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Allen Wen-shin Chen, Ph.D.
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Optimum airfoils in the sense of maximum lift coefficient are obtained

by a newly developed method. The maximum lift coefficient is achieved by

requiring that the turbulent skin friction be zero in the pressure rise

region on the upper surface. Under this constraint, the pressure dis-

tribution is optimized. The optimum pressure distribution consists of

a uniform stagnation pressure on the lower surface, a uniform minimum

pressure on the upper surface immediately downstream of the front

stagnation point followed by a Stratford zero skin friction pressure

rise. When multiple-element airfoils are under consideration, this

optimum pressure distribution appears on every element. The parameters

used to specify the pressure distribution on each element are the

Reynolds number Re 0 and the normalized trailing edge velocity qU.

The newly developed method of design computes the velocity distribution

on a given airfoil and modifies the airfoil contour in a systematic manner

until the desired velocity distribution is achieved. There are no

limitations on how many elements the airfoil to be designed can have.

Numerical examp les of one- and two-element airfoils are given. The

CL	values obtained range from 2 to 2.5.
max



n .

iii

To my parents



,_,

_.
..	 ..	 -

^,,

`

..	 .:	 ,-	 __.
--s-----^-^ ^-_-.^<•^^..:V-^-#-^-.:^,-ALL -..-_-_-^_^,..,, _ -^-^^.-^

iv

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to Professor

Allen I. Ormsbee for suggesting this problem and for his advice during

the course of this stud► . The au tr.or is also grateful for the Langley

Research Center of the National Aeronautical and Space Administration

for their financial support of this study under the contract NGR 14-005-144.

Special thanks are due to the author ' s wife, Judy. This work could not

have been accomplished without her confidence and encouragement.



V

TABLE OF CONTENTS

Page

I.	 INTRODUCTION	 .	 .	 .	 .	 .	 1

-	 II.	 DETERMINATION OF OPTIMUM PRESSURE DISTRIBUTION 	 4

A. The Zero Skin-Friction Requirement and CL	.	 4
max

^	 B. Variational Problem and Its Solution 	 7

-	 1. Stratford's Pressure Distribution and Formulation
of the Variational Problem	 .	 . .	 7

^^	 2. Solution to the Variational Problem When
F

	

	 Boundary Layer Is All Turbulent 	 .	 16
3. Solution to the Variational Problem When the

Initial Boundary Layer Is Laminar 	 .	 . . 20

C. The Pressure Distribution To Be Used in Designing
-	 Two-Element Optimum Airfoils	 .	 .	 . 28

S
M

III. DETERMINATION OF THE GEOMETRIES OF AIRFOILS WHICH
o	 PRODUCE THE OPTIMUM PRESSURE DISTRIBUTION 	 36

A. Review of Methods of Airfoil Design	 36

1. Sato`s ^iet:hod and Weber's Method	 ., 36
2. Method of Conformal Transformation and Method of

Distribution of Singularities in Designing
Multiple-Element Airfoils 	 . .	 .	 37

B. Methods of Computing Pressure - Distribution on the
Surface of a Given Airfoi 1	 .	 40

^=	 1. Hess-Smith ' s Method	 . . 41
2. Martensen-Jacob's Method 	 .	 . 46
3. Oellers' Method	 49
4. Comparison of the Three Methods of Computing

Pressure Distribution on the Surface of a
Given Airfoil. 	 50

C. A New Method of Two-Dimensional Airfoil Design 	 56
D. Selection of Parameters i.n Designing Two- Element

Optimum Airfoils	 65

IV.	 EXAI^LES	 .	 .	 .	 67



Page

v.	 DISCUSSION AND CONCLUDING REMARKS 	 82

A. Sinele-Element Optimum Airfoils	 .	 82
B. Two-Element Optimum Airfoils 	 .	 85
C. Remarks About the Design Procedure	 87

LIST OF REFERENCES 	 .	 .	 .	 .	 .	 90

VITA	 . . .	 . ,. .	 .,	 .	 91

vi



	

..	 \1

.	 -	 ^. ^^	 _.

,.	 _	 .:
'.^ .^'

£^

^.

1

^^`	 I . IN".'RODUCTION

^.:^'

Airfoils with high maximum lift coefficient (C L ) are desirable for
max

^^'	 certain types of aircrafC. With their large C L	, these airfoils can be
^	 max

operated at a comparatively low speed while producing a large amount of

lift force. This characteristic is of primary interest in the design of

aircraft with short take-off and landing run capability.

Since the value of CL	is limited by the occurrence of boundary

max
layer separation on the upper surface of an airfoil where the fluid is

subject to an adverse pressure gradient, the approach to obtaining a high-

lift airfoil ie to delay or entirely suppress the flow separation. In	 .

1920, Lachmann and Handley-Page designed the first high-lift wing which

consisted of a conventional airfoil and a small additional element called

a leading edge slat. This leading edge slat gives the fluid which passes

through the gap between the slat and the main airfoil a high velocity.

Consequently, the boundary layer which grows on the upper surface of the

main airfoil has more momentum than it would have in the absence of the

slat. This high-momentum boundary layer can sustain a steeper adverse

pressure gradient and hence delay the separation. Therefore, by placing

the leading edge slat at an appropriate position, the airfoil can be 	 ;-

operated at a higher angle of attack without flow separation and the lift

force is increased. An alternative way of obtaining more lift force ^b

to put an additional element near the trailing edge of the airfoil.

The so-called trailing edge flap does not delay the separation of boundary

layer on the upper surface of the airfoil. It produces additional

circulation and hence lift force by both its presence and the velocity
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it induces on the main airfoil. Performance of airfoils which have leading

edge slats and/or trailing edge flaps are available in the literature.

With all these suxil.iar;^ elements to provide more lift force for a given

airfoil, few attempts have been made to find the maximum lift coefficient

which can be obtained or: a single element airfoil. The first successful

work in this area was accomplished by Liebeck and 0=msbee. l They designed a

series of airfoils possessing large values of C L	by requiring the
max

pressure on the upper surface. of an airfoil to rise in such a way that the

turbulent skin fri^tic^n is zero whatever the pressure is increasing. These

airfoils are optimum ir. the. sense of maximum lif4 coefficient. Zero skin-

^.;	 friction means that the boundary layer is about to separate. Thus, any

attempts to obtain ^^ isrfSer lift coefficient by either increasing peak

velocity or shifting r^:e pcint of peak velocity in the downstream direction

will result in a flow s^a;;aration. 'dith this zero skin-friction require-

went, a variational problem was set up in order to find the pressure

distribution which w^^uld provide the maximum lift coefficient. The

solution to this variational problem specified the pressure distribution

on the upper surface of the airfoil and one of the standard methods of

airfoil design was employed to obtain the geometry of the optimum airfoil.

Since more Lift can alraaya be obtained by appropriately using a

leading edge slat and/or a trailing flap, a natural extension of Liebeck

and Ormsbee's work would be the search for optimum multiple-element

airfoils in the sense of maximum lift coefficient. This is the goal of

this research. The stud} consists of two parts. The first

part deals with the search for pressure distributions which

p rovide a maximum lift coefficient. The second part determines
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the geometry of the multiple-element airfoil which produces than• psassura

distributions. Aa will be seen in the next chaptes, the optimum pressure

distribution is found to be identical to the one for single-element aisfoils.

A new method of two-dimensional airfoil design is developed to obtain the

geometries of the airfoils which produce these optimum pressusa distributions.

Since no methods of multiple-element airfoil design are available in the

literature, the method developed in this research may be coruidarad as a

major contribution to this aspect of aeronautical science. This method

makes it possible to obtain the geometries of each element of the multiple-

element airfoil when the pressure distribution is specified along the

• surface of each element. Numerical examples of two-element airfoils are

treated using this new method of design. The fluid is considered to be

incompressible and Reynolds numbers are assumed to be sufficiently large

that the boundary layer in the zero skin-friction state is turbulent.
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^`^	 II. DETERMINATION 8F OPTIM'^!M PRESSURE DISTRIBUTION
^-

^_^.

A. The Zero Skin-Friction Requirement and C
^-	 L

max
It is well known that the maxim^sa lift coefficient attainable for a

given airfoil is determined by the flow separation which occuss on the

upper surface of the airfoil. Generally, the li#t coefficient of an air-

foil is directly proportional to its angle of attack with respect to the

free stream. For angles of attack larger than sane particular value, Q1,

however, the lift coefficient increases at a slower rate with respect to

the increase of angle of attack and even starts to decrease when the angle

of attack is increased beyond another particular value, Q. 2 . The reason

for tt► is slow increase of lift coefficient and a later decrease is that

•	 the boundary layer on the upper surface of the airfoil cannot sustain

the steep pressure rise which appears on the upper surface as a result of

a large angle of attack. At Ot l , a flow separation appears at a point near

the trailing edge and generates a small region of reverse flow. This

region of reverse flow expands as the angle of attack becomes larger than

a l and finally develops into a isrge high pressure region with a large

portion of the airfoil upper surface as its boundary.

While flow separation is a local phenomenon, it is apparent that when

the flow starts to separate at a cectain point on the airfoil surface, the

boundary layers at other points may be still able to sustain their local

pressure kradient. Therefore, frown the viewpoint of generating largs lift

coefficient, it seems that an airfoil would be more efficisnt if it could

generate a pressure distribution such that the boundary layer separation

would occur wkerever the pressure 18 iacreasiag if separation does occur at
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all. In other words, an airfoil which can provide a large maximum lift

coefficient is the one which has no flow separation for angles of attack

smaller than a value as , and suddenly stalls at Ct ^ G,a . This point may be

made clear by considering t_he pressure distribution shown in Figure 1.

The lift coefficient of the airfoil which genfecs*es this pressure

distribution is represented by the area enclosed by the curve C p (x) where

the x-axis is parallel to the free stream. If the flow separates at A,

but at no other point, then the skin friction has positive value for every

point upstream of A. Now, let the pressure distribution between B and A

follow a different -::wive such as the dotted line in Figure 1. Then, the

•	 pressure gradient at points upstream of A will be steeper and the area

.	 enclosed by the Cp (x) curve is increased which means that the lift co-

efficient has been increased too. tt is possible that the flow will

separate somewhere between A and B s^ith this new pressure distribution.

Let it be assuaned that *.he skin friction resulted from pressure distribution

^2^ is zero everywhere between C and A. It is not hard to see that any

attempts to increase the lift coefficient of the airfoil by forcing the

pressure distribution to follow a curve such as the one represented by the

broken line gill steepen the pressure gradient and hence introduce flow

separation. The lift coefficient, then, will be decreased. Therefore,

among all the pressure distributions whieh are identical at every point

except the region where pressure is increasing, the one which yields zero

skin friction over the pressure recovery region provides the maximum lift

coefficient. This is the foundation based upon which high lift airfoils

of the Liebeck-0rmsbee type are designed. then an additional element is

present near the airfoil, ouch as a trailing edge flap, the argument
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stated above still applies. Namely, the pressure recovery on both the

main airfoil and the auxiliary element should yield zero skin friction in

order to achieve maximum lift coefficient of the airfoil. In general,

a multiple-element airfoil will have maximum lift coefficient if this

pressure recovery of zero skin-friction type appears on each element of

the airfoil.

B. Variational Problem and Its Solution

1. Stratford's Pressure Distribution and Formulation of
the Variational Problem

As stated in Chapter I, the fluid flows are considered to be in-

compressible. In order to obtain a boundary layer which is capable of

sustaining a large positive pressure gradient, only flows with large

Reynolds numbers are considered. Based on these two essential assumptions,

a problem in the calculus of variations will be formulated in this

subsection.

