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Abstract

Fluctuations in electron density and tempera-
ture coupled through Ohm's law are studied for an
ionizable medium. The nonlinear effects are con-
sidered in the limit of a third order quasi-linear
treatment. Equations are derived for the ampli-
tude of the fluctuation. Conditions under which a
steady state can exist in the presence of the
fluctuation are examined and effective transport
properties are determined. A comparison is made
to previously considered second order theory. The
effect of third order terms indicates the possi-
bility of fluctuations existing in regions pre-
dicted stable by previous analysis.

Introduction

Under conditions appropriate to MHD gener-
ators and MPD arc thrusters studies have shown
that fluctuations in electron density and/or tem-
perature can be unstable.(1»2) in both of these
analyses only the linear effect of fluctuations
was considered leading to the usual stability
analysis dispersion relation from which the growth
or damping of the fluctuation can be ascertained.
In this paper we extend these analyses into the
nonlinear regime in order to determine the ampli-
tude of the fluctuation and its effect upon the
properties of interest.

The oscillations under study primarily arise
due to fluctuations in electron temperature.
These temperature fluctuations can be amplified
through increased Ohmic heating arising as a re-
sult of increased ionization and/or decreased col-
lision frequency. These changes in frequency
occur as a consequence of the initial electron
temperature perturbation. The dispersion relation
depicting this phenomena was derived in refer-
ence (2) by considering the time dependent elec-
tron density and temperature equations coupled
through a generalized Ohm's law.

In this paper the nonlinear effects of the
fluctuations are considered on the basis of a
third order quasi-linear theory neglecting mode
coupling. Even though the theory is strictly
valid only in the neighborhood of the threshold
of stability, the third order terms are included
in an attempt to increase the applicability of the
results. The analysis is carried out for those
fluctuations which show the maximum rate of
growth, i.e., first become unstable. Two limiting
cases are considered. In the first limit, the
ionization is assumed to be frozen. In this limit
it is shown that the system can become unstable if
electron collision frequencies decrease suffi-
ciently rapidly with electron temperature. For
the MHD generator, this mode does not appear to be
important since operating conditions and working
fluids of interest are such that the instability
criterion is seldom satisfied. One notable excep-
tion may occur, however, when the gas is strongly
preionized prior to entering the MHD channel. In

this case, the ionization may be sufficient that
Coulomb collisions dominate and the instability
criterion is satisfied. This was mentioned in
reference (3) as a possible source of the anomo-
lous oscillations observed in these experiments
with preionization. In reference (3) the oscilla-
tion was referred to as the static instability
mentioned in reference (1) and is akin to our
frozen flow limit. In this limit, the medium is
assumed to be infinite and homogeneous and the re-
sults of the quasi-linear analysis are presented
for a fluctuation propagating in the direction of
maximum growth.

For the MPD arc thruster, the fluctuations
are assuned to occur in the region of high current
concentration in the throat of the device which is
depicted by an annular region between two concen-
tric cylinders as shown in figures 1 and 2. Since
damping due to radiation and heat conduction are
least prominent for long wavelengths, the most un-
stable waves are those with the longest wave-
lengths. In the case where the interelectrode
distance is small compared to the mean circumfer-
ence of the annular region, the longest wavelength
is obviously nearly that of purely rotational
propagation. The analysis of the MPD arc thruster
is therefore simplified by considering only rota-
tional propagation.

In the second limiting case, the ionization
rate is assumed infinite. This case has been ex-
tensively analyzed with regard to MHD generators
and was reviewed in reference (4). In that study,
terms were retained to second order in fluctuating
quantities. In our work, third order terms and
some terms ignored in reference (4) as being small
in the range of interest are retained. In the
range of interest, i.e., the region in which sta-
bility is reached in the presence of fluctuations
of finite amplitude, the effect of these addi-
tional terms is minor, at least in so far as
present experimental data is interpretable. How-
ever, an interesting point arises in that these
additional terms open the possibility of insta-
bility occurring in a region where linear theory
predicts stability. In this case, instability can
occur if a fluctuation of sufficient initial am-
plitude is present. Such fluctuations may be ex-
cited in the preionization region of the MHD duct.

