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ABSTRACT

GARRETT, LLOYD BERNARD. An Implicit Finite Difference Solution to the

Viscous Radiating Shock Layer With Strong Blowing. (Under the direction

of GEORGE LOUIS SMITH and JOHN NOBLE PERKINS.)

An implicit finite difference scheme is developed for the fully

coupled solution of the viscous radiating stagnation line equations,

including strong blowing. Solutions are presented for both air injec-

tion and carbon phenolic ablation products injection into air at

conditions near the peak radiative heating point in an earth entry

trajectory from interplanetary return missions. A detailed radiative

transport code that accounts for the important radiative exchange

processes for gaseous mixtures in local thermodynamic and chemical

equilibrium is utilized in the study.

Starting with minimum number of assumptions for the initially

unknown parameters and profile distributions, convergent solutions to

the full stagnation line equations are rapidly Obtained by a method of

successive approximations. Damping of selected profiles is required

to aid convergence of the massive blowing cases. It is shown that

certain finite difference approximations to the governing differential

equations stabilize and improve the solutions.

The present study results indicate lower wall radiative heat

fluxes for carbon phenolic ablation than predicted by previous

investigators.
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INTRODUCTION

A blunt spacecraft entering planetary atmospheres at earth hyper-

bolic speeds encounters intense radiative heating rates, particularly

in the frontal or stagnation region. Acceptable interior temperatures

are maintained by mass transfer cooling through the use of heat shields

constructed of polymeric ablator materials (Walberg and Sullivan).

Near peak heating altitudes in many entry trajectories, such

as entry into the earth's atmosphere from a direct return manned Mars

mission, the mass of gas injected into the flow field is an appreciable

fraction of the mass of the oncoming flow (Chin) and is sufficient

literally to blow the viscous boundary layer off the surface of the

spacecraft.

This condition, which is generally referred to as strong or massive

blowing, has a physically destabilizing effect on the flow field that

seriously impairs numerical solutions to the governing equations (Libby

and Sepri). Libby (1970) describes the physics of the problem to be

that of an inner region near the wall which is dominated by pressure and

inertia forces where viscous effects are small, and a thin viscous outer

region which adjusts to the edge conditions. For small blowing rates

the viscous boundary layer is near the wall and the presence of the

solid wall has a stabilizing effect on the flow. However, for the

massive blowing problem, the gaseous inner layer may not adequately

stabilize the flow.

The problem of massive blowing where the outer viscous flow adjusts

to the edge conditions has been studied extensively for nonradiating

flows (cf.,e.E., Kassoy, Libby (1962, 1970), Libby and Sepri, and

Kabuta and Fernandez). However, there has been limited attention
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directed to the solution when radiation is coupled into the problem. Most

previous approaches either required excessive computer time for the numeri-

cal solution or were approximate analyses which lead to questionable

inputs of the thermodynamic properties required for the ''''axliation compu-

tations. Since radiative heat fluxes (in addition to being strong func-

tions of temperature and density) can also be sensitive to the chemical

species within the shock layer, some of which are strong radiation emitters

and absorbers (Hoshizaki and Lasher), care should be taken in defining

these quantities across the entire shock layer. A complete discussion of

previous approaches to the viscous radiating shock layer with mass addi-

tion is developed in the chapter on Review of the Literature.

The purpose of this investigation is to develop an approach for the

numerical solution to the coupled viscous radiating flow field along the

stagnation line of a blunt body under both weak and massive blowing con-

ditions. It is required to solve the governing Navier-Stokes equations

without making unnecessary simplifying assumptions to the equations and

in the numerical solution that could result in inferior inputs for the

radiative flux computations. Since the flow equations are coupled,

iteration or some multiple pass procedure is required. Thus, the problem

becomes one of efficient iteration procedures.

An implicit finite difference method, whiCh has previously been

shown to be computationally efficient for chemical nonequilibrium studies

without mass addition (Blottner, 1969), is developed for the solution to

the proposed problem. The nonlinear governing differential equations are

written in finite difference form at a11 nodal points within the shock

layer, with boundary conditions specified at the wall and immediately

behind the shock. The formulation results in a tridiagonal matrix system
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of algebraic equations which is efficient for machine computation. The

governing equations are solved "one at a time" in succession across the

entire shock layer. The overall numerical solution technique to the two-

point boundary problem is by iteration of the flow variables at each nodal

point in the shock layer. Since the governing equations are solved one

at a time, rather than concurrently at each nodal point (as in initial

value forward integration techniques), then the nodal spacing requirement

for the overall solution is not limited by the stability requirement of

the most unstable equation.

A section is devoted to the stability of the finite difference solu-

tions to the governing equations. Particular attention is directed to the

stability of the species continuity equation with binary diffusion using

central differencing and a two-point windward differencing scheme that

provides automatic damping of the profiles.

Radiation computations are carried out using an existing radiative

transport computer program, RATRAP, developed by Wilson (1967). The

program uses the tangent slab approximation (one-dimensional) that accounts

for absorption and emission within a layer of arbitrary optical thickness

and is for equilibrium gaseous mixtures of hydrogen, carbon, nitrogen, and

oxygen. Pressure, enthalpy, and elemental composition profiles are com-

puted by the viscous flow field solution as inputs to the radiation program.

Radiation fluxes are evaluated at various nodal points within the shock

layer to provide coupling with the flow field. The transport properties

for equilibrium air (i.e., viscosity and reactive Prandtl number, see

Hansen) are used in the computations to account for the energy transport

due to binary diffusion.

Numerical results are presented for both air-to-air injection and

for the injection of the ablation products of a carbon phenolic ablator



heat shield into an air stream for a range of blowing rates of interest.

Additional computations are presented for constant density flows and for

viscous nonradiating flows with air-to-air injection.

The air-to-air injection cases include calculations for a 3.05-meter

spherical nose radius body entering the earth's atmosphere at 15.24 kilom-

eters per second velocity at 61 kilometers altitude with a blowing mass

rate to free-stream mass flow rate of one-tenth. The results are compared

with an initial value forward integration method, integral approaches, and

an "exact" numerical solution for identical free-stream and wall boundary

conditions. An assessment is made of some approximations contained in

these analyses.
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REVIEW OF LITERATURE

The scope of the literature survey is restricted primarily to the

flow within the shock layer near the stagnation region of a blunt reentry

spacecraft. The emphasis is on viscous radiating flows with mass addi-

tion which is typical for hypervelocity enters into earth's atmosphere

from manned interplanetary missions.

Some of the earliest predictions for the radiative heat flux to a

blunt body entering the earth's atmosphere at earth parabolic velocities

or greater indicated that the heat flux at the stagnation point was pro-

portional to the velocity raised to the tenth power (Meyerott). In more

recent years the predictions of the levels of the radiative fluxes have

almost progressively decreased, while the complexity of the computations

have systematically increased. An excellent review of the advances in

radiating shock layer analyses is given by Anderson in his 1969 paper.

Figure 1, which is taken from his paper, is a diagram of the various

assumptions used in the analysis of radiating shock layers. The organi-

zation of this chapter will follow this diagram, with a section devoted

to the radiation transport models and one devoted to coupled and uncoupled

flow field analyses including the more recent approaches to the radiation-

induced massive blowing problem. Much of the literature review is con-

densed from Anderson's survey, and interested readers are referred to his

paper and his extensive list of references for a more lucid description

of contributions to radiation flow field analyses prior to 1969.

Radiation Transport Models 

The salient features of radiation models as they are applied for

tractable solutions to radiating flow field problems are discussed in
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this section. The evolution of the radiation models which are incorporated

into high-temperature shock layer analyses is traced.

In general, the radiative energy exchange in a gaseous medium is

governed by integral equations which involve temperature, mass density,

and the number density of the individual chemical species integrated over

both the radiation frequency spectrum and three-dimensional physical space.

Hirschfelder, Curtis, and Bird (p. 721) describe the functional dependence

of radiation on these properties in the following manner.

In the presence of radiation, a molecule has a certain

probability of either absorbing or emitting radiation of

a frequency characteristic of some transition from one

quantum state to another. Or a molecule in an excited

state has a certain probability of spontaneously emitting

radiation of a certain frequency. Each substance therefore

has an absorption spectrum which can be expressed in terms

of the coefficient of absorption which is a function of the

frequency. Since the absorption spectrum depends upon the

distribution of the molecules in their various quantum

states, then the absorption coefficient depends upon the

temperature of the substance. The spectral lines for iso-

lated molecules have a natural width (due to spontaneous

emission of radiation), and as the molecules are brought

together these lines become broader (due to pressure

broadening) and become displaced (due to the distortion of

the molecules themselves). Thus the coefficient of absorp-

tion depends upon the density of the system . . .

Since fluid elements (actually the individual atomic and molecular parti-

cles) both emit and. absorb radiation, then the radiation exchange for both

mechanisms must be considered. At a given point emission is a function

primarily of the conditions at the point, whereas absorption is dependent

upon not only conditions at the point but also is a function of the

thermoaynamic properties and the frequency of radiation emission of all

the surrounding fluid elements. Radiation at a given frequency travels

a "photon or radiation mean free path" before being absorbed, thus absorp-

tion of the radiation is dependent upon the physical distance between the



emission source and the absorbing particle. Consequently, radiation

exchange within a given volume is a function of three-dimensional physical.

space.

The problem of the general three-dimensional radiation exchange where

there are many different chemical species or particles at various energy

levels is indeed formidable, and simplifying assumptions are required in

order to obtain tractable solutions to most radiation exchange problems.

For stagnation streamline analyses, the enclosure volume is simplified by

the "tangent slab approximation," that is, radiation heat fluxes are com-

puted assuming that a one-dimensional planar slab of gas is present within

which conditions remain constant except across the slab in the direction

normal to the slab. This approach is almost universally applied in

radiating shock layer analyses. At the stagnation line the justification

for the assumption is that for bodies of large radii surrounded by a

relatively thin shock layer, conditions vary slowly in the radial direc-

tion, whereas the major gradients are normal to the body. This effect

has been investigated by Kennet and Strack, by Koh, and by Hoshizaki and

Lasher. The investigations indicate that the error introduced by the

approximation should be less than 5 percent.

The tangent slab approximation permits one to evaluate the divergence

of the radiative heat flux that appears in the energy equation by evalua-

tion of the gradient of the heat flux in the normal direction only and

uncouples the stagnation line solution from the rest of the shock layer

as far as radiation is concerned. In the present analysis the tangent

slab approximation is used.

For radiation computations the gas is treated either as transparent

or self-absorbing. A transparent gas is one which emits radiation but
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does not absorb any incident radiation from the surrounding fluid elements.

According to Vincenti and Kruger, this approximation is valid only when

the gas is optically thin at all wave lengths. An optically thin gas is

one in which the characteristic mean free path of a photon is much larger

than the thickness of the shock layer. Anderson points out that in

practice the transparent gas assumption is reasonable only for reentry con-

ditions where radiation effects first become noticeable, such as 10 km/sec

entry velocities. For velocities around 15 km/sec, the transparent assump-

tion can overpredict the radiative flux by factors of 2 or more.

A self-absorbing gas both emits and absorbs radiation; that is, a

fluid element locally emits radiative energy as well as absorbs energy

from the gurrounding fluid elements. The gas is treated either as gray

or non-gray. A gray gas includes gray self-absorption which is a func-

tion of temperature and pressure, but the absorption coefficient is

assumed not to be a function of the wave length or radiation frequency.

It was first indicated by Olstad and later demonstrated by Hoshizaki

and Wilson (1967) that the non-gray model is by far the more realistic

model and is important for most high-velocity entry missions. In this

model the absorption coefficient is considered to be a function of wave

length as well as temperature and pressure.

An example, given by Anderson, that indicates the reason for includ-

ing non-gray self-absorption is the phenomenon associated with high-

temperature air. Air will absorb radiation in the vacuum ultraviolet

(short wave length) region but is relatively transparent in the infrared

(long wave length) region. For example, there are five orders of magni-

tude variation with frequency in the continuum absorption coefficient

of air at 14,000° K and one atmosphere pressure. Olstad's
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results for the inviscid flow of air and Hosizaki and Wilson's (1967)

results for the viscous flow of air showed that substantial reductions

in the radiative heat flux to the body were obtained in going from gray

to the non-gray self-absorption models.

The non-gray gas model must be applied to obtain realistic estimates

for the radiative heat flux to the body and this requires a detailed

integration of the absorption coefficient over the frequency spectrum.

For air, significant differences still exist not only in the spectral

absorption coefficients for certain chemical species but also in the

radiation models that are coded for computer solutions (Suttles, 1971).

However, computations dealing strictly with radiative transport in air

for typical earth entry conditions are approaching a firm basis and

simplified radiation models can be developed for abso/ption coefficients

as functions of wave length, such as Callis' three-step model, to speed

up the time-consuming radiative transport computations. When one also

considers injection of ablation products into the air stream, radiation

transport modeling becomes complicated indeed because of the added dimen-

sion due to the presence of foreign radiating chemical species (Anderson).

In the interest of quantitative results, it appears better at present to

generate spectral absorption coefficients from the spectral details for

the individ”PA chemical species than to attempt absorption coefficient

modeling on the basis of a specified overall chemical composition.

Existing radiation transport computer programs are available which

consider ablation products in addition to air chemical species, such as

RATRAP, developed by Hoshizaki and Wilson (see Wilson, 1967); SPECS,

developed by Thomas; and RADICAL, developed by Nicolet. These programs,

which perform radiation computations based on the spectral details of the
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individual chemical species, are time consuming for stagnation line

analyses. However, usage of these types of programs are required since

realistic analyses have indicated that the addition of ablation products

to the flow field can reduce the heat fluxes to the body by factors of

two below pure air flow (see, for example, Hoshizaki and Lasher,

Coleman et al., and Chin). As was the case for air, differences exist

in the computer codes due largely to uncertainties in the absorption

coefficients and the spectral modeling of certain chemical species.

RATRAP, which is used in this analysis, is somewhat time consuming, but

it contains the appropriate detail to be compatible with the rigorous

flow field competition expected of the present analysis.

It is appropriate at this point to begin the discussion on flow field

analyses with radiation. The radiation transport models discussion is

terminated upon noting that d.ifferences in the heat flux predictions at

the body can be a result of not only differences in the radiation trans-

port codes but can also be a result of the inaccuracies in the solutions

to the flow equations. In particular, the concentration or number densi-

ties of strongly absorbing or emitting ablation chemical species can be

strongly affected by computed temperatures and densities within the shock

layer.

Flow Field Analyses With Radiation 

The appearance of the divergence of the radiative flux as a term

in the general energy equation governing the flow of a radiating gas

couples the flow field and the radiative transport analysis. For rela-

tively low entry velocities, the radiative heat fluxes are small and

consequently do not exert any significant influence on the flow field

thermodynamic or flow variables. However, for hyperbolic entry velocities,
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typical of manned return missions from Mars, the radiative heat fluxes

are large, and thus radiative cooling (energy losses) with the shock

layer must be considered. The net effect of radiative cooling is to

reduce the radiative heat flux to the body because of a reduction in

temperature and a subsequent increase in shock layer density from adia-

batic conditions (see, for example, Wick and Hoshizaki and Wilson, 1965).

