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ABSTRACT

GARRETT, LLOYD BERNARD. An Implicit Finite Difference Solution to the
Viscous Radiating Shock Layer With Strong Blowing. (Under the direction
of GEORGE LOUIS SMITH and JOHN NOBLE PERKINS. ) |

An implicit finite difference scheme is developed for the fully
coupled solution of the viscous radiating stagnation line equations,
including strong blowing. Solutions are presented for both air injec-
tion and carbon phenolic ablation products injection into air at
conditions near the peak radiative heating point in an earth entry
trajectory from interpianetary return missions. A detailed radiative

transport code that accounts for the important radiative exchange
processes for gaseous mixtures in local thermodynamic and chemical

equilibrium is utilized in the study.

Starting with minimum number of assumptions for the initially
unknown parameters and profile distributions, convergent solutions to
the full stagnation line equations are rapidly obtained by a method of
successive approximations. Damping of selected profiles is required
to aid convergence of the massive blowing cases. It is shown that
certain finite difference approximations to the governing differential
equations stabilize and improve the solutions.

The present study results indicate lower wall radiative heat
fluxes for carbon phenolic ablation than predicted by previous

investigators.
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TTRODUCTION

A blunt spacecraft entering blanetary atmospheres at earth hyper-
bolic speeds encounters intense radiative heating rates, particularly
in the frontal or stagnation region. Acceptable interior temperatures
are_maintained by mass transfer cooling through the use of heat shields
constructed of polymeric ablator materials (Walberg and Sullivan).

Near peak heating altitudes in many entry trajectories, such

as entry into the earth's atmosphere from a direct return manned Mars
mission, the mass of gas injected into the flow field is an appreciable
fraction of the mass of the oncoming flow (Chin) and is sufficient
literally to blow the viscous boundary layer off the surface of the
spacecraft.

This condition, which is generally referred to as strong or massive
blowing, has a physically destabilizing effect on the flow field that
seriously impairs numerical solutions to the governing equations (Libby
and Sepri). Libby (1970) describes the physics of the problem to be
that of an inner region near the wall which is dominated by pressure and
inertia forces where viscous effects are small, and a thin viscous outer
region which adjusts to the edge conditions. For small blowing rates
the viscous boundary layer is near the wall and the presence of the
solid wall has a stabilizing effect on the flow. However, for the
massive blowing problem, the gaseous inner layer may not adequately
stabilize the flow.

The problem of massive blowing where the outer viscous flow adjusts
to the edge conditions has been studied extensively for nonradiating
flows (cf.,e.g., Kassoy, Libby (1962, 1970), Libby and Sepri, and

Kabuta and Fernandez). However, there has been limited attention



2
directed to the solution when radiation is coupled into the problem. Most
previous approaches either required excessive computer time for the numeri-
cal solution or were approximate analyses which lead to questionable
inputs of the thermodynamic properties required for the radiation compu-
tations. Since radiative heat fluxes (in addition to being strong func-
tions of temperature and density) can also be sensitive to the chemical
species within the shock layer, some of which are strong radiation emitters
and absorbers (Hoshizaki and Lasher), care should be taken in defining
these quantities across the entire shock layer. A complete discussion of
previous approaches to the viscous radiating shock layer with mass addi-
tion is developed in the chapter on Review of the Literature.

The purpose of this investigation is to develop an approach for the
numerical solution to the coupled viscous radiating flow field along the
stagnation line of a blunt body under both weak and massive blowing con=-
ditions. It is required to solve the governing Navier-Stokes equations
without making unnecessary simplifying assumptions to the equations and
in the numerical solution that could result in inferior inputs for the
radiative flux computations. Since the flow equations are coupled,
iteration or some multiple pass procedure is required. Thus, the problem
becomes one of efficient iteration procedures.

An implicit finite difference method, which has previously been
shown to be computationally efficient for chemical nonequilibrium studies
without mass addition (Blottner, 1969), is developed for the solution to
the proposed problem. The nonlinear governing differential equations are
written in finite difference form at all nodal points within the shock
layer, with boundary conditions specified at the wall and immediately

behind the shock. The formulation results in a tridiagonal matrix system
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of algebraic equations which is efficient for machine computation. The
governing equations are solved "one at a time" in succession across the
entire shock layer. The overall numerical solution technique to the two-
point boundary problem is by iteration of the flow variables at each nodal
point in the shock layer. Since the governing equations are solved one
at a time, rather than concurrently at each nodal point (as in initial
value forward integration techniques), then the nodal spacing requirement
for the overall solution is not limited by the stability requirement of
the most unstable equation.

A section is devoted to the stability of the finite difference solu-
tions to the governing equations. Particular attention is directed to the
stability of the species continuity equation with binary diffusion using
central differencing and a two-point windward differencing scheme that
provides automatic damping of the profiles.

Radiation computations are carried out using an existing radiative
transport computer program, RATRAP, developed by Wilson (1967). The
program uses the tangent slab approximation (one-dimensional) that accounts
for absorption and emission within a layer of arbitrary optical thickness
and is for equilibrium gaseous mixtures of hydrogen, carbon, nitrogen, and
oxygen. Pressure, enthalpy, and elemental composition profiles are com-
puted by the viscous flow field solution as inputs to the radiation program.
Radiation fluxes are evaluated at various nodal points within the shock
layer to provide coupling with the flow field. The transport properties
for equilibrium air (i.e., viscosity and reactive Prandtl number, see
Hansen) are used in the computations to account for the eﬁergy transport
due to binary diffusion.

Numerical results are presented for both air-to-air injection and

for the injection of the ablation products of a carbon phenolic ablator
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heat shield into an air stream for a range of blowing rates of interest.
Additional coﬁputations are presented for cénstant density flows and for
viscous nonradiating flows with air-to-air injection.

The alr-to-air injection cases include celculations for a 3.05-meter
spherical nose radius body entering the earth's atmosphere at 15.24 kilom-
eters per second velocity at 61 kilometers aititude with a blowing mass
rate to free-stream mass flow rate of one-tenth. The results are compared
with an initial value forward integration method, integral approaches, and
an "exact" numerical solution for identical free-stream and wall boundary
conditions. An assessment is made of some approximations contained in

these -analyses.



REVIEW OF LITERATURE

The scope of the literature survey is restricted primarily to the
flow within the shock layer near the stagnation region of a blunt reentry
spacecraft. The emphasis is on viscous radiating flows with mass addi-
tion which is typical for hypervelocity enters into earth's atmosphere
from manned interplanetary missions.

