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PREFACE

The work described in this report was performed by the Engineering

Mechanics Division of the Jet Propulsion Laboratory, under the cognizance

of the Mariner Mars 1971 Project.

The English system of units was used for all calculations and measure-

ments. Conversion to the metric system of units was accomplished for this

report.
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ABSTRACT

In November 1971, the Mariner 9 spacecraft was injected into Martian

orbit by a 574-kg (1265-lbm) propulsion system. Support for that system is

provided by an 8.9-kg (19. 5-lbm.) truss assembly consisting of beryllium

tubes adhesively bonded to magnesium end fittings. Beryllium was selected

for the tubular struts in the truss because of its exceptionally high stiffness-

to-weight ratio. Adhesive bonding, rather than riveting, was utilized to join

the struts to the end fittings because of the low toughness (high notch sensi-

tivity) of beryllium. Magnesium, used in the end fittings, resulted in a 50%

weight saving over aluminum since geometric factors in the fitting design

resulted in low stress areas where magnesium's lower density is a benefit.

This document describes the design, testing, fabrication procedures

and problems associated with the development of the Mariner 9 propulsion

support truss structure.
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I. MISSION DESCRIPTION

In May 1971, the Mariner 9 spacecraft •was launched by an Atlas/

Centaur vehicle on a six-month flight to Mars. Upon arrival in November,

a rocket motor was fired to decelerate the spacecraft and place it in orbit

about the planet where it will remain for more than 17 years.

During its first 90 days in orbit, Mariner 9 will map 70% of the

planet's surface. Scientists will obtain information on surface composition

and temperature, as well as photos of surface features, cloud formations,

dust-storm motion and seasonal darkening. In addition, data from ultra-

violet and infrared instruments will be transmitted back to earth relating to

the composition, density, pressure, and temperature of the Martian atmo-

sphere. Instruments aboard Mariner 9 that provide information on these

characteristics include wide- and narrow-angle TV cameras, ultraviolet

and infrared spectrometers, and an infrared radiometer.
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II. SPACECRAFT DESCRIPTION

The Mariner Mars 1971 (MM'71) Orbiter design (Fig. 1) varies little

from that of the Mariner Mars 1969 (MM'69) flyby spacecraft. Some modi-

fications have been necessary to accommodate the 19V1 mission require-

ments. The most significant of these is replacement of the internally

mounted 22-kg (48-lbm) MM'69 propulsion assembly with a 574-kg (1265-

Ibm) externally mounted propulsion module. The module, in addition to

providing normal trajectory correction velocity changes in route to the

planet, must decelerate the spacecraft approximately 1600 m/s at Mars to

allow the planet's gravitational field to capture it.

The propulsion module is mounted on the top of a standard Mariner

octagon structure, which houses and/or supports the various subsystems

operating the spacecraft as a semiautomated vehicle. The five scientific

instruments mentioned earlier are mounted on a scan platform located on the

underside of the octagon structure. The platform rotates about two orthog-

onal axes to point the instruments at the desired location on the planet.
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HI. PROPULSION MODULE

The propulsion assembly (Fig. 2) utilizes a 1334-N (300-Ibf) thrust

rocket motor to accomplish in-transit trajectory corrections, an orbital

insertion maneuver at Mars, and subsequent orbital trim maneuvers. The

476 kg (1050 Ibm) of fuel and oxidizer required for the various maneuvers

are stored in a pair of 76-cm (30-in. ) diameter titanium tanks. Two 38-cm

(15-in. ) diameter nitrogen tanks supply the pressure that induces proper

propellant flow to the engine.

The propulsion support structure (PSS) supports, aligns, and inte-

grates the foregoing items along with the valving, filters, regulators, trans-

ducers, interconnect plumbing, and electrical cables that constitute the

propulsion assembly. The propulsion module, consisting of the propulsion

assembly and the support structure, was constructed to permit assembly,

propellant loading, and subsystem testing independent of the spacecraft at

a remote and safe location. Installation of the module on the spacecraft

occurred at the conclusion of system testing, just prior to encapsulation in

the launch vehicle nose fairing.
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IV. PROPULSION SUPPORT STRUCTURE

The propulsion support structure consists of those structural elements

that support the propulsion subsystem, its tanks, engine, valve packages,

plumbing, and electrical cabling.