This coupling between radiative transport and gas dynamics for 
this

problem is commonly referred to as the coupled radiating shock 
layer

problem.

Howe and Viegas were the first to investigate the flow of a viscous,

radiating, self-absorbing gas in the stagnation region including the

effects of mass addition. Since they assumed a gray radiation model, the

radiation flux results are not quantitative. However, they showed that

similarity considerations could be applied in the stagnation region of

the viscous shock layer where radiation is present, thus reducing the

governing partial differential equations to ordinary differential equa-

tions. Howe and Viegas used a Levy-Lees type of boundary-layer trans-

formation, which involves the integral of the viscosity-density product

over physical distance, and similarity considerations to reduce the

Navier-Stokes equations to compressible Falkner-Skan boundary-layer

equations (see Schlichting, pp. 354) for axisymmetric stagnation region

flow. They solved the momentum equation numerically by an initial value

forward integration method (Adams-Moulton predictor corrector, see

Hildebrand). The energy and species continuity equations were solved

by numerical evaluation of the exponential integrals that appear in the

exact analytical solutions to the differential equations. The solution

to the coupled system of equations was iterated by converging on the
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value of the shear stress at the wall. In their fully viscous analysis

the mass injection rates were restricted to moderate amounts which did

not upset the stability of the boundary layer near the wall. The diffi-

culty with the stronger blowing rates can be traced to numerical instabil-

ity problems associated with evaluating the exponential integrals in the

exact analytical solutions to the governing equation. Wilson (1970), who

applied a similar approach as that of Howe and Viegas (with the notable

exception being his momentum equation solution), describes the problem

for the fully viscous shock layer with massive blowing to be one of numeri-

cal precision required to take the differences between the large numbers

which appear in the exponential integrals. Further aspects of this

problem will be discussed in association with Wilson's 1970 paper and in

the Results and Discussion chapter.

In 1965 Hoshizaki and Wilson (1965) developed their integral method

for the solution to the coupled viscous radiating shock layer about a

blunt body. Fifth and sixth order polynomials were used to express the

velocity and total enthalpy profiles, respectively, across the shock layer.

In addition to presenting results for the stagnation region, they also

presented results around the body using a forward integration technique

with a limited number of iterations on the shock shape. The solutions

were restricted to no blowing and a transparent radiating gas.

Hoshizaki and Wilson (1967) extended their integral approach to

include injection of ablation products into the boundary layer for moderate

blowing rates. And, they improved their radiation transport model to

include specular (non-gray) self-absorption. In the solution, fifth and

second order profiles were assumed for the velocity and elemental mass

fraction of the ablation products, respectively. With the specified
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velocity and species distribution profiles, they were able to solve the

energy equation by using a method similar to that used by Smith and

Clutter for boundary layer solutions. In the Smith and Clutter solution,

the energy equation is solved across the shock layer by a method of super-

position of two independent energy equation solutions. The nonsimilar

terms in the energy equations (derivatives in the tangential direction)

were included in finite difference form. Hoshizaki and Wilson (1967)

assumed a binary diffusion model and assumed that the air and ablation

products did not react chemically. Air transport properties were used in

the analysis. They observed that, since the entire shock layer was

treated as viscous, they did not have to match frequency dependent radia-

tive fluxes at the viscous-inviscid interface.

In 1968 Hoshizaki and Lasher extended the integral approach to the

massive blowing problem (up to 10 percent of free-stream mass flow). The

integral method was applied to obtain an approximate solution to the

momentum equation for a fifth order polynomial representation of the

velocity profile. The species continuity and energy equations were

solved by means of similarity transformations and numerical integration

of the resulting exponential integrals. Their detailed analysis of the

spectral absorption coefficients for 20 air and ablation product chemical

species showed that the carbon atoms, which diffuse far into the shock

layer, act as strong radiation.absorbers.

Chin, in 1968, developed a numerical method for solving for the

radiation coupled inviscid stagnation flow with mass addition. In this

analysis it was assumed that no mixing occurred between the ablation

products in the inner inviscid region and the air products in the outer

inviscid region which results in a distinct interface (in terms of



chemical species) between the two regions. He integrated the conserva-

tion equations for the air layer from the shock wave to the int
erface

and from the body to the interface. He iterated on the wall heat flux,

the blowing rate, and the velocity and enthalpy profiles until 
he con-

verged on the enthalpy distribution and heat flux to the wall. 
It is

interesting to note that the blowing rate is an implicit part o
f his

solution and, for the conditions of interest in this analysis (110o
-15km sec,

altitude — 65 km), he calculated a blowing rate of 7.6 percent of f
ree-

stream mass flow rate. His results were for a spherical body of radius

256 cm, constructed of carbon phenolic ablative material. The solutions

to the inviscid governing equations converged very rapidly; however, s
ince

the viscous region (which typically occupies about 10 percent of the s
hock

layer for the Reynolds numbers of interest) was neglected, then there 
was

no mechanism provided for the diffusion of the strongly absorbing carbo
n

atoms and ions into the air layer.

The first numerical solution to the exact Navier-Stokes equations

for the thin shock layer at the stagnation line, including radiative t
rans-

port, was presented by Rigdon, Dirling, and Thomas (1968). This analysis

included massive blowing (up to 10 percent) for air-to-air injection. In

1969 they extended the solution to massive blowing of ablation products

(Rigdon, Dirling, and Thomas, 1970), with blowing rates up to 20 percent.

The numerical procedure which they employed is computationally time con-

suming. They used an initial value forward integration scheme in which

they were required to adjust four initial conditions (temperature, tan-

gential velocity gradient, temperature gradient, and the shear),,

evaluated at the stagnation point. These initial conditions were iterated
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until the two boundary conditions for both momentum and energy equations

were satisfied at the shock and at the body. In the ablation analysis

they were further required to satisfy the binary species continuity equa-

tion over the shock layer. If the same initial value forward integration

scheme is used, then this requires a guess for the elemental mass fractions

of the injected foreign material and its gradient at the stagnation point

in order to satisfy the boundary conditions at the shock wave and the

body. The net result is the requirement that one guess six coupled initial

conditions which are unknown apriori in order to satisfy the boundary

conditions.

From the results of their solution to the exact governing equations,

Rigdon et al. (1970) were able to make direct comparisons with the integral

results of Wilson and Hoshizaki (1969) and concluded that the polynomial

approximations which had worked so well for nonblowing were not sufficient

to describe the momentum equation solution in the presence of massive

blowing. Although differences existed in the radiation models (Rigdon et al.

(1970) used the SPECS code (see Thomas), whereas Wilson and Hoshizaki (1969)

used an updated version of RATRAP (see Wilson, 1967)), the factors of two

to four differences in the ablation layer thicknesses could not be explained

on the basis of radiation model differences.

In 1969 Wilson (1970) concluded that the approximate integral solution

to the momentum equation was inadequate for large mass injection and/or

the Reynolds numbers of interest. As mentioned previously, his treatment

of the energy and the species continuity equations was similar to that of

Howe and Viegas. He used Dorodnitsyn type of transfotmations (integral of

the density over physical distance) and similarity conditions to obtain

exact analytic solutions to the energy and species continuity equations.
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He attributes the momentum equation solution (see Wilson, 1969) to a

solution technique developed by Chou and Blake for a similar problem.

Upon performing an additional coordinate transformation which involves

viscosity and assuming that the density viscosity product is a constant

across the shock layer, Wilson (1970) developed the second-order differen-

tial equation. He subsequently differentiated the equation, which makes

it linear (in the second derivative), to obtain an exact analytical solu-

tion to the equation in te is of exponential integrals. Rather than

solve the momentum equation with an initial value technique as was done

by Howe and Viegas, Wilson employed a successive approximation algorithm

to all the analytical governing equations. In the successive approxima-

tion scheme, which is similar to the technique applied in the present

study, the distribution of properties are initially specified across the

shock layer and the governing equations are iterated until satisfactory

convergence is obtained.

Wilson (1970) observed that with his formulated equations he was

unable to obtain a numerical solution to the fully viscous equations for

relatively large blowing rates (greater than 5 percent, approximate1y).

As previously mentioned, Wilson traced the problem to one on numerical

instability associated with taking the differences between exponentially

large numbers (greater than about e
10), which were about the same order

of magnitude. Since the computer only carries about 8 to 16 significant

digits, then the resulting difference between these large numbers becomes

meaningless. Apparently, these exponentially large numbers occur in the

numerical solution in regions where the viscous effects become small

(Wilson observed the effect in the inner region near the wall for large

blowing) and part of the problem could be due to the loss in precision
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when one uses something like a Simpson's rule (Conte) to numerically

integrate under an exponential curve.

Wilson (1970) was able to circumvent the numerical precision problem

for massive blowing by solving inviscid equations in the inner region

and the fully viscous equations at a somewhat arbitrary distance from the

body. The interface criteria was that the power to which e is raised

be less than 10.

In 1970, Smith, Suttles, Sullivan, and Graves presented a combined

flow field and ablation study of a blunt body entering the earth's atmos-

phere at interplanetary velocities. The analysis, which was motivated by

a study of a flight experiment to examine the radiation and materials

response problems at hyperbolic entry velocities, yielded transient

ablator mass loss rate histories for a complete entry trajectory. The

results indicated that ablation rates from high-density phenolic nylon

reached a peak of about 0.055 g/cm2-sec (10 percent of free-stream mass

flow rate) at the stagnation point of a 122-cm-diameter ellipsoid body of

4:1 axis ratio. Smith, Suttles et al. examined the entire subsonic flow

region surrounding the blunt body by dividing it into three interacting

regions: an inviscid outer layer, a boundary layer, and a charring heat

shield. The inviscid outer layer flow was determined by a one-strip inte-

gral method with radiation developed by Suttles (1969). The inviscid flow

field and the ablation solution provided the boundary conditions for the

radiating boundary-layer computations. The boundary layer and the

ablation calculations were iterated until the heating rates and the

ablation rates converged. For the larger blowing rates the numerical

method for the solution of the boundary-layer equations was not suitable

and they adapted an integral procedure by Libby (1962) for the radiating
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boundary-layer solution. The boundary layer and the inviscid outer layer

solutions were joined by assuming a cubic variation for the elemental mass

fraction distribution within the boundary layer and by adjusting the edge

enthalpy condition.

One of the significant conclusions of anith, Suttles et al. was that

the introduction of ablation products into the boundary layer did little

to attenuate the radiative flux to the wall. In their analysis they used

the RATRAP computer code developed by Wilson (1967), and they compared

their results with Chin and with Rigdon et al. (1969), who used different

radiative transport computer codes. Whereas Chin's solutions for a

7.6 percent blowing rate and Rigdon et al. (1969) solutions for a

20 percent blowing rate indicated reductions in the wall heat flux of

about 45 percent below the nonblowdng rates, Smith, Suttles et al. calcu-

lated reductions of only about 22 percent. Part of this difference has

been traced, particularly in the case of Chin's results to differences in

the radiative transport models. However, Wilson and Hoshizaki (1969)

in their approximate integral approach were indicating radiative heat

flux reductions of 40 percent from nonblowing heat fluxes for 10 percent

blowing rates and of 60 percent for 20 percent blowing rates using the

RATRAP radiation code. Wilson's more recent results (Wilson, 1970), using

his improved momentum equation solution, have indicated much lower heat

flux reductions (only 18 percent) at blowing rates of 5 and 10 percent.

While there are differences in the free-stream conditions in the Wilson

and Hoshizaki (1969) and the Wilson (1970) studies, they do not appear

to be sufficient to account for the differences in the radiation blockage

effects in the two analyses. Apparently, the answer to these differences

must reside in part in the analytical and numerical treatments of the

governing flow equations.
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One of the questions which the present analysis will attempt to

answer is whether the approximate integral treatments of the governing

equations and/or "exact" numerical treatments of approximate systems of

equations can accurately define the flow properties required for the

radiation computations with and without blowing. The numerical technique

to be developed for the analysis of the coupled viscous, radiating flow

along the stagnation line and including massive blowing is an implicit

finite difference scheme. Blottner has shown this approach to be compu-

tationally superior to initial value schemes for chemical nonequilibrium

stagnation line studies without blowing.

In the implicit method, the problem is treated as a two-point

boundary value problem in which boundary conditions are specified at the

shock and at the body. The entire shock layer is treated as viscous,

which requires no "patching" of two or more solutions. The thin shock

layer equations which govern the viscous along the stagnation line (Ho

and Probstein) and which are exact through second order are solved at

discrete nodal points along the stagnation line by iteration through the

application of a method of successive approximations. Singularities do

not appear in the formulation since the viscous term takes effect as the

convective terms (mass flux) approach zero in the vicinity of the

stagnation point.
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ANALYSIS

Thin Shock Layer Equations 

The governing equations for the steady-state flow of a viscous radia-

ting gas in the stagnation region of a blunt axisymmetric body at moderate-

to-high Reynolds numbers are given by Ho and Probstein and Scala. They

are:

Continuity:

X-momentum:

P'u'

Y-momentum:

Energy:

r'p'u'

- —(r'p'u l) +
x'

tptvt) = 0 (1)

, KIPIVI 
6t1 

KIP TU T V 1 = 6P  +  6  (04, 6u) (2)ary6y 1 6x' 6Y 1 -

6x'

P'u t + Kip'ATA Ktut2= - Kt

6KT 6y'

Species continuity:

op Tv Ir l
6y1 C,y6y

+ ---)
3/-1 6Y'

6 6 6

6x 1 ,11,Y(r'p'ula.) + ---(0r 7p'Artai) = - (Klr' 1 )

( 3 )

(4)

(5)

(i = 1,...,N species)

Primed symbols are used to denote dimensional quantities, unprimed

denote dimensionless quantities.
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In the body-oriented coordinate system shown iniFigure 3,/ the quantity

K l y which is the coordinate stretching function, is defined/by

where

T = 1 K'y' (6a)

K' = K'(x) = (6b)
R'

and r satisfies the equation

dr' = K T sin Ob dx' + cos Ob ay' (6c)

The quantities qC' 
,y D 
, q',y, 

, and qR,y 
are the heat fluxes in the

y'-direction due to conduction,diffusion and radiation, respectively.

J! is the mass diffusion flux in the y l-direction and (1)1 is the
l'Y

net rate of production of the ith chemical species.

In comparison to the heat and mass diffusion fluxes in the y l-

direction, the corresponding fluxes in the x'-direction are genera11y

considered negligible (see Ho and Probstein) in the stagnation region.

These fluxes in the x'-direction are assumed to be negligible in the

present analysis also. The thin shock layer equations are the simpli-

fied boundary-layer equations (Navier-Stokes) including the curvature

terms for the stagnation region. The equations are considered to be
-I

accurate to the order
Ps

Rey
s

(see Ho and Probstein), where

potgoRi;
Reys =   when radiation is not considered.

