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I. INTRODUCTION, ABSTRACT AND SUMMARY

This report will cover the work performed from 1 July 1971

through 31 December 1971 on Grant NGL 03-002-019 between the University

of Arizona and the National Aeronautics and Space Administration.

This contract was set up to support the development of new types

of detectors for analysis of planetary atmospheres. Initially, the

interest was in detectors for use under partial vacuum conditions; re-

cently/ the program has been extended to include detectors for use at

one atmosphere and adsorption system for control and separation of gases.

Results to date have included detectors for 0 and H under

partial vacuum conditions (publications 1, 3, 4). Experiments on

detectors for use at high pressures began in 1966, and systems for CO,

H , and 0 , were reported in 1967 and 1968 (publications 8, 11). In

1968 studies began on an electrically controlled adsorbent. It was

demonstrated that under proper conditions a thin film of semiconductor

material could be electrically cycled to adsorb and desorb a specific

gas. This work was extended to obtain quantitative data on the use of

semiconductors as controllable adsorbents (publications 11, 12).

In 1968 a new technique for dry replication and measurement of

the thickness of thin films was developed. A commercial material, Preas-

0-Film was shown to be satisfactory when properly used. This technique

is most useful for studies of semiconductor thin films where normal

interference techniques are not practical because of the non-reflective

nature of the film (publication 13).
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In 1969 studies began on a corona discharge detector for water

vapor. This system was shown to be rapid in response, suitable for

continuous low power operation and reasonably linear in output (on a

logarithmic plot) from 10% relative humidity to 75% relative humidity.

A program to develop this detector for hydrological applications began

in 1970. A field usable system was developed for the Hydrology Depart-

ment and finished in 1971. A unique feature of this system was the fact

that no fan was needed. Airflow through the system was induced by the

corona discharge itself, (this is often called the Electric Wind Effects)

The eleotroadsorption phenomena reported in 1968 (publication 12)

was extended to bulk ZnO samples by using a gas chromatograph. The

objective of developing a controllable electroadsorbent is slowly being

realized.

Studies of the reaction between carbon monoxide and palladium

have been under way since 1966. In 1970 this work was split into two

separate programs; the first is a study of gas-metal interactions with

emphasis on catalysis. The second was a development of the CO/Pd system

into a practical system for use by the Division of Occupational Safety

and Health of the Environmental Control Administration. This system was

delivered to the EGA in December 1971 and is presently being evaluated

by that organization.

The catalysis studies were devoted to the oxidation of CO, H

and NH_ over metallic catalysts. He demonstrated that the rate of

reaction could be observed and controlled in terms of the exo-electron

emission from the catalyst, (publication 16). In 1971 this study was
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directed to the extended metal-ceramic catalysts used for auto exhaust

emission control and for spacecraft atmospheric purification.

In 1971 we began the study of a new technique for analysis of

solid materials. This system involved heating or grinding the substance

and observing the induced exo-electron emission. Ibis effect is known

as Temperature Stimulated Exo-Electron Emission (TSEB) and can be used

to determine the silica content of various minerals.

This technique has possible applications in the study of plane-

tary soils picked up by landing vehicles. Another potential application

exists in the Public Health area where silicosis is a serious industrial

problem. There may be direct connection between the exo-electron emis-

sion we observe after grinding and the development of human silicosis.

II. SUMMARY OF WORK IN THE PAST SIX MONTHS

A. Carbon Monoxide Detector

This program has been supported by the Environmental Control

Administration rather than NASA and will therefore be discussed in

Section E (Other Activities in the Laboratory) of this report. Here

we shall only comment that the detector operates at CO levels below

50 PPM. A final model of this system has been prepared, constructed

and delivered to the EGA.

B. Corona Discharge Humidity Detector

The current generated in a point-to-plane corona discharge has

been shown to be dependent on the ambient water vapor pressure. The
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ua« of a multipoint brush and an ultraviolet source stabilizes the

system and maintains sensitivity over a wide range of relative humidity.

The fact that airflow through the systan is induced by the electric wind

effect of the corona discharge Bakes the device quite suitable for field

applications.

Our first plan for installing this device at a Hydrology field

station during the Summer of 1971 was abandoned when the station was

struck by lightning and destroyed. We expect to rebuild the system

during the next 6 month period and install it in a field station.

