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THE DETERMINATION OF THE GEOMETRIES OF MULTIPLE-ELEMENT AIRFOILS
OPTIMIZED FOR MAXIMUM LIFT COEFFICIENT

Allen Wen-shin Chen, Ph.D.
Department of Aeronautical and Astronautical Engineering
University of Iliinois at Urbana-Champaign, 1971

Optimum airfoils in the sense of maximum lift coefficient are obtained
by a newly developed method. The maximum lift coefficient is achieved by
requiring that the turbulent skin friction be zero in the pressure rise
region on the upper surface. Under this constraint, the pressure dis-
tribution is optimized. The optimum pressure distribution consists of
a uniform stagnation pressure on the lower surface, a uniform minimum
pressure on the upper surface immediately downstream of the front
stagnation point followed by a Stratford zero skin friction pressure
rise. When multiple-element airfoils are under consideration, this
optimum pressure distribution appears on every element. The parameters
used to specify the pressure distribution on each element are the

Reynolds number Re, and the normalized trailing edge velocity Uy

0
The newly developed method of design computes the velocity distribution
on a given airfoil and modifies the airfoil contour in a systemavic manner
until the desired velocity distribution is achieved., There are no
limitations on how many elements the airfoil to be designed can have.

Numerical examples of one- and two-element airfoils are given. The

CL values obtained range from 2 to 2.5.
max
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I. INTRODUCTION

Airfoils with high maximum 1ift coefficient (C ) are desirable for

L
max

certain types of aircraft, With their large CL , these airfoils can be
operated at a comparatively low speed while prozizing a large amount of
lift force. This characteristic is of primary interest in the design of
aircraft with short take-off and landing run capability.

Since the value of <, is limited by the occurrence of boundary
layer separation on the up::: surface of an airfoil where the fluid is
subject to an adverse pressure gradient, the approach to obtaining a high-
lift airfoil ic to delay or entirely suppress the flow separation. In
1920, Lachmann and Handley-Page designed the first high~lift wing which
consisted of a conventicnal airfoil and a small additional element called -
a leading edge slat. This leading edge slat gives the fluid which passes
through the gap between tﬁé slat and the main airfoil a high velocity.
Consequently, the boundary layer which grows on the upper surface of the
main airfoil has more momentum than it would have in the absence of the
slat. This high-momentum boundary layer can sustain a steeper adverse
pressure gradient and hence delay the separation. Therefore, by placing i
the leading edge slat at an appropriate position, the airfoil can be |
operated at a higher angle of attack without flow separation and the lift
force is increased. An alternative way of obtaining more l1ift force Iis

to put an additional element near the trailing‘edge of the airfoii.

The so-called trailing edge flap does not delay the separation of boundary

layer on the upper surface of the airfoil. It produces additional

circulation and hence lift force by both its presence and the velocity
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it induces on the main airfoil. Performance of airfoils which have leading
edge slats and/or trailing edge flaps are available in the literature.

With all these auxiliary elements to provide more lift force for a given
éirfoil, few attempts have been made to find the maximum lift coefficient
which can be obtained on a single element airfoil. The first successful
work in this area was accomplished by Liebeck and Ormsbee.1 They designed a

series of airfoils possessing large values of C by requiring the

L
max

pressure on the upper surface of an airfoil to rise in such a way that the
turbulent skin friction is zero whatever the pressure is increasing. These
airfoils are optimum in the sense of maximum lift coefficient. Zero skin-
friction means that the boundary layer is about to separate, Thus, any
attempts to obtain a iarger lift coefficient by either increasing peak
velocity or shifting the pcint of peak velociry in the downstream direction
will result in a flow seperation. 'With this zero skin-friction require-
ment, a variational problem was set up in order to find the pressure
distribution which would provide the maximum lift coefficient. The
solution to this variationsl problem specified the pressure distribution
on the upper surface of the airfoil and one of the standard methods of
airfoil design was employed to obtain the geometry of the optimum airfoil.
Since more lift can always be obtained by appropriately using a
leading edge slat and/or a trailing flap, a natural extension of Liebeck
and Ormsbee's work would be the search for optimum multiple-element
airfoils in the sense of maximum lift coefficient. This is the goal of
this research. The study consists of two parts. The first
part deals with the search for pressure distributions which

provide a maximum 1ift coefficient. The second part determines
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the geometry of the multiple-element airfoil which produces these pressure

s B e

distributions. As will be seen in the next chapter, the optimum pressure
distribution is found to be identical to the one for single-element airfoils.
A new method of two-dimensional airfoil design is developed to obtain the
geometries of the airfoils which produce these optimum pressure distributions.
Since no methods of multiple-element airfoil design are available in the
literature, the method developed in this research may be considered as a
major contribution to this aspect of aeronautical science. This method
makes it possible to obtain the geometries of each element of the multiple-
element airfoil when the pressure distribution is specified along the
surface of each element. Numerical examples of two-element airfoils are
treated using this new method of design. The fluid is considered to be
incompressible and Reynolds numbers are assumed to be sufficiently large

that the boundary layer in the zero skin-friction state is turbulent.

—
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II. DETERMINATION OF OPTIMUM PRESSURE DISTRIBUTION

A. The Zero Skin-Friction Requirement and CL
max

It is well known that the maximwm lift coefficient attainadble zor a
given airfoil is determined by the flow separation which occurs on the
upper surface of the airfoil. Generally, the lift coefficient of an air-
foil is directly proportional to its angle of attack with respect to the
free stream. For angies of attack larger than some particular value, “1’
however, the lift coefficient increases at a slower rate with respect to
the increase of angle of attack and even starts to decrease when the angle
of attack is increased beyond another particular value, az. The reason
for this slow increase of 1ift coefficient and a later decrease is that
the boundary layer on the upper surface of the airfoil cannot sustain
the steep pressure rise which appears on the upper surface as a result of
a large angle of attack. At al. a flow separation appears at a point near
the trailing edge and generates a small region of reverse flow., This
region of reverse flow expands as the angle of attack becomes larger than
o, and finally develops into a iarge high pressure region with a large
portion of the airfoil upper surface as its boundary.

While flow separation is a local phenomenon, it is apparent that when
the flow starts to separate at a cectain point on the airfoil surface, the
boundary layers at other points may be still able to sustain their local
pressure gradient. Therefore, from the viewpoint of generating large lift
coefficient, it seems that an airfoil would be more efficient if it could

generate a pressure distribution such that the boundary layer separation

would occur wherever the pressure is increasing if separation does occur at
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all. In other words, an airfoil which can provide a large maximum lift
coefficient is the one which has no flow separation for angles of attack
smaller than a value Qg s and suddenly stalls at g = O - This point may be
made clear by considering the pressure distribution shown in Figure 1.
The 1lift coefficient of the airfoil which geneiates this pressure
distribution is represented by the area enclused by the curve Cp(x) where
the x-axis is parallel to the free stream. I1f the flow separates at A,
but at no other point, then the skin friction has positive value for every
point upstream of A. Now, let the pressure distribution between B and A
follow a different curve such as the dotted line in Figure 1., Then, the

. prassure gradient at points upstream of A will be steeper and the area
enclosed by the Cp(x) curve is increased which means that the lift co-
efficient has been increased too. It is possible that the flow will
separate somevwhere between A and B with this new pressure distribution.
Let it be assumed that the skin friction resulted from pressure distribution
(2) is zero everywhere between C and A. It is not hard to see thlt any
attempts to increase the lift coefficient of the airfoil by forcing the
pressure distribution to follow a curve such as the one represented by the
broken line will steepen the pressure gradient and hence introduce flow
separation. The lift coefficient, then, will be decreased. Therefore,
among all the pressure distributions which are identical at every point
except the region where pressure is increasing, the one which yields zero

. skin friction over the pressure recovery region provides the maximum lift
coefficient. This is the foundation based upon which high lift airfoils
of the Liebeck-Ormsbee type are designed. When an additional element is

present near the airfoil, such as a trailing edge flap, the argument




Figure 1. Zero skin friction and CL .
max




:
:
3
i
:
:
:

VRNl TRVIRET ST

Ialanliniiollainainens il latialit R s il tael S B el L N

gt o R ALREST PR T L e e

stated above still applies. Namely, the pressure recovery on both the
main airfoil and the auxiliary element should yield zero skin friction in
order to achieve maximum 1ift coefficient of the airfoil. In general,

a multiple-element airfoil will have maximum lift coefficient if this
pressure recovery of zero skin-friction type appears on each element of

the airfoil.

B. Variational Problem and Its Solution

l. Stratford's Pressure Distribution and Formulation of
the Variational Problem

As stated in Chapter I, the fluid flows are considered to be in-
compressible. 1In order to obtain a boundary layer which is capable of
sustaining a large positive pressure gradient, only flows with large
Reynolds numbers are considered. Based on these two essential assumptions,
a problem in the calculus of variations will be formulated in this
subsection.

Suppose that the fluid is inviscid. The lift force of an airfoil
is given by the Kutta-Joukowski Theorem

L = py T
where p is the density of the fluid, U, is the speed at which the airfoil
travels in the fluid and I' is the circulation required to place the rear
stagnation point at the trailing edge of the airfoil. With a given air-
foil of specified chord length and a spetified velocity, the only way to
obtain more lift force is to increase the circulation f. The circulation
I', by definition, can be written as

81

r =I v(s)ds (1)
0
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where s is the arc length of the airfoil contour, measured clockwise

from the trailing edge along the airfoil surface (see Figure 2), 8p 18 the
to;al length of the contour of the airfoil and v(s) is the surface
velocity distribution. With subscript L denoting the front stagnation
point of the airfoil, the integral (1) can be decomposed into two terms

SL ST

f v(s)ds + I v(s)ds (2)
s

0 L

where 0 < s <€ sL holds for the lower surface and s, < s < St holds for

L
the upper surface of the airfoil. Notice that along the lower surface,
the direction of v is opposite that of increasing s. Therefore, the first
term in (2) is a negative one. There is no way that a positive quantity
may be obtained as the first term of (2) unless the front stagnation point
is forced to coinc.de with the trailing edge. However, this is physically
unattainable. Thus, the most which can be obtained from the lower surface
is a zero velocity all the way from the front stagnation point to the
trailing edge. In other words, v(s) = 0 for 0 < s < 8y - With this
velocity on the lower surface of an airfoil, variations in lift may occur
only by changing the velocity distribution on the upper surface. The
circulation then stands as |

Sp

T = I v(s)ds .
L

For convenience, the origin of s may be shifted from the trailing edge to

the front stagnation point. With this modification, the circulation is

8y

I v(s)ds
0
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Figure 2.