Primary support is provided by a 8. 9-kg (19. 5-lbm) truss assembly

(Fig. 3). The truss consists of 16 beryllium tubes adhesively bonded to

magnesium and steel end fittings. The truss bridges between the eight

upper corners of the octagon and four tabs on each of the two propellant

tanks. A figure-eight-shaped ring assembly (Fig. 4) encircles the tanks

at their equator to react the horizontal component of loads generated in the

canted truss members. The ring, upper truss fittings, and tank tabs bolt

together in a series of eight common joints (Fig. 5). A pair of bipods

attach to the outer surface of the ring to support the top of the pressurant

tanks, while fittings at the base of the truss restrain the lower end of the

tanks.

A. Alternative Designs

The structure was originally envisioned to be of the traditional swaged-

end aluminum tube, riveted-to-aluminum end-fitting construction. However,

as serious spacecraft weight problems developed, a weight-saving program

was initiated. The high stiffness-to-weight ratio of beryllium (seven times

that of aluminum, magnesium, titanium, or steel) permitted realization of

a major weight saving in the truss structure. In the stiffness-critical truss

design it was possible to replace approximately 5. 7 kg (12. 5 Ibm) of alumi-

num tubing with 1. 1 kg (2. 5 Ibm) of beryllium tubing. It should be noted

that the strength-to-weight ratio of beryllium is only about 50% better than

that of high strength aluminum extrusions such as 2024-T851. Beryllium's

real weight-saving potential occurs in stiffness-critical not strength-critical

designs.

Because of the notch sensitivity of extruded beryllium tubing, riveted,

bolted, and threaded joints were not considered suitable fabrication tech-

niques for the truss structure. Also, distortion and processing problems

made welding essentially impossible and brazing very unattractive; it there-

fore followed that adhesive bonding, if it could be simply and reliably exe-

cuted, was the most attractive joining technique.
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B. Beryllium Tubing

All struts in the truss were the same diameter and wall thickness to

simplify production and minimize procurement problems. This approach

resulted in a calculated weight penalty of 0. 23 kg (0. 5 Ibm) over a design

in which all tube sizes were optimized for their individual requirements.

The tubes used are 1. 91 cm (0. 750 in. ) in diameter with a wall thickness

of 1. 02 mm (0. 040 in. ), and vary in length from 26. 6 cm (10. 47 in. ) to

70.2 cm (27. 63 in. ).

1. Material Properties. Material was procured from the Nuclear

Metals Division of the Whitaker Corporation with an extrusion billet quality

equivalent to Berylco HP-20 Type II. Typical mechanical properties quoted

for the extruded tubing are: compressive yield 40, 769 N/cm (59, 000 psi),

compressive ultimate 73,246 N/cm (106, 000 psi), and tensile ultimate

48, 370 N/cm2 (70, 000 psi).

A serious problem associated with using beryllium in structural appli-

cations is its low toughness, i. e. , low resistance to crack propagation.

For reliable performance it is necessary that all surface cracks or scratches

be eliminated from the material. In practice this is achieved by chemically

milling 0. 025 to 0. 050 mm (1 to 2 mils) from all surfaces after machine

work is completed. Tests were conducted to verify the criticality of this

procedure using test specimens prepared from cross-rolled sheet stock.

A portion of these specimens were chemically milled prior to testing, while

the remainder were tested in the as-rolled condition. Typical properties

obtained for chemically-milled specimens versus as-rolled specimens are

as follows:

Property As-rolled specimens Chemically-milled specimens

Tensile yield

Tensile ultimate

Elongation

48, 370 N/cm (70, 000 psi)

49,752 N/cm2 (72,000 psi)

1%

48, 370 N/cm (70, 000 psi)

69, 100 N/cm2 (100, 000 psi)

20%

2. Test and Analysis. During the developmental program, 32

beryllium tubes from the production run were pull-tested to failure at ten-

sile values ranging from 21, 360 to 35, 000 N (4, 800 to 8, 000 Ibf). Of the

JPL Technical Memorandum 33-517



group, 16 for which measured cross-sectional area information was avail-

able, failed at values ranging from 21, 850 to 33, 375 N (4, 910 to 7, 500 Ibf) .

Statistical examination of these specimens indicates a tension design allow-

able of 14, 614 N (3, 284 Ibf) for 99% reliability at a confidence level of 95%.