C, Surface Catalysis and Exo-Electron Emission

This program is an outgrowth of our earlier studies of gas-

surface interactions with the mass spectrometer. We have shown that

when catalytic oxidation of CO, H., or NH, begins (on hot platinum)

there is emission of nonthermal exo-electrons. This "exo-electron"

emission can be used to monitor the rate of catalysis. Suppression or

enhancement of this exo-electron emission results in an increase or

decrease of the rat* of catalysis itself. A paper on this topic has

been submitted to the Journal of Catalysis. A copy of the manuscript

is attached to this report as an appendix.

In more recent work we have obtained a correlation between the

relative rate of reaction and the measured exo-electron current during

the oxidation of NH,. This is shown in Figure 1, the two curves are

essentially parallel until at 770*C thermionic emission overwhelms the

exo-electron signal.
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These results agree with our previous experiments which suggested

that catalysis involves surface mass migration with subsequent electron

emission. This mass migration occurs in a region where extensive chemi-

sorption has occurred. The metal-gas "compound" layer formed by chemi-

sorption is a semiconductor and might be expected to be affected by

electric fields.

The final settlement of this question will require a number of

years. At the moment we are redesigning the system to make use of an

alumina dispersed catalyst. The initial structure will be an A1.03 tube

which has been filled with a metal salt and then dried, (Reference 1).

This will serve as a first approximation to the catalysts used in space-

craft and automotive environmental systems.

Me will make electrical contact to the alumina tube by means of

a conducting strip. The alumina tube will be heated by an internal ni-

chrome filament. It will be important to determine if exo-electron

emission occurs during catalysis and how it is related to the catalytic

process.

D. Analysis of Soil Samples by Means of Exo-Electron Emission

One of the major objectives of the planetary landing experiments

has been the analysis of rock and gravel type materials. Many techni-

ques have been investigated, but a need for new instruments, of a simple

type, still exists. In view of this interest in soil analysis we have

been investigating the possibilities of analyzing soil samples for their

silica content by heating or grinding the sample and observing the exo-

electron emission. Typical results for the heating technique were
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reported six months ago. Recently we have been investigating the exo-

electron emission that occurs when siliceous materials are ground in a

small vibratory ball mill. The experimental set-up is shown in Figure 2,

the grinding media was 6 millimeter glass balls. The advantages of this

system are significant, first the samples can be ground in the collection

tube without the exposure to contamination and loss that occurs when the

material must be transferred to the heating system. After grinding the

tube, sample and glass beads can be discarded or stored for future study.

Typical results on sample industrial materials provided by Mr.

John Crable of the Environmental Control Administration, are shown in

Figure 3. There is an apparent difference in the curves which can be

empirically related to the silica content. These studies are continuing,

we hope to determine how this analysis technique can be used on a

variety of minerals. There is reason to believe (Reference 2) that

eventually we will be able to detect trace metal impurities in rock

materials by an exo-eleetron technique.

E. Other Activities in the Laboratory

The ARPA-sponsored studies on the relationships between fatigue

and subsequent exo-electron emission are continuing. We have shown if

a metal is fatigued to some fraction of its total life and. then heated

gently, it will emit exo-electrons. This electron current can then be

related to the fatigue history of the specimen. He have developed an

exo-electron system for scanning along an aircraft structure to detect

cracks or crack growth during flight.
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Thia technique has been extended to the monitoring of stress

relief annealing processes. He are considering the application of this

method to post-weld heat treating of ship structures, the results to

date have been submitted for publication (publication 17).

Another use of laboratory facilities occurs in connection with

two courses taught by Professor Hoenig in Electronics and Instrumentation

for graduate students in the Zoological, Geological and Medical Sciences.

These students use the laboratory and its apparatus for demonstration

and simple projects. This would be impossible without the long term

support that we have received from NASA.

The laboratory is still used occasionally by members of the

University of Arizona Lunar and Planetary Laboratory. We feel that this

use of NASA supported facilities by another NASA funded project is an

important example of how research funds can be conserved by joint use of

facilities.
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APPENDIX

Exo-Electron Emission During
Heterogeneous Catalysis

(The Ef fec t Of External Electric Potentials)

BY

Stuart A. Hoenig and Freedoon Tamjidi
Electrical Engineering Department

University of Arizona, Tucson 85721



Abstract

Exo-electron emission was observed during catalytic

oxidation of CO, H£ or IvR^ on hot platinum. The exo-

electron current level v;as related to the rate of reaction.

Suppressing or enhancing the exo-electron current decreased

or increased the rate of reaction.