11'
Stagnation Streamline Equations

At the stagnation line (x = 0), the conservation equations for the

thin shock layer reduce to ordinary differential equations upon expanding

the flow variables in the following power series (based on symmetry

considerations)
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u = a(y)x + al(y)x3 +

v = v(y) + v1(y)x2 +

P = P(Y) + P1(Y)x2 +

H = H(y) + H1(y)x2 +

mi = mj(Y) + mil(y)X2 +

(7 )

and applying the geometry relations (eq. (6)), then taking the limit as

x -40. The limiting forms of the governing equations for the stagnation

line flow become:

Continuity:

X -momentum:

Y -momentum:

Energy:

d(K2pv)
- 2Kpa

dy

d da) da+ Kpv — + pa2 + Kpa 0
Rey

s 
dYA. ay clY

dp
NV — = -

ay

2 dH d [2
(K Pv — = - — (lc clp + qR

clY c17 ,y ,Y /Y

Species continuity:

•2 dal (K2J.
K pv

dy l'Y'

(8)

(9 )

(10)

(12)
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(13)

2

= p(Y) = (
)x2 
1-12 

)x=0 
(14- )

The foregoing conservation equations have been written in nondimen-

sional form from the following set of dimensionless quantities:

x,y„r =  
xe,y',r i.

Rb

ut,vt,v!
11, 1T • =vo

K(x) = K i(x)111'0;

p = 
P

10:0

IC I =

h'„H' 
cit

• 
coRIb

h,H =  
c-
; q 3; 

-

Wo co

JI 4' k'
4 = -7;

'k
13= s 

D12
D = ----;
12 13- 1/1 1

co b

(320U20%
Reys -  ;

4s

Pr
c'µ'

k'

where the subscripts co and s refer to free-stream and post-shock

conditions, respectively.

Restrictions and Assumptions 

The governing stagnation line equations are general equations and

are restricted only by the requirements that Ps/Reys << 1 and that the

radiative heat flux in the x-direction are comparatively negligible. At

this point it is desirable to establish the state of the gas and the

diffusion and heat flux models to be used in the study. The following

basic restrictions and assumptions are imposed on the governing equations:
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(1) The gas is in local the/modynamic and chemical equilibrium.

(2) Diffusion of the chemical species is governed by a binary

diffusion model.

(3) Radiative energy transport occurs within a one-dimensional,

infinite planar slab (tangent slab).

Anderson indicates velocity and altitude limits for equilibrium and

rionequilibrium chemistry, and it is observed that for the conditions of

interest in this study, chemical equilibrium is considered to exist.

However, to date no detailed calculations which consider the ablation

products have been made to firmly establish this assumption.

The binary diffusion model, which assumes that the individual chemi-

cal species have the same mobility as the two chemical species which are

used to represent the binary diffusion process, has been assumed in all

previous radiation studies of this problem.

For the blowing situation, it is assumed that all the numerous

chemical species of the ablation products can be represented by a single

dhemical specie and all the chemical species of air can be represented

by the other single chemical specie to form the binary diffusion coef-

ficient. Rigdon et al. (1969) examined atomic carbon-atomic nitrogen

diffusion and atomic hydrogen-atomic nitrogen diffusion and concluded

that the actual choices of the two chemical species to fo  the binary

diffusion coefficient did not appear to be critical in the solution. A

similar anaJ,ysis of the effect of diffusion coefficient on the radiative

heat fluxes will be made in this study.

Wilson (1970) indicated that he was considering a pseudo multi-

component diffusion analysis (bifurcation model, see Graves) in which

the individual binary diffusion coefficients computed for each combina-

tion of two individual dhemical species are statistically lumped to
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foriu an effective binary diffusion coefficient; however, the calculations

have not been made to date.

The errors expected due to the tangent slab approximation have been

previously discussed in the review of the literature and are about

5 percent or less for this problem (see Kennet and Strack, Koh and

Hoshizakil and Lasher). This approximation is made in RATRAP for the

computation of the heat flux term that appears in the governing energy

equation (eq. (11)).

Although additional assumptions, which are subsequently discussed,

are required with regard to boundary conditions and second-order transport

effects, the foregoing three assumptions are the most basic and restrictive

assumptions which are required in this analysis. There is no way to estab-

lish firmly the validity of these basic assumptions for this pr
oblem, beyond

the studies which have been previously cited, without introducing addi-

tional complexity to the calculations. However, it is anticipated that

the implicit finite difference scheme should lend itself readily (con-

ceptually) to both chemical nonequilibrium studies as demonstrated by

Blottneris (1970) analysis and to multicomponent diffusion studies (Graves).

It should be particularly useful for the nonequilibrium studies because

stability requirements are not as stringent in this approach as in explicit

forward integration schemes.

In order to uncouple the stagnation line solution from the remaining

subsonic field, it is necessary to assume the relationship between the

shock and the body curvatures at x = 0. In this analysis, as in most of

the prevalent analyses, it is assumed that the shock and body are concen-

tric. The results of Suttles (1969) inviscid radiating analysis indicates

that the assumption is reasonable.
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Preheating of the ambient air upstream of the shock wave due to

radiation transport (precursor effects) is neglected. Smith, Hoshizaki,

and Lasher, and Rigdon et al. indicate that precursor effects begin to

become significant at velocities around 17 to 18 km/sec and above. Thus,

the present solutions, which employ the Rankine-Hugonoit conditions (see

Hayes and Probstein) for the discontinuous jump conditions across the

shock, will be restricted to velocities somewhat lower than this.

In the numerical solutions, unless otherwise specified, a Newtonian

pressure distribution (see Hayes and Probstein) is used to evaluate 0,

(
the 

2 
term in the x-momentum equation, i.e.,(621_ = -2.0.

a 6x x2)x=0 x=0

It should be noted that Wilson (1970) used a value of -3.0 which can lead

to a thinner shock layer in his calculations. This effect will be inves-

tigated in the present stuctr.

The radiation transport computer code which is used in the radiation

computations is RATRAP, developed by Hoshizaki and Wilson (see Wilson, 1967),

which considers most of the primary radiating chemical species associated

with carbon, oxygen, nitrogen, and hydrogen mixtures. The detailed thermo-

dynamic and chemical composition calculations for equilibrium chemistry

are performed in the computer code FEMP, developed by Brown et al. FEMP

is included by Wilson as an integral part of RATRAP.

In the analysis, it is assumed that the transport properties for air

developed by Hansen apply for both air-to-air injection and ablation-

products-to-air injection. This assumption for the ablation products will

be superficially analyzed by perturbations in the pertinent transport prop-

erty (Prand.tl number) to determine its effect. It should be noted that

Rigdon et al. (1969) ran two identical cases with the exception of pure
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air transport properties in one and the combined ablation products air

transport properties in the other, and the resulting differences in the

radiative heat fluxes to the wall were less than 1 percent.

The continuity and y-momentum equations (eqs. (8) and (10)) are

unchanged when the foregoing assumptions are applied. The only perturbation

(-57)x=0

62p
in the x-momentum equation (eq. (9)) is the term arising from the

Newtonian (or specified) pressure distribution in which 4,)
6x' x=0

will be

taken to be a constant in y in this analysis.

The heat flux terms in the energy equation (eq. (11)) can now be

defined by applying the binary diffusion and tangent slab approximations.

The conductive heat flux term is given by Fourier's law of heat conduction

q' = - 
dT'

C,y dy l
(16)

The multicomponent diffusion heat flux is given by Bird, Stewart, and

Lightfoot as

ci t =D,y

where i = 1„...,N species.

For binary diffusion,

hIP!(v! - v'

J! = -P'D'
12 ay'

h
i
J! (17)

(18)

For constant pressure (pressure varies about 2 percent across the

shodk layer for this stuay),

(dal) dT

ay' 6T' ay'
(19)
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Equations (17), (18), and (19) can be combined to yield

h: 31dT'

"ID,y 12
(20)

The tam in brackets of equation (20) has been defined by Hansen 
to

be the "reactive" conductivity, kL, which yields a form of Fourier's law

of heat conduction that describes the energy transport by binary 
diffusion.

Hansen has computed and tabulated kL and the "lumped" or "effective"

conductivity k = kc f k]; for air system for temperatures up to 15,000° K

and pressures up to 100 atmospheres.

The radiative heat flux equation for the heat flux at a point within

a one-dimensional slab is developed in the Appendix. That equation is

vBvE2( ytf av

myByEl

Y

where E2(f
Yt

mv
d€) is the exponential defined by

\
1

E2 
=
Jr0

e

d

I 

dv (21)

and is described by Kourganoff. By is the Planck function and ay is

the modified linear absorption coefficient w
hich is a function of the

temperature, pressure, and the chemical species numb
er densities within

the slab. The equation is valid for a non-gray self-absorbi
ng gas. The

absorption coefficients and radiative heat fluxes
 are computed in the

radiation computer code RATRAP developed by Hoshi
zaki and Wilson (see

Wilson, 1967). The radiation model takes into account both continuum a
nd

atomic line radiation exchange in a slab of non
-uniform temperature.
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The simplified energy equation can now be written as

Atie2 1
2
p tv l = K, 

dH' 
d 2 

dT' "k". qR,y'l

dy' dy' dy'
(22)

where q' is given by equation (21). The combined conduction-
R,y

diffusion heat flux term can be written in teriris of total enthalpy from

the following relations for static, total enthalpy, and "effective"

Prandtl number:

to yield

dh' = cp dT'

12H' = h' + v
2

Pr -
c'µ'

k'

2 dil l
K =

d K T
2
µ'(dH' ,

v
dv'

P IV 1
ay' dy' Pr dy'

---)
dy' d3r t

(23)

(24)

(25)

Upon applying the nondimensional relations defined in equation (14) and

rearranging equation (25), the dimensionless energy equation becomes

1 d 2 dH 1 d ( dv) d
(

Reys ay Pr ay - 
K PV c-iTr V -- )

hey dy ay ay R,y
(26)

The species continuity equation (12) undergoes considerable modifi-

cation because of the binary diffusion and equilibrium chemistry assump-

tions. The species continuity equation was given by

K2pv 
dmi d 2 

1 
\ 2.= __(K j. + K

ay ay 2Y
) (12)

Under the local chemical equilibrium assumption, the volumetric rate

of production of species i is indeterminate. However, the fact that
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the net rate of production of the mass fractions of the chemical elements

is zero can be utilized to yield a tractable solution to the species con-

tinuity equation. Assuming that the binary diffusion law holds for the

mass fractions, i.e.,

cgi
Ji = -PD12 ay

(27)

where the barred quantities refer to elemental mass fractions, the species

continuity and diffusion equations can be combined to yield the elemental

diffusion equation

d (2„
12 

cl7i)
—a/7 '-' ay

465:.12 
- K pAr 

ay 
= 0 (28)

The dimensional binary diffusion coefficient is given by Hirschfelder

et al. as

D. = 0.002628
13

where

and

1/2—
(T'3(Mi Mj))

2MiMj

p'(al.) a P.-'1)*
lj ij

(29)
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The molecular constants ai and
E .
1

k
are tabulated by Svehla and are

given in Table 1 for the chemical species of interest. The reduced

collision integral, Q12
(1,1)* 

is based on the Lennard-Jones (12-6) poten-

tial and is taken from Hirschfelder et al. as a function of the nond
imen-

___

sional Tt- which is given byij

T
(E

'
T..

k '

ij)

For the binary diffusion model assumption, the individual
 elements

of the ablation products and of the air which passes thro
ugh the shock are

considered to diffuse in the same respective manner as th
e two chemical

species (one for the ablation products, the other for the
 air) used to

form the binary diffusion coefficient. Thus, a distinction need not be

made between the individual elements but only between the
 total mass

fractions which represent the ablation products and the rema
ining mass

fraction which represents the air products. Since the total mass fraction

of all the elements (and, for that matter, the chemical spec
ies) must

equal unity at any point, then one need solve only one el
emental diffusion

equation which is given by

_IL(K2pD12 fE)
ay aY dy

(30)

where aF, is the total mass fraction of the elements of the ablation

products. The total mass fraction of the air products, aA, is then com-

puted by

aA 
= 1 aF

(31)
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The mass fractions of the individual elements are then calculated by the

equations

_
ai = aFai,inj akLi,c0 i = 1,N (32)

where E1,inj -is the specified elemental mass fraction of the ith ele-

ment of the ablation products that is injected at the wall and 00
7.
1 

is
, 

the same ith element that basses through the shock layer. The density

and the individual chemical species are then calculated from an equation

of state by the energy minimization subroutine (FEMP) where

P = P(T.,h,p)

ai = ,a.(Ej h p)
(33)

For viscous radiating stagnation line analyses, the resulting

governing equations (8), (9), (10), (26), and (28) are the most general

system of equations that are treated in the literature. These are the

exact thin shock layer equations (for the tangent slab and binary diffusion

assumptions) for the stagnation line which are solved in this analysis.

As previously mentioned, Rigdon et al. (1968) and (1969) have applied

initial value techniques for the numerical solution to this system of

equations (with the exceptions that they assume constant pressure across

the shock layer and neglect the curvature terms) for the massive blowing

problem.

Transformed Equations 

Before proceeding to the development of the solution technique, it

is desirable to transform the governing equations by a change in independ-

ent variable from y to 1, where

1 ry
= Llo p(Y)aY (34 )
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This transformation has the important effect of fixing the shock boundary

at i = 1. The inclusion of density in the transformation gives, for a

fixed nodal spacing in i, a finer resolution on a physical scale, y,

at points near the body and within the boundary layer where conditions

are rapidly changing.

The transfoimed system of equations become:

Continuity:

d(K2pv)
 - 

23Ka

di

X -momentum:

d Kp 

8 

da) Kp2V da
crri

Rey di dri 5 - pa2 + Kpva -0
s 

Y-momentum:

Energy:

d (lc2pkt. dE

di Pr dr1)

dp -pv dv

di di

2 dH d(K
2
µ dv , 2

6Reysli Pv 7.1 = pv 71.5 mieys710 q
R,i
)

Elemental diffusion:

Equation of state:

d ( 2 2
1),n -- dI

di di di
F)+5010v511 = 0

= p(7i,h,p)

The reader is cautioned that the normal velocity, v, has been

redefined as negative in the positive y or i direction in the 

above equations. This change in no way affects the solution to the

(35 )

(36)

(37 )

(38 )

(39 )



equations since the boundary conditions, as will subsequently be discussed,

have been appropriately modified to reflect this change. The primary

reason for the change in the sign of v is to aid future users of the

computer program to understand the signs on the equations as they are

programed. In programing the governing equations, the author chose to

define velocities in the direction of the free-stream flow (negative

y-direction) as positive. The flow field coordinate system for the stag-

nation line in the transformed coordinates is shown in Figure 4.