For MPD arc thrusters in the purely rota-
tional approximation the mode occurring in the in-
finite ionization rate limit is damped. For prop-
agation at small angles from the rotational direc-
tion the mode can be unstable but requires large
values of the Hall parameter for instability to
occur. From the analysis of reference (2), these
values appear to be much higher than those which
occur in the high current throat area of present
high pressure MPD thrusters. Therefore, it is not
expected that this mode of instability plays an
important role in the rotating spoke phenomena
observed in these devices.
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Assumptions and Governing Equations

Assumptions

Generalized Ohm's Law

The generalized Ohm's Law is

In those regimes where electrothermal dis-
turbances predominate, the following assumptions,
simplifications, and restrictions are appropriate:

1. The analysis is restricted to sufficiently
short wavelengths such that the zeroth order prop-
erties do not vary appreciably over this distance,
i.e., spatial gradients in zeroth order quantities
are ignored.

2. Only fluctuations in space and/or time of
the electron number density and temperature are
considered. This is reasonable since the rela-
tively lighter and more mobile electrons respond
to disturbances of greatly different frequencies
than do the heavier and less mobile neutral atoms
and ions.

3. Only the propagation of magnetohydrody-
namic disturbances is considered. This restric-
tion implies neglecting the displacement current
density in Maxwell's equations, ignoring induced
magnetic field relative to the applied constant
magnetic field, and assuming the plasma to be
quasi-neutral.

4. Ion and neutral particle flow velocities
are equal, i.e., ion slip is ignored. Further-
more, all heavy particle flow velocities are as-
sumed equal to V-, the gas flow velocity.

** *
E = E
— —

m ve

n e
Vp

*

(4)

(5)

where E^ = E. + VQ x K. is the electric field in
the frame of reference moving with the gas flow
velocity VQ in the applied magnetic field BQ,

and (l/nee)Vpe is the force due to electron tem-
perature and density gradients.

The electrical conductivity, a, is given by

.2

a = -^— (6)
n e

m ve

where the total electron momentum collision fre-
quency is

v = v + v +ec es .ei (7)

The species collision frequencies are allowed the
following general temperature dependence

A n Tea a e (8)

5. Only propagation in planes perpendicular
to the applied magnetic field is considered.

6. Ion and neutral particle temperatures are
assumed equal and equal to T., the gas tempera-
ture.

where a = c, s, or i corresponding to electron
collisions with carrier gas atoms, seed atoms, or
seed ions, respectively. AeQ and aea are arbi-
trary constants chosen to fit average collision
frequency data over the temperature range of in-
terest.

For the above limitations the problem is com-
pletely determined in terms of the fluctuations of
electron density and temperature and their cou-
pling through Ohm's law and Maxwell's equations.

Maxwell's Equations

Electron Energy Equation

The electron energy equation is

kT

~Te+^ VT

From Maxwell's equations under the assumption
of quasi-charge neutrality and neglecting the in-
duced magnetic field,

V x E = 0

7 • £ = 0

Electron Continuity Equation

(1)

(2)

It is assumed that in the region of interest,
the ionization is dominated by electron-neutral
atom ionizing collisions and by three body recom-
bination. The electron density equation then
takes the form

37 ne Vn n n v. - n ve s i e r (3)

It is noted that this equation depends upon the
gas flow velocity VQ, rather than the electron
flow velocity, V^. This arises as a result of
assumption (4) and the condition of quasi-charge
neutrality.

Ve 2

f-n +v- ' Vn
3t e -0 el (9)

where v is the collision frequency for energy
transfer given by

m m m
e e . ev = — v -f — v + — v

m m ec m es m. eic s i
(10)

and the VTg contribution to the heat conduction
term and radiation losses are neglected. These
terms contribute damping terms to the dispersion
relation which vary inversely with the wavelength
relative to the wavelength independent elastic
collision damping. Since, in quasi-linear theory,
one is primarily restricted to the region in the
neighborhood of the stability threshold, only
those waves which are most unstable are of inter-
est, i.e., the. longest wavelengths. It is there-
fore assumed that at these wavelengths, the wave-
length dependent terms are ignorably small and



hence for simplicity are not included in the anal-
ysis. The question of the relative importance of
these terms has been extensively investigated for
MHD generator type plasmas in references (5) and
and (6).

Quasi-Linear Theory

In the second case we assume the ionization
rate is infinite. In this case the left hand side
of equation (3) can be neglected. The electron
number density is then specified by

(15)

The nonlinear problem is now treated by con-
sidering small departures from the stability
threshold so that pertinent quantities can be
written in the form

f (r,t) = f(r,t) (11)

where f is the oscillatory function for which the
time averaged value defined by the brackets (f) is
zero and (f^ is the average value of the quantity
f. Furthermore, in keeping with our initial ^
assumption (f) is spatially independent. The re-
striction of small departures from steady state
then requires

f « (12)

so that a solution may be formed as a power series
expansion in f. In the cases considered here, the
expansion is carried out to third order in the
product of f's. Furthermore, since we are con-
sidering small departures, only the fundamental
mode is considered, i.e., mode coupling between
harmonics or other fundamental modes is ignored.

