MCR-0-424 -

&y

DEVELOPMENT OF A TEST AND FLIGHT
CIRgy: »
ENGINEERING ORIENTED LANGUAGE R AT10 gy

MaYy 18 W7t .

PHASE Ill REPORT : L
- T JOMR ¥, KENNLDY Z6ACE CENTE
NASA LIBRARY c S

€

W. F. Kamsler 53 E‘%\
C. W. Case © 83y |
E. L Kinney 2eansy
J. Gyure =0 g‘;;j
¢ et DN
Vel [l =R O
o R =il
T -
« [(PR~ v
=tz
N . . E [RN
Martin Marietta Corporation adom
« v _® U - _ - ":ti
Denver Division _ | 5 S bl
P.0. Box I79 3 (ACCESSION NUMBER) \gmu E SRS
Denver, Colorado 80201 ; 1k SRk
> - (CODE) M
2 (.~ /28374 sl FEE
Y (NASA CR OR TMX OR AD NUMBER) (CATEGO® . g‘_a
December, 1970 g SR
Foas
,5\(3 Y - :r—:
Phase |11 Report for October - December 1970 v & S mow
, D Gl ¢ wmE
' SIS
T X q
NS
§§E
Prepared for | &S
National Aeronautics and Space Administration =5 3
John F. Kennedy Space Center ;%E; b
Reproduced bYAL TECHN|CAL w L_’:
ATION <
l':lFORMATION SERVICE | «J
U S Department of Commerce < -
Springfield YA 22151 B

NOTICE

This report was prepared as an account of Government-sponsored
work. Neither the United States, nor the National Aeronautics and
Space Administration (NASA), nor any person acting on behalf of
NASA: '

(1) Makes any warranty or representation, expressed or im-
plied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report,
or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe
privately-owned rights; or

(2) Assumes any liabilities with respect to the use of, or
for damages resulting from the use of, any information,
apparatus, method or process disclosed in this report.

As used above, ''person acting on behalf of NASA" includes any em-
ployee or contractor of NASA, or employee of such contractor, to
the extent that such employee or contractor of NASA or employee
of such contractor prepares, disseminates, or provides access to
any information pursuant to his employment or contract with NASA,
or his employment with such contractor.

1.. Report No. ' 2. Government Accession No. 3?---éoeipiom's Cetelog Ne.
MCR-70-424 MR
4. Title ond Subtitle 5. Report Date
Development of a Test And Flight Engineering December 1970
Oriented Language 6. Performing Organization Code
Phase III Report
7. Author(s) 8. Performing Orgonization Report No.
W, F, Kamsler, C, W, Case, J, Gyure, E, L., Kinney MCR~70~424
9. Performing Orgonization Name and Address 10. Work Unit No.
MARTIN MARIETTA CORPORATION
Denver Division 11. Controct or Gront No.
P, 0. Box 179 NAS10-7308
Denver, Colorado 80201 13. Type of Report and Period Covered
12. Sponsoring Agency Nome ond Address Phase III Report
National Aeronautics and Space Adminstration October 1970 to
Kennedy Space Center December 1970
Florida 32899 14. Sponsoring Agency Code
15. Supplementary Notes

Phase I Report = MCR-70-327, Martin Marietta, Denver
Phase II Report = MCR~70-365, Martin Marietta, Denver

16. Abstract
This report covers Phage III activity in the devélopment of a test and flight
engineering language,
Based on an analysis of previously developed test oriented languages (Phase I)
and a study of test language requirements (Phase II) a high order language has
been designed to enable test and flight engineers to checkout and operate the
proposed Space Shuttle and other NASA vehicles and experiments,
The language is called ALOFT:
A Language Oriented to Flight Engineering and Testing
The report describes the language, compares its terminology to similar terms
in other test languages, and discusses its features and utilization,
The appendix provides the specifications for ALQOFT,
17. Key Words 18. Distribution Statement
Test Orlented Language
Space Shuttle
Computer Controlled Test Equipment
ALOFT
19.. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

UNCLASSIFIED " UNCLASSIFIED 95

Contents .

1.0

2.0

3.0

4.0

5.0

CONTENTS

Introduction . . . « . . v . v v v v

Space Shuttle Oriented Usage

2.1
2.2

Characteristics of ALOFT

Special Space Shuttle Requirements . .

Language Terminology Comparisons

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

Test Action Operators
Display or Store Operators . e e e
Program Control Operators
Language Processor Directives
Declarations+ ¢ ¢« v
Macro Provisions

Provisions for Controlling Inadvertent
Action0 0 0 e e e e e e e

Monitor-Profile Construction and
Modification «

Language Specification Summary

4.1
4.2
4.3

4.4
4.5

General . . . v ¢ v v 4 et 4 e e e
Syntax Diagram + « ¢ & « & . .

Basic ALOFT Statements and Statement
Prefixes . . ¢« ¢« v v v v v v v o o o .

Program Structures

Tables + v« ¢« v o o ¢ v o o o o« o o o

Writing, Documentation and Checking Aids . .

5.1
5.2
5.3

Writing Aids
Documentation « . . « « ¢ o o o « o o

Checking . . . « ¢« ¢ ¢« ¢« v v v v v . .

ii

21

21
23
23
24

25
30
34
41
41
43
43

6.0 Training Requirements
. 6.1 Training Test Users . . « « & « & o « o
6.2 Training Test Writers, ,
6.3 /Altarnative Approach,
7.0 Summary .+ . . 4 b 0 e s e e e e e e e e e
7.1 Conclusions « « + « « ¢ ¢« 4 4 4 4 . . .

7.2 Reéommenéations e v s e e e e e e e

, | , :

Appendix -- Specification of a Language Oriented to
Flight. Engineering and Testing (ALOFT) .

iii

45
45
45
46
49
49

49
and
50

A-1
thru
A-42

1.0 INTRODUCTION .

This report covers Phase III of the study task for‘development
of a Test and Flight Engineer Oriented Language.

From the analysis of previously developed languages studied in
Phase I and from the needed language characteristics determined in
Phase II, a high-order language has been designed to enable test
and flight engineers to check out and operate the proposed Space
Shuttle and other NASA vehicles and experiments. This language has
been named A L O F T ~ A Language Oriented to Flight Engineering
and Testing.

The language has been designed to be functionally independent
of any test system and be flexible enough for use with a wide va-
riety of future space vehicles and experiments. Test system inde-
pendence is of extreme importance when a language is developed
prior to the design of the test system. Making the language flex-
ible enough to handle Space Shuttle tasks, and yet not restricting
it to just that activity, permits use of the language in various
test systems.

Prime importance has been given to the readability of the lan-
guage to ensure its acceptance. Writing aids will assist the
writer in preparing his tests. The English-like syntactic struc-—
ture of the language makes it easy to write. The language readily
adapts toé all technical disciplines. '

Through the use of the ALOFT language, checkout, test, and
operating procedures can be efficiently prepared and performed.

The specification for ALOFT is presented in the Appendix.

1 and 2

2.0 SPACE SHUTTLE ORIENTED USAGE

ALOFT, the language oriented to test and flight engineering is
being designed to be independent of the test system and of Space
Shuttle itself. The language does, however, contain features to
enable it to cope with Space Shuttle peculiar features and re-
quirements.

2.1 Characteristics of ALOFT

The study of the Space Shuttle performed in Phase ITI* deter-
mined that the capabilities described in the following paragraphs
should be included in the language.

Test oriented capabilities for:

Test initiation;

Application of stimulus;
Measurement of output;
Comparison of results;
Man/machine interfaces;

Records and logs with time tags;

Monitoring;

Clock and time controlled actions;

System, subsystem, and unit testing.

Independence with respect to testing equipment via:

@® Dictionary data banks;
Common character set;
Free form with respect to input media;

No interaction with operating system;

Test writer-created safing features.

*Martin Marietta Report MCR-70-365.

Flexibility provided by:

Full arithmetic and relational operator set;
Thirty-two character data hames;

List and table capability;

Simple loop capability; A

Subroutines;

Integer, fixed point, Boolean, text; binary, and time
data;

Simple numeric and Boolean assignment statements;
Unconditional and simple conditional transfers;

Interrupt initiated routines.

Engineering reader orientation with:

English words for primitives;
Natural English forms as delimiters;

Natural statement structure;

‘Comments are easily accommodated.

Concurrent test execution provisions:

Initiated via language primitives;
Synchronization capability;
Interrupt capability;

Meaning dependent on language processor implementation.

Self-extension through:

Macro definition capability;
Other language capability;

Programmer ability to create new primitives from
existing core set and create specialized subroutines
in other languages.

Special communications requirements:

Computer to computer;

Computer to data bus.

2.2 Special Space Shuttle Requirements

Within the capabilities of ALOFT are special Space Shuttle
unique capabilities. These capabilities are included in the lan-
guage in such a manner that does not preclude use of the language
" to test and operate other NASA space vehicles and experiments.

2.2.1 Multi-Discipline Terminology — The Space Shuttle encompasses
many disciplines, each with its own terminology. To facilitate
writing and reading test programs, a very flexible, yet unambiguous
language structure is provided. A minimum number of rules and re-
straints are imposed on the user.

A basic English-like statement structure is used for test ac-
tion statements. It has the form:

When - do what - to what.
?

The when permits a time statement to define when the desired
action is to take place. This can be at a specific time, every
so many seconds, etc.

The do what defines the action that is to take place. To meet
the specific needs of the many Space Shuttle disciplines, a variety
of action words are necessary. The language provides this capa-
bility. Typical are such verbs as measure, verify, apply, set,
turn, send, display, print, etc. With this variety of verbs the
user is able to select terms that most accurately describe the ac-
tion. For example, he might desire to set a value open. To re-
quire him to apply a valve on would be extremely awkward, and the
readability of the language would suffer. Chapter 3 provides the
reasons for selection of language terminology.

The to what phrase identifies the name of the function under-
going the action. The name is defined in the dictionary data bank.
For any given test program and test system these names are defined
in terms that are meaningful in relation to the article under test.
Provisions are included to enable these functions (which will ap-
pear in signal lists, schematics, etc) to be so defined.

These defined names are placed in the dictionary using SPECIFY
statements. The test writer is confined to the use of function
names which must eventually appear in the dictionary.

The dictionary also facilitates the problem of identifying the
calling addresses of Space Shuttle systems, subsystems, LRUs etc.
The redundant data bus concept of the Space Shuttle requires all

addressable items to be identified by their data bus and interface
unit (IU) numbers. The data bus, IU, and function codes are iden-
tified at the same time the function name is placed in the data
dictionary.

2.2.2 Language Concept - Typical examples of.taé4léﬁéﬁagé;‘feady
for compiling are:

STATEMENT 80 AFTER CDC ''COUNT DOWN CLOCK'' IS -10MIN 50SEC,

MEASURE _ RIGHT AILERON 2 POSITION_ AND SAVE AS
ATLERON POSITION .

IF AILERON POSITION_ IS BEIWEEN 10PCT AND 20PCT GO
TO STATEMENT 120.

STATEMENT 120 DISPLAY TEXT (RIGHT AILERON 2 IN CORRECT POSITION)
ON_ CRT 2, LINE 23 .

As is readily seen, the language is very readable. All spe-
cially defined items are delimited by means of underscores. The
compiler obtains the address for such information from the dic-
tionary.

Comments such as '"countdown clock," which are not to be com-
piled, are delimited by dual apostrophes. (Quotation marks are
not available on most digital printers.)

Text to be printed or displayed such as "Right Aileron 2 in
correct position,' is delimited by open and closed parentheses.

If the dictionary (as proposed) were not provided, it would
become necessary for the test writer to define addresses while
writing the test procedure. The procedure would then be more
subject to error and the printed address data would impair read-
ability.

2.2.3 Dimensional Capability - To further facilitate use of the
language, a large vocabulary of dimensional terms and units is pro-
vided. It is possible to dimension a current measurement as either
0.003A or 3MA. This permits fixed point arithmetic, with the multi-
plier or exponent explicit in the dimensional term.

2.2.4 Concurrent Programs and Continuous Monitoring - A require-
ment stated for the language when applied to the Space Shuttle is
that it be able to specify and control programs which must run con-
currently. ALOFT provides this capability by prefixing a PERFORM
PROGRAM statement with the word CONCURRENTILY. When the CONCURRENTLY
PERFORM PROGRAM name is encountered, the operating systems will
cause both programs to operate together.

A similar requirement for the language is that it be able to
call for the recurrent verification or monitoring of a group of
functions while a test is in progress. Such a feature is necessary
to ensure that related support functions are operating correctly
during the test and/or to verify that the test in progress is not
causing any unexpected interactions in other parts of the system.

This requirement is satisfied by the provision of a repetitive
phrase EVERY time interval prefixed to a VERIFY statement. When
this prefix is used, the main program continues but is instantane-
ously interrupted at the specified time intervals to repeat the
VERIFY statement. The repeated verifications or monitoring will
continue until a RELEASE statement is encountered in the program.

2.2.5 Table Construction - To facilitate monitoring and other
checkout and test functions, tables and lists can be prepared to
minimize the writing task of the user. Such a table could contain
various function names, units, their limits, and the default ac-
tion to be taken if a function does not satisfy the test. The
tables can also be used to store successive value readings of the
functions to provide a profile.

2.2.6 Safing - The test writer can construct safing routines to
provide "backout" and "return to original condition" programs.
These programs can be called by any default condition. To ensure
that they are not interrupted, these subroutines are prefixed with
BEGIN CRITICAL .

2.2.7 Flexibility - While specifically ensuring that the language
will meet Space Shuttle requirements, the use of the language to
test other systems has not been overlooked. For example, the lan-
guage can be used with most (if not all) existing real-time com-
puter controlled systems to accomplish the preparation of programs
for checkout, data acquisition, telemetry, control, etc.

7 and 8

3.0 LANGUAGE TERMINOLOGY COMPARISONS

The terminology used in existing test oriented languages
(TOLs) has been evaluated for possible application to ALOFT,
Table 1 introduces the operators identified during the analysis
for comparison purposes. The language elements included in
ATOLL, ATLAS, and CLASP were emphasized for the following rea-
sons: ATOLL is representative of the most used TOL; ATLAS is
the most recent TOL developed and uses the most English-like
statements; CLASP, because of its potential use as an airborne
computer language with which ALOFT may likely interface. CLASP
elements found to be of use in a test language appear under the
column-heading "OTHER." The test-action items that appear in
the left-hand column were selected as representative of the ten
languages studied. The operators that appear next to a test-
action statement do not necessarily fully comply with the action.
In some instances, the operator represents a close approximation
or partial fulfillment of the test action. This was necessary
to keep the table from increasing to an unwieldy size.

The basic requirements to be satisfied by a TOL are directed
toward the test actions necessary to conduct a test. These op-
erations involve the application of a stimulus, acquisition of
the resulting output, comparison of the acquired value with pre-
determined limits, and a decision made as result of the comparison.
Controls associated with the stimulus generating device necessi-
tate selection and connections between the test system and the
Unit Under Test (UUT) must be made. Controls associated with the
measurement device require selection; and connections have to be
made to route the test signal to the measurement unit. The re-
sulting measured value will be compared with predetermined limits
to determine its acceptability. A decision must be made which is
dependent upon the acceptability of the measured value: continue
with the present test sequence or branch to a malfunction isocla-
tion or termination routine.

Test systems exist that provide much less than the capabilities
described above. A passive monitoring system is an example of
such a system. In contrast, there are test systems that exceed
the capabilities described. With the exception of ATLAS, TOLs
developed to this date have been designed for a specific test
program using identifiable test equipment. The languages are
test system/test article dependent. Modification of such a lan-
guage is not impossible; however, the structure of the language
and its related processor are restrictive enough that it is more
efficient to start over. Therefore, the requirements of a gen-
eralized test system should be considered, which will include the
basic necessities previously described. This will ensure that
the test language will accommodate the test actions necessary to
conduct the test program regardless of the test article (a Saturn
or a Shuttle).

