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STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF
CLOSE-COUPLED WING-CANARD CONFIGURATIONS AT
MACH NUMBERS FROM 1.60 TO 2.86

By Samuel M. Dollyhigh
Langley Research Center

SUMMARY

An experimental investigation has been made in the Mach number range from 1.60
to 2.86 to determine the static longitudinal aerodynamic characteristics of close-coupled
wing-canard configurations. Three canards, ranging in exposed planform area from 17.5
to 30.0 percent of the wing reference area, were employed in this investigation. The
canards were either located in the plane of the wing or in a position 18.5 percent of the
wing mean geometric chord above the wing plane. Most data obtained were for a model
with a 60° leading-edge-sweep wing; however, a small amount of data were obtained for
a 44° leading-edge-sweep wing. The model utilized two balances to isolate interference
effects between wing and canard.

In general, it was determined that at angle of attack for all configurations investi-
gated with the canard in the plane of the wing an unfavorable interference exists which
causes the additional lift on the canard generated by a canard deflection to be lost on the
wing due to an increased downwash at the wing from the canard. Further, this interfer-
ence decreased somewhat with increasing Mach number. Raising the canard above the
plane of the wing also greatly decreased the interference of the canard deflection on the
wing lift. However, at Mach 2.86 the presence of the canard in the high position had a
greater unfavorable interference effect at high angles of attack than the canard in the
wing plane. This interference resulted in the in-plane canard having better trimmed
performance at Mach 2.86 for the same center-of-gravity location. The trends shown
for the trim drag polars do not account for any differences in subsonic stability level
that may exist for the different canard configurations. Pitching effectiveness was not
significantly affected by canard height throughout the Mach range.

INTRODUCTION

A continuing study (refs. 1 to 4) is being directed by the National Aeronautics and
Space Administration in the area of advanced air-superiority fighter aircraft. As a part



of this program, a general research model has been constructed with which to provide
basic data on the static longitudinal aerodynamic characteristics for these highly maneu-
verable fighters as well as to make available experimental data for use in evaluating the-
oretical methods. This model has been tested subsonically in both aft-tail and canard-
wing configurations, with the trim drag results being reported in reference 5. The pres-
ent paper provides the necessary data to extend the analysis of reference 5 for some of
the canard-wing configurations to supersonic speeds.

SYMBOLS

The longitudinal results are referred to the wind-axis system. The moment refer-
ence point was located at fuselage station 59.144 cm (23.285 inches) for the 60° leading-
edge-sweep wing and at fuselage station 57.165 cm (22.506 inches) for the 44° leading-
edge-sweeDp wing.

The units used for the physical quantities of this paper are given both in the
International System of Units (SI) and in the U.S. Customary Units. Measurements and
calculations were made in U.S. Customary Units.

A aspect ratio

b wing span

C wing mean geometric chord

Cp drag coefficient, Drag

cy, lift coefficient, (114'—§f;

Cm pitching—moment.coefﬁcient, Pitchi;égwrgoment
8Cp, /0C1, longitudinal stability parameter at Cyp, =0
8Cpy /98 pitching effectiveness of canard at Cyp, =0
L/D lift-drag ratio

M free-stream Mach number

q free-stream dynamic pressure



Se reference area of canard (exposed)

Sw reference area of wing with leading and trailing edges extended to plane of
symmetry

z vertical direction (positive up)

a angle of attack, deg

¢ canard deflection angle, positive when trailing edge down, deg

A leading-edge sweep angle, deg

DESCRIPTION OF MODEL

A three-view drawing of the general research model is shown in figure 1 and some
of the pertinent geometric characteristics are given in table I. A photograph of one of
the configurations investigated is presented in figure 2, The wing and canard were closely
coupled in all test configurations.

Two different untwisted wings were used on this model; however, they both had the
same area, mean geometric chord, uncambered circular-arc airfoil sections, and maxi-
mum thickness (varying linearly from 6 percent of the chord at the root to 4 percent at
the tip). The main difference, as seen in figure 1, was that the wing-leading-edge sweep
angle was 60° for one configuration and 44° for the other (hereinafter, called the 60° wing
and the 44° wing, respectively).