Suppose that the fluid is inviscid. The lift force of an airfoil

is given by the Kutta-Joukrwski Theorem

L = pU40I'

where p is the density of the fluid, U40 is the speed at which the airfoil

travels in the fluid and r is the circulation required to place the rear

stagnation point at the trailing edge of the airfoil. With a given air-

foil of specified chord length and a specified velocity, the only way to

'	 obtain more lift force is to increase the circulation r. The circulation

r, by definition, can be written as

aT

v(s)ds	 (1)

0

a
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where s is the arc length of the airfoil contour, measured clockwise

from the trailing edge along the airfoil surface (see Figure 2), s  is the

total length of the contour of the airfoil and v(s) is the surface

velocity distribution. With subscript L denoting the front stagnation

point of the airfoil, the integral (1) can be decomposed into two terms

s 
	

s 

S v(s)ds + f v(s)ds	 (2)

0	 S 

where 0 < s < sL holds for the lower. surface and sL < s < ST holds for

the upper surface of the airfoil. Notice that along the lower surface,

the direction of v is opposite that of increasing s. Therefore, the first

term in (2) is a negative one. There is no way that a positive quantity

may be obtained as the first term of (2) unless the front stagnation point

is forced to coincide with the trailing edge. However, this is physically

unattainable. Thus, the most which can be obtained from the lower surface

is a zero velocity all the way from the front stagnation point to the

trailing edge. In other words, v(s) = 0 for 0 < s < s L . With this

velocity on the lower surface of an airfoil, variations in lift may occur

only by changing the velocity distribution on the upper surface. The

circulation then stands as

s 
t = f v(s)ds .

sL

For convenience, the origin of s may be shifted from the trailing edge to

the front stagnation point. With this modification, the circulation is

sU
v(s)ds

0
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_^—	 ^-- s 
s

s 

Figure 2. Definition of the variable s.
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where s U = s  - 8  and subscript U stands for the upper surface. The lift
coefficient of the airfoil, based on free stream dynamic head and length

s  of the upper surface, is
s

P U.	 U

C =	 v(s)ds
L 

2 
PU"sU 0

or	 s 

C = ? J q(s)ds	 (3)
L S  0

where q(s) is the surface velocity normalized with respect to the free

stream velocity. This velocity q(s) always starts from the front

stagnation point s = 0 with a value of zero, increases monotonically to

a maximum value q 0 at a point s = s 0 and then decreases monotonically to

the value of zero at the trailing edge where s = s U . For the purpose of

generating maximum lift coefficient in the way described in Section A

above, the function q(s) can be any form for 0 < s < s 0 . There is no

restriction for that part of q(s) other than the one that it must be

monotonically non-decreasing. The function q(s) for s 0 < s <
S U

, however,

must satisfy the requirement of being able to provide a boundary layer of

zero skin friction everywhere between s 0 and sU , with the reason described

in Section A. Such a function q(s) may be obtained by modifying the

expression derived by Stratford. 2 Stratford considered the turbulent

boundary layer grown on a flat plate and derived an expression for pre-

dicting the separation of this turbulent boundary layer when an adverse

pressure gradient is encountered. Let the leading edge of the flat plate

be at the origin x - 0 and let the pressure start to rise at x - x0.

Separation will occur when the following equation is satisfied by C  (x)
0



11

(n-.? )	 dCpO 2
	 -6	 10

(2Cp )	 (x dx ) - 1.060(10	 Re)	 (4)

'	 0

where C  (x)is the pressure coefficient based on free stream p 0 , U0 ; 0
0

is a constant which is approximately 0.66 for Reynolds number of order

106 ; n is the common logarithm of Re which is the Reynolds number based

on U0 and x. The criterion employed in deriving (4) is that separation

is imminent wherever local skin friction equals zero. Therefore, by treating

(4) as a differential equation for Cp (x), a pressure distribution which
0

_provides zero skin friction at every point downstream of x0 is found to be

1	 1

	

Cp (X) = 0.645(0.435 Re05 [(X	 p) 5 -
 
13121n for C < n+1

0 0	 0	 0

_ _ a	 > n=2

l	 (x+b)1/2	
for Cp0 

_ n+l	 (5)

where Re  is the Reynolds number based on x0 and uniform velocity U0 and

n is the common logarithm of Re 0 ; a and b are constants to be determined

such that C and dC /dx are continuous at C = 1. These derived
PO	 p0	 3	 p0

results have been verified by Stratford and experiments showed that this

C (x/x0) does provide a boundary layer of zero turbulent skin friction.
PO

The pressure starts to rise at s = s 0 on an airfoil where q = q0.

Hence the relation between q(s) and C p (x/x0) is established by first
0

setting U0 = q0 U.. Then, since

U

U =
 U U and C = 1- (U ) 2q

m	 0 0	 p0	 0
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one obtains

q(s)	 q0 [1 - Cp0 (XO)] 1/2 .	 (6)

It should be pointed out, however, that expression (5) above was derived

when the boundary layer on a flat plate in a uniform flow was under

consideration. For a non-decreasing velocity distribution U(s), the

relation between s 0 and x0 is

s0

x0 = J [I)Us ] 3 ds	 (7)
0	 0

which merely states that the momentum thickness of the boundary layer at

s = s 0 on an airfoil with velocity distribution U(s) for 0 < s < s 0 has

been set to be the same as that of the boundary layer at x = x0 on a flat

plate in a uniform flow. Now, with the small velocity near the front

stagnation point, the boundary layer there is likely to be laminar. This

laminar initial boundary layer is acceptable provided a transition to

turbulent boundary layer his taken place before the pressure starts to

increase. This is because Stratford considered only the separation of

turbulent boundary layers. With this laminar boundary layer present,

equation (7) is superseded by

3/8 U0 1/8 
st 

U 5 s	 5/8
x0 = 38.2 (8 ^)	 (u )	 [s (U) d (8 ) 3	 at

t t	 t	 0	 0	 t

s	 _0
	+ J (U )3 d 	 (8)

a  0

where subscript t indicates that the variables are evaluated at the

transition point. An instantaneous transition with the preservation of
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momentum thickness has been assumed in deriving equation (8). Therefore,

a boundary layer which is entirely laminar between s - 0 and a - s0 is

acceptable provided an instantaneocs transition takes place at s0 . In order

to have pressure increase at s 0 , the starting point of q(s) will not be

the same as the equivalentflat plate boundary layer. This is illustrated in

Figure 3. Hence equation (6) must be used with the understanding that s

and x are related by equation (8) and Figure 3.

Now, with an arbitrary acceleration q(s) for 0 < s < s0 and a pressure

rise of the Stratford's type described by (5), the lift coefficient of the

airfoil is

	

s0	 sU

CL = s {f q(s )ds + f q0[1 - C (X )]1/gds)
U ^^y

3
	S	 p0 0

where C  is given by equation (5) with x 0 defined in equation (8) and the
_	 0

relation between x and s is shown is Figure 3. In this expression, s 

can be considered a constant. s 0 is not specified. q(s) is any mono-

tonically increasing function. q0 Ls -got specified and the function C
p0

depends on x/x0 and Re  only. These quantities can be varied in order

that a maximum value of CL may be obtained. Among these quantities, Re 

should be specified independent of zhe others because Re  specifies the

boundary layer characteristics at s, ) and hence the zero skin friction

pressure recovery C  (x/x0). When Re0 and sU are given, the problem of
0

finding the maximum value of C L becomes one of searching for a function

q(s) and values of the quantities s 0 , q0 such that the quantity

	

s0	
sU

CL = e if q (s)ds + f q0[ 1 - C (x )] 1/gds)

	

U 0	 s0	 p0 0



:s U0

U
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s	
x x = x0

s3W s0

Figure 3. Relation between s and Stratford's x.



15

takes its maximum value. x0 is to be computed from equation (8). This is

a problem of calculus of variations for the funtion q(s). For q0 and s0,

it'is a problem of differential calculus.

As can be easily seen from the results obtained by Stratford, the

pressure recovery with zero skin friction has a large pressure gradient

immediately downstream of x0 . When the value of x is very large, the rate

of increase of pressure is very slow. In the limit, C  will reach a value

0
of one only if x goes to infinity. This means that the zero skin friction

pressure recovery, when produced by an airfoil, will reach stagnation at the

trailing edge only if the airfoil has an infinite chord length. In view of

•	 the fact that an airfoil with a chord of infinite length is not practical,

a non-zero value of q  will be accepted as the trailing edge velocity. This

leads to a sharp trailing edge which is acceptable for aerodynaeic consider-

ation. Now, the three quantities s 0 , q0 and q  are related to each other

once an Re  and an s  are given. Only the value of one of them may be

specified and the solution to the variational problem will determine the

others. Suppose the value of s 0 is specified. Then q  can always be

obtained for a given q0 . The consequence is that there are infinitely many

sets of q0 and q  which can yield zero skin friction pressure recovery.

The maximum lift coefficient which may be obtained under this circumstance

has no upper bound. This indicates that the problem is not well defined.

Alternatively, if q0 is specified, the lift coefficient will take a

•	 maximum value only when s 0 goes to zero, and this solution does not make

any physical sense. Therefore, the only remaining possibility is to

specify the value of q U and let the values of q0 and s0 be determined by

the solution of the variational problem. Therefore, the problem can be
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redefined as one of finding a function q(s) for 0 < s < s0 and two

quantities qo and so in order that

a0	
spU

CL - s 	 q(s)ds + J q0[1 - C (X )3112 
ds}	 (9)

U o	 so	 p0 0

has a maximum value. The values of Re o , sU and qU are specified and xo

is to be computed from equation (8). Since equation (8) takes a simpler

form if the boundary layer is turbulent from s - 0 to s - s o , the case of

having a laminar initial boundary layer will be considered after the

simpler case of an all turbulent boundary layer is treated.

2. Solution to the Variational Problem When Boundary Layer
Is All Turbulent

When the boundary layer is all turbulent, equation (8) becomes

s0
xo = P [133 do	 (14)

0	
qo

For the convenience of algebraic manipulation, it is desirable to make a

transformation on the variable a. With the definition of a constant

K - s0/x0 , the relation between s and x is

s - x+ (k-1)x0

or

x=s - (k-1)x0.

Dividing x by xo , a variable z may be defined as

XZ —

x0

-Xo- (k- 1) .
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With this notation, equation (9) may be written as

	

1	 Z

CL	 Z+k-1 [ f	 q(z)dz + q0 	 [1 - C  (z)]1/2
 dz)	 (11)

- (k-1)	 1	 0

M -
where Z denotes the value of z at the trailing edge. Now, the function Cp

0

may take only one form of equation (5) or both depending on the values of

Re  and x/x0 . For Re  of order 10 6 - 108 , C  will reach the value n+l
0

for a fairly small value of x/x0 .	 pHence it can be assumed that C will
0

take the value n+1	 at a point s  which is between a 0 and sU for the

Reynolds numbers considered in this research. With this assumption,

Stratford's equation (29), 2 which expresses the function C  (x/x0) for
0

•	 Cp0 > n+l	
can be modified to give

+bl 1/4q0 qU

	

	 (12)

/,aa '

where a' - a/fx01 b' - b/x0 . Hence equation (11) becomes

2	 1	 2	 qU (Z+b' )1/4

CL - Z+k-1 J q(z)dz + Z+k-1
1-k	

fay

Z

X fm {1-0.645[0.435 
Re01/5(zl/5_1)32/n11/2 

dz

1`

Z

+ Z+k-1 qU(Z+b')1/4 p
	 dz 1/4	

(13)

Zm (z+b )

•	 where Zm - 5m/x0 - (k - 1), and equation (10) becomes

1 -	 [ L̂̂ 33 dz

1-k	 0

1

(14)
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To find a stationary value of CL , the variation of CL caused by the

variation of the right hand side of equation (13) must vanish. This

variation includes the variation of q(z), the variation of k and the

variation of Z. The variation of k is related to that of q(z) by the

constraint equation (14). Hence only the variation of q(z) and Z need to

be considered. The appearance of q(z) inside an integral sign makes the

problem fall into the category of calculus of variations. However, due to

the simplicity of the integrands which contain q(z) in both equation (13)

and equation (14), the solution to this problem of calculus of variations

can be obtained in a quite simple way. Because no derivatives of q(z)

appear in the integrand, the Huler's equation resulted from the vanishing of

first variation of CL is an algebraic equation instead of a differential

equation. The solution to that equation is merely q(z) = constant. This

constant, then, is determir.:A by the requirement' that q (s 0) = q0 . Sub-

stitution of q(z) = q0 into equation (14) gives k = 1. Therefore, as far

as q(z) is concerned, CL will have a stationary value only when q(z) = q0,

The fact that the value of CL provided by this q(z) is really a maximum

one may be established in the following way. Suppose a permissible

variation is introduced into this function q(z). Permissible means that

q(z) is still a monotonically non-decreasing function. The value of k
1

will always increase. The value of J 
q(z)dz may increase or it may

1-k
decrease. Because of the constraint of equation (14), the increase of k

•	 is so large that CL will always be decreased by this variation of q(z).