7

Table 1 Coﬁxparison of Typical Operators

ACTION ATOLL ATLAS OTHER RECOMMENDED

1. Apply or turn on:

a. an analog stimulus N/E* APPLY STIMULATE (7, 8)**

b. a discrete stimulus SSEL, DISO, MDSO APPLY TURN-ON (4, 5) APPLY, SET,

APPLY (7, 8)

c. a digital stimulus N/E APPLY LINK (8) TURN, or SEND
2. Acquire the value of: .

a. an analog parameter DELY, TEST, READ MEASURE CHECK/ANALOG (7, 8) MEASURE, READ

b. a discrete parameter DELY, TEST, SCAN MEASURE CHECK/DISCRETE (7,8)

c. a digital parameter DELY, TEST MEASURE LINK (8)

3. Open the circuit connecting the
Unit-Under-Test (UUT) and the test N/E OPEN TURN ON (5) SET----0PEN
system SET (7, 8)

4. Close the circuit connecting the '

UUT and the test system N/E CLOSE TURN OFF (5) SET----CLOSED
RESET (7, 8)

5. Select connection for routing [Connection included in
signals between test system equip- N/E CONNECT CONNECT (6, 7, 8) APPLY and MEASURE state-
ment UUT test points Lments

6. Remove connection for routing Removal of connection
signals between test system and N/E DISCONNECT DISCONNECT ({6) included in APPLY and
UUT test points RESET- (7, 8) MEASURE statement

7. Vary signal input until measure- N/E ADJUST N/E Macro capability will
ment satisfies required condition satisfy requirement J

when needed

8. Determine acceptability of ac- N/E COMPARE IF (4, 5) 1F
quired values

9. Acquire and compare SCAN VERIFY CHECK/ANALOG (7, 8)

CHECK/DISCRETE (7, 8) {VERIFY
CHECK/PCM (7, 8)
IF (4, 5)

10. Repetitively acquire and evaluate HMNTR MONITOR and DISPLAY | DO and DI MNTR (4) EVERY (time units)

- - display if no-go and branch DELY {only) VERIFY MONITOR (4, 5) VERIFY (function)
(single values or multiparameters)

11. Acquire the value of several N/E N/E SAMPLE (4, 5) N/E
samples of a parameter and store

12. Perform arithmetic operations N/E CALCULATE Arithmetic Assignment |LET (variable reference

Statements (3, 4, 5) |equal numeric formula)
CHECK/ANALOG (7, 8)
ADD, SUBT, MULT, & DIV

13. Display tutorial, informational, DPLY

or error messages DPYM DISPLAY DISPLAY (4, 5) DISPLAY
DFLG (variable)
RECD INDICATE DISPLAY (7, 8)
DMON
RGMT PRESENT (5) INDICATE
RCDC (fixed)

14. Display descriptions and associated Do N/E DISPLAY MA {6) DISPLAY
slides to operator DISPLAY (4) [Canned Message]

15. Record output on line printer or RECD PRINT DEVICE - PRINT (5) PRINT
typewriter RDY PRINT (4)

RLP

16. Record output on magnetic tape, RECD RECORD DEVICE - TAPE (5) RECORD

drum, or disc RDY RECORD (4)
RMT
17. Save data for later high speed READ SAVE READ (5) READ
retrieval RGMT SAMPLE (4)
RCDC SAVE (7)
. SETT
18. Invoke or call a test program EXEC START (3) PERFORM PROGRAM
CALL N/E BEGIN (4, 5)
EXEM SEQUENCE (7, 8)
EXECUTE (4)
19. Conditional transfer INCX G0 TO----IF MEASURE (7, 8) IF----THEN
TFLG CK/ANALOG (7, 8)
MTFG ck/pISC (7, 8)
TEST IF----THEN (4, 5)
SCAN
DELY
Notes: *N/E - No equivalent
*k
1. ATOLL 4, ATOLL-EX 7. CIL 10. ASEP
2. ATLAS 5. MOLTOL 8. VIL 11. ST0L
3. CLASP 6. TOOL 9. ADAP

10

Table 1 (concl)
ACTION ATOLL ATLAS OTHER RECOMMENDED
20. Unconditional transfer GO TO GO TO GO TO (3. 4, 5) GO TO
RETURN (4, 5)
21. Transfer control to the operator SEMI WAIT FOR HOLD, STOP, HALT
SEMI-R (operator interven- .
tion) INTERROGATE (4) REQUEST
REQUEST (5}
(part of operating
system) (7)
22. Repeat step or group of steps im- EXEC REPEAT REPEAT (7, 8) REPEAT
bedded in program SEMI
(operator choice)
23. Provisions for concurrent testing N/E N/E START (4, 5, 6) CONCURRENTLY PERFORM
24. Provisions for synchronizing two N/E N/E SYNC {4, 5) SYNCHRONIZE
separately conducted test programs
25. Exit from present program tempo- EXEM LEAVE ENTER ASSEMBLY CODE LEAVE
rarily to provide for other CALL and 4,5 and
languages RESUME DIRECT and END (3) RESUME
26. Identify a routine to be executed TERM N/E POST (4, 5) WHEN INTERRUPT
as a result of an interrupt ON (3) (interrupt name}
INTERRUPT (10) OCCURS PERFORM
POST SIM (11} {program name}
27. Enable/disable interrupts N/F N/E POST SI! (11) ENABLE
DISABLE
28. Postpone execution until time DELY DELY DEFER/KEY (7) WHEN (time)
event or value occurs 1. time WAIT FOR DEFER/TIME (7) AFTER (time)
2. event DELAY (4, 5, 8, 10) VERIFY (event or value)
3. value WAIT (4, 5) ~=--WITHIN (time)
29. Return system to quiescent state N/E FINISH N/E Black box approach of
prior to additional testing airlines makes this
operator attractive
for their application
30. Change program statement N/E ALTER N/E [Undersirab]e from an]
operational viewpoint
31. Establish a series of statements N/E PREPARE PROC and EXECUTE WHEN ftime critical
to be accomplished within a & 4,5 subroutine)
specific time period EXECUTE IMMED UNTIL (4) (See para 3.18)
32. Communication between two or N/E N/E REQUEST and TRANS- SEND and READ
more digital machines MIT (4)
DISPATCH (5)
LINK (8)
DIRECT (3)
33. Subroutine delimiters BEGIN and RETN DEFINE and END PROC and EXIT (3) BEGIN and END
BEGIN and END (4)
PROC and END {5)
34, Program delimiters NAME and END BEGIN and TERMINATE | START and TERMINATE BEGIN PROGRAM and
(3) PROGRAM COMPLETE
35. Provide standard values for one N/E SPECIFY N/E N/E
or more characteristics of a
signal type
36, Assign a name to a specific func- DECL DEFINE DECLARE (4, 5) SPECIFY
tion or signal REPLACE (substitute
an abbreviation)
37. Declare lists, tables, or names, RGMT N/E DECLARE ARRAYS, DECLARE
for stored parameters RCDC LISTS, & STRINGS
PROB (4, 5) [
PROC
38. Include a block of common state- MLSR N/E INCORP (4, 5) [Macro capability
ments or routines into the program provides this capability
as desired
39. Predetermined 1ists of discretes DISA N/E DOMASK (4) [Identify in dictionary
which will be legal during program data bank]
run
40. Specify which display consoles CODE N/E CONSOLE (4) Test operation and pro-
will be enabled to effect program LEGAL (10) gram can be structured
operation to igrore inadvertent
console action
41, Remove or add specific or all dis- PREM N/E DOMASK (4) ACTIVATE
cretes from a monitor profile PROC DIMASK (4) DEACTIVATE
RELEASE MONITOR RELEASE

(4, 5)

11

3.1 Test Action Operators

3.1.1 Apply or Turn On (Table Item 1) - The application of a
stimulus includes the application of a voltage (ac or dc¢) of a
proper amplitude (and frequency if ac). Some systems require
only 28 vdc, which limits the variety of necessary stimuli.
Others require ac (sine wave, square wave, ramp, sawtooth, etc)
with various frequencies, amplitudes, and accuracies. It is nec-
essary at this point in the development of a language, to ensure
that a capability for complex stimulus requirements can be met,
and that we do not settle for the application of discretes only.
The selection of a term to accomplish this function crosses en-
gineering disciplines. The test engineer may: '"apply" a certain
voltage to a test point; 'turn-on' ac power; open or close a
valve; set or reset a flip flop; or activate or deactivate a func-
tion. It is desirable to provide terms that are familiar to each
discipline. Manual test procedures were analyzed in an attempt
to select such test action operators. The recommended terms for
applying a stimulus are APPLY, SET, SEND, or TURN-ON, i.e.,

APPLY an analog voltage, SET a discrete, SEND a digital command,
TURN "AC POWER" ON. The most appropriate of the allowed terms
for the application of a signal to the system under test is left
to the test engineer's choice. In the case of the Shuttle, stim-
ulus generators will be built into the interface units (IU) asso-
ciated with each line replaceable unit (LRU). Analog, discrete,
and digital stimulus requirements will have to be addressed dur-
ing the execution of tests.

3.1.2 Acquire the Value (Table Item 2) - The acquisition of a
test value includes several operations depending upon the oper-
ator. Measure, by itself, implies acquiring the value but does
not indicate what should be done with the measured value. The
least that can be done is to store the value in a register or

in memory for later consideration. READ a clock, a register, or
an input value implies the same meaning.

3.1.3 Switching Operations (Table Items 3, 4, 5, and 6) ~ The
application of stimulus and the acquisition of a measurement nor-
mally require switching matrices for the routing of signals to

and from the UUT. Operators selected to accoiplish these func-
tions are SET- -OPEN and SET- -CLOSED. In addition, set-up con-
nections are accommodated in the SPECIFY statements. The test sys-
tems engineer will be responsible for providing this information.
Such switching capability is provided to ensure that the language
will satisfy the program regardless of the UUT or the test system.

12

For purposes of the Shuttle, all communications between the UUT
and the test system will use digital transmission. All conver-
sation of digital-to-analog signals will take place in the UUT
input/output units (I/0). Measurements of the UUT systems will
be digitized and transmitted back to the test system over digi-
tal transmission busses. Application, acquisition, setup, com-
parison, and the decisions to be made are all subject to the
nature of the UUT, the test system, and the test philosophy.
The test language structure should provide the flexibility nec-
essary to accommodate a Titan, a Saturn, or a Shuttle test sys-
tem. The alternative is a language that provides a capability
for a unique program and becomes outmoded upon completion of the
program.

3.1.4 Vary Signal Input (Table Item 7) - There are occasions,
during calibration or alignment, that necessitate adjusting the
signal input to a test article until the proper output is achieved.
ATLAS provides this capability with the operator ADJUST. Rather
than add an additional term to accomplish this action, it was

felt that the provisions for macro programming would accommodate
this feature.

3.1.5 Acceptability of Acquired Values (Table Item 8) - The abil-
ity to compare the acquired value with predetermined limits is re-
quired by all test systems. The selection of "IF _ _ _ _ THEN"

to provide this feature was chosen rather than the COMPARE of
ATLAS as it included the decision provision in an explicit manner
rather than implicitly as it occurs in ATLAS. The action operator
VERIFY also provides a compare feature.

3.1.6 Acquire and Compare (Table Item 9, 10) - "Verify" implies
acquiring a measurement, comparing the value to determine if
satisfactory, and making a decision about what should be done if
the value is not acceptable. MEASURE, COMPARE, and DECISION are
included in the term 'Verify,'" which is a multiaction operator.
There are times when many parameters are to be verified. They
are of interest to the operator only if found to be out of toler-
ance or out of limits. The time of interest may be of concern.
For example, in the Stage I-C of the Saturn, there are many crit-
ical parameters continuously monitored. As long as the values

of these parameters are within limits, no display, printout, or
operator attention is required. However, during the course of
prelaunch checkout, a test period exists where the first stage
separation has been simulated. The monitor for the first stage
is no longer of interest and a new monitor is exercised. For
this reason, time, measure, compare, and decision are included

13

in a monitor capability. The number of times that parameters
should be interrogated becomes of interest. The statement
"EVERY (time period) VERIFY - - - - — " has been selected to
implement the monitor capability: Single parameters or multi-
parameter tables may be monitored with this operator.

3.1.7 Single Parameters/Multiple Samples (Table Item 11) - No
specific term has been provided to accommodate this feature.
ATOLL II and MOLTOL provide SAMPLE to accomplish this action.
ALOFT handles this operation with a macro or subroutine if such
a requirement develops. It is believed that multiple samples of
multiple parameters is a more realistic requirement and is pro-
vided by the EVERY (time value) VERIFY _ _ _ _ _ operator. This
operator includes comparison and decision as opposed to SAMPLE,
which acquires and saves only.

3.1.8 Arithmetic Operations (Table Item 12) - An arithmetic
capability has been included in the most recently developed test
languages (ATOLL II, MOLIOL, and ATLAS). Conversations with NASA
test engineers have indicated the desirability of an arithmetic
capability. Such a capability would have reduced the number of
machine language subroutines presently used in the SATURN test
program. The alternative to providing this capability is to en-
courage the use of machine coded test sequences. This will re-
sult in the sacrifice of the readability and self documenting
capability provided by the near-English test oriented language.

3.2 Uisplay or Store Operators

The next group of operators to be discussed emphasizes what
to do with acquired information. These choices include display,
print, record, or store. It is conceivable that a test system
which uses this test language may not have a line printer, a
tape recorder, or a microfilm projector. If & test system lacks
hardware functions that compromise the full capabilities of the
language, a subset, excluding the unusable terms, would be used.
It is better to provide the flexibility during the development
of the language than it is to attempt to modify it -after the syn-
tax has been completed and the language processor has been de-
veloped.

3.2.1 Output Operators (Table Items 13, 14, 15, and 16) - .Two
terms have been selected for display: '"INDICATE" and "DISPLAY."
INDICATE refers primarily to light, while DISPLAY is reserved
primarily for variable displays (CRT, PLASMA, ALPHANUMERIC, E/L,
etc). Many operators included in the test languages analyzed

14

caused information to be presented. For example, "RCDC" in ATOLL
could cause the countdown clock time to be presented to the oper-
ator if the test writer had included a "1" in the condition field.
It was obvious to the test writer after a short acquaintance with
the language, but it was never apparent to the reader. An attempt
has been made to make all characteristics of the language explicit.
If a display is desired, DISPLAY or INDICATE are the only operators
that will present information to the test operator. If a printer
output is desired, "PRINT" must be requested. ''RECORD'" refers
specifically to the recording of data on a magnetic device (tape,
drum, or disc). ’

3.2.2 Store or Save Operator (Table Item 17) - In the normal
course of test execution, data is acquired and stored temporarily.
This action is provided by the "READ" operator. Other languages
use such terms as READ, SAVE, and SAMPLE in addition to those

that involve an implicit store. READ/SAVE or READ/STORE involve
multiaction operators. The selection of one operator to provide
multiaction is done to reduce and to simplify the number of action
operators that must be remembered by the test writer and the test
reader. The choice appears to be arbitrary, but a quantity must
be read if it is to be saved and for this reason our choice was
READ.

3.3 Program Control Operétors

3.3.1 Program Invocation (Table Item 18) - Program control oper-
ators provide the test environment with the flexibility necessary
to provide alternate paths during the execution of a test. Oper-
ators such as START, BEGIN, CALL, EXECUTE, or PERFORM are used to
call or invoke a test program and are common to most test lan-
guages. The selection of one word over another appears to be
arbitrary. Our choice is PERFORM and it was selected because it
offers the least confusion with normal program delimiters.

3.3.2 Transfer of Control (Table Items 19, 20, and 21) - Trans-
fer of control during the sequential operation of a test is a
useful and necessary operator. The decision capability is pro-
vided by this operator. 1In ATOLL, the conditional transfer was
implied in at least six operators. ATOLL-II, MOLTOL, and ATLAS
had specific conditional transfer operators. Most all of the
languages provided an unconditional transfer operator: GO TO.
Where several paths may be taken as a result of some unique con-
dition, an operator is needed that eventually sends all branches
back to the main path. For these reasons, a definite need is
demonstrated for both a conditional and an unconditional transfer.

15

Another form of transfer of control exists where operator inter-
vention is necessary. In some instances, the operator must pro-
vide action or a choice as a result of a program anomaly. For
these reasons, some means are required for operator intervention.
The term REQUEST has been selected for this action.

3.3.3 Test Execution Operators (Table Items 22, 23, and 24) -
Three operations related to test execution are REPEAT, CONCUR-
RENTLY PERFORM, and SYNCHRONIZE.

ATOLL provided a 'repeat' capability through operator choice
following a SEMI. In ATLAS, CTL, and VIL this capability is pro-
vided by an explicit operator. Whether explicit or implicit, the
need to repeat a test or a step is required for numerous reasons,
e.g., trend data can establish the rate at which a condition is
changing; if a transient has affected a measurement, repeating it
often gives the desired result; a test may be repeated in order
to determine an average.

The number of items requiring verification, and the short
time to be provided for prelaunch test operations indicate that
concurrent testing will be a necessity for the Shuttle program.
Techniques will be required that will minimize the time required.
The earlier test languages did not provide for conducting tests
concurrently. Test languages such as ATOLL-II, TOOL, and MOLTOL
include this capability. 'START was used to execute tests con-
currently. As many as four separate tests could be conducted
concurrently with TOOL., Our choice of operator for this action
is felt to be more explicit: CONCURRENILY PERFORM.

The ability to synchronize concurrent tests was provided only
by ATOLL-II and MOLTOL. This capability enables multiprograms to
get to the same point in the test sequence by placing an operator
such as SYNC (ATOLL-II and MOLTOL) or SYNCHRONIZE (ALOFT) in the
sequence. A specific program is held at that point until the
other concurrent programs reach that location. Further testing
will be dependent on getting all programs to the SYNCHRONIZE
statement before continuing.

3.3.4 Interruption or Postponement of Test Sequence (Table Items
25, 26, 27, and 28) - Most test languages provide for leaving the
test language and allowing another language to be used. Machine
language programs are used predominantly to provide capabilities
not required originally by the test language. The most English-
like of the operators was provided by ATLAS with LEAVE and RESUME.

16

These operators have been selected for ALOFT. The inclusion of
machine language capabilities within the ALOFT program will be
accommodated with these operators.