- IS. -



Exo-Electron Emission During
Heterogeneous Catalysis

(Tha Ef fec t Of External Electric Potentials)

By

Stuart A, Hoenig and Freedoon Tr.rnjidi
Electrical Engineering Department

University of Arizona, Tucson 85721

I. Introduction

The proposal that an external electric field could affect a

metallic catalyst is at least 40 years old (1). In fact, effects

of this type have been observed from time to time (2), but the

divei'se results and lack of a mechanistic explanation have hinder-

ed investigators.

Electrostatic field effects are well known in semiconductor

catalysis studies and a review of this work was given in 1963 by

Volkenshtein (3). The application of these principles for cata-

lyst selection is now well known (4). The effect of electric

fields on adsorption follows from the same theory and experimental

evidence on ZnO was given in 1968 (5) .

The observation that catalytic reactions may induce exo-electron

emission was reported in 1967 and a linear relation between the rate

of reaction and exo-electron emission was observed (6). Similar

studies were reported in (7). In neither case was any attempt made

to suppress or enhance the exo-electron current.

We suggest that many of the effects of electric fields on metal-

lic catalysts (8, 9), may be understood in terms of exo-electron

emission. It will be shown that during'the adsorption phase of a



catalytic reaction, the catalyst surface is disturbed and exo-

electrons are emitted. This exo-electron current may be used to

follow the rate of reaction. It also appears that this electron

current is somehow related to the catalytic mechanism in the sense

that enhancing or suppressing the exo-electron emission, increases

or decreases the rate of catalysis. These phenomena offer the

opportunity for improved techniques for the monitoring and control

of heterogeneous catalysis.

II. Experimenta1 S tudies

A. Apparatus

The system is shown in figure 1. The mass spectrometer was

an EAI Quad 250 vhich was used to control the gas mixture in the

system and to monitor product peaks during catalytic reactions.

The catalysts were in the form of wires 0,25 mm in diameter. The

catalyst material was commercial platinum (99.995̂ ), The catalyst

filament was heated by AC current with an isolated power supply.

Filament temperatures were monitored by a welded-on thermocouple.

The catalyst wires could be biased at any value from "0" (ground)

to — 900 volts by means of a Fluke Power supply. The exo-

electron currents were collected by a stainless steel collector

biased at +24 volts, and measured with a Keith ley 417 picoamrneter.

The vacuum system was stainless steel, with copper gaskets, pumped

to 10"-* torr by an oil purap and to 10"" torr by a 50 1/s Vac-Ion

pump. The oil pump was isolated from the system during the catalysis

experiments. Tests to determine if the Vac-Ion pump was producing



any signals in the electron measurement system were negative.

Experimental studies were made of the catalytic oxidation of

CO, KE3 and H2. The gases were commercial grade taken from standard

cylinders. The gas input was controlled by Granville-Phillips leak

valves. Partial pressures were monitored by a discharge gauge and

the Vac-Ion pump current. All oxidation experiments were run at a

-6
total pressure of 6-10 torr. The CO, t^ or NH-j partial pressures

were held at about 1-10" torr during the experiments.

B. Experiments and Results

Investigation of the background effects involved grounding the

filament (catalyst) and biasing the collector at +24 volts, with

-8the vacuum system pumped to 10 torr." Then each of the gases we

planned to use was admitted until the system reached a,.pressure of

about 10 torr. For each gas, the platinum filament was slowly

heated from 20°C to 800°C while the mass spectrometer and the pico-

airirneter were used to look for spurious signals. No reaction pro-

ducts were observed, but there was some exo-electron emission due

i
to changes in the work function of the filament induced by chemi-

sorption and surface rearrangement. The effects are shown in

figure 2. Oxygen increases the work function and hydrogen reduces

it. CO and NH3 reduce the emission below the vacuum level.

The first platinum catalysis studies were done with H2 and Oo.

Here the rate of catalysis was small at room temperature but rose

rapidly as the catalyst was heated to the operating temperature,

775°G. The exo-electron emission followed tha rate of catalysis

as shown in figure 3. Here the height of the H20 peak (K) in



arbitrary units and the exo-electron current (Ie) in amps, are

plotted as a function of time. Notice that the exo-electron current

follows the rate of reaction and is somev;hat erratic until (K) be-

comes constant, at v.'hich time Ie drops to a slightly lower level.

This phenomena \7as quite consistent and a series of experiments at

higher and lower filament temperatures indicated that the time for

the drop to occur decreased with increased filament temperature.

For example, at 800°C (K) reached equilibrium in 7 minutes and Ie

fell to the lover level value. At 700°C a longer time (15 min) was

required before (K) reached a constant value and Ie fell to the

lover level.