The perturbation function is then taken to be
of the form

f(r_,t) = f (t)sin(i. -£-0)1)

+ f (t)cos(A. • r. - ait) (13)

where i_ and u> are real, i_ • BQ = 0 (only con-
sider propagation in plane perpendicular to BQ),
and the long term time dependence of the perturba-
tion function is contained in the coefficients fs
and fc which are assumed to be slowly varying
over a period of the oscillation, t, so that

t+T

f (t')dt' - f (t)
S S

fc(t')dt' =

(14)

The problem of interest is then one of determining
under what circumstances, if any, that the ampli-
tude of the fluctuation reaches a steady state
value.

The general quasi-linear analysis of the set
of equations (1) to (10) is complicated by the two
time dependent equations (3) and (9). This allows
two fundamental modes to propagate simultaneously.
Therefore, in order to simplify the analysis, we
consider two limiting cases. In the first case,
oscillations in the electron number density are
ignored. This is justified if either the ionizable

material is completely ionized or the frequency of
the oscillation is much greater than the ionization
frequency. The electron number density like the
gas dynamic properties is then specifiable by equa-
tions peculiar to the problem of interest.

It is further assumed that the electrons are ini-
tially in Saha equilibrium so that we are only
concerned with small fluctuations from equilibrium.
Under this condition, the principle of detail bal-
ance^) can be invoked to relate the ionization
coefficient, v^, to the recombination coefficient,
vr, through the equilibrium constant. Then

^ = ̂ -T^exPl-r\ \) p f 4
nsO r e

(16)

This case has been extensively analyzed with re-
gard to MHD generators.(**) In this paper, we ex-
tend this second order analysis to third order and
also consider it with regard to high pressure MPD
arc thrusters.

Frozen Ionization Rate Limit

This is the case where electron number density
fluctuations are ignored. Before proceeding to the
quasi-linear analysis, we consider the results
previously obtained(2) from linear stability anal-
ysis, for these results extended to include a
neutral carrier gas as well as an ionizable species
the condition that the system be unstable is

1 + 2

X a. ecO esO + aei

Veiol
V0 J

< 0 (17)

Let us first discuss the consequences of this
stability criterion for combustion and nonequilib-
rium MHD generators and then consider the MPD
thruster case. In the combustion generator in-
elastic collisions with the numerous molecular
species in the combustion gas work fluid make it
impossible to raise the electron temperature much
above the gas temperature. In this case then, the
factor (1 - To/Te0) in the inequality (17) is in
general, too small for the instability criterion
to be satisfied.

In the nonequilibrium MHD generator operating
on inert gases seeded with alkali metals the goal
is to obtain an elevated electron temperature. An
electron temperature approximately twice the gas
temperature is typical. There, even for the most
unstable direction of propagation, i.e.,

A ' JQ = ^' t'le unstable condition requires the

coefficient + a
esO
V0

+ aei , -1.

In general, over the temperature range and for
neutral gases of interest, the temperature expo-
nentials and are positive or at least
only slightly negative (e.g., see Maxwell-averaged
cross sections for electron temperatures near
3000° K presented in ref. (8)). Therefore, in



order for the coefficient to be <-l, the plasma
must be Coulomb collision dominated since
aej - -3/2. Since under normal operating condi-
tions of MHD generators the collision frequency is
neutral dominated, it appears that the range of
importance of this mode of instability for these
devices is small and can be avoided without great
difficulty. The one exception to this could occur
when the gas is preionized by strong electric
fields prior to entering the MHD channel. In this
case, high degrees of ionization can be reached
and the resulting instability could propagate into
the generator region. This has been mentioned in
reference (3) as a possible source of the anomo-
lous fluctuations observed in these experiments.

On the basis of the above discussion and the
fact that MFD arc thrusters in general operate in
the Coulomb collision dominated regime, the quasi-
linear analysis in the limiting case of frozen
ionization is developed only for v - vei.

We first consider the equations governing
the average and fluctuating electric current
densities. Substituting quantities of the form
of equation (11) into equation (4) , we obtain

.

5)«E
— JL Jk

E ) x £

(18)

where to third order (]J }
vector in the direction of
parameter, g, is defined by

(E. }, £ is a unit
and the Hall

m v
e

(19)

Averaging equation (18) then gives an expression
for the average current density.