Most test languages have included a capability for perform-
ing a safing routine as a result of a situation or condition that
may become hazardous. A program is initiated to reduce or elimi-
nate the possibility of danger to the test article or the individ-
uals in proximity. The interrupt was transparent in ATOLL when
the program labeled TERM was initiated. Posted routines were
used by ATOLL II and MOLTOL. INTERRUPT was the choice of ASEP.

A multiaction operator, which is explicit, has been selected for
ALOFT: WHEN INTERRUPT (interrupt function name) OCCURS PERFORM
(subroutine or program name). Many interrupt conditions can
exist during a prelaunch test. Some are of concern during the
same time period, while concern for others is scattered through-
out the test. After certain functions have been completed, their
related interrupts are of no consequence. A few remain of im-
portance throughout the test period. For these reasons, two
additional operators are required: ENABLE/DISABLE INTERRUPT
(interrupt name). For the period of time when a specific inter-
rupt is of importance, the capability is provided for enabling
the interrupt. As soon as the period of concern has passed, the
interrupt may be disabled.

In the majority of test situations, a requirement exists
for postponing the execution of a test. It may be necessary to
allow switching transients to settle prior to making a measure-
ment. Another requirement normally exists for postponing the
test program until some event occurs or until a parameter reaches
a specified value. All test languages provide this necessary
capability. ALOFT provides these capabilities with WHEN GMT IS
(time value) THEN PERFORM _ _ _ or AFTER CDC IS (time value) THEN
APPLY _ _ _. The use of WHEN and AFTER is specifically related
to time. To provide the capability for postponing action until
an event occurs or until a test value is reached, the VERIFY
(statement) WITHIN (time value) OTHERWISE _ _ _ statement is used.
The terms selected are more English-like than DELY & DEFER/KEY,
and provide more flexibility than WAIT FOR.

3.3.5 Finish and Alter (Table Items 29 and 30) - ATLAS provided
the operator FINISH, which provided an opportunity to return the
test system to the quiescent state before initiating a succeeding
test program. The airline test situation is geared primarily
toward testing black boxes, rather than complete systems. This
operator allows the removal of a test article before connecting

17

another test article and rerunning the test program. While useful
for airline practices, it was not felt to be of value to this
language; therefore, it was not included.

ATLAS is the only language that provides for changing or
altering a program statement after the translation process has
been completed. ASEP provided for changing parameter values in
the control room after the compiling process was complete. Test
engineers in general feel that these operators are useful. Man-
agement level individuals feel that this capability is neither
necessary nor desirable. Modifications, additions, or deletions
should be submitted through normal channels and proper approval
loops considered. Providing the test operator with the means to
change statements or to vary parameter values was not included in
ALOFT for these reasons. During test program development this
feature is valuable, but not during prelaunch operations.

3.3.6 Execution with Time Limitation (Table Item 31) - With
ATLAS, a series of statements to be accomplished within a specific
time can be established. The series of statements is first de-
fined as a procedure. The action operator then EXECUTES (pro-
cedure) WITHIN (time). The PROC and EXECUTE features of MOLTOL
and ATOLL II do not provide the time limitation. ATOLL II pro-
vides an IMMED/UNTIL operator that commands the system to execute
the statements immediately following the IMMED/UNTIL. This means
"as rapidly as possible" UNTIL such time as a Boolean expression
goes true, an END of a block is reached, or until after execution
of the "step label,'" which- appears following the "UNTIL.'" This
feature provides a capability for conducting time critical se-
quences that have been a part of most missile and space test pro-
grams. ALOFT is capable of executing a routine or a statement at
a critical time. If the subroutine includes time limiations on
the period of operation, then it is a time critical subroutine.
This can be handled with the ''time prefix" feature without adding
additional action operators. ALOFT also provides for identifying
a subroutine as CRITICAL, in which case it will be executed "im-
mediately" without interruption.

3.3.7 Communication between Digital Machines (Table Item 32) -

A digital communication feature is normally required whenever the
test article includes a computer and the test system is computer
controlled. Most test languages developed to date rely on machine
language code to perform this function. Using this technique
causes the program to lose all readability, and consumes time to
code the program. ATOLL-II, MOLTOL, and VTL recognized the need
for digital communication between computers, and they provide

18

program control operators to accommodate this feature. ATOLL II
was primarily concerned with transmission and reception of digital
data between the two ground computers, which are components of the
Saturn test complex. MOLTOL was primarily concerned with communi-
cation between three airborne computers. VTL was concerned with
loading an airborne computer from a ground computer and verifying
the loading operation. The number of processors presently planned
for the Shuttle indicates a need for digital communication between
the ground and the airborne computers. Test writers have indicated
a desire to write their ajirborne computer test programs in an
English-like language. This feature would improve the total
readability of the ALOFT test procedure over that provided with

a machine language program. SEND and READ operators are provided
for the application of a stimulus and the acquisition of the re-
sulting responses. Digital information identified by function
name can be transferred to and from the vehicle with these op-
erators. Therefore, no new terms or syntactic units were re-
quired to accommodate this feature.

3.4 Language Processor Directives (Table Items 33 and 34)

Two types of block structures are accommodated in ALOFT:
PROGRAMS and SUBROUTINES. BEGIN PROGRAM and PROGRAM COMPLETE
and BEGIN and END provide the boundaries that mark the beginnings
and the ends of programs and subprograms respectively. The lan-
guages studied make use of program, procedure, do, or begin and
end delimiters. Program boundaries (delimiters) serve to inform
the compiler of start and finish points for processing, and pro-
vide entry and exit points that can be identified by the test
operator. BEGIN and END were selected for subprogram delimiters
because they are more English-like than PROC and END, DEFINE and
END, or BEGN and RETN. The selection of the program delimiters
BEGIN PROGRAM and PROGRAM COMPLETE, rather than those terms used
by other test languages (NAME and END, BEGIN and TERMINATE, or
SEQUENCE and END SEQUENCE) were also made because they are more
English-1like.

3.5 Declarations (Table Items 35, 36, and 37)

ATLAS provided a capability for defining standard values for
one or more characteristics of a signal with a SPECIFY statement.
For example: voltage type, range, incremental provisions, toler-
ances, and ac component may be specified in the SPECIFY statement.
Thereafter, in the program statements, reference need be made only
to the voltage type appearing in the SPECIFY statement.

19

XXXXX SPECIFY, SOURCE, DC SIGNAL, VOLTAGE 28V ERRLMT
+ - 4V, A C - COMP .001V $

YYXXX APPLY, DC SIGNAL, CNX HI J2-3 LO J2-4 $

This type of information must be included in the Function
Specification in ALOFT. The SPECIFY statement in ALOFT pro-
vides the final tie between the language, the test system, and
the test article. As has been previously emphasized, ALOFT is
independent of the test system and the test article. The
SPECIFY feature of ALOFT affords the capability of tying the
test system and the test article together through the English-
like language. Through the use of SPECIFY, functions, connec-
tions, addresses peculiar to either test system or test article,
and any subroutine required to accomplish the conversion can be
identified. The SPECIFY statement also provides the test writer
with function names that are in the vernacular of the disciplines
with which he is associated. In the case of Shuttle, LRU and IU
designers will select the function names to be used later by the
test writer. To further aid the test writer (at no sacrifice to
the reader) the operator "REPLACE" is provided, which permits the
substitution of abbreviations for previously defined, more in~- .
volved character strings. The test writer must indicate in the
program coding that he is using an abbreviation for a previously
defined term. The language processor senses the abbreviation
and substitutes the original character string. The full spelling
is restored to ensure that readability has not been impaired.

New names may be substituted for previously used names with this
operator.

DECLARE (names, lists, and table) has been included in ALOFT.
The ability to declare names and assemble data into lists or
tables provides a technique that is difficult to equal without
considerable loss in operating time, increased coding effort,
and reduced efficiency. Establishing a table for regularly sched-
uled monitoring permits selecting when to monitor, at what inter-
vals, when to release, and making modifications to the table dur-
ing the course of the test.

3.6 Macro Provisions (Table Item 38)

ATOLL II and MOLTOL provided an operator that enabled a num-
ber of common statements, used at many intervals throughout the
program, to be written once and then incorporated into the pro-
gram at the necessary intervals. This operator was INCORP. A
unique operator such as INCORP was included in ALOFT as it was
felt that this capability will be valuable after the test article
requirements have been identified. ALOFT makes use of a MACRO
to accomplish this feature.

20

3.7 Provisions for Controlling Inadvertent.Action (Table Items
39 and 40) .

ATOLL and ATOLL II ensure that inadvertent discrete operation
will not affect the running of a test. DISA or DOMASK identify
the discretes to be acknowledged during the program. If the test
writer calls for a discrete that has not been established pre-
viously by DISA or DOMASK, the compiler will detect it and in-
dicate an error. The writer will be required to add that dis-
crete to his preamble. This feature is provided by ALOFT through
the use of the dictionary data bark. All stimuli issued to the
vehicle must be specified in the dictionary data bank. The rout-
ing instructions and addresses are included in the specification.

Another feature included in ATOLL, ATOLL II, and ASEP is
that of specifying the consoles that will be allowed to affect
program operation, or will be provided with displays concerning
the program. Terms such as CODE, CONSOLE, and LEGAL identify
specific consoles associated with the test. This feature is pro-
vided by the capabilities inherent in the dictionary data bank,
All output devices with their routing instructions and addresses
must be specified prior to program initiation. Each CRT, line
number, printer, and magnetic recording device must be specified.

3.8 Monitor-Profile Construction.and Modification

The removal or addition of discretes from a monitor profile
can be accommodated by specifying a table and ACTIVATING or
DEACTIVATING the previously defined functions in the table. The
DOMASK provided this feature in ATOLL II while PREM and PROC ac-
complished the task in ATOLL. Previously, all items to be con-
sidered (analog or discrete) during the test must have been de-
clared in the Table Declaration. :

21 and 22

4.0 LANGUAGE SPECIFICATION SUMMARY

4.1 General

This section summarizes the major features of ALOFT (detailed
in the Appendix). Also, applications of these features are dis-
cussed.

The Appendix uses syntax diagrams to illustrate the construc-
tion of all legal elements of the language from the basic charac-
ters and symbols to complete programs. This technique was chosen
because it is precise, minimizes the ambiguities associated with
prose descriptions, is more condensed than prose descriptions, and
facilitates rapid comprehension of alternative statement construc-—
tions. (The technique is an adaptation of the ATLAS specification
ARINC SPECIFICATION 416-1.)

An attempt has been made to minimize the number of rules and
limitations applicable to the use of syntactical definitions; how-
ever, there are areas where some logic is necessary to correctly
use the diagrams. For example, a diagram might allow the assign-
ment of text constants where numeric values have been called for.
Expansion of the diagrams to eliminate all possibility of erroneous
usages would adversely affect rapid comprehension of the more es-
sential features of the element represented by the diagram. The
language processor would be expected to detect most erroneous
assignments of this type.

The specification is not intended to be a training manual for
the language, but would be expected to be used frequently as a
reference manual by both program writers and readers. The syntax
diagrams facilitate this application. The explicitness of state-
ments constructed in accordance with the diagrams should minimize
the necessity for readers to use reference materials to understand
the resulting programs.

One of the major features of the language is the provision to
allow "names" to be assigned to functions, tables, lists, variable
quantities, subroutines, programs, etc. The selection of these
names has a significant impact on the readability and understand-
ability of the resulting programs. It is therefore anticipated
that management and control of many of the selections would be
exercised by the project. There should be correlation between
names appearing in interface specifications, schematics, block
diagrams, signal lists, etc, and the names appearing in function
name specifications in this language. The use of functionally

23

descriptive names should generally be encouraged for the sake of
the reader. As will be discussed later, the writer may optionally
abbreviate long names to reduce writing time but the longer names
will appear in printouts.

4.2 Syntax Diagram
Syntax diagrams are similar to flow diagrams in that they show

the legal sequence of items, including any alternative branches
and iterations. As an example, the syntax diagram
AND b 1

b
YOU - b — WRITE bIA—b Nmm-i]a .
.\\ \——— LETTER ;

would allow any of the following sentences to be written:

YOU WRITE;
YOU WRITE A NOTE;

YOU WRITE A LETTER;

YOU WRITE A NOTE AND A LETTER;
YOU WRITE A LETTER AND A NOTE.

The applicable diagram usage rules are as follows:

is simply a connecting path;
b is a blank space; .
capital letters and characters are to be used as shown;

diagonal lines represent alternate forward paths;

vertical lines represent connectors for a return path
or loop that is optional;

® a number on the beginning vertical line of a loop
indicates the maximum number of times the loop may be
used,

The Appendix refines these rules and defines all legal characters
and symbols used in ALOFT syntax diagrams.

24

4.3 Basic ALOFT Statements and Statement Prefixes

As with English and most higher level programming languages,
the lowest meaningful and complete element of ALOFT is a state-
ment. Within ALOFT statements, words and phrases are inserted to
help readability and prevent misinterpretations and errors by
users. These are generally verbs, articles, prepositions, etc,
which make the statements English-like. They are required to be
used precisely as shown in the syntax diagrams. The complete
statement, rather than a single word, defines the action or pur-
pose of the statement. In general, however, a verb or operation
code in the statement is a very strong indication of the type of
activity or purpose of the statement. In addition to basic state-
ments, ALOFT has provisions for including optional prefix phrases,
which may be either a condition for execution of the statement
or an action to be performed at essentially the same time.

The basic statement and prefix phrase types, as indicated by
their key words, are listed below. The parenthetical notes are
included to further explain the associated actions.

APPENDIX
PARAGRAPH
Send actions
APPLY (Analog or digital function) 2.5.2
SET (Discrete functions, valves, 2.5.2
clocks) 2.5.1
TURN (Discrete functions on or off) 2.5.2
SEND (Digital data) 2.5.2
Acquire actions
READ and SAVE (Discretes, clocks, digital) 2.5.3
2.5.1
MEASURE and SAVE (Analog, digital) 2.5.3
VERIFY (Read or measure with 2.5.7
conditional transfer)
Invocations or calling statements
PERFORM (Subroutine 2.3.9
PERFORM PROGRAM (Program) 2.3.9
EXECUTE (For macros only) 2.3.9
USE (Data bank) 2.4

25

Delimiters

BEGIN

MACRO
COMPLETE

LEAVE ALOFT
RESUME ALOFT

Interrupt manipulation

WHEN INTERRUPT

ENABLE
DISABLE

Sequence control
GO TO
IF

VERIFY
WHEN INTERRUPT
REPEAT

(Program, data bank,
subroutine)

(Beginning of macro definition)

(Program, data bank)

(To another language)

(After leaving ALOFT)

(to identify action as a

result of a named interrupt).

(Interrupt)

(Interrupt)

(Unconditional transfer)

(Variable reference
conditional transfer)

(Function conditional transfer)

(See above)

(Single statement)

Assignment or arithmetic operation

LET

ASSIGN

It

(Variable reference)
(Value or formula)

(Variable reference)
(Discrete or Boolean state)

Concurrent program implementation

CONCURRENTLY PERFORM
SYNCHRONIZE (n)

(For concurrent programs)

(Synchronization points in
each program)

26

APPENDIX
PARAGRAPH

[
o

[s]

NN DN N NN

S~ D wDhw
l_l
o

2.5.5

2.5.5
2.5.5

2.5.6

Prefix phrases and timing control

WHEN (Clock=time)

SET (Clock=time), AND
AFTER (Clock=time),
STATEMENT (number)

Other time phrases

~—-WITHIN (Time value)

--—-FOR (Time value)

(Precedes action statement)
(Precedes action statement)
(Precedes action statement)

(Statement label where
required)

(To set a time limit for
VERIFY)

(To generate a timed
discrete or pulse)

Operator interfaces and records

DISPLAY
INDICATE
PRINT
RECORD
REQUEST

Definition statements
SPECIFY
DECLARE

BEGIN

REPLACE
MACRO

Miscellaneous

ACTIVATE —-

DEACTIVATE --

(Messages)

(Lights or fixed states)
(Variable messages)
(Variable messages)

(DISPLAY message then READ
and SAVE keyboard input)

(Function)

(Table, list, internal
variable)

(Subroutine, program, data
bank)

(Abbreviation, Substitution)

(Macros)

(Acknowledge or honor a
function in a table)

(Ignore a function in a
table)

27

APPENDIX
PARAGRAPH

2.5.1
2.5.1
2.5.1
2.3.7

2.5.7

2.5.2

2.5.4
2.5.4
2.5.4
2.5.4
2.5.4

2.4
2.3.4

= o

NN NN
B O AL
o]

2.3.6

2.3.6

Some isolated statements, as they might appear in a printout
of a program or subroutine, are listed below. Definition type
statements are discussed later.

SET CDC TO -1 HR, AND APPLY RUDDER 2 CONTROL POSITION_ +14.5DEG.
WHEN CDC IS -58MIN, MEASURE RUDDER 2 ACTUATOR HYDRA TEMP_ AND
SAVE AS _RA2 HYD TEMP_

IF RA2 HYD TEMP_ IS LESS THAN 400DEGF THEN GO TO STATEMENT 20.
STATEMENT 10 INDICATE HYDRAULIC TEMP WARNING ,

REQUEST TEXT (WHAT NOW? (STOP) (GO ON)) ON CRT 1, LINE 1_ AND
SAVE INPUT AS OP IN .