Some of the earliest predictions for the radiative heat flﬁx to a

“blunt body entering the earth's atmosphere at earth parabolic velocities
or greater indicated that the heat flux at the stagnation point was pro-
portional to the velocity raised to the tenth power (Meyerott). In more
recent years the predictions of the levels of the radiative fluxes have
almost progressively decreased, while the complexity of the computations
have systematically increased. An excellent review of the advances in
radiating shock layer analyses is given by Anderson in his 1969 paper.
Figure 1, which is taken from his paper, is a diagram of the various -
assumptions used in the analysis of radiating shock layers. The organi-
zation of this chapter will follow this diagram, with a section devoted

to the radiation transport models and one devoted to coupled and uncoupled
flow field analyses includiﬁg the more recent approaches to the radiation-
induced massive blowing problem. Much of the literature review is con-
densed from Anderson's survey, and interested readers are referred to his
paper and his extensive list of references for a more lucid description

of contributions to radiation flow field analyses prior to 1969.

Radiation Transport Models

The salient features of radiation models as they are appliled for

tractable solutions to radiating flow field problems are discussed in
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this section. The evolution of the radiation models which are incorporated
into high-temperature shock layer analyses is traced.

In general, the radiative energy exchange in a gaseous medium is
governed by integral equations which involve temperature, mass density,
and the number density of the individual chemical species integrated over
both the radiation frequency spectrum and three-dimensional physical space.
Hirschfelder, Curtis, and Bird (p. 721) describe the functional dependence
of radiation on these properties in the following manner.

In the presence of radiation, a molecule has a certain

probability of either absorbing or emitting radiation of

a frequency characteristic of some transition from one

gquantum state to another. Or a molecule in an excited

state has a certain probability of spontaneously emitting

radiation of a certain frequency. FEach substance therefore

has an absorption spectrum which can be expressed in terms

of the coefficient of absorption which is a function of the

frequency. Since the absorption spectrum depends upon the

distribution of the molecules in their various quantum

states, then the absorption coefficient depends upon the

temperature of the substance. The spectral lines for iso-

lated molecules have a natural width (due to spontaneous

emission of radiation), and as the molecules are brought

together these lines become broader (due to pressure

broadening) and become displaced (due to the distortion of

the molecules themselves). Thus the coefficlent of absorp-

tion depends upon the density of the system . .

Since fluid elements (actually the individual atomic and molecular parti-
cles) both emit and absorb radiation, then the radiation exchange for both
mechanisms must be considered. At a given point emission is a function
primarily of the conditions at the point, whereas absorption is dependent
upon not only conditions at the point but also is a function of the
thermodynamic properties and the frequency of radiation emission of all
the surrounding fluid elements. Radiation at a given frequency travels

a "photon or radiation mean free path" before being absorbed, thus absorp-

tion of the radiation is dependent upon the physical distance between the



emission source and the absorbing particle. Consequently, radiation
exchange within a given volume is a function of three-dimensional physical.
space.

The problem of the general three-dimensional radiation exchange where
there are many different chemical species or particles at various energy
levels is indeed formidable, and simplifying assumptions are required in
order to obtain tractable solutions to most radiation exchange problems.
For stagnation streamline analyses, the enclosure volume is simplified by
the "tangent slab approximation,' that is, radiation heat fluxes are com-
puted assuming that a one-dimensional planar slab of gas 1s present within
which conditions remain constant except across the slab in the direction
normal to the slab. This approach is almost universally applied in
radiating shock layer analyses. At the stagnation line the justification
for the assumption is that for bodies of large radil surrounded by a
relatively thin shock layer, conditions vary slowly in the radial direc-
tion, whereas the major gradients are normal to the body. This effect
has been investigated by Kennet and Strack, by Koh, and by Hoshizaki and
Lasher. The investigations indicate that the error introduced by the
approximation should be less than 5 percent.

The tangent slab approximation permits one to evaluate the divergence
of the radiative heat flux that appears in the energy equation by evalua-
tion of the gradient of the heat flux in the normal direction only and
uncouples the stagnation line solution from the rest of the shock layer
as far as radiation is concerned. In the present analysis the tangent
slab approximation is used.

For radiation computations the gas is treated either as transparent

or self-absorbing. A transparent gas is one which emits radiation but
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does not absorb ény incident radiation from the surrounding fluid elements.
According to Vincenti and Kruger, this approximation is valid only when

the gas 1s optically thin at all wave lengths. An optically thin gas is
one in which the characteristic mean free path of a photon is much larger
than the thickness of the shock layer. Anderson points out that in
practice the transparent gas assﬁmption is reasonable only fof reentry con-
ditions where radiation effects first become noticeable, such as 10 km/sec
entry velocities. For velocities around 15 km/sec, the transparent assump-

tion can overpredict the radiative flux by factors of 2 or more.

A self-absorbing gas both emits and absorbs radiation; that is, a
fluid element locally emits radiative energy as well as absorbs energy
from the surrounding fluid elements. The gas is treafed either as gray
or non-gray. A gray gas includes gray self-absorption which is a func-
tion of temperature and pressure, but the absorption coefficient is
assumed not to be a function of the wave length or radiation frequency.
It was first indicated by Olstad and'later demonstrated by Hoshizaki
and Wilson (1967) that the non-gray model is by far the more realistic
model and is important for most high-velocity entry missions. In this
model the absorption coefficient is considered to be a function of wave
length as well as temperature and pressure.

An example, given by Anderson, that indicates the reason for includ-
ing non-gray self-absorption is the phenomenon associated with high-
temperature air. Air will absorb radiation in the vacuum ultraviolet
(short wave length) region but is relatively transparent in the infrared
(long wave length) region. For example, there are five orders of magni-
tude!variation with frequency in the continuum absorption coefficient

of air at 14,000° K and one atmosphere pressure. Olstad's .



results for the inviscid flow of air and Hosizaki and Wilson's (1967)
results for the viscous flow of air showed that substantial reductions
in the radiative heat flux to the body were obtained in going from gray
to the non-gray self-absorption models.

The non-gray gas model must be applied to obtain realistic estimates
for the radiative heat flux to the body and this requires a detailed
integration of the absorption coefficient over the frequency spectrum.