Definition of the variable s.
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where Sy = Sp " 8 and éubscript U stands for the upper surface, The lift

coefficient of the airfoil, based on free stream dynamic head and length

Sy of the upper surface, is
s
: U
Py,
C_ = —————-f v(s)ds
L 2otk 0
2 Ny
or , 8y
C, = ——-J q(s)ds : 3)
L %%

where q(s) is the surface velocity normalized with respect to the free
stream velocity. This velocity q(s) always starts from the front
stagnation point s = 0 with a value of zero, increases monotonically to

a maximum value 9, at a point 8 = s and then decreases monotonically to

0

the value of zero at the trailing edge where s = sy For the purpose of
generating maximum 1lift coefficient in the way described in Section A
above, the function q(s) can be any form for 0 < s < S There is no
restriction for that part of q(s) other than the one that it must be
monotonically non-decreasing. The function q(s) for S0 <s < Sy’ however,
must satisfy the requirement of being able to provide a boundary layer of

zero skin friction everywhere between s, and Sy with the reason described

0
in Section A. Such a function q(s) may be obtained by modifying the
expression derived by Stratford.2 Stratford‘considered the turbulent
boundary layer gréwn on a flat plate and derived an expressinn for pre-
dicting the separation of this turbulent boundary layer when an adverse
pressure gradient is encountered. Let the leading edge of the flat plate
be at the origin x = 0 and let the pressure start to rise at x = X
Separation will occur when the following equation is satisfied by CPo(x)
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l(n_*)) de l -1....
A 0,2 -6 .10
(2cpo) (x 37)" = 1.068 (10 ~ Re) (4)

where Cp (x)is the pressure coefficient based on free stream po, UO; ]
0

is a constant which is approximately 0,66 for Reynolds number of order

106; n is the common logarithm of Re which is the Reynolds number based
on Uo'and x. The criterion employed in deriving (4) is that separation
is imminent wherever local skin friction equals zero. Therefore, by treating

(4) as a differential equation for Cp (x), a pressure distribution which

%.
]
g
|
]
F

0
. provides zero skin friction at every point downstream of X, is found to be
1 1
c, (;(’-‘-) = 0.645{0.435 Re05 [(;(5)5 - 111" ¢or c, < :‘;;—f
" 070 0 0
a n-2
5] o ——— for ¢ > —
(x+b)1/2 Po n+l (5)

where Reo is the Reynolds number based on X5 and uniform velocity Uo and

n is the common logarithm of Reo; a and b are constants to be determined

such that C and dC /dx are continuous at Cp -n-2 These derived

Po Po o "
results have been verified by Stratford3 and experiments showed that this

Cp (x/xo) does provide a boundary layer of zero turbulent skin friction.
: 0
j The pressure starts to rise at s = 8y On an airfoil where q = -

Hence the relation between q(s) and Cp (x/xo) is established by first
' 0
setting U0 = q.U . Then, since

0
U
U U 0 U .2
q=% === and C_ =1 - ()
U, U0 v, Py Uo

(U palit® ot o) R 2 L
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one cbtains

ate) = qplt - ¢ EYE. )

0°0
It should be pointed out, however, that expression (5) above was derived
when the boundary layer on a flat plate in a uniform flow was under
consideration. For a non-decreasing velocity distribution U(s). the

relation between o and X is

8
0
xg = | [%)3 ds Q)
0

which merely states that the momentum thickness of the boundary layer at

s = s, on an airfoil with velocity distribution U(s) for 0 <5 < s, has

been set to be the same as that of the boundary layer at x = x_ on a flat

0
plate in a uniform flow. Now, with the small velocity near the front
stagnation point, the boundary layer there is likely to be laminar. This
laminar initial bhoundary layer is acceptable provided a transition to
turbulent boundary layer h:zs taken place before the pressure starts to
increase. This is because Stratford considered only the separation of

turbulent boundary layers. With this laminar boundary layer present,

equation (7) is superseded by

- 38.26 )3/8 (0)1/8 [j' ) a - )]5/8
t

0
+ j (%-)3 ds (8)
0
8

where subscript t indicates that the variables are evaluated at the

transition pcint. An instantaneous transition with the preservation of

ERL VNI

Wdﬁhuﬁmun;mwm AT e
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momentum thickness has been assumed in deriving equation (8). Therefore,
a boundary layer which is entirely laminar between s = 0 and s = 50 is
acceptable provided an instantaneous transition takes place at 80 In order
to have pressure increase at 80» the starting point of q(s) will not be
the same as the equivalent flat plate boundary layer. This is illustrated in
Figure 3. Hence equation (6) must be used with the understanding that s
and x are related by equation (8) and Figure 3.

Now, with an arbitrary acceleration (s) for 0 < s f_so and a pressure

rigse of the Stratford's type described bty (5), the lift coefficient of the

airfoil 1is
8 8

0 U
2
6y = o [ atas v [ af1 - o, 9]/ %as)
Pn X
U 070
8
where Cp is given by equation (5) with %o defined in equation (8) and the

0
relation between x and 8 is shown i1 Figure 3. In this expression, 8y

can be considered a constant. is not specified. q(s) is any mono-

%0

tonically increasing function. 9, Ls not specified and the function Cp
0

depends on x/xO and Reo only. These quantities can be varied in order

that a maximum value of CL may be obtained. Among these quantities, Reo

should be specified independent of :-he others because Re, specifies the

0

boundary layer characteristics at 8 and hence the zero skin friction

pressure recovery Cpo(x/xo). When Reo and 8y
finding the maximum value of CL becomes one of searching for a function

are given, the problem of

q(s) and values of the quantities s such that the quantity

o’ Y%
8 ]

2 0 v x.41/2
c, === 1{[ q(s)ds +| q L1 ~C_ ()]
L 8y J(; sj(; 0[ Py %o

ds})
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Figure 3.

8 = g

Relation between s and Stratford's x.

14
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takes its maximum value. %5 is to be computed from equation (8). This is

a problem of calculus of variations for the funtion q(s). For q0 and 8p°

it'is a problem of differential calculus.
As can be easily seen from the results obtained by Stratford, the

pressure recovery with zero skin friction has a large pressure gradient

immediately downstream of x When the value of x is very large, the rate

00
of increase of pressure is very slow. In the limit, C will reach a value

0
of one only if x goes to infiuity. This means that the zero skin friction

pressure recovery, when produced by an airfoil, will reach stagnation at the
trailing edge only if the airfoil has an infinite chord length. In view of
the fact that an airtfoil with a chord of infinite length is not practicsl,

a non-zero value of U will be accepted as the trailing edge velocity. This
leads to a sharp trailing edge which is acceptable for aerodynawic consider-

ation. Now, the three quantities s and q, are related to each other

0’ %
y are given. Only the value of one of them may be

specified and the solution to the variational problem will determine the

once an Reo and an s

others. Suppose the value of 80 is specified. Then q, can always be
obtained for a given 99 The consequence is that there are infinitely many
sets of 4, and 9y which can yield zero skin friction pressure recovery.

The maximum 1ift éoefficient which may be obtained under this circumstance
has no upper bound. This indicates that the problem is not well defined.
Alternatively, 1if q0 is specified, the 1ift coefficient will take a

maximum value only when s, goes to zero, and this solution does not make

0
any physical sense. Therefore, the only remaining possibility is to

specify the value of 1y and let the values of 9 and s be determined by

0

the solution of the variational problem. Therefore, the problem can be

ﬂm“mill‘llfIIiMlié.“.-nE!:E S
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redefined as one of finding a function q(s) for 0 <8 < 80 and two

quantities 9 and s, in order that

0
s s

0 U
2 X \41/2
c, == [ aleds + [ qpll - ¢, €177 ds) (9
U o 8o 00
has a maximum value. The values of Reo, 8y and q, are specified and X
is to be computed from equation (8). Since equation (8) takes a simpler
form if the boundary layer is turbulent from s = 0 to s = 8y the case of

having a laminar initial boundary layer will be considered after the

simpler case of an all turbulent boundary layer is treated.

2. Solution to the Variational Problem When Boundary Layer
. Is All Turbulent

When the boundary layer is all turbulent, equation (8) becomes
%0
X, = J [312133 ds . (10)
0 5 45

For the convenience of algebraic manipulation, it is desirable to make a
transformation on the variable s. With the definition of a constant
K = solxo, the relation between s and x is

s =x+ (k -1) X

or

x=s8 - (-1) Xq -

Dividing x by Xy & variable z may be defined as

=
=

oﬂ l%

=& k-1,

Y s et el

%)
ol

i
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With this notation, equation (9) may be written as

) 1 Z 1/2
- (k-1) 1 0

where Z denotes the value of z at the trailing edge. Now, the function C

may take only one form of equation (5) or both depending on the values of

6 8 n-2

Re, and x/xo. For Reo of order 100 - 10, Cpo will reach the value 37

for a fairly small value of x/xo. Hence it can be assumed that Cp will
' 0

n-2
take the value ol at a point 5 which is between 8% and 8y for the
Reynolds numbers considered in this research. With this assumption,

Stratford's equation (29),2 which expresses the function Cp (x/xo) for

c > a2 an be modified to give °
Py ntl » can be e g

1
@t/ an

9% " Y Tt

where a' = a//ko, b' = b/xo. Hence equation (11) becomes

, | ,  ayrnt/t
L= et | 9@z + ey .
1-k Ja
zm
x [ {1-0.64500.435 Rep!/®(:}/5-1)1¥/™/2 4
-
z
+ —""z+|i-1 qu(z+b')w‘j‘ —dz __ T (13)
z, (z+b')
where Zm = sm/x0 - (k - 1), and equation (10) becomes
1 3 ’
1 | [ﬂéllq dr . (14)
0

1-k

oM

T NIRRT
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To find a stationary value of C,, the variation of CL caused by the
variation of the right hand side of equation (13) must vanish, This
variation includes the variation of q(z), the variation of k and the
variation of Z. The variation of k is related to that of q(z) by the
constraint equation (14). Hence only the variation of q(z) and Z need to
be considered. The appearance of q(z) inside an integral sign makes the
problem fall into the category of calculus of variations. However, due to
the simplicity of the integrands which contain q(z) in both equation (13)
and equation (14), the solution to this problem of calculus of variations
can be obtained in a quite simple way. Bec;use no derivatives of q(z)
appear in the integrand, the Euler's equation resulted from the vanishing of
first variation of CL is an algebraic equation instead of a differential
equation. The solution to that equation is merely q(z) = constant. This
constant, then, is determin~d by the requirement’ that q(so) = q,- Sub-

stitution of q(z) = q, into equation (14) gives k = 1. Therefore, as far

0
as q(z) is concerned, CL will have a stationary value only when q(z) = -
The fact that the value of CL provided by this q(z) is really a maximum
one may be established in the following way. Suppése a permissible
variation is introduced into this function q(z). Permissible means that
q(z) is still a monotonically non-defreasing funétion. The value of k
will always increase. The value of I q(z)dz may increase or it may
decrease. Because of the constraint-zf equation (14), the increase of k
is so large that CL will always be decreased by this variation of q(z).
Therefore, in order to obtain a maximum 1ift coefficient, the fluid

should be accelerated abruptly from the front stagnation point to a

velocity 9 and remain at that value until pressure starts to increase.
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With this conclusion, equation (13) becomes

) qU(z+b')1/“ 2 qU(z+b')1/“
L=z L tzT T
Ja' Ja'
Zm
xj' {1-0.645[0.435 Reolls(zl/s - 1)]2/"}1/2 dz
1
W1/6 4
+ g S!fftk_z___ f ___ZEL__- dz .
z Ja' Z, (z+b')1/4

Since Zm depends on Re, only, the integral in the second term may be

0
abbreviated as

zm

I(Re,) aj {1-0.645[0.435 Re,
1

This allows CL to be expressed as

1/4
2q. (Z+b') _
C, = “-g;;;Tf-——— {1+ I(Re,) + % /h'[(z+b')3/4-(zm+b‘)3/4]}

where the integration appearing in the last term has been carried out.

With values of q,, and Re, given, this C_ varies with Z only., The maximum
U L

0

value of CL may be obtained by evaluating CL at a value of Z where the

first derivative of C, with respect to Z vanishes. Taking the first

L

derivative of CL with respect to Z and setting the result equal to zero
gives

% (1 + I(Rey) - %/a‘ (zm+b')3/“](z+b-) + % Ja'b' (z+b )4

3/4

+%'-[1+I(Re0) -%fa'(zmﬂ') 1=0. (15)
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1/4

This is a fourth degree algebraic equation for (Z2+b') and there are

four roots. The second derivative dZCL/dZ2 must be evaluated at each root
of equation (15) in order tu find out which root gives the maximum value

of C.. The expression for dZCL/dZ2 is

L

n { 1yl/4 ' 3/4

L+ I(Rey) - gfa'(zm+b.)3/4][2(z+1; )4 @b %

~ Z 2z
M_J + —fa b 1—3} ) (16)

162 Z

For 5 x 10’ <Re, <1 X 108, equation (15) has two conjugate complex roots,

0
one negative real root and one positive real root. In view of equation (12).
only positive values of (Z+b')1/4 can be accepted. Compucations have shown
that this positive root of equation (15) gives a value Z which is larger
than Zm and this Z does yield a negative value of dZCL/dZZH Substituting
this 2 into equation (12) gives the value of qo/qU and thus the solution
to the variational problem is complete for an all turbulent boundary layer.