IF _OP IN_ IS EQUAL TO TEXT (STOP) THEN PERFORM RUDDER 2 POWER
SHUTDOWN

STATEMENT 20 GO TO STATEMENT 33.

STATEMENT 33 EVERY 30SEC, VERIFY RUDDER 3 ACTUATOR HYDRA TEMP
IS LESS THAN 350DEGF OTHERWISE GO TO STATEMENT 10.

TURN VOR RCVR 2 POWER CMD_ OFF.

VERIFY _VOR RCVR 2 POWER MNIR IS OFF WITHIN 5SEC OTHERWISE GO TO
STATEMENT 135.

PERFORM PROGRAM ELEVATOR 2 CHECKOUT PROGRAM .,

STATEMENT 3095 EVERY 3MIN, VERIFY IMU 2 ROTATION DET _ FUNCTIONS
ARE BETWEEN UPPER LIMIT AND _LOWER LIMIT OTHERWISE GO TO STATE-
MENT 4051.

AFTER CDC IS -5MIN, RELEASE STATEMENT 3095.

Statement 3095 above is actually a monitor of all of the functions
listed in the table called IMU 2 ROTATION DET . Each function in
turn is measured and the measured values are compared with values
in the table columns called UPPER LIMIT and LOWER LIMIT . In-
clusion of the word TABLE in the name of the table would have
greatly speeded the recognition of the activity.

The class of statements referred to previously as definition
. statements are of several types. In general, they do not connote
actions to be performed by the system but are used to define or
declare to the language processor and (usually) readers what a
subsequently used ngme will mean or will stand for. Each type of
definition statement is discussed below.

28

The SPECIFY statement is used to specify the location, type,
(address codes) and the applicable conversion subroutine for a
system function or signal, and to formally assign a name to the
function so described. Since the SPECIFY statements are peculiar
to test system implementation and require detailed knowledge of
the test system and its programming, they will be used only in
dictionary data banks prepared by test system engineers.

There are three types of DECLARE statements. The first is
a simple data declaration, wherein a name (and memory location)
is reserved for a specifically defined type of data. The data
itself may optionally be assigned a value by the declaration
statement. In all subsequent usages, the name refers to the data
contained in the reserved location, never to the location itself.
The second type of DECLARE defines and names a LIST of data with
an index (i.e., subscript). The index may be used to identify
individual data values in the list. The third type of DECLARE
names a TABLE having rows and named columns of data with specifi-
cally defined characteristics. One column of every table is
called FUNCTION and contains function names. An unlimited (but
declared) number of other columns contain units and (optionally)
such values as upper limit, state, last value, and time. Tables
and their uses are discussed in paragraph 4.5.

The BEGIN and MACRO statements are the initial statements of
program structures of multistatement groups including programs,
subroutines, macros, and dictionary data banks. They assign names
and characteristics to .the structures and are discussed in later
paragraphs.

The REPLACE statement is used to identify substitutions that
the program writer wishes the language processor to make before
the program is processed. There are two useful ways that this
substitution capability can be used. The test writer may wish
to abbreviate or number (with a few characters) all of the names
to be used in his program, then write his program using the ab-
breviations. He might also desire to abbreviate frequently used
language primitives such as the word STATEMENT. To do so he would
first instruct the language processor with the following state-
ment :

REPLACE 'S' WITH (STATEMENT).
Subsequently, his program would be written:

'S' 3124 APPLY - - - -.

29

After processing, the above would read:
STATEMENT 3124 APPLY - - - -.

Another application of the REPLACE statement is to change a
name used in a program. With this statement, the language proc-
essor can be instructed to:

REPLACE NAME 1 WITH NAME 2 .

The desire to do this may be the result of incorrect usage of
_NAME 1 when the program was originally written, a change in the
name of a function, or perhaps an, original program could be used
for another application if one or more names were changed wherever
they appeared in the program.

4.4 Program Structures

ALOFT program structures or multistatement groupings are of
several types, to meet various requirements. They are called pro-
grams, subroutines, macros, and dictionary data banks.

4.4,1 Program — A PROGRAM is the highest structural grouping and
is completely executable in its own right, providing only that
substructures used by it have been defined. One PROGRAM may call
for the execution of other programs, with the simple restriction
that a called (lower level) program may not call for the execu-
tion of any of its calling (higher level) programs. No specific
restriction on the number of levels is contained in the language
rules. The calling statement is of the form:

PERFORM PROGRAM program name .

A provision is made in the language to call for the concurrent
execution of the called program while the execution of the higher
level program continues. The calling statement would then be as
follows:

CONCURRENTLY PERFORM PROGRAM program name .

In the event that synchronization points are required in the
concurrently executed programs, each of the programs must contain
identical

SYNCHRONIZE n.
statements at the desired synchronization points. (n is the

number of the synchronization point, and unless an identically
numbered synchronization point occurs in some concurrent program,

30

the statement will be ignored). The first program(s) to reach a
common synchronization point will wait until all programs reach
it before continuing. The initial statement of a PROGRAM is of
the form:

BEGIN PROGRAM UNIQUE PROGRAM NAME .
The final statement is:
_UNIQUE PROGRAM NAME COMPLETE.

For each program, an initial group of statements, sometimes
referred to as a preamble, will identify the data base required
for the execution of the program. This data base includes speci-
fications and declarations of several types. Some such data will
be extensive and previously defined for use in any number of pro-
grams. These groups of data, called dictionary data banks, are
discussed later, and are identified by an assigned name.

Other data may be uniquely declared (defined) by the program
writer for use in the program. In the latter case, the various
types of declaration statements are used.

It should be noted that function specifications can be ac-
cessed only through dictionary data banks.

4.4,2 Subroutine - A subroutine is a group of statements to per-
form some activity, test, sequence, or routine that can be uniquely
defined as an entity and may be repeatedly required in one or more
programs, but cannot be performed unless called for by a program
(or another subroutine of a program). It will have a unique name
to identify it. ALOFT allows values and variable references to

be passed to the subroutine, and retrieved from it, by the calling
program.

One major application of the subroutine will be to define a
procedure to be executed in the event of a hazardous equipment
failure. The subroutine might perform safing functions, then dis-
play, print and record the status of the system. This type of
subroutine might be assigned high operational priority in the sys—
tem. ALOFT allows a subroutine to be identified as CRITICAL, in
which case it will be performed without interruption.)

i

31

Subroutines will use data bases provided by their calling pro-
grams. New data acquired or generated by the subroutine will be
carried back to the calling program only when the calling statement
PERFORM identifies the outputs.

Examples of subroutine calling statements are as follows:

PERFORM_COORD TRANSFORM ROUTINE WITH INPUTS A , B ,

_C , 45DEG, 10DEG, AND ODEG, AND OUTPUTS X , Y , AND
Z_.

WHEN INTERRUPT _ OVERTEMP OCCURS PERFORM FIRE HAZARD
WARNING

VERIFY _ FLAPS POSITION IS GREATER THAN 50PCT OTHERWISE
PERFORM _ FLAP EXTENSION ROUTINE WITH INPUT 55PCT.
3
The initial statement of a subroutine is both a delimiter and
a declaration of the subroutine name. The inputs and outputs
identified in the declaration and in the PERFORM statements must
be in identical order and number.

BEGIN UNIQUE SUBROUTINE NAME WITH INPUT SUBSYSTEM NAME
AND OUTPUT SUBSYSTEM STATUS |

BEGIN CRITICAL _SHUTDOWN SEQUENCE WITH INPUT DISPLAY
AREA ASSIGNED .

The corresponding final statements are:

END UNIQUE SUBROUTINE NAME |,
END CRITICAL _SHUTDOWN SEQUENCE .

4,4.3 Macro — A macro is similar to a noncritical subroutine from
a test writer's viewpoint, but it will never appear on a final
program printout. (It might appear on interim working copies if
requested.) Instead, the sequence of statements represented by
the macro will be substituted by the language processor just as

if the writer had so prepared the program.

The name of a macro will be a character string, as with other
names, but it will not have underscores as delimiters.

Macros may be defined or declared by the writer for use in his

program, or they may be a part of a dictionary data bank used (ini-
tially) by the program.

32

As with a subroutine, input values and both input and output
references may be assigned by the macro invocation statement.
However, since the macro boundaries are discarded by the language
processor, all internal variables of the macro must be a part of
the calling program or subroutine. A macro invocation or calling
statement might be:

EXECUTE ADJUST RUDDER 2 VDA , 0.5MA, 5.8MA, 1.0MA/SEC,
0.1MA, RUDDER 2 POSITION , 5.0DEG, _R2 VDA MA , _ADJ
FLAG_.

The initial macro.statement, both a delimiter and a name declar-
ation for the macro, might be:

MACRO ADJUST ADJUSTED FUNCTION , INIT VALUE , _MAX VALUE ,
ADJ RATE , TINCREMENT , MEAS FUNCT, _LIMIT VALUE ,
_FINAL VALUE , _STATUS . -

The final statement would be:

END.

In general, the "dummy" names of the macro declaration state-
ment and within the macro action statements would be indicative of
the information to be inserted by the program writer in the calling
statement. These dummy names would be replaced by the values and
functions from the calling statement when the program is processed
as well as when the printouts are made. As stated previously, the
above three statements would be used only by the test writer and
would not appear in final source code documents. The prime pur-—
pose of the macro is to enable potentially useful routines to be
named and documented for reuse or incorporation in other programs
with a minimum amount of formality. The test writer is totally
responsible for determining whether the current macro "fits" and
is usable in the program. Once the program gets through an ini-
tial pass of the language processor, the source program is totally
independent of the macro and its possible changes. Programs and
subroutines, on the other hand, must have rigid configuration con-
trol because they will still appear in source program documenta-
tion, and they may be separately coded and stored in the operating

system.

4.4.4 Dictionary Data Banks - A dictionary data bank is a group-
ing of specifications and/or declarations that have been assigned
a group name. These data banks can then be referenced or used by
programs that need them. The contents of a specific dictionary

33

data bank might include all function specifications (SPECIFY state-
ments), standard variable reference declarations (DECLARE state-
ments), standard table declarations (DECLARE TABLE statements),

and standard list declarations (DECLARE LIST statements) that are
associated with the checkout of a particular subsystem or a par-
ticular phase of a mission or test. In addition, the dictionary
data bank might include appropriate subroutines and other programs,
and one dictionary data bank might require the use of other diction-
ary -data banks.

In general, the using project would manage and maintain a li-
brary of dictionary data banks that could be used by programs as
needed.

'ALOFT rules will allow a program to call for an unlimited num-
ber of dictionary data banks. Project management, however, may
wish to restrict the scope of a program by allowing only specific
dictionary data banks to be used. Since function specifications
can appear only in dictionary data banks, the "allowable" functions
for actions by the program can be controlled. For configuration
control purposes the use of groups of subroutines and programs can
be tracked and managed through the dictionary data bank concept.

It would most probably be desirable that reference data banks
of MACROS and REPLACE statements be separately identified and made
available. They would require very little configuration control
due to their usage. Printouts of all dictionary and reference data
banks would generally be available to all program users.

4.5 Tables

Special attention has been given to the definition and use of
TABLES. They should prove to be a significant aid in test program
preparation and visibility. The TABLE declaration statement is
relatively long, and may at first seem quite complex. The flex-
ibility and usefulness of table operations, however, warrants this
concession. It is expected that most table declarations will be
made by more experienced programming personnel, and that such dec-
larations will be included in dictionary data banks. The test pro-
gram statements that deal with tables are relatively explicit once
the table structure is understood.

34

4.5.1 Table Definitions - An ALOFT TABLE may be represented by
Figure 1. The items in bold type are fixed for all tables, items
in italics are definition terms, and items in regular type are to
be assigned by the table declaration statement.

The column values may subsequently be reassigned by action
and assignment statements.

TABLE NAME —={table name

COLUMN NUMBER * 1 2 3 4 cn

COLUMN LABELS~ ROW NUMBER | FUNCTION | UNITS |column name 4 | column name n

(L
/17

1 function | dim or |value value
name 1 states
{
2 function | dim or |value value
name 2 states
§5
rn function | dim or |value value
name n states

(ROW NUMBERS)————j
Figure 1 ALOFT Table Format

The function names assigned to the FUNCTION column must be
specified in dictionary data banks. The function specifications
will include the identification of the type of signal through the
named conversion routine. The UNITS column of the table will
identify the dimensional units (or allowable states) of the func-
tion values (or states) to be placed in later columns of the table.

The column numbers and row numbers of the table are fixed when
the number of rows and the number of columns are declared. Sub-
sequent references to the table contents may be made through the
use of row and column numbers, function name and column name, or
index numbers. The row and column index numbers are themselves
assigned names that can be dealt with as variable references in
"step-through" and looping operations.

35

Figure 2 presents a DISCREIE table.

DISCRETE MONITOR PROFILE 12

1 2 3 4 5
ROW FUNCTION UNITS _REF_ _LATEST_
NUMBER

1 | _PROP STATUS LOX CHILLDOWN_ |ON/OFF OFF ON

2 | _LOX PREVALVE_ OPEN/CLOSED | CLOSED OPEN

3 | _FUEL TANK OVERFILLED TRUE/FALSE | FALSE TRUE

4 | _ENGINE 4 HEATER_ ON/OFF OFF | on

STATEMENT 3269/

Figure 2 Discrete Table

The table illustrated above would be declared by the following

statement:

LATEST _BPBLEAN ,
] 2

RN - FUNCT I PN

/, PRPP STATUS LFX CHILLOSWN.,
z, 2PN PREVALVE -,

3, _FUEL TANEY PJVERFILLED.,

I, —LNGINE 4 HERATEF_,

3
UNITS
o/ BFF,

PPEN/CLPSED,
TRYUE/ FALSE,

PN/ PFF,

4
_REF _
2rF,
cLpSED,
FALSE,
PrAF,

DECLARE TABLE-D/ISCRETE MPNITPR PRPFILE 12 .wITH 5 CPLUMNI . INOEXED
BY_CN_AND LABELED RPW NUMBER, FUNCTIQN, UNITS, REF-EFPLEAN,
HAVING & RPWS /NDEXED BY -RN-WITH ENTR/ES

e

—LATEST .

7%
PREN
TRUE
Y 24

The opticnal blank spaces and comments inserted in this dec-

laration have contributed to the readability of the table entries.

It is most probable that the writer would first have made a table

much as shown in Figure 2 before writing the statement.

The for-

mat of the declaration statement printout would be similar in
appearance, and would facilitate rapid checking.

36

Figure 3 represents a table of analog functions. Its declara-
tion would naturally include more columns and rows, but otherwise
would be similar to that for the discrete table.

_RUDDER CONTROL TEST 3 TABLE

1 2 3 4 5 6
ROW NUMBER | FUNCTION UNITS | _UPPER LIMIT_ | LOWER LIMIT | LAST VALUE_

1 | _RUDDER 1 HYD FLUID TEMP_ | DEGC 315 -50 0000
2 | _RUDDER 2 HYD FLUID TEMP | DEGC 315 -50 0000
3 | _RUDDER 1 VDA TEST INPUT | MA +13.5 +13.0 0000
4 | _RUDDER 2 VDA TEST INPUT_ | MA +13.5 +13.0 0000
5 | _RUDDER 1 ACTUATOR POS_ DEG +5.3 +5.0 0000
6 | _RUDDER 2 ACTUATOR POS_ DEG +5.3 +5.0 0000
7 | _RUDDER 1 POS REF VOLTAGE_ | V +10.1 +9.9 0000
8 | _RUDDER 2 POS REF VOLTAGE | V +10.1 +9.9 0000

Figure 3 Analog Table

The table column names in the illustrations are perhaps typi-
cal of the majority of the tables that would be used. Additional
columns might be added to save values of the functions at various
times during a test or mission, and to save time tags associated
with the readings.

The previously described tables are associated with the ac-
quisition and evaluation of data. Tables may also be desirable
to establish sets of values and/or discrete states of functions
to be applied at essentially the same time. The table would be
constructed in identically the same manner, except that column
names would change and the functions named would be stimuli and
commands. Such a table could be particularly useful to establish
a "safe" condition, to reset a subsystem status after each of a
series of tests, or to establish a condition connoted by "power
up all systems."

4.5.2 Use of Tables - Except for the table declaration statement,
the only other statements that deal exclusively with tables are
ACTIVATE and DEACTIVATE, which are used to mask and unmask table

37

entries on a row basis. While a table row (function) is deacti-
vated, it is "frozen" and ignored by all other statements referring
to the table. The following statements might appear anywhere in
a test program: -
DEACTIVATE DISCRETE MONITOR PROFILE 12 LOX PREVALVE .
ACTIVATE DISCRETE MONITOR PROFILE 12 ROW (4).
ACTIVATE RUDDER CONTROL TEST 3 TABLE RUDDER 1 POS REF
VOLTAGE .

Many ALOFT statements can use tables. This is accommodated
by allowing either function name or table name FUNCTIONS to be
used in send action and acquire action statements, or by allowing
variable references to include table entries.