For air, significant differences still exist not only in the spectral
absorption coefficients for certain chemical species but also in the
radiation models that are coded for computer solutions (suttles, 1971).
However, computations dealing strictly with radiative transport in air
for typical earth entry conditions are approaching a firm basis and
simplified radiation models can be developed for absorption coefficients
as functions of wave length, such as Callis' three-step model, to speed
up the time-consuming radiative transport computations. When one also
considers injection of ablation products into the air stream, radiation
transport modeling becomes complicated indeed because of the added dimen-
sion due to the presence of foreign radiating chemical speciles (Andersoh).
Tn the interest of quantitative results, it appears better at present to
generate spectral absorption coefficients from the spectral details for
the individual chemical species than to attempt absorption coefficient
modeling on the basis of a specified overall chemical composition.

Existing radiation transport computer programs are avallable which
consider ablation products in addition to air chemical species, such as
RATRAP, developed by Hoshizaki and Wilson (see Wilson, 1967); SPECS,
developed by Thomas; and RADICAL, developed by Nicolet. These programs,

which perform radiation computations based on the spectral details of the
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individual chemical species, are time consuming for stagnation line
analyses. However, usage of these types of programs are required since
reglistic analyses have indicated that the addition of ablation products
to the flow field can reduce the heat fluxes to the body by factors of
two below pure air flow (see; for example, Hoshizaki and Lasher,

Coleman et al., and Chin). As was the case for air, differences exist
in the computer codes due largely to uncertainties in the absorption
coefficients and the spectral modeling of certain chemical species.
RATRAP, which is used in this analysis, is somewhat time consuming, but
it contains the appropriate detail to be compatible with the rigorous
flow field competition expected of the present analysis.

Tt is appropriate at this point to begin the discussion on flow field
analyses with radiation. The radiation transport models discussion is
terminated upon noting that differences in the heat flux predictions at
the body can be a result of not only differences in the radiation trans-
port codes but can also be a result of the inaccuracies in the solutions
to the flow equations.' In particular, the concentration or number densi-
ties of strongly absorbing or emitting ablation chemical species can be
strongly affected by computed temperatures and densities within the shock

layer.
Flow Field Analyses With Radiation

The appearance of the divergence of the radiative flux as a term
in the general energy equation governing the flow of a radiating gas
couples the flow field and the radiative transport analysis. For rela-
tively low entry velocities, the radiatiﬁe heat fluxes are small and
consequently do not exert any significant influence on the flow fileld

thermodynamic or flow variables. However, for hyperbolic entry velocities,
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typical of manned return miséions from Mars, the radiati&e heat fluxes
are large, and thus radiative cooling (energy losses) with the shock
layer must be considered. The net effect of radiative cooling is to
reduce the radiative heat flux to the body because of a reduction in
temperature and a subsequent increase in shock layer density from adia-
batic conditions (see, for example, Wick and Hoshizaki and Wilson, 1965).
This coupling between radiative transport and gas dynamics for this
problem is commonly referred to as the coupled radiating shock layer

problem.

Howe and Viegas were the first to investigate the flow of a viscous,
radiating, self-absorbing gas in the stagnation region including the
effects of mass addition. Since they assumed a gray radiation model, the
radiation flux results are not quantitative. However, they showed that
similarity considerations could be applied in the stagnation region of
the viscous shock layer where radiation is present, thus reducing the
governing partial differential equations to ordinary differential equa-
tions. Howe and Viegas used a Levy-Lees type of boundary-layer trans-
formation, which involves the integral of the viscosity-density product
over physical distance, and similarity considerations to reduce the
Navier-Stokes equations to compressible Falkner-Skan boundary-layer
equations (see Schlichting, pp. 354 ) for axisymmetric stagnation region
flow. They solved the momentum equation numerically by an initial value
forward integration method (Adams-Moulton predictor corrector, see
Hildebrand). The energy and species continuity equations were solved
by numerical evaluation of the exponential integrals that appear in the
exact analytical solutions to the differential equations. The solution

to the coupled system of equations was iterated by converging on the
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value of the shear stress at the wall. In their fully viscous analysis
the mass injection rates were restricted to moderate amounts which did
not upset the stability of the boundary layer near the wall. The diffi-
culty with the stronger blowing rates cén be traced to numerical instabil-
ity problems associated with evaluating the exponential integrals in the
exact analytical solutions to the governing equation. Wilson (1970), who
applied a similar approach as that of Howe and Viegas (with the notable
exception being his momentum equation solution), describes the problem
for the fully viscous shock layer with massive blowing to be one of numeri-
cal precision required to take the differences between the large numbers
which appear in the exponential integrals. Further aspects of this
problem will be discussed in association with Wilson's 1970 paper and in
the Results and Discussion chapter.

In 1965 Hoshizaki and Wilson (1965) developed their integral method
for the solution to the coupled viscous radiating shock layer about a
blunt body. Fifth and sixth order polynomials were used to express the
velocity and total enthalpy profiles, respectively, across the shqck layer.
In addition to presenting results for the stagnation region, they also
presented results around the body using a forward integration technique
with a limited number of iterations on the shock shape. The solutions
were restricted to no blowing and a transparent radiating gas.

Hoshizaki and Wilson (1967) extended their integral approach to
include injection of ablation products into the boundary layer for moderate
blowing rates. And, they improved their radiation transport model to
include specular (non-gray) self-absorption. In the solution, fifth and
second order profiles were assumed for the velocity and elemental mass

fraction of the ablation products, respectively. With the specified
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velocity and»species distribution profiles, they were able to solve the
energy equation by using a method similar to that used by Smith and
Clutter for boundary layer solutions. In the Smith and Clutter solution,
the energy equation is solved across the shock layer by & method of super-
position of two independent energy equation solutions. The nonsimilar
terms in the energy equations (derivatives in the tangential direction)
were included in finite difference form. Hoshizaki and Wilson (1967)
assumed a binary diffusion model and assumed that the air and ablation
products did not react chemically. Air transport properties were used in
the analysis. They observed that, since the entire shock layer was
treated as viscous, they did not have to match frequency dependent radia-
tive fluxes at the viscous-inviscid interface.

In 1968 Hoshizaki and Lasher extended the integral approach to the
massive blowing problem (up to 10 percent of free-stream mass flow). The
integral method was applied to obtain an approximate solution to the
momentum equation for a fifth order polynomial representation of the
velocity profilé. The species continuity and energy equations were
solved by means of similarity transformations and numerical integration
of the resulting exponential integrals. Their detailed anélysis of the
spectral abscorption coefficients for 20 air and ablation product chemical
species showed that the carbon atoms, which diffuse far info the shock
layer, act as strong radiation. absorbers.