It seems that once equilibrium is established, the situation

is quite stable. Raising or lowering the catalyst temperature by

50°C did not appreciably change (K) or Ie.

In figure 4 we show similar results for oxidation of CO. The

numerical values of (K) and Ie are different, but the qualitative

behavior is quite similar. In figure 5 data on the. catalytic

oxidation of ammonia is shown. Here again the exo-electron emission

follows the reaction, drops to a lower level as the rate of reaction

stabilizes, and then surges as the heating current is turned off.

This surge is of considerable interest and was observed whenever

the catalyst was allowed to cool to 20°C from its operating temper-

ature. We emphasize that this is not a switching transient, the

time is far too long. Data to be presented below will demonstrate

that the "decay mode" is dependent upon the filament bias and we

will suggest that surface mass migration is responsible for the

"cooling" surge in exo-electron emission.



To demonstrate that exo-electron emission could be used to

monitor the rate of reaction we measured (K) and le over a range

of temperatures for the ammonia oxidation process. The data is

shown in figure 6. The le curve follc-ws the (K) curve until thermal

emission begins to be significant, at that point le becomes very

large. 'This almost linear relationship between (K) and le was

observed with CO and F.2 with different numerical values.

At this point we began to investigate the effects of external

electric fields on catalysis and exo-electron emission. To avoid

unnecessary discussion, we emphasize that from now on whenever a

particular experimental effect is reported with CO, H2 or NH3,

the same experiment was repeated with the other tx^o gases. If the

results were qualitatively similar no further discussion is given.

If there were significant differences, this is discussed in the text.

In the first electric field experiments we wished to see what

effect, if any, would occur if we biased the catalyst to reduce or

enhance exo-electron emission. For these experiments the. catalyst

was raised to its operating temperature (770 CC) and then biased

with the Fluke power supply to 128 volts. The first experiments

indicated that changing the catalyst bias during a catalysis run

did change the value of le. However, the value of (K) was unaffected.

This suggested that exo-electron emission was related to surface

migration during the catalytic induction phase, but: that there was

no direct connection between electron emission and catalysis itself.

This idea was found to be incorrect when we tried applying the

bias voltage to the filament before heating it to begin catalysis.



This is shewn in figure 7 for oxidation of CO, a -28 volt bias

increased both (K) and le over the no-bias values which are not

shown to avoid confusing the figure. Conversely, a 4-28 volt bias

decreased both (K) and le below the "no-bias" values. More detailed

data on the effects of changing filament bias is shown in figure 8

for CO oxidation. Here the bias was changed each time the filament

was cooled to 20°C. Then the catalyst was heated to 770°C again and

held at that temperature until (K) was effectively constant. At

this time the heating current was removed and the filament cooled

to 20°C.

As we expected, the higher negative voltages yielded higher (K)

values. More surprising is the way in which (K) rises (upon heating)

and falls (upon cooling). At high voltages (-83V) the rise, is rapid

and the drop is preceded by a steep pulse which dies Sway very

rapidly. At (-30V) the rise occurs much more slowly and the decay

is significantly longer. There seems to be some sort of surface

change which depends upon the filament voltage both in absolute

value and in the rate of approach to equilibrium.

A similar experiment at a series of positive filament bias

voltages indicated that +28 volts reduces both le and (K). Increas-

ing the filament bias in steps to 4-80 volts reduced le to almost

zero but had no effect on (K) . Apparently the effect of a positive

filament bias on the rate of catalysis (K) is complete at 4-28 volts.

In contrast, (K) increases with negative filament bias up to about

-100 volts.

There is direct evidence that a positive filament bias not only



reduces (K) but it can condition the filament against catalysis.

Evidence of this effect is shown in figure 9. Here we have plotted

(K) versus time (oxidation of CO) for a filament that was first

biased at +30 volts to retard exo-electron emission. The filament

was then cooled to 20°C and -30V was applied. An increased value of

(K) was observed but it was significantly lower than that usually-

observed at -30V. V7e suspected that the +30V exposure had somehow

"formed" the catalyst into an ineffective state. The catalyst was

heated to 950°C in vacuum without any applied potential, then cooled

to 20°C. The -30V was reapplied and the catalytic run repeated.

The value of (K) was that normally observed with -30V potential

suggesting that the -I-30V potential had "formed" the catalyst and

the heating at 950°C had "annealed" the material.

