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Abstract: The Surveyor III television camera shroud and polished aluminum

tube, retrieved as a result of the Apollo 12 mission after 2-1/2 years on the

lunar surface, were examined at the NASA Manned Spacecraft Center for evidence

of meteoroid impact. The results of this examination indicate that the upper

—6 —2 —1
limit of meteoroid activity on the moon ranges between 3.3 x 10~ m~ s~ for

no f\ ^.9 "] 7 flf^
particles >10 gram and 1.7 x 10~ m~ s~ for particles >10 ' gram.

These values are compared with other estimates of the meteoroid flux in the

lunar vicinity and are shown to be in good agreement with the Lunar Orbiter

penetration rates. In addition, the relationship between a derived

lunar-surface meteoroid cumulative-flux model and the comparable near-earth

model is discussed in the light of theoretical predictions. It is shown that

the effect of the gravitational field of the earth on the near-earth

environment was greater than previously predicted. The implication is that the

average meteoroid velocity relative to the earth is probably 17 km s . The

many low-velocity impacts on the Surveyor III camera and tube are shown to be

of lunar-surface origin and to be primarily the result of rocket-exhaust

interaction.

1. Introduction

The Apollo 12 mission plan included the return of a number of samples

obtained from the Surveyor III spacecraft, which had landed on the moon



2-1/2 years earlier. Among the samples retrieved were the television camera

and a 19.7-centimeter length of a polished aluminum tube, which was cut from

one of the radar-antenna support struts. The tube was nonuniformly coated with

a brownish deposit. The authors examined these components for evidence of

meteoroid and lunar-ejecta damage after the normal sample quarantine period

had elapsed. This examination took place in the NASA Manned Spacecraft Center

(MSC) Lunar Receiving Laboratory between January 10 and 15, 1970.

At the end of the examination period, the polished aluminum tube was cut

into six sections [l]. Sections B and C were retained at MSC for detailed

analyses by the authors, and the remainder of the Surveyor samples were

returned to the Hughes Aircraft Company facility in California. The sections,

each approximately 2.5̂  centimeters long, were adjacent and were cut from the

less contaminated end of the tube. They were chosen because the earlier

examination of the entire tube had indicated the presence of possible meteoroid

craters.

This report describes the results of the examinations and the conclusions

that were drawn by the authors with regard to the lunar-surface meteoroid

environment.

2. Relevant Geometry

The Apollo 12 lunar module (LM) landed approximately 180 meters northwest

of the Surveyor III spacecraft [2], and this closeness is dramatically shown

in a photograph taken by the astronauts, fig. 1. It can be seen that the LM

landed on the rim of the Surveyor III crater and is sitting on the horizon

relative to the spacecraft. The front, flat surface of the television camera



is approximately parallel to a line joining the Surveyor III spacecraft and

the LM, a fact which is confirmed by correlating some of the craters seen in

the figure with craters in photographs taken earlier by the Surveyor III

spacecraft [3]. This correlation puts the LM at a camera azimuth of

approximately 90°. From the same source, it is apparent also that the camera

is leaning toward the LM and that the horizon, in that direction, is at a

camera elevation of 25°. A more detailed description of the relative positions

of the various elements pertinent to this paper is available [U].

The radar-antenna support strut from which the polished tube was cut is

indicated by the arrow in fig. 1. Although the position of the cuts and the

orientation of the two ends are not known, the probable sequence of operations

has been inferred by the Surveyor spacecraft contractor (Hughes Aircraft

Company) as a result of detailed examinations of the severed ends and

experiments duplicating the events on the lunar surface [l]. These inferences

are:

1. That the cleaner end of the tube (section A) is uphill

2. That the apex at each end points away from the astronaut

3- That the brownish contamination is on the side facing toward the

interior of the spacecraft

Some evidence [5] exists that the clean end of the tube may have been

pointing in a direction opposite to that suggested by Hughes.

3. Examination Outline

The preliminary examination took place in a temporary laboratory set up

in the Lunar Receiving Laboratory and was accomplished in 6 days. During this



time, approximately 0.11 square meter of the television camera-shroud' surface

area of nearly 0.2 square meter was scanned at 25x magnification, and every

suspected impact crater was recorded. The remainder of the camera surface was

scanned at lower magnifications to ensure that no significant meteoroid damage

had been overlooked. In addition, the 19.7-centimeter-long and

1.27-centimeter-diameter polished aluminum tube was scanned carefully at a

general level of UQx magnification. Local areas of interest were examined at

much higher magnifications, and typical surface effects and suspected impact

craters were photographed for documentary purposes.

