous example using Fig. F4.1.5 and
Fig. F4.2.5.

AQ = —10—1(.02) = 20
Ay = —1§ (.02) = .067°

The A9 and Ay due to AV  can be added to the above. From Fig. F4.1.6,

take the product of the inverse value of the curve at 40 days and AVZ.

AB = %(.001) = .0005°
Similarly from Fig. F4.2.6
AY = l_ (o001) = -.07°

-.014
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The total A and A}P is found by adding the effects due to both deviations.
A6 = 2%+ 0005° ~ 2°
Ay = .067° - ,007° = .060°

. If there is a limit on A® and 4y of 1° and since the above Ag exceeds
that limit, the total of these deviations cannot be nulled. Actually, since it
is clearly the AV_ which is causing A toexceed 1°, the maximum nullable
AVZ Would just be .01 km/sec as in the previous example. The maximum
~nullable AVZ would be determined by the limit on Ay, and can be found
from Fig. F4.2.6,

max |AV_| = 0.014 (1°) = .014 km/sec

Suppose there is a AVy = ,02 km/sec and a AV, = .001 km/sec and
that A® is saturated at A6 = 1° and that Ay = -.06°. The effect on z4
and z, can be found in adifferent fashionthan given in the previous example.
In this case "excess' values will not be considered but rather, using the

propagation plots for thrust vector misalignment, the effect on z, and z

1 2
from a AVy, AVZ, A8, AY will be found separately, then added to give the

total resultant zy and Zg- First looking at zy the effect of AV_ = 02 is
found from Fig. F4.3.5 by taking the product of the value of the curve at
40 days and the AVy.

(.02) (130,000) = 2600 km,
Similarly the effect of AVz is obtained from Fig. F4.3.6.

.001 (800,000) = 800 km

The effect of A is found from Fig. F4.3.8
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(1°) (-100, 000)/57°/rad

= -2000 km
The effect of AY is found from Fig. F.4.3.8
. 060 (600, 000)/57°/rad = 600 km

The resultant value of z1 is then
2600 + 800 - 2000 + 600 = 2000 km.

Note that if Ae = 2° then its contiribution to 2y would have been -4000 and

the resultant 24 would have been zero as expected. A similar procedure

can be used to find the effect on Zge
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APPENDIX G
ONBOARD SYSTEMS CONFIGURATIONS
G.1 Navigation Sensor, Weight, Power, and Volume

Most of the mass of a scanning photometer would be composed of
berylium, with the exception of the servdmotors, electronics and drive
gears. The mirrors would be of berylium as would the structure for
precisionangle encoder mounting. Estimated total weight of the navigation
sensor is shownin Fig. G. lasa functionof aperture area. The dependence
is approximately linear for larger areas, and reduces to angle encoder,
servomotor, and electronics weight for small apertures. It is assumed
that the angle encoder is a 15" device which is 9 cm in diameter, and is
built of berylium.

The weights estimated here are considerably lower than those
presented in Volume II, and this is because the Volume II weights were
‘taken to be the maximum possible in order to demonstrate onboard navigation
system generated fuel and weight savings for the worst case. The weights

listed here are closer to expected actual weight.

Weight breakdown and power requirements for the singlé degree of

freedom sensor with 100 cm2 aperture are shown in Table G.1.
Table G.1
Weight Breakdown and Power Requirements

for.Single Degree of Freedom
Scanning Photometer

Telescope Barrel 0.5 kg
Mirrors and Supports 0.5 kg
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Supporting Structure - 1.0 kg

Angle Encoder Body 0.25 kg
Servo Motor and Gears ' 0.25 kg
Electronics 0.5 kg

Power Requirement S 9 watts

(including servomotor)

The addition of two more degrees of freedom would add about 1 kg. If the

navigation system includes a computer, 10 kg should be added.
G.2 Low Thrust Accelerometers

_ Currently under development are a number of accelerometers that

will, or could have the capability to sense accelerations at and below the
-8

10

for usefulness for these ion thrusted missions, thrust accelerations could

to 10-9g range, At these levels, considered a minimal requirement

be sensed with one percent or better accuracy, and thrust vectoring could
be sensed with one arc minute or better accuracy (given a comparably
accurate attitude control system). The accelerometers, which will be
described individually below, have not been developed specifically for this
type of mission, and some could be improved considerably if they were to

be recastinlight of the expected sensitivity and dynamic range requirements,

As a group, the accelerometers suitable in projection for these
missions haveanumber of common characteristics. Bias and scale factor
errors are temperature dependent at a level of about 10—6g/0F and
10-6g/g/0F respectively. This implies that to sense accelerations ac-
curately in the area of say 10-10g's it will be necessary (unless the bias
scales with maximum measurable input) to maintain thermal control between.