Therefore, in order to obtain a maximum lift coefficient, the fluid

should be accelerated abruptly from the front stagnation point to a

velocity q0 and remain at that value until pressure starts to increase.
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With this conclusion, equation (13) becomes

2 qU(Z+bbl/4 2 qU (Z+b' )1/4

	

_ —	 +

	

L Z	

fa'
	 Z	 fa'

Z

X ^
m

	

	
1/5 1/5	 2/n 1/2

{1-0.645[0.435 Re0 	 (z	 - 1)]	 }	 dz
1

2 qU(Z+b')1/4 Z

Z	
a

+	 fa'	
Zm (z+b')1/4 dz .

Since Zm depends on Re 0 only, the integral in the second term may be
e4.

abbreviated as

Zm	
1/5 1/5	 2/n 1/2

	

I(Re0 )	 {1-0.645[0.435 Re 	 (z	 -1)]	 }	 dz

1

This allows CL to be expressed as

CL = U	 {1 + I(Re0 ) + 3 fa'[(Z+b')3/4_(Zm+b')3 /4]}
Zfa

where the integration appearing in the last term has been carried out.

With values of qU and Re0 given, this CL varies with Z only, The maximum

value of CL may be obtained by evaluating CL at a value of Z where the

first derivative of CL with respect to Z vanishes. Taking the first

derivative of C L with respect to Z and setting the result equal to zero

gives

4 [1 + T (Re0) - 3 fa' (Zm+b') 3/43 (Z+b' 1 + 3 fa' b' (Z+b' ) 3/4

+ 
4. 

[1 + I(Re0) - 3 fa' (Zm+b,)3/4 3 0	 (15)
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This is a fourth degree algebraic equation for (Z+b' ) 1/4 and there are

four roots. The second derivative d 2CL/dZ 2 must be evaluated at each root

of equation (15) in order to find out which root gives the maximum value

of CL . The expression for d 2CL/dZ2 is

2qU [[1 + I(Re ) - 4 fa,(Z 
+b')3/4i[ 2(Z+b')1/4
	

(Ztb')- 
3/4

, a'	
0	 3	 m	 Z3	

2Z2

	

_ 3(Z+b )- 
7 /4

	
8

16Z	

3 

+ 3 fa, b , Z3 } .	 (16)

For 5 X 10J < Re  < 1 X 108 , equation (15) has two conjugate complex roots,

one negative real root and one positive real root. In view of equation (12).

only positive values of (Z+b') 1/4 can be accepted. Compu.:ations have shown

that this positive root of equation (15) gives a value Z which is larger

than Z  and this Z does yield a negative value of d 2CL/dZ 2 , Substituting

this Z into equation (12) gives the value of q0/qU and thus the solution

to the variational problem is complete for an all turbulent boundary layer,

(See Figure 4). The dependence of Z m, Z, and q0/qU on Re0 is given in

Table 1. Also shown in Table 1 are the values of d2CL/dZ2.

3. Solution to the Variational Problem When the Initial Boundary
Layer Is Laminar

When a laminar initial boundary layer is present, the full expression

(8) must be used as the constraint on q(s) for 0 < s < s0 . Using the

definition of q, equation (8) can be rewritten as

v 3/8 q0 1/8(s't g(s) 5	 s	 5/8
x0 = 38.2 ( s U )	 (q )	 [^+ [ q ] d ( s )	 st

t t	 t	 0	 0	 t

s0

+ J [ q^j 3 ds	 (17)

	

s t	0



	s 
	

s	
gt

	

s0 , Z
	

m

q0

q

q0

0

0
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s

Figure G. Optimized velocity distribution on the
upper surface of a single-element airfoil
with all turbulent boundary layer.
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Table 1

Dependence of Zm, Z, q0/qU and d2CL/dZ 2 on Re  for an All

Turbulent Boundary Layer

Re0 10-5	Zm	 Z	 q0/qU	 d2CL/dZ2

5 1.6625 4.2340 2.0822 -0.003332
6 1.6502 4.0713 2.0824 -0.003887
7 1.6400 3.9473 2.0835 -0.004395
8 1.6313 3.8487 2.0852 -0.004863
9 1.6236 3.7677 2.0872 -0.005298

10 1.6168 3.6995 2.0893 -0.005705
20 1.5735 3.3312 2.1099 -0.008790
30 1.5493 3.1640 2.1264 -0.010926
40 1.5327 3.0611 2.1397 -0.012587
50 1.5201 2.9887 2.1508 -0.013959
60 1.5101 2.9338 2.1603 -0.015134
70 1.5017 2.8900 2.1686 -0.016164
80 1.4945 2.8538 2.1761 -0.017085
90 1.4883 2.8233 2.1828 -0.017917

100 1.4827 2.7969 2.1889 -0.018678
200 1.4478 2.6430 2.2318 -0.02;071
300 1.4285 2.5662 2.2587 -0..027529
400 1.4154 2.5165 2.2784 -0.030114
5J0 1.4054 2.4804 2.2942 -0.032193
600 1.3974 2.1,523 2.3073 -0.033938
700 1.3908 2.4295 2.3185 -0.035447
800 1.3852 2.4104 2.3283 -0.036779
900 1.3802 2.3940 2.3371 -0.037970

1000 1.3759 2.3797 2.3450 -0.039051

f;
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Now, by defining g - s t /s 0 and replacing s by z, equation (17) becomes

	

3/8 q0 1/8 
1-k+gk	

j 5	 5/81	 38.2 (	 )	 (—)	 t J	 [^ ] dz }
x0UCOg t	 qt	 1-k	 q0

1

	

+	
(L]3 

dz v	 (18)

	

1-k+gk	 0	 {

Since the expression for C L , equation (9), holds true whether the initial

boundary layer is laminar or turbulent, the problem is again to find a

q(z) which will give a maximum value of

2	 11
	

2	 qU(L+b')1/4

CL Z+k-1 J q(z)dz . Z+k-1
1-k	

/a^

.	 Zm

X	 (1-0.645[0.435 Re01/5(zl/5-1)]2/n}1/2 dz

1

Z

	+ Z+k-1 qU(Z+b')l/4 r
	 dz 1/4	 (13)

	

Z	 (z+b )
m

It can be seen that no derivatives of the function q(z ) appear in the

integral terms in equation (13) and equation (18). Thu ,;, the solution

to this variational problem is again q(z) - q o for 0 < s < s0 . With this

q(z), equation (18) gives

1 - 38.2( y ) 3/8 (gk)5/8 + (1-g)k	 (19)
x0U0

The critical Reynolds number at which boundary layer transition takes

place is defined by

Re - stU0
cr	 V
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which is

Re	 gs0U0
cr	 V

gkx0U0
V

Hence,
Re

cr
gk Re0

Substituting this gk into equation (19) gives

Re
k = I - 38. 2 Re0

-1
 Re cr 5/8 + Re cr	 .	 (20)

0

This result requires that a critical Reynolds number Re cr be specified

in addition to the Reynolds number Re  when the initial boundary layer

is laminar. Notice that the case Re cr > Re  need not be excluded because

an all-laminar boundary layer between s = 0 and a0 will give k > 1 and

g 1. When the boundary layer is all turbulent g - 0 and equation (19)

gives k = 1 which is the result obtained in the previous subsection.

With q (z) - q0 and k given by (20), equation (13) can be written as

1/4

CL k+Z-1 Z+b
	

qU{k + I (Re0) + 3
fa 

X [(Z+b')3/4 - 
(ZM b')3/4^}	

(21)

where Z, I(Re0) and Z  all have the same meaning as in the previous sub-

section. When the laminar initial boundary layer is absent, g - 0 gives

k - 1 which reduces equation (21) to the form assumed by an all turbulent

boundary layer given in Subsection 2. This verifies the consistency of

the expressions derived up to this stage.
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To find the maximum value of CL with various Z values, the derivative

dCL/dz is set to zero and the second derivative d 2CL/dZ 2 must be evaluated

at certain Z values. The equation which results from setting dC L/dZ to

zero is

3 [k + I(Re ) - 
4 fa,(Z +b')3/4](Z+b')- 4 

3a'(k-1-b')(Z+b')3/4

	

4	 0	 3	 m	 3

4 (k-1-b') Ck+I (Re0) - 3 fa' (Zm+b') 3/4] 	 0	 (22)
As in the equation obtained in Subsection 2, this is also a fourth degree

algebraic equation for the variably: (Z+b') 1/4 . For 2 X 105 < Re0 < 1 X 107,

two different values have been used for Recr . They are 5 X 105 and

1 X 106 . In both cases, there are always two conjugate complex roots,

one negative real root and uic positive real root. As stated in the

previous subsection, only;.: p sitive real root is retained, and it does

rive a	 ;	 value of d 2CL lc;Z 2 when this positive real root is sub-

stituted into

2qU ([k + I(Re0) - 3 3 ' (Zm+b')3/4][_ 36 (Z+b1 -,/4/a'

_ (Z+b' ) -3/4 + 2 (Z-°-b' 
)1/4]

2(k+Z-1) 2	(k+Z -1)3

8 fa 	 da' (Z+b }

3 (k+Z-1) 2	(k+Z -1)3

This means that a maximum value of CL does exist at this Z. Substituting

this Z into equation (12) gives the value of q 0/qU . The dependence of

g, Zm , Z and q0/qU on Re  are shown in Table 2 and Table 3. Also shown



Table 2

Dependence of g, k, Lm , Z, q0/qU and d 2CL/dZ 2 on Re  for

Boundary Layers Which are Initially Laminar, Re cr = 5 x 105

Re 	 x 10-4 g k
z
 Z q0/qU d 

2 
C L 

NZ2

15 0.979 3.404 1.7462 6.7252 2.1895 -0.002548
20 0.892 2.804 1.7258 6.0092 2.1656 -0.003025
25 0.819 2.443 1.7101 5.5548 2.1512 -0,003417
30 0.757 2.202 1.6974 5,2363 2.1419 -0.003754
35 0.704 2.031 1.6868 4.9983 2.1355 -0.004053
40 0.657 1.902 1.6776 4.8121 2.1331 -0.004323
45 0.617 1.802 1.6696 4.6613 2.1280 -0.004573
50 0.581 1.721 1.6625 4.5361 2.1257 -0.004806
55 0.549 1.656 1.6561 4,4299 2.1241 -0.005026
60 0.520 1.601 1.6502 4.3384 2.1230 -0.005235
65 0,495 1.555 1.6449 4.2584 2.1222 -0,005435
70 0.471 1.515 1.6400 4.1876 2.1217 -0,005627
75 0.450 1.481 1.6355 4.1245 2.1214 -0.005811
80 0.431 1.451 1.6311 4.0677 2.1213 -0.005990
85 0.413 1.424 1.6273 4.0161 2.1213 -0.006163
90 0.397 1.401 1.6236 3.9601 2.1215 -0.006331
95 0.381 1.380 1.6201. 3.9260 2.1217 -0,006494

100 0,367 1.361 1.6168 3.8863 2.1219 -0.006653
200 0.212 1.180 1.5735 3.4410 2.1236 -0.009236
300 0.149 1.120 1.5 1,93 3.2423 2.1.441 •0.011152
400 0.115 1.090 1.532? 3.1219 2.1543 -0.012697
500 0.093 1.072 1.5201 3.0385 2.1633 -0,013998
600 0.079 1.060 1.5101 2.9759 2.1712 -0.015127
700 0.068 1.052 1.5017 2..9264 2.1784 •0 ,016127
800 0.060 1.045 1.4945 2..8860 2.1849 -M17026
900 0.053 1.040 1.4883 2.8520 2.1909 -0.017842