Chin, in 1968, developed a numerical method for solving for the
radiation coupled inviscid stagnation flow with mass addition. In this
analysis it was assumed that no mixing occurred between the ablation
products in the inner inviscid region and the air products in the outer

inviscid region which results in a distinct interface (in terms of
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chemical species) between the two regions. He integrated the conserva-
tion equations for the air layer from the shock wave to the interface
and from the body to the interface. He iterated on the wall heat flux,
the blowing rate,vand the velocity and enthalpy profiles until he con-
verged on the enthalpy distribution and heat flux to the wall. It is
interesting to note that the blowing rate is an implicit part of his
solution and, for the conditions of interest in this analysis (U, ~15km sec,
altitude ~ 65 km), he calculated a blowing rate of 7.6 percent of free- |
stream mass flow rate. His results were for a spherical body of radius
256 cm, constructed of carbon phenolic ablative material. The solutions
to the inviscid governing equations converged very rapidly; however, since
the viscous region (which typically occupies about 10 percent of the shock
layer for the Reynolds numbers of interest) was neglected, then there was
no mechanism provided for the diffusion of the strongly absorbing carbon
atoms and ions into the air layer.

The first numerical solution to the exact Navier-Stokes equations
for the thin shock layer at the stagnation line, including radiative trans-
port, was presented by Rigdon, Dirling, and Thomas (1968). This analysis
included massive blowing (up to 10 percent) for air-to-air injection. In
1969 they extended the solution to massive blowing of ablation products
(Rigdon, Dirling, and Thomas, 1970), with blowing rates up to 20 percent.
The numerical procedure which they employed is computationally time con-
suming. They used an initial value forward integration scheme in which
they were required to adjust four initial conditions (temperature, tan-

gential velocity gradient, temperature gradient, and the shear),

evaluated at the stagnation point. These initial conditions were iterated
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until the two boundary conditions for both momentum and energy equations
were satisfied at the shock and at the body. In the ablation analysis
they were further required to satisfy the binary species continuity equa-
tion over the shock layer. If the same initial value forward integration
scheme is used, then this requires a guess for the elemental mass fractions
of the injected foreign material and its gradient at the stagnation point
in order to satisfy the boundary conditions at the shock wave and the
body. The net result is the requirement that one guess six coupled initial
conditions which are unknown apriori in order to satisfy the boundary
conditions.

From the results of their solution to the exact governing equations,
Rigdon et al. (1970) were able to make direct comparisons with the integral
results of Wilson and Hoshizaki (1969) and concluded that the polynomial
approximations which had worked so well for nonblowing were not sufficient
to describe the momentum equation solution in the presence of massive
blowing. Although differences existed in the radiation models (Rigdon et al.
(1970) used the SPECS code (see Thomas), whereas Wilson and Hoshizaki (1969)
used an updated version of RATRAP (see Wilson, 1967)), the factors of two
to four differences in the ablation layer thicknesses could not be explained
on the basis of radiation model differences.

Tn 1969 wWilson (1970) concluded that the approximate integral solution
to the momentum equation was inadequate for large mass injection and/or
the Reynolds numbers of interest. As mentioned previously, his treatment
of the energy and the species continuity equations was similar to that of
Howe and Viegas. He used Dorodnitsyn type of transformations (integral of
the density over physical distance) and similarity conditions to obtain

exact analytic solutions to the energy and species continuity equations.
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He attributes the momentum equation solution (see Wilson, 1969) to a
solution technique developed by Chou and Blake for a similar problem.
Upon performing an additional coordinate transformation which involves
viscosity and assuming that the density viscosity product is a constant
across the shock layer, Wilson (1970) developed the second-order differen-
tial equation. He subsequently differentiated the equation, which makes
it linear (in the second derivative), to obtain an exact analytical solu-
tion to the equation in terms of exponential integrals. Rather than
solve the momentum equation with an initial value technique as was done
by Howe and Viegas, Wilson employed a successive approximation algorithm
to all the analytical governing equations. In the successive approxima-
tion scheme, which is similar to the technique applied in the present
study, the distribution of properties are initially specified across the
shock layer and the governing equations are iterated until satisfactory
convergence is obtained.

wilson (1970) observed that with his formulated equations he was
unable to obtain a numerical solution to the fully viscous equations for
relatively large blowing rates (greater than 5 percent, approximately).
As previously mentioned, Wilson traced the problem to one on numerical
instability associated with taking the differences between exponentially

large numbers (greater than about elo)

, which were about the same order
of magnitude. Since the computer only carries about 8 to 16 significant
digits, then the resulting difference between these large numbers becomes
meaningless. Apparently, these exponentially large numbers occur in the
numerical solution in regions where the viscous effects become small

(Wilson observed the effect in the inner region near the wall for large

blowing) and part of the problem could be due to the loss in precisibn
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when one uses something like a Simpson's rule (Conte) to numerically
integrate under an exponential curve.

Wilson (1970) was able to circumrent the numerical precision ﬁroblem
for massive blowing by solving inviscid equations in the inner region
and the fully viscous equations at a somewhat arbitrary distance from the
body. The interface criteria was that the power to which e is raised
be less than 10.

In 1970, Smith, Suttles, Sullivan, and Graves presented a combined
flow field and ablation study of a blunt body entering the earth's atmos-
phere at interplanetary velocities. The analysis, which was motivated by
a study of a flight experiment to examine the radiation and matefials
response problems at hyperbolic entry velocities, yielded transient
ablator mass loss rate histories for a complete entry trajectory. The
results indicated that ablation rates from high-density phenolic nylon
reached a peak of about 0.055 g/cme—sec (10 percent of free-stream mass

flow rate) at the stagnation point of a 122-cm-diameter ellipsoid body of

:1 axis ratio. Smith, Suttles et al. examined the entire subsonic flow
region surrounding the blunt body by dividing it into three interacting
regions: an inviscid outer layer, a boundary layer, and a charring heat
shield. The inviscid outer layer flow was determined by a one~strip inte-
gral method with radiation developed by Suttles (1969). The inviscid flow
field and the ablation solution provided the boundary conditions for the
radiating boundary-layer computations. The boundary layer and the
ablation calculations were iterated until the heating rates and the
ablation rates converged. For the larger blowing rates the numerical
method for the solution of the boundary-layer equations was not suitable

and they adapted an integral procedure by Libby (1962) for the radiating
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boundary-layer solution. The boundary layer and the inviscid outer layer
solutions were joined by assuming a cubic variation for the elemental mass
fraction distribution within the boundary layer and by adjusting the edge
enthalpy condition.