-4OF.

What isimportant is not absolute temperature accuracy, but having enough

the time of bias calibrationand acceleration measurement to within 10
thermal heat capacity with respect to the flow rates inand out of the heating

system to maintain temperature stability for sufficient time. Another

characteristic common to the accelerometers is a drifting bias error that
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is a time dependent result of various electro-mechanical factors specific
to each different mechanization. In the pendulus type accelerometer it
results from changes in magnetic permeability of the float, and in the
vibrating string it is related to aging of the "'string". Regardless of the
source of the bias, it is sufficiently large ( 10_6g) that it must be calibrated
shortly before making each thrust measurement. The exact meaning of
"shortly' depends on bias stability. For example, in one experiment with
the vibrating string accelerometer in a 1g énvironmé‘r_lt, a bias drift of
1x10-6g/deg was found.7 Assuming linearity of drift for small times, the

bias value of 10710

g would occur just 9 seconds after calibration for that
particular instrument., To function over a large dynamic range, these
accelerometers are designed to work over a small displacement from the
null position, and, except for the vibrating string, are nulled with a series
of force pulses which allow the dynamic range requirements to be met.
For theion thrust missions the dynamic range requirements may be lower,
and therefore it is not known presently whether the formerly used pulsing
techniques are the optimal solution. Some arrangement may be desired
for making bias calibrations during the 1/3 second thrust interruptions
caused by high voltage arcing. This would avoid the need for planned
thruster shutdown for calibration purposes. However the arcing may cause
electronic disturbances in the accelerometer through transients or
electromagnetic pulse which are severe enough to preclude calibrationduring

this period.

Size, weight, and power requirements for this accelerometer group
are of the same order of magnitude as is shown in Table G.2, and so are
the characteristic errors. They differ mainly with regard to mechanization.
The pulsed integrating gyroscopic and the vibrating string devices have
actively moving mechanical parts., Theyarethereforemechanically slightly
more complex, however each accelerometer type has several parts that

present extensive design and precision fabrication problems.

In the area of operational experience, the vibrating string has been

98

tested exteﬁsively on surface gravity measurementsdownto 10 g the pulsed
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Table G. 2

| Accelerometer Weight, Power, Volume

Weight Power "  Volume
PIPA  0.5kg 4.7 watts 200 cm?
V.S, 2.5 kg 10 watts 1200 cm?
MESA 1 kg 3 watts 800 em?

" does not include heatef power which depends
upon environment. At room temperature with
the accelerometer at 140°F, approximately

1/2 watt is required for heating.

integrating pendulum has had extensive, successful, operational use on
Apollo flights; and the electrostatic suspension device is currently being
space tested on the ion thrusted SERT II vehicle, and has been specifically
devéloped for low thrust applications,

The possible merits of aSsembling and checking out these spacecraft

on a space station have been occasionally questioned. For the low thrust
~accelerometers this procedure would have the advantages of allowing for
a study of bias drift in a zero g environment, and for the avoidance of
misalignment errors between accelerometer and optical attitudé sensors
caused by launch stresses. However, a new technique would have to be
devised for aligning attitude sensors and accelerometers in the absence of

a well determined g vector.

The Vibrating String Accelerorneter9 measures the frequency difference

between a pair of matched natural frequency vibrating strings that are
coupled through a pair of identical suspended inertial masses., This
frequency difference is then converted to acceleration via the instrument
scale factor. Anearly version of the vibrating string accelerometer (D4E)
has been tested by Ed Spitzer of NASA ERC. He was able to obtain a
sensitivity of about 10-6g which was determined mainly by an apparent

temperature -sensitivity of 5 ppm/oF. It was observed that there was a
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tendency for the two strings to synchronize at very small frequency
differences which could lead to problemsat very small acceleration levels.
Bias error was found to increase with temperature while the scale factor
decreased. By carefully controlling the temperature environment, Charles
Wing of the M.I.T. geology department has been able to measure changes
in gravitational force with the D4E vibrating string to within an error of
5x10—9g. He has been operating the device at 70°f inside a double walled,
thermister controlled oven, which maintains the temperature to within