1000 0.048 1.036 1.48k7 2.8229 2.1964 -0.018592

26
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Table 3

Dependence of g, k, 7.m5 Z, q 0/qU and d 2CL/dZ 2 on Re  for

Boundary Layers Which are Initially Laminar, Re cr - 106

Re  x 10-4	g	 k	
z 
	 Z	 q0/qU	 d2CL/dZ2

27

25 0.966 4.141 1.7101 6.8501 2.2816 -0.002902

30 0.922 3.617 1.6974 6.3104 2.2585 -0.003317

35 0.881 3.243 1.6868 5.9131 2.2412 -0.003689

40 0.843 2.963 1.6776 5.6070 2.2277 -0.004026

45 0.810 2.745 1.6696 5.3630 2.2171 -0.004336

50 0.778 2.570 1.6625 5.1634 2.2085 -0.004621

55 0.749 2.428 1.6561 4.9965 2.2014 -0.004886

60 0,722 2.309 1.6502 4.8547 2.1955 -0.005133

65 0.697 2.208 1.6449 4.7323 2.1906 -0.005366

70 0.673 2.122 1.6400 4.6255 2.1865 -0.005587

75 0.651 2.047 1.6355 4.5313 2.1829 -0.005796

80 0.631 1.981 1.6313 4.4475 2.1799 -0.005995

85 0.612 1.924 1.6273 4.3723 2.1773 -0.006185

90 0.593 1.872 1.6236 4.3044 2.1751 -0.006368

-	 95 0.577 1.827 1.6201 4.2427 2.1732 -0,006544

100 0.560 1.785 1.6168 4.1864 2.1715 -0,006713

200 0.359 1.393 1.5735 3.5887 2.1621 -0.009317

300 0.264 1.262 1.5493 3.3415 2.1660 -0.011179

400 0.209 1.196 1.5327 3.1970 2.1719 -0.012677

500 0.173 1,157 1.5201 3.0990 2,1782 -0.013944

600 0.147 1.131 1.5101 1,0266 2.1842 -0.015049

700 0.128 1,112 1.5017 .!.9702 2.1900 -0.016030

800 0.114 1.098 1.4945 ; 9244 2.1953 -0.016916

900 0.102 1.087 1.4883 2.8863 2.2004 -0.017722

1000 0.092 1.079 1.4827 2.8538 2.2051 -0.018465

x i-- 1
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are the values of d 2CL/dZ 2 . The velocity distribution q(sl for

04 s < s  is sketched in Figure 5. Notice that the location where

pressure starts to increase is different from the one show- in Figure- 4

This is due to the presence of the laminar initial boundary layer

C. The Pressure Distribution To Be Used in Designing Two-EltmFn_t
Optimum Airfoils

The optimum pressure distribution which will provide ar airfoil with

maximum lift coefficient, as shown in Section B, consists of a constarr

stagnation pressure along t 1he lower surface of tLe airfoil, and an atrupr

pressure drop to a minimum value which covers a certain distance on tl^

upper surface of the airfoil until the pressure starts to increase

according to Stratford ' s Zero skin friction pressure distribution. The

determination of geometries of multiple -element airfoils is the main

object of this research. Pressure distributions will now be considered

which are optimum with respect to C L	for this case. The lift force

max
is again p CDr according to the Kutta -Joukowski Theorem where 1 is the

total circulation of the airfoil and can be written as

sL1 	 sT1	 8L2

r _ I	 v l (s l )ds 1 + S	 vI (a 1 )ds 1 + J	 v2(a2)ds2

0	 sL1	 0

s 
2

+ J 	 IV' 2(a2)ds2

a 
2

for airfoils consisting of two elements. Contour length is again

denoted by s which is measured clockwise from the trailing edge of -ach

element; subscript 1 denotes element one and subscript 2 denotes E lement
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Figure 5 Optimized velocity distribution on the upper
surface of a single - element airfoil with
laminar initial boundary layer.
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two.	 • lie	 fiz-:r_	 .=errs: an--1	 the	 third term are negative quantit:-es since

the surface velocity is opposite the direction of increasing s.	 The

maximum value of these ,u.antities is zero. Thus, only two terms are left

and the lift coefficient may be written as

s 7 ,
sT2

2	 2 .C, _ _	 qJ ^s l )ds l + a g2(s2)ds2
s

L2L 1

where z is a characteristic length. For the convenience of manipulation,

S'1
1
 - sL can be talker. as 1. This is not only convenient, it ii also a

more-o_-less traditional	 because s 	 - s 	 is appr,,Ximately t;:e chord
1	 1

length of element one.	 the origin of measuring s is moved to the

fro.tt sta^znati_... cair_t of each element as was done in Subsection B.1,

CL becomes

U. 	 , 0'	 s U2
Gl

 - 'U_ 
	 gl(:;l)dsl + su SL— J'	 y2(s2)ds2

	

1	 2 0

The first ter= represents the contribution of element one to C r) and it

has exactly t«e sar:a iorm a3 equation (3). The second term represents

the contribution of element two to C L , and it has the same form as

equation (3) except for a multiplicative factor s0 /SU . CL is to be
2	 1

maximized under the condition that pressure rise on upper surface of

each element mast yield a boundary layer of zero skin friction in the

reig -' o!i wrierc Fressur e i.% _ -.c eas-nb. Tflz t requi1 MU rLt of obtai-ding

,.a::i^um lif'. cccfficient h-s been established in :.ection A. The

p:eazuie rise of ze_o stir: friction is specified by a Reynolds number

rce0 . In th- case of .ao-element airfoils, the specification of Re  on
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one element is entirely independent of that on the other. Furthermore,

the pressure distribution on element one can be specified without con-

sidering the Pressure distribution on element two. Iu other words, the

pressure distributions of two elements are independent. This fact can be

easily seen when one realizes that the pressure distribution is specified

along the surface contour and the relative position of the two elemerts

is a free parameter at this stage, Therefore, assuming s
U2 Ul

/s	 to be a

constant, CL will have a maximum value when both

sU

2	 1

CL1	
sUl 

J'	 gl(sl)dsl
0

and	
sU,

2

CL2 e s 

	 g2(s2)ds2

2 0

take their maximum values. With Re  and q U given on each element, the

problera of maximizing CL is equivalent to the problem of maximizing the

lift coa:Eficients of two single-element airfoils. The solution to this

problem has been presented in Subsections B.2 and B.3. This means that

for an airfoil consisting of two elements, the maximum lift coefficient

will be obtained when the pressure distribution on the surface of each

element is such that i- is an optimu., pressure distribution if each

element were considered to be a single-element airfoil with same values

of Re  and q  (see Figure 6).

This result can be extended to airfoils consisting of any number of

elements. Namely, for a multiple-element airfoil, the maximum lift

coefficient will be obtained when the pressure distribution on each
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element is composed of a constant stagnation pressure along the lower

surface, an abrupt drop to a minimum pressure at the front stagnation

point followed by a constant minimum pressure which covers a certain

distance on the upper surface until the pressure starts to rise according

to Stratford's zero skin friction pressure distribution. It can be re-

called that the characteristic length a  for a single element airfoil

will not be available until values of p, m, p, Re 0 are specified. :fence

s  is part of the solution to the variational problem. This confirms

the validity of assuming a /sU to be a constant when maximizing C L of
2	 1

a two-element airfoil. Table 4 shows the dependence of s  on Re  for

L&,= 200 fps., µ/p = 160 X 10 -6 ft2/sec. This makes it possible to

design two-element airfoils whose elements have the desirable chord

ratios.

Although the pressure distribution shown in Figure 6 provides an

airfoil with a maximum lift coefficient, some modifications have to be

made in order to realize a physically meaningful airfoil. First, the

constant stagnation pressure along the lower surface is not possible to

obtain. Since the lower surface of an airfoil does not contribute much

to the lift force, any modification of the constant stagnation pressure

distribution will not reduce the C L value too much from its original

value. However, a pressure distribution which is monotonically de-

creasing from leading edge to trailing edge is preferred, and a linear

form for q is chosen in this study. A monotonically decreasing pressure

from leading edge to trailing edge will produce a boundary layer which

always attaches to the airfoil surface, and a linear relation q(s) is

chosen for its simplicity. As will be seen-in the rext chapter, the
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All Turbulent Boundary Layers Which are Initially Laminar
Boundary Layers

Re	 5x105 Re	 106• cr cr

Re0X10
-5

aU (ft.) Re0X10-4 sU(ft.) sU(ft,)

5 0.8134 15 0.5004 --
6 0.9385 20 0.5772 --
7 1.0609 25 0.6506 0.8758
8 1.1813 30 0..7215 0.9487

F 9 1.2997 35 0.7905 110190
10 1.4166 40 0.8580 1.0874
20 2.5262 45 0.9242 1.1542
30 3.5711 50 0.9893 1,2196
40 4.5780 55 1.0535 1 2840-
50 5.5584 60 1.1168 1,3475
60 6.5186 65 1.1794 1,4101
70 7.4627 70 1.2413 1.4720
80 8.3933 75 1.3025 1.5332
90 9..3126 80 1.3632 1..5939

100 10.2219 85 1.4234 1.6540
200 18.9482 90 1.4831 1.7137

# 300 27.2677 95 1.5424 1.7728
400 35.3434 100 1.6012 1.8316
500 43.2462 200 2.7169 2.9463A
600 51.0170 300 3.7638 3.9926
700 58.6308 400 4.7713 4.9995
800 66.2549 500 5,7517 5.9794
900 73.7533 600 6.7117 6.9388

1000 81.1843 700 7.6554 7,8820
800 8.5856 8.8116
900 9.5045 9.7299

1000 10.4134 10.6383

^7
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pressure distribution along the airfoil contour is specified in terms of

q, not C . Therefore, the modified pressure distribution is a linear
p

q(s) from the front stagnation point where q 0, to the trailing edge

=	 where q qU. However, the requirement that the airfoil produce such a

linear q(s) is not very crucial because the pressure distribution on the

upper surface dominates the problem, and specification of q(s) over the

entire airfoil contour may result in a geometry which is not physically

meaningful. For example, the upper surface might cross over the lower

surface at a point between the leading edge and the trailing edge. Thus,

during the course of determining the geometry of the airfoil, liberty is

•	 taken with tr._ pressure distribution on the lower surface in order to obtain

a physically meaningful geometry. In regard to the pressure distribution

on the upper surface, a slight modification also must be made. This

modification is to change the abrupt pressure drop at the front stagnation

point to a gradual one. Because an abrupt pressure drop at the front

stagnation point corresponds to a leading edge of zero radius of curvature

which is not suitable for operating the airfoil at various angles of

attack, this modification is necessary. Knowledge about various types

of airfoils will help in making a decision as to what is the most

adoptable form of this modification.
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III. DETERMINATION OF THE GEOMETRIES OF AIRFOILS WHICH
PRODUCE THE OPTIMUM PRESSURE DISTRIBUTION

A. Review of Methods of Airfoil Design

1. Sato's Method and Weber's Method

The methods of designing airfoils with velocity specified along the

airfoil surface fall into two categories. One is the method of conformal

transformation and the other is the method of distribution of

singularities. The most powerful method which belongs to the first

category is the one developed by Sato, 4 The basic formulae used by Sato

actually are .-hose developed by Lighthill, 5 but Lighthill's method has

the disadvantage that velocity must be specified in terms of closed form

functions in order to be able to carry out the necessary integration,

With the help of high speed computers, Sato's method allows a velocity

distribution of any kind to be specified, and the integrations are carried

out numerically. The expression for the velocity distribution is assumed

in such a way that the front and the rear stagnation points can be treated

separately. A well-behaved function g(8) takes up the velocity distribution

everywhere with the exception of the stagnation points and three constants

A, B and T which are embedded. These constants are determined by the

function g(8), the closure condition of the airfoil and the fact that flow

field at infinity is a uniform one. Consequently, the resulting airfoil

is always a closed curve and the disturbance dies out at large distances

from the airfoil. The results are very accurate near the leading and the

trailing edges where most other methods have difficulties. This is

because the singularities caused by stagnation points are treated

separately in an anal,tical way. The method is to be used on an
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iterative basis in the sense that the computation must be repeated many

times before a satisfactory geometry of the airfoil may be obtained.

The reason of doing this is as follows.. A set of initial values must be

given to A, B and T in order to obtain the function g(8) from the specified

velocity distribution. This g(8) is to be used to obtain another set of

A, B and T which will give a O osp^ curve as the airfoil geometry. Unless

the initial set of A, B, and T happens to hit the solution of the design

problem, these two seta of A, B and T will not be the same and the re-

sulting airfoil will not produce the desired velocity distribution. The

function g(8), then, is modified in such a way that the airfoil geometry

obtained in the next cycle will produce a velocity distribution which is

closer to the desired one. This procedure is repeated until the specified

velocity distribution is reached. Therefore, Sato's method always

guarantees an airfoil which produces the desired velocity distribution

to be obtained.