(See Figure 4). The dependence of Zm, Z; and qo/qU on Reo is given in

Table 1. Also shown in Table 1 are the values of dZCL/dZZ.

3. Solution to the Variational Problem When the Initial Boundary
Layer Is Laminar

When a laminar initial boundary layer is present, the full expression
(8) must be used as the constraint on q(s) for 0 < s < 8o Using the
definition of q, equation (8) can be rewritten as
1
- 8.2 G )3/8( 0 /B{f (o2’ 4 8yy3/8 4,
9 90 t
%0

O a”n

%

8¢
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Figure 4. Optimized velocity distribution on the
1 upper surface of a single-element airfoil
with all turbulent boundary layer.
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: Table 1
Dependence of Zm, Z, qO/qU and dZCL/dZ2 on Reo for an All
Turbulent Boundary Layer
; Re, % 10 3 z z ay/9, dZCL/dZZ
: 5 1.6625 4.2340 2.0822 -0.003332
: 6 1.6502 4.0713 2.0824 -0.003887
? 7 1.6400 3.9473 2.0835 -0.004395
' 8 1.6313 3.8487 2.0852 -0.004863
9 1.6236 3.7677 2.0872 -0.005298
10 1.6168 3.6995 2.0893 -0.005705
20 1.5735 3.3312 2.1099 -0.008790
30 1.5493 3.1640 2.1264 -0.010926
40 1.5327 3.0611 2.1397 -0.012587
50 1.5201 2.9887 2.1508 -0.013959
. 60 1.5101 2.9338 2.1603 -0.015134
70 1.5017 2.8900 2.1686 -0.016164
80 1.4945 2.8538 2.1761 -0.017085
’ 90 1.4883 2.8223 2.1828 -0.017917
100 1.4827 2.7969 2.1889 -0.018678
200 1.4478 2.6430 2.2318 -0.02:071
300 1.4285 2.5662 2.2587 -0.027529
400 1.4154 2.5165 2.2784 -0.030114
520 1.4054 2.4804 2.2942 -0.032193
600 1.3974 2.4523 2.3073 -0.033938
700 1.3908 2.4295 2.3185 -0.035447
800 1.3852 2.4104 2.3283 -0.036779
900 1.3802 2.3940 2.3371 -0.037970
1000 1.3759 2.3797 2.3450 -0.039051
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Now, by defining g = st/s0 and replacing s by z, equation (17) becomes

q 1-k+gk
1 = 38.2 0_TﬁL_J3/8 (_2)1/8 { I [QSEI]S dz}S/s
xO mqt qt 1-k 1
' 3
+ [ﬂéﬂ] dz . (18)
1-k+gk 0

Since the expression for CL’ equation (9), holds true whether the initial
boundary layer is laminar or turbulent, the problem is again to find a

q(z) which will give a maximum value of

1 q (Z+b')1/4
C. = 2 I q(z)dz + 2 L
L z+k-1 Z+k-1 fa"
1-k /e
zm
x [ {1-0.645[0.435 Reolls(zlm-l)]2/“}1/2 dz
1
2 1/4 R dz
+ 5= q, (Z+b') —_— (13)
z+k-1 y {m (z+b') 174

It can be seen that no derivatives of the function q(2) appear in the
integral terms in equation (13) and equation (18). Thus, the solution

to this variational problem is again q(z) = 9, for 0 <38 < 89" With this
q(z), equation (18) gives |

1 = 38.2(—4!—)3/8 (gk)5/8
xOU0

+ (1-g)k . (19)

The critical Reynolds number at which boundary layer transition takes

place is defined by
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which is
gs, U
Re =
cr Vv
_ Bl
\%
Hence,
Recr
gk = ReO

Substituting this gk into equation (19) gives

Re
-1 5/8 cr
k =1 - 38.2 Re0 Recr + EZ;_ . (20)

This result requires that a critical Reynolds number Recr be specified
in addition to the Reynolds number Reo when the initial boundary layer

is laminar. Notice that the case Recr > Reo need not be excluded because
an all-laminar boundary layer between 8 = 0 and 80 will give k > 1 and

g = 1. When the boundary layer is sll turbulent g = 0O and equation (19)

gives k = 1 which is the result obtained in the previous subsection.

With q(z) = qp and k given by (20), equation (13) can be written as

2 (b4

C, =
L k+Z‘1 /8'

4
qU{k + I(Rey) + 3 Ja

3/ 3/4]}

x [(z+b)>/4 - @ +b") (21)

where Z, I(Reo) énd Zm all have the same meaning as in the previous sub-
section. When the laminar initial boundary layer is absent, g = 0 gives
k = 1 which reduces equation (21) to the form assumed by an sll turbulent
boundary layer given in Subsection 2. This verifies the consistency of

the expressions derived up to thies stage.

A i
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To find the maximum value of CL with various Z values, the derivative
dCL/dz is set to zero and the second derivative dZCL/dZ2 must be evaluated

at certain Z values. The equation which results from setting dCL/dZ to

zero is

\3/4

2 [k + LRep) - 3 /a' (2 +0") > *1(arb')- %/a'(k-l-b')(ub')w‘

- % (k-1-b") [k+L (Re) - %/a' (zm+b')3"“] =0 . (22)

As in the equation obtained in Sutsection 2, this is also a fourth degree

algebraic equation for the variable (Z+b')1/4. For 2 X 105 < Reo <1 x 107,
two different values have been used for Recr. They are 5 X 105 and
1 X 106. In both cases, there arz always two conjugate complex roots,

one negative real root and cre positive real root. As stated in the

previous subsection, only tie¢ positive real root is retained, and it does
. . 2. ..,2 : .

zive a negative value of d LL,JZ when this positive real root is sub-

stituted into

29y Lo, b 3 (@apy 4
Tat {lk + IRep) - 374" 1) {5 555
@bt) 4 + 220y 14
2(k+2-1)2 (+2-1)°
_8_Ja' L& /h'(2+b'l}
3 2t 37
(k+2-1) (k+Z-1)

This means that a maximum value of CL does exist at this Z. Substituting
this Z into equation (12) gives the value of qo/qu. The dependence of

g, 2, Z and qo,{qU on Re, are shown in Table 2 and Table 3. Also shown
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Table 2

Deperdence of g, k, Z, 2, qo/qU and dZCL/dZ2 on Re, for
Boundary Layers Which are Initially Laminar, ReCr s 5 X 105

Re, % 10 A K z_ z a4/ dZCL/dZZ
15 0.979  3.404 1.7462 6.7252 2.1895  -0.002548
20 0.892  2.804 1.7258 6.0092 2.1656  -0.003025
25 0.819  2.443 1.7101 5.5548 2.1512  -0,003417
30 0.757  2.202 1.6974 5.2363 2.1419  -0.003754
35 0.704  2.031 1.6868 4.9983 2.1355  -0.004053
40 0.657 1.902 1.6776 4.8121 2.1331  -0.004323
45 0.617 1.802 1.6696 4.6613 2.1280  ~0.004573
50 0.581  1.721 1.6625 4.5361 2.1257  -0.004806
55 0.549  1.656 1.6561 4.4299 2.1241  -0.005026
60 0.520 1.601 1.6502 4.3384 2.1230  -0.005235
65 0.495  1.555 1.6449 4.2584 2.1222  -0.005435
70 0.471  1.515 1.6400 4.1876 2.1217  -0.005627
75 0.450  1.481 1.6355 4.1245 2.1214  -0.005811
80 0.431  1.451 1.6313% 4.0677 2.1213  -0.005990
85 0.413  1.424 1.6273 4.0161 2.1213  -0.006163
90 0.397  1.401 1.6235 39691 2.1215  -0.006331
95 0.381  1.380 1.6201 3.9260 2.1217  -0.00649

100 0.367 1.361 1.6168 3.8863 2.1219  -0.006653
200 0.212  1.180 1.5735 3.4410 2.1236  -0.009236 .
300 0.149  1.120 1.5493% 3.2423 2.1441  -0.011152
400 0.115  1.090 1.5327 3.1219 2.1543  -0.012697
500 0.093 1.072 1.5201 3.0385 2.1633  -0.013998
600 0.079  1.060 1.5101 2.9759 2.1712  -0.015127
700 0.068  1.052 1.5017 2.9264 2.1784  -0.016127
800 0.060  1.045 1.4945 2.8860 2.1849  -0.017026
900 0.053  1.040 1.4883 2.8520 2.1909  -0.017842
1000 0.048  1.036 1.4827 2.8229 2.1964  -0.018592

i
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Table 3

2. il
Dependence of g, k, Zm, Z, qo/qU and d CL/dZ on Reo for

Boundary Layers Which are Initially Laminar, Recr = 10°

Rey x 107 g k z_ z a0/ a%c, /az?
25 0.966  4.141 1.7101 6.8501 2.2816  -0.002902
30 0.922  3.617 1.6974 6.3104 2.2585  -0.003317
35 0.881  3.243 1.6868 5.9131 2.2412  -0.003689
40 0.843  2.963 1.6776 5.6070 2.2277  -0.004026
45 0.810  2.745 1.6696 5.3630 2.2171  -0.004336
50 0.778  2.570 1.6625 5.1634 2.2085  -0.004621
55 0.749  2.428 1.6561 4.9965 2.2014  -0.004886
60 0.722  2.309 1.6502 4.8547 2.1955  -0.005133
65 0.697  2.208 1.6449 4.7323 2.1906  -0.005366
70 0.673  2.122 1.6400 4.6255 2.1865  -0.005587
75 0.651  2.047 1.6355 4.5313 2.1829  -0.005796

. 80 0.631  1.981 1.6313 4.4475 2.1799  -0.005995
85 0.612  1.924 1.6273 4.3723 2.1773  -0.006185
90 0.593  1.872 1.6236 4.3044 2.1751  -0.006368
95 0.577  1.827 1.6201 4.2427 2.1732  -0.006544

100 0.560 1.785 1.6168 4.1864 2.1715  -0.006713
200 0.359  1.393 1.5735 3.5887 2.1621  -0.009317
300 0.264  1.262 1.5493 3.3415 2.1660  -0.011179
400 0.209 1.196 1.5327 3.1970 2.1719  -0.012677
500 0.173  1.157 1.5201 3.0990 2.1782  -0.013944
600 0.147  1.131 1.5101 2.0266 2.1842  -0.015049
700 0.128 1.112 1.5017 2.9702 2.1900  -0.016030
800 0.114  1.098 1.4945 . 9244 2.1953  -0.016916
900 0.102 1.087 1.4883 2.8863 2.2006  -0.017722
1000 0.092 1.079 1.4827 2.8538 2.2051  -0.018465

g
=
§
=
5
£
el
S
:
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are the values of dZCL/dZZ. The velocity distribution q(s) for

0<s8 < 8, is sketched in Figure 5. Notice that the location where
pressure starts to increase is di{ferent from the one showr in Figure 4
This is due to the presence of the laminar initial boundary laver

C. The Pressure Distribution To Be llsed in Designing Two-Element
Optimum Airfoils

The optimum pressure distribution which will provide ar airfoil with
maximum lift coefficient, as shown in Section B, consists of a constarr
stagnation pressure along the lower surface cof tlLe airfoil, and an atrupr
pressure drop to a minimum value which covers a certain distance on th-
upper surface of the airfoil until the pressure starts to increase
according to Stratford's zero skin friction pressure distribution. The
determination of geometries of multiple-element airfoils is the main
object of this research. Pressure distributions will now be considered
which are optimum with respect to C for this case. The lift force

max

is again pan according to the Kutta-Joukowski Theorem where ' is the

total circulation of the airfoil and can be written as

sL1 s,[1 st
T = I vl(sl)ds1 + I vl(sl)ds1 + J vz(sz)dsz
0 L, 0

s
T,
+ { v,(8,)ds,
L
for airfoils consisting of two elements. Contour lergth is again

denoted by s which is measured clockwise from the trailing e¢dge of -ach

element; subscript 1 denotes element one and subscript 2 denotes element
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Figure 5