After the strut was sectioned and the samples returned to Hughes Aircraft

Company, the two 2.5^-centimeter-long sections retained by MSC were examined in

detail over a period of several months. First, the sections were scanned

optically at lOOx magnification; and, then, an extensive examination was

performed with a scanning electron microscope (SEM). The objectives of the SEM

analyses were as follows:

1. To determine the origin of craters found during the optical scan of

the B and C tube sections

2. To perform a spot survey at high magnifications over the entire C

section of the tube

3. To determine, by nondispersive X-ray analysis, the composition of

material in the craters and on the surface of the tube

Samples of the polished strut and the painted surface of the camera shroud

supplied by Hughes Aircraft Company also were examined optically to determine

surface backgrounds for comparative purposes.



U. Results of Examination

U.I. Television camera shroud

Although the time available permitted only a quick look for obvious impact

craters, it is certainly true to say that no significantly damaging impacts

were found on the camera shroud.

Typical surface effects and suspected impact craters are shown in fig. 2.

It is interesting to note that the paint surface differs around the periphery

of the shroud. On the side facing toward the interior of the Surveyor

spacecraft, the surface appears grainy as in the majority of the views in the

figure. However, on the portions facing outward, the surface is cracked like

a dry riverbed as may be seen in two of the frames. Several holes and craters

appear at the Junction of cracks or along the cracks, and these were not

included in the tally of suspected impacts. In addition, evidence of a large

number of shallow white craters covering the housing was found, with a definite

concentration occurring around the periphery in a region directly in line with

the LM. The cylindrical surface under the mirror head had 255 of these craters

on the surface toward the LM and only two on the surface facing away from the

LM. The craters were obviously fresh because the original white color of the

painted surfaces, which had been discolored to a sandy brown, was displayed.

Protuberances on the camera, such as screwheads and support struts, left dark

shadows of unaffected paint on the camera pointing away from the LM.

Several of the craters that were identified as being of possible meteoroid

impact origin because of their hypervelocity appearance are shown in fig. 2.

In all, there were five such craters, ranging in size from 130 to 300 microns

in diameter, although it is likely that not all of these were caused by



meteoroids because three of the suspected impacts occurred on the flat mirror

gearbox housing, approximately 25 square centimeters of area.

The camera-shroud surface also showed evidence of low-velocity impacts of

irregular shape, some with embedded particulate material. These appear as

depressions in fig. 2 as opposed to the lipped, circular indentations that

characterize the possible hypervelocity craters.

U.2. Polished aluminum tube

The polished aluminum tube obtained from the Surveyor III spacecraft was

cut with a pair of long-handled shears with curved, overlapping blades. The

'cutting action partially flattened the ends of the tube as may be seen in

fig. 3- This figure also shows an increase in contamination, which appears

brownish to the unaided eye, toward the left-hand end of the tube. Under a

microscope, the contamination also appears brown and seems to be composed, at

least partially, of crystals ranging in size up to a few microns. A variation

in the amount of the contamination one observes as the tube is rotated around

the cylindrical axis also is evident. The Uo* examination of the entire

surface of the tube revealed only four craters larger than 25 microns in

diameter that exhibited possible characteristics of hypervelocity impacts at

low magnifications. These craters were on the two sections of the tube

retained by MSC, and subsequent detailed examination at higher magnifications

discounted a meteoroid origin. Although the detailed examination of

sections B and C at magnifications up to 600* revealed no obvious meteoroid

impacts, a large number of other craters and pits were found. Fig. U

illustrates the number of craters 20 microns and larger in diameter that were

observed in the field of view of an optical microscope at 100* magnification



(corresponding to an area of approximately 1 square millimeter). Counts were

taken as a function of angle around the tube from a scribe line which had been

ruled along the tube prior to cutting, and the histogram is an average of tvo

trials on the B section of the tube. Because very high pit densities (up to

UO per field of view) obtained in two places were obviously associated with

polishing scratches, they are not included. The reduced count rate around 170°

from the scribe line is not considered significant.