As an example, an APPLY statement can be
APPLY table name FUNCTIONS column name.
which will be interpreted as a command to apply each activated
function named in the table with the value (or state) shown in its
entry under column name. Of course, SET, SEND, or TURN could be
used instead of APPLY. Also, a desired value or state could be
given rather than referred to the column entries. The statement
TURN table name FUNCTIONS ON.
would turn all of the active table functions on.
An acquire action statement would be as follows:
MEASURE table name FUNCTIONS AND
SAVE AS column name.
This type of statement would measure all active functions in the
table and save their values (or states) in the indicated column.
If a time column had also been declared for the table, the follow-
ing statement could be written:

READ GMT INTO table name column name.

This statement would place the current GMT value in all active
row entries under the time column name.

38

An individual entry can be referred to by table name function
name column name, thus allowing the statements:

READ CDC INTO table name function name column name.

LET table name function name column name EQUAL -3HR
33MIN 10SEC.

ASSIGN table name function name column name OPEN,

LET IMU TEST LIMITS TABLE _RATE GYRO 3 DRIFT _UPPER
LIMIT EQUAL CURRENT VALUE * 1.3,

In the last statement, note that the table and row (or function)
identification has not been repeated for CURRENT VALUE , since
they are assumed to be the same as for _UPPER LIMIT . In general,
the rule is that the language processor will make this conclusion
if there is a column by that name in the table previously named
in the statement. If not, another variable reference (not in a
table) will be assumed.

The VERIFY statement, which includes both acquisition and
evaluation of functions, can be used to implement scans and moni-
tors of table functions. These statements would include the fol-
lowing forms:

VERIFY table name FUNCTIONS ARE column name OTHERWISE
GO TO STATEMENT number.

VERIFY table name FUNCTIONS ARE GREATER THAN column
name OTHERWISE PERFORM subroutine name.

STATEMENT 416 EVERY time value VERIFY table name FUNC-
TIONS ARE BETWEEN column name 1 AND column name 2
OTHERWISE PERFORM subroutine name.

VERIFY table name FUNCTIONS ARE ON WITHIN +¢ime value
OTHERWISE PERFORM subroutine name.

IF variable reference 1S ON THEN VERIFY table name 1
FUNCTIONS ARE column name OTHERWISE GO TO STATEMENT 312.

WHEN CDC IS time value, VERIFY function name 1S OFF
OTHERWISE VERIFY table name FUNCTIONS ARE column name
OTHERWISE DISPLAY ———-.

The IF statement will call for the execution of a VERIFY if
an intermal variable such as a flag is on. The last statement
would execute the table verification only if function name (which
might be an operator's switch) is ON. The DISPLAY statement

39

would be executed only if the subsequent table verification failed.
Note that regardless of the actions accomplished within this state-
ment, the next following statement will eventually be executed.

40

5.0 WRITING, DOCUMENTATION AND CHECKING AIDS

ALOFT has been designed for ease of use by the (subsystem)
design engineer/test writer and for nonambiguous understanding by
the various readers of the language. To accomplish this, the lan-
guage uses English-like statements specifically fitted to the edu-
cation, vocabulary, experience, and training of the personnel from
the many technical disciplines that will use the language.

5.1 Writing Aids

The programs prepared in ALOFT can be written by the engineer
involved in the design of the system, subsystem, or LRU, or by a
test writer designated to prepare the test program. To help in
this task the following writing aids are provided.

5.1.1 Natural English Statement Structure - The language syntax
provides a natural English-like sentence structure for writing
the tests. The language is designed with a minimum number of
rules and restrictions. The specifications in syntactic diagram
format provide an easy-to-use guide to the writing of test pro-
cedures in ALOFT.

5.1.2 Dictionary Data Banks - The test writer will rely on dic-
tionary data banks to provide the specific names of functions for
the equipment he is to test or operate. These function names,

for the most part, will be the same as those appearing on the
drawings, data lists, etc, for the equipment under test. A system
design engineer will normally identify the functions by name and
define their characteristics to a test system designer, who will
then prepare appropriate SPECIFY statements for the functions and
include them in the dictionary data bank.

5.1.3 No Coding of Terms - The printouts and source language rec-—
ords will not have coded terms and abbreviations except as con-
tained in names. The users will not have to remember specific
codes to write or understand tests.

41

5.1.4 Abbreviations - To shorten the writing task of the test
writer he may define any abbreviations he chooses. The compiled

. listing of the test will show the complete English words or state-
ments he had elected to abbreviate. For example, to keep from
writing PROPULSION CONTROL SYSTEM 1 many times in his test pro-
gram the writer could use the abbreviation 'PCS 1'. When he had
finished writing the program he would instruct the compiler to

REPLACE 'PCS 1' WITH (PROPULSION CONTROL SYSTEM 1).

Then everywhere he had used 'PCS 1', PROPULSION CONTROL SYSTEM 1
would be printed out.

5.1.5 Name Substitutions - A capability of substituting one name
for another is available to the test writer. This capability can
be used to advantage to prepare similar test programs for redun-
dant devices.

When the test writer knows that he will have to repeat the
test for several devices, he-will use a dummy name such as 'PROP
MTR TEST' in writing the text. Then before compiling, a control
card such as

REPLACE 'PROP MTR TEST' WITH (PROPULSION MONITOR TEST 1)

would be added to the preamble. This would cause PROPULSION
MONITOR TEST 1 to be substituted throughout the test for PROP MIR
TEST.

The test could then be compiled again with a new control card;
REPLACE 'PROP MTR TEST' WITH (PROPULSION MONITOR TEST 2)
in the preamble. This would cause the test to be compiled with
PROPULSION MONITOR TEST 2 substituted throughout the test for PROP
MTR TEST.

Another capability of name substitution is the ability to
change a name in the data dictionary and not have to rewrite tests.
For example, assume ALPHA in the data dictionary is changed to
BETA. To use a program previously written using ALPHA, the writer
would place a control card in the preamble stating

REPLACE_ALPHA WITH BETA .

BETA would be substituted for ALPHA throughout the program.

42

5.1.6 Subroutine Capability - To keep from writing repetitive
routines the writer defines the series of statements as a sub-
routine. To call the subroutine he writes

PERFORM SUBROUTINE NVAME WITH - - - (any inputs or
outputs required).

5.1.7 Tables - Writing tests in table form can help minimize the
writing effort. For example, the writer can generate a table with
limits or states for the various functions in the table. He can
then write a test to confirm that all functions in the table are
within limits or match the profile by writing

VERIFY TABLE NAME FUNCTIONS — — —
5.2 Documentation

The ALOFT language, in conjunction with a properly designed
compiler, will provide self-documenting capability.

5.2.1 Readability - The use of English-like statements ensures
nonambiguous readability of the language.

5.2.2 Abbreviations - The writer can establish any abbreviations
he desires to ease the task of program preparation. The compiler
will produce full listings with proper substitutions for all ab-

breviated portions of statements.

5.2.3 Comments - It is possible for the test writer to intersperse
comments throughout the test program to ensure that the reader
understands what is taking place. This capability will not gen-
erally be needed but is available for the use of the test writer.

5.2.4 Data Dictionary - The heart of the ALOFT language is its
data dictionaries wherein technology-oriented names are placed
and defined. The dictionary concept permits any unit under test .
function to be defined in terms of the test system.

5.3 Checking

Checking will be facilitated by the naturalness of statement
structures and the self-documenting capability of the language.

5.3.1 Syntax Designed for Ease of Checking — The syntax has been
designed with checking requirements in mind. With the test pro-

cedure readily understood, all users can readily verify that the

program does what is desired.

43

5.3.2 Error Detection - This is primarily a compiler function,
but a properly designed compiler used with ALOFT will be able to
determine syntax errors, dimensional errors, overrange stimulus,
and errors that can affect performance.

The compiler will be provided with a full range of error mes-
sages to assist the test writer in preparing an acceptable program.
The compiler will be designed to detect and note errors, then con-
tinue language processing. This will minimize the number of times
the program must be processed before no errors are found.

44

6.0 TRAINING REQUIREMENTS

Training test and flight engineers to use ALOFT must be con-
sidered from two aspects. One aspect refers to the training of
those who are primarily concerned with reading and reviewing ex-
isting tests; the other aspect refers to the training of those
who are responsible for creating or writing the tests.

6.1 Training Test Users

The training of those who are to review the tests is minimal,
since it consists of studying an introductory document containing
a general description of the language. This document would de-
scribe such things as the relationship of dictionary data banks
to tests and the resulting combination to the actual testing of
a unit under test. No d2i:ils of syntax need be available since
example statements and sample tests with appropriate discussion
will impart the necessary understanding to enable the reader to
deal with actual tests.

Approximately two hours of study of such a document should be
all the time required to fully understand the ALOFT language from
the standpoint of reading and understanding existing tests.

6.2 Training Test Writers

The training of those who are to write the tests is more de-
manding and falls naturally into two categories. One category is
the training of those who are to write the actual tests. The other
category is the training of those who are responsible for the def-
inition of the contents of the dictionary data banks.

Training of test writers should begin with the introductory
document, which is the training aid for those who review tests.
A training manual would subsequently provide a discussion (from
the general aspects down to the syntax) of those statements and
syntactical structures, with which the test writer will deal.

The syntax diagrams and semantic explanations included in the
Appendix do not in themselves constitute a training manual. The
syntax diagrams are relatively complex and a training manual should
provide many examples of language statements to assist the trainee
in understanding the meaning of the syntax.

45

Cnce he has been exposed to many examples of language state-
ments and, as a result, has a general knowledge of the use of the
language, detailed syntactic diagrams can be introduced. At this
time, the trainee will be familiar with most aspects of the lan-
guage and will desire the concise statement of language character-
istiecs provided in the Appendix.

Training of those test writers who will be responsible for
the definition of the contents of the dictionary data banks will
begin at the completion of the training of "ordinary" test writers.
This training would consist of the detailed information necessary
to understand declaration statement syntax, specification state-
ment syntax, and finally use of macro and other languages. These
individuals must also possess a detailed knowledge of the operation
cf the test system, which is necessary because they are respon-
sible for providing, through the dictionary data bank, the inter-
face between the ALOFT language and a specific test system.

The time required to train a test writer should be less than
a week, which could be shortened via classroom training using a
knowledgable teacher. Training a test writer for definition of
dictionary data banks may take a full week of classroom work.
This does not include training in any specific test system. Train-
ing could be significantly reduced if the individuals involved
had prior test writing or programming experience. In any case,
simple programming concepts, such as flowcharting, should be in-
troduced to all test writers to enable them to more efficiently
use the language to create tests.

6.3 Alternative Approach

An alternative approach to the training of test writers is pro-~
vided through the use of an off-line interactive test writing sys-
tem. Cueing techniques, using on-line CRTs, are available (see
Phase I report) that provide all the information needed to create
test programs; no previous experience on the part of the user with
respect to test writing is necessary.

A significant advantage to an interactive test writing approach
is the immediate indication of errors to the test writer. As a
result, corrections can be made at once, resulting in a syntacti-
cally correct program at the conclusion of a single interactive
session. This represents a considerable saving in the time re-
quired to create a program, compared to older methods that require
submittal of source code to a remote computer site with the at-
tendant iterations necessary to achieve a correct program.

46

An additional advantage is that the approach is self teaching.
No outside classwork is necessary beyond a general familiarity
with the language, which is provided by the document used as a
training aid for those who are to review test programs.

A disadvantage of this technique lies in the cost and time
necessary to develop such an interactive system. This has to be
traded off against the cost and time savings realized in test pro-
gram development and the ease of training many test writers.

47 and 48

7.0 SUMMARY
7.1 Conclusions

ALOFT provides the higher order test-oriented language charac-
teristics needed to test and operate the Space Shuttle and other
NASA space vehicles and experiments. Using the good features of
previously developed test—oriented languages and correcting for
their faults; ALOFT has been designed to operate in a multidisci-
plined environment, independent of the test system. These impor-
tant features should ensure wide acceptance by its users and per-
mit structuring tests long before the test system is finalized.

The proposed language is readily learned, easy to write, and
its English-like nonambiguous statements ensure that the readers
will understand the test procedures.

The design of the language is such that it can be readily ex-
panded or changed as conditions dictate, which further ensures
long life for ALOFT.

7.2 Recommendations

It is suggested that the following studies, which are beyond
the scope of this contract, be implemented:

® Verify the usability of ALOFT by rewriting existing
Saturn tests (now written in ATOLL) in ALOFT. This
will determine possible language shortcomings;

® Use ALOFT to write test procedures for subsystems of
the Space Shuttle currently being defined. (a subsystem
using many technology disciplines, such as the Space
Shuttle propulsion subsystem is recommended). This
study will determine the ability of ALOFT to test and
operate Space Shuttle systems;

® Verify the use of "tables" and '"concurrent testing"
routines, as these concepts should be further proven;

® Develop a training curriculum, skill requirements, and
a Training Manual for ALOFT;

® Further investigate the suggested alternative approach
(interactive cueing on CRTs) to training and program
preparation;

® Investigate methods of managing the dictionary data
banks to determine how they can best be kept current;

49 .

® Study the management of the language and how proven
test procedures can be modified to run on a modified
Space Shuttle, since it is possible that each Shuttle
vehicle will be different;

® Investigate the practicality of using ALOFT to verify
performance of LRUs removed from the vehicle for main-
tenance;

® Investigate higher order languages suitable for writing
" the language processor;

® Write a language processor for ALOFT, after the language
has been "proven' by the foregoing tasks.

The goal for the ‘Space Shuttle to be in operation by the late
1970s and the need for a test and flight engineering oriented
computer language dictates that the recommended follow-on efforts
be initiated as soon as possible.

50 -

APPENDIX

SPECIFICATION OF A LANGUAGE
ORIENTED TO FLIGHT ENGINEERING
AND TESTING (ALOFT)

(The ALOFT Specification has been reprinted and is available as MCR-70-450.)

1.0 INTRODUCTION

A Language Oriented to Flight Engineering and Testing (ALOFT)
is a high-order test-oriented computer language, designed for the
checkout and operation of the NASA Space Shuttle. A degree of
flexibility has been built into ALOFT, which should permit the
language to be used for other space vehicles and experiments.
ALOFT has been designed to be functionally independent of any .
test system.

Prime importance has been given to the readability of the
langﬁége. Nonambiguous sentences ensure understanding of test and
operating procedures written in the language, and the English-like
syntactic structure of the language makes it easy to read and write,
which makes it readily adaptable to all technical disciplines.

This Appendix contains the syntax diagrams and the semantic
explanations (relative to the diagrams) for ALOFT. These dia-
grams and explanations constitute the complete specification of
the language.

2.0 GENERAL CONSIDERATIONS
2.1 Format of Language Syntax Diagrams

The syntax diagrams for ALOFT are modeled after the syntax dia-
grams found in the Abbreviated Test Language for Avionics Systems
(ATLAS), ARINC Specification 416-1, June 1, 1969.

The format of presentation used in this specification is the
syntactic diagram followed by explanation of the semantics of the
illustrated diagram. This combination constitutes a full defini-
tion of the structure and meaning of a language form.

An attempt has been made to clearly distinguish language
characteristics from language processor or operating system char-
acteristics. The latter characteristics are not discussed in
detail, since they are properly a part of the specifications of
a language processor and an operating system with which the
language being defined herein would be used.

The reasoning behind the selection of those capabilities of
the language, implemented as specified in this report, appears
in the document Development of a Test and Flight Engineering
Oriented Language , Phase II report, MCR-70-365.

2.2 Explanation of Language Syntax Diagrams

Syntax diagrams are made up of syntactic units and basic syn-
tax elements that ultimately reduce to the allowable letters, nu-
merals, and symbols which make up the character set of the lan-
guage. The basic syntax elements appear in syntactic diagrams as
themselves or as a name that is syntactically equivalent. The
syntactically equivalent name appears in lower case type. For
example:

letter :: = A
where '":: =" means syntactic equivalence. Therefore, in a syn-
tactic diagram the construction letter is equivalent to the

construction— A —.

A name enclosed in a dashed box is a syntactic unit defined
from basic syntax elements and/or other syntactic units. A def-
inition consists of a name within a dashed box on the left and a
syntax diagram on the right. For example:

| SYNTACTIC UNIT' — basic syntax element — basic syntax e]ement-j{

I |

L pmmm—mm———— - 1
f-: SYNTACTIC UNIT 1,
L o e o o J

The syntax diagram in the example indicates that the syntactic
unit being defined on the left is a concatenation of two basic
syntax elements with a previously defined syntactic unit. The
lines indicate the flow of the syntax diagram from left to right.
The wavy lines indicate continuation of a syntax flow from one
line on the page to the next lower line. Assume that the dashed
box indicated by the name syntactic unit 1 has previously been
defined as CD. Further assume that the first basic syntax ele-
ment is syntactically equivalent to A and the second basic syn-
tax element is syntactically equivalent to B. Therefore, the
syntactic unit being defined on the left, is reducible to the
basic syntax elements forming the character string ABCD.