Turning to the method of distribution of singularities, one observes

that the crudest one is the inverse of thin airfoil theory. Since large

disturbances are not allowed in thin airfoil theory, airfoils with large

thickness/chord ratios and/or large cambers which are operating at high

angles of attack can not be obtained by this method. Modifications have

been made by Weber6 to include this capability by considering both first

order and second order terms.

2. Method of Conformal Transformation and Method of Distribution
of Singularities in Designing Multiple-Element Airfoils

When an airfoil of more than one element is to be designed, both

Sato's and Weber's methcds fail. Because Sato's method employs conformal
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transformation, the reason why it fails for multiple-element airfoils is

obvious. Take an airfoil of two elements as an example. The domain

outside this airfoil is a triply connected one while the domain outside

a single-element airfoil is a doubly connected one. Therefore, all the

theories and formulae developed for the latter cease to be applicable

to the former. Weber's method seems more 'likely to be applicable to

multiple-element airfoil design. But, using a conventional airfoil with

a slotted flap as an example, the angle of attack and camber of the flap

are not properly defined and their contributions to the velocity dis-

tribution are difficult to identify. In view of the fact that no other

methods of airfoil design are capable of treating airfoils consisting of

a	 more than one element, the necessity of developing a new method becomes

clear.

The first method considered was the conformal transformation. The

reason for proceeding in this directior. was that Sato's method shows that

single-element airfoils with satisfactory geometry which prod-ice the

desired velocity distributions can always be obtained by employing a

conformal transformation and modifying the transformation function in a

systematical way. As shown by Garrick, 7 the domain outside two closed

contours can be transformed into the annular region between two concentric

circles. Alternatively, a domain of rectangular shape may be obtained

with the help of a logarithmic function. In this case, the two contours

are mapped into two sides of the rectangle which are facing each other.

•

	

	 Garrick performed this transformation on two NACA 4412 airfoils and

computed the velocity distribution on the surface of each airfoil in

the same fashion as Theodorsen computed the velocity distribution on the
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surface of a single airfoil by transforming t ►ie airfoil into a cricle.

Therefore, by inverting Garrick's method, geometries of two-element air-

foils should be obtainable by specifying the velocity distribution along

the boundaries of the annular region between the concentric circles.

r	 Based upon this concept, a set of formulae, which states the closure

condition of each element of the two-element airfoil, was derived.

Expressions for velocity distributions were the same as the one used by

Sato. It was impossible to obtain the explicit formulae for computing

the constants. Instead, all the six constants which are part of the

velocity distribution and hence part of the transformation function appear

implicitly in six integral relations. When the numerical calculations

were carried out on a computer, it was found that a tremendous amount of

time and work was required to find one set of constants. Since this

method is to be used also in an iterative way, the time and work involved

in computing several sets of constants make this treatment of the design

problem formidable. As indicated by Garrick, the relative position of

the two elements varies with the values of four other constants, and no

study has been made as to how these values determine the relative position.

Because of these two drawbacks, the method of conformal transformation

was considered intractable in designing multiple-element airfoils. Next

to be considered was the method of distribution of singularities.

The method of distribution of singularities wxs originally a method

of computing the pressure distribution on the surface of a given airfoil.

Singularities of unknown strengths such as sources, sinks, doublets or

vortices are distributed inside the airfoil contour or on the airfoil

surface. The strengths of these singularities are obtained by computing
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the velocities induced by these singularities and requiring the tangency

condition be satisfied. The surface pressure distribution is then

computed from the strengths of these singularities. When this method

is applied to solving a design problem, an iterative procedure is

necessary. The starting point of this iterative procedure is an airfoil

with arbitrary shape. The pressure distribution on the surface of this

starting configuration is computed by the method of distribution of

x
singularities. Then a modification of the geometry is performed according

to how much the computed pressure distribution differs from the desired

A-
one. Generally, more than one modification is necessary and the iterative

process continues until a satisfactory pressure distribution is achieved

by the airfoil. At this stage, there are two questions which roust be

answered. One is how the pressure distribution on the surface of a given

airfoil should be computed. The other is how to modify the geometry of

the airfoil in such a way that the velocity distribution on the surface

of the modified airfoil will be closer to the desired one than the

previous one is. The answers to these two questions are presented in

the following sections.

B. Methods of C2Rutinx pressure Distribution on the Surface
of a Given Airfoil

There are many methods of distribution of singularities available in

the literature which compute the velocity distribution on the surface of

a given airfoil. In the earlier methods, singularities are distributed

inside the airfoil contour. The disturbances produced by the airfoil

are considered to be composed of those due to thickness of the airfoil

and those due to camber and angle of attack. Sources and sinks are used
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to represent the firmer, and the lattei are represented by vortices. In

the newly developed methods, all the singularities are distributed on

the airfoil surface, and the pressure distributions are computed by

solving integral equations of different forms. The outstanding feature

of these methods is that the airfoils-under consideration can possess any

geometry and any orientation relative to the free stream. Effects of

thickness, camber an, 1 angle of attack do not have to be considered

separately. As a general property and hence a limitation of the method

of distribution of singularities, the fluid flow is considered to be

incompressible and nonviscous.

Among all the new-fashioned methods, perhaps the best known is
s	

the method of Hess and Smith. 8 Although this method has gained such

publicity that it almost becomes a standard method of computing velocity

distribution on the surface of an airfoil in incompressible potential

fluid flow, it has some drawbacks which have not been noticed by many

people. There are two other methods which are very effective but not

known to many people in this country. They were developed in Germany

and one is by Mortensen9 and Jacob, 
10 

the other is by Oellers. 11 These

three method,, will be analyzed and compared with each ot',-r in the

following subsections.

1. Hess-Smith's Method

In this method, the airfoil surface is replaced by a source sheet

with strength 0(s), where s is tha distance measured along the airfoil

surface. Considering the airfoil to be stationary, velocities induced by

the source sheet are combined with the free stream velocity to satisfy the
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tangency condition that there should be no velocity component normal to

the airfoil surface. This corcept results in a Fredholm integral

equation of the second kind

sT

2M (s) + S F (a') 
an
 An r(s,s )ds	 F(s)	 (23)

0
where 

9  
denotes the trailing edge of the airfoil, r(s,s') is the distance

between two points represented by s and s', and F(s) is a function related

to onset flows. For a uniform free stream, F(s) _ - Um • n(s) where n(s)

is the local outward unit normal vector. In this equation, the first

term on the left hand side represents the normal velocity at point s

induced by the local source c(s). The second term represents the normal

velocity at point s induced by the remaining source sheet. When the

geometry of an airfoil is given together with the direction of the free

stream, both the right hand side of the equation and the kernel of the

integral are known. Hence the equation can be solved for U(s). In

principle, the equation may be solved by analytical methods such as

Neumann series successive approximation. In practical application,

however, numerical methods are appropriate. Based on this concept,

the contour of the given airfoil is divided into N segments. The

integral term in the integral equation may be written as

N sj+l

j 1 
^'	 0 (s' )a An r (s, s' )ds'
sj
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where a  and s j+1 are the end points of segment J. At this stage, Hess

and Smith make the approximation that 6(s) takes a constant value within

each segment, This approximation will tend to b.-- exact when N goes to

infinity. With this approximation, the integral becomes

	

N	 s +1
pj
	

an An r(s,s')ds'

	

J u l	 ej

where. o f is the constant value of U (s) in segment j, I.n order to carry

out the integrations aral}tically and hence simplify the problem further,

two more approximations are. made. One is to approximate the curved

segment j by a straight line joining the end points of segment j 	 With

this approximation, each integral may be evaluated for a specified point

s regardless of the precise shape of the segment J. Since the coordinates

of the end points of each segment must be known, a convenient choice.of

this point s would be the mid-point of the chord line of each segment.

The second approximation is that the integral equation (23) is not to

be applied on. the airfoil surface. Instead, it will be applied at the

mid-point of the chord line of each segment. Therefore, N equations may

be obtained by applying equation (23) at N of these mid-chord points.

This system of equations may be written in the form of

N
E KijQj = Fi 	 i ='1,2,...,N	 (24)
J-1

where F  = - O ni and ni is the unit outward normal vector of chord

i. Kij is the abbreviation of

s +1
aAn r(s,s')ds'

®	 i
J
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where s denotes the mid-point of chord i and integration has been carried

out along the chord J. When i equals j, the value of K ij is 2rr which is

the coefficient of the first terry on the left hand side of equation (23).

Literally, Kij represents the outward normal velocity at mid-point of

chord i induced by a source sheet with uniform strength unity located at

chord J. When the geometry of the airfoil is given in terms of the co-

ordinates of N. discrete points, the coefficient matrix K. j can be computed.

The right hand side is then determined once the free stream direction is

given. Therefore, a solution 
7  

can be obtained by solving this system

of N simultaneous linear algebraic equations. This solution is an

approximate solution to equation (23) evaluated at discrete points. Be-

cause the integration is carried out along the chord line of each segment

in obtaining Kij and equation (23) is actually applied at mid-chord points
_a

which are slightly off the airfoil surface, the segmentation of the airfoil

surface should be made in such a way that segment size is smaller in the

high curvature region and larger in the low curvature region of the air-

foil surface. In other words, more segments are needed near the high

curvature region in order to obtain better results. This does not imply

that the segment can be made very large when a large portion of the air-

foil surface is a straight line. The reason is that the variable a(s)

will not be a constant even for a straight line portion of the airfoil

surface. Hence the segment size must be kept small even for a straight

line portion of the airfoil surface 	 irder that the first approximation

made by Hess and Smith can be considered to be a good one.

With the solution to equation (24), the velccity tangent to the

airfoil surface can be computed by combining the tangential component.
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of the free stream velocity and the tangential velocity induced by the

source sheet. This surface velocity usually does not vanish at tre

trailing edge of the airfoil when the airfoil is generating a lifting

force. Therefore, an additional set of Q i must be superposed to the

solution of equation (24) in order to insure that the fluid will flow

off the trailing edge smoothly. This set of CF i is obtained as the

solution to a system of simultaneous linear equations with the same

.f	 coefficient matrix: Ki appearing in equation (24) but with a different
J

'	 right hand side. The right hand side F. for this purpose is the normal

velocity at P..ir_h midchord point induced 1y a vortex sheet with unit strength

which has exactly the same location as the approximating source sheet.

The solution to this system is a source sheet which will induce a

tangential velocity on the airfoil surface which corresponds to the

surface velocity distribution due to a unit circulatory flow around

the airfoil. By combining these two sets of Q i s and varying strength

of the vortex sheet, one is able to satisfy the Kutta condition with

a circulatory flow of strength r. This t essentially represents the

circulation generated by the airfoil. With this r, the real tangential

velocity VT along the airfoil surface can be computed by combining the

tangential component of uniform free stream, the tangential velocities

induced by the two sets of C i 's. Pressure distribution can then be

obtained by computing the pressure coefficient from

C	 1 . (VT)2.p	 U,
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2. Martensen-Jacob's Method

Instead of replacing the airfoil surface by a source nheet, Martensen9

uses a vortex sheet. By requiring that the strength of the vortex sheet

be identical to the velocity distribution on the surface of an airfoil,

Martensen was able to show that the interior of the closed vortex sheet

	

must have zero velocity everywhere 	 In particu..,:, the tangential

rt
velocity at evg.ry point on the inner side of the vortex sheet caused by

the free stream and the vortex sheet should be zero. This result can be

represented also by a Fredholm integral equation of the second kind

sTY(s)-

 T,, an J Y(s')1n r(s,s')ds's -

	 0

= U (ax cos a, + ^ sin a,)	 (25)	CO ds	 ds

where y(s) is the strength of the vortex sheet and a, denotes the free

stream direction. This equation almost has exactly the same form as

equation (23).. The corresponding terms possess similar meaning except

that the tangential velocities are considered in equation (25)

When solving equation (25), Martensen also replaces the integral

by a summation, and hence a system of simultaneous equations is to be

solved.. However, when approximating the integral, the first law of the

mean is used in contrast to the second.law of the mean employed by Hess

and Smith. When 2N control points are distributed along the airfoil

surface, the resulting system of simultaneous linear equations can be

written as

v
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2N
E Kij Yj = 2Nwi , i - 1,2,...,2N	 (26)
j-1

where y  is the vortex strength at point j and

wi	U,,[ xi (8) cos a + Yi (8) s in CQ

K	 (xi-x{)yi(e) - (yi -Yj ) xi (G ) i # j
_

ij	 (xi-xj)2 + (yi-yj)2

2N
Ki

j 	
i = J.

i=1 

The independent variable has been changed from s to 8 where A is the

angular coordinate of the image of a control point when the airfoil is

transformed into a circle. The control points on the airfoil surface

are to be distributed in such a way that their images are equally spaced

on the circle, and hence the interval over which the law of the mean is

applied is 2N. Dots over x and y ineicate derivatives with respect
2N

to 0. The identity E Kij = 0 canes from the fact that
i=1

ST

J an 
'fin r(s',$)ds' _ - n.	 (27)

0

Equation (27) makes the solution Y(s) of equation (25) non-unique and

this character is carri_d over to the system of equations which replaces

equation (25). Indeed, equation (26) is not a linearly independent

system and the coefficient matrix Kij has a rank of only 2N-1. The only

degree of freedom of the system is annihilated by applying the Kutta condition.
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The solution obtained is the velocity distribution on the airfoil surface.