Eta is specified as zero at the body and as unity at the shock. The

normalizing parameter, 5, is an unknown in the problem which is obtained

from the solution of the continuity equation (35) and is given by the

relation

2pv)w + (K2pv)s
5 -  

1

Boundary Conditions 

The subsonic flow field in the nose region is governed by elliptic

equations; consequently, the stagnation streamline solution is influenced

by the flow within the entire subsonic region. However, this influence

only enters in the p term, i.e., (62101' in the x-momentum equa-

Nc`)x=0

tion (36) and in the curvature of the shock wave which provides the

boundary condition for the tangential velocity gradient, as at the shock

wave. For a shock wave and body which are concentric, the Rankin-Hugonoit
(a2p,)

relations yield the following relation between and the velocity
ax2

x=0

gradient, as (see Hayes and Probstein)
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62

p . 2(1

,)x2 x=0

2
2as

Newtonian impact theory predicts (see Hayes and Probstein)

thus,

62p

6x2)x=o
= -2,0

( 62p)1

a, = - 
2 6x2

= 1. 0

(42 )

(11-3 )

With and as specified, the stagnation streamline problem

becomes a two-point boundary value problem, where conditions are specified

at the shock wave and at the body. The boundary conditions necessary to

solve the transformed conservation equations for the flow of a viscous

radiating gas with foreign species injection, where the chemical species

are in local thermodynamic equilibrium are:

At the body surface (wall), = 0 = 0):

a = aw = 0

Pv = (Pv)w

p = pw ps + 2(pv2)s

H = Hw

E. = E. 
inj

(and ail, =1) i = 1,...,N elements

where the aF = 1 boundary condition applies for condition of strong

blowing.



36

At the shock wave, 11 = 1 (y = ys):

a = as = 1.0

pv = (pv)s = 1.0

P = Ps

H = H
s 
=

mi,m (and ct,F = 0) i = 1,...,M elements

( 45)

where 71,inj is the mass fraction of element i which is injected at

the wall, and is the mass fraction of element i which passes

through the shock wave from the free stream. Conditions immediately

behind the normal shock are computed from Rankine-Hugonoit relations.

Heat fluxes across the slab boundaries are assumed to be zero, i.e., there

is no precursor heating of the free stream by the shock layer and no radia-

tion from the body into the shock layer.

Numerical Solution 

The finite difference approximations to the governing equations

(35) to (39) and the procedure for the numerical solution to this sys-

tem of equations is developed in this section. The equations are

written in finite difference form for a network of N equally spaced

(in TO nodal points between the body (n = 1) and the shock (n = N)

which are shown in Figure 5. For most of the calculations, 21 nodal

points are used. The overall numerical solution technique is iteration.

Profiles and parameters are assumed initially for each nodal point

across the shock layer. The governing finite difference equations are

then solved sequentially, using the most recent values of the. profile

parameters until satisfactory convergence is obtained at each nodal

point.
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Finite Difference Approximations 

Either two-or three-point finite difference formulas are used to

numerically differentiate and integrate the governing differential equa-

tions. Where possible, three-point central differences are employed

since they are accurate (at a particular nodal point) to order (A11)2

where Aal is the distance between points, whereas two-point differences

are accurate only to order Axl (see, e.E., Conte or Crandall). Two-

point windward differences (with the flow) are employed for the convec-

tive terms where dictated by stability requirements of particular

governing equations. The stability requirements are discussed in the

Results and Discussion chapter.

The tabulation of the finite difference formulas that are employed

to approximate the derivatives is given below (see, e.g., Conte or

Crandall for the development). The formulas are valid for equally

spaced increments in ATI.

The central differences formulas are:

Eac...17.11(cf)

.df -fn-1 + fn+1

01-1)n 2 Ari

( d2f fn-1 2fn fn+1

\d1-12)n (ATI)2

-cnfn_i - (cn..1 - cn+i)fn + cnfn+1

2 ATI

(46a)

(46b )

(46c)

d ( df) (cn_i + cn)fn_l - (cn_l + 2cn cn+l)fn (cn cn+l)fn+1
c dfl 

2 (ATI )2
n

(46d)

where c and f are arbitrary functions.
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In developing equation (46d), it has been assumed that c varies

linearly between nodal points.

The windward difference formulas are either forward or backward

differences, depending on the direction of the flow. If the mass flux,

pv, is positive (toward the body), forward differences are taken for the

convective terms, and if pv is negative, backward differences are taken.

The formulas are:

If (Pv)n > 0,

If
(pv )n <

0,

(p- If) = (pv)n/'fn+1 f
n
)

\'n

fn fn-1 (pv 

/n 

= (pv)n( )

(47 )

(48 )

Numerical integration is performed by the Simpson's ru.le approxi-

mation (Crandall) over parabolic sections of the profiles. The finite

differences equations used in performing the quadrature over the interval

from T1
n 

to ri
n+1 

and over the full interval from Ti
n 

to rin
+2 

are:

and

Tin+1 „
fl714-11 '12 n -I- 8fn+1 fn+d

f lin+2 Ari

fnf('°c1T1 = 4fn+l fn+23 

(49 )
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Initial Profiles 

For the general case, the following profiles are initially assumed:

Pv(T)) = (Pv)w + (lpv)s - (Pv)14:1 712

P(Tl) = Ps (121v2)s(1 - 'q2)

a(r1) = asTI

h(ll) = hw + (hs - hw)11

aFh) = (a7)w(1 -

ph) = P(Eih),P(rl)/h(Tl))

(50a)

(50b)

(50c)

(50d)

(50e)

(50f)

The density is computed in .PEMP for a gas mixture in chemical equilibrium.

A11 other quantities appearing on the right-hand side of the initial pro-

file equations are available either from the input boundary conditions or

they are computed from Rankine-Hugonoit relations for the normal shock.

1
The scale factor K = 1 Ky = 1 + K5L/10 

12 
which, for large

Reynolds numbers, typically is taken to be a constant of unity across

the shock layer (Ho and Probstein) has been retained in the governing

equations for this analysis. While K exhibits only weak variations

across the shock layer (for the typical cases of interest in this analy-

sis K varies from about 1.0 to 1.02 from the body to the shock for no

blowing and from about 1.0 to 1.1 from the body to the shock for strong

blowing (20 percent of (pv)s), the computational time required to

generate K is insignificant in this problem. However an initial



Value for the transformed shock displacement, 5, is required as a

consequence of retaining the K. The phYsical shock displacement dis-

tance is correlated by Inouye to be

YL  Pei°-..... ...-----,  0.78  —
R I Ab s

YL 
1r drl

for no blowing. Since — = 510Z0 i -71 then for a constant shock layer
R' J 0 Pb

density of

For moderate blowing,

0.78

1 (51)

which is the initial value assumed in this analysis.

This completes the statement of the problem of determining the

initial profiles for the general case. The appropriate boundary condi-

tions and initial profiles for special cases of interest, such as no

blowing or air-to-air injection, are covered in the subsequent dis-

cussion of these special cases.

Solution Procedure and Finite Difference Equations 

With the assumed initial profiles and parameters (eqs. (50) and (51)),

the conservation equations are solved by successive iteration. The

coupled system of equations are solved in the following sequence:

continuity, y-momentum„ elemental continuity, x-momentum, energy, and

equation of state. The most recent values of the profile parameters

and 5 are used in the computations. The density distribution is

necessary to solve the governing differential equations. After these

equations have been solved, updated values of density are computed from
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the equation of state which is compared with the previous density values

at each nodal point. The entire sequence through the governing equations

is repeated with the new density distribution until two successive passes

yield nearly identical (within 1 or 2 percent) density values at corre-

sponding nodal points. The flow diagram which illustrates the solution

procedure is shown in Figure 6.

With the distribution for the tangential velocity gradient and the

scale factor KN, the continuity equation (35) is numerically inte-

grated by Simpson's rule (eq. (49)) to give the updated shock displace-

ment distance, 6:

3 -
-(pv)w + (K2pv)s

1

2 Ka

and the mass flux distribution pv(11):

/K2 pv01) = 28 Ka dre + (pv)w

0

(52 )

(53)

The velocity profile, which is required in the solution of the

y-momentum equation is computed from the previous density distribution,

ph), and the updated mass flux distribution, pv('1), namely

v(11) - 
Pv(1)

P('9)
(54)

The y-momentum equation (33) is numerically integrated by Simpson's

rule (eq. (45)) to give the pressure distribution p(11):



f 1 dv
P(rl) = PV dr1 + ps

rl

(55)

The pv(71) and v(11) profiles are tabulated from the continuity

equation solution and a central difference numerical differentiation

v0-1)
scheme (eq. (46a)) gives 

d 
 at the N-2 points within the shock

dr]
v(n) 

layer. The values of 
d 

at the body and the shock boundaries are
dy

obtained from two-point forward and backward difference approximations,

respectively.

The elemental diffusion equation (39) is cast in finite difference

form by using the central difference formula (eq. (46d)) for the second

derivative diffusion term and the windward difference equations (( 47)

and (48)) for the first derivative convective term. The resulting equa-

tions are:

For n = 1,

For n = 21...,N-1,

[-(_ n2,2, )
'12)n-1

(aF)1 =

(r2p2-12
)
n

(Arl ) K2pv )n (1 - SIGN )  (4 )n-1
2 2 2 2 2 2

P D12)n-1 
+ 2(K 

P D12)n ~ P D12)n+1

I(n2p2D12 
)
n , 

/K2P-2D12+ 25(A11)(n2Pv)n(1 - SIGN) gf)n + 

(56a)

+ 28(0'r1)(K2pv)n(SIGN] )n+1=o 
(56h)
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where

and

For n = N,

(~,)N=o

SIGN = 0 if (pv)n < 0

SIGN = 1 if (pv)n > 0

(56c)

The formulation results in a banded (tridiagonal) matrix system of

equations of the form

B1 
C1 

0

A2 B2 C2

0 A3 B3 C
3

0

0

o

0

0

• AN-1 BN-1 
C
N-1

0 AN BN

D1

D2

D3

D
N-1

DN

(57)

where An, Bn, and Cn are the coefficients of the (aF)n-1, (`F)n,

and (cGF ) n+1 terms, respectively, and Dn are the terms appearing on

the right-hand side in equation (56). At the wall boundary, n = 1,

the coefficients are Bl = 1, C1 = 0, D1 = 1 and at the shock boundary,

n = N, the coefficients are AN = 0, BN = 1, DN = O. The system of

equations is easily solved by Potters' method, which is a form of

Gaussian elimination that is efficient for solving a barided matrix system

of equations (see Potters andConte). The solution to equation (56)

yields the total mass fraction distribution, at N nodal points, of the

ablation products, subject to the constraint that 0 5 (a'v) .< 1. The
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mass fractions of the individual air and ablation product elements are

then computed from equations (31) and (32).

The transport properties, µ and Pr, required in the solutions to

the x-momentum and energy equations are obtained from a tabular lookup

as functions of the temperature, calculated in the FEMP subroutine, and

the pressure, obtained in the y-momentum equation solution.

The x-momentum equation (36) is next solved. The equation is cast

in finite difference form using the central difference expressions give
n

by equation (46) to approximate the first- and second-order derivatives.

Since the equation is nonlinear in the velocity gradient, a, an iterative

procedure is required for its solution. A quasi-linearization approach

(see Bellman and Kalaba) is employed which generates the solution by a

rapidly converging iteration.

The x-momentum equation is quasi-linearized by the following tech-

nique: At a given nodal point, let

F(12

1 F(i -1) + a(i) a
(i-1) 2= 2a(i-1)a(i)

[!(4-1 5_12

+ 1/41.) 

a(1-131 2

_L _L. 

where the superscripts i and i-1 refer to the values of a(71) at

the ith and i-lth iterations, respectively.

Upon assuming that

U.4 2
a ->0

the x-momentum equation becomes linear in a(1)(11) where

[a(i) 2 •--• 2a(1-1)a(1) - [a(1-12

(58)

(59)

as i -> 00 (60)



Combining the finite difference formula for the derivatives

(eq. (46)) and equation (60) yields the finite difference form of the

x-momentum equation:

For n = 1,

For n = 2,...,N-1,

- (Kpv)
n 
+

((:,02v)n

28(6:0

For n = N,

a(i) =0

(KP)n[l(Pla)n_l (104)n]

25Reys(6.71)2

(4))nBPOn-1 2(P4)n (Pk)n+1

28dieys(A71)2

(K10)nLpia)n (pl-)n+11
28dleys(6:02

(i)an. = a
s

a(i)n+1

pa(i-1)

11.5

(61a)

(61b)

(61c)

The subscript n refers to the nth nodal point in the shock layer and

the superscript i refers to the ith iterative value of a.

For a linear iteration on the velocity gradient, a, let

(i) 
= a

i-1 + ean n (62)

where En is the error in the ith iteration at the nth nodal point.

Substituting equation (62) for a(i) into equation (61) yields a tri-n

diagonal matrix system of equations of the form:



AnEn-1 + BnEn + Cncn+1 = Dn
n = 2,...,N-1 (63)

where the An, 
(i) (1)

Bn, and Cn are the coefficients of the a
n1-
, a

n

and a(i) terms, respectively of equation (61b) for n = 2,...,N-1.
n+1

The term ca is given by

n 
= - Anan_l - Bnan - Cnan+1 

(64)(1-1 ) (i-1) (1-1)

for n = 2,...,N-1. Since the boundary conditions are specified at the

body and at the shock, then the equations at the boundaries become:

El = 0 (or Al = C1 = D1 = 0 and B1 = 1)

EN = 0 (or AN = CN - DN - 0 and BN = 1)

The matrix system of equations (64) and (66) is solved by Potters'

method and is iterated until

le
n

< T n

(65 )

In this study, this assigned convergence interval, Ty is 0.01.

The total enthalpy distribution is obtained from the tridiagonal

matrix solution to the energy equation (38) in a single pass. As pre-

viously discussed, the total enthalpy derivative for the combined convec-

tive and diffusive heat flux terms is included explicitly in the matrix

solution for the Hn's, whereas the radiative flux term is computed using

the enthalpy profile of the previous iteration and the updated pressure

and elemental mass fraction profiles from the y-momentum and species

diffusion equation solutions, respectively. The three-point central



47

difference formulas for the derivatives (eq. (46)) yield the following

finite difference form of the energy equation:

For n = 1,

For n = 2,...,N-1,

(1c201_1\

Pr )n-1

/

1 IC2 pp)
+ 2(

n2n. 
'') +

2 0.M )
2 p r n-1 \ Pr n

2 

( 

Ar12 \ Pr )n Pr n+1
_ 

)1  /K2pp, K2r4L

For n = N,

H1 = Hw (66a)

5Rey K2pv )n

2 LA

(K2plu

Pr )n+1

8Rey(K2pv)n

2 Arl
Hn+1

d( 2µ
pv av + bRey q

dr1 Pr dri

d 2 )

n

(66b)

(66c)

The derivative terms appearing on the right-hand side of equation (66b)

are evaluated by the central differences formulas (eq. (46)).

The density distribution which was required in the solution to the

governing differential equations can now be updated by the equation of

state

pn = p [7- ) pn n h' n (67)

at each nodal point. The updated values of p
n 

provide the mechanism

for iterating the governing equations. Upon setting pn equal to either
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the newly computed values or some percentage of the old values of density,

(i-1)
P
n 

and the new values (i) (in order to speed convergence of the

flow field solution), the entire procedure, beginning with the continuity

equation, can be repeated until

n n I <E n (68)
p(i)

The interval of convergence c used in this analysis is 0.02 or less.