Choice among syntactic units is indicated by a brahching in
the syntax diagram. For example:

r A
‘/////"ﬂSYNTACTIC UNIT lr—\\\\\\\
[By -
{SYNTACTIC UNIT 2}
\L —————————— J/_/
r—ommm———— M
SYNTACTIC UNIT 3
= -

The flow of the syntax diagram illustrated allows only one branch
to be taken, which results in a single syntactic unit being chosen
from the three syntactic units available.

A choice between taking or omitting a syntactic unit is indi-

cated by a branch in the syntax flow that contains no syntactic
unit. For example:

Repetition of syntactic units is indicated by a feedback loop
with the maximum number of repetitions, if applicable, indicated
on the loop arrow. Otherwise, the number of repetitions is unde-
fined. A syntactic unit on a line that is part of a feedback loop
must appear at least once in the corresponding statement for which
the syntax diagram exists. For example:

Notes that give further information on a syntax diagram appear
in parentheses beneath the diagram, with an arrow indicating where
in the diagram the note is to be applied. For example:

r =1
— SYNTACTIC UNIT p———

\———(-I:lote)

To further illustrate these concepts and to show how a syntax
diagram is used to generate language statements, the following
sample diagrams are presented:

b :: = BLANK

F====1 CONTRACT
' NOUN
Lrom } STUDY)

T A
| PHRASE') . —T0— b —DEVELOP—

r
LQ?{@E?J —A b TEST b

{
\ 7
AND—— b ——FLIGHT——b—F

& ORIENTED——b ——LANGUAGE——

/ J
/(—ENGINEER-—b

r~ - ~—— vty r .
LSENTENCE | —THIS ~—b ——!NOUN }—b —IS —b——LPHRASEJ—b —LOBJECT_‘I——- —_—

—_= __d —_—— —_

f

-

These syntactic diagrams allow the construction of the following
sentences:
@ THIS CONTRACT IS TO DEVELOP A TEST ORIENTED LANGUAGE.

® THIS CONTRACT IS TO DEVELOP A TEST AND FLIGHT ENGINEER
ORIENTED LANGUAGE.

® THIS STUDY IS TO DEVELOP A TEST ORIENTED LANGUAGE.

® THIS STUDY IS TO DEVELOP A TEST AND FLIGHT ENGINEER
ORLENTED LANGUAGE.

2.3 General Syntax Diagrams

2.3.1 Basic Syntax Elements

letter :: = A through Z
numeral :: = 0 through 9
symbol :: =+ -*/ ()., _"'=27?
BLANK

The basic syntax element "letter' is syntactically equivalent
to any one of the letters A through Z. The basic syntax element
"numeral" is syntactically equivalent to any one of the numbers
0 through 9. Finally, the basic syntax element "symbol" is syn-
tactically equivalent to any one of the symbols illustrated, Any
statement or syntactic unit in the language can ultimately be
reduced to the characters and symbols shown above. The method of
such a reduction is detailed in the following syntax diagrams.

b :: = BLANK:

The basic syntax element 'b'" is syntactically equivalent to
the symbol "BLANK." A "b" appearing in a syntax diagram indicates
one and only one blank for each appearance of that basic syntax
element.

2.3.2 Simple Syntactic Units - The syntactic units defined in
this subsection will be used throughout the remainder of this lan-
guage specification.

letter
CHAR : numeral

symbol

The syntactic unit '"CHAR" is a choice of any single letter or num-—
ber or symbol.

= === 1
-
L _GoanSTIG | _¥FRm

The syntactic unit "CHAR STRING'" is made up of individual charac-
ters in a sequence of arbitrary length. The characters that make
up the character strings represented in this manner are arbitrarily
chosen by the test writer.

31
————— - -===-9
| MACKO NAME | CHAR

The syntactic unit '"MACRO NAME" is made up of individual charac-
ters, arbitrarily chosen, in a sequence of a minimum of one charac-
ter, and a maximum of 32 characters. These syntactic units name
combinations of language statements that are created as extensions

to the language and are referenced in a test by the name indicated
by '""MACRO NAME."

31
- === r—=="
L DuMry StaTE | —LL chaR_ Jl—

This syntactic unit is used in subroutine definitions (defined
later) to name dummy discrete states for send action statements
(also defined later).

31
F——== l r—=-—q
| _YAME — T CHAR —

The syntactic unit "NAME" is made up of individual characters,
arbitrarily chosen, in a sequence of a minimum of one character,
and a maximum of 32 characters. The underscores are used to de-
limit the name for better reader understanding of the test in ‘
which they appear. These syntactic units name various types of
data variables and program blocks (defined later), which make up
both the data to be manipulated in a test and the major sections

of a test.

| PrOGRAM NAME | —| NAaME | —
| SUBROUTINE NAME | —1 THAME p—

| DATA BANK NAME | ~——| NAME =

The above syntactic units name groupingd of language statements
(defined later) that make up major sections of a complete test.

I ISSUE DESIGNATOR } — WAME. |—

This syntactic unit is used in the definition of a dictionary
data bank (defined later) to identify a revision to a dictiomary
data bank which has already been defined.

| LIST NAME | —] NAME |=—

This syntactic unit is used in the list declaration (defined
later) to name the list being declared.

| INDEX NAME I —I NAME |—

This syntactic unit is used in the list and table declaration
(defined later) to name the index attached to the list or table
being declared.

————————————— o] - ——————
ITABLE NAME] —————LﬁAME r—
————————————— - —— e —— a— — — ot

This syhtactic unit is used in the table declaration (defined
later) to name the table being declared.

This syntactic unit is used in the table declaration (defined
later) to name the column that is a part of the table being de-
clared.

——— s ———— — —— — — - —————— —
lFUNCTIOV NAME |t NAME —
— — . m— —— —— — — — e e — —]

This syntactic unit is used in a function specification (defined
later) to name a dictionary data bank entry for the specification
of a line replaceable unit function.

—— e — — —_——— —
|DUMMY NAME | e——— NAME —
—_ e — — — e e e —

This syntactic unit is used in macro and subroutine definitions
(defined later) to name dummy function names used in test action
statements.

31
IABBREVIATIOIV] v '-017,41?_ T v__

This syntactic unit is used in substitution statements (defined
later) to name the abbreviation defined for use in a test as a
writing aid.

The syntactic unit "COMMENT'" is a character string delimited by
pairs of prime symbols. No specific characters are excluded from
the character string. The comment is reproduced in the language
processor source listings, but is otherwise ignored in processing.

_____ b

-
| SEPARATIOIV | ————
——=—-—- { COMMENT &

The syntactic unit ''SEPARATION" is an arbitrary number of blanks
and/or comments in an arbitrary sequence. At least one blank
must appear where a separation is required.

The symbol "¢" is syntactically equivalent to the syntactic unit
"SEPARATION" and will be used throughout this language specifica-
tion to indicate those positions in a syntax diagram where any
number of blanks and/or comments may be inserted. Such a capabil-
ity permits special formatting of the source code if desired. For
instance, source data may be written in a tabular format for ease
of reading, without violating any language requirements.

A-9

dim :: = any of the dimensions listed in the matrix below.

FURCTION
TYPE BASIC UNIT X10° X103 | x108 | X10% | X1073] X107¢ j x10-%| x10-12
volts ac/de volt v My v
current ac/dc | ampere A MA UA
hertz HZ KHZ WMHZ GHZ
frequency pulses per
second PPS KPPS
day DAY
time hour HR
minute MIN
second SEC MSEC USEC
resistance ohin OHi4 KOHi4 | FOHiH
inductance henry H MH UH
capacitance farad FD UFD PFD
watt W KW MW UW
power* voltage, cur-
rent or power 08
ratio percent PCT
pounds per
square inch PSI
ressure millimeters of
press mercury MMHG
inches of
rercury INHG
millibars MB
inch IN
distance foot T
meter M KM MM
nautical
mile 1M
feet per
second FT/SEC
N meters per
velocity second M/SEC
knot KT
mach no. MACH
degree DEG
arcnin ARCHIN
angle arcsec ARCSEC
radian RAD MRAD
revoiution REV
degrees
centigrade OEGC
terperature Jegrees
fahrenheit DEGF

*Power may also be expressed in decibels above a specified power level according to the
following convention:

DBM is decibels above one milliwatt.
DBW is decibels above one watt.
DBK is decibels above one kilowatt.

Units of rate of change or acceleration may be formed from any of the units listed in the
table. Rate units are written by adding the slash character and appropriate unit of time to
the basic unit from the table. (Examples FT/SEC, V/MSEC, or REV/MIN) Accleration units are
formed by adding another slash and unit of time to the rate convention. (Examples DEG/SEC/
SEC, FT/SEC/SEC? The special case of acceleration, the earth's gravitational force, may be
written as G in lieu of the usual acceleration convention. The following special cases of
angular rate may be used:

RPS - revolutions per second (in lieu of REV/SEC)

RPM - revolutions per minute (in lieu of REV/MIN)
RPH - revolutions per hour (in lieu of REV/HR)

A-10

These dimensional identifiers help to establish the internal
scaling of the numeric quantities to which they are attached.

2.3.3 Data Syntax

[~ NUMBER™ 1
L. STRING _ ——L numeral —-g)—

The syntactic unit "NUMBER STRING'" is made up of individual num-
bers, arbitrarily chosen, in a sequence of at least one number
and can be of arbitrary length.

/[¥ \ [wmsEr

_NUMBER _ _J) strRmvg |
L/ N

1 _stRmvG |

The syntactic unit "NUMBER" is carried in floating point form in
a target computer, except in those areas where 1nteger numbers are
specifically required by the language.

o e 1 =
(GNIIZY | WUMBER_ [din

The syntactic unit "QUANTITY" is a number, with a dimension identi-
fier attached, which provides both scaling information to the lan-
guage processor and a method of error checking on the test

writer's use of these quantities.

=== — l/_o
LAy wowssr y —— 8 =¥ _

The syntactic unit "BINARY NUMBER" is made up of an arbitrary se-
quence of the numbers 0 and 1, of arbitrary length, and preceded
by a B. The principal use of binary numbers is in the system dec-
laration of the dictionary data bank, and as such will not gener-—
ally be used by a test writer.

r %) r h)
{ 7ExT ConSTANT | —TEXT—L(— crar srrrng =) ——
(9

beamnm en eee=wd

The syntactic unit "TEXT CONSTANT" is made up of a character string
enclosed in parentheses and preceded by the word "TEXT" followed

by a separation. Matched parentheses can be used within the char-
acter string with the result that no specific characters are ex-
cluded from the character string.

OPEN
TRUE
r e 3 ON
i STATE i CLOSED
FALSE
OFF

The syntactic unit "STATE" provides terms to describe the states
of discretes for send action statements (defined later) and the
settings of flags, which may be used in conditional transfer
statements as Boolean variables (also described later).

(Positive integers
© required for all) ..-S____. " _Z Frmm————— . _Z N Z P, _[o mmm——
i NUMBER —DAY b— nuMBER —HR——b—ri wumBER FMIN-L-b—— wuMBER =SEC-L-b—ri wuMBER -MSEC
[l Lececocondl 7 [| A i H 7. J
pom=a-=a 1 { +-\ ------ :
| TIME VALUE} <7

............

A-12

The syntactic unit "TIME VALUE" can be written in several forms.
Each form requires a consecutive series of time units (DAY, HR, MIN,
SEC, MSEC) with no gaps between units. For instance, a time value
which indicates paYS followed by MIN is not legal in the language.
Time value units can start at any unit and end at any unit as long
as a consecutive sequence is followed. The syntactic units "NUMBER"
in the time value are expected to be of positive integer form.

2.3.4 Data Variable Syntax - The variable types defined in this
subsection are internal to a program and not directly related to

a test article (line replaceable unit) or test system. Information
of a test article or test system nature is provided in the diction-
ary data banks (defined later).

It is not necessary for a test writer to use these variable
declarations in the creation of a test program, although he will
find them useful as he becomes more familiar with the language.
Variables used in a test program, but not explicitly declared in a
statement of the type defined below, will be given a default syn-
tactic structure. Such variables, which are not declared in a
data dictionary bank used by the program or in a data declaration
local to the program, are considered to be of "NUMERIC" type with
scaling and value established by the context in which the variable
is used.

$ e d M
NUHERIC

_____________ : L : BOOLEAT:
{ SINPLE DATA DECLARATIS: | DECLARE [\ rze [/:

/

] t— WITH—= b—— [ZU2BER} — b—— CHA \
_____________ 2 { AN } (rucez RACTERS
\:mym L & N\
T

IME: L (Positive integer
required)

The syntactic unit "SIMPLE DATA DECLARATION" is a form of lan-
guage processor directive which allows a test writer to create an
arbitrary name for a single variable and attach to it various data
characteristics.

A-13

7

Numeric variables may be declared, with or without dimension
identifiers. A numeric variable may be set to the data constants
"NUMBER'" or "BINARY NUMBER" to establish an initial value of the
variable.

A Boolean variable may be declared for use as an internal pro-
gram flag and may be set to an initial "STATE" value.

A message variable may be declared with the number of charac-
ters given as a positive integer value. The message variable may
be set with a "TEXT CONSTANT," in which case the number of char-
acters data characteristic is optional. The number of characters
will be determined, in the absence of that data characteristic, by
the number of characters in the text constant.,

Message variables are declared for use as precanned local pro-
gram messages, in which case they are initialized to a text con-
stant value. They may also be used as reserved storage for mes-
sages to be input to a program via the read keyboard statement
(defined later), in which case the number of characters expected
must be declared. Equal or not equal comparisons of messages so
input, with precanned messages, is allowed in the conditional
transfer statement (defined later).

A time variable may be declared and may be initially set to a
"TIME VALUE."

Variables initially set to an incompatible data constant value
will be flagged as errors by the language processor.

D e L R

-------)
b—WITH~~b —\LI_H{M_B_EI_?J'—b—CHARACTERS J
(Positive integer

(Positive integer
required) required)

(Index max

¢ ¢ ’
(—0—ENTRIES—¢——INDEXED—b—BY—A— {TI0EX i AR — = N
b—AND— b—ENTRIES—l—¢

r - me —mo
TEX1 CONSTA[/TJ'

A-14

The syntactic unit "LIST DECLARATION" is a form of language
processor directive that allows a test writer to create an arbi-
trary name for a list of variables of identical data characteris-
tics. A number, of integer form, is required to indicate the maxi-
mum number of variables in the list. The list has an index name
attached to it, which is used to identify which variable in the
list a test writer may want to use at a particular time.

The list of variables may have any of the data characteristics
described in the simple data declaration. Boolean data variables
may be used as flags to help in the control of the internal pro-
gram flow.

Each variable in the list may be given an initial value com-
patible with the data characteristic declared.

_______ ¢ —— e e e ¢ —— ——
rL-TAELE‘ DE'CLAHATIUH_j — DECLARE —— b ——TABLE —Q—ETABLE TAME]-L}— WITH— ¢ —[_ HUMBER :Ir—‘p_‘-—COLUMNS —¢—S
(Positive integer
required)
—————
jINDEXED— b —8Y—¢ — INDEX NAMEJ—— & —AND — b — LABELED —¢ — ROW — b — NUMBER — ,~¢ —— FUNCTION = UNITS —— s ._}
{Number
, BOOLEAN " °°}”"‘"S
¢ ——_———) -4 e
v /N T /N L N — HAVING — & —| umER 14
f— 1 coLuMn NAWE | NUMERIC o 4 —) HMBER |
TIME —/ —/r
b—WITH —=b — yumezr '—b — CHARACTERS (Positive integer
MESSAGE | VUMBER | required)

(Positive integer
required)

s === ¢ ——— ¢ - ——— ¢
5— o — pow —L— N 4 — INOEXED —b — BY — — TUDEX #4ME |~ — WITH — b — ENTRIES EJUMBER_J'—, -@_Euncmzv IJAME]—L—H

s (Number \

< columns ANp - (Wumber (Positive integer
-4) N'(—

— Jﬁ 4 rows ~1) required)
$ - $ l)
Gor—ain—. 3 SN Uaat [\
- A4 -
ON/OFF

OPEN/CLOSED
TRUE/FALSE

[Zrbir cotszi

The syntactic unit "TABLE DECLARATION" is a form of language
processor directive that allows a test writer to create an arbi-
trary name for a table containing information pertaining to func-
tions attached to a specific subtest. The function name, required
in the second column, identifies the SPECIFY statement in the dic-
tionary data bank which provides the information to a test system
enabling the acquisition of data which is to be stored in a column
of this table. Other information may reside in this table to be
used for comparison purposes, limit checks, etc.

The first three columns are fixed requirements and are in-
cluded to provide necessary information to both the user and lan-
. guage processor. These three columns cannot be dealt with by name
as can the other columns of the table which have attached column
names. The nature of the first three columns requires that ref-
erences be made to individual rows of the column only.

The first column is an identifier for a row that is a positive
integer number starting at one and increasing by one for each new
row. The second column identifies a function. The third column
establishes a dimension for all numeric data that appear in that
particular row or the proper state terms for Boolean data. The
rest of the columns may have data characteristics as described in
the simple data declaration and names which enable the entire
column to be dealt with as a unit.

The number of columns and number of rows must be declared as
positive integers. Information entered into columns and rows
must agree with the numbers declared.