(20)

The fluctuating part of the current density
is then obtained by subtracting equation (20) from
(18) , forming the triple cross product
e x ( x ) and using equations (1) and (5) ,
i.e. ,

J = 0
£** = 0, and equation (2), i.e.,
to obtain

<E*» - 61 x [i b)]]

(21)

The fluctuating part of the field, E , can
be determined from the fluctuating current density
equation obtained by subtracting equation (20)
from (18), forming the dot oroduct i_ • J, using
equation (1) so that E = -V$ , and equation (2) ,
i.e. , i, • $ = 0 to obtain

-oi(i. • <E*>) + ejk

+ higher order terms (22)

Equation (20) can now be simplified by using equa-
tion (22) to_eliminate \o|**^ and equation (21) to
eliminate 6j. We then obtain

<*> = <°><E*> - <B><j> x b

It is convenient at this point to define for
later use the effective values of the conductivity
and Hall parameter. These quantities are defined
by

<*> = °ef£<I*> - Beff<*> X £

It is obvious from equation (24) that

"eft

Substituting equation (23) into equations (25)
and (26)

eff ~ 1 + Z

ZT
*eff 1 + Z

where

T = tan = tan

(24)

(25)

(26)

I

(27)

(28)

(29)

(30)

Much of the above manipulation was from hind-
sight and for the purpose of obtaining the equa-
tions for the average current density, equa-
tion (23), and the fluctuating current density,
equation (21), solely in terms of the fluctuating
electrical conductivity, a, and the fluctuating
Hall parameter, 6. The above equations are com-
pletely general, i.e., not restricted to either of
our limiting cases. Specialization to these lim-
iting^cases arises through the dependence of 3
and (3 upon ne and fe in these limits.

For the case under consideration

Se = aec ' aes = 0; aei = ~3/2

then from equations (6), (7), and (8)

(31)

SL
16

^<Te>2

From equations (19), (7) , (8) , (31) , and (32)

(32)



"0

3

(33)

(34)

where OQ and BQ are defined by equations (6)
and (19), respectively, evaluated at the average
electron temperature, (Te).

We now consider the energy equation (9) by
eliminating J • E* in terms of (l/a)s2 by tak-
ing the dot product of j with equation (4). It
should then be obvious from equations (21), (23),
(32), and (34) that the energy equation can be ex-
panded in a power series in Te/(Te). _Carrying
out this expansion to third order in Te/(Te) and
averaging the resulting equation we obtain, after
considerable algebraic manipulation, the following
equation for the average electron temperature

(35)

At this point, it is appropriate to consider
the essence of the analysis. First, it is to de-
termine under what conditions, if any, the ampli-
tude of a fluctuation which is linearly unstable
can reach a steady state. The second purpose is
to determine the values of the measured properties
of the system in the presence of fluctuations.
Since most measured properties are obtained with
instruments that cannot resolve oscillations on
the time scale of the fluctuation, they only meas-
ure time averaged properties (ideally).

It may be noted that for the third order the
theory considered here, the pertinent equations for
the average values, e.g., equation (31), depend
upon the average of the square of the amplitude,
(f£>, rather than the amplitude itself. Therefore,
it is convenient to cast the equation for the
amplitude, Te, in this form. The equation for Tg
is obtained by subtracting equation (35) from equa-
tion (9), expanding to third order in Te/̂ Te},
multiplying by fe and averaging to obtain

2<> = -2 — n nun T k(/T N - T Je/ m eO 0 2 \ e/ 0

X-
I <T2
1 3 35 3 Ve> <Te>

2 16 2 ^ • ^ f ((T > - T )
1 1 15

1 8
3<f

2 < T

e

e>2]

which closes the set of equations describing the
average properties of the system in terms of the
average of the square of the amplitude of the
fluctuation,

Before proceeding to analyze the above equa-
tions, another property of interest, namely, the
frequency of the fluctuation is determined. This
quantity is obtained by forming the equation for
the amplitude of the fluctuation, Te, as in the
above derivation, but instead of multiplying_by
Te and averaging, we multiply by 1/fc2 i_ • VTe
and average. The frequency in the frame of refer-
ence moving with the gas flow velocity is then

= (1) + i_ • Vg ' (37)

which was the expression previously determined
from linear stability analysis. (2)' In other
words , the frequency of the oscillation depends
upon the amplitude of the oscillation only through

The Effect of Fluctuations on Ohm's Law. The
conductivity and Hall parameter are often indi-
rectly determined in experiments by first measur-
ing the electric current density and electromag-
netic fields. Then Ohm's Law is applied to deter-
mine the conductivity and Hall parameter. In the
presence of fluctuations it is then obvious from
equation (24) that the measured values are the
effective values. Clearly, a discrepancy between
theory and experiment arises when one calculates
the conductivity and Hall parameter in their clas-
sical form, i.e., equations (6) and (19) evaluated
at the measured electron temperature. It is
therefore of interest to compare the ratio of ef-
fective to classical values of these parameters.