One study was done to determine if the emitted exo-electron

current had a complex energy spectrum. If such a spectrum existed

it might be related to the presence of "activated complexes" as

reaction intermediates. For this experiment the catalytic oxida-

tion reaction was allowed to stabilize with the filament held at

ground potential, then the filament voltage was raised in steps

to +33V. The exo-electron current decreased each time the voltage

increased. No structure in the la versus voltage curve was

observed. This suggests that no reaction intermediates are involved

in the exo-electron emission.

III. Discussion and Conclusions

It seems quite clear that exo-electron emission may be used as

a measure of the rate of certain catalytic reactions, -The induction



phase and the approach to steady 'state can be observed without

ambiguity in terras of exo-electron emission. The change in electron

emission and rate of catalysis with electric fields indicates that

catalysis can be partially controlled by external electric potentials.

The mechanism for these phenomena is not entirely clear at

this time. We suggest that the large values of (K) and le observed

during the induction period are due to mass migration of the

catalyst material itself. Effects of this type are v;ell known (10)

and catalysts are often observed to be grooved and twisted after

long use.

The steady state exo-electron emission is proportionate to the

rate of catalysis itself and may be due to the adsorption step in

the reaction. Delcb.ar (11) has reported the emission of exo~

electrons during chemisorption of oxygen on nickel, but the

emission rate decayed rapidly as the surface became saturated.

We see a steady state level indicating continuous adsorption and

desorption which would, of course, be necessary for a continuous

catalytic reaction.

The surge observed when the catalyst is allowed to cool may

be due to relaxation of the "active" surface state that exists

during catalysis. Effects of this type have been observed in silver

thermal faceting experiments (12). The thermal facets developed

at 865°C were observed to disappear as the temperature was raised

and reappear as it vas allowed to cool again. The extensive sur-

face migration required to effect this change would induce

copious exo-electron emission.



The fact that electric fields only affect catalysis if applied

before the catalyst is heated, is somewhat surprising. Here we

suggest that during the induction phase the catalyst surface is

undergoing rearrangement to the state in which it is "active" for

catalysis. During this period the surface arrangement can be

affected by external electric fields. Effects of this type have

been reported for thin films (13). In'that study the electric field

was applied during deposition and was shown to produce enhanced

orientation of the deposited film. The electric field was only

effective during deposition. If the field was applied to the

completed film, no effect was noticed. We must emphasize that the

parallelism here is not: exact. The material used in (13) was Ag or

Au, and the field was in the plane of the film rather than perpen-

dicular to it. This experiment is cited as an example of the

effect of an electric field during- the induction period when the

film is moving toward an equilibrium configuration. Similar

effects on a catalyst surface may be the explanation of our obser-

vations of the effect of electric fields.

The electric field effects of reference (8) may have been due

to the application of the field before the catalyst was heated (the

text does not indicate how this was done). An increase in reaction

rate, for oxidation of isopropyl alcohol over silver at 476°C, was

observed with a negative bias on the catalyst. This is in agree-

ment with the results reported above.

The data reported by reference (9) was taken with AC voltages,

over a wide range of frequencies. The data indicated that enhancement



of catalysis depended in a complex way upon both signal frequency

and amplitude. The authors (8) suggested that the applied field

might have induced excess electron emission from the catalyst.

This would agree with our exo-electron results above. The other

investigator (9B) suggested that enhancement of the rate of catalysis

was observed v;hen the applied signal frequency corresponded to the

rate at which the sequence of adsorption, reaction and desorption

occurred. We cannot comment upon this suggestion.

Future studies of catalysis will involve following mass

migration of the catalyst surface with an optical microscope and

using a soft X-ray system to monitor surface impurities.
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Figures

I) Exo-Electron Catalysis Experimental System

2.) Ef fec t Of Various Gases On Exo-Electron Emission From Platinum

3) Rete Of Reaction and Exo-Electron Emission Versus Time -

Oxidation of H2 '

4) Rate Of Reaction and Exo-Electron Emission .Versus Time -

Oxidation Of CO

5) Rate Of Reaction and Exo-Electron Emission Versus Time -

Oxidation Of NH3

6) Rate Of Reaction and Exo-Electron Emission Versus Temperature -

Oxidation Of NH-j

7) Effec t Of An External Electric. Field On Catalysis Of

CO Oxidation

8) Ef fec t Of Various Filament Voltages (-) On Catalytic

Oxidation Of CO

9) Effect Of Previous Exposure To Positive Voltage On

Catalysis Of CO Oxidation
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