An index name is defined for later use in column identifica-
tion for possible explicit looping capabilities with respect to
columns. Another index name is defined for later use in row
identification for the same reason. Each use of an index name in
a declaration statement must define a unique name.

Each variable in a row, corresponding to a column, must be

ijnitialized to a value compatible with the data characteristics
declared, as described in the simple data declaration syntax.

A-16

————————————— .=="

{ VARIABLE REFERENCE l WAME —————————
R i " TNDEX 11,411_43
{ LIST]VAME’ —-C ————-

NUMBER
I] (W
TABLE_ gAyE_ i Row—({ NUMBER }) COLUMN——- ¢ NUMBER }
FEN—CEI—OTV NAME} "COLUMN_ NAME

The syntactic unit '"VARIABLE REFERENCE' describes the legal
ways in which variables, as declared in previously described syn-
tactical structures, may be referenced. A single variable, de-
clared in a simple data declaration, is referenced by the use of
the name associated with the variable.

A list of variables with identical data characteristics, de-
clared in a list declaration, is referenced by the use of the list
name associated with the list. An individual member of the list
is referenced by associating an index value with the list name.
The index value may be a number of integer form or the index name
declared in the list declaration. This index name would have had
a number of integer form attached to it during the course of exe-
cution of the program.

A table, containing a number of columns and rows, each row of
which contains data pertaining to a particular function, declared
in a table declaration, is not capable of being referenced by it-
self. An individual row may be referenced by associating a row
number or a function name with a table name. An individual column
may be referenced by associating a column number or a column name
with a table name. An individual item in a row of the table is
referenced by associating a row and column identifier with the
table name.

Individual items in a row are dealt with in all statements as
any other simple variable would be dealt with. When columns are
identified individually in a statement, then the action of the
statement is applied to all individual items in that column.

A-17

In any statement dealing with tables and their associated rows
and columns, the table name need be identified only once. A col-
umn name appearing by itself in the same statement will be associ-
ated with the previously named table. If no such column name ap-
pears in the table the name will then be considered a simple data
declaration identifier.

EDUMM_Y VARIABLE]?EFEREZVC'E-j —-—-——II___VARIABLE REFE’REZVCE:’,

This syntactic unit is used in macro and subroutine definitions
(defined later) to name dummy variable references used in the def-

initions.
ISRt T T DT I MATA T A D AT T 1
 DECARATION STATEMENT _ | _ STMPLE DATA DECLARATION |
[T LIsT pEcLarATION)
E TABLE DECLARATION j

The syntactic unit ''DECLARATION STATEMENT'" is a simple data dec-
laration, a list declaration, or a table declaration.

2.3.5 Formula Syntax

I ety Y

A-18

The syntactic unit "NUMERIC FORMULA" provides a syntactical
structure for the expression of arithmetic calculations. The
meaning of the symbols included in the syntax are:

+, preceding the feedback loop, is unary positive;
-, préceding the feedback loop, is negation;
+, inside the feedback loop, is addition;
inside the feedback loop, is subtraction;
* is multiplication;
/ is division;

** is exponentiation;

e @ © © & © e o
|

Parentheses enclose numeric formulas used within numeric
formulas, where necessary, and also enclose quantities
so as to delimit dimensional information to alleviate
confusion of dimensional symbols and arithmetic symbols.

The use of incompatible variables and data constants will be
flagged by the language processor as errors.

EQUAL TO
NOT EQUAL TO
- ¢—\ GREATER THAN
v 15 LESS THAN 71
_ARE GREATER THAN OR EQUAL T%
LESS THAN OR EQUAL TO
(For verify <

only)

A

M

The syntactic unit "RELATIONAL FORMULA" provides a syntactical
structure for the expression of relationships between variables

or between variables and data constants. The use of incompatible
variables and data constants will be flagged by the language
processor as errors. If VARIABLE REFERENCE is STATE, the VARIABLE
REFERENCE must be a Boolean variable. Relational formulas are
used in the sequence control statements (defined later).

A-19

In the case of a VARIABLE REFERENCE that has a message data
characteristic, only the relational phrases ''IS EQUAL TO" or '"IS
NOT EQUAL TO" are allowable. This allows the comparison of a
message type variable reference, input as a result of a read key-
board statement, with a precanned message variable or a text
constant.

~

If the relational formula is used in a verification statement,
then the first variable reference is omitted.

—————— T z /_¢_\ BETHEEN /—¢_—\ 4

VARIABLE b
C EIE{‘_JREUE.A) | FEFERENCE s \— = _/ \— j
ARE NOT—b
(R

For verify
onty)

" TouarTiTy) T quanrIzy v

| ST S U _——— —— — -

" TWUMBER _':x N . [WMBER

L NUMBER d /— —\ — —\ L _NUMBER _

AND

T T VARIABLE ~ V ™ VariaBrE~)
iE@RE“EE_ o v BEFERENCE
. TIME VALUE } " TINE VALUE }

L A L

The syntactic unit "LIMIT FORMULA" provides a syntactical struc-
ture for the convenient expression of a relationship involving
upper and lower limits on a variable reference. It is a compact
version of a combination of relational formulas and follows the
same rules with respect to incompatible variables and data con-
stants.

If the limit formula is used in a verification statement, then
the first variable reference is omitted.

2.3.6 Assignment Statement Syntax

The syntactic unit "NUMERIC ASSIGNMENT" provides a syntactical
structure for the assignment of values to a variable reference
through the use of numeric formulas. The assignment of incompat-
ible values to a variable reference will be flagged by the lan-
guage processor as an error.

A-20

r——=-" - —_——= r"""
| BOOLEAN ASSIGNMENT ! —ASSIGN—D-—II Z%ﬁ%gw | STATE »—u—
e e e e J Eaiefusiain il | L._._"_J

(Boolean only)

The syntactic unit "BOOLEAN ASSIGNMENT'" provides a syntactical
structure for the assignment of a state to a boolean variable ref-
erence. This is available for setting flags which are used for
internal sequence control within a program.

DEACTIVATE
o —— 6 e—— == ¢
|ROW STATUS ASSIGNMEN&? ————l::—ACTIVATE __1 ['TABLE NAMEF———I:;]——://

——.———.—_—.

1T @Eﬁ _LVA!ZE_n
ROW (aNUMBER y—]')
FU]VCTIO]V NAME —
ALL

The syntactic unit "ROW STATUS ASSIGNMENT" provides a syntac-—
tical structure for the assignment of active or inactive status
to individual rows of a table identified by the table name. No
operations can be performed on those rows of a table that are in-
active. The language processor takes into account the status of
each row in determining whether to execute any required actions
upen that row as indicated by other language statements.

2.3.7 Sequence Control Syntax

: 5
—————————— .
LSTATEMEIVT LABEL ! TSTATEMENT b / * numera]—i—
S

The syntactic unit "STATEMENT LABEL" is used to identify a
statement (defined below) to which it is prefixed. The statement
number is an arbitrarily chosen sequence of numbers, containing
at least one and up to six individual numbers.

A-21

s ame amm SEe A Gee e e e - - -
— em mar came wmw e e G - e—
e eamp» ap ems e oD W oD o= S aD
e o e o e e e ooen @D e S
- ms cms mem s ew Cwe ey o o @

s o e aws ewm e omes e GsD

e cmmn ot cmms mn Go 3D emD cED o

o em cmop e e apm o o o e

ROW STATUS ASSIGNMENT

ey et acs cwwe G e

The syntactic unit "STATEMENT" is one of the possible statements
illustrated. The numeric and Boolean assignment statements have
been previously defined; the others are defined later.

¢
| UNCONDITIONAL TRANSFER | TGOTO ==j ¢ ——| STATEMENT LABEL ng...,
G0-b-TO

The syntactic unit "'UNCONDITIONAL TRANSFER'" provides a syntactical
structure for a transfer to a statement prefixed by a statement
label.

A-22

——— — —— G G ey aaES TS T — —-—— -—— - -— -— — -— - ¢
| REPEAT STATEMENT | —— REPEAT mm ¢ == STATEMENT LABEL |£_]_....

ean e ceas e e o» e eae e - o eon e e S T -

The syntactic unit "REPEAT STATEMENT'" provides a syntactical struc-
ture for the single repetition of the single statement which is
prefixed with the statement label indicated.

_ s RELATIONAL FORMULA | R
| CONDITIONAL TRANSFER | —1F _Ll_

| LIMIT FORMULA

j——— THEN —— 6—— STATEMENT | —m——o

The syntactic unit 'CONDITIONAL TRANSFER" provides a syntactical
structure for the optional execution of a statement. The optional
nature of the statement execution is provided by imbedding in the
conditional transfer statement a relational formula or a limit
formula. When the result of the evaluation of these imbedded syn-
tactic units is "true," the statement following the "THEN" is
executed. Otherwise, the statement is skipped and the next state-
ment after the conditional transfer is executed. The statement
following the '"THEN" may often be an unconditional transfer.

If a table name and column name combination is used in the
conditional transfer statement the relational or limit formula
will be evaluated (on a row basis) for every individual item in
the column as declared in the table declaration. FEach individual
formula evaluation must be true for the column evaluation to be
true. A single failure of an evaluation constitutes a false eval-
uation for the celumn.

2.3.8 Definition Statement Syntax

| SUBSTITUTION STATEMENT | — REPLACE b— | ABBREVIATION |=b
S 1
| NAME
—_— — - ...; — A/-¢-—\
fWITH b—(| CHAR STRING =) o—

The syntactic unit "SUBSTITUTION STATEMENT" provides a syntactical
structure for the substitution of character strings or names for
other character strings or names in a program.

This structure provides the test writer with the capability
of defining abbreviations which are then used in the source code
of a program. When a source listing of the program is generated
by the language processor, the abbreviations are removed and the
full character strings are used. The character string may be a
portion of a statement in the language or up to any number of
statements. Substitution of the character string for the abbre-
viation- is performed at processing time without modification of
the character string from that defined in the abbreviation defini-
tion statement.

This structure also provides the test writer with the capabil-
ity of substituting new names for names already in use within a
program. This provides a simple method for modifying names used
within a program to match those names which may have been changed
in a dictionary data bank used by the program.

In either case, the abbreviation or name appearing in the
source statements written by the test writer is identified on the
left in the syntax diagram. The character string or name to be
substituted into the source code by the language processor is
identified on the right in the syntax diagram.

/-b - CRITICAL\

___________ ¢ I o S—\

UsusrouTIiE DEFIRITION STATEMERT | BEGIN . \ { SUBROUTINE AVE | VARSAN WITH - b - INPUT / _f
________________ | N >
H— AND———

L ,
R A
L DUy STATE
———_—== + s b e — — — o
gJy) pusey vaRIaBLE) - \ A b - QUTPUT / \ / \ ,’_ggﬁFﬂgE;ARIABLﬂ e
' \ / N
Lsererencs_ _ SRR
T i v]
L _Duy NAME
L
WITH
b) AN
_______ ¢
EE’CLARATION STATEMENE——Q—{———\ P
_______ STATEMENT LABEL b - CRITICAL
[} [t iliesintitedl |
%‘, tarminy — \ [\ ENDL A\ 7{

G ¢

A-24

The syntactic unit "SUBROUTINE DEFINITION STATEMENT" provides a
syntactical structure for the definition of subroutines. Two

types of subroutines are identified; critical and noncritical.

The term critical means that the actions being performed in the
subroutine are time-dependent and as such, must not be interfered
with. Interrupts are npt allowed to break into the execution of
such a subroutine. If the system in which the subroutine is being
executed is running in a concurrent test execution mode, a critical
subroutine causes suspension of the concurrent mode until it is
complete.

Subroutines may be defined with inputs and outputs, with out-
puts alone, or with neither inputs or outputs. Inputs may be
stated for test actions (defined later), variable references, or
function names for test actions (defined later). These are iden-
tified in a subroutine definition by the appropriate dummy param-
eters. Outputs are variable references identified by the appro-
priate dummy parameters.

All dummy variable references require the corresponding dec-
laration statements which establish the required data character-
istics to be written within the subroutine definition.

The statement label on the end subroutine statement of the
syntax provides a branch point for use when an exit from the sub-
routine is necessary before the ordinary sequence of execution is
complete.

r
L_DETTNITION STATEMENT d

The syntactic unit "DEFINITION STATEMENT" is a subroutine defini-
tion statement or a substitution statement.

A-25

2.3.9 Invocation Statement Syntax

mo— &@@f@z@: |
ﬁ:i@:@@@z’:
————————— b |
$ S ® L __ QUANTITY _ _ 3 $
wrm—b—mput— L L[1 a1 Ao~
EZZE@@ZZ‘_‘_Z_/
T ALE 3
| ettt oyl =
__BINARY HUMBER_ 1}
™ TRUNCTION NAME |
AND—\ {
S f ¢, p———m——mm————— ¢
ﬁ—ouwm A ™ | VARIABLE REFERENCE } n——r—‘\——&—
—

The syntactic unit '"SUBROUTINE INVOCATION STATEMENT' provides a
syntactical structure for the initiation of execution of a pre-
viously defined subroutine. The dummy state of the subroutine
definition is replaced in the invocation by the syntactic unit
STATE, as used in test action statements. The dummy name is re-
placed by a function name. All other syntactic units representing
data in the invocation statement may be used to replace the dummy
variable reference of the subroutine definition statement. These
replacements must be consistent with the data characteristics de-
clared for the dummy parameters. A time prefix may be attached
to a subroutine invocation statement.

A-26

L _FUNCTION WAHE
________ r 6 \ - VARIABLE REFERENCE X _
TMACRO INVOCATION) _ pxecuTe - b5 iacko Mik y EoS o=
CsrarmyEnr 1 EXECUTE -b+ MﬁCIiOJ]A_ME L BT ST]
- * QUANTITY 1
e e e e e = —— ol
———— e — — — — =
o NUMBER _ _
L~ T STATE H
e e e e o - —— — -)
L _ ZIME_VALUE _ _H
== = —— —— q
. BINARY NUMBER _

The syntactic unit "MACRO INVOCATION STATEMENT'" provides a syn-
tactical structure for the substitution of the macro definition
(provided in a dictionary data bank, defined later) into the source
code created by the test writer with appropriate substitutions for
the dummy parameters in the macro definition. The resulting source
listing provides the statements from the macro definition in place
of the macro invocation statement.

The syntactic unit "PROGRAM INVOCATION STATEMENT" provides a syn-
tactical structure for the initiation of a program by another pro-
gram. A time prefix may be attached to a subroutine invocation
statement.

A-27

________ /_ ¢ _\ H VARIABLE REFERENCEH _
\ MACRO INVOCATION) | _ EXECUTE - b MAGRO NAME y ogosgtuugling Tt ol e e -
- ' . T TEXT CONSTANT
| sparmunr | — EXECUTE - b+ ; Mf_cio_mgm L _TEXT ::::____{
- QUANTITY i
b=
o NUMBER H
i leiglieredipiopslivmgslivl v
s STATE 1
b e o m— —— —— — — 4
~_ _ TIME VALUE _ _:
" _BINARY NUMBER _}

The syntactic unit "MACRO INVOCATION STATEMENT" provides a syn-
tactical structure for the substitution of the macro definition
(provided in a dictionary data bank, defined later) into the source
code created by the test writer with appropriate substitutions for
the dummy parameters in the macro definition. The resulting source
listing provides the statements from the macro definition in place
of the macro invocation statement.

The syntactic unit "PROGRAM INVOCATION STATEMENT'" provides a syn-
tactical structure for the initiation of a program by another pro-
gram. A time prefix may be attached to a subroutine invocation
statement.

A-27

2.3.10 Program Syntax

- A
¢ ¢] + DICTIONARY DATA BANK REFERE[JCE'!‘\ ¢
e P - . | eoprhpdieyelosivagiaglop i iieipbnpphielpapl i H
P PROGRAM] —BEGIN—b —PROGRAM—Q—(PROGRAN WAVE & VAANESYVALNYA /N,

H —
[” [N

¢ ¢ ¢
/—LDECLARATION STATEMENT?‘D—l—\ /—!—i_ MACRO "I—Q—l—\ /J-TDEFINITION STATEMEHTJAl—\
L e I R R R « N emamaal —m e - ——————

pecece e,
!

¢ STATEMENT LABE'L‘: ¢ L ¢
N B VAN VA N L\ f@é&gm;];ag*_g_compms_[__._

\
.......... - [yt ianst |

The syntactic unit '"PROGRAM" provides the highest syntactical
structure available in the language; that of a complete program.

The dictionary data bank reference (defined later) provides,
via a selection of dictionary data banks, all information needed
to define the functions of the line replaceable units and subsys-
tems to be tested, channel addresses for telemetry data, and any
data that is common for a number of separately processed programs.
It also congtitutes a library of subroutines and macros available
for the use of the test writer.

The declaration statements provide the data declarations for
all variables that are used only within the program being defined.

The definition statements provide the subroutines and macros
that are used only within the program being defined. All abbrevi-
ations and substitutions used by the test writer for this particular
program are also provided in the definition statements.

Finally, the statements that make up the main body of the pro-
gram are included.