A measure of the relative amounts of brown contamination on the B section

as a function of angle around the tube also is shown in fig. U. This curve was

obtained by photographing the tube at each angular position as the tube was

rotated and the lighting held constant. The contamination stood out in the

photographs between the angles 100° and 280° and appeared to peak at

approximately 190°. Outside of these angles, the B section was relatively

clean. The relative ordinate heights of the contamination curve are

significant only in that a high ordinate indicates photographic evidence of

"high" contamination relative to an angular position with a low ordinate. A

close association between the pitting rate and the density of the brown

contamination is immediately evident.

The results of the SEM analyses can be summarized as follows.

1. No craters showed evidence of hypervelocity impact origin, (it had

not been possible by optical methods alone to determine whether some of the

smaller craters had hypervelocity impact characteristics.)

2. All of the craters examined appeared to be of low-velocity impact

origin, and many of them contained residual material.



3. The spot survey of section C confirmed the pitting density results

of the optical scans but added little new information.

U. Analysis of the material in the craters strongly indicated that most

of it vas of lunar origin.

5. The brown contamination on the surface did not give any "peaks"

because no elements with X-ray energies below approximately 1 kilovolt are

detected with the analyzer on the SEM used. Hence, the presence of elements

like oxygen, nitrogen, carbon, and so forth would not have been detected in

this analysis.

Fig. 5 is a composite optical and SEM photograph of three typical craters

on the B section that were located 280° from the scribe line. The lack of a

smooth, raised lip entirely around the central indentation obviously excludes

a hypervelocity impact origin for these craters. On the contrary, the shapes

of these craters clearly indicate that material at a relatively low velocity,

perhaps a few hundred meters per second, impacted the tube. The largest crater

is approximately 30 microns in diameter, and material is still embedded in it.

An X-ray pulse-height analysis of this material showed it to be composed of

silicon, calcium, and iron with significant traces of chromium and titanium.

The lower left-hand view of fig. 6 illustrates a region of high pitting density

at 220° from the scribe line on the B section. The crater in the center is

approximately 8 microns in diameter, and the material in this crater has as its

major components silicon, iron, calcium, and titanium. Titanium also was found

in another crater on this tube. The white-appearing material in the other

three craters in fig. 6 shows up dark brown under an optical microscope, and



the nondispersive X-ray analysis indicated an iron-calcium silicate .

composition. Because only six typical craters were analyzed extensively by

the SEM nondispersive X-ray analysis, the significant amounts of titanium found

in three of them is quite indicative of a lunar origin.

The crater shown in the upper left-hand view of fig. 6 at 170° from the

scribe line initially presented some excitement. Its size is approximately

80 microns by 110 microns, one of the largest craters on the tube; and it

contains "rods" 3-5 microns in diameter and 20 to Uo microns long. The SEM

analysis subsequently revealed that the rods were identical in composition to

the Beta cloth glass fibers in the astronauts' outer garments and in the

backpack in which the retrieved Surveyor III parts were stowed. Experiments

at MSC have shown that it is possible to break off a few fibers by jamming the

end of a strand of Beta fiber into a crater of this size.

The mineralogical analysis of the material in the craters shows complete

consistency with lunar soil [5].

5. Discussion

5.1. Low-velocity impacts

When the Surveyor III camera is viewed from the direction of the LM,

shadowed areas not whitened by cratering are alined directly behind

protuberances such as bolts, screwheads, and other parts of the camera. These

shadows are noticeable on the mirror hood, on the base of the camera where it

was partly shielded by a plate, and near the screwheads on the mirror gearbox

as shown enlarged in fig. 7. Note that the shadows are very well defined and

that numerous white surface craters are found outside of the shadowed region,



indicating a "point" source. It is a simple matter to show by geometry that

the origin of the particles responsible for the sandblasting of the television

camera shroud is in the direction of the LM. Thus, it is postulated that,

during the 2-1/2 years that the Surveyor III spacecraft rested on the moon, the

white surface of the camera became discolored and that dust accelerated by the

LM as it landed sandblasted the Surveyor spacecraft, removing much of the

discoloration except in areas that were shielded. The sharpness of the shadows

created by the shielding and their direction indicate that the path of the

lunar dust was only slightly curved by lunar gravity, suggesting that it was

traveling in excess of 100 m s" .

The close association between the brown contamination and the pits on

section B of the polished tube and the fact that the pits contain lunar

material indicate that this phenomenon occurred while the Surveyor III

spacecraft was on the moon. Three of the possibilities considered as the

origin follow.