Three canards were used which had a leading-edge sweep angle of 52° and an
exposed area of 17.5, 24.0, and 30.0 percent of the wing reference area. The canards
were tested both in the plane of the wing (planar position) and in a position 18.5 percent
of the wing geometric chord above the wing plane (high position). The canards were
deflected by pivoting about the canard half-root-chord.

The canards were also untwisted and had uncambered circular-arc airfoil sections
that had a maximum thickness varying linearly from 6 percent of the chord at the root to
4 percent at the tip. The configuration had no vertical stabilizing surfaces.

TESTS AND CORRECTIONS
The tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers

1.60, 2.00, 2.36, and 2.86. The Reynolds number per meter (per foot) was 9.8 X 106
(3.0 x 106) for all data points except those at higher angles of attack at Mach numbers



1.60, 2.00, and 2.36 where the Reynolds number per meter (per foot) was reduced to

8.2 x 106 (2.5 x 106) and 6.6 x 106 (2.0 x 106) in order to stay within balance load limits.
The dewpoint was maintained sufficiently low to prevent measurable condensation effects
in the test section. The angle-of-attack range was from approximately -4° to 24°., In
order to assure boundary-layer transition to turbulent conditions, 0.16-cm-wide
(1/16-inch) transition strips of No. 50 carborundum grit (shown to be adequate in ref. 6)
were placed on the body 3.05 cm (1.20 inches) aft of the nose of the model and 1.02 cm
(0.40 inch) streamwise on the wings and canards.

Aerodynamic forces and moments were measured by means of two six-component
strain-gage balances. One balance was housed within the forward segment of the fuse-
lage and was rigidly attached to the rearward segment of the fuselage. This balance
(called canard balance herein) measured the combined forces and moments of the canard
and forward segment of the fuselage, as indicated by the shaded area in figure 1. There
was a small unsealed gap between the fuselage segments to insure that they did not foul.

The second balance, housed in the rearward segment of the fuselage, was attached
to a sting which in turn was rigidly fastened to the tunnel support system. This balance
(called main balance herein) measured the total forces and moments on the model. Only
the total load balance was used with the 44° wing, and data were taken only at Mach 1.60

and 2.00.

Balance-chamber static pressures were measured with pressure tubes located in
the vicinity of the main balance. The drag data presented herein have been corrected to
the condition of free-stream static pressure in the main balance chamber. The base of
the model was feathered so that no base pressure corrections were necessary. Correc-
tions to the indicated model angles of attack have been made for both tunnel-airflow mis-
alinement and deflection of the balance and sting under load.

PRESENTATION OF RESULTS

Most of the experimental data presented herein (figs. 3 to 14) were obtained for the
60° wing. Unless otherwise noted by a reference to the 44° wing (figs. 15 and 16), all
results are for the 60° wing and the word "wing' in the discussion refers to the 60° wing.

The general format for figures 4 to 10 is to present the lift and pitching moment
measured with the canard balance and the total lift and pitching moment measured with
the main balance side-by-side. These plots are presented in the form of force and
moment coefficients as a function of angle of attack. The variations of drag coefficient
and lift-drag ratio for the total configuration as a function of lift coefficient are also pre-
sented. An exception to this format is for the configuration with the smallest canard



(S /SW = 0.175) in the high position (fig. 8) for which data on only the main balance were
available; for this particular configuration, data were available at only Mach 1.60 and 2.00.

An outline of the data figure contents is as follows:

Figure

Summary of longitudinal stability parameter and pitching effectiveness . . . . . . 3
Longitudinal aerodynamic characteristics for S, /SW =0.175 and

2 5 4
Longitudinal aerodynamic characteristics for §; /Sy, =0.240 and

o X 5
Longitudinal aerodynamic characteristics for Sg¢ /Sw =0.300 and

2 L 1 o 6
Longitudinal aerodynamic characteristics for all canards (5c = 00)

with z/€=0.0 andwingoff . . . . . . . . . . i i i i i i i e e 7
Longitudinal aerodynamic characteristics for S¢/Sy =0.175 and

Z/T=0.185 . . . . . . . e e e e e e e e e e e e e e e e e e e e e e 8
Longitudinal aerodynamic characteristics for S¢ /Sy =0.240 and

Z/T=0.185 . . . . . e e e e e e e e e e e e e e e e e e e e e e e 9
Longitudinal aerodynamic characteristics for S; /Sw = 0.300 and