Salient Features of the 1m•licit Finite Difference A -orithm 

The implicit finite difference algorithm developed in the previous

section is really quite simple, yet sufficiently flexible to treat the

viscous radiating shock layer problem.

With the two- and three-point difference approximations for equally

spaced increments, the governing thin shock layer equations can be made

amenable to numerical solution without making unduly restrictive assump-

tions for the purpose of yielding analytically tractable solutions. The

tridiagonal matrix system of equations which results can be efficiently

solved by Potters' method, which requires only about 3n computations. as

contrasted to the (n)
2 

computations required for a full matrix

inversion.

Simple linear and quadratic profiles can be initially assumed as

functions of the boundary conditions. Or, one may take advantage of

prior knowledge of the solution behavior to begin with improved estimates

of the profile parameters (i.e., read in the parameter values at each

nodal point).

No singularities appear in the governing finite difference equations

since division by pv is not required in the present formulation of the
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problem. In the region where pv (or v) approaches zero, the diffusion

terms become important in the elemental diffusi
on equation (eq. (56)).

Likewise, the viscous terms predominate in the 
x-momentum and energy

equations (eqs. (61) and (66)) near pv = O.

The method is an implicit scheme in which the
 unknown quantities at

point n are calculated as functions of conditions at 
surrounding points

as well as conditions at the point itself. This is in contrast to

explicit schemes where the unknown quantities at
 a point are evaluated

solely as a function of conditions at a forzne
r point (such as the func-

tion and its derivative being evaluated at th
e n-1 point and then

extrapolated to the nth point to determine the u
nknown function). For a

given step size, implicit schemes are uncondi
tionally stable (bounded),

whereas explicit schemes may or may not be 
stable.

In the present approach to the two-point boundar
y value problem,

the boundary conditions are specified at the 
shock wave and at the boay.

Since the matrix system of equations (for a part
icular governing equation)

is completely coupled across the entire shock
 layer (e.E., note the

appearance of (al t7)
n 

in the n-lth, nth, and n+lth elemental diffusion

equations (eq. (56)) and the known boundary conditions are includ
ed in

the system of equations, then the computed distr
ibutions between each

endpoint are bounded and aremonotonic in behavior
 (with the exception

of the pressure, which reaches a maximum at the stag
nation point). Thus,

one has near-maximum information about the behavior 
and levels of the

unknowns which are to be computed and also a high 
degree of assurance

that the computer run will not be aborted because of
 overflow (numbers

larger than the computer will accept).
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Perhaps one of the biggest advantages of the present approach over

initial value methods resides in the limited number of unknown quantities

which must be evaluated in order first to satisfy the governing differ-

ential equations and, second, to provide the necessary inputs for the

radiative flux computations. In the present method, the unknowns are

only the properties themselves (pv, p, etc.) at each nodal point about

which one has maximum information as to the bounds on the values and

the general behavior of the properties across the shock layer. In con-

trast, consider the computations which must be performed in an initial

value treatment of the problem (such as Runge-Kutta forward integration).

In the initial value approach for the solution of a single governing

equation, the unknown property and also its derivative must be computed.

Generally, little information is available as to the behavior of the

derivative across the shock layer. As a consequence, the function or

derivative changes from point to point are generally closely controlled,

by restricting the step size, to maintain stability as the calculations

proceed downstream.

Yet there are several clear advantages of the initial value treat-

ment of the complete system of coupled governing equations. If all

boundary conditions are matched at the downstream side in the iterative

process, then, because of the strict stability requirements, one is

reasonably assured that all governing equations have been satisfied

both locally and globally, and the detailed distributions are sufficient

for the radiation computations. Whereas, in the implicit finite differ-

ence approach, there is no assurance apriori that the coupled system of

equations will converge in the overall iteration scheme. It may be

possible that two equations (e.E., the continuity and the x-momentum)
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may interact with one another such that the pv and a profiles

oscillate back and forth and never converge. Further, there is no con-

trolled step size from stability considerations. Thus, care must be

exercised in inputting the nodal spacing which will satisfy the govern-

ing equations both locally and globally. An indication of the required

nodal spacing can be obtained by a cursory examination of stability

requirements for the individual equations and by decreasing the step size

until the numerical solutions become asymptotic. These aspects, along

with the convergence behavior of the overall solution, are examined in

the Results and Discussion chapter which follows.
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RESULTS AND DISCUSSION

In this chapter the numerical results obtained from the solution to

the governing equations developed in the previous chapter are presented

and discussed. The solutions which were obtained in the various phases

in the development of the method are presented in the sequence of their

development, beginning with the constant density solutions and continu-

ing through the viscous radiating shock layer solutions with ablation

products injection. Results are compared with results from existing

approaches to the radiating flow field problem.

All numerical solutions were generated on a Control Data Corporation

CDC 6600 digital computer.

Constant Density Solutions 

The results of the constant density study are presented in this

section. The convergence behavior of the solution for the reduced

system of equations that govern the flow of a constant density gas is

examined. Selected solutions are shown for inviscid and viscous flows.

Results are presented for a range of blowing rates and Reynolds numbers.

The overall solution to the governing equations is by iteration

until satisfactory convergence is obtained on the density. For a

constant density assumption (and a viscosity and Reynolds number speci-

fication required for the viscous flow solution), the continuity,

x-momentum, and y-momentum equations can be solved independent of the

energy and diffusion equations. Naturally, the density is not iterated;

however, the remaining system of equations (continuity and x- and

y-momentum) are still coupled and, in the present approach, an iterative

scheme is required for their solution as indicated by Figure 6. The
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equations are solved "one at a time" by a method successive approxima-

tions until the computed values of pv, a, and p for two consecutive

iterations are within a specified accuracy at each nodal point. The

constant density solutions thus serve a twofold purpose. First, the

solutions provide a most fundamental means of studying the convergence

behavior of the coupled system of equations for a wide variety of blow-

ing rates and Reynolds numbers and thus permits an assessment of the

adequacy of the successive approximation iterative scheme. Second, it

provides an indication as to the nodal spacing requirements for the

implicit finite difference equations formulation.

Several cases were run for a range of typical blowing rates

((pv)w = 0 to -0.2), Reynolds numbers (Reys = 1 to 105), and nodal

spacings (1. = 11 to 101) for a constant density of 20. and a viscosity

of 1.0. All solutions required about three or four iterations and a

total 2 to 4 seconds of computer time. No discernible differences were

observed in the computed pv„ p, and a profiles or 5 for N = 11

and N = 101. It was observed that the computer times were a function

on the number of nodal points (the 2- and 4-second run times were for

the N = 11 and N = 101 cases, respectively), whereas increasing the

blowing rates or Reynolds number had little or no effect on the can-

puter run times.

The convergence behavior of a typical constant density is shown in

figure 7 where the successive solutions to the continuity and x-momentum

equations are plotted. The solution is for a constant density of 20.,

a constant viscosity of 1.0, a typical Reynolds number of 105, and a

blowing rate at the wall of -0.2. Twenty-one nodal points were used in
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The accuracy criteria required that the computed values of pv(11),

p(71), and a(71) for two consecutive iterations be within 0.01 at each

nodal point (i.e., Ipv(i) - pv)(1-1)I < 0.01 Af n). This accuracy
n

criterion was maintained throughout the entire course of the present

study of viscous radiating flows. As indicated by the legend in

Figure 7, the solution converged in four iterations which required

about 3 seconds of computer time.

Three constant density solutions for no blowing are shown in

Figure 8: an inviscid case and two viscous cases for Reynolds numbers

of 1 and 105. The Reys = 105 case is typical of the Reynolds number

of interest, whereas the Reys = 1 is actually outside the limits of

applicability of the thin shock layer equations and is shown merely to

demonstrate that the present approach yields solutions over the entire

range of Reynolds numbers. The effect of the boundary layer and its

extent can be seen in Figure 8(a). For inviscid flow there is no

boundary layer and a nonzero velocity gradient exists at the wall which,

from equation (36), is given by al = jp/p1. For the Reys = 105

case, most of the shock layer is inviscid, with only a thin boundary

layer present near the wall (to ri 0.03) where the velocity gradient

slope in y (i.e., da/dy) is a maximum, whereas for the Reys = 1

case, the entire shock layer is viscous and no abrupt changes in da/dy

are observed. The plot in Figure 8(b) indicates that there is little

difference in the mass flux distributions in the inviscid and

Reys = 105 cases. Also shown in the figure are the transformed shock

layer thicknesses, 8 for the three cases. In the inviscid case, the
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stagnation line analysis yielded a value for 6 of 0.796, which is

close to the value correlated by Inouye (6 = 0.78) from inviscid

analyses for the entire subsonic flow field surrounding a spherical

body. In the Reys = 105 case, the shock layer thickness, 5 is

about 2 percent greater than that for the inviscid case, whereas for

the Reys = 1 case, the shock layer thickness increased about

25 percent.

The influence of the blowing rate on the velocity gradient and

the shock layer thickness, ys„ for a constant density is shown in

Figure 9 where a is plotted in the physical coordinate system. The

figure indicates that the inner flow region from the body to the stag-

nation point (ys - (y)pv_0 0.041) is drastically modified due to

blowing but that the inviscid outer flow is virtually unaffected by

the blowing rate. For the constant density model, the shock wave

simply moves outward from the body as the blowing rate increases while

the inviscid outer flow retains the same character independent of the

blowing rate.

The constant density results demonstrate that, for a wide range

of blowing rates and Reynolds numbers, the solution to the flow equa-

tions converges in a minimum number of iterations, the nodal spacing

requirements are indeed moderate, and the computational times are

reasonably short. With this knowledge, the behavior of the overall

solution with the variable density iteration can now be examined.

Non-Radiating Air Solutions 

The overall convergence of the flow solution for a variable density

is examined in this section for an equilibrium air-gas mixture without
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radiation. Solutions for both non-blowing and the blowing of 
air into

air are presented. The air model consists of elemental mass fracti
ons

of 0.78 nitrogen and 0.22 oxygen.

The development of stability criteria is diff
icult even for the

simplest of equations. For the coupled system of nonlinear equatio
ns

which are solved in this study, it becomes nece
ssary to rely on the

behavior of the numerical solution in order to o
btain information of the

overall stability and convergence behavior of th
e solution. The results

of the information are reflected in the logic 
presented in the flow

diagram fcr the averaJl solution procedure shown
 in Figure 6. It should

be emphasized that Figure 6 represents the results of th
e stability

study which is used in all subsequent studies. 
The numerical results

which led to this particular iterative procedure f
or the variable den-

sity solutions are discussed below.

The solutions to be presented below are for the fo
llowing free-

stream conditions unless otherwise noted.

Ijo'a = 14.6 km/sec

= 1.6 x 10-4 atmos

Polo = 2.38 x 10-7 gm/cm3

R' = 342.7 cm

It was observed in the numerical solution that major oscillation

occurred in the enthalpy and the density, particularly in t
he viscous

region of the flow, as the iterative procedure progressed in 
time.

These enthalpy oscillations are shown in figure 10, which i
s a plot of

the calculated enthalpies at the first three nodal points adja
cent to
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the wall and within the shock layer (Note that H1 = Hw = 0.1 and is

constant.) versus iteration number, where one iteration represents one

complete pass through the governing equations. From the figure it can

be seen that the amplitudes of the oscillations generally decrease with

and, while it is not shown here, it was observed that after about

five iterations the enthalpy values had converged beyond 11 At,- 0.3.

However, the solutions near the wall did not converge but merely contin-

ued to oscillate even after thirty iterations.

The density profiles exhibited a similar oscillatory behavior as

the enthalpy profiles but in an inverse fashion (i.e., an overprediction

of the enthalpy led to an underprediction of the density). This is

because there is a strong inverse coupling between the density and the

enthalpy in the equation of state. The equation of state for air has

been correlated by Smith, G. L. (see Garrett, Smith, and Perkins) in

the form p a pahb, where a and b are positive exponents. Since

p is nearly constant, then an overprediction of the enthalpy obtained

in the energy equation is a corresponding underprediction of the density

from the equation of state and vice versa. It is possible to get into

a resonant computing mode in which the density and the enthalpy oscil-

late back and forth and can be slowly convergent or even divergent.

From the results it was not clear that the solution was divergent;

however, it was apparent that if it was converging near the wall it was

prohibitively slow.

Since the calculations appear to be oscillating about the solution,

then by proper damping of the calculated quantities it is possible to

speed convergence. Fox has discussed the method of underrelaxation

whereby the quantity(s) which are highly oscillatory are weighted (or
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damped) before they are used in subsequent calculations. It was found

that by weighting the enthalpy and the density profiles by a certain

percentage of their folmer value and their newly calculated values,

rapid convergence of the overall solution could be obtained. The

weighted values of the enthalpy and the density at each nodal point are

computed from the following relations:

and

h
n 
= (HDAMP)h

(i-1) 
+ (1 - HDAMP)h

(i)

p
n 
= (RODAMP)p 

(1-1) 
n 

(1 - RODAMP)P
(i) •

The convergence behavior of the solution for damping factors of

0.5 and 0.9 is shown in Figure 11. Plotted in this figure are the

weighted enthalpy and the density values computed at nodal point 2.

Both solutions converged; however, it is apparent that, while over-

damping will insure convergence of an otherwise oscillatory solution,

it can be unduly time consuming. For most of the cases examined, both

with and without blowing, the 0.5 damping factors appeared to be near

optimum in terms of generating a converged solution in a minimum number

of ite/ations. For damping factors around 0.2 to 0.3, certain solutions

would converge but required more iterations than the 0.5 damping factor

cases. It was also observed that for the largest blowing rate (-0.2)

considered in this analysis, damping factors of 0.7 speeded convergence

of the solution by about a factor of 2 over the 0.5 damping factor

solution. Because of the sensitivity of the computer run times to the

damping factors, and since no attempt was made in the present study to

optimize the damping factors for a particular solution beyond that
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which was just discussed, the reader is reminded that albsequent dis-

cussions of computer time relate closely to the 0.5 damping factors.

With a thorough study of damping fact,or requirements for optimum solu-

tions, run times may be improved significantly.

In order to obtain an indication of the stability of the variable

density solution for various blowing rates, three cases for blowing

rates of 0, -0.1, and -0.2 were examined. The same free-stream condi-

tions given previously and the 0.1 wall enthalpy value was specified.

Twenty-one nodal points were used across the shock layer. A11 solutions

converged to an absolute density accuracy of 0.01 for damping factors of

0.5. It was observed that the number of iterations of the governing

equations, and consequently the run times, increased with increasing

blowing rate. For the (pv)w = 0, -0.1, and -0.2 cases, the number of

iterations required to obtain convergence were 11, 16, and 21, respec-

tively, and the corresponding computer times were 1.5, 2.5, and

3.5 minutes, respectively. The computer run times are well within

reason for the fully viscous shock layer with equilibrium air chemistry

computations.