10”40

selected and aged thermistors., At the 5x10-9g level, and with temperature

controlled to within 10_"4 deg, bias errors due to mechanical aging are

F. Temperature control to this precisionrequires the use of specially

predominant. In a new D4E one observes about 10-6g/day change in the
bias level. Wing observed a tendency for the strings to synchronize under
zero g conditions along the input axis. One of the D4E's has been operating
for two years,and to date string breakage has not occurred. The vibriaging

It

appears to have a linear bias drift for small time intervals so that the

string electronics has been designed for automatic bias calibration.

bias drift is predictable accordingly. The main problems seem to be a

high bias temperature sensitivity, and a lack of space testing.

The Miniature Electrostatic Accelerometer (MESA) has an electrostatically

suspended float and electrostatic pulse rebalancing. It has been designed
specifically for low g applications,11 and is currently being space tested
on an ion engine thrusted vehicle.12 Dynamic range is designed to be 106,
with the upper limit setat 10-4g for the current SERT II mission. Maximum
measurable input is 1g, and the upper limit is adjustable down to a
desiderative 10-6g. Measurement accuracy is designed to be 0.1% of the
reading value, however the SERT II results are showing 1%. The null bias
is designed to scale (including temperature biasing) as 10-6 times the
maximum input setting. On the SERT II mission with a max, reading setting
of 10-4g one would expect a 10—10g null bias, however the results show
more like 10-9g, and this may beanindication that bias is not easily scaled
away at the ultra low g levels.

On the current SERT II mission, the MESA was turned on several
days before the thrusters., It failed to work at first, then gave 4 days of
good output measuring gravity gradient forces at about 0.75x10_6g.p after

196



the thrusters were turned on the MESA continued to function for 1 day,
then began to give spurious output which has continued as of 4/13/70,
Cause of the malfunction is currently unknown, but ion engine arcing is

suspected to have generated damaging transients.

The Pulsed Integrating Gyroscopic Accelerometer, (PIGA) . determines

acceleration by counting the number of torque pulses required to null the -
torque resulting from rotating a gyro wheel axis about a line in the gyro

wheel plane. The rotation is induced by acceleration forces which rotate

an unbalanced mass to which the gyro is fixed. Capability for this device

by mid 1970 is expected to be 5x10™" g of bias stability, and 2x10™' g of

scale factor stébility, and resolution. The instrument will be designed for

100,000 hour life. Operating temperature will be in the 125° - 140°

Fahrenheit range, with about 1x10-6 ‘g error caused by a 1°F temperature
change. The long term design goal for scale factor for this device is 10“8
-1079 g by 1972.

The.Pulsed Integvrating Pendulous Accelerometer, (PIPA) determines ac-
celeration by counting the number of pulses needed to torque the pendulum
back to itsnull position. Thisisdone via electromagnetic induction. Present
cépability for this device is about 1'_0-'6 g scale factor and sensitivity. One
of the main problems with this device is the change of permeability effect
which results from large float excursions, This could be combatted by
redesigning the accelerometer so that it is restricted to a small dynamic
range, hence to small excursions. The larger g forces present during
launch would be measured bya sepavrate instrument. It has been estimated
that8with a restricted dynamic range the PIPA could be designed to sense
10

PIP accelerometer for these small accelerations has been funded at the

-10-'9 g without a major redesign effort. No program to develop the

MIT Draper Laboratory. " Thermal sensitivity for the PIPA is currently
10-6 g/oF. Operating temperature is around 1400_ F,

The weight, power and volume values shown in Table G.2 are of specific
designs and arenot optimized for these missions. All are capable of being
reduced by redesign and should therefore be taken only as an indication of
the order of these quantities.
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G.3 Thrust Vector Misalignment