One of the significant conclusions of Smith, Suttles et al. was that
the introduction of ablation products into the boundary layer did little
to attenuate the radiative flux to the wall. In their analysis they used
the RATRAP computer code developed by Wilson (1967), and they compared
their results with Chin and with Rigdon et al. (1969), who used‘different
radiative transport computer codes. Whereas Chin's solutions for a
7.6 percent blowing rate and Rigdon et al. (1969) solutions for a
20 percent blowing rate indicated reductions in the wall heat flux of
about 45 percent below the nonblowing rates, Smith, Suttles et al. calcu-
lated reductions of only about 22 percent. Part of this difference has
been traced, particularly in the case of Chin's results to differences in
the radiative transport models. However, Wilson and Hoshizaki (1969)
in their approximate integral approach were indicating radiative heat
flux reductions of 40 percent from nonblowing heat fluxes for 10 percent
blowing rates and of 60 percent for 20 percent blowing rates using the
RATRAP radiation code. Wilson's more recent results (Wilson, 1970), using
his improved momentum equation solution, have indicated much lower heat
flux reductions (only 18 percent) at blowing rates of 5 and 10 percent.
While there are differences in the free-stream conditions in the Wilson
and Hoshizaki (1969) and the Wilson (1970) studies, they do not appear
to be sufficient to account for the differences in the radiation blockage
effects in the two analyses. Apparently, the answer to these differences

must reside in part in the analytical and numerical treatments of the

governing flow equations.
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One of the questions which the present analysis will attempt to
answer is whether the approximate integral treatments of the governing
equations and/or "exact" numerical treatments of approximate systems of
equations can accurately define the flow properties required for the
radiation computations with and without blowing. The numerical technique
to be developed for the analysis of the coupled viscous, radiafing flow
along the stagnation line and including massive blowing is an implicit
finite difference scheme. Blottner has shown this approach to be compu-
tationally superior to initial value schemes for chemical nonequilibrium
stagnation line studies without blowing.

In the implicit method, the problem is treated as a two-point
boundary value problem in which boundary conditions are specified at the
shock and at the body. The entire shock layer is treated as viscous,
which requires no '"patching" of two or more solutions. The thin shock
layer equations which govern the viscous along the stagnation line (Ho
and Probstein) and which are exact thrdugh second order are solved at
discrete nodal points along the stagnation line by iteration through the
application of a method of successive approximations. Singularities do
not appear in the formulation since the viscous term takes effect as the
convective terms (mass flux) approach zero in the vicinity of the

stagnation point.
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ANALYSTS

Thin Shock Layer Equations

The governing equations for the steady-state flow of a viscous radia-
ting gas in the stagnation region of a blunt axisymmetric body at moderate-
to-high Reynolds numbers are given by Ho and Probstein and Scala. They
are:

Continuity:
—(r'p'u') + —K'p'v') = 0 (1)
X-momentum:

o'y’ g%; + K'p'y! %5; + K'p'u'v' = - gg; + 5§T<K'p' g;;) (2)

Y -momentum:

dv! dv! 2 op'
plul L K'p'v' —— - K'u' =K' = (3)
o ! o'

Species continuity:

3
x"

3 3
(I"Q'u’@i) + (K'T'D'V'ai) - - ayu(m'r'Ji,y)

ayt
+ ko) (5)
(1 =1,...,N species)

Primed symbols are used to denote dimensional quantities, unprimed

denote dimensionless quantities.
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In the body-oriented coordinate system shown in,Figure 3, the quantity

k', which is the coordinate stretching function, is defined by

k' =1 + K'y' (6a)

where

K' = K'(x) = % (6b)
b

and r satisfies the equation
dr' = k' sin 6, dx' + cos 6y dy' (6c)

The quantities qé,y, qﬁ)y, and. qﬁ}y are the heat fluxes in the
y'-direction due to conduction,diffusion and radiation, respectively.
Ji,y is the mass diffusion flux in the y'-direction and &i is the
net rate of production of the ith chemical species.

In comparison to the heat and mass diffusion fluxes in the y'-
direction, the corresponding fluxes in the x'-direction are generally
considered negligible (see Ho and Probstein) in the stagnation region.
These fluxes in the x'~direction are assumed to be negligible in the
present analysis also. The thin shock layer equations are the simpli-
fied boundary-layer equations (Navier~-Stokes) including the curvature
terms for the stagnation fegion. lThe equations are considered to be
accurate to the order (§$ Reys>- (see Ho and Probstein), where

plU! 1 S
Rey, = —f—?Eh, when radiation is not considered.

s
Stagnation Streamline Equations

At the stagnation line (x = 0), the conservation equations for the
thin shock layer reduce to ordinary differential equations upon expanding
the flow variables in the following power series (based on symmetry

considerations)
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(7)

and applying the geometry relations (eq. (6)), then taking the limit as

x — 0, The limiting forms of the governing equations for the stagnation

line flow become:

Continuity:

X-momentum:

2
d(kK
_(..ﬂ_). = «PKpa,

K d da da )
- — [ =] + Kpv — + pa“~ + Kpa
Rey . dy ( dy ) dy
Y -momentum:
av dp
pv et S —— -
dy dy

Energy:

2

Species continuity:

_ d, 2
Cov o = - (P,

ai _ afo»
Fev -d; - EEQ (qc:y * qD:.V + qR:Yﬂ

y) + ned)i

B

(10)

(11)

(12)
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where
_ [du
a = <d—x-> =0 (15)
Cal) = - 52_P>
B =5) (Bxe o (1k)

The foregoing conservation equations have been written in nondimen-

sional form from the following set of dimensionless quantities:

t H 1
_ X 5y LT

Xy YT = = K(x) = K'(x)R; K' = K N
Ry, b
ul vl .V." 1 pl
u,v,vj = _’_;:1; p = .p_'; P = 5
Uo‘o Poo PoUoo
1 1
h',H' a' . _ ®iBp
h,H = 12 5 q = =5 w; = = > (15)
Ua A Vs
Ji 1 k!
Js = H M= L; k = —
1 171 U.' k!
PV s s
D' p‘U'R' C'[J.'
Dyp = = Reyg = = T 25 Py = p' J
UgRy, Mg k

where the subscripts © and s vrefer to free-stream and post-shock

conditions, respectively.

Restrictions and Assumptions

The governing stagnation line equations are general equations and
are restricted only by the requirements that OS/Reys << 1 and that the
radiative heat flux in the x-direction are comparatively negligible. At
this point it is desirable to estaﬁlish the state of the gas and thé
diffusion and heat flux models to be used in the study. The following

pasic restrictions and assumptions are imposed on the governing equations:
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(1) The gas is in local thermodynamic and chemical equilibrium.