From equations (27) , (29) , (30) , and (31) we
obtain

1 +*
<£>'3 Ve

eff
8M'

1+7"
(1 + O

(38)

In figure 3, this ratio is plotted as a function of
the amplitude function (̂ /̂̂e)̂  for various
angles of propagation. The interesting point to
note is that the effective conductivity is en-
hanced by the presence of the fluctuation for
values of |T| > /5 but is reduced for values leso
than /5.

From equations (28), (29), (30), (33), and
(31), we obtain

eff (39)

Comparison of equations (39) and (38) shows that
in the limiting cases T = 0 ar.d |T| = °°,

(36)



eff
B0

eff (40)

At intermediate values of T, Beff/B0 depends
upon the value of BQ. Therefore, the dividing
point between enhancement and degradation of the
Hall parameter is not simply a function of the
angle of propagation as it was for the conduc-
tivity ratio. The plot of Beff/BQ for the lim-
iting cases is therefore identical to the a

eff/
co

plot in figure 3, except that the neutral point
1 occurs for values of T given by

(41)

These values of T are plotted in figure 4 for
various values of BQ. The angles of propagation
for which Beff = BQ are restricted to
0 <_ T <_ /5 and -*° <_ T <_ -/5. The asymptotic
values T = ±/5 occur in the limit BQ * "• At
the limiting point equality (40) again holds as
can be seen by taking the limit BQ •+ " in equa-
tion (39) and comparing the results to equa-
tion (38) .

The Effect of Fluctuations for the Case of
Maximum Growth Rate. We are interested in deter-
mining whether a steady state can exist in the
presence of an infinitesimal oscillation, and if
so, under what circumstance the oscillation occurs
and what its amplitude is as a function of experi-
mentally measured parameters.

We first consider the amplitude equation (36)
for the direction of propagation which results in
the maximum growth rate of the disturbance. Since
in this direction, the fluctuation is first un-
stable and grows most rapidly, it is assumed that
for small displacements from the stability thresh-
old this is the observed disturbance. For the
Coulomb dominated regime considered here
(ae 0, -3/2) this direction, as can
be seen from the linear stability term of equa-
tion (17) , occurs for propagation perpendicular to
the average current density, i.e., ̂ • ($) = 0.
For this case, the amplitude function is given by

2 3t

. 3 29
+ 2 8~ 29

(42)

where we have used equation (35) with
3/3t <Te) = 0 to eliminate (l/<o»^2 and have

f
'ected terms greater than second order in
/<Te^

2. We note that the linear term is just
stability condition obtained from the linear

analysis and obviously is damping until the in-
stability point, TQ/(Te) <_ 2/3, is reached. Be-
yond this point the linear term causes a growth in
the amplitude of the oscillation until the non-
linear term, which is damping for TQ/<Te) > 2/29,
offsets the linear growth term. A steady state is
reached when

<Te> 1 29. (2_ T0
28 \29 ~ (Te

(43)

Obviously in the case in which T0/(Te) < 2/29
the nonlinear term contributes to the growth and
the thermal perturbation is unconditionally un-
stable. However, it is obvious from equation (43)
that as T0/<Te> -* 2/29, <T

2>/<Te>
2 * » which vi-

olates the quasi-linear condition of small ampli-
tude oscillations, i.e., (T2)/(Te)

2 « 1. There-
fore, this point is not considered further.

The amplitude function, T/(Te), as given
by equation (43) , can be calculated by determining
the temperature ratio TQ/(Tê  f rom equation (35) .
For i. • ($) = 0, the steady state condition
3/3t̂ e) = 0, and either the MPD thruster geometry
shown in figure 2 or the MHD Hall generator con-
figuration, this equation reduces to

<T

(44)

where

3— kT
2 kiO

(45)

is the ratio of the ion drift energy to its random
kinetic energy, E = |\E*)| and BQ are the magni-
tude of the applied electric and magnetic fields,
respectively. In deriving equation (44) , we have
also used equations (23) , (31), and (33).