This is an advantage of this method when compared with Hess -Smith method,

As previously stated, the direct solution to equation (24) is the source

strength, and the surface velocity has to be obtained fron, this source

sheet. However, Martensen's method does not give good results for thin

airfoils with thickness/chord ratios less than 10%. The reason is that

when the airfoil is thin, the control points on the upper and lower

surfaces are very close to each other, and the vortices located there

induce strong tangential velocities on each other. While this induced

velocity decays very rapidly for points in the neighborhood of the

control point, the first law of the mean assumes it to be a constant.

Therefore, the computed result y  is not a good approximation to the true

solution to equation (25). Jacob 10 modified Martensen's method by taking

the limit of Kij when i approaches j to be the value of K ii . This gives

1 xi (9) yi (9 ) - yi (9) xi (9 )
Kii	 N - 2 X

1 (9) 2 + yi(9)2

Then the value of Kij for control points directly facing each other,,e.g.,

i w 2N - j + 2 for symmetrical airfoils, is obtained from 
2f 

Kij - 0:
i-1

This modification improves the results obtained from Martensen's method,

but it places a restriction on how the-control points are to be

distributed over the airfoil surface. Also, it can cause a lot of in-

convenience for airfoils such as those obtained by Liebeck and Ormsbee.l
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3. Oellers' Method

Oellers
11
 developed a method to compute the pressure distribution on

the surface of cascades of airfoils in tandem, The surface of each air-

foil is replaced by a vortex,x sheet which must be a streamline. Instead

of working with induced velocities, a method used by both Hess-Smith

and Martensen-Jacob, stream functions are employed. The stream function

for a uniform free stream is added to that of the vortex sheet, and the

:	 sum is set to be a constant on the airfoil surface. This requirement is

represented by a Fredholm integral equation of the first kind

(
s

^
T

s 
Y(s) aoX( s) - -TT J Y(s ' )

0

X An(sinh2 TCx(s^ X(s')1 + sin  jfy(s)-y(s')j 
1/2 ds'

where u = U cos a, v = U sin a, t is the spacing of the cascade andm ^	 ^ m

is an unknown constant. When a single-element airfoil is under'con-

sideration, the kernel of the integral becomes In r(s,s') and the equation

reads

sT

Y (s) - aoX(s) - 2n f Y( s' )bn r (s,s' )ds' 	(28)

0

To solve this equation for * and y(s),'the integral is again replaced by

a summation using second law of the mean to approximate the integral.

Dividing the airfoil surface into N segments and applying equation (28)

at the mid -chord point of each segment results in a system of

simultaneous linear equations of the form
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N
u.y i - vmxi +JE j Kij YJ , i = 1,2 .... ,N

or	 N

E KijYJ -^	 vpx i - umy i 	 3. s 1,2,...,N	 (29)

J'1

For an airfoil with the geometry given in cerms of coordinates of N points,

the coefficient matrix Kij may be computed and the right hand side of

equation (29) is known once the free stream direction is given. However,

there are N+1 unknown variables W and } ' i 's while only N equations are

ai	 available. The solution is not unique. This degree of freedom is again

removed by applying the Kutta condition at the trailing edge. Because a

•	 vortex sheet is used to represent the airfoil contour, the solution Y 

is the real tangential velocity on the airfoil surface. This is similar

to Martensen -Jacob's method but Oellers' method is simpler due to less

computation involved in obtaining the coefficient matrix.

4. Comparison of the Three Methods of Computing Pressure
Distribution on the Surface of a Given Airfoil

Extensive investigations have been made in order to find various

properties of the methods presented in the previous subsections and their

applicability to solving the problem of airfoil design. The results

are summarized as follows.

When applied to standard airfoils for which analytical expressions

of pressure distribution are available, the Hess-Smith method always

Sivas the correct value of circulation generated by the airfoil, This

indicated that the pressure distribution computed by the Hess-Smith

method is fairly close to the true value. However, the computed surface



M 

51

velocity is found to be very sensitive to the coordinates of the control

points on the airfoil surface which are used as the input of this method

That is to say, the numerical values of the input coordinates have to be

so accurate that they really do represent a smooth curve. A tiny error

in the input coordinates can produce, a wavy behavior of large amplitude

in the computed surface velocity. This is illustrated in Figure 7. The

upper half shows the trailing edge of a thin airfoil and the lower half

shows the pressure distribution computed by the Hess-Smith method. An

airfoil whose surface is not perfectly smooth will produce wavy pressure

distribution along the airfoil surface but the amplitude computed by the

Hess-Smith method is simply too large. This is attributed to the fact

that this method chooses the velocity normal to the airfoil surface to be

the variable to work with. Because airfoils are generally operat:ing.at

moderate angles of attack and hence the free stream does not have large

component normal to the airfoil surface, the consequence of using normal

velocity as the variable is that a small absolute error introduced in

computing the unit normal vector n  by the non-exact input coordinates

is a large relative error for the right hand side of equation (24).

Therefore, by failing to represent the airfoil surface exactly with the

input coordinates, the solution of equation (24) contains errors. These

errors are especially large near the trailing edge of thin airfoils.

This character of the Hess-Smith method makes it intractable to perform

modifications of the geometry graphically when an airfoil design

problem is to be solved. Alternatively, if the modification is to be

accomplished by an iterative procedure programmed for a computer, the

possibility is eliminated when one recalls that the tangential velocities
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on the airfoil surface have to be computed as those induced by all the

discrete sources distributed on the approximated airfoil contour.

-

	

	 As noted by Jacob, Martensen's method does not give accurate results

for thin airfoils. This drawback has been improved by Jacob by taking the

steps described in Subsection III.B:2. However, this modification

restricts the manner in which control points are to be distributed on the

airfoil surface. As will be seen in the next chapter, all the airfoils

which generate optimum pressure distributions have a sharp trailing edge

with which a thin aft-part is inevitably associated. Therefore, a

modification to the Martensen-Jacob method has been made during the

course of this study in order that thin arifoils may be treated and no

•

	

	 generality of how to distribute control points will be lost. The

modification is to approximate the Lntegral by using the second law.of

the mean instead of the first law of the mean. In other words, the

scheme by which Kij is computed in the Hess-Smith method is applied to

equation (25). It is found that this modification serves the purpose of

fulfilling the requirements described above, but the circulation generated

by the airfoil is smaller than the one computed by the Hess-Smith metb^d.

Further investigation reveals the fact that the influence of local

curvature on the induced velocity has been ignored when the coefficient

matrix is obtained by carrying out the integration along the chord line
i

of each segment instead of along the airfoil surface which is usually

curved. This approximation did not bother Hess-Smith's results but the

effects on the solution of equation (25) are far more than would be

expected. The reason is a very interesting one: The diagonal el=Amts

of the coefficient matrix of the integral equation (23) have a positive



54

sign while those of the integral equation (25) have a negative sign.

With everything Else the same, this difference makes the coefficient

matrix of equation (24) a diagonally dominated one while that of equation

(26) is an almost singular one. When one uses the terminology of numerical

analysis, the former is a well-conditioned matrix and the latter is an

ill-conditioned one. Hence by neglecting the local curvature, a more

severe consequence appears in Martensen-Jacob's results than in Hess-

Smith's results. After the curvature effect is taken into consideration,

the circulation computed by Martensen-Jacob's method increases, but it

is still smaller than the value obtained by Hess-Smith's method. On the

other hand, because it is the vortex sheet and tangential velocities which

are considered by Martensen and Jacob, the coVuted results are not very

sensitive to the inaccuracies of input coordinates. Small absolute

errors introduced by non-exact coordinates in computing tangential

vectors produce small relative errors for the right hand side of equation

(26).. Thus, wavy pressure distributions will be obtained when non-exact

coordinates are used as input, but this is what should be expected. The

wavy pressure distribution computed by the Hess-Smith method for a same

set of coordinates is too Pxaggerated to be realized in real fluid flow.

Hence the modified Martensen-Jacob method can be used in designing air-

foils by an iterative procedure ahen modifications of geometry are to be

made graphically. Also, the explicit appearance of surface velocity

y(s) in the integral equation makes it possible that, when applied to

airfoil design, a &$stematic:al way of modifying the geometry may be

established and performed on a computer.
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There are no references which give the pressure distributions along

the surface of single-element airfoils computed by Oellers' method, but

the numerical examples which have been worked out during the course of

this study show that Oellers' method possesses many favorable character-

istics. First, the computed surface-velocities are relatively insensitive

to inaccuracies of the input coordinates. This is attributed to the fact

that the right.hand side of the system of simultaneous equations (29)

contains only the coordinates of the airfoil while derivatives must be

computed both in the Hess-Smith method and the Martensen-Jacob method.

Because computing derivatives numerically always causes a lose of accuracy,

the results obtained by using Oellers' method are expected to have higher

precision than the other two methods. Second, the circulation generated

by the airfoil is found to be almost the same as the one computed by the

Hess-Smith method. The word 'almost' is used here because all the

numerical results are approximations to the real solution to the integral

equation employed. Therefore, an identity of the results obtained from

different approximations is almost impossible to achieve. The pressure

distributions on the surface of standard airfoils are found to be very

close to those obtained by analytical methods. This is true whether the

airfoil is thick or thin or whether it has a rounded trailing edge or a

sharp one. Third, the time consumed in computing the velocity distribution

is less than that of any of the other methods. This is attributed to

the simplicity of the kernel of integral equation (28). This character-

istic is very important because the computation of surface velocity must

be repeated many times during an iterative procedure of airfoil design.
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These three characteristics, plus the fact that surface velocity y(s)

appears explicitly in the integral equation, make the Oellers' method

undoubtadly the appropriate tool to be used in airfoil design.

CC A New Method of Two-Dimensional Airicil jesiM

As indicated in the previous sections, the problem of multiple-

element airfoil design can be solved best by an iterative procedure in

which the geometry of a starting airfoil undergoes modifications until

the surface pressure distribution computed by a reliable method agroes

with the desirod one. The most reliable method of computing pressure dis-

tribution on the surface of an airfoil with given geometry has been found

to be the one by Oellers while the modification of starting geometry has

yet to be studied. Since the modification should be made according to

12	 how the computed velocity distribution differs from the desired one in

order that the procedure converges to the desired answer, some means

must be found by which the modified coordinates of the starting airfoil

can be related to the desired velocity distribution. When the equation.

considered by Oellers in computing the surface velocity of an airfoil is

recalled,

BT

'^ ay (s) - o^x(s) - 2n f y(s')An r(s,el)ds' 	 (28)
0

one can see clearly that this is the appropriate relation between surface

velocity y(s) and coordinates (x,y). In order to compute the pressure

distribution on the surface of an airfoil, the coordinates of the air-

foil may be normalized with respect to the chord length for the purpose

of convenience. With this normalization made and approximately one
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hundred control points distributed along the airfoil surface, the co-

efficient matrix 
Kij 

obtained by approximating the integral in equation

(28) is found to possess an excellent property. That is: most elements

of Ki' are of order 10-3 , some of them are of order 10
.2
 and only a few

are of order 10 .1 . Therefore, if the equation is rewritten as

sT

upy(s) - vmx (s) _ +^ +Y(s') In r(s , s')ds'
2r S

0
which can be replaced by

N

umyi - VON = '^ jaiKijY j	 i = 1,2,...,N,
1

the change of the summation term will not be large if each 
y  

is changed

by an amount of order one. This nice characteristic of the coefficient

matrix forms the foundation upon which an iterative method of designing

airfoils is based.