The results obtained for the (pv)w = 0 and -0.1 cases are shown

in Figure 12. On a physical scale the boundary layer for the (Pv)w = 0

case occupies about 5 percent of the shock layer and the combined inner

layer and boundary layer for the (pv)w = -0.1 case occupies about

20 percent. The (pv)w = -0.2 results are not shown in the figure.

The (Pv)w = -
0.2 solution converged; however, in the inviscid outer

region the enthalpy profiles were extremely irregular. Enthalpy values

ranging from 0.45 up to about 0.7 (the latter value being greater than

the free-stream total enthalpy) were observed. To a similar degree,
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density profile irregularities and minor inconsisten
cieS in the velocity

gradient profiles were observed. Initially, it was felt that this

oscillatory behavior of the enthalpy was due to the 
non-radiating gas

assumption because the conditions were sufficient to
 produce non-

adiabatic effects in the outer inviscid region. About this time in the

study, the radiation computer code was fully incolpora
ted into the pro-

gram and results were being generated with the radiati
on flux term

included in the energy equation. And, indeed it was observed that the

slight oscillations which were present in. the enthalpy 
distribution in

the outer inviscid region for the (pv)w = 0 and 0.1 cases (Fig. 12(d))

were not observable in the radiating flow field 
solutions.

It appeared that the solutions were indicating that th
e radiative

fluxes must be taken into account in the energy equation 
at the

14.55 km/sec velocity. Thus it was decided to run a lower velocity

case of 10 km/sec where radiation is not significant, and to
 observe

the behavior of non-blowing and massive blowing solutions, partic
ularly

the enthalpy distributions. The results of this study are shown in

Figure 13 for (pv)w = 0 and -0.2 blowing rates. The numerical

results show that while there is improvement in the solutions for
 the

lower velocity case, the oscillatory behavior of the energy equat
ion

solution persisted. In retrospect, the improved behavior for the lower

velocity case is due to the decrease in the Reynolds number (7.8 
x 10

and 4.0 x l& for the 11,!„ = 14.55 km/sec and the Wo = 10.0 km/sec

cases, respectively) which permits a coarser nodal spacing.

It was observed much later in the study, when the solution to the

elemental diffusion equation was required for the foreign ablation
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product injection study, that the energy equation and the elemental

diffusion equations are similar and have coefficients on the derivative

terms which under further dimensional analysis reduce to about the same

order of magnitude. As will be subsequently discussed, the elemental

diffusion equation can be unstable unless the nodal spacing is made pro-

hibitively small (ATI 10-4) and a windward difference formulation is

required to obtain meaningful C'ci profiles. The one notable difference

in the two equations is the appearance of the radiative heat flux and

term in the right-hand side of the energy equation. When radiation was

included, this term provided sufficient damping in the camputations to

yield accurate solutions to the energy equation. However, as a conse-

quence of the elemental diffusion equation study, a windward difference

form of the energy equation was also examined. Certain radiating cases

were rerun, replacing the central difference form of the energy equa-

tions, which is used in most of the results to follow, with the wind-

ward difference form. It was noted there were no significant differ-

ences in the radiative heat flux at the wall. Comparisons of the

results for the two formulations appear in a subsequent section.

Radiating Air Solutions 

The viscous radiating shock layer solutions, including air-to-air

injection are discussed in this section. The present results are cam-

pared with results fram existing approaches.

General Results From the Present Analysis 

The results obtained for (Pv)w 
= 0, -0.1, and -0.2 cases are

shown in Figure 14 for the following free-stream conditions:

UL = 15.25 km/sec

p' = 2.72 x 10-7 gm/am3co



62

= 1.95 X 10-4 atm

and a nose radius of 3.048 meters.

A wall enthalpy of 0.028 was specified which corresponds to a wall

temperature of 3,6000 K. This temperature is close to the steady state

ablation temperature predicted by Smith et al. (1970). Twenty-one

nodal points were used for all computations with the exception of the

radiative flux computations where 11 points were used to avoid excessive

computer time. The intermediate values of the radiative heat fluxes

required in the energy equation solution were obtained by linear inter-

polation. Typical computer time ranged from about 30 minutes for the

no-blowing case to about 70 minutes for the (p)v)w = -0.2 cases.

A comparison of the radiating solutions shown in Figure 14(a) with

the non-radiating solutions shown in Figure 12(a) for slightly different

free-stream and wall enthalpies shows that the physical shock displace-

ment distance significantly decreases when radiation is taken into

account. However, the mass flux distributions were only slightly

altered in the ri-coordinate system. The significant decrease in ys

when radiation is included is due largely to the non-adiabatic effects

in the outer inviscid region which results in higher values in density

(by almost a factor of 2 as shown by comparing Figures 12(e) and 14(e))

and to a somewhat lesser extent, the adjustment of the inner flow to the

wall boundary conditions. On a physical scale the outer inviscid region

occupies about 95, 75, and 60 percent of the total shock layer for

blowing rates of 0, -0.1, and -0.2, respectively.

The y-momentum equation solution given in Figure 14(b) shows that

in all cases the pressure, as expected, reaches a maximum at the stag-

nation point.
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As previously mentioned, the inclusion of the radiative flux term

in the energy equation has a damping effect on the solution. A cam-

parison of the velocity gradient profiles shown in Figures 13(a) and

14(c) for (pv)
w 
= -0.2 shows that the waviness in the velocity pro-

file vanishes when radiation is included. Further, the enthalpy

profiles (Fig. 14(d) for (Pv)w = 0 and -0.1) are regular, and although

the enthalpy profile for (Pv)w = -0.2 exhibits a slight waviness, it

is considerably improved over the large oscillations shown in

Figure 13(b) for the non-radiating cases. It is noted that this

improvement was obtained at an even higher Reynolds number than the

non-radiating cases (Reys = 9 x 10 for the radiating case).

The radiative heat flux distributions across the shock layer are

shown in Figure 14(f). The positive heat flux values indicate that

the net radiative heat transfer is away from the body and the negative

values indicate toward the body. The nondimensional heat fluxes at

the wall are -0.0434, -0.0390, and -0.0369 ( = -4150, -3740, and
,w

-3490 watts/cm21 respectively) for the (pv)w = 0, -0.1, and -0.2 cases,

respectively. Thus for air-to-air injection at (Pv)w = 0, -0.1, and 0.2

the radiative heating rates are reduced 10 and 18 percent, respectively,

below the non-blowing rates. The absolute values of heat fluxes for the

blowing rate cases decrease slightly in the inner region in the direction

of the body; however, the results indicate that the inner air layer is

on1y moderately effective in absorbing the incident radiation from the

high-temperature outer layer.

It is observed in Figure 14(f) that the radiative heat flUxes reach

a minimum near the stagnation point, which is expected based on an

examination of the governing differential equations. This feature
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provides an important self-test of the overall accuracy of the present

method, i.e., the ability of the method to generate sufficiently

accurate thermodynamic properties whiCh, when input into the radiative

heat flux computations, yield the minimum in the fluxes at the stag-

nation point.

More interesting and important checks on the adequacy of the

present method for the stagnation line solution can be made by com-

parison with solutions to the entire subsonic flow field and by cmn-

parison with existing stagnation line solutions. The first exercise

serves not only as a check on the accuracy of the solution but also as

a check of the fundamental assumption that the stagnation line solution

can be decoupled from the entire region of influence.

Comparisons of Non-Blowing Results With Existing Solutions 

ghown in Figure 15 is a comparison of the enthalpy profiles

generated in the present approach with the stagnation line enthalpy

profiles obtained by Suttles (1969) from a one-strip method of integral

relations solution and with those obtained by Falanga and Sullivan

from an inverse method solution.

The solutions are for non-blowing, with the following free-stream

conditions:

UL = 14.55 km/sec

polo = 2.377 x 10-7 gm/cm3

p' = 1.6 x 10-4 atm

and a nose radius of 3.427 meters. Both of the comparison solutions

are extracted from complete radiating solutions to the entire subsonic

flow field. The present solution is viscous, whereas the comparison
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cases are for inviscid flows; however, the comparisons are still meaning-

ful since for non-blowing conditions the boundary layer occupies only a

small percentage of the shock layer. The RATRAP computer code was used

in all three studies. The present solution for the enthalpy profile

compares favorably with the inverse solution in the inviscid region for

both N = 11 and N = 21 points with radiative flux calculations at

11 points. While the inverse solution is considered more accurate than

the method of integral relations solution in defining shock layer pro-

files, it is interesting to note that the radiative heat fluxes pre-

dicted at the wall by the three methods fall within 3 percent of each

other.

A complete summary of the radiative heat fluxes calculated at the

wall is given in Table II for the cases examined in the present study.

Also shown in the table are comparisons with existing sources.

Comparisons of Air-to-Air Injection Results With Existing 

Solutions 

The viscous radiating solutions for air-to-air injection with

(Pv)w = -0.1 are compared. in Figures 16 and 17 for the following

free-stream conditions:

= 15.25 km/sec

PL = 2.72 x 10-7 gm/cm3

= 1.95 x 10-4 atm

and a nose radius of 3.048 meters. The wall enthalpy is 0.028 which

corresponds to a wall temperature of 3,600° K.

&own in Figure 16 are comparisons across the entire shock layer

with the results of Rigdon et al. (1969) and with results supplied by
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Wilson* in a private communication from his method presented in 1970

and by Smith, G. L. in a private communication from the Smith et al.

(1970) method for identical conditions as those given above. In

general, for air-to-air injection, the flow field results from all 

approaches are in fairly good agreement although there are notable

detailed exceptions in the flow field structure which are discussed

below. Also, the wall radiative heat fluxes computed by Wilson, Smith

et al. and in the present analysis are within 5 percent, whereas the

results of Rigdon et al. are about 30 percent higher. This disagree-

ment is attributed primarily to the differences in the radiation model

employed in the first three approaches (RATRAP) and that employed by

Rigdon et al. (SPECS).

Although the radiative heat fluxes predicted by Wilson are in good

agreement with the present method, there was a notable 10 percent

difference in the shock layer thickness predicted by Wilson and by the

other three approaches. The possible sources of this difference are

associated with the x-momentum equation solution and are discussed

below.

Tangential Velocity Gradient. There is fairly good agreement in

all the tangential velocity gradient results in the inviscid outer

region for all the solutions and, in general, somewhat poorer agreement

near the body as shown in Figure 16(a). Near the body the present

results for the velocity gradient are close to the results obtained by

*This author is indebted to Mr. K. H. Wilson of the Lockheed
Aircraft Corporation and Dr. G. L. Smith of the Langley Research Center
for generating the computer solutions for direct comparison with the
present approach.
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Rigdon et al. (1969). The major differences near the body in the

present solution and those obtained by Wilson (1970) are due to differ-

ences in the computed inner layer and boundary layer thickness as shown

in Figure 17(a).

The major source of the discrepancy in Wilson's inner region

solution and the present results is probably due to differences in the

assumptions made for the pressure gradient coefficient, ( 2p/)x2)
'x=0'

The higher the pressure coefficient, the more rapidly the oncoming

flow sweeps around the body and, thus, the smaller the standoff

distance. The value of the pressure gradient coefficient is not well

defined at the present. Wilson assumes a coefficient of -3.0, whereas

the value of -2.0 is assumed by Rigdon et al. and in the present

analysis. Smith et al. use a value of -2.5 which has been correlated

by Inouye on the basis of inverse flow field solutions.

A case was run to examine this effect. The pressure gradient

coefficient was set to -2.5 and the shock was considered to remain

concentric. Thus, the velocity gradient behind the shock became, by

equation 042), as = 173/2 = 1.12. The results indicated that the

shock layer thickness decreased 7 percent, which agrees more close1y

with Wilson's shock layer thickness. However, most of the adjustment

occurred in the outer inviscid region (by vlrtue of the higher velocity

gradients in this region). As shown in Figure 18 there was not any

significant change in the inner region of values of the velocity

gradient or in the extent of the inner region.

Two assumptions are made by Wilson which are not necessary in the

present method. First, because of numerical stability problems, Wilson

treats the inner region as inviscid and begins his fu.11y viscous
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calculations near the inner region and boundary layer interface. A case

was run assuming that the first five nodal points, up to y/ys 0.04

were inviscid. This was accamplished by setting µ = 0 at these points.

There was no discernible differences in the fully viscous and the

inviscid/viscous solutions. This indicates that the inviscid inner

region assumption is valid for the massive blowing problem.

The second assumption made by Wilson in his solution to the govern-

ing equations is that of a constant density viscosity product across the

shock layer given by Pµ = (Pµ)w. Since the value Pµ within the

boundary layer for the comparison case examined was about one-half that

of the wall value, it was decided to examine this assumption. Two

cases were run for (pv)w = 0 and -0.1 in which the density viscosity

products appear in x-momentum and the free energy equation was set

equal to (pµ)w at each nodal point. The results of the constant Pµ

cases and the corresponding variable pµ cases were nearly identical.

This is shown in Figure 19. The results tend to indicate that while

viscosity is important in the boundary layer, it need not be too well

defined in the computations since the boundary layer is actually a thin

transition region which adjusts to the outer and inner flow regions.

Returning to Figure 16(a), the results from the integral solution

of Smith for the total shock layer thickness agrees fairly well with

the present results; however, his inviscid inner layer thickness agrees

more closely with Wilson calculations.

Also shown on this figure are the solution obtained by Wilson and

Hoshizaki (1969) from their integral solution approach. The comparisons

indicate that the method, which was sufficient for the non-blowing

radiation studies, is not adequate for the strong blowing conditions.
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Total Enthalpy. The total enthalpy results across the shock layer

are compared in Figure 16(b). With the exception of the differences in

the shock displacement distances which have been noted, the present

results compare favorably with the results of Wilson. The enthalpy

results of Smith et al. (1970) are fairly good overall. Their method is

based on a one-strip integral relation solution for the outer inviscid

flow coupled with an integral solution for the boundary layer and inner

inviscid region. It is not expected to yield the detailed flow field

structure results obtainable from the other approaches (i.e., Wilson

(1970), Rigdon et al. (1969), and the present method).

Temperature. The temperature results obtained from the four

approaches agree fairly well in the outer inviscid region with somewhat

poorer agreement in the boundary layer and near the wall as shown in

Figure 16(c). Since the radiative heat fluxes are strong functions of

temperature, the results near the wall are compared in more detail in

Figure 17(b). The present results compare favorably with the results

of Wilson. It is unfortunate that, because of differences' in the

radiation models, no direct comparison can be made with Rigdon et al.,

who also solves the fully coupled viscous radiating shock layer equa-

tions. However, it is apparent from their temperature profile that the

radiation model has a strong influence on the resulting temperature and

the radiative heat flux predictions.

The temperature results of Smith et al. shown here indicate that

the temperature is nearly constant in the inviscid inner region, whereas

all other solutions indicate an appreciable drop in temperature going
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toward the body due to radiation exchange. This author has been

advised by Smith that their constant temperature results were due to

a programing error which affected the energy equation solution near

the wall and that they now expect the temperature to increase more

rapidly with y.