Equations (43) and (44) can be solved simul-
taneously for given values of the Hall parameter
(B) and the parameter R to determine the ampli-
tude function {T2)/(Te)

2. These values are shown
in figure 5, where the amplitude function has been
plotted as a function of the Hall parameter (B) for
various values of the parameter R. The first
thing to be noted from this figure is that for a
given value of R, there is no instability, i.e.,
no physically exceptable solutions exist, until a
critical value of (B) is reached corresponding to
the onset of instability. This critical value of
(fi) increases with decreasing values of R. Also
to be noted from figure 5 is that the amplitude
function reaches an asymptotic value as <[B> •* °°,
the magnitude of which depends upon the parameter
R.

The Effect of Fluctuations for the Case of a
Purely Rotational Disturbance. In the previous
section the medium was taken to be infinite and
homogeneous. As explained in the Introduction in
the case where the disturbance is confined to the
annular region between two concentric cylindrical
electrodes, the longest wavelength and hence the
most unstable wavelength (due to radiation and heat



conduction damping) is approximately that which
corresponds to pure rotation. In this section, we
therefore consider the effect of a purely rota-
tional fluctuation. This was the case considered
in reference 2.

The amplitude equation (36) to second order
in (T|)/(Te)2 reduces, after considerable alge-
braic manipulation, to

3. 29 [2_ _
28 [29

23
29

53 2
29 B0

3_
29

CO CO
U + # <r e > 2 J e > 2

(46)

Unfortunately the dependence of equation (46) upon
T0/(Te} and B0 ls such tnat it is not Possible
to determine a steady state amplitude of the fluc-
tuation for the same assumptions used in the line-
arized theory of reference (2). In order to ob-
tain the values of the local gas dynamic proper-
ties required in the theory from the available ex-
perimental data, a number of assumptions had to be
made in the analysis of reference (2). One of
these was to take the local gas temperature, TQ,
to be sufficiently small so that it could be ig-
nored in the onset region where the frequency of
the oscillation was evaluated. If this is done
here, the nonlinear term of equation (46) becomes

3. 29 fc 23 82 _ 3_ 84~|
28 [29 29 0 29 Oj (1 +

(47)

which is positive and hence destabilizing even for
the maximum value of BQ for which the linear
term in equation (46) is destabilizing, i.e.,
Bg = 2. Therefore, a more complete steady state
solution is required and/or local gas properties
must be measured experimentally in order to ascer-
tain the validity of this assumption.

However, a second interpretation is possible.
Since, in reference (2), the rotational frequency
was calculated at what was assumed to be the up-
stream onset point, it could well be that the
amplitude of the oscillation is growing at this
point, reaching its quasi-steady value downstream
of the point in question. In this case, the
amplitude may indeed be small at the point at
which the frequency was calculated so that non-
linear effects can be ignored. The effect of non-
linearity then manifests itself downstream in the
growth of the oscillation.

Of further interest is the fact that the
linear and nonlinear coefficients in equation (46),

r - I 29 (~2_ _ T0 .23.2 53 2 TQ 3_ 4
I ~ 2 8 29 /T \ 29 P0 29 0 /T\ 29 0

(49)
(1 +

respectively, can be positive or negative, depend-
ing upon the magnitude of TT and &" In

figure 6, the curves of Cg = 0 and

plotted as functions of and B2..

= 0 are

For both
coefficients, points (S,, T0/(Te}) above their re-
spective curves result in negative values of the
coefficient and hence damp the fluctuation. How-
ever, for points (0$, To/(Te)) below their respec-
tive curves, the coefficients are positive so that
the terms contribute to the grcwth of the fluctua-
tion. As a result, the TQ/̂ Te} against 6g plane
is divided into four regions having the following
characteristics :

1. Region I - Both coefficients are damping
and hence fluctuation is unconditionally damped.

2. Region II - Linear term damping, nonlinear
term growing. In this case the usual linear sta-
bility theory would predict a damped disturbance.
However, the growth contribution of the nonlinear
term indicates that, for disturbances with initial
magnitude of the amplitude function

îV(Tê 2 > Ic0/cll> tne disturbances grow un-
stably. Therefore, in this region fluctuations
are damped f or ̂IV̂ e)2 < ICg/Cj and grow un-

stably for <Ti)/<Te>2> |c0/Cl|.

•3. Region III - Both coefficients are positive
and hence any disturbance grows unstably.

4. Region IV - Linear term growing, nonlinear
term damping. Disturbance grows or damps until a
stable equilibrium point is reached with amplitude
function <Tl>/<Te>

2 = ICg/Cj.

Whether the above regions exist under actual
experimental conditions only further experimenta-
tion can answer. Furthermore, the effect of higher
order terms in those regions in which the theory
predicts the unstable growth of the disturbance is
not known. In these regions, therefore, a fully
nonlinear theory must be developed.