Optimized velocity distribution on the upper

surface of a single-element airfoil with
laminar initial boundary layer.
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. two. The fivet torm ana the third term are negative quantit:es since
the surface velccity is opposite the direction of increasing s. The
maximum value of these gquantities is zero. Thus, only two terms are left

and the lift coefficient may bte written as

s ) ST
e o2t iae 420 2 ‘
=% 1 (s)ds) L.L q,(sy)ds,
L

1 2

where & is a characteristic length. For tne convenience of manipulation,

s, - § can be taken as 4. This is not only convenient, it is also a

’I1 Ll

mere-or-less treditional way because Sro T S is appruximately the chord
1 1

length of elexment one. Wnon the origin of measuring s is moved to the
froat stagnatico zoint of 2ach element as was donz in Subsection B.1,

C. becomes

L
3, . s
T, u, U,
CL=s ) sy v o 4pis,0ds, .
T u. Su.
PRt 1 z 0

The first term represcnts tne contribution of element one to CI’ and it
4

has exactly the sauc form &3 equation (3). The second term represents

the contribution of e:ament two to C and it has the same form as

L)

equation (3) except for a multiplicative factor Sy /sU . CL is to be
2 1
maximized under the condition that pressure rise on upper surface of

each element must yield @ boundary layer of zero skin friction in the

region wnere pressure is _acreasing. Thie reguitemcut of cbtaiaing

ri

waxicum 1ifs coefficient hus been established in fection A. The
srezsure rise of zero skinm Ifriction is specified by a Reynolds number

o In th: case of two-clement airfoils, the specification of Reo on
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one element is entirely independent of that on the other. Furthermore,
the pressure distribution on element one can be speciiied without con-
sidering the pressure distribution on element two. Iu other words, the
pressure distributions of two elements are independent. This fact can be
easily seen when one realizes that the pressure distribution is specified
along the surface contour and the relative position of the two elemerts
is a free parameter at this stage. Therefore, assuming sUZ/sU to bc a

1

constant, C. will have a maximum value when both

L
Su
, 1
CL1 e Jooay(sy)ds;
10
and sU

2 ¢
Cc, = ;;—'X q,(s,)ds,
20

(=
N

take their maximum values. With Reo and 9y given on each element, the
problem of maximizing CL is equivalent to the problem of maximizing the
1ift co2fficients of two single-element airfoils. The sclution to this
problem has been presented in Subsections B.2 and B.3. This means that
for an airfoii consisting of two elements, the maximum 1ift coefficient
will be obtained when the pressure distribution on the surface of each
element is such that it is an optimu.' pressure distribution if each
element were considered to be a single-element airfoil with same values

of Re, and 9y (see Figure 6).

0
This result can be extended to airfoils consisting of any number of
elements. Namely, for a multiple-element airfoil, the maximum lift

coefficient will be obtained when the pressure distribution on each
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element is composed of a constant stagnation pressure along the lower
surface, an abrupt drop to a minimum pressure at the front stagnation
point followed by a constant minimum pressure which covers a certain
distance on the upper surface until the pressure starts to rise according
to Stratford's zero skin friction pressure distribution. It can be re-
called that the characteristic length 8y fo; a single element airfoil
will not be available until values of p, q', TH Reo are specified. :dence
s, is part of the solution to the variational problem. This confirms

u

the validity of assuming 8y /sU to be a constant when maximizing CL of
2 1
a two-element airfoil. Table 4 shows the dependence of 8; on Re, for

0
U,= 200 fps., p/p = 160 X 107 £t%/sec. This makes it possible to
design two-element airfoils whose elements have the desirable chord
ratios.

Although the pressure distribution shown in Figure 6 provides an
airfoil with a maximum 1ift coefficient, some modifications have to be
made in order to realize a physically meaningful airfoil. First, the
constant stagnation pressure along the lower surface is not possible to
obtain. Since the lower surface of an airfoil does not contribute much
to the lift force, any modification of the constant stagnation pressure
distribution will not reduce the CL value too much from its original
value. However, a pressure distribution which is monotonically de-
creasing from leading edge to trailing edge is preferred, and a linear
form for q is chosen in this study. A monotonically decreasing pressure

from leading edge to trailing edge will produce a boundary layer which

always attaches to the airfoil surface, and a linear relation q(s) is

2

chosen for its simplicity. As will be seen 'in the raxt chapter, the




£ Table &

. Dependence of s, on Reo for q‘ = 200 fps.,
u/p = 160 x 10-6 £t%/sec.
All Turbulent Boundary Layers Which are Initially Laminar
Boundary Layers - 5 - 108
\ Recr 5x10 Recr 10
-5 : 0-4 '
Reoxlo su(ft.) Reoxl sU(ft.) sU(fta)
5 0.8134 15 0.5004 --
2 6 0.9385 20 0.5772 --
H 7 1.0609 25 0.6506 0.8758
2 8 1.1813 30 0.7215 0.9487
9 1.2997 35 0.7905 1.0190
i 10 1.4166 40 0.8580 1.0874
: 20 2.5262 45 0.9242 1.1542
: 30 3.5711 . 50 0.9893 1.2196
] 40 4,5780 55 1.0535 1 2840
. 50 5.5584 60 1.1168 1.3475
60 6.5186 65 . 1,1794 1.4101
70 7.4627 70 1.2413 1.4720
80 8.3933 75 1.3025 1.5332
90 9.3126 80 1.3632 1.5939
100 10,2219 85 1.4234 - 1.6540
200 18,9482 90 1.4831 1.7137
. 300 27.2677 95 ' 1.5424 1.7728
o 400 35.3434 100 1.6012 1.8316
' 500 43,2462 200 2.7169 2.9463
600 51.0170 300 3.7638 3.9926
700 58.63808 400 4.7713 4.9995
800 66.2549 500 5.7517 5.9794
900 73.7533 600 6.7117 6.9388
1000 81,1843 700 - 7.6554 7.8820
‘ 800 8.5856 8.8116
900 9.5045 9.7299
1000 10.4134 . 10.6383
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pressure distribution along the airfoil contour is specified in terms of

- q, not Cp. Therefore, the modified pressure distribution is a linear
q(s) from the front stagnation point where q = 0, to the trailing edge
where ¢ = 9 However, the requirement that the airfoil produce such a
linear q(s) is not very crucial because the pressure distribution on the
upper surface dominates the problem, and specification of q(s) over the
entire airfoil contour may result in a geometry which is not physically
meaningful. For example, the upper surface might cross over the lower
surface at a point between the leading edge and the trailing edge. Thus,
during the course of determining the geometry of the airfoil, liberty is

. taken with th: pressure distribution on the lower surface in order to obtain
a physically meaningful geometry. In regard to the pressure distribution
on the upper surface, a slight modification also must be made, This
modification is to change the abrupt pressure drop at the front stagnation
point to a gradual one. Because an abrupt pressure drop at the front
stagnation point corresponds to a leading edge of zero radius of curvature
which is not suitable for operating the airfoil at various ang}es of
attack, this modification is necessary. Knowledge about various types
of airfoils will help in making a decision as to what is the most

adoptable'form of this modification.
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III, DETERMINATION OF THE GEOMETRIES OF AIRFOILS WHICH
PRODUCE THE OPTIMUM PRESSURE DISTRIBUTION

A. Review of Methods of Airfoil Design
l, Sato's Method and Weber's Method

The methods of designing airfoils with velocity specified along the
airfoil surfac; fall into two categories. One is the method of conformal
transformation and the other is the method of distribution of
singularities. The most powerful method which belongs to the first
category is the one developed by Sato.4 The basic formulae used by Sato
actually are :-hose developed by Lighthill,5 but Lighthill's method has
the disadvantage that velocity must be specified in terms of closed form
functions in order to be ablé to carry out the necessary integration, -
With the help of high speed computers, Sato's method allows a velocity
distribution of any kind to be specified, and the integrations are carried
out numerically. The expression for the velocity distribution is assumed
in such a way that the front and.the rear stagnation points can be treated
separately. A well-behaved function g(®) takes up the velocity disgribution
everywhere with the exception of the stagnation points and three constants
A, B and T which are embedded. These constants are determined by the
function g(®), the closure condition of the airfoil and the fact that flow
field at infinity is a uniform one. Consequently, the resulting airfoil
is always a closed curve and the disturbance dies out at large distances
from the airfoil. The results are very accurate near the leading and the
trailing edges where most other methods have difficulties. This {s
because thg singularities caused by stagnation points are treated

separately in an analytical way. The method is to be used on an
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iterative basis in the sense that the computation must be repeated many
. times before a satisfactory geometry of the airfoil may be obtained.
' The reason of doing this is as follows. A set of initial values must be
given to A, B and 71 in order to obtain the function g(8) from the specified
velocity distribution. This g(8) is to be used to obtain another set of
A, B and 7 which will give a (lose” curve as the airfoil geometry. Unless
the initial set of A, B, and T happens to hit the solution of the design
problem, these two sets of A, B and r will not be the same and the re-
sulting airfoil will not produce the desired velocity distribution. The
function g(§), then, is modified in such a way that the airfoil geometry
obtained in the next cycle will produce a velocity distribution which is
closer to the desired one. This procedure is repeated until the specified
velocity distribution is reached Therefore, Sato's method always
guarantees an airfoil which produces the desired velocity distribution
to be obtained.

Turning to the method of distribution of singularities, one observes
that the crudest one is the inverse of thin airfoil theory. Since large

disturbances are not allowed in thin airfoil theory, airfoils with large

thickness/chord ratios and/or large cambers which are operating at high
angles of attack can not be obtained by this method. Modifications have
been made by Weber6 to include this capability by considering both first

order and second order terms.

2. Method of Conformal Transformation and Method of Distribution
of Singularities in Designing Multiple-Element Airfoils

When an airfoil of more than one element is to be designed, both

Sato's andvWeber's methcds fail. Because Sato's method employs conformal
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transformation, the reason why it fails for multiple-element airfoils is
obvious. Take an airfoil of two clements as an example., The domain
‘outside this airfoil is a triply connected one while the domain outside
a single-element airfoil is a doubly connected one. Therefore, all the
theories and formulae developed for the latter cease to be applicable

to the former, Weber's method seems more 1likely to be applicable to
multiple-element airfoil design. But, using a conventional airfoil with
a slotted flap as an example, the angle of attack and camber of the flap
are not properly defined and their contributions to the velocity dis-
tribution are difficult to identify. In view of the fact that no other
methods of airfoil design are capable of treating airfoils consisting of
more than one element, the necessity of developing a new method becomes
clear.

The first method considered was the conformal transformation.' The
reason for proceeding in this directior was that Sato's method shows that
single-element airfoils with satisfactory geometry which produce the
desired velocity distributions can always be obtained by employing a
conformal transformation and modifying the transformation function in a
systematical way. As shown by Gnrrick,7 the domain outside two closed
contours can bé transformed into the annular region between twc concentric
circles. Alternatively, a domain of rectangular shape may be obtained
with the help of a logarithmic function. In this case, the two contours
are mapped into two sides of the rectangle which are facing each other.