1. Lunar secondary and tertiary ejecta stirred up by primary meteoroid

impacts bombarded the exposed area of the tube to cause the pitting. The

contamination also is composed of lunar material.

2. The pitting was caused by lunar material blasted toward the

Surveyor III spacecraft by the LM as it landed.

3. The pitting was caused by lunar material blasted toward the tube by

the Surveyor III spacecraft vernier thrusters, and the contamination was

caused by incompletely burned propellant (unsymmetrical dimethylhydrazine

monohydrate combined with nitrogen tetroxide oxidizer with a little nitrous

oxide added as a catalyst).
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Of these three possibilities, it would seem most likely that the material

on the polished tube was transported form the lunar surface by either the LM

descent-stage engine or the Surveyor III spacecraft vernier thrusters. Because

the propellants used-are nearly identical, the brownish contamination could

have come from either source. The Surveyor III spacecraft vernier thrusters

are thought to be the most probable cause of the low-velocity impacts and

the contamination on the tube. A more detailed discussion leading to this

conclusion is provided in ref. [5l«

5-2. Meteoroid impacts

Because no meteoroid impacts were found on the tube for an exposure of

9^2 days, it is possible to set upper limits to the meteoroid flux at the moon.

The detection threshold over the entire tube corresponds to craters

approximately 50 microns in diameter. The highly contaminated region was

sufficiently pitted and scarred as to make it impracticable to resolve features

of smaller craters. On the nonpitted sides of sections B and C, the detection

threshold corresponds to 25-micron-diameter and larger craters. The effective

area of the nonpitted region is approximately half the area of these sections.

If it is assumed that meteoroid impact craters are hemispherical in shape in

the 202U-T3 aluminum alloy tube, then the threshold penetration depths are,

respectively, 25 microns over the entire tube and 12.5 microns over one-half

11



of each of the two 1-inch sections. Using a hypervelocity penetration equation

for 202k aluminum developed by Cour-Palais at MSC,

p = 0.31m1-06 pO'V'67

vhere P = crater depth, centimeters

d = meteoroid diameter, centimeters

p = meteoroid mass density, g cm

V = meteoroid velocity, km s

the 50-micron-diameter threshold corresponds to a meteoroid Ik.6 microns in

-8 79
diameter and a nass of 10 gram. Similarly, the 25-micron-diameter

threshold corresponds to a meteoroid J,6 microns in diameter and a mass of

-9.6U -1
10 gram. These masses were derived for a 20-km s impact velocity and a

1-g cm mass density.

The area of the entire tube is approximately 78.5 square centimeters, and

the area of the nonpitted regions of the B and C sections is

10.1 square centimeters. Using a shielding factor of 0.5 resulting from the

moon and another factor of 0.67 resulting from the fact that the Surveyor

spacecraft cuts out approximately one-third of the remaining solid angle from

C r)

which meteorcids could approach, the effective area-times are 2.l6 x 10 m s

5 2
for the entire tube and 0.28 x io m s for the nonpitted regions of the B and

C sections. The 95-percent upper confidence limits on the meteoroid flux for

Jl rj (- O "I O ft ft O ~\

no impacts [6] for these exposures are 10 ' m s and 10 m s ,

respectively.

The diameters of the five craters found on the camera-shroud surface are

given in table 1. The cuinulative total number for each size and larger and the

12



corresponding 95-percent upper and lower confidence limits [6] also are

included. Table 2 shows the associated cumulative fluxes based on a

moon-shielding factor of 0.5 and a spacecraft-shielding factor of 0.75,

assuming that the Surveyor III spacecraft shields one-fourth of the remaining

solid angle. The meteoroid masses given for each size were based on the

assumption that the crater-diameter-to-meteoroid-diameter ratio is 10 for the

camera-shroud surface. The ratio chosen was obtained by the authors from

laboratory hypervelocity impact data for targets of widely varying ductility.