The highest load experienced in any member in the primary truss assembly

(not including the upper pressurant tank support) during forced vibration

testing of the spacecraft was 11,125 N (2,500 Ibf). The accompanying histo-

gram (Fig. 6) demonstrates graphically these load ranges.

In an auxiliary truss that supports the N-, pressurant bottle, a beryllium-

tube failure did occur. Subsequent analysis of the vibration test results re-

vealed that the torsional response of the NT bottle at its natural frequency

was significantly higher than anticipated. The resultant tube loading exceeded

the statistically determined design allowable by 30 to 50% as shown in Fig. 6.

Beryllium tubes in the pressurant tank supports were replaced with steel

tubing and testing was concluded without further incident.

3. Handling and Safety. Two significant problems are associated

with the use of beryllium as a structural material. The first is the toxicity

of its dust, salts, and compounds. Berylliosis, a potentially fatal disease

of the respiratory system, may be induced by inhalation of finely divided

dust from beryllium, its compounds, or salts. The second problem is the

low toughness or resistance of beryllium to crack propagation. Minute

scratches and surface imperfections significantly reduce the material's load

carrying capacity. To preclude the occurrence of either of these problems,

a comprehensive handling procedure was established to reduce exposure of

personnel and handling of the material to a minimum.

Nuclear Metals performed all operations that might result in the pro-

duction of dust or fumes. The tubes were extruded, processed, cut to

length, chemically milled, inspected, and sealed in non-chlorine-bearing

plastic bags. (Beryllium is highly susceptible to corrosion when exposed to

chlorine ions. ) At JPL the material was stored in a restricted access area

where it remained sealed and in its shipping container until needed for truss

fabrication. Just prior to each truss fabrication cycle, thoroughly indoctri-

nated technicians removed the sealed plastic bags and prepared the tubes for

the bonding operation.
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4. Preparation for Bonding. All beryllium surface preparation

techniques that dissolve metal into solution, creating toxic salts, •were

rejected for safety reasons. Rather, a treatment utilizing a conversion

coating technique was chosen.

Just prior to performing the bonding operation, the beryllium tubes

were removed from their protective covers and thoroughly cleaned in an

oxalic acid bath to remove any residual oils or grease on the surface. They

were then rinsed in distilled water and examined for "-water break. " The

process was repeated until a uniformly wet surface was obtained. Once

grease-free surfaces were obtained, the tubes -were pickled in a solution of

Berylcoat-D to generate a conversion coating, rinsed and placed on racks

to dry. During processing, the tubes were handled only by technicians

wearing either rubber or clean, lint f ree , white cotton gloves.

C. Magnesium Fittings

All truss fittings were machined from ZK60A-T5 magnesium extruded

bar stock. Although the strength-to-weight ratio of magnesium is essentially

equal to that of 2024-T4 aluminum, the use of magnesium does result in a

weight saving. The complex geometry of the end fittings results in low

stress areas where the lower density of magnesium is of significant benefit.

Fittings were machined from the two materials to identical configurations;

those machined from magnesium were 50% lighter than those machined from

aluminum.

All magnesium fittings were treated with a 0. 005- to 0. 010-mm (0. 2-

to 0.4-mil) Dow 17 anodic coating for corrosion protection and sealed in

desiccated plastic bags until time for bonding. Dimensional inspection was

performed following machining and prior to Dow 17 treatment and bagging,

thereby eliminating any need to expose the parts to atmospheric conditions

or handling prior to the bonding operation.

Magnesium fittings were prepared for the bonding along with the

beryllium parts, though no cleaning operation was involved. Four 0. 127-mm

(5-mil) aluminum wires were installed 90° apart in each fitting. The wires

were inserted through holes in the fitting walls and bent parallel to the fitting

centerline to lay along the wall of the fitting socket. The wires served to

center the tube in the socket and produce a uniform bond thickness.
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D. Steel Fittings and Tubes

As mentioned earlier (Subsection IV-B-2), steel tubes were used to

replace beryllium in the upper pressurant tank support truss. Also, four of

the eight upper fittings in the primary truss were changed from magnesium

to steel (Subsection V-A). Figure 7 shows the location of those components

that were changed to steel.