Z/C=0.185 . . . . .. e e e e e e e e e e e e e e e e e e e e e e e e e 10
Trimmed drag and lift-drag ratios for various values of S¢ /SW

and z/CT at M=1.60 . . . . . . . ¢ i i i i i i ittt e ettt e e e 11
Trimmed drag and lift-drag ratios for various values of S /Sw

and z/T at M =2.86 . . . . « v v v v e e e e e e e e e e e e e e e e e e e e 12
Effect of canard size (6c = OO) and vertical position on lift and pitching

moment of canard section and total configurationat M=1.60 .. .. ... .. 13
Effect of canard size (Gc = 00) and vertical position on lift and pitching

moment of canard section and total configurationat M =286 ... ... ... 14
Longitudinal aerodynamic characteristics for 44° wing, S / Sy = 0.175,

and z/C=0.0 . . . . . . i i e e e e e e e e e e e e e e e e e e e e e 15
Longitudinal aerodynamic characteristics for 44° wing,

SC/SW =0.175,and z/C=0.185. . . . . . ¢ v v v v vt e e e e e e e e 16

DISCUSSION

A summary of the longitudinal stability parameter and pitching effectiveness of the
canards is presented in figure 3 over the Mach range for z/€ =0 (from figs. 4 to 6) and
z/C = 0.185 (from figs. 8 to 10). These results show that increasing the canard area
decreases the static margin of the configuration and increases the pitching effectiveness
of the canard, as expected; increasing the canard height produces an increase in the static



margin but has little effect on the pitching effectiveness. The reasons for this phenome-
non are found by looking at the data in detail.

Figures 4 to 6 show that for canards in the plane of the wing at angle of attack an
unfavorable interference exists which causes the additional lift on the canard generated
by a canard deflection to be lost on the wing due to an increased downwash at the wing
from the canard. Furthermore, this interference between canard and wing seems to
decrease somewhat as Mach number increases. Figure 7 shows the effects of adding
planar canards to the body alone. This figure shows the additional lift and drag asso-
ciated with the increasing canard size in the absence of any interference on a wing. This
figure also documents that the canard loading is, in fact, measured by the main balance
and that the interaction between canard and wing lift are as discussed.

The longitudinal aerodynamic characteristics of the canards in the high position
are presented in figures 8 to 10. The most obvious change over the data for the planar
canards is that now the additional lift on the canard associated with canard deflection is
not offset by a comparable loss in wing lift. Also an increase in stability occurs when the
canard is raised above the wing. This increase in stability results because the wing
loading behind the pitch center is not appreciably altered by the interference of the

canard wing.

Curves showing the effects of canard size and canard vertical position on the
trimmed drag and trimmed L/D at Mach 1.60 and 2.86 are presented in figures 11 and
12, respectively. In general, at M = 1.60 (fig. 11), increasing canard size (destabilizing
effect) improves trimmed drag polar shape and raises trimmed L/D. Raising the canard
to the high position further improved trimmed drag polar shape and trimmed L/D due
to less interference by the canard on wing loading. At Mach 2.86, the situation is changed
somewhat, as shown in figure 12. Increasing the canard size has the same effects, but
raising the canard vertical location results in a less desirable trimmed drag polar and
lower trimmed L/D. The small canard was not tested in the high position at Mach 2.86.

Trends found in the trimmed data are explained by an examination of the significant
points of the two balance measurements. Figures 13 and 14 present the effect of canard
size on lift and pitching moment for the canard in the plane of the wing and then they pre-
sent the effect of canard height for the two larger canards. At Mach 1.60 (fig. 13), it is
seen that the canards carry the same lift in both planar and high positions, but the total
lift is greater for the high position. Also, since the wing has greater lift for the canard
in the high position, the static stability is greater than the planar canard. However, at
Mach 2.86 (fig. 14), even though the canards carry the same lift, there tends to be more
total lift at the high angle of attack for the planar canard. Further, this results in less
stability for the planar canards. As stated earlier, canard height has no effect on pitching
effectiveness of the canard at Mach 2.86. Hence, the improved performance which is




shown in figure 12 for the in-plane canard comes partly from increased lift and partly from
the smaller canard deflection required to balance the model at M = 2.86.