The meteoroid flux at the lunar surface obtained from the polished tube

and from the television camera shroud is plotted in fig. 8 in relation to the

flux estimates obtained from the Surveyor III spacecraft footpad imprint [7]

and from the Lunar Orbiter meteoroid experiments [8]. The Lunar Orbiter

meteoroid experiments measured penetration rates in lunar orbit by using

0.0025-centimeter beryllium-copper pressurized-cell detectors, the same type

of detector used on the Explorer 16 and 23 spacecraft for penetration-rate

measurements in near-earth orbit [8]. The minimum meteoroid mass capable of

perforating the 0.0025-centimeter beryllium-copper pressure cell, assuming a

20-km s~ impact and a 0.5-g cm mass density, is 10 gram [9]. The minimum

discernible crater in the Surveyor III spacecraft footpad imprint was
Q

calculated to be one that would have been caused by a 3 x 10 gram meteoroid

at an impact velocity of 20 km s [7]. Because no craters of this limiting

size or larger were found, the 95-percent upper confidence limit of 3.7 [6]

has been used. The associated flux seen in fig. 8 includes a factor of 0.8 to

account for shielding of the available solid angle by the Surveyor spacecraft

and the footpad imprint walls. Fig. 8 also shows a portion of a corresponding

13



near-earth flux estimate with the pertinent experiment data points. This

estimate is taken from the near-earth meteoroid environment model of ref. [9].

It is evident that the Surveyor III camera-shroud results are in good

agreement with the Lunar Orbiter data and that the flux in the vicinity of the

moon is lower than that near earth. It is apparent also that the statistical

upper-limit flux values for the zero-meteoroid impacts detected on the

Surveyor III spacecraft polished tube and footpad imprint are too high to

demonstrate a decrease compared with the near-earth flux estimate chosen. As

the statistically more significant Lunar Orbiter and Surveyor III camera-shroud

data cover approximately the same meteoroid mass range, the polished-tube data

will be ignored for the remainder of this paper. However, the Surveyor III

spacecraft footpad imprint result, based on an upper limit of one impact as in

ref. [7], will be used.

The four Surveyor III camera-shroud data points and the Lunar Orbiter data

point are shown on an expanded scale in fig. 9« The mass of the latter has

been recomputed by assuming a meteoroid density of 1 g cm , which is the value

used for the Surveyor III crater-mass determinations. This computation

-9 18results in a slightly smaller meteoroid mass of 10 ' gram instead of the

previously calculated 10 gram [9], and the effect is to make the Lunar

Orbiter flux even more consistent with the Surveyor III camera-shroud results.

The Surveyor III spacecraft footpad imprint flux upper limit is seen to be

quite compatible with the camera-shroud data. The solid curve in fig. 9

represents the derived lunar-surface meteoroid flux based on the near-earth

meteoroid environment model of ref. [9] as decreased by a gravitational factor

1U



of 0.56, which is also discussed in the same'reference. Fig. 9 also 'shows the

least-squares fit to the Lunar Orbiter data and the Surveyor III camera-shroud

data.

It is apparent that the factor of 0.56 applied to the near-earth flux

does not decrease it enough to give agreement with the measured flux on and

near the lunar surface. The slopes of the two flux-mass curves do, however,

agree in the mass range shown; and, therefore, the two fluxes should agree if

the appropriate gravitational reduction is applied to the near-earth data. The

gravitational decrease factor is a function of the assumed meteoroid-velocity

distribution; and, therefore, a determination of this factor gives important

information about the meteoroid-velocity distribution function.

The gravitational factor for a flux determined near earth has been shown

by D. J. Kessler at MSC to depend on the assumed meteoroid-velocity

distribution at the edge of the earth's atmosphere as

G = 1 - V 2-V ~2-(l - re n e

where V = earth escape velocity, km s

r = earth radius, kilometerse

r = distance from center of earth, kilometers
1/n _^

V = a representative velocity equal to (v ) , km s
11 /*

where V11 = Ĵ f(v) dv

f(v) = the normalized meteoroid-velocity distribution function at

the edge of the earth's atmosphere

n = -2

15



The calculated value of G is 0.56 at the lunar distance based on a

gravitationally influenced geocentric meteoroid-velocity distribution for which

the near-earth average is 20 km s~ [9], and the corresponding near-lunar and

representative velocity V are 19-5 and 16.8 km s~ , respectively.

Because the Lunar Orbiter spacecraft had the same type of detectors as

were used for the Explorer l6 and 23 spacecraft in near-earth orbit, the ratio

of puncture rates is closely indicative of the gravitational factor. Because

the meteoroid environment flux model of ref. [9] does not pass precisely through

the Explorer 16 and 23 points, it is not as suitable for comparing with lunar

data to obtain a gravitational decrease factor. Thus, the five Lunar Orbiter

—6 —2 —1
spacecraft recorded a penetration flux of 2.2 x io~ m~ s~ , and the Explorer

-6 -2 -1spacecraft recorded an average rate of 5-33 x 10 m s in earth orbit [8].