The tubing used in the pressurant tank support bipod was Mil-T-6736,

seamless, 4130 steel, with a diameter of 1. 91 cm (0. 750 in. ) to mate with

existing fittings and the adhesive injection tooling. A-wall thickness of

1. 83 mm (0. 072 in. ) was chosen to duplicate the stiffness of the beryllium

tubing, thereby maintaining the pressurant bottle response frequency.

The four upper truss fittings along the center-line between the

propellant tanks, were machined from Mil-S-46850, type 250, class III,

maraging steel bar stock. To preclude redesign of other parts of the struc-

ture, the geometry of their magnesium predecessors was essentially

duplicated.

Steel fittings and tubes used in the truss were stored in the

as-machined state and covered in a light coating of machine oil. In prepar-

ation for bonding, the parts were grit blasted and ultrasonically cleaned in

methyl ethyl ketone. They were then dipped in EC2320 (3MCo., Minneapolis,

Minn. ), air dried, and cured at 66°C (150°F) for 30 min.

E. Adhesive Bonding

An investigation was initiated to find a high shear strength adhesive

with moderately high peel strength and low temperature cure that would not

outgas in the vacuum of space, and that was chemically compatible with the

materials to be bonded. It was further decided to limit the investigation, to

paste adhesives that could be pressure injected into the joints and would not

drain out during the cure cycle. Epon 913 was chosen as the adhesive •with

the best property compromise and room temperature curability. Adequate

strength resulted when the adhesive was used to bond beryllium tubing to

magnesium and steel end fittings, and steel tubes to magnesium end fittings.

Epon 913 (EA913, Hysol Co. , L. A. , Calif. ) is a two-part, room-

temperature cured paste adhesive that develops 2, 280 N/crn^ (3, 300 psi) in

shear and has a T-peel strength of 15.8 N/cm (9 Ibf/in. ). The adhesive was
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pressure injected into a 0. 05 to 0. 25 mm (2 to 10 mil) annular gap between

the tube and fitting through molded RTV manifolds (Figs. 8 and 9). Injection
2

was accomplished using a Semco gun pressurized to 89. 8 N/cm (130 psi)

with dry nitrogen gas.

A complete truss consists of eight subassemblies in four essentially

identical pairs. One-half of the truss was bonded in each of two consecutive

operations. Following the cleaning and preparation for bonding, the com-

ponents constituting half of the truss were installed in the bonding fixtures,

aligned, and secured. Manifolds were then installed on each of the more

than 25 joints and the adhesive pressure injected. Four witness holes near

the bottom of the socket in each fitting enabled adhesive flow in the joint to

be monitored. When adhesive began to flow from each of the holes, proper

adhesive flow was verified and injection stopped. Figure 10 shows a com-

pleted bond joint. Also evident in the picture are a witness hole, centering-

wire hole, and temperary-dowel-pin hole.

The entire bonding operation including preparation, assembly, bonding,

and postbond cleanup was accomplished by two technicians in a single work

shift. The bonded assemblies were allowed to cure for 72 h at room temper-

ature before removal from the bonding fixtures. They were then placed in

a 53°C (125°F) oven for 4 h to drive off any volatile materials that might

remain, and to insure completion of the cure.

F. Joint Quality Verification

A bond test specimen was prepared each time a bonding operation was

performed. Specimens duplicated the flight truss joints in that fittings and

tubes were of materials and configuration identical to those in the truss.

Specimen piece parts were fabricated, processed, cleaned, handled, and

bonded in precisely the same manner and at the same time as the flight

hardware. Thus each specimen served to verify the prebond, bond, and

cure procedures.

In all, 43 pull-test specimens were prepared and pulled to destruction.

Thirty-two contained beryllium tubes bonded to magnesium and/or steel end

fittings. Eleven consisted of steel tubes bonded to magnesium end fittings.

In the first group, beryllium tube failure predominated. In nine of the spec-

imens the tubes fractured at tensile loads ranging from 21, 360 to 35, 600 N
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(4,800 to 8,000 Ibf) (Ref. Subsection IV-B-2) . Magnesium-to-adhesive bond

line failure occurred in the remaining three specimens at values ranging from

22,962 to 24,297 N (5160 to 5460 Ibf) .