Radiative Heat Flux. The radiative heat fluxes are shown in

Figure 16(d). The present results indicate that the inviscid inner air

layer is relatively ineffective in reducing the radiation to the wall

and, as a consequence, the wall heat flux results of Wilson and of

Smith et al., who predict thinner inner layers, agree well with the

present results.

A summary of the predicted heat fluxes at the wall for the various

air-to-air injection rates is given in Table 2-A.

It is interesting to note that the radiative heat fluxes at the

wall converged much more rapidly than the detailed thermodynamic proper-

ties across the shock layer. A typical example of the sensitivity of

the radiative heat flux at the wall on the density profile is shown in

Figure 20. It was observed that the heat flux at the wall for the

(Pv)
w 
= -0.1 case converged within ±2 percent of its final value after

only five iterations, whereas the density values in the inner region

(ri = 0.2 and 0.4) were about 50 percent below their final value. This

indicates that the radiative heat fluxes at the wall for air-to-air

injection may not be as sensitive to the thermodynamic properties in

the inner region as previously expected. If one is interested only in

the gross quantity of the heat flux at the wall, then the 1 or 2 percent

density convergence criteria could be relaxed considerably to provide

substantial savings in computational time for air-to-air injection

studies.
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As previously noted, the air in the inner region is not too effec-

tive in absorbing the incident radiation from the high-temperature outer

layer. However, since certain chemioal specie of ablators are strong

absorbers and emitters, the flux to the wall may be sensitive to the

relative amounts of these species. If this is the case, then a detailed

definition of properties across the shock layer is desired. Thus, the

density. convergence criterion of 2 percent was retained in the subsequent

ablation study.

Stability Study of the Elemental Diffusion and Energy Equations 

The solution to the elemental diffusion equation is required in

the analysis of the radiating shock layer with ablation product injec-

tion. In extending the present method from the air-to-air injection

analysis to the ablation products injection into air, it became evident

that problems of numerical stability existed in the solution of the

elemental diffusion equation. Presented in this section is the stability

study which led to the windward difference formulation for the elemental

diffusion equation and the subsequent reexamination of the energy equa-

tion formulation.

Initially, a central difference form of the elemental diffusion

equation was used and an attempt made to solve the fully viscous

radiating shock layer equations, including ablation product injection.

The diffusion equation solution was unstable in the first pass through

the equation resulting in values of &F at certain nodal points which

were outside the ranges of 0< aF < 1.0. The program was immediately

aborted in the equilibrium chemistry calculations because of negative

mass fractions of the individual species. The reason for this instabil-

ity was investigated both analytically and numerically.
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The properties vary too rapidly across the shock layer in the

variable density solution to perform any meaningful analytical analysis

of the stability of the equation. Yowever, some insight into the

stability of the equation and the associated nodal spacing requirements

can be obtained from a constant density, constant diffusion coefficient

assumption.

For a constant P and D12 across the shock layer, the elemental

diffusion equation (39) becomes

Let

thus,

7

P
2
D12 d

2 aF

d112

daF = 7

_ Pvb

yP
2
D12 

where the primes are used to denote the derivative.

and

Central differencing the two above equations yields

an+1 - an-1 . 7n+1 7n-1

2 2

(7n+1 - 7n-1 _ Pv6 7n+1 + 7n-1

2 Ali 71377 2
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In matrix form the above equations become

a,n+1
1

(1

an-1

-15;;-

1 + 12

( Pv6
+ ATI)

P2D12 -

Pv5
1

nan
r- -12

7n+1
0 7n-1

Pv6
1 + LA

- P
2
D12 J

For stability, the determinant of the matrix must be positive (see, e.E.1

Crandall). Thus,

Pv6
1  

p2D
12  > 0

1 +  
pv6

ATI

p
2
D12

The nodal spacing requirement for stability can be established when it

is noted that

6 = 0 [ and PV = 0 111

For a constant density of 20, the nodal spacing requirement becomes

ATI<

2
P D12

PV6

400 Da2
 - 0[400 D121

o [11 o [11

Since D12 is typically of order 10
-6, then ATI< 4 x 10-4.



This nodal spacing requirement is prohibitive in this anaysis

since it would require at least 2,500 nodal points across the shock

layer to generate a stable solution. However, a case was run in which

1,001 nodal points were used for the elemental diffusion equation solu-

tion with the same 21 points used for the other equations. Although

some improvement was noted in the solution (for which only about 3 seconds

was required to solve the diffusion equation), it did not eliminate the

instability.

The numerical results which substantiate this stability analysis

are shown in Figure 21. The computed mass fractions for a diffusion

coefficient of 10-6 is shown in Figure 21(a) for a model spacing of 0.05.

The solution is clearly unstable. The results obtained when the

coefficient was increased to 1.25 x 10-4 and :1-1 was set to 0.1 (which

accomplishes the same stability effect as decreasing the model spacing

to 4 x 10-4) is shown in Figure 21(b). The sharp oscillations have

vanished) but E1.1„ still exceeded the value of 1.0. The case was rerun

for a nodal spacing of 0.02 with no noticeable improvement. Only when

D12 was raised to 10-3 did the 4, monotonically decrease from 1.0

at the wall to 0.0 at the shock.

Since the central difference forui of the elemental diffusion

equation was inadequate, a windward difference form for the convection

teim was emplqyed. Windward differericing provides automatic damping of

the profiles and has been shown in time-dependent studies of fluid and

heat flow problems to be required in order to obtain meaningful solu-

tions (see, e.a., Richmeyer; Larkin; and Khajeh-Nouri).

A physical explanation given for using windward differencing is

that if fluid is flowing downstream the upstream cell influences the
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downstream cell more than the downstream cell influences the upstream

cell. It is correct for supersonic flow that the downstream conditions

have no influence on the upstream flow, whereas the upstream conditions

may have a pronounced effect on the downstream flow. Even for the stag-

nation line where the flow is subsonic and each cell or nodal point

influences all other cells, the explanation that the upstream cell

influences more than the downstream cell is palatable.

The mathematical reason for windward differencing is that higher

order harmonics that are introduced into the solution because of finite

difference approximations to the differential equations decay exponen-

tially, whereas for central difference formulations these higher order

disturbances can be exponentially amplified.

The results obtained for both central and windward difference forms

of the diffusion equation are shown in Figure 22. The computations were

for a viscous radiating solution assuming binary diffusion coefficient

based on an atomic hydrogen-atomic nitrogen mixture. The windward

difference formulation yields a stable solution in which m
F 

monatonic-

ally decreases across the shock layer.

A check case was run to establish the effect of the damping on

the m
F 

profiles that is introduced by the windward difference formu-

lation. This damping, which is a form of artificial viscosity, tends

to smooth or smear out the gradients more than is natural. To check

this, both central and windward difference solutions were obtained for

diffusion coefficients which yield stable solutions for central differ-

ence approximations. The results from these two formulations, shown in

Figure 23, indicate that the windward difference formulation does not

introduce any noticeable artificial viscosity.
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The enthalpy profiles in the non-radiating equilibrium air solution

for the (pv)w. = -0.2 case were shown in Figure 13 to be unstable.

These profiles exhibited an oscillatory behavior similar to the constant

density aF profiles for the central difference approximations. As

previously mentioned, the enthalpy profiles became smooth when the

radiation tem was included, and at that time no more attention was

devoted to the non-radiating solutions. However, after the elemental

diffusion equation solutions were obtained, it was decided to reexamine

the energy equation, neglecting radiation, to see if the central differ-

encing assumption was responsible for the oscillations in enthalpy.

An order of magnitude analysis of the coefficients on the second

derivative term of the energy and elemental diffusion equation revealed

that these coefficients could be the same order of magnitude. This

analysis is given below.

For constant density and constant transport properties assumption,

the energy and the elemental diffusion equations (eqs. (38) and (39)),

respectively, can be written as (where the convective term on the right-

hand side of the energy equation has been neglected).

and

dH PP-  d
2
H

Pv -
dfl neyPr d'q2

py claF P2D12 P4  
2-d F

dri2 6ReySc dfl2

where Sc, the Schmidt number, is given by

µ,
Sc =

P'D'
12
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Since the Prandtl and Schmidt numbers are typically of order unity,

then the energy equation and the elemental diffusion equation are con-

trolled by the same stability requirements.

As a result of this analysis, the convective term in the energy

equation (Av .71.-4) was recast in windward difference form and the non-

radiating equilibrium air solution for (pv)w = -0.2 was rerun. The

enthalpy, density, and velocity gradient profiles became smooth. The

x-momentum and energy equation solution results are plotted in Figure 24

and compared with the previous central difference solutions.

A significant change in the shock layer thickness also occurred

when the windward difference form of the energy equation was used to

improve the profiles. The shock layer thickness, ys, was reduced by

about 12 percent from 0.0703 to 0.0622 in going from central to windward

difference form. It was found that this reduction in ys was due

primarily to the large blowing rate which introduced the strong

oscillations in the profiles for the central difference formulation.

The (Pv)w = 0 and (Pv)
w 
= -0.1 non-radiating cases were rerun with

the improved formulation of the energy equation. There was no change

in ys for (Pv)
w 
= 0 and there was a 3 percent reduction in y

s 
for

the (Pv)
w 
= -0.1 case.

The strong oscillations in the enthalpy profiles were not present

in the radiating solutions. However, the (Pv)w = -0.1 case for

U2, = 15.25 km/sec was rerun to determine the effect of the windward

difference approximation in energy equations. The radiation flux at

the wall was unchanged and shock standoff distance increased by only

2 percent.
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As a result of this study it was decided to retain the windward

difference form approximation for the radiating ablation products

analysis which follows.

Radiating Flow Field Solutions With Ablation Products 

The solutions to the fully coupled viscous radiating flow field

with ablation products injection are presented in this section. The

results of the present analysis are compared with existing solutions.

The binary diffusion model assumption is also investigated in this

section.

The heat-shield material is considered to be a carbon phenolic

ablator composed of 90 to 95 percent carbon and the remaining elemental

mass fractions consisting of nitrogen, oxygen, and hydrogen. Exact

values of the elemental mass fractions of each of the constituents are

specified for the particular cases presented.

Check on the Binary Diffusion Model Assumption 

The binary diffusion coefficients were computed on the basis of

the dominant species present. For the ablator, the dominant species

is atomic carbon and for air it is atomic nitrogen, hence the binary

diffusion coefficient for atomic carbon atomic nitrogen diffusion was

used in the computations.

However, to obtain an indication of the validity of the assumption,

two cases were run at identical conditions with the exception that

atomic carbon/atomic nitrogen was used in one solution in calculating

the diffusion coefficient and atomic hydrogen/atomic nitrogen was used

in the other solution. A comparison of the elemental diffusion equa-

tion solution for the ablator mass fraction profiles with the two

assumptions is shown in Figure 25 for the conditions noted there. The
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two profiles show that the results differ in the mixing region a
nd its

extent, with the ablator elements extending further into the shock 
layer

for the hydrogen-nitrogen diffusion coefficient. This is to be expected

since DH-N 
is almost an order of magnitude larger than DC-N 

, as shown in

the figure.

A detailed analysis of the heat flux distributions for the two

cases indicated a maximum difference in the radiative heat fluxes of

3 percent which occurred in the outer inviscid mixing region (ri = 0.7),

as shown in Figure 26. At the wall, the nondimensional heat fluxes

differed by less than 1 percent (-0.02892 and -0.02917 for DH_N and

Dc_N, respectively). The shock layer thicknesses, ys, were 0.04173

and 0.04168 for DH_N,and DC_N, respectively. Thus, it appears for the

conditions examined in this study that the binary diffusion model

assumption .is valid.

General Results From the Present Analysis 

The results obtained for (Pv)w = 0, -0.1, and -0.2 cases are

shown in Figure 27 for the following free-stream conditions:

= 15.25 km/sec

P' = 2.72 x 10-7 gm/cm3

p' = 1.95 x 10-4 atm
co

and a nose radius of 3.048 meters.

A wall enthalpy of -0.049 was specified which corresponds to a

wall temperature of 3,600
o 
K for the carbon phenolic ablator injection

cases with the following elemental mass fractions:
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c = 0.9207

EN = o.0086

0,
0 
= O.

61'
91

= 0.0216

For the non-blowing case, air is adjacent to the wall for which an

enthalpy of 0.028 corresponds to the wall temperature of 3,6000 K.

In general, the profiles and parameters are much the same as those

for the air injection cases with the exceptions of the enthalpy profiles

for the (Pv)w = -0.2 
case and the radiative heat flux predictions.

Even with the windward difference form of the energy equation, the

enthalpy profile for the (Pv)w = -0.2 blowing ratt! was irregular near

the stagnation point. This solution had not completely converged when

the calculations were terminated on the computer after an accumulation

of nearly 2 hours of machine time. However, it was near convergence.

Apparently, this blowing rate is near the stability limit for obtaining

the technique employed here for the solution to the governing equations.

As can be seen in Figure 27(f), the density and temperature profiles,

which are used in the radiative heat flux computations, are much

better behaved than the enthalpy profiles.

It can be seen from the radiative heat flux profiles of Figure 27(g)

that the flux out of the shock (at = 1.0) increased with increasing

ablator mass injection, whereas for the air-to-air injection cases the

flux at the shock was nearly insensitive to the blowing rate (see

Fig. 14(f)). The heat fluxes at the wall, which are of primary interest,

decreased significantly with blowing rate for the carbon phenolic

ablator (66 and 61 percent of the non-blowing radiative heat flux rate

for the (Pv)w = -0.1 and -0.2 cases, respectively). Thus, the
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ablation products are considerably more effective than air in reducing

the heat flux to the wall.

It is not clear if the large negative heat flux near the stagnation

point for the (Pv)
w 
= -0.2 case is real or if it is a result of the

uncertainty in the thermodynamic properties calculations. However, it

is quite likely that the effects of this point on the resulting heat

flux at the wall is washed out in the radiation exchange between this

point and its surrounding points. This case is compared with the solu-

tion of Rigdon et al. (1969) in the next section.

Comparisons of Ablation Product Injection Results With 
Existing Solutions 

Two carbon phenolic injection cases were run for comparison with

the results of Smith et al (1970) and Chin at a blowing rate of -0.076,

and for comparison with Rigdon et al. (1969) at a blowing rate of -0.2.

The pertinent free-stream and wall conditions are noted in Figures 28

and 29 for these corresponding cases. In general, the results for the

thermodynamic and flow properties are in reasonable agreement, but

there are noticeable exceptions relating to the heat flux computations

which are discussed below.

In the Chin comparison case, it should be noted that the close

agreement of the wall heat flux prediction with Chin's computations may

be fortuitous. Chin's earlier radiation model is sufficiently different

from RATRAP to make any quantitative comparison meaningless. This

is evident from Table 2 where it is observed that the non-blowing

radiation heat flux prediction of Chin and of the present method differ

by 20 percent.

The comparison of interest for this case is with the results of

Smith et al. (1970)'. It is noted in Figure 28(d) that the present
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solution predicts a wall heat flux about 30 percent lower than that of

Smith. An important conclusion made in their paper is that the radia-

tion to the wall is not attenuated as much as previously predicted by

Chin and by Rigdon et al. (1969). This was attributed to the presence

of large percentages of CN in the mixing region which is a strong emitter.