The 44° wing configurations were tested at Mach 1.60 and 2.00 with only the main
balance installed in the rearward segment of the fuselage, and the results are pre-
sented in figures 15 and 16. These configurations were tested with the smallest canard
(Sc /SW = 0.175) in both the planar and high positions. The center of gravity was moved
forward with respect of the 60° wing so that both configurations would have the same sta-
bility level at Mach 0.70 (see discussion of tests in ref. 5), and this forward movement
resulted in a more stable configuration. The effect of moving the canard to the high posi-
tion was similar to that determined for the 60° wing. The Mach range was too narrow to
determine Mach number effects.

CONCLUDING REMARKS

An experimental investigation has been made in the Mach number range from 1.60
to 2.86 to determine the static longitudinal aerodynamic characteristics of close-coupled
wing-canard configurations. Three canards, ranging in exposed planform area from 17.5
to 30.0 percent of the wing reference area, were employed in this investigation. The
canards were either located in the plane of the wing or in a position 18.5 percent of the
wing mean geometric chord above the wing plane. Most data obtained were for a model
with a 60° leading-edge-sweep wing; however, a small amount of data were obtained on
a 44° leading-edge-sweep wing. The model utilized two balances to isolate interference
effects between wing and canard.

In general, it was determined that at angle of attack for all configurations investi-
gated with the canard in the plane of the wing an unfavorable interference exists which
causes the additional lift on the canard generated by a canard deflection to be lost on the
wing due to an increased downwash at the wing from the canard. Further, this interfer-
ence decreased somewhat with increasing Mach number. Raising the canard above the
plane of the wing also greatly decreased the interference of the canard deflection on the
wing lift. However, at Mach 2.86 the presence of the canard in the high position had a
greater unfavorable interference effect at high angles of attack than the canard in the
wing plane. This interference resulted in the in-plane canard having better trimmed
performance at Mach 2.86 for the same center-of-gravity location. The trends shown
for the trim drag polars do not account for any differences in subsonic stability level
that may exist for the different canard configurations. Pitching effectiveness was not
significantly affected by canard height throughout the Mach range.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., November 22, 1971.
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TABLE 1.- GEOMETRIC CHARACTERISTICS

Wing (both):

- e 2.5
b/2,em (in) . . . . . . e e e e e e e e e e e e e e e e e 50.8 (20.0)
A, deg, high-sweepwing . . . . . . . . . 0 0 o il 60
A, deg, low-sweepwing . . . . . e e e e e e e e e e e e e e e e e e e e e e e s 44
C,em (M) - . o e e e e e e e e e e e e e e e e e e e 23.307 (9.176)
Airfoil section . . . . . . . . . L L L L e e e e e e e e e e e e Circular arc
Sw,sacm (sqin.) . ... ..o e 1032.236 (159.997)
Maximum thickness, percent —

5 7o Lo ) 6

Tip ........ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 4

Canards:

Sc, sq cm  (sq in.) (exposed) —

17.5percent canard . . . . . . . ¢ . . i b vt e e e e e e e 180.645 (28.0)

24.0 percentcanard . . . . . . . . .. e e e e e e e e e e e e 247.741 (38.4)

30.0 percent canard . . . . . . . . . . .. e e e e e e e e e e e 309.677 (48.0)
Semispan, cm (in.) —

175 percent canard . . . . . . . . . . . e e e e e e e e e e e e e e 20.320 (8.0)

24 0percentcanard . . . . . . . . ..ot e e e e e e e e e e 23.876 (9.4)

300percent canard . . . . . . .t u i e e e e e e e e e e e e e 26.924 (10.6)
3 P Y 52
Airfoil section . . . . . . . . . . L L o L e e e e e e e e e e e e e e Circular arc
Maximum thickness, percent —

7o o 1 A 6

B 1 1 o 4
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Figure 1.- Three-view drawing of model.
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Figure 3.- Summary of pitching effectiveness of canards and longitudinal stability parameter.
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Figure 4.- Longitudinal aerodynamic characteristics for S;/S,, =0.175 and z/T = 0.0.
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Figure 8.- Longitudinal aerodynamic characteristics for S;/Sy;, =0.175 and
z/C = 0.185. (Data obtained from main balance.)
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