. Garrick performed this transformation on two NACA 4412 airfoils and
coqputed the velocity distribution on the surface of each airfoil in

the same fashion as Theodorsen computed the velocity distribution on the

it i i
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surface of a single airfoil by transforming tue airfoil into a cricla.
Therefore, by inverting Garrick's method, geometries of two-element air-
foils should be obtainable by specifying the velocity distribution along
the boundaries of the annular region between the concentric circles.
Based upon this concept, a set of formulae, which states the closure
condition of eath element of the two-element airfoil, was derived.
Expressions for velocity distributions were the same as the one used by
Sato. It was impossible to obtain the explicit formulae for computing
the constants. Instead, all the six constants which are part of the
velocity distribution and hence part of the transformation function appear
implicitly in six integral relations. When the numerical calculations
were carried out on a computer, it was found that a tremendous amount of
time and work was required to find one set of constants., Since this
method is to be used also in an iterative way, the time and work involved
in computing several sets of constants make this treatment of the design
problem formidable. As indicated by Garrick, the relative position of

the two elements varies with the values of four other constants, and no

study has been made as to how these values determine the relative position,

Because of these two drawbacks, the method of conformal transformation
vas considered intractable in designing multiple-element airfoils. Next

to be considered was the method of distribution of singularities.

The method of distribution of singularities wus originally a method
of computing the pressure distribution on the surface of a given airfoil.
Singularities of unknown strengths such as sources, sinks, doublats or
vortices are distributed inside the airfoil contour or on the airfoil

surface. The strengths of these singularities are obtained by computing
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the velocities induced by these singularities and requiring the tangency
condition be satisfied. The surface pressure distribution is then
computed from the strengths of these singularities. When this method
is applied to solving a design problem, an iterative procedure is
necessary. The starting point of this iterative procedure is an airfoil
with arbitrary shape. The pressure distribution on the surface of this
starting configuration is computed by the method of distribution of
singularities. Then a modification of the geometry is performed according
to how much the computed pressure distribution differs from the desired
one. Generally, more than one modification is necessary and the iterative
process continues until a satisfactory pressure distribution is achieved
by the airfoil. At this stage, there are two questions which nust be
answered. One is how the pressure distribution on the surface of a given
airfoil should be computed. The other is how to modify the geometry of
the airfoil in such a way that the velocity distribution on the surface
of the modified airfoil will be closer to the desired one than the
previous one is. The answers to these two questions are presented in
the following sections.
B. Methods of Computing Pressure Distribution on the Surface

of a Given Airfoil

There are many methods of distribution of singularities available in
the literature which compute the velocity distribution on the surface of
a given airfoil. In the earlier methods, singularities are distributed
inside the airfoil contour. The disturbances produced by the airfoil
are considered to be composed of those due to thickness of the airfoil

and those due to camber and angle of attack. Sources and sinks are used
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to represent the former, and the latte: are represented by vortices. 1In
the newly developed methods, all the singularities are distributed on
the airfoil surface, and the pressure distributions are computed by
solving integral equations of different forms. The outstanding feature
of these methods is that the airfoils-under consideration can possess any
geometry and any oricntation relative to the free stream., Effects of
thickness, camber anl angle of attack do not have to be considered
separately. As ¢ general property and hence a limitation of the method
of distribution of singularities, the fluid flow is considered t; be
incompressible and nonviscous.

Among all the new-fashioned methods, perhaps the best known is
the method of Hess and Smith.s Although this method has gained such
publicity that it almost becomes a standard method of computing velocity
distribution on the surface of an airfoil in incompressible potential
fluid flow, it has some drawbacks which have not been noticed by many
people. There are two other methods which are very effective but not
known to many people in this country, They were developed in Germany
andé one is by Martensen9 and Jacob,lo the other is by Oellerl.ll These
thi'ee method: will be analyzed and compared with each ot“er in the
following subsections,

1, Hess-Smith's Method

In this method, the airfoil surface is replaced by a source sheet
with strength 0 (s), where s is tha distance measured along the airfoil
surface. Considering the airfoil to be stationary, velocities induced by

the source sheet are combined with the free stream velocity to satisfy the
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tangency condition that there should be no velocity component normal to
the airfoil surface, This corcept results in a Fredholm integral

equation of the second kind
8

T
270 (s) + [ 0(s') £ 4n x(s,5')ds’ = F(s) (23)
: ,

where 8o denotes the trailing edge of the airfoil, r(s,s') is the distance
between two points represented by s and s', and F(s) is a function related
to onset flows. For a uniform free stream, F(s) = "ﬁn . ;(s) where ;(s)
is the local outward unit normal vector. In this equation, the first
term on the left hand side represents the normal velocity at point s
induced by the local source 0(s). The seconcd term represents the normal
velocity at point s induced by the remzining source sheet. When the
geometry of an airfoil is given together with the direction of the free
str2am, both the right hand side of the equation and the kernel of the
integral are known., Hence the equation can be solved for 0(s). In
principle, the equation may be solved by analytical methods such as
Neumann series successive approximation. In practical applicatiom,
however, numerical me.hods are appropriate. Based on this concept,

the contour of the given airfoil is divided into N segments, The

integral term in the integral equation may be written as

g'j+1 D2 g e e ayger
j'lgj g(s )s; nr(s,s')ds
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where sj and sj+1 are the end points of segment j. At this stage, Hess
and Smith make the approximation that g(s) takes a constant value within
each segment, This approximation will tend to t: exact when N goes to
infinity. With this approximation, the integral becomes

N 141 ~

T oj j S 4n r(s,s')ds'

j=l sj on

where oj is the constant value of o(s) in segment j. In order to carry
out the integrations amalytically and hence simplify the problem further,
two more approximations are made. One is to approximate the curved
segment j by a straight line joining the end points of segment j With
this approximation, each integral may be evaluated for a specified point
s regardless of the precise shape of the segment j. Since the coordinates
of the end points of each segment must be known, a convenient choice of
this point s would be the mid-point of the chord line of each segment.
The second approximation is that the integral equation (23) is not to
be applied on the airfoil surface. Instead, it will be appiied at the
mid-point of the chord line of each segment. Therefore, N equations may
be obtained by applying equation (23) at N of these mid-chord points.
This system of equations may be written in the form of

N

£ K

=F , 1i=1,2,...,N : (24)
=1 ‘

199 % 1

where F1 = . q' . Hi and ;1 is the unit outward normal vector of chord

i. K,, is the abbreviatibn of

i)
%41
} - In r(s,s')ds’
an,
8

3
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where s denotes the mid-point of chord i and integration has been carried
out along the chord j. When i equals j, the value of Kij is 2m which is
the coefficient of the first term on the left hand side of equation (23).

Literally, represents the outward normal velocity at mid-point of

Kij
chord { induced by a source sheet with uniform strength unity located at
chord j. When the geometry of the airfoil is given in terms of the co-
ordinates of N discrete points, the coefficient matrix Ki' can be computed.
The right hand side is then determined once the free stream direction is
given. Therefore, a solution g; can be obtained by solving this system

. of N simultaneous linear algebraic equations. This solution is an
approximate solution to equation (23) evaluated at discrete points. Be-
cause the integration is carried out along the chord line of each segment

in obtaining K, . and equation (23) is actually applied at mid-chord points

ij
which are slightly off the airfoil surface, the segmentation of the airfoil
surface should be made in such a way that segment size is smaller in the

high curvature region and larger in the low curvature region of the air-

foil surface. In other words, more segments are needed near the high

curvature region in order to obtain better results. This dces not imply

that the segment can be made very large when a large portion of the air-
foil surface is a straight line. The reason is that the variable ¢ (s)
will not be a constant even for a stra;ght line portion of the airfoil
surface. Hence the segment size must be kept small even for a straight
line portion of the airfoil surface osrder that the first approximation
made by Hess and Smith can be considered to be a good one.

With the solution to equation (24), the velccity tangent to the

airfoil surface can be computed by combining the tangential component .
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of the free stream velocity and the tangential velocity induced by the
source sheet. This surface velocity usually does not vanish a2t the
trailing edge of the airfoil when the airfoil is generating a lifting

force. Therefore, an additional set of 0, must be superposed to the

i
solution of equation (24) in order to.insure that the fluid will flow

off the trailing edge smoothly. This set of 9, is obtained as the

solution to a system of simultaneous linear equations with the same
coefficient matrix Kij appearing in equation (24) but with a different

right hand side. The right hand side Fi for this purpose is the normal
velccity at earh midchord point induced ty a vortex sheet with unit strength
which has exactly the same location as the approximating source sheet.

The solution to this system is a source sheet which will induce a

tangential velocity on the airfoil surface which corresponds to the

surface velocity distributior due to a unit circulatory flow around

the airfoil. By combining these two sets of 0,'s and varying strength

i

of the vortex sheet, one is able to satisfy the Kutta condition with

a circulatory flow of strength I'. This ' essentially represents the
circulation generated by the airfoil. With this I', the real tangential
velocity VT along the airfoil surface can be computed by combining the
tangential component of uniform free stream, the tangential velocities
induced by the two sets of ai's. Pressure‘distribution can thea be

obtained by computing the pressure coefficient from

: v
T.2
Cp =] - (U )",

-]
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2. Martensen-Jacob's Method

Instead of replacing the airfoil surface by a source sheet, Martensen9

uses a vortex sheet. By requiring that the strength of the vortex sheet
be identical to the velocity distribution on the surface of an airfoil,
Martensen was able to show that the interior of the closed vortex sheet
must have zero velocity everywhere In particu..r. the tangential

velocity at every point on the inner side of the vortex sheet caused by
the free stream and the vortex sheet should be zero. This result can be

represented also by a Fredholm integral equation of the second kind

8
T
y(s) 1.3 , Yy e
> 2m an I v(s')&n r(s,s')ds
0
- dx dy
= qw (ds cos g + 33 sin o) (25)

where y(s) is the strength of the vortex sheet and g denotes the free
stream direction. This equation almost has exactly the same form as
equation (23). The corresponding terms possess similar meaning except
that the tangential velocities are considered in equation (25)

When solving equation (25), Martensen also replaces the integral
by a summation, and hence a system of simultaneous equations is to be
solved. However, when approximating the integral, the first law of the
mean is used in contrast to the second.la& of the mean employed by Hess
and Smith. When 2N control points are distributed along the airfoil
surface, the resulting system of simultaneous linear equations can be

written as



G STINRERE e e o A‘

R S AL Ll i L LR A A

TIRAEY T TURTETILLE

TR

Wl

R Ans A

e upp Sl aasmnans S R m e s Rephummei ot p A

47

2N
Z K
I=1

gi¥y = My, 1= 12,0028 (26)

where Yj is the vortex strength at point j and

v, o= qbtii(e)cos o+ &i(e)sin a)
. (x-%)3, ®) - (yy-y %, €) .
1y 22 oy )2 .
(%, Xy A yJ
2N
= = z i = .
fo 1 !
1%j

The independent variable has been changed from s to © where © is the
angular coordinate of the image of a control point when the airfoil is
transformed into a circle. The control points on the airfoil surface
are to be distributed in such a way that their images are equally spaced

on the circle, and hence the interval over which the law of the mean is

applied is %%. Dots over x and y incdicate derivatives with respect
2N
to ©, The identity Z Kij = 0 comes from the fact that
i=1
Sy \
I vy dn r(s',s)ds' = - ™, (27)
0 n

Equation (27) makes the solution Y(s) of equation (25) non-unique and
this character is carrl:d over to the system of equations which replaces
equation (25). Indeed, equation (26) is not a linearly independent

system and the coefficient matrix Ki has a rank cf only 2N-1, The only

_ b
degree of freedom of the system is annihilated by applying the Kutta condition.
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The solution obtained is the velocity distribution on the airfoil surface.

This is an advantage of this method when compared with Hess-Smith method,

As previously stated, the direct solution to equation (24) is the source

strength, and the surface velocity has to be obtained fron this source

sheet. However, Martensen's method does not give good results for thin

airfoils with thickness/chord ratios less than 10%. The reason is that

when the airfoil is thin, the control points on the upper and lower

surfaces are very close to each other, and the vortices located there

induce strong tangential velocities on each other. While this induced

velocity decays very rapidly for points in the neighborhood of the

control point, the first law of the mean assumes it to be a constant.