(2) Diffusion of the chemical species is governed by a binary
diffusion model.

(3) Radiative energy transport occurs within a one~-dimensional,
infinite planar slab (tangent slab).

Anderson indicates velocity and altitude limits for equilibrium and
nonequilibrium chemistry, and it is observed that for the conditions of
interest in this study, chemical equilibrium is considered to exist.
However, to date no detailed calculations which consider the ablation
products have been made to firmly establish this assumption.

The binary diffusion model, which assumes that the individual chemi-
cal species have the same mobility as the two chemical species which are
used to represent the binary diffusion process, has been assumed in all
previous radiation studies of thils problem.

For the blowing situation, it is assumed that all the numerous
chemical species of the ablation products can be represented by a single
chemical specie and all the chemical species of air can be represented
by the other single chemical specie to form the binary diffusion coef-
ficient. Rigdon et al. (1969) examined atomic carbon-atomic nitrogen
diffusion and atomic hydrogen-atomic nitrogen diffusion and concluded
that the actual choices of the two chemical species tc form the binary
diffusion coefficient did not appear to be critical in the solution. A
similar analysis of the effect of diffusion ccefficient on the radiative
heat fluxes will be made in this study.

Wilson (1970) indicated that he was considering a pseudo multi-
component diffusion analysis (bifurcation model, see Graves) in ﬁhich
the individual binary diffusion coefficients computed for each combina-

tion of two individual chemical species are statistically lumped to
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form an effective binary diffusion coéfficient; however, the calculations
have not been made to date.

The errors expected due to the tangent slab approximation have been
previously discussed in the review of the literature and are about
5 percent or less for this problem (see Kennet and Strack, Koh and
Hoshizaki, and Lasher). This approximation is made in RATRAP for the
computation of the heat flux term that appears in the governing energy
equation (eq. (11)).

Although additional assumptions, which are subsequently discussed,
are required with regard to boundary conditioﬁs and second-order transport
effects, the foregoing three assumptions are the most basic and restrictive
assumptions which are required in this analysis. There is no way to estab-
lish firmly the validity of these basic assumptions for this problem, beyond
the studies which have been previously cited, without introducing addi-
tional complexity to the calculations. However, it is anticipated that
the implicit finite difference scheme should lend itself readily (con-
ceptually) to both chemical nonequilibrium studies as demonstrated by
Blottner's (1970) analysis and to multicomponent diffusion studies (Graves).
Tt should be particularly useful for the nonequilibrium studies because
stability requirements are not as stringent in this approach as in explicit
forward integration schemes.

Tn order to uncouple the stagnation line solution from the remaining
subsonic field, it is necessary to assume the relationship between the
shock and the body curvatures at x = 0. In this analysis, as in most of
the prevalent analyses, it is assumed that the shock.and body are concen-

tric. The results of Suttles (1969) inviscid radiating analysis indicates

that the assumption is reasonable.
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Preheating of the ambient air upstream of the shock wave due to
radiation transport (precursor effects) is neglected. Smith, Hoshizaki,
aﬁd Lasher, and Rigdon et al. indicate that precursor effects begin to
become significant at velocities around 17 to 18 km/sec and above. Thus,
the present solutions, which employ the Rankine-Hugonoit conditions (see
Hayes and Probstein) for the discontinuous jump conditions across the
shock, will be restricted to velocities somewhat lower than this.

In the numerical solutions, unless otherwise specified, a Newtonian
pressure distribution (see Hayes and Probstein) is used to evaluate B,
the (éfg) term in the x-momentum equation, i.e., (§22> = -2.0.

2 x=0 T x? x=0
It should be noted that Wilson (1970) used a value of -3.0 which can lead
to a thinner shock layer in his calculations. This effect will be inves-
tigated in the present study.

The radiation transport computer code which is used in the radiation
computations is RATRAP, developed by Hoshizaki and Wilson (see Wilson, 1967),
which considers most of the primary radiating chemical species associated
with carbon, oxygen, nitrogen, and hydrogen mixtures. The detailed thermo-
dynamic and chemical composition calculations for equilibrium chemistry
are performed in the computer code FEMP, developed by Brown et al. FEMP
is included by Wilson as an integral part of RATRAP.

In the analysis, it is assumed that the transport properties for air
developed by Hansen apply for both air-to-air injection and ablation-
products-to-air injection. This assumption for the ablation products will
be superficially analyzed by perturbations in the pertinent transport prop-
erty (Prandtl number) to determine its effect. It should be noted that

Rigdon et al. (1969) ran two identical cases with the exception of pure
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air transport properties in one and the combined ablation products alr
transport properties in the other, and the resulting differences in the
radiative heat fluxes to the wall wers less than 1 percent.

The continuity and y-momentum equations (egs. (8) and (10)) are
unchanged when the foregoing assumptions are applied. The only perturbation

52p>

in the x-momentum equation (eq. (9)) is the (“g term arising from the

=/ x=0 agp
Newtonian (or specified) pressure distribution in which <S—§> will be
X~/ x=0

taken to be a constant in y 1in this analysis.
The heat Tlux terms in the energy equation (eq. (11)) can now be

defined by applying the binary diffusion and tangent slab approximations.

The conductive heat flux term is given by Fourier's law of heat conduction

_ k, dT!

T (16)

q, =
Coy
The multicomponent diffusion heat flux is given by Bird, Stewart, and

Lightfoot as

il _N
! - 1ot (<! o ') = 171
qD,y = Z hipi(vi v') Z hiJi (a7)
i i

~where 1 =1,...,N species.

For binary diffusion,

dots
J' = -p'D}  — (18)

For constant pressure (pressure varies about 2 percent across the

shock layer for this study),

dag _ (%) gt |
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Equations (17), (18), and (19) can be combined to yield

q]'),y = -[O'D]‘_Q Z hy ?%_{]25_’ | (20)
The term in brackets of equation (20) has been defined by Hansen to
be the "reactive" conductivity, kg, which yields a form of Fourier's law
of heat conduction that describes the energy transport by binary diffusion.
Hansen has computed and tabulated kp and the "lumped" or "effective"
conductivity k = ké + kﬁ for air system for temperatures up to 15,0000 K
and pressures up to 100 atmospheres.