The corresponding experimentally determined gravitational factor to be applied

to the near-earth flux is O.Ul. The difference between the derived value of

0.56 and the measured value of O.Ul cannot be accounted for by the fact that

the former is based on a mass flux and the latter on a penetration flux. The

reason is that the average velocities near earth and at lunar distances are

almost identical for the velocity distribution given in ref. [9]; that is,

20 and 19-5 km s , respectively. However, according to Kessler [10], a

meteoroid-velocity distribution for which the average gravitationally

influenced geocentric or near-earth velocity is 17 km s and the average at

lunar distances is 15.2 km s~ , reproduced as fig. 10, results in a mass flux

at the moon that is O.U8 of that near earth. If the Explorer and Lunar Orbiter

penetrating masses are recalculated for these two average velocities, the

resulting measured gravitational decrease factor based on mass flux is O.Vf.

16



Thus, the calculated and measured values are in agreement if Kessler's velocity

distributions are used.

6. Conclusions

Although the Surveyor III camera-shroud meteoroid data cannot be

considered as having resulted from a controlled experiment, they are meaningful

when considered in conjunction with the Lunar Orbiter results. The conclusions

reached after analyzing the results of the Surveyor III camera-shroud and

polished-tube examination, together with the statistically more significant

Lunar Orbiter data, may be summarized as follows.

1. The meteoroid flux at the lunar surface resulting from an analysis

of five probable impacts observed on the camera shroud is in good agreement

with the penetration rate measured by five Lunar Orbiter spacecraft.

2. The slope of the lunar-surface meteoroid cumulative-mass distribution,

for the mass range measured by the combined Lunar Orbiter-Surveyor shroud

results, is in good agreement with the near-earth model described in ref. [9],

3. The unshielded meteoroid flux on the lunar surface, determined from

the combined Lunar Orbiter-Surveyor shroud results, is:

"1) = -10.80 - 0.56 Iog m(g)

for the meteoroid mass (m) range 5 x 10~ gram < m < 2 x 10 gram. The

95-percent upper limit for this meteoroid activity ranges between

3.3 x 10 m"2 s"1 for particles > 10~9 gram and 1.7 * 10" m"2 s"1 for

7 Pt'-t
particles > 10 gram.

1*. The lunar-surface meteoroid flux derived from the near-earth flux

model and gravitational factor (0.56) of ref. [9] is higher than the measured

17



flux determined by the Lunar Orbiter-Surveyor.shroud results. The probable

explanation for the lower than predicted lunar-surface flux is that the

meteoroid-velocity distribution function used in the calculations is somewhat

in error. A velocity distribution that allows the lunar-surface meteoroid flux

derived from ref. [9] to agree with the measured Lunar Orbiter-Surveyor flux is

given by Kessler in ref. [10]. The average near-earth and lunar-surface

velocities of this distribution are 17 and 15.2 km s" , respectively. The

associated meteoroid flux at the lunar surface thus would be kQ percent of that

near-earth instead of 56 percent.
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Table 1

Number of probable meteoroid craters in camera shroud

Crater
diameter, D Number, N

(cm)

1.3 * 10~2 1

1.5 * io~2 i

2.33 x 10~2 2

3.00 x io~2 1

IN, >D ?5* upper and
- c lower limits

11.7
5

1.6

10.2
U

1.0

8.8
3

0.6

5.6
1

0.1
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Table 2

Calculated flux, diameter, and mass for craters in camera shroud

Crater Cumulative flux Meteoroid Meteoroid
diameter, D -2-1. diameter, d mass, m

(cm) C (» • ) (e«> (g)

1.3 * 10~2 1.U9 x 10~6 1.3 x io~3 1.15 x 10~9

1.5 x 10~2 1.19 x 10~6 1.5 x 10~3 1.77 x 10"9

2.33 x 10~2 8.91* x io"T 2.33 x i(T3 6.63 x 10~9

3.00 x io~2 3.0 x 1Q~7 3.00 x 1Q~3 l.Ul x lo"8
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Fig. 8. Comparison of near-lunar flux with near-earth meteoroid model
and data.
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