A comparison of the mole fractions of the major chemical species is shown

in Figure 28(d). The comparisons are good considering the differences

in the temperature distributions; however, it is noted that the peak

mole fraction for CN predicted by the present method is only about one-

half that of the comparison case. This discrepancy in the level of CN

occurs in the region where Smith et al. (1970) employ a cubic fit to the

elemental diffusion equation in order to join the wall products in the

inner shear layer with the air composition beyond the boundary layer.

It thus appears that contrary to the air-to-air injection study results

which did not require too accurate a resolution of properties near the

wall, the ablation products study indicates that these properties must

be well defined near the wall to generate accurate wall radiative heat

flux predictions.

The comparison with Rigdon et al. (1969) indicates reasonably good

agreement in the radiative heat flux profiles, although there are sig-

nificant differences in the radiation models employed. The predicted

shock layer thicknesses are within about 5 percent. A slight waviness

is noted in Rigdon's pv profile (Fig. 29(a)) near the stagnation

point (y/ys = 0.3). In all the cases calculated by the present method,

the pv profile was smooth in this region. It is not apparent if this

irregularity predicted by Rigdon et al. is real or if it related to

their numerical procedure for integrating out in both directions from
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the stagnation point. It is noted that their solution also exhibits an

irregularity in the temperature profile near the stagnation point as does

the present solution.

Summary of the Wall Radiative Heat Flux Predictions 

A summary of the wall radiative heat fluxes calculated by the

present method for the various conditions examined in this study and

corresponding comparison results from previous investigations are tatu-

lated in Table 2. With the exception of the non-blowing results of

Suttles (1969) and the air injection comparison case with Wilson (1970),

the present method predicts slightly to much lower heating rates than

calculated by previous investigators.

These results are also summarized in Figure 30, which illustrates

the effectiveness of the carbon phenolic ablator products in reducing

the wall radiative heat fluxes. As can be seen from the figure, there

is general agreement of all sources that air injection is moderately

effective in reducing the heat transfer to the wall and, with the

exception of the Smith et al. (1970) results, that the ablation products

of the carbon phenolic heat shield is highly effective in reducing the

fluxes.

As can also be seen from Figure 30 and Table 2, there is no con-

sistent agreement from any sources when both the non-blowing and blowing

resu)ts are considered. For sources which use different radiation

transport models (Rigdon et al. (1969) and Chin), this disagreement is

due, at least in part, to the differences in the radiation model. For

sources which use the same model, Smith et al. (1970) and the present

method, this disagreement is attributed to.the numerical procedures

employed. There was insufficient data available to fully evaluate
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the Wilson (1970) results, with the exception of the assessment of the

validity of the assumptions required in his analysis. These assump-

tions have been previously discussed and shown to be valid for the

(Pv)w = 
-0.1 air-to-air injection case.

For air-to-air injection, the present results indicate a 10 and

17 percent reduction in the wall radiative heat fluxes for (Pv)w = -0.1

and -0.2, respectively. For carbon phenolic ablation products injection

at corresponding blowing rates, the reduction is 36 and 39 percent,

respectively. Since ablation rates are typically expected to be about

0.1 (see Smith et al. (1970)), then the 36 percent reduction in the

radiative heat fluxes represents a significant savings in heat-shiel
d

weight.
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SUMMARY AND CONCLUSIONS

An implicit finite difference scheme is developed for the fully

coupled solution of the viscous radiating stagnaticn ltae equations

including strong baowing. Solutions are presented for both air-to-air

injection and ablation products injection with blowing rates up t
o

20 percent of free-stream mass flow rates. The free-stream conditions

examined are typical of interplanetary return conditions into ear
th's

atmosphere near the point of peak radiative heating in the entry 
trajec-

tory. A detailed radiative transport computer code (RATRAP) which

accounts for both continuum and line radiation exchange processes is

utilized in the study.

Starting with a minimum number of assumptions for the initially

unknown parameters and profile distributions, convergent solutions t
o

the full stagnation line equations are rapidly obtained by a meth
od

of successive approximations. No singularities exiSt in this formu-

lation of the finite difference equations. Damping of selected pro-

files is required to aid convergence of the massive blowing cases;

however, even for these cases, no patching of the viscous and inviscid

regions is required. The results demonstrate that windward differencing

of the convective term in the elemental diffusion equation is required

for a stable solution to this equation. While the central difference

approximation to the energy equation yields satisfactory solutions

when radiation is included, the results are considerably improved for

blowing rate of 0.2 when the convective term is windward differenced

in this equation a1so.

Comparisons are made with currently existing solutions to the

radiating shock layer problem. The present method predicts lower
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wall radiative heat fluxes for carbon phenolic ablation than those pr
e-

dicted by previous investigators.

The results indicate that the ablation products are highly effec
-

tive in blocking the incident radiation from the high-temperature 
outer

layer of the shock. For blowing rates of 0.1 and 0.2, typical reductions

range from about 35 to 40 percent of the non-blowing radiative heat

fluxes at the wall.

The inner air layer is shown to be relatively ineffective 
in block-

ing the incident radiation, hence the thermodynamic propertie
s need not

be as well defined for air injection as for ablation 
product injection.

The binary diffusion model assumption was examined in the 
present

analysis and, while a multicomponent diffusion study may r
emain meaning-

ful for conditions and ablators other than those examined in 
the present

study, the results indicate that the multicamponent diffus
ion model is

not required.

The present results are sufficiently encouraging to recomm
end that

the present method be extended to radiation calculations i
n the presence

of chemical nonequilibrium. Since the solution to the governing flow

equations requires only about 5 percent of the total computational

time, with the radiation flux computation comprising the rema
ining

95 percent of the time, the implicit finite difference scheme should be

relatively efficient for performing the computations.
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Table 1. Diffusion coefficient
molecular constants

Molecular constants

Species E/k, °K o, M, gm/gm mole

C 30.6 3.385 12.01

N 71.4 3.298 14.01

H 37.0 2.708 1.008
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Table 2. Summary of radiative heat fluxes at the wall

A. Air Injection

1. = 14.55 km/sec, Pc!,) = 2.377 x 10-7 gm/cm3, 1:1:0 = 1.6 x 10-4 atm,

R' = 3.427 m

(Pv)w

q' (watts/cm2)
R,W

Suttles (1969) Falanga and Sullivan Present Analysis

0 -2860 -3000 -2950

2. UL = 15.25 km/sec, Pc1c, = 2.72 x 10-7 gm/cm3, = 1.95 x 10-4 atm,

R' = 3.048 m

(Pv) w

q'
,W 

(watts/cm2)
R

Rigdon et al. (1969) Smith et al. (1970) Wilson (1970)
Present
analysis

o
-0.1
-0.2

-5990
-5130
-4630

-4170

-3991*
---

---
-3660*
---

-4150
-3740
-3490

B. Carbon Phenolic Injection

1. 11,!, = 15.25 km/sec, PL = 1.77 x 10-7 gm/cm3, pc',) = 1.21 x 10-4 atm,

R' = 2.56 m

(Pv)w
qR 
 
W 
(watts/cm2)

, 

Chin Smith et al. (1970) Present analysis

0
-0.076

-3030
-1642

-2795
-2188

-2540
-1620

2. UL = 15.25 km/sec, PL = 2.72 x 10-7 gm/cm3, /3,:o = 1.95 x 10-4 atm,

R i = 3.048 m

(Pv)w
qi,w (watts/cm2)

Rigdon et al. (1969) Smith et al. (1970) Present analysis

0 -5990 -4170 -4150

-0.1 -2790

-0.2 -2670 -3246 -2560

*Private communications.
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Flow fields involving some

aspect of thermal radiation

Transparent Self-absorbing

Gray Non- gray

Uncoupled

Items of interest concerning
effects of radiation:

Radiative heat transfer

Coupled

Items of interest concerning
effects of radiation:

1. Radiative heat transfer
2. Convective heat transfer
.3. Detailed flow field structure

Figure 1. Diagram of various assumptions for the analysis of radiating
shock layers (from Anderson, 1968, p. 2)
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5.0

4.0

- .0

p' = 1 atmos.

T' = 15,600 °K

y; = 10 cm

8 10 12 14 16 18 20

Photon energy, (ev)

Figure 2. Spectral heat flux distribution for air from SPECS

radiation code (Thomas, 1967)
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Shock wave

Figure 3. Flow-field coordinate system

Body surface
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Figure 4. Flow-field coordinate system in the transformed coordinates
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Shock

Node number N n + 1 n n - 1

.-311111..An

Notes: (1) N must be odd
(2) Nodal points are equally spaced in

Figure 5. Finite difference network

Body
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Figure 6. Flow diagram of the overall solution procedure
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Legend Iteration no. 6

Initial 1.0MMIN• . WI

1 1.291- —
— - 2 1.372

3 1.433
4 1.450

.4 .6 1.0

(a) Continuity equation, pv

Figure 7. Convergence behavior of a typical constant density
solution
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Legend Iteration no.

Initial

1
2

3 and 4

---
_

Am Im 4.• NM ••• Om

p = 20

Reys = 10
5

p. = 1.0
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(b) X-momentum equation, a

Figure 7. Concluded
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(a) Velocity gradient distributions

p. = 1.0

Figure 8. Constant density solutions for inviscid and viscous flows
without blowing
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(b) Mass flux distributions

Figure 8. Concluded
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Figure 9. Influence of blowing rate on velocity gradient for the
constant density solutions
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Figure 10. Convergence behavior of the variable density

solution - equilibrium air without radiation
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4 12

H Damp = .5, RODamp = .5
H Damp = .9, RODamp = .9

U:, = 14.6 km/sec

1):0 = 1.6x 10-4 atmos

pc: = 2.38x 10-7 gm/cm3
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N 11

(pv)w = 0
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Iteration number

(a) Enthalpy

Figure 11. Effect of profile damping on the convergence of the
variable density solution (equilibrium air without
radiation)
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Figure 12. Equilibrium air solutions without radiation
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Figure 12. Continued
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(c) X-momentum equation

Figure 12. Continued
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(d) Energy equation

Figure 12. Continued
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(1017)w = -
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(e) Equation of state

Figure 12. Concluded
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❑ (pv)w = 0
1. 0 A (pv)w = -.2
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APPENDIX

RADIATION MODEL

The RATRAP radiative transport model developed by Wilson (1967)

has been discussed in great detail by Wilson (1967), Suttles (1968),

and Wilson and Hoshizaki (1969). A summary of Suttle's discussion on

the development of the governing radiative transport equation employed

by RATRAP and some details of the radiation model are given in this

appendix.

The RATRAP code, which includes the detailed line radiative calcu-

lations (sometimes referred to as RATRAP II, since it has been upgraded

by its originators, see Wilson and Hoshizaki (1969)), is written for

the calculation of the radiative heat flux at any point within a planar

(tangent) slab in which the thermodynamic properties vary in only the

direction normal to the slab. Local thermodynamic and chemical equi-

librium is assumed. A distribution of two thermodynamic variables

plus the elemental mass fractions for carbon, nitrogen, oxygen, and

hydrogen gaseous mixtures is required for the radiation computations.

For the tangent slab approximation, there is no component of heat

flux in the x-direction. Thus the magnitude of the radiative heat flux

vector is the radiative heat flux in the y-direction which is expressed

as

47(

IqR1 = ciR,y r Iv(es jy)d0 dv
L' 0 0

(A-1)

where Iv is the specific intensity, es is the unit vector in the

arbitrary direction in which Iv is evaluated as shown in Sketch A,
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and Q and v are the solid angle and the frequency of radiation,

respectively. (Note that the quantities are dimensional; however, the

primed symbol used to denote dimensional quantities in the main body of

this study is dropped in this appendix for simplicity.)

S =

Boundary
surface

Sketch A

The differential equation governing the radiative transfer (see,

Vincenti and Kruger) which is given by

has the solution

dIv
=

ds 
av(Bv - Iv)

s
Iv(s) mv(OBv(Oe

0

av(E)dE :)fl

+ Iv(0)e

(A-2)

(A-3)

where mv is the modified linear absorption coefficient, Bv is the

Planck function given by
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(A-4 )

Iv(0) is the radiation intensity coming from the wall and e and t

are dummy variables for the integrals such that t < E < s and

0 < < s, as shown in Sketch A.

Equations (A-1) and (A-3) can be combined (see Suttles (1968)) to

yield

qR,Y = 27cfm0
ct,vBvE2(f av dE) dt

ys r- avBvE2(j v d)d]dv
L y

(A-5)

when the heat fluxes into the slab at the boundaries are neglected.

t

(
The quantity E2 av dE 

is the exponential integral described by

Kourganoff and is given by

1

E2() =1 e g
0

(A-6)

In order to evaluate equation (A-5), it is necessary to calculate

the spectral linear absorption coefficients mv which are functions of

the thermodynamic properties (p and T) and the number densities of the

chemical species. Twenty chemical species are considered in the

thermodynamic calculations. They are C2, N2, 02, H2, C, N, 0, H, CO3

CN, C2H, C3H, HCN, C2H2, C, C+, N-1-, 0
+
, and H.

The total spectral absorption coefficient is separated into

continuum and line contributions in the RATRAP calculations. The

continuum spectral absorption processes considered are the free-free
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transitions (acceleration of free electrons in the vicinity of

atoms and ions) of C, C N, N
+ 

0, 0
+ 

and the free-bound and

bound-free transitions (deionization and ionization, respectively,

of the H atoms and positively ionized particles. Molecular

bands are also included in the continuum calculations. These

molecule contributions and frequency intervals from Wilson and

Hoshizaki (1969) are tabulated below.

Table A. Molecular band systems used in RATRAP

Molecule
contribution

Frequency range for significant
absorption photon energy, eV

H
2 

Werner 11 <ill/ < 15.494

Photoionization 15.494 < hv < 25

C2 Swan 1.8 < tiv < 6. 0

Fox Herzberg 1.8 <hv < 5.35

Mulliken 5.35 <-111, < 6.0

Freymark 1.8 < iiv < 6. 0

CN Violet 2.0 < .hv < 6. 0

CO 4th Positive 7 < tv < 10

N2 Birge-Hopfield 11 <11v < 14.2

02 Schuman-Runge 7 < iiv < 9.2

For the calculation of the continuum contribution to the heat

flux, the absorption coefficients for the individual species are

weighted with their respective number densities and approximated by

curve fits over frequency ranges. The heat flux equation (A-5) is

subsequently evaluated by numerically integrating over y and over

frequency, using 11 values of y and 31 values of frequency.
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The atomic line radiation component arises as a result of the m
any

bound electronic transitions which occur in the atomic nitrogen an
d

oxygen species (line radiation from 2arbon and hydrogen species are n
ot

included in RATRAPY. This camponent is obtained by first grouping

certain line contributions within various frequency intervals. The

net line radiation is then calculated by summing the contributions

from these line groups. Eighteen line groups, with a total of 65 lines,

are used in RATRAP.

The total radiative heat flux at each point is obtained by adding

the continuum and the line radiation contributions.

4