The radiative heat flux equation for the heat flux at a point within

o one-dimensional slab is developed in the Appendix. That equation is

( ) ) y.! 4 y| g
q'y'=—2n’/ f aBE([ o, de'}ag’
Jo 1Jo vV 2 S v
y! =
+[ s a,VBVEZ<f o, de'|ag'|dv (21)
. 1 \ y.l

y

v’ -
where Eg(Jf ay, d€> is the exponential defined by
WV E!
1 -t/u
E, () =f e g
J 0

and is described by Kourganoff. B, is the Planck function and o, is
the modified linear absorption coefficient which is a function of the
temperature, pressure, and the chemical species number densities within
the slab. The equation is valid for a non-gray self-absorbing gas. The
absorption coefficients and radiative heat fluxés are computed in the
radiation computer code RATRAP developed by Hoshizaki and Wilson (see
Wilson, 1967). The radiation model takgs into account both continuum and

atomic line radiation exchange in a slab of non-uniform temperature.
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The simplified energy equation can now be written as

2,
qH'" N alk®ag o) '
af .2 dT:} i R,y (22)

where is given by equation (21). The combined conduction-

1
qR,y’
diffusion heat flux term can be written in terms of total enthalpy from
the following relations for static, total enthalpy, and "effective"

Prandtl number:

dh' = c a1’
. (23)
H' = h' + LA
2
clul
Pr= I (24)
to yield
o, , du’ d f;'eu'/dH' , av’ a, 2,
Kep'v = - - v —]| - ——T(” qR ) (25)
dy" dy'L Pr \dy dy dy %%

Upon applying the nondimensional relations defined in equation (14) and

rearranging equation (25), the dimensionless energy equation becomes

2
1 dfspdE) o 1 4L}, .2
Reys dy(Pr dy> “PTE T Rey, dy<v dy) t Ry (26)

The species continuity equation (12) undergoes considerable modifi-
cation because of the binary diffusion and equilibrium chemistry assump-
tions. The species continuity equation was given by
dovy

oV — =

- 2
dy dy

k2 ) + Ky (12)

Under the local chemical equilibrium assumption, the volumetric rate

of production of species 1 is indeterminate. However,  the fact that
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the net rate of production of the mass fractions of the chemical elements
is zero can be utilized to yield a tractable solution to the species con-
tinuity equation. Assuming that the binary diffusion law holds for the

mass fractions, 1.e.,
~ (27)

where the barred quantities refer to elemental mass fractions, the species

continuity and diffusion equations can be combined to yield the elemental

diffusion equation
dos docs
4 (g2 1) _ Py 2L =0 (28)
dy

The dimensional binary diffusion coefficient is given by Hirschfelder

et al. s
2M.M.
D!. = 0.002628 = J (29)
1J p'(d' )Q(l:l)*
ij ij
where
1 = ; 1 1
ij g(ci Oj)
1,1)* !
Qg.’l) Y
ij el
ij.
k!
and
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“1i
The molecular constants oi and * are tabulated by Svehla and are

given in Table 1 for the chemical species of interest. The reduced
. . 1,1 )% .
collision integral, Q£2’ ) is based on the Lennard-Jones (12-6) poten-

tial and is taken from Hirschfelder et al. as a function of the nondimen-

sional T?j which is given by
. = T'
iJ 7 7Ty
iJ
<3k'>

For the binary diffusion model assumption, the individual elements
of the ablation products and of the air which passes through the shock are
congidered to diffuse in the same respective manner as the two chemical
speciles (one for the ablation products, the other for the air) used to
form the binary diffusion coefficient. Thus, a distinction need not be
made between the individual elements but only between the total mass
fractions which represent the ablation products and the remaining mass
fraction which represents the air products. Since the total mass fraction
of all the elements (and, for that matter, the chemical species) must
equal unity at any point,.then one need solve only one elemental diffusion

equation which is given by

3 fe2op . TEY | 20y BE _
dy(K PD12 dy) K=pv 3y 0 (50)

where &@ is the total mass fraction of the elements of the ablation
products. The total mass fraction of the air products, aA, is then com-

puted by

G’A=l-§F (51)
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The mass fractions of the individual elements are then calculated by the

equations
Gy = 0%, ing * Gady,m i = 1,N (32)
where Ei inj is the specified elemental mass fraction of the ith ele-
2

ment of the ablation products that is injected at the wall and Ei’w is
the same ith element that basses through the shock layer. The density
and the individual chemical species are then calculated from an equation
of state by the energy minimization subroutine (FEMP) where
p = pla;,h,p) ,
(33)
a; = qi(aj,h,p)

For viscous radiating stagnation line analyses, the resulting
governing equations (8), (9), (10), (26), and (28) are the most general
system of equations that are treated in the literature. These are the
exact thin shock layer equations (for the tangent slab and binary diffusion
assumptions) for the stagnation line which are solved in this analysis.

As previously mentioned, Rigdon et al. (1968) and (1969) have applied
initial value techniques for the numerical solution to this system of
equations (with the exceptions that they assume constant pressure across
the shock layer and neglect the curvature terms) for the massive blowing

problem.

Transformed Equations

Before proceeding to the development of the solution technique, it
is desirable to transform the governing eguations by a change in independ-

ent variable from y to 1, where
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This transformation has the important effect of fixing the shock boundary
at 1= 1. The‘inclusion of density in the transformation gives, for a
fixed nodal spacing in n, a finer resolution on a physical scale, Y,
at points near the body and within the boundary layer where conditions
are rapidly changing.

The transformed system of equations become:

Continuity:
d(s%v)
—————t = D8K
o Bra (35)
X-momentum:
(e ). w0y 98 _ 082 + Kova = -p (36)
Rey ® dn an 5 dn
Y-momentum:
L. oy (37)
an an
Energy:
an\ Pr_ an Is an _ an\Pr "’ Ysan' 9R,n

Elemental diffusion:

i <n2p2D d—a-F—> + 6@PV & =0 (39 )

an 12 gan

Equation of state:

p = p(a;,h,5p) 40)

The reader is cautioned that the normal velocity, v, has been

redefined as negative in the positive ¥y or 1 direction in the

above equations. This change in no way affects the solution to the
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equations since the boundary conditions, as will subsequently be discussed,

have been appropriately modified to reflect this change. The primary

reason for the change in the sign of v is to aid future users of the
computer program to understand the signs on the equations as they are
programed. In programing the governing equations, the author chose to
define velocities in the direction of the free-stream flow (negative
y-direction) as positive. The flow field coordinate system for the stag-
nation line in the transformed coordinates is shown in Figure L.