Infinite lonization Rate Limit

In the case of infinite ionization rate the
electron number density is related to the electron
temperature by Saha's equation (16). Taking the
square root of equation (16) and expanding the
right hand side in a power series in Te/^Tê  we
obtain for the ratio of 'the fluctuating density to
its average value

(48)
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(50)

The important thing to be noted is that for de-
vices of interest in this paper the average elec-
tron temperature is in general much less than the
temperature corresponding to the ionization
energy, i.e.,

Ce)
» 1 (51)

so that

Therefore throughout the subsequent analysis terms
the order of Te/^Tê  are neglected with respect
to ne/<ne>.

The equations governing the average current
density <^> and the fluctuating current density j.
are equations (23) and (21) , respectively. These
equations are specialized to the present limiting
case by specifying the dependence of o and 6
upon Tg/̂ Te) an^ °e/(ne) •'•n tni-s limit. Ignor-
ing Te//Te\ with respect to

 ne/(ne) we obtain
from equations (6), (7), and (8)

' n2 42V
_ A ) ,_^_W

/n V
\e/,

+ A2(l - A) —— + A(l - A)
n2

< n e><n e > 2 + -"
( ̂ ^^

from equations (19) , (7) , and (8)

+ ,3^JL +
<ne> /n "

(54)

where

eiO esO <"e> (55)

and we have ignored the electron number dens? ty
dependence of the logarithmic factor in the
Coulomb cross section.

Expressions for the average electron number
density and the average of the square of the fluc-
tuating electron number density can be obtained by
expanding the electron energy equation in a power
series in ne/̂ igN. This expansion is carried, out
to third order^in ne/̂ ne'), neglecting terms of
the order of Te/^Te) with respect to He/(nê  .
Since the method is -analogous to that considered
in the r>revious limiting case to determine ̂ Tê
and \T|̂  only the result is presented here. For
the amplitude function we obtain

3_

/-2\Cn )
\ e/

where

* = -[(1 + A) + 2K] + (1 -
L

A)

- 2(1 - A) -̂5- - 2B I—r- (57)
(1 + O ° (1 + T^) J

*2 E [(1 + A) + 2K]Z' (58)

5A

*, = 7 (A - 3)Z - [2K + (A - A )] -7^-J / m 4

+ [(1 + A) + 2K] f(l + A )(A + 2K) - A2]
L m mj

+ AH. + j Aj[ ( l + A) + 2K] (59)

A) 2
+ <e> 2 ] -^ <"e> ... &>

(60)

/T \i V 1»7
2K =

A = — esO <ne>

The coefficient *^, of the linear term is propor-
tional to the stability term obtained from linear
wave analysis. Its consequences are reviewed in
reference (4). It is found that the oscillation is
most unstable for propagation at the angle given by

T = -m
1 - A

- ^^
The linear term is then found to be positive and
hence growing for a Hall parameter

> 6c = 2/(l + K)(A + K) (64)

The coefficient *„ i-s tne result obtained



in reference (9) and reviewed in reference (4) .
This result was obtained for an expansion of the
energy equation to second order in fie/(nê  and
under the assumption that Z was large in the
region of interest so that nonlinear. terms not in-
volving Z could be ignored. These previously
ignored terms as well as third order terms are
contained in the coefficient *j.

In figures (7) and (8) the values of'
oeff/<o> and 8eff/<B> are plotted, respectively,
as a function of <B> for the theory of refer-
ence (5), the present third order theory, and for
the experimental data of reference (10) for
(i) = 2 amps/cm2. The theoretical curves are cal-
culated by the method of reference (9) in which a
value of the critical Hall parameter, 6C, is
chosen to best fit the experimental data of fig-
ures 7 and 8. This then allows the energy loss
factor K to be calculated from equation (63) .
All other parameters are calculated from the ex-
perimental data of reference (10). The amplitude
function, {niV(nê

2> is/th£n calculated from
equation (56) for 8/3t \ne//<ne> = 0. 6eff/<S>
and °off/(°) are then obtained from equa-
tions (27) and (28) , respectively, using equa-
tions (53) and (54).