Therefore, the computed result Yj is not a good approximation to the true .
solution to equation (25). Jacob10 modified Martensen's method by taking

the limit of Ki

when i approaches j to be the value of Ki This gives —

] i
1 %, @)y;(8) - v, (8)x, (8)
Kjg = 8- 3

x @2 + 3,7

Then the value of K,, for control points directly facing each other, e.g.,

i]
1= 2N - j + 2 for symmetrical airfoils, is obtained from ZE Kij = 0.
i=l
This modification improves the results obtained from Martensen's method,
but it places a restriction on how the .control points are to be

- distributed over the airfoil surface. Also, it can cause a lot of in-

convenience for airfoils such as those obtained by Liebeck and OrmsbeeA1
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3. Oellers' Method

Oellers11 developed a method to compute the pressure distribution on
tﬁe surface of cascades of airfoils in tandem. The surface of each air-
foil is replaced by a vortex sheet which must be & streamline. Instead"
of working with induced velocities, a method used by both Hess-Smith
and Martensen-Jacob, stream functions are employed, The stream function
for a uniform free stream is added to that of the vortex sheet, and the
sum is set to be a constant on the airioil surface. This requirement is
represented by a Fredholm integral equation of the first kind

s

T
¥ =uy(s) - v x(s) - ;—;,J; Y(s')

x dn{sinn® TRELED | 52 fy()oy (s 014172 4,

where u = U°° cos a, v_ = U sin g, t is the spacing of the cascade and

¥ is an unknown constant. When a single-element airfoil is under con-
sideration, the kernel of the integral becomes In r(s,s') and the equation
reads

St

¥ = uye) - v xE) %EJ; Y(s')n x(s,8')ds’ . (28)

To solve this equation for § and y(c), the integral is ﬁg;in replaced by
a summation using second law of the mean to approximate the integral,
Dividing the airfoil surface into N segments and applying equation (28)
at the mid-chord point of each segment results in a system of

simultaneous linear equations of the form
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N

Vomuy, -vx + T KigYy o L= L2,000N

or

N
) Ki Y, =¥ = VX

yu1 33 - uayj_ y 1= 1,2,,,,,N (29)

i

For an airfoil with the geometry given in cerms of coordinates of N points,
the coefficient matrix Kij may be combuted and the right hand side of
equation (29) is knownonce the free stream direction is given. However,
there are M1 unknown variables ¥ and Yi's while only N equations are
available. The solution is not unique. This degree of freedom is again
removed by applying the Kutta condition at the trailing edge. Because a
vortex sheet is used to represent the airfoil comtour, the solution Yi

is the real tangential velocity on the airfoil surface. This is similar

to Martensen-Jacob's method but Oellers' method is simpler due to less

computation involved in obtaining the coefficient matrix.

4. Comparison of the Three Methods of Computing Pressure
Distribution on the Surface of a Given Airfoil

Extensive investigations have been made in order to find various
properties of the methods presented in the previous subsections and their
applicability to solving the problem of airfoil design. The results
are summarized as follows,

When applied to standard airfoils for which analytical expressions
of pressure distribution are available, the Hess-Smith method always
gives the correct value of circulation generated by the airfoil, This
indicated that the pressure distribution computed by the Hess-Smith

method is fairly close to the true value. However, the computed surface
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velocity is found to be very sensitive to the coordinates of the control
points on the airfoil surface which are used as the input of this method
That is to say, the numerical values of the input coordinates have to be
80 accurate that they really do represent a smooth curve A tiny error
in the input coordinates can produce a wavy behavior of large amplitude
in the computed surface velocity. This is illustrated in Figure 7. The
upper half shows the trailing edge of a thin airfoil and the lower half
shows the pressure distribution computed by the Hess-Smith method. An
airfoil whose surface is not perfectly smooth will produce wavy pressure
distribution along the airfoil surface but the amplitude computed by the
Hess-Smith method is simply too large. This is attributed to the fact
that this method chooses the velocity normal to the airfoil surface to be
the variable to work with. Because airfoils are generally operating at
moderate angles of attack and hence the free stream does not have large
component normal to the airfoil surface, the consequence of using normal
velocity as the variable is that a small absolute error introduced in
computing the unic normal vector Hi by the non-exact input coordinates
is a large relative error for the right hand side of equation (24).
Therefore, by failing to represent the airfoil surface exactly with the
input coordinltei, the solution of equation (24) contains errors. These
errors are especially large near the trailing edge of thin airfoils.
This character of the Hess-Smith method makes it intractable to perform
modifications of the geometry graphically when an airfoil design
problem is to be solved. Alternatively, if the modification is to be
accomplished by an iterative procedure programmed for a computer, the

possibility is eliminated when one recalls that the tangential velocities

it
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Figure 7. Sunsitivity of pressure distribution computed
from the Hess-Smith Method to the input
coordinates.
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on the airfoil surface have to be computed as those induced by all the
discrete sources distributed on the approximated airfoil contour,

As noted by Jacodb, Martensen's method does not give accurate results
for thin airfoils. This drawback has been improved by Jacob by taking the
steps described in Subsection III.B.2. However, this modification
restricts the manner in which control pointé are to be distributed on the
airfoil surface., As will be seen in the next chapter, all the airfoils
which generate optimum pressure distributions have a sharp trailing edge
with which a thin aft-part is inevitably associated. Therefore, a
modification to the Martensen-Jacob method has been made during the
course of this study in order that thin arifoils may be treated and no
generality of how to distribute control points will be lost, The
modification i8 to approximate the integral by uging the second law of
the mean instead of the first law of the mean. In other words, the

scheme by which K, , is computed in the Hess-Smith method is applied ¢o

1)
equation (25). It is found that this modification serves the purpose of
fulfilling the requirements described above, but the circulation generated
by the airfoil is smcller than the one computed by the Hess-Smith meth~d,
Further investigation reveals the fact that the influence of local
curvature on the induced velocity has been ignored when the coefficient
matrix is obtained by carrying out the integration along the chord line

of sach segment {nstead of along the airfoil surface which is usually
curved, This approximation did not bother Hess-Smith's results but the
effects on the solution of equation (25) are fa: more than would be

expected., The resson is a very interesting one: The diagonal elements

of the coefficient matrix of the integral equation (23) have & positive
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sign while those of the integral equation (25) have a negative lign«

With everything clse the same, this difference makes the coefficient
matrix of aquation (24) a diagonally dominated one while that of equation
(26) 18 an almost singular one. When one uses the terminology of numerical
analysis, the former is a well-conditioned matrix and the latter is an
ill-conditioned one. Hence by neglecting the local curvature, a more
severe consequence appears in Martensen-Jacob's results than in Hess-
Smith's results. After the curvature effect is taken into ponsideration,
the circulation computed by Martensen-Jacob's method increases, but it

is still smaller than the value obtained by Hess-Smith's method. On the
other hand, because it is the vortex sheet and tangential velocities which
are considered by Martensen and Jacob, the computed results are not very
sensitive to the inaccuracies of input coordinates. Small absolute
errors introduced by non-exact coordinates in computing tangential |
vectors produce small relative errors for the right hand side of equation
(26). Thus, wavy pressure distributions will be obtained when rnon-exact
coordinates are used as input, but this is what should be expected. The
wavy pressure distribution computed by the Hess-Smith method for a same
set of coordinates is too e~xaggerated to be realized in real fluid flow.
Hence the modifi?d Martensen-Jacob method can be used in designing air-
foils by an iterative procedure when modifications of geometry are to be
made graphically. Also, the expiicit appearance of surface velocity

v(s) in the 1nt;gral equation msakes it possible that, when applied to
airfoil design, a systematical way of modifying the geometry may be

established and performed on a computer.
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There are no references which give the pressure distributions along
the surface of single-element airfoils computed by Oellers' method, but
the numerical examples which have been worked out during the course of
this study show that Oellers' method possesses many favorable character-
istics. Pirst, the computed surface.velocities are relatively insensitive
to inaccuracies of the input coordinates. This is attributed to the fact
that the right_ hand side of the system of simultaneous equations (29)
contains only the coordinates of the airfoil while derivatives must be
computed both in the Hess-Smith method and the Martensen-Jacob method.
Because computing derivatives numerically always causes a loss of accuracy,
the results obtained by using Oellers' method are expected to have higher
precision than the other two methods. Second, the circulation generated
by the airfoil is found to be almost the same as “he one computed by the
Hess-Smith method. The word 'almost' is used here because all the
numerical results are approximations to the real solution to the integral
equation employed. Therefore, an identity of the results obtained from
different approximations is almost impossible to achieve. The pressure
distributions on the surface of standard airfoils are found to be very
close to those obtained by analytical methods. This is true whether the
airfoil is thick.or thin or whether it has a rounded trailing edge or a
sharp one. Third, the time consumed in computing the velocity distribucion
is less than that of any of the other methods. This is attributed to
the simplicity of the kernel of integral equation (28). This character-
istic is very important because the computation of surface velocity must

be repeated many times during an iterative procedure of airfoil design.
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These three characteristics, plus the fact that surface velocity y(s)
appears explicitly in the integral equation, make the Oellers' method

undoubt3adly the appropriate tool to be used in airfoil design.

C. A New Method of Two-Dimensional Airicil Jesign

M3 indicated in the previous seétions, the problem of multiple-
element airfoil design can be solved best by an iterative procedure in
which the geométry of a starting airfoil undergoes modifications until
the surface pressure distribution computed by a reliable method agrees
with the desired one. The most reliable method or computing pressure dis-
tribution on the surface of an airfoil with given geometry has been found
to be the one by Oellers while the modification of starting geometry has
yet to be studied. Since the modification should be made according to
how the computed velocity distribution differs from the desired one in
order that the procedure converges to the desired answer, some'means
must be found by which the modified coordinates of the starting airfoil
can be related to the desired velocity distribution. When the equation
considered by Oellers in computing the surface velocity of an airfoil is
recalled,

s
. T
V= uy(s) - vx(s) -'%; I y(s')4n r(s,s')ds' (28)
0

one can see clearly that this is the appropriate relation between surface
velocity y(s) and coordinates (x,y). In order to compute the pressure
distribution on the surface of an airfoil, the coordinates of the air-
foil may be normalized with respect to the chord length for the purpose

of convenience, With this normalization made and approximately one
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hundred control points distributed along the airfoil surface, the co-

efficient matrix K,,6 obtained by approximating the integral in squation

1}

(28) is found to possess an excellent property. That is: most elements

of Ry are of order 10™>, some of them are of order 10"2 and only a faw

1

are of order 10°°, Therefore, if the equation is rewritten as

8
T .
ugy(s) = vox(s) = v+ %;6[' Y(s')dn r(s,s')ds'
which can be replaced by
N
UpYy = VX = \J -jilxijvj ,

the change of the summation term will not be large if each Yy is changed

1 =1,2,...,N,

by an amount of order one. This nice characteristic of the coefficient
matrix forms the foundation upon which an iterative method of designing
airfoils is based,

The method starts from a computation of velocity distribution along
the surface of an airfoil. The geometry of the airfoil is an arbitrary
one and it is given in the form of a set of coordinates. With this set
of coordinates and a given free stream direction, the surE;::\velocity

can be obtained by solving the simultaneous linear equations

N
151 KegYy - Vovgx, = uy, »  i=1,2,...,8 (29)
for Yj's and ¢ . This surface velocity on) generally does not agree with

the desired distribution because the coordinates represent merely an
arbitrary airfoil. Hence the coordinates need to be changed in order to

obtain the desired velocity distribution. At this time, equation (29)'13
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satisfied by the coordinates (x,y), the K j from this set of coordinates,

i

the free stream direction and the computed y}o)'s, v. This identity will

be destroyed when the computed y§°) is replaced by the desired velocity
de). If the desired velocities y}d) are kept there and an attempt is

made to change the values of x,y in such a way that equation (29) is again
satisfied, it would mean that an airfoil which produces the desired
velocity distribution has been obtained, and this airfoil is represented
by these new coordinates. In doing so, u and v may be kept unchanged.
de) is the desired value and it causes no trouble. Now, the equations
are to be satisfied by varying x, y, ¢ and Kij while Kij is strictly
determined by (x,y). This puts too many constraints on the effort of
making attempts to satisfy equation (29). Thus, an alternative approach
is taken in which the coordinates of the airfoil which produces the
desired velocity distribution are to be obtained by making several
modifications to the original airfoil instead of one modification. The
first step in achieving this is to retain the value of Kij which

corresponds to the original (x,y). The reason for doing so is that Kij
consists of N2 elements. Each element has a different value, and it is
impossible to find correct values for all the elements in order to
satisfy equation'(29). Now, the summation jgl xinj will have two values

not much different from each other whether the Yj is the desired velocity

distribution or the one computed for the original airfoil. Therefore,

it is to be expected that only small changes of x, y and § are needed

(
3

de)’l. S8ince the goal is to change values of x and y, ¢ is assumed

1

to restore the identity of equation (29) after y 0),. are replaced by

to be unchanged and its original value is retained. At this point, the
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situation is that the left hand side of equation (29) has been computed

using the original values of K, and desired valses of Y 's, u, and v,

i) 3

are unchanged and the values of x and y are to be found such that the
identity can be restored. Since N equations can uniquely determine only
N variables, either x or y must be fqrced to take its original value.