The statement label on the program complete statement of the
syntax provides a branch point for use when an exit from the pro-
gram is necessary before the ordinary sequence of execution is
complete. '

2.4 Dictionary Data Bank Syntax

The dictionary data bank provides the final link between the
language and any specific test system. This is accomplished by
providing, to the line replaceable unit (LRU) designers and the
test equipment designers, the capability to declare the nouns re-
quired to test a unit and to define the action of the test system
with respect to these nouns.

The dictionary data bank also provides for the definition of
subroutines and macros, and the declaration of data variables
that are common to a number of separately processed programs.

gY_ON— b—BUS
WITHeboADDRESS< -

ITH—b-ADDRESS
\ T Brvant mmER CHANNEL ———F
_\ L o g _
¢

e ¢—l£mmm¢-mmnw——5

NUMBER

STATE
G— 6 ——AND— b—< >—¢ —— CONVERTED
VALUE

b—BY—¢—-l

The syntactic unit "FUNCTION SPECIFICATION'" provides a syntactical
structure for the declaration of nouns that represent functions
attached to a particular LRU. The LRU and its function is identi-
fied by a name, "FUNCTION NAME."

In the case of a shuttle-type data bus system the data bus
address and 'interface unit address are provided as indicated by
one option branch in the syntax. In the case of a telemetry sys-
tem, an address is provided as indicated by the other option
branch. In the case of a data bus system the syntax provides
for the definition of the code that is sent on the data bus to
effect the desired function. In the case of a telemetry system
the channel address is defined. Finally, a subroutine is speci-
fied that provides the necessary code conversions for any inputs
or outputs which result from the action of the function codes or
for the data identified by the channel addresses.

A-29

Commentary may be included in the function specification to
identify such things as a function number generally attached to a
function name. Ranges of values expected and other characteristics
of data resulting from the action of the functions may be included
in comments. These comments would be of assistance to the test
writer as he writes tests that make use of function declarations.

___________ 0
U USE ANOTHER LANGUAGE | LEAVE b ALOFT—Q-I‘

AND
e 0
\ WITH ¢—d VARIABLE REFERENCE | o
Y —- o o
(Input variabies _}T
needed by other

language routine.)

-l

Syntax of other
f language being used RESUME b ALOFT 3

AND
e ¢
¢ WITH $———{ _VARIABLE REFERENCE :L_l VAN)
(Output variables set]
by other language
routine.)

The syntactic unit "USE ANOTHER LANGUAGE'" provides a syntactical
structure for leaving the language, executing subroutines written
in another language, and reentering the language. The variable
references are provided to enable the passing of data back and
forth between the languages. This capability would be used inside
other subroutines.defined in the dictionary data bank.

AND —\
| b A
[N\ N\ /[
Fe——.—g eV /SN TIZZTTZ
HACRO T MACRO—b I sicro IIAME] " pussy wang] o

W L=

¢
| ey | //- _\\
Lo @N_TJ:]‘ ENo— o

TE]
Z-—(Statement‘ labels
not allowed.)

" pUrMY VARIABLE |
| FEFERENCE _ 4

.

The syntactic unit '"MACRO" provides a syntactical structure for
the definition of new language functions based on language func-
tions already available. The dummy parameters identified in the
syntax are used in the statements that make up the macro defini-
tion. Statement labels are not allowed in the macro definition.

A-30

S_DATA —b—BANK —- ¢ —I DATA BANK NAME |
N—I:S‘—SZ.JE‘ "DESIGNATOR »/

g———DICTIONARY b DATA b BANK 9——1| DATA BANK NAME '_‘5

¢
g—¢————————ﬂnMPIFTF /N

The syntactic unit "DICTIONARY DATA BANK" provides a syntacti-
cal structure for the definition of dictionary data banks. The
dictionary data bank is made up of declaration statements, func-
tion specifications, definition statements, macros, and other lan-
guage subroutines.

T ¢
%DATA—b—BANK——Etb—I DATA BANK NAME - 1[\ o

The syntactic unit "DICTIONARY DATA BANK REFERENCE'" provides a
syntactical structure that allows the test writer to identify those.
dictionary data banks that are required for a particular test.

A-31

2.5 Test Action Syntax

2.5.1 Clock and Time Controlled Action Syntax

{INTERNAL CLOCK | cLOCK { NUMBER +——
(Integer number —/
expected)

The syntactic unit "INTERNAL CLOCK" provides an identification
for vehicle clocks, internal computer clocks, and software clocks
which may be available in an executive system. An individual clock
is identified by an integer number.

YSET TIME PREFIX SET ¢

iptmininhntieiel st coC ¢
\— eERiAL cLocK i —

{ INTERNAL CLOCK |}
/—_,-__------------:_\ /_\ »—b — AND—

f : TIME VALUE !
\ 6m oo
[VARIABLE REFERENCE_;

The syntactic unit "SET TIME PREFIX" provides a syntactical struc-
ture for the initialization of the countdown clock or an internal
clock to a time or clock value at the time a statement to which
the prefix is attached, is executed.

—¢—

INTERNAL CLOCK

= GMT \
.i;?ic'u}?fﬁ TIME PREFIX} —WHEN——¢ — cDC) ¢

N

¢
i i) [\

———1IS ¢ —— s ¢-
$ __-;::::::::_---1_//
-[C_]__, \ VARIABLE REFERENCE! \— b—THEN —/

(Time variable on]y)————————df

A-32

The syntactic unit "EXECUTE AT TIME PREFIX" provides a syntactical
structure for the execution of a statement to which the prefix is
attached, at the time identified in the prefix. Clocks identified
are Greenwich Mean Time, countdown, or internal.

_____________ _ GMT

EEXECUTE AFTER TIME PREFIXl —— AFTER ¢ ’// CcDC \\\ ¢ [

i N e G
(TNTERVAL CLOCK}

A ¢ Y S v. 777 "

(-

| Sl lingiunsy ——— —

The syntactic unit "EXECUTE AFTER TIME PREFIX'" provides a syntac-
tical structure for the execution of a statement to which the pre-

fix is attached, any time after the time identified in the prefix
is reached.

The syntactic unit "TIME PREFIX" is a set time prefix, an execute
at time prefix, or an execute after time prefix.

IS¢ wTIll_J_I:_T VALUE’f — \— / "
LV i W siutntntovtonfentestntion / b—THEN
VARIABLE REFERENCE

lSEZJEE%E_?{f??%?ﬁ? ! SET ¢ CDC ¢
o \—:—/
INT%?%ﬁE_fE?CK F——‘\\\
f—r0 ¢—£T{£‘4€.ZA_LU_E‘ A
Yﬂ_@aﬁz REFERANCE v/

_\—(Time variable only)

A-33

The syntactic unit "SET TIME STATEMENT" provides a syntactical
structure for the initialization of the countdown clock or an in-
ternal clock to a particular time value, or another clock value.

' GMT
______ READ b A coC \

(W

The syntactic unit "READ TIME STATEMENT" provides a syntactical
structure for acquiring a time value, either Greenwich Mean Time,
countdown time, or an internal clock time, and saving the value
in a time type data variable.

2.5.2 Send Action Syntax

APPLY
______ SET
| sEwp vErB |
—————— \ TURN

SEND

The syntactic unit "SEND VERB" provides terms for use in describ-
ing the send actions performed in send action statements, defined
below.

e W 4
INTO [-=:\ | VARIABLE REFERENC_E_I o—

STATE

e e 22— -

________ ———— = = — —
I

—_—— = ——— —_———

(

A-34

The syntactic unit '"'SEND ACTION STATEMENT" provides a syntactic
structure for the performance of stimulus actions in a test. A

time prefix may be attached to the send action statement. The
function name is provided to the test writer from a dictionary

data bank. The state of a discrete, a numeric quantity, or a
variable reference identifying a numeric quantity to be sent to

an LRU can be identified. 1In the case of a discrete state, a time
limit for the application of that discrete state may be established.
At the end of the time specified, the discrete state will be re-
versed. .

If a table name is identified instead of a function name, the
function of each row of the table is sent with the appropriate
values as identified by the state, quantity, or variable refer-
ence.

2.5.3 Acquire Action Syntax

MEASURE

READ

The syntactic unit "ACQUIRE VERB'" provides terms for use in de-
scribing the acquire actions performed in acquire action state-
ments, defined below.

—_——— —
TABLE NAME’j /N FUNCTIONS —¢

A

The syntactic unit "ACQUIRE ACTION STATEMENT" provides a syntactic
structure for the performance of measurement actions in a test.

A time prefix may be attached to the acquire action statement.

The function name is provided to the test writer from a dictionary
data bank. The information acquired by the action of this state-

ment is retained, for later use in the test, in the variable ref-

erence identified.

1f a table name is identified instead of a function name, the
function of each row is acquired and saved using the appropriate
variable reference identified for the retention of the resulting
data.

2.5.4 Display Action Syntax

oo ———

l_TIME PREFIX3-¢
————— ¢
iR Fii -/ A\ [~
i INDICATOR LIGHT ‘ INDICATE

| CONTROL STATEMEWT |

~

¢
T
The syntactic unit "INDICATOR LIGHT CONTROL STATEMENT" provides

a syntactical structure for the control of indicator lights on a
panel available to the test system operator in the shuttle cock-

pit. The lights are on/off type with possible color variations.

Information concerning the light, its functions, and its location
is provided by a dictionary data bank. A time prefix may be at-

tached to an indicator light control statement.

':Tﬁm_ ZJ%EF?X} o o ~
Fem——————— [Ll ——— e .
CANNED MESSAGE _\ / — 4
FUNCT R
:_DISPLAY STATEMEIVT_! DISPLAY , _[UNCTION NAME

g/_q’_\ o

The syntactic unit "CANNED MESSAGE DISPLAY STATEMENT" provides a
syntactical structure for the output of nonvariable messages. An
example of such a message would be the display of information con-
tained on a microfilm frame. Information concerning the address

of the message and the output device used is provided by a diction-
ary data bank. A time prefix may be attached to a canned message
display statement.

A-36

Z—v TIME g}gz_prx.—-¢ —\ /-DISPLAY-\ /4._ _TEXT CONSTANT _:
' PRINT / 6 " Tquantrry

H VARIABLE DISPLAY STATEMENT¢ _

___________________ ememcm e m memaaad

NUMBER

———— e e e e e e

RECORD

. -
{VARIABLE_REFERENCE]

/N /\ /\
[oN { FuncrIon mAwE |}

The syntactic unit "VARIABLE DISPLAY STATEMENT" provides a syn-
tactical structure for formatting and displaying messages con-
taining quantities whose values are dependent on run time condi-
tions. This information may be displayed on a CRT alphanumeric
light display, magnetic tape, or a printer. Full formatting capa-
bility is provided by the feedback loop in the syntax. Informa-
tion concerning the address of the display device and its functions
is provided by a dictionary data bank. A time prefix may be at-
tached to the variable display statement.

The option "DISPLAY" permits the display of information on
either the alphanumeric light display or CRT. The option "PRINT"
permits the display of information on a printer. The option
"RECORD" permits the identification and recording of data on the
maintenance recorder or flight recorder of the Space Shuttle.

The function name provides the device function (i.e., line number
in the case of a CRT) and the device identifier. The appropriate
function names must be used with the options described above.

A-37

The syntactic unit "READ KEYBOARD STATEMENT" provides a syntacti-
cal structure for requesting an action from a test operator and
saving the results of that action for later use. One option pro-
vides a canned message for display to the operator in a manner
similar to the action of a canned message display statement. The
other option allows a text message to be displayed to the operator
in a manner similar to the action of the variable display state-
ment. Following the display of the message requesting some action
on the part of the test operator, an input message will be accept-—
ed from the keyboard and saved in the variable reference identi-
fied. A time prefix may be attached to a read keyboard statement.

2.5.5 Interrupt Action Syntax

i, - i
e 5 /U PRI ¢
ENABLE INTERRUPT STATEMENT ENABLE (
= - —)

b e — —— —
C VARSI EFUIVCTION NAME /LN : °

The syntactic unit "ENABLE.INTERRUPT STATEMENT" provides a syntac-
tical structure for the enabling of an interrupt identified by the
function name in a dictionary data bank., Any number of these
interrupts may be enabled in a single statement. A time prefix
may be attached to an enable interrupt statement.

9 :
TIME PREEIX__r__¢.__
rjiLSABLE INTERRUPT STATEMENfT} j/—_i_- DISABLE-——jf,

Lo e e
mp —
Jf VA Ty WV AR .

The syntactic unit "DISABLE INTERRUPT STATEMENT" provides a syn-
tactical structure for the disabling of an interrupt identified
by the function name in a dictionary data bank. Any number of
these interrupts may be disabled in a single statement. A time
prefix may be attached to a disable interrupt statement.

A-38

LINVOCATION ETAEEALENE ———————— ~
R OCCURS b—4
f—— THEN b——m SU_BI-?_OUEIIVE TTIV VOCATION _STiTElWEfV_T 1

The syntactic unit "INTERRUPT ROUTINE INVOCATION STATEMENT" pro-
vides a syntactical structure for identifying a subroutine to

be executed upon the occurrence of an interrupt. The interrupt
is identified by a function name in a dictionary data bank. The
subroutine is identified in a subroutine invocation statement.

2.5.6 Concurrent Testing Syntax

el
(o PRSI

'COIVCURRE’IVC.Y STATEMENT' /

The syntactic unit ''CONCURRENCY STATEMENT" provides a syntactical
structure for calling up, for concurrent execution, a program
identified in the program invocation statement. A time prefix
may be attached to the concurrency statement.

SYNCHRONIZE——— ¢ ——¢ NUMBER ——

____________ ==

(Positive integer required)

The syntactic unit "SYNCHRONIZATION STATEMENT" provides a syntac-
tical structure to identify synchronization points in a test. The
positive integer number identifies each particular synchronization
point. Identical synchronization points in two or more concur=
rently executing tests will cause the tests to be synchronized

at that point. '

A-39

2.5.7 Compound Action Statement Syntax

_EUNCTION NAME | s
| VERIFICATION STATEMENT | —VERIFY
__________________ [}

_ _TABLE NAME _I-E—lFUNCTIONS

————————— THEN
\

— 6
/ma OTHERWE—-D—S

S Jsparmini _+——

The syntactic unit "VERIFICATION STATEMENT" provides a syntactical
structure for reading or measuring the LRU function identified by
the function name or the LRU functions attached to a table, and
then comparing the resulting values with other data via relational
or limit formulas. If the "OTHERWISE' option is selected and

the result of evaluation of the formula is false the statement
following the "OTHERWISE" is executed. If the result of the eval-
uation of the formula is true the statement following the "OTHER-
WISE" is not executed.

If the "THEN" option is selected and the result of the evalu-
ation of the formula is true the statement following the 'THEN"
is executed., If the result of the evaluation of the formula is
false the statement following the '"THEN" is not executed.

In the case of the table name option, the relational or limit
formula will be evaluated on a row basis for every individual item
in the column as declared in the table declaration. Each individ-
ual formula evaluation must be true for the column evaluation to
be true. A single failure of an evaluation constitutes a false
evaluation for the column.

In any case, the value or values read as a result of execution
of the verification statement are not retained.

If the option "WITHIN TIME VALUE" is chosen, the verification
statement means hold until the verification required occurs or
the time value indicated is exceeded. If verification does not

occur and the time value is exceeded the statement following
the "OTHERWISE" will be executed.

A-40

2.5.8 Repetitive Action Syntax

____________ __ gy EBEEEE
LREPETITIVE' ACTION STATEMENT J— STATEMENT LABEL L [-l
d
)L [EVERY) -T_:m_{_E__VéL_UE; ! > f_¢ 1 }f

ﬂRIFICATION STATEMENT |
[CONCURRENCY STATEMENT }

The syntactic unit "REPETITIVE ACTION STATEMENT" provides a syn-—
tactical structure for the definition of a repetitive action. A
statement label must be attached to identify this particular state-
ment for use in a release statement {(defined later). The time
value indicates how often to repeat the statement called for. Two
types of statements may be repeated, which results in two differ-
ent actions.

A repetition of a verification statement indicates a repeti-
tive execution of the statement in line with the program in which
the repetitive action statement resides. A repetition of a con-
currency statement indicates a repetitive execution of a program,
identified in the concurrency statement, in parallel with the
program containing the repetitive action statement.

r 7 "M remee s
RELEASE REPETITIVE RELEASE [STATEMENT LABEL

LACTION STATEMENT _J _______

The syntactic unit "RELEASE REPETITIVE ACTION STATEMENT" provides
a syntactical structure for the release from execution status of

a verification statement or concurrently executing program identi-
fied for repetitive execution via a repetitive action statement.

A-41

2.5.9 Test Action Statements

,r_ ACQUIRE ACTION STATEMENT

T T T T Imprcator .~)
| __LIGHT CONIROL STATEMENT

CANNED MESSAGE
[DISPLAY STATEMENT

I~ TGRAPHIC DISPLAY
STATEMENT

STATEMENT

__________ —

| — T INTERRUPT ROUTINE ~—
L _ INVOCATION STATEMENT |

RELEASE REPETITIVE ACTION
L _ _ _STATEMENT |

The syntactic unit '"TEST ACTION STATEMENT" is one of the total
possible test action statements in the language.

A-42