There are a number of misalignment possibilities occurring in the
various combinations’ of thrust vector, accelerometer, spacecraft, attitude
sensors, and celestial references, Twotypes of thrust vector misalignfnents
are important to the system design and guidance 'capability, namely
misalignment of the vector with respect to the vehicle inertial centroid,
and misalignment of the thrust vector with respect to inertial space.
Misalignment with respect to the vehicular inertial centroid results in a
torque which probably cannot be tolerated for burn times lasting years. It
has beenestimated that theuncertaintyin thrust vectoring for an ion engirie
freshly assembled and mounted is of the order of a couple of degrees.13
For a misalignment of this magnitude it is interesting to see what attitude
control system jet requirements would be to maintain attitude for a Jupiter
mission, The torque is of course dependent on engine-inertial centroid
distance, and if this distance could be reduced to zero the problem could
be transformed into a different misalignment problem. If one assumes a
1 meter separation between thruster and inertial centroid on a 700 kg
spacecraft, with 2° misalignment and .081 newton thrust (18 millipounds),
then the torqueis 0.0027 newton meters. Over the thrust time of a Jupiter
mission (about 3x107 seconds) the total rotational impulse is 8x104 newton
meter seconds. This would be 100 times the estimated requirement for a
high thrust mission using the TOPS spacecraft configura‘cion.14 Clearly it
will be necessary to reduce this level of gas expenditure by either rhoving
the thruster close to the inertial centroid, or by adding thrust vector control
as has been done on the experimental ion engine SERT II mission. Thrust
vector control inthe sense that the vector passesthrough the vehicle inertial
centroid could be obtained via control moment gyros, while the inertial
space pointing was accomplished with reaction wheels or rotation thrusters.
However, a moreatiractive system would result if electrostatic or thermal
expansion thrust vectoring wereused, coupled directly to the attitude sensor
output. This would eliminate the use of gyros and gas jets during the thrust
on cruise mode (however these mechanisms would probably still be required
during the thrust off period). Pitch, roll, and yaw rates within the attitude
sensor deadband would be affected by charging appropriate platesor heating
various mounting pads. Expected rotational accelerations are of the order
of 0.00018 deg/se02 for a spacecraft that:
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a) has a mass of 1000 kg;

b) is a sphere of uniform density and 2 meter radius;

c) has thrusters which yield an acceleration of 10-5g;
d) has thrusters placed 2 meters from inertial centroid.
e) has thrust vector pointing 1° away from centroid.

with this rotational acceleration level it would take about two minutes to
rotate the spacecraft through an angle of about 10, while a 900, torqued up
and down rotation would take about 14 minutes which is very close to the

time required for this rotation using the TOPS proposed reaction wheels.

The second form of thruster misalignment is with respect to celestial
coordinates. This error has several sources including star and sun sensor
electrical bias and mechanical misalignment with respect to spacecraft
mechanical cobrdinates, thermal bending of the structure, uncertainty in
the location of the inertial centroid with respect tothe thruster beam center,
and structural deformation due to launch stresses. Launch stresses and '
thermal bending are the major problems here, and could lead to arcminute
sized misalignments. A onearcminute misalignment between thrust vector
and celestial coordinates over a 400 meter/sec AV input lasting 107 seconds
( first Jupvi.ter burn) produces a 0.5x103 km position error. Experience on
the Orbiting Astronomical  Observatory program15 showed that
misalignments of 2 to 5 arcminutes occurred due to launch stress, and 0.5

to 1.5 arcminute misalignments were the result of thermal strain.

One possible scheme to account for these errors would consist of
mounting three orthogonal accelerometers accurately with respect to the
star and 'sun sensors, and carefully aligning these in a lab. Then thrust
misalignment with respect to the celestial sensors would be indicated by
off axis accelerometer output using the brthogonal axis output ratio to
eliminate thrust magnitude uncertainties, and corrections could be made
by biasing the attitude sensor output. This would require alignment of the
accelerometers with respect to the radiation sénsors with arcsecond
precision, and it would require extremely sensitive accelerometers. If
the nominal thrust is 10-5g's, then a 10-8g accelerometer would sense an
"off axis'' thrust angle as small as 3.5 arcminutes, but it would take a
10-1.0g accelerometer to sense arcsecond like thrust misalignments, The
DSN alone candrive celestial thrust misalignm ents down to the few arcminute
level. 'Figure G.2 shows the various alignment capabilities in relation to
accelerometer sensitivity based upon a 10-5g thrust acceleration.
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Another possible accelerometer scheme uses a single low g ac-
celerometer mounted ontwo degree of freedom gimbals with precisionangle
readout. If the single accelerometer were strapped down its output would
be of little use because of the uncertainty in the thrust vector magnitude
which would be indistinguishable from a misalignment uncertainty (unless,
of course, by chance the accelerometer sensitive axis happaned to be
perfectly lined up with the thrust vector). If the accelerometer were.
gimballed, it could be moved to maximize its output thus insuring alignment
with respect to the thrust vector. Accelerometer alignment with respect

to the altitude sensors could then be achieved with precisionangle encoders.
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