Specimens containing steel tubes provided two data points. Since

these tubes were sized to duplicate the stiffness of the replaced beryllium

members, they •were significantly overstrength, and failure always occurred

in the bond. Once the initial bond failure in the specimen had occurred, the

specimen was reinstalled and the second bond joint tested to failure. This

procedure produced a range of minimum and a range of maximum values.

Initial failure in the eleven specimens occurred between 34, 977 N (7860 Ibf)

and 50, 730 N (11,400 Ibf). The second bond joint on each of the specimens

failed between 40, 050 N (9, 000 Ibf) and something greater than 53, 400 N

(12, 000 Ibf), which was the limit of the recording capability in the test setup.

In all but one case, failure occurred predominately at the magnesium-to-

adhesive bond line. In that one specimen, the failure occurred at the steel-

to-adhesive bond line at 43, 165 N (9700 Ibf).
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V. PROBLEM AREAS

During system-level forced vibration testing, several structural

weaknesses were revealed. Four magnesium fittings cracked and one failed

at a stress riser resulting from an insufficient fillet radius. Several more

failed because of an overtest condition in which input levels were twice as

great as planned. Still another magnesium fitting and a beryllium tube in

the pressurant tank support fractured because of higher than anticipated

response at the tank's natural frequency. A friction joint proved inadequate

•when a materials change in the joint resulted in a lower coefficient of

friction.

Since the truss structure provides redundant load paths, the failures

were localized and were not catastrophic. None of the failures resulted in

damage to any other subsystem, or component. In all cases, redesign and

retrofit were accomplished on the existing truss assemblies with only minor

schedule impact.

The following sections cover in more detail the problems mentioned

above. In Fig. 11 the location of each is indicated along with a reference

designator that refers to the appropriate section.

A. Upper Truss Fittings

During developmental test model (DTM) system-level vibration test-

ing, the upper fitting on one of the end trusses fractured. The bipod con-

taining the broken fitting was replaced and testing continued. After the test,

all fittings were examined microscopically. Four upper fittings ((T) in

Fig. 11) (both center and both end bipods) exhibited hairline cracks in the

fillet radius at the base of the vertical flange (Fig. 12). Analysis showed that

an unsatisfactory root radius [less than 0. 76 m (0. 030 in. )] had produced a

stress concentration factor greater than two. A shortcut in milling machine

cutter grinding resulted in a 45° sloped fillet rather than the radius called

for on the drawing. All center- and end-truss upper fittings were modified

to increase the root radius to 2. 28 mm (0. 090 in. ) (Fig. 13).

During propulsion subsystem testing at the Edwards Test Station, the

four fittings supporting the oxidizer tank fractured in succession ((2) in

Fig. 11). As each fitting failed, its neighbor picked up a larger share of
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the load and in turn failed. The ring assembly was damaged locally at each

of the failed fitting locations.

These failures that occurred during type-approval (TA) testing were

caused by a test-level input twice as large as programmed. The overtest

resulted from a shortcoming in the peak control system that allowed over-

shoot during control-channel switching.

Anomalies with the shaker control were investigated to achieve an

understanding of the limitations of the system. Protective trip-limiting

circuitry was applied to several of the more critically loaded members for

backup protection. In addition, the upper fittings on the center- and end-

truss members were changed to steel to preclude additional schedule impact

in the event of a repeat of the overtest condition.

B. Pressurant Tank Supports

Difficulty was experienced with both upper and lower pressurant tank

supports ((?)and(4)in Fig. 11) during subsystem-level forced vibration test-

ing. During the TA subsystem test, one of the four beryllium tubes in the

upper support fractured (Fig. 14) (Ref. Subsection IV-B-2). Following the

DTM subsystem test, both lower fittings were found to be cracked (Fig. 15).

Both difficulties resulted from excessive stress induced by unexpectedly high

response of the N£ bottle at its fundamental resonant frequency. The

subsystem-level test environment was found to be approximately 50% more

severe than that experienced in previously performed system-level tests.

Another factor that may have contributed to the fitting failure was a

probable reduction in the mechanical properties of the fitting material

(ZK60-T5 extruded magnesium bar). Tests performed subsequent to the

failure indicated that an approximate 25% reduction in low cycle fatigue life,

could be expected in Dow 17-treated thin-section magnesium parts.