A study of Figure 8 will help in making this decision. In this figure,
two airfoils are shown immersed in a common free stream. These two air-
foils have entirely different angles of attack, thickness distributions
and camber distributions. The only thing they have in common {s that they
span the same lengths in x direction. If the geometry of an airfoil is
represented by a set of control points which are the intersections of

the airfoil contour and the family of vertical lines shown in the figure,
the geometry of one airfoil can be obtained simply by moving the control
points of the other airfoil along these vertical lines., In other woids,
the geometrical characteristics of an airfoil can be completely changed
by changing the y coordinates of the control points. Therefore, in
restoring the identity of equation (29), the x values are assumed to have
the original values. The system, then, contains N y-values to be deter-
mined from N equations. The solution to this system is easy and the

1) rhig yO

y-values obtained will be designated by y together with
the unchanged x-values actually represent the control points of an air-
foil which would produce the desired velocity distribution if the co-

efficient matrix K, , remained unchanged during the change of y-values,

1)
Because Ki is completely detexmined by (x,y), the new airfoil represented
by (x.y(l)) will have a different coefficient matrix, Kij), and hence

the desired velocity distribution will not be realized. However, since
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(1)
the difference A is merely
Log g y@ .0
% ju1 73 3
which has been found to be small, the change in Kij is to be expected to
be small also. Hence the velocity distribution on the surface of this
new airfoil is not much different from the desired distribution yjd).
Up to this point only one iteration has been completed, The geometry of
this new airfoil can be modified again by changing the y(1> values by an
amount
L3 O @
U qe1 11 3
(2)

The velocity vy along the airfoil surface which is now represented by

(1)

@ than vy and ¥(0) because the

o

(x,y(z)) is expected to be closer to ¥y

difference yfz) - yfl)

is smaller than y { in absolute value. There-
fors, an iterative scheme has been established to obtain the geometry of
an airfoil with velocity distribution specified along the airfoil surface.
As will be seen in Chapter V, certain precautions must be taken vhen
specifying the velocity distribution in order that a sstisfactory airfoil
may be obtained, For the exampiec presented in Chapter IV, the con-
vergence of this iterative process was found to be fairly rapid. For
clarity, the f:occdurc can be formally stated as follows:

(1) Choose one of the standard airfoils as the starting con-
figuration. Either Joukowski airfoils or NACA airfoils may be used be-

csuse standard formulae sre available to compute the coordinates of the
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control points distributed along the airfoil contour. More control
points are needed in high curvature regions in order to obtain accurate
ro;ultl. The coordinate system is to be oriented in such a way that the
chord of the airfoil is parallel to the x-axis, and a free stream directior
should be chosen. For a normalized chord length, one hundred comtrol
points were found to be satisfactory for the 'oxmplu computed in this
study.

(11) With the control points chosen in (1), compute the surface
velocity v;o) by Oellers method.

(111) Compare the computed velocity distribution with the desired
one. Replace those Yj'l which are not desired by the desired values and

evaluate

N
£ K

gy 1Y

(iv) Obtain the y-coordinates of the modified airfoil from

N
(w _1_ (m-1) _ (m-1)_(d)
Yy " v [vnxi +y jfl K” Yj B! (30)

vhere superscripts (m) and (m-1) denote the sequence of iteratien and
superscript (d) denotes the word 'desired’,

(v) Compute the velocity distribution slong the surface of this
modified airfoil by Osllers method and returm to (iif).

(vi) The repetition of steps (iii), (iv) and (v) is to be stopped
vhen the velocity distribut’on obtained in (v) is satisfactorily close

to the desirved distribution.
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The principle of thie new method of airfoil design is not complicated,
but some difficulties are encountered when an exercise of the dssign
procedure is carvied out, This will be seen in Chapter V,

Por the purpose of demonstration and simplicity, the new method of
airfoil design has been stated for problems of designing single-element
airfoils. The entension to the problem of designing multiple-element

'iﬁ airfoils is immediate. The appearance of several auxiliary elements in the

flow field, in addition to the main element, simply adds more integral

terms to equation (28), and the value of stream function y will be

R @

different for different elements. Therefore, squation (28) may be

p= 1,2,000,“

;’-., rewritten as a system of equations

8 s

3 ‘ ' = uy (8.) = vx (s ) - L g }q Y (s8')en r(s_,s')ds'
P PUPT PR Mgy, 94 PPee
3

where subscripts p and q denote the airfoil elements p and q respectively,
B and the system is assumed to consist of n elements. If the control points
j of each element are numbered in such an order that they all start from
. the trailing edge and go around the contour of each element in the same

direction, & system of simultaneous linear equations can be written as

X

JEI KinJ - 'ﬂ = V.Xi - u°y1 » is= I'Z'OOO'NT (31)

vhere subscripts i and j denota the control points { and § respectively,

ety

"‘1‘ is the total number of control points and subscript m denotes the

m-th element. There are n unknown ¢ n'u and N.r uaknown Y "'l to be solved,
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but only NT ejuations are available. This n degrees of freedom will be
removed when the Kutta condition is applied at the trailing edge of each
element. Therefore, the procedures of designing multiple-element airfoils
are identical to the ones for designing single-element airfoils except
that equation (31) should be used instead of equation (29).

It is important to point out that although this new method of air-
foil design is powerful in the sense that the starting geometry does not
have to produce & velocity distribution which is very close to the desired
one in order to achieve a convergins‘icerative process, there is a dis-
advantage in the way the airfoil geometry is modified. As stated in
step (iv), the geometry of the airfoil is modified by changing the y-
coordinates of control points. This modification can entirely change the
character of a single-element airfoil. But, when multiple-element air-
foils are under consideration, this method is not capable of making all
the modifications permitted by the existing degrees of freedom. This is
because each element ought tc be able to move freely relative to the
others during the modification while step (iv) only allows motions in
the y-direction. Therefore, the relative position in x-direction is
fixed once a starting confiyuiativn i8 given, This disadvantage, as will
be seen in Chapt;r V, results in a possibility that an airfoil which
produces the desired velocity distribution may not be obtained. Never-
theless, the necessary change of relative positions in x-direction st:ll
can be made by artificial means bLucause the disadvantage described above
exists only when the systematic steps (i)--(v) are to be programmed for
a computer and the coordinates of crutra] points are to be changed by

the machine.
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D. Selection of Parameters in Designing Two-Element Optimum
Airfoils

As stated in Section 1I.B, the parameters which specify the optimum
pfessure distribution are the trailing edge velocity and Reynolds number
Reo. Because a non-zero trailing edge velocity is necessary to avoid an
airfoil of infinite chord length, a convenient choice would be 9 = 1.
Namely, the velocity at trailing edge is the same as free stream velocity.
This choice is. made for all the airfoils generated in this research and
hence only different values of Reo need to be considered. As can be seen
in Stratford's derivations,ReO specikies the boundary layer character-
istics at x5 and hence the zero skin-friction pressure distribution. In
the variational problem, with trailing edge velocity fixed at qU =1,

Reo determines the peak velocity, the extent of peak velocity plateau and
the chord length which corresponds to a specified free stream velocity.
Hence, to design 2 single-element optimum airfoil, an appropriate value of
Reo must be chosen according to the desired free stream velocity and chord
length. The exact value of i1iit coefficient is not known until the
iterative process is terminated because the velocity distribution along
the lower surface does not have a definite specification for the reason
stated in Section II.C. For single-element airfoils, a given velocity
distribution on the upper surface can be achieved by different airfoils.
having appropriate combinations of angle of attack, camber distribution
and thickness distribution. Any one of these airfoils may be considered
to be the solution to the optimization problem. However, the final decision
as to which one is best suited for practical utilization deéends on other
criteria such as structural requirement, performance at various angles

of attack, etc,
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When two elements are present in the system, things are more
flexible. To avoid umecessary complexity, the requirement 9 = 1 is posed
at the trailing edge of both elements. A value of Reo needs to be
specified for each element and they depend only on the desired chord length
of each element. With this information, the pressure distribution can be
specified, and the iteration can start from an arbitrary configuration.
In addition to the geometrical characteristics possessed by single-element
@ airfoils such as angle of attack, camber distribution and thickness
distribution, two-element airfoils have one more, namely, the relative

position of two elements. With the velocity distribution specified

definitely only on the upper surface of each element, there are many air-
- foils which can be considered as the solution to the optimization problem.

These airfoils all produce the desired velocity distribution on the upper

LI ih RIS

surface of each element, but they will have difierent angles of attack,
diffarent thickness and/or camber distributions of each element and
different relative positions between the two elements. Once again,

structural aspects and aerodynamic behaviors at various attitudes play

important roles in determining which airfoil is optimum in the cL sense
max
and utilizable in constructing wing sections.

LR Al LR LA T




T TR e S e e e R el T Sk vt e SR 4 ¢ e S S s P h -

= '
-
:
3 67
:
24
? IV. EXAMPLES
During the development of the new method of airfoil design, a two-

element airfoil was considered in which one element was placed near the
; trailing edge of the other. This simulates the conventional wing which
§ possesses a slotted flap as the high lift device. Values of 5 X 106 and
2
} 106 were chosen for Reo because they give a chord ratio approximately 4.
§:
? After the development of the method was completed, amnother two-element

= 107 and 2 x 106. With these two sets of

R

airfoil was generated with Re0
Reynolds numbers, different relative positions were assigned to both air-
foils in order to investigate the effects of relative position of the

two elements. The results are presented in graphic form in Figures 9 to

A e - ot

18. Both geometry and pressure distribution are shown in the figures.

TRV RRRTE T,

Free stream direction is at an angle of 11.25° measured from positive x-
axis. 2ach figure shows the result obtained by completing ten iterations
f of the procedure described in Section III.C. The time consumed by an
IBM computer model 360/75 were approximately 187 seconds and the figures
. were drawn by the Calcomp Plotter. Since the Plotter only draws straight
lines, symbol x indicates where CP was computed, and Lagrangian inter-
polation was employed in plotting the airfoil contours.

In addition to the two-element airfoils, two single-element airfoils
were generated. Values of 5 x 106 and 107 were chosen for Reo in order
to compare the geometries with two-element airfoils. Sato's method was
employed and the resulting airfoils were found to possess highly curved
leading edges. Also, the thickness ratio was found to be less than 9%.