It is seen from figures 7 and 8 that the
additional terms derived in this paper do not have
a major effect upon the interpretation of the ex-
perimental data, at least as it is presently in-
terpreted. The agreement with effective Hall
parameter is slightly better and the agreement
with effective conductivity is slightly worse.
The interesting point, however, is that the terms
contained in *j can contribute a negative value
to the coefficient of the nonlinear term. This
opens the possibility of instability occurring in
a region where linear theory predicts stability,
i.e., *i < 0. In this case, instability can occur
for *3 > *2

 if the initial amplitude of the
fluctuation is

In figure 9 we have plotted (for the conditions of
fig. 4 of ref. (5), i.e., 6C = 2, A,,, = A = 1) the

values of (neV(ne/ ^or an unstable solution in
the linear stable region 8 <. Bc = 2. Obviously
for these conditions the initial amplitude must be
large in order for the system to be unstable. One
means by which an initially large, amplitude fluc-
tuation could occur would be propagation of fluc-
tuations into the MHD generator from a preionizer.
This may also be an explanation of the anomolous
results obtained in the experiments of refer-
ence (3) during the application of preionization.

It should be emphasized that the prediction
of instability in the linearly stable region by
the present theory is only a possibility since it
occurs as the nonlinear term begins to dominate.
Higher order terms may provide sufficient damping
to stabilize this region. This question can only
be answered by considering the full nonlinear
problem.

In MFD arc thrusters limited by geometry to
approximately rotational propagation, it has been
shown in reference (2) that the linear stability

tenn 4^, requires large values of BQ (the order
of the ratio of the mean circumference of the an-
nular region to its width) for instability to occur.
Since the analysis indicated that the values of BQ
in the throat area, where the instability is as-
sumed to occur, were of order one it does not ap-
pear that this mode of instability is of importance
in these devices.

Concluding Remarks

The nonlinear effects of fluctuations in the
electron properties of a partially ionized gas have
been considered on the basis of a third order
quasi-linear theory neglecting mode coupling. The
two limiting cases of frozen flow and infinite
ionization rate have been investigated with appli-
cation to MHD generator and high pressure MHD arc
thrusters operation.

For MHD generators oscillations occurring in
the frozen flow limit are damped for normal operat-
ing conditions. However, where strong preioniza-
tion is used prior to entering the MHD duct such
oscillations can be excited and this may explain
the anomolous fluctuations observed in the experi-
ments of reference (3). The effect of oscillations
in the infinite ionization limit has been previ-
ously studied on the basis of a second order quasi-
linear theory.(9) A comparison of these results
to the third order theory developed in this paper
show little difference in as far as the interpre-
tation of present experimental data is possible.
However, the present theory indicates the possi-
bility of fluctuations occurring in the region
which is linearly stable provided fluctuations of a
finite initial amplitude are present in the system.
In the MHD generator case these may occur as a re-
sult of strong preionization.

In high pressure MPD arcs geometrically con-
fined between two concentric cylindrical electrodes
it is argued that the most unstable oscillation
occurs for nearly pure rotation propagation. In
this case oscillations arising in the infinite
ionization limit are damped at least for high pres-
sures. In the frozen flow limit oscillation can
occur. Based on the assumption of zero gas temper-
ature in the onset region, which was used in refer-
ence (2) to reduce the existing experimental data
for comparison with linear theory, the quasi-linear
theory predicts unstable growth of the fluctuation.
Therefore, as a consequence of this assumption, a
"steady state" fluctuation of finite amplitude is
not predicted by quasi-linear theory. The validity
of the zero gas temperature assumption requires
further experimental information or a more complete
steady state theory.

A.A,,, defined by eq. (55) and (62) , respec-
tively

A ,a defined by eq. (8)
601 601

B_ magnetic field vector

6_ unit vector in magnetic field direction

C ,C defined by eq. (48) and (49), respec-
tively
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Subscripts:

e

eff

i

electric field vector

magnitude of the charge of an electron

electric current density vector

Boltzmann constant

wave vector

particle mass

particle number density

pressure

defined by eq. (45)

position vector

temperature of neutrals and ions

temperature of electrons

temperature equivalent of ionization
potential

time coordinate

gas flow velocity vector

defined by eq. (29)

Hall parameter

total electron momentum collision fre-
quency

ionization coefficient

momentum collision frequency between
ith and jth particles

total electron energy collision fre-
quency

recombination coefficient

electrical conductivity

period of oscillation in eq. (14). In
rest of text it is defined by eq. (30)

defined by eq. (57) through (59)

angle between i_ and {j)

wave frequency

heavy particles (neutral atoms and ions)

carrier (nonionizable) atoms

electron

effective value

ions.

component parallel to the vector i_

seed (ionizable) atoms

x,y,z components of x, y, z coordinate system

0 zeroth order value

Superscripts:

defined by eq. (11)

* value in coordinate system moving with
gas

Brackets:

^. . .} average value of quantity within brackets
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Figure 2. -Thruster geometry.
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