The method starts from a computation of velocity distribution along

the surface of an airfoil. The geometry of the airfoil is an arbitrary

one and it is given in the form of a set of coordinates. With this sat

of coordinates and a given free stream direction, the surfacea velocity

can be obtained by solving the simultaneous linear equations

N
E Ki^Y .j 	v^xi - umyi	 i = 1,2,...,N	 (29)
^=1

for Y' 's and r. This surface velocity Y j0) generally does not agree with

the desired distribution because the coordinates represent merely an

arbitrary airfoil. Hence the coordinates need to be changed in order to

obtain the desired velocity distribution. At this time, equation (29) is

n

I

1



so

satisfied by the coordinates (x,y), the K ij from this not of coordinates,

the free stream direction and the computed y (0), a, #. This identity will

be destroyed when the computed Yj0) is replaced by the desired velocity

Yjd). If the desired velocities Yjd) are kept there and an attempt is

made to change the values of x,y in such away that equation (29) is again.

satisfied, it would mean that an airfoil which produces the desired

velocity distribution has been obtained, and this airfoil is represented

by these new coordinates. In doing so, 
m 

and 
0 

may be kept unchanged.

Yjd) is the desired value and it causes no trouble. Now, the equations

are to be satisfied by varying x, y, # and Kij while Kij is strictly

determined by (x,y). This puts too many constraints on the effort of

making attempts to satisfy equation (29). Thus, an alternative approach

is taken in which the coordinates of the airfoil which produces the

desired velocity distribution are to be obtained by making several

modifications to the original airfoil instead of one modification. The

first step in achieving this is to retain the value of Kij which

corresponds to the original (x,y). The reason for doing so is that Kid

consists of N2 elements. Each element has a different value, and it is

impossible to find correct values for all the elements in order to

satisfy equation (29). Now, the summation E K ijy will have two values
Jul

not much different from each other whether the y  is the desired velocity

distribution or the one computed for the original airfoil. Therefore,

it is to be expected that only small changes of x, y and # are needed

to restore the identity of equation (29) after y (0)I s are replaced by

Yjd), s. Since the goal is to change values of x and y, i is assumed

to be unchanged and its original value is retained. At this point, the
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situation is that the left hand side of equation (29) has been computed

using the original values of Kij and desired values of Y j 's. uM and vM

are unchanged and the values of x and y are to be found such that the

identity can be restored. Since N equations can uniquely determine only

N variables, either x or y must be forced to take its original value.

A study of Figure 8 will help in making this decision. In this figure,

two airfoils are shown immersed in a common free stream. These two air-

foils have entirely different angles of attack, thickness distributions

and camber distributions. The only thing they have in common is that they

span the same lengths in x direction. If the geometry of an airfoil is

represented by a set of control points which are the intersections of

the airfoil contour and the family of vertical lines shown in the figure,

the geometry of one airfoil can be obtained simply by moving the control

points of the other airfoil along these vertical lines. In other words,

the geometrical characteristics of an airfoil can be completely changed

by changing the y coordinates of the control points. Therefore, in

restoring the identity of equation (29), the x values are assumed to have

the original values. The system, then, ccntains N y-values to be deter-

mined from N equations. The solution to this system is easy and the

y-values obtained will be designated by y (1) . This y (1) together with

the unchanged x-values actually represent the control points of an air-

foil which would produce the desired velocity distribution if the co-

efficient matrix Kij remained unchanged during the change of y-values.

Because Kij is completely determined by (x,y), the new airfoil represented

by (x,y (1) ) will have a different coefficient matrix, K (l) , and hence

the desired velocity distribution will not be realized. However, since
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	L-1	 .

the difference vi - yil) is merely

N

^- N 
Ki'[Yjd) - Y(0)]

w j!l

which has been found to be small, the change in K ij is to be expected to

be small also. Hence the velocity distribution on the surface of this

new airfoil is not much different from the desired distribution y(d)j
Up to this point only one iteration has been completed. The geometry of

this new airfoil can be modified again by changing the y (1) values by an

amount

u E Kil)[y (1) - Y (d) 3 .
m j

The velocity y (2) along the airfoil surface which is now represented by

(x,y (2) ) is expected to be closer to y (d) than y (1) and y(0) because the

difference y (2) - y (1) is smaller than yil) - yi in absolute value. There-

fore, an iterative scheme has been established to obtain the geometry of

an airfoil with velocity distribution specified along the airfoil surface.

As will be seen in Chapter V, certain precautions must be taken when

specifying the velocity distribution in order that a satisfactory airfoil

may be obtained. For the examples presented in Chapter IV, the con-

	

_	 vergence of this iterative process was found to be fairly rapid. For

clarity, the procedure can be formally stated as follows:

(i) goose one of the standard airfoils as the starting con-

k 

figuration. Either Joukowski airfoils or NACA airfoils may be used be-

cause standard formulae are available to compute the coordinates of the
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control points distributed along the airfoil contour. Nore control

points are needed in high curvature regions in order to obtain accurate

results. The coordinate system is to be oriented in such a way that the

chord of the airfoil is parallel to the x-axis, and a free stream direction,

should be chosen, for a normalized chord length, one hundred control

points were found to be satisfactory for the examples computed in this

study.

(ii) With the control points chosen in (i), compute the surface

velocity Y(iO) by Oellers method.

(iii) Compare the computed velocity distribution with the desired

one. Replace those yj 's which are not desired by the desired values and

evaluate

N

j!l KijYj	
-

(iv) Obtain the y coordinates of the modified airfoil from

y (a) = u E 

vxi
+ 	 (m-1) - E Kim- 1)Y(d),	

(30)
Jul	 j

where superscripts (m) and (m-1) denote the sequence of iteration and

superscript (d) denotes the word 'desired'.

(v) Compute the velocity distribution along the surface of this

modified airfoil by Oellers method and return to (iii).

(vi) The repetition of steps (iii), (iv) and (v) is to be stopped

when the velocity distribution obtained in (v) is satisfactorily close

to the desired distribution.
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I	 The principle of this new method of airfoil design is not complicated,

but some diffieultias are encountered when an exorcise of the design

procedure is carried out. This will be seen in Chapter V.

For the purpose of demonstration and simplicity, the new method of

airfoil design has boon stated for problems of designing single-element

airfoils. The intension to the problem of designing multiple-element

airfoils is immediate. The appearance of several auxiliary elements in the

flow field, in addition to the main element, simply adds more integral

terms to equation (28), and the value of stream function # will be

different for different elements. Therefore, equation (28) may be

rewritten as a system of equations

8
' n Tq

t p u'yp (sp) - vpxp (sp)	
9 0 Y

q (sq ) .tn r(sp,sq)dsQ,
1

-.	 p • 1,2,...,A

where subscripts p and q denote the airfoil elements p and q respectively,

and the system is assumed to consist of n elements. If the control points

of each element are numbered ir_ such an order that they all start from

the trailing edge and go around the contour of each element in the same

direction, a system of simultaneous linear equations can be written as

WT
E 

Ki^Y !	
m - voxi - u^yi	i - 1,2,...,NT	 (31)

Jul

where subscripts i and j deno*_z the control points i and j respectively,

NT is the total number of control points and subscript m denotes the

m-th element. There are n unknown im 's and NT unknown Y ' 's to be solved,

a
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but only HT equations are available. This n degrees of freedom will be

removed when the Kutta condition is applied at the trailing edge of 4ach

element. Therefore, the procedures of designing multiple-element airfoils

are identical to the ones for designing single-element airfoils except

that equation (31) should be used instead of equation (29).

It is important to point out that although this new method of air-

foil design is . powerful in the sense that the starting geometry does not

have to produce a velocity distribution which is very close to the desired

one in order to achieve a converging iterative process, there is a dis-

advantage in the way the airfoil geometry is modified. As stated in

step (iv), the geometry of the airfoil is modified by changing the y-

coordinates of control points. This modification can entirely change the

character of a single-element airfoil. But, when multiple-element air-

foils are tinder conaiderSLion, this method is not capable of making all

the modifications permitted by the existing degrees of freedom. This is

because e&zh element ought tc, be able to move freely relative to the

others during the modification while step (iv) only allows motions in

the y-direction. Therefore, the relative position in x-direction is

fixed once a starting r^r Fi_:1JL'tii tiV=; is aj i.ven. This disadvantage, as will

be seen in Chapter V, results in a possibility that an airfoil which

produces the desired velocity distribution may not be obtained. Never-

.	 theless, the necessary change of relative positions in x-direction stall

can be made by artificial leans hacause the disadvantage described above

exists only when the systematic steps (i)--(v) are to be programmed for

a computer and the coordinates of cm. #-rnl points are to be changed by

the machine.
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D. Selection of Parameters in Designing Two-Element Optimum
Airfoils

As stated in Section II.B, the parameters which specify the optimum

pressure distribution are the trailing edge velocity and Reynolds number

Rep . Because a non-zero trailing edge velocity is necessary to avoid an

airfoil of infinite chord length, a convenient choice would be q v = 11

Namely, the velocity at trailing edge is the same as free stream velocity.

This choice is.made for all the airfoils generated in this research and

hence only different values of Re  need to be considered. As can be seen

in Stratford's derivations, Re0 specifies the boundary layer character-

t	 istics at xo and hence the zero skin-friction pressure distribution. In

the variational problem, with trailing edge velocity fixed at q v = 11

Re0 determines the peak velocity, the extent of peak velocity plateau and

the chord length which corresponds to a specified free stream velocity.

Hence, to design r single-element optimum airfoil, an appropriate value of

Re  must be chosen according to the desired free stream velocity and chord

length. The exact value of iiit coefficient is not known until the

iterative process is terminated because the velocity distribution along

the lower surface does not have a definite specification for the reason

stated in Section II.C. For single-element airfoils, a given velocity

distribution on the upper surface can be achieved by different airfoils..

having appropriate combinations'of angle of attack, camber distribution

and thickness distribution. Any one of these airfoils may be considered

to be the solution to the optimization problem. However, the final decision

as to which one is best suited for practical utilization depends on other

criteria such as structural requirement, performance at various angles

of attack, etc.
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r

	

	 When two elements are present in the system, things are more

flexible. To avoidtntecessary complexity, the requirement q U s 1 is posed

ar the trailing edge of both elements. A value of Re O needs to be

specified for each element and they depend only on the desired chord length

i	 of each element. With this information, the pressure distribution can be

specified, and the iteration can start from an arbitrary configuration.

In addition to the geometrical characteristics possessed by single-element

airfoils such as angle of attack, camber distribution and thickness

}	 distribution, two-element airfoils have one more, namely, the relative

position of two elements. With the velocity distribution specified

definitely only on the upper surface of each element, there are many air-

foils which can be considered as the solution to the optimization problem..

These airfoils all produce the desired velocity distribution on the upper

\	 surface of each element, but they will have diferent angles of attack,

different thickness and/or camber distributions of each element and

different relative positions between the two elements. Once again,

structural aspects and aerodynamic behaviors at various attitudes play

important roles in determining which airfoil is optimum in the CL	sense
max

and utilizable in constructing wing sections.
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IV. EXAMPLES

During the development of the new method of airfoil design, a two-

element airfoil was considered in which one element was placed near the

trailing edge of the other. This simulates the conventional wing which

possesses a slotted flap as the high lift device. Values of 5 X 10 6 and

106 were chosen for Re  because they give a chord ratio approximately 4.