Shown in Figure 19 is the airfoil for Re, = 5 X 106 together with three
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: Figure 12, Geometry and pressure distribution of two-
element optimum airfoil for Rey = 5 X 106
and Re, = 105, ¢ = 2.27442,
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x/c1

Figure 17. Geometry and prescﬁre distribution of_two-
eslement optimum airfoil for 8301 = 107 and
Rey, = 2 x 108, ¢, = 2.45446.
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- Figure 19, Single-element airfoil designed by Sato's
method and pressure distributions computed
by three different methods,
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pressure distributions. These three pressure distributions were obtained
by three different methods and are presented in the same figure for
comparison. It can be seen that Oellers' method yields a better result
than the one obtained from the Hess-Smith method. Since thick airfoils
with blunted leading edges are desirable for practical utilization,
modifications in pressure distributions were made, and the new method of
airfoil design described in Section III.C was employed to obtain the
coordinates. Ninety control points were used and the time consumed by
the IBM 360/75 computer was 110 seconds. The resulting geometries and
pressure distributions are presented in Figures 20 and 21, Also shown in
the figures are the pressure distributions at off-design attitudes, {.e.,
. at angles of attack smaller than the designed values, 17.6° for

6 7

and 18.6° for Re, = 10°.

Because of the different quantities used in computing Reynolds number,

Reo =5 x 10

the free stream Reynolds number Re may be obtained from the formula

(2]

&
o
mi‘

Rg» = Re0

oc‘.lsc‘.
c

where all the quantities are available frow Tables 1, 2 and 3. The value
of c/sU is approximately 0.925 for the examples generated. For wing-flap
configurations, the main element is taken as the reference.

Although 8y has been used as the reference length in defining the
.. 1lift coefficient in Chapter II, the chord length ¢ is commonly used.

Hence the C, values shown in Figures 20 and 21 are based on the chord

: L
length and those shown in Figures 9 to 18 are based on the chord length

of the main element.
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Figure 20, Single-element optimum airfoil for
Re, = 5 X 105 and pressure distributions
at three different angles of attack,
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Figure 21, Single~element optimum airfoil for

Re, = 107 and pressure distributions
at three dif{erent angles of attack,
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V. DISCUSSION AND CONCLUDING REMARKS

A. Single-Element Optimum Airfoils

Although the main interest of this research was to obtain the
geometries of multiple-element airfoils optimized for maximum lift coe-
efficient, several single-element airfoils were also generated. Two
single-element airfoils with different Reynolds numbers are presented in
Figures 20 and 2] together with their pressure distributions. The
geometries of these two airfoils are quite similar. This is not surprising
since the optimum pressure distributions on the upper surface of each air-
foil do not differ very much (see Figure 22). The modified pressure
distributions ;n the lower surface are also similar, The only difference
between these airfoils is the attitude at which each airfoil is to be
operated. As can be seen in Tables 1, 2 and 3, larger Reynolds numbers
always result in higher peak velocity and longer extent of peak velocity
plateau. Hence lift coefficient increases as Reynolds number increases,
As a consequence, single-element optimum airfoils with larger Reynolds
numbers usually operate at higher angles of attack The geometry is
obtained first by Sato's method. The results all possess leading edges
of high curvature and the thickness ratios are smaller than 9%. This
highly curved Ie;ding edge is the consequence of the abrupt pressure drop
at the front stagnation point as demanded by optimization of pressure
distribution, but it is not suitable for cperating the airfoil at other
angles of attack. When the &irfoil is to be operated at angles of attack
smaller than the design value, the front stagnation point moves along the

airfoil surface in a clockwise direction. This leads to a small region

gt

3
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. Figure 22, Optimized pressure distribution on the

upper surface of a single-element airfoil
for two different Reynolds numbers.
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of high velocity on the lower surface and consequently a flow separation
when the velocity is decreasing toward the trailing edge. Although the
flow separation on the lower surface is probably not as extensive as the one
on the upper surface, the precise effects are not known. The curvature

near the leading edge was reduced by modifying the geometry obtained from

Sato's method in an arbitrary manner. This modification not only changed

the abrupt pressure drop to a gradual one but also destroyed the optimum

TSR IR

pressure distribution which is composed of a plateau and a Stratford zero
skin friction pressure distribution. What needs to be done is to modify

this modified airfoil in such a way that the gradual pressure drop, as

. well as the plateau and Stratf;fd's distribuvion, can be obtained. This
modification is accomplished by employinz the new method of airfoil
design developed in Section III.C. As shcwn in Figures 20 and 21, each
airfoil has a leading edge of small curvatu-e, a moderate thickness (12%)

and a not too thin aft part. The pressure distribution on the upper

3
g
.
i
3
%
A
]
5

surface does have a plateau and the recovery part does follow the

Stratford distribution. But, the pressure drop at the front stagnation

point is gradual and the trailing edge velocity is not 9 = 1. These
facts make the airfoil a non-optimized one. However, in view of the
conflict between the optimization requirement and other criteria such as
the aerodynamic performance at various angles of attack and structural
requirement, the compromise made is an appropriate cne.

The behavior of these airfoils at lower angles of avtack was also
examined. The pressure distributions are shown in Figure 20 and 21.
They all possess an almost constant free stream pressure on the lower
surface. The acceleration on the upper surface is gradual and the

position of peak velocity is fairly close to the mid-chord.
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B. Two-Element Optimum Airfoils

The examples presented in Figures 9 to 18 are two-element optimum
airfoils with free ctream Reynolds numbers in the order of 106 to 107
Because the intention is to design high 1ift devices, such as a retractable
trailing edge flap, chord ratios of approximately 4 are used. It can be
seen that geometries of the main elements differ from those of the single-
element airfoils with the same value of Re,. This difference occurs be-
cause the optimum pressure distribution is the same for all airfoils of
any number of elements while for multiple-element airfoils the pressure
distribution of each element is not entirely determined by its own geometry.
The geometriés of other elements and the relative position of each element
are also involved. These examples have indicated that the relative
position of two elements plays an important role in determining the
geometry of each element. When two elements are in a conventional wing-
flap configuration as shown in Figure 9, the influence of the flap on the
main element is to induce an increase of circulation which is composed of
a velocity increase on the upper surface and a velocity decrease on the
lower surface of the main element. However, in order to produce the same
optimized pressure distribution, the single-element airfoil is inclined
more to the free stream than the main element of a two-element airfoil 1is
On the other hand, the influence of the main element on the flap is to
decrease the circulation about the flap. This is indi:ated by a decrease
of velocity on the upper surface of the flap. Hence the inclination of
the flap with respect to the free stream is more than that of o single-
element airfoil which produces the same pressure distribution. When the

distance between two elements is increased, the interaction becomes weaker.
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The consequence is :that in addition to the slight geometrical change on
each element the mainn element increases its angle of attack, and the flap
decreases its angle of attack. Because the high peak velocity plateau on
the upper surface of the flap induces a strong flow field in the neighbor-
hood of the flap's leading edge, low speed near the trailing edge of the
main element as required by the optimization can not be realized if the
distance between the two element is too small (see Figures 9 ard 14).
Therefore, from an aerodynamic point of view, some minimum distance must
be maintained between the two elements in order that the optimum pressure
distribution can be realized by geometrically realistic airfoils. Placing
the flap directly beneath the aft part of the main element should be
avoided. Under that circumstance, the lower surface of the main element
is approximately parallel to the flap and the peak velocity plateau on the
flap has a strong induced velocity. The aft part of the main element

w11l contribute negative lift force unless the distance between two elements
is made large (see Figures 12 and 17). It may be noticed that the require-
ment qU = 1 at the trailing edge o. the main element is not quite
satisfied in most cases. This is attributed to the fact that during the
modification of the airfoil geometries, the relative position of two
elements in the x direction is kept unchanged. This restricts the freedom
of modification because the relative position in the x direction is fixed
at its starting value. Therefore, several starting configurations are
used and only the one vhich gives the result of q = 1 on main element
should be retained. An alternative solution would be to change the entire
velocity distribution according to the real value of 9y But, since

optimum velocity distribution has been reached over a large portion of
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the airfoil surface and a new value of 9y would result in a new value of
8y the gain of changing the velocity distribution is overshadowed by

the trouble it causes, With regard to the starting configuration, the
single-element optimum airfoils obtained by a combined use of Sato's
method and the new method developed in Section III.C is chosen, although
any geometry may be used. The reason for doing so is two-fold. First,
all of the single-element optimum ajirfoils have moderate thicknesses and
reasonably blunt leading edges. Second, in this way the time consumed by
the computer in modifying the geometries will not be as long as the time

which would be consumed by starting from an arbitrary geometry,

C. Remarks About the Design Procedure

When the velocity distribution on the surface of a given aicfoil is
to be computed by Oellers' method, two sets of points are used. One is
the given control points which represent the airfoil. These points are
on the airfoil surface. The other set is the set of mid-chord points
which are slightly removed from the airfoil surface. The integral
equation (28) is applied at tne mid-chord points and the control points

serve the purpose of constructing the coefficient matrix K Therefore,

i’
when the geometry of an airfoil is under modification in order to obtain
the optimum pressure distribution, the values of y computed by equation
(30) are the ones for the mid-chord poirnts. In order to compute the
velocity distribution on the surface of the modified airfoil, a new set
of control points must be obtained. Two ways of determining the co-

ordinates of control points from the mid-chord points were considered in

the aarly stage of ti:is research but they did not give satisfactory
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resulcs. One of these was to take the middle point of the straight line
wvhich connects two adjacent mid-chord points to be the control point.
The other was to form a polygon such that the new mid-chord points were
the middle points of each side and the corners of this polygon were taken
to be the new control points. Because the x coordinates of the mid-chord
points were kept unchanged during the modification, these two methods gave
bad results after a certain number of iterations. It was felt that the
means by which mid-chord points were obtained as initiated by Hess and
Smith is not appropriate for the purpose of modifying geometries. Between
the set of contiol points and the set of mid-chord points, one is permitted
to go only from the former to the latter, but nect the reverss. To
liberalize this restriction, interpolation would be a desirable tool.
In other words, when the control points which represent an airfoil were
given, an interpolation was made to give the coordinates of 'mid-chord
points' where equation (28) is to be applied. After the new y coordinates
of 'mid-chord points' were obtained from equation (30), the new control
points were determined by interpolation. A Lagrangian four point inter-
polation was used and the results were very good. Because none of the
interpolation methods gave good results when the slope of the curve
formed by the given points was large, certain rotations of coordinate
axes were necessary when doing interpolation near the leading edges of an
airfoil,

During the modification of airfoil geometries, certain values of Yj
are to be used in equation (30) as the desired velocities., Usually, the
starting configuration is chosen so that the velocity distribution on

the lower surface is spproximately a linesr acceleration from leading
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edge to trailing edge. Hence, those Yj's which are computed from step
(i1) of Section III.C as the velocities on the lower surface may be
retained. Only those on the upper surface need to be changed. In
generating the examples shown in Figures 20 and 21, it is found that

too many restrictions on Yj's may result in either an unacceptable geometry
or a non-converging iterative process. The most severe situation takes
place when attempts are made in order to reach the exact optimum velocity
distribution near the trailing edge. The action taken to overcome this
difficulty is not to pay much attention to the trailing edge. Because

the viscous effects have not been taken into consideration in the design
process, the airfoils obtained will not generate exactly the desired
pressure distribution. This deviation of real pressure distribution from
the desired one is especially large near the trailing edge. Hence there
is really no need to attempt to reach the exact pressure distribution near
the trailing edge. In the case of two-element airfoils, this problem
seems to be less severe because geometries which correspond to the desired
velocity distributions can always be obtained by appiopriate choice of

relative position of the elements.
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