Fitting-material tests also indicated an approximate reduction of

45% could be expected in tensile yield when grain direction was oriented

normal to the principal stress axis. Since grain direction was inadver-

tently omitted on the drawing, parts were machined in the orientation

that required the least raw material. As shown in Fig. 15, the grain direc-

tion was approximately 35° off the axis of load application. The fitting was
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redesigned to optimize grain direction and reduce stress levels by

increasing the cross section in the critical areas (Fig. 16).

C. Ring/Truss Joints

Four tabs equally spaced around the girth of each propellant tank are

joined to the eight upper fittings of the truss assembly and the figure-eight

ring in the ring/truss joint. Figure 5 depicts the joint in cross section. The

vertical component of loads in the canted truss members is taken directly

into the tank tabs through a pair of bolts. The horizontal component of the

axial tube load is reacted by the figure-eight ring. Loads are delivered to

the ring primarily through friction between the lower surface of the ring and

the horizontal flange on the truss fitting.

When four of the upper truss fittings were changed from magnesium to

steel, an approximate 40% reduction in coefficient of friction resulted. Dur-

ing system-level testing, one of the friction joints failed ((T) in Fig. 11).

Ring damage sustained was severe but localized, and the structure maintained

its overall integrity (its ability to securely support the propulsion subsystem).

The lower and inner webs of the ring were fractured in the area of interface

with the end bipod upper fitting. Severe galling of the under surface of the

ring was also evident. Figure 17 depicts the extent and location of the

damage.

The joint was redesigned to increase its capacity to carry load in

friction, and to carry the load in bearing if slippage did occur. A large

doubler was riveted to the inner surface of the ring (Fig. 18) to distribute

the load over a larger area. High strength bolts were used to improve the

clamping force and thereby increase the friction force to a value 60% above

that obtained with the original magnesium fittings. Close tolerance holes

in the doubler provide a back-up capability for carrying the load in bearing.

All truss assemblies •were reworked to incorporate the change.
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VI. CONCLUSIONS

The uncommonly high stiffness-to-weight ratio of beryllium (seven

times that of aluminum, magnesium, titanium, or steel) made possible a

1. 5-kg (10-lbm) weight savings in the truss assembly. The tubing per-

formed its designed function faultlessly. (The one tube that fractured dur-

ing test was stressed beyond its design allowable. )

Sufficient beryllium tubing for seven truss assemblies was purchased

for under $30, 000. The engineering and testing peculiar to the use of

beryllium cost an estimated $30,000. An estimated $5,000 was deducted to

allow for the substituted swaged aluminum tubes, yielding a figure of $5,500

per pound of launch weight saved on a single launch basis.

Careful planning, attention to detail, and thorough indoctrination of all

personnel involved with the beryllium resulted in totally trouble-free fabri-

cation and assembly operations. Personnel safety and protection of the

delicate material were achieved with minimal impact on operations.

Adhesive bonding of the end fittings to the tubes by pressure injection,

in addition to being necessary because of the notch sensitivity of beryllium,

proved to be a simple, inexpensive, and effective procedure. Bonding of a

test specimen during each bonding operation provided a high degree of con-

fidence in the quality of the bond and the tubing.

In summary, several problems were encountered during testing of the

structure that were unrelated to the use of either beryllium or adhesive

bonding. Thorough evaluation, exploratory testing, and precautionary pro-

cedures provided for trouble-free use of these materials.
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Fig. 1. Mariner Mars 1971 Spacecraft
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KET ENGINE

PROPELIANT TANK

Fig. 2. Propulsion module
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Fig. 3. Truss assembly
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Fig. 4. Ring assembly
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Fig. 5. Ring/truss joint
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Fig. 6. Beryllium tube loading
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Fig. 7. Support structure steel fitting locations
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TRUSS

Fig. 8. Injection manifold
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Fig. 9. Injection manifold — exploded view
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Fig. 10. Typical bonded joint
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Fig. 11. Support structure failure locations
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Fig. 12. Fitting crack location
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CRACK LOCATION

MODIFIED CONTOUR
(WITH 0.090 FILLET RADIUS)

Fig. 13. Fitting fillet radius
modification
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Fig. 14. Upper N, tank support tube fracture
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Fig. 15. Lower No tank support
original configuration

L

SECTION A-A

Fig. 16. Lower N£ tank support —
modified configuration
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Fig. 17. Ring/truss joint damage
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Fig. 18. Ring/truss joint doubler
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