After the development of the method was completed, another two-element

airfoil was generated with Re  = 10 7 and 2 X 106 . With these two sets of

Reynolds numbers, different relative positions were assigned to both air-

foils in order to investigate the effects of relative position of the

two elements. The results are presented in graphic form in Figures 9 to

18. Both geometry and pressure distribution are shown in the figures.

Free stream direction is at an angle of 11.25 0 measured from positive x-

axis. Each figure shows the result obtained by completing ten iterations

of the procedure described in Section III.C. The time consumed by an

IBM computer model 360/75 were approximately 187 seconds and the figures

were drawn by the Calcomp Plotter. Since the Plotter only draws straight

lines, symbol x indicates where C  was computed, and Lagrangian inter-

polation was employed in plotting the airfoil contours.

In addition to the two-element airfoils, two single-element airfoils

were generated. Values of 5 x 106 and 107 were chosen for Re  in order

to compare the geometries with two-element airfoils. Sato's method was

employed and the resulting airfoils were found to possess highly curved

leading edges. Also, the thickness ratio was found to be less than 9%.

Shown in Figure 19 is the airfoil for Re 0 - 5 x 106 together with three
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Figure 12. Geometry and pressure distribution of two-
element optimum airfoil for Re01 5 X 106
and Re 02 = 106 , c  w 2.27442.
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Figure 17. Geometry and pressure distribution of two-
element optimm airfoil for Re - 10 7 and
Re 02 - 2 x 106, GL - 2.45446. O1
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Figure 19. Single-element airfoil designed by Sato's
method and pressure distributions computed
by three different methods.
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pressure distributions. These three pressure distributions were obtained

by three different methods and are presented in the same figure for

comparison. It can be seen that Oellers' method yields a better result

than the one obtained from the Hess-Smith method. Since thick airfoils

with blunted leading edges are desirable for practical utilization,

modifications in pressure distributions were made, and the new method of

airfoil design described in Section III.0 was employed to obtain the

coordinates. Ninety control points were used and the time consumed by

the IBM 360/75 computer was 110 seconds. The resulting geometries and

pressure distributions are presented in Figures 20 and 21. Also shown in

the figures are the pressure distributions at off-design attitudes, i.e.,

at angles of attack smaller than the designed values, 17.6 0 for

Re  - 5 X 106 and 18.60 for Re  = 107.

Because of the different quantities used in computing Reynolds number,

the free stream Reynolds number Re COmay be obtained from the formula

s UU
°D R. OD 0 U0 s0 

s 

where all the quantities are available frr*l Tables 1, 2 and 3. The value

of c/sU is approximately 0.925 for the examples generated. For wing-flap

configurations, the main element is taken as the reference.

Although a  has been used as the reference length in defining the

lift coefficient in Chapter II, the chord length c is commonly used.

Hence the CL values shown in Figures 20 and 21 are based on the chord

length and those shown in Figures 9 to 18 are based on the chord length

of the main element.
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Figure 20. Single-element optimum airfoil for
Reo = 5 X 106 and pressure distributions
at three different angles of attack.
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V. DISCUSSION AND CONCLUDING REMARKS

Single-Element Optimum Airfoils

Although the main interest of this research was to obtain the

geometries of multiple-element airfoils optimized for maximum lift co-

efficient, several single-element airfoils were also generated. Two

single-element airfoils with different Reynolds numbers are presented in

Figures 20 and 21 together with their pressure distributions. The

geometries of these two airfoils are quite similar. This is not surprising

since the optimum pressure distributions on the upper surface of each air-

foil do not differ very much (see Figure 22). The modified pressure

distributions on the lower surface are also similar. The only difference

between these airfoils is the attitc.de at which each airfoil is to be

operated. As can be seen in Tables 1, 2 and 3, larger Reynolds numbers

always result in higher peak velocity and longer extent of peak velocity

plateau. Hence lift coefficient increases as Reynolds number increases,

As a consequence, single-element optimum airfoils with larger Reynolds

numbers usually operate at higher angles of attack. The geometry is

obtained first by Sato's method. The results all possess leading edges

of high curvature and the thickness ratios are smaller than 9%. This

highly curved leading edge is the consequence of the abrupt pressure drop

at the front stagnation point as demanded by optimization of pressure

distributior., but it is not suitable for operating the airfoil at other

angles of attack. When the airfoil is to be operated at angles of attack

smaller than the design value, the front stagnation point moves along the

airfoil surface in a clockwise direction. This leads to a small region
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Figure 22. Optimized pressure distribution on the
upper surface of a single-element airfoil
for two different Reynolds numbers.
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of high velocity on the lower surface and consequently a flow separation

when the velocity is decreasing toward the trailing edge. Although the

flow separation on the lower surface is probably not as extensive as the one

on the upper surface, the precise effects are not known. The curvature .

near the leading edge was reduced by modifying the geometry obtained from

Sato's method in an arbitrary manner. This modification not only changed

y:	 the abrupt pressure drop to a gradual one but also destroyed the optimum

pressure distribution which is composed of a plateau and a Stratford zero

skin friction pressure distribution. What needs to be done is to modify

this modified airfoil in such a way that the gradual pressure drop, as

well as the plateau and Stratford's distribution, can be obtained. This

modification is accomplished by employing the new method of airfoil

design developed in Section III.C. As shown in Figures 20 and 21, each

airfoil has a leading edge of small curvatu:e, a moderate thickness (12%)

and a not too thin aft part. The pressure distribution on the upper

surface does have a plateau and the recovery part does follow the

Stratford distribution. But, the pressure drop at the front stagnation

point is gradual and the trailing edge velocity is not q U • 1. These

facts make the airfoil a non-optimized one. However, in view of the

conflict between the optimization requirement and other criteria such as

the aerodynamic performance at various angles of attack and structural

requirement, the compromise made is an appropriate one.

The behavior of these airfoils at lower angles of ae-tack was also

examined. The pressure distributions are shown in Figure 20 and 21.

They all possess an almost constant free stream pressure on the lower

surface. The acceleration on the upper surface is gradual and the

position of peak velocity is fairly close to the mid-chord.
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B. Two-Element Optimum Airfoils

The examples presented in Figures 9 to 18 are two-element optimum

airfoils with free €tream Reynolds numbers in the order of 106 to 107

Because the intention is to design high lift devices, such as a retractable

trailing edge flap, chord ratios of approximately 4 are used. It can be

seen that geometries of the main elements differ from those of the single-

element airfoils with the same value of Re 0* 
This difference occurs be-

cause the optimum pressure distribution is the same for all airfoils of

any number of elements while for multiple-element airfoils the pressure

distribution of each element is not entirely determined by its own geometry.

The geometries of other elements ano the relative position of each element

are also involved. These examples have indicated that the relative

position of two elements plays an important role in determining the

geometry of each element. When two elements are in a conventional wing-

flap configuration as shown in Figure 9, the influence of the flap on the

main element is to induce an increase of circulation which is composed of

a velocity increase on the upper surface and a velocity decrease on the

lower surface of the main element. However, in order to produce the same

optimized pressure distribution, the single-element airfoil is inclined

more to the free stream than the main element of a two-element airfoil is

On the other hand, the influence of the main element on the flap is to

decrease the circulation about the flap. This is indicated by a decrease

of velocity on the upper surface of the flap. Hence the inclination of

the flap with respect to the free stream is more than that of a single-

element airfoil which produces the same pressure distribution.. When the

distance between two elements is increased, the interaction becomes weaker.
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The consequence is that in addition to the slight geometrical change on

each element the main element increases its angle of attack, and the flap

decreases its angle of attack. Because the high peak velocity plateau on

the upper surface of the flap induces a strong flow field in the neighbor-

hood of the flap's leading edge, low speed near the trailing edge of the

main element as required by the optimization can not be realized if the

distance between the two element is too small (see Figures 9 and 14).

Therefore, from an aerodynamic point of view, some minimum distance must

be maintained between the two elements in order that the optimum pressure

distribution can be realized by geometrically realistic airfoils. Placing

the flap directly beneath the aft part of the main element should be

•	 avoided. Under that circumstance, the lower surface of the main element

is approximately parallel to the flap and the peak velocity plateau on the

flap has a strong induced velocity. The aft part of the main element

call contribute negative lift force unless the distance between two elements

is made large (see Figures 12 and 17). It may be noticed that the require-

ment qU = 1 at the trailing edge o: the main element is not quite

satisfied in most cases. This is attributed to the fact that during the

modification of the airfoil geometries, the relative position of two

elements in the x direction is kept unchanged. This restricts the freedom

of modification because the relative position in the x direction is fixed

at its starting value. Therefore, several starting configurations are

used and only the one which gives the result of qU	on main element

should be retained. An alternative solution would be to change the entire

velocity distribution according to the real value of q U. But, since

optimum velocity distribution has been reached over a large portion of
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the airfoil surface and a new value of q  would result in a new value of

sup the gain of changing the velocity distribution is overshadowed by

the trouble it causes. With regard to the starting configuration, the

single -element optimum airfoils obtained by a combined use of Sato's

method and the new method developed in Section III.0 is chosen, although

any geometry may be used. The reason for doing so is two-fold. First,

all of the single-element optimum airfoils have moderate thicknesses and

reasonably blunt leading edges. Second, in this way the time consumed by

the computer in modifying the geometries will not be as long as the time

which would be consumed by starting from an arbitrary geometry.

•	 ^. Remarks About the Design Procedure

When the velocity distribution on the surface of a given ai •cfoil is

to be computed by Oellers' method, two sets of points are used. One is

the given control points which represent the airfoil. These points are

on the airfoil surface. The other set is the set of mid-chord points

which are slightly removed from the airfoil surface. The integral

equation (28) is applied at tae mid-chord points and the control points

serve the purpose of constructing the coefficient matrix Kij . Therefore,

when the geometry of an airfoil is under modification in order to obtain

the optimum pressure distribution, the values of y computed by equation

(30) are the ones for the mid-chord points. In order to compute the

velocity distribution on the surface of the modified airfoil, a new set

of control points must be obtained. Two ways of determining the co-

ordinates of control points from the mid-chord points were considered in

the early stage of this research but they did not give satisfactory
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results. One of these was to take the middle point of the straight line

which connects two adjacent mid-chord points to be the control point.

The other was to form a polygon such that the new mid-chord points were

the middle points of each side and the corners of this polygon were taken

to be the new control points. Because the x coordinates of the mid-chord

points were kept unchanged during the modification, these two methods gave

bad results after a certain number of iterations. It. was felt that the

means by which mid-chord points were obtained as initiated by Hess and

Smith is not appropriate for the purpose of modifying geometries. Between

the set of control points and the set of mid-chord points, one is permitted

to go only from the former to the latter, but not the reverse. To

•	 liberalize this restriction, interpolation would be a desirable tool.

In other words, when the control points which represent an airfoil were

given, an interpolation was made to give the coordinates of 'mid-chord

points' where equation (28) is to be applied. After the new y coordinates

of 'mid-chord points' were obtained from equation (30), the new control

points were determined by interpolation. A Lagrangian four point inter-

polation was used and the results were very good. Because none of the

interpolation methods gave good results when the slope of the curve

formed by the given points was large, certain rotations of coordinate

axes were necessary when doing interpolation near the leading edge of an

airfoil.

During the modification of airfoil geometries, certain values of Y'

are to be used in equation (30) as the desired velocities. Usually, the

starting configuration is chosen so that the velocity distribution on

the lower surface is approximately a linear acceleration from leading



89

edge to trailing edge. Hence, those Y d 's which are computed from step

(ii) of Section III.0 as the velocities on the lower surface may be

retained. Only those on the upper surface need to be changed. In

generating the examples shown in Figures 20 and 21, it is found that

too many restrictions on y d 's may result in either an unacceptable geometry

or a non-converging iterative process. The most severe situation takes

place when attempts are made in order to reach the exact optimum velocity

distribution near the trailing edge. The action taken to overcome this

difficulty is not to pay much attention to the trailing edge. Because

the viscous effects have not been taken into consideration in the design

process, the airfoils obtained will not generate exactly the desired

•	 pressure distribution. This deviation of real pressure distribution from

the desired one is especially large near the trailing edgE. Hence there

is really no need to attempt to reach the exact pressure distribution near

the trailing edge. In the case of two-element airfoils, this problem

seems to be less severe because geometries which correspond to the desired

velocity distributions can always be obtained by appropriate choice of

relative position of the elements. ,
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