Eta is specified as zero at the body and as unity at the shock. The
normalizing parameter, 8, is an unknown in the problem which is obtained
from the solution of the continuity equation (35) and is given by the

relation

~(sZov), + (KPov)g

1
zu/\ Ka dn

0

Boundary Conditions

The subsonic flow field in the nose region is governed by elliptic
equations; consequently, the stagnation streamline solution is influenced

by the flow within the entire subsonic region. However, this influence

only enters in the g term, i.e., <§f§)
ox x=0

tion (36) and in the curvature of the shock wave which provides the

in the x-momentum equa-

boundary condition for the tangential velocity gradient, as at the shock

wave. TFor a shock wave and body which are concentric, the Rankin-Hugonoit
2
ko)
relations yield the following relation between <——§> and the velocity
x=0

gradient, ag (see Hayes and Probstein)
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sz |
1
B=-l— =2<1 -—->a§ zzag &o)
Ox“/ x=0 Pyq
Newtonian impact theory predicts (see Hayes and Probstein)
82p>
— = -2.0 L3)
<8x2 x=0

thus,

ol
Q/
™

2\1/2
g = <‘ = _5__2_> = 1.0

With B and ag specified, the stagnation streamiine problem
becomes a two-point boundary value problem, where conditions are specified
at the shock wave and at the body. The boundary conditions necessary to
solve the transformed conservation equations for the flow of a viscous
radiating gas with foreign species injection, where the chemical species
are in local thermodynamic equilibrium are:

At the body surface (wall), n =0 (y = 0):

a = g, = 0 W‘

pv = (pv)

p =1, ~ pg + 2ev?), - ) ()
H = Hy

Ei = Ei,inj(and &%,=1J i=1,...,N elements

~

where the &@ = 1 boundary condition applies for condition of strong

blowing.
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At the shock wave, N =1 (y =yg):

(45)

E.:ELm(mm &F=o) i=ly.”MeLmamsJ

where aﬁ,inj is the mass fraction of element i which is injected at
the wall, and Ei,w is the mass fraction of element 1 which.passes
through the shock wave from the free stream. Conditions immediately
behind the normal shock are computed from Rankine-Hugonoit relations.

Heat fluxes across the slab boundaries are assumed to be zero, i.e., there

is no precursor heating of the free stream by the shock layer and no radia-

tion from the body into the shock layer.

Numerical Solution

The finite difference approximations to the governing equations
(35) to (39) and the procedure for the numerical solution to this sys-
tem.of equations is developed in this section.  The equations are |
wiitten in-finite difference form for a network of N equally spaced
(in 1) nodal points between the body (n = 1) and the shock (n = N)
which are shown in Figure 5. For most of the calculations, 21 nodal
points are used. The overall numerical solution technique is iteration.
Profiles and parameters are assumed initially for each nodal point
across the shock layer. The governing finite difference equations are
then solved sequentially, using the most recent vaiues of the profile

parameters.until satisfactory convergence is obtained at each nodal

- point.
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Finite Difference Approximations

Either two- or three-point finite difference formulas are used to
numerically differentiate and integrate the governing differential equa-
tions. Where possible, three-point central differences are employed
since they are accurate (at a particular nodal point) to order (An)2
where A7 1is the distance between points, whereas two-point differences
are accurate only to order A7n (see, e.g., Conte or Crandall). Two-
point windward differences (with the flow) are employed for the convec-
tive terms where dictated by stability requirements of particular
governing equations. The stability requirements are discussed in the
Results and Discussion chapter.

The tabulation of the finite difference formulas that are employed
to approximate the derivatives is given below (see, e.g., Conte or
Crandall for the development). The formulas are valid for equally
spaced increments in Am.

The central differences formulas are:

{.df _ —fl’l"'l + fn+l ()4-6 )
\an 2 AN %
g

d°f fp-1 - 2fy + fyig
5) = 5 (46b)

\dn"/p (an)

3 ~cnfp-1 - (en-1 - cp+1)fn + cpf
[?ﬁ(CfE] _ n n - AT]n 1/in nin+l (h6c)
n

an

l:d (\c df§] _ (epoy + ep)fpay = (epoy + 2¢y + cpyq)fn + (o + cpyy)fny
an 2(an)?

n

(464)

where ¢ and f are arbitrary functions.
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In developing equation (46d), it has been assumed that c varies
linearly between nodal points.
The windward difference formulas are either forward or backward
differences, depending on the direction of the flow. If the mass flux,
pv, is positive (toward the body), forward differences are taken for the
convective terms, and if pv is negative, backward differences are taken.

The formulas are:

If (QV)n > 0,

f - f
af n+l n
(pV aﬁ) = (pv)n< A ) <u7)
n
If (pv)n < 0,
ae\ £, -f _
<pv aﬁ)n = (pv)n< -lligrﬂ_;> (48)

Numerical integration is performed by the Simpson's rule approxi-
mation (Crandall) over parabolic sections of fhe profiles. The finite
differences equations used in performing the quadrature over the interval

from nn to Moy and over the full interval from nn to Mo 8re:

0 _
n+l AN w
/:] £(n)an 1—2[:5fn +8f 41 - fn+2:l

T

and (49)

4o A7)
J/; £(n)an 3 N y

n -




39
Initial Profiles

For the general case, the following profiles are initially assumed:

wﬁ)=@ﬂw+&wg-(w&]f (502)
p(n) = pg + 3(ev2)4(1 - ) (500)
a(n) = an (50¢)

S

h(n) = h_+ (hg - h )N (504)
dp(n) = (@), (1 - n) (50e)
p(n) = p(x;(n),p(n),h(n)) (50f)

The density is computed in FEMP for a gas mixture in chemical equilibrium.
A1l other quantities appearing on the right-hand side of the initial pro-
file equations are available either from the input boundary conditions or
they are computed from Rankine-Hugonoit relations for the normal shock.
The scale factor K =1+ Ky =1+ KB\/pn %9 which, for large
Reynolds numbers, typically is taken to be aoconstant of unity across
the shock layer (Ho and Probstein) has been retained in the governing
equations for this analysis. While k exhibits only weak variations
across the shock layer (for the typical cases of interest in this analy-
sis Kk varies from about 1.0 to 1.02 from the body to the shock for no
blowing and from about 1.0 to 1.1 from the body to the shock for strong

blowing (20 percent of (pv)s), the computational time required to

generate K 1is insignificant in this problem. However, an initial



value for the transformed shock displacement, 8, is required as a
consequence of retaining the k. The physical shock displacement dis-

tance is correlated by Inouye to be

y.l
for no blowing. Since £ SDék/q %g, then for a constant shock layer
) R

b
density of pé

5 =~ 0.78
For moderate blowing,
5~ 1 (51)

which is the initial value assumed in this analysis.

This completes the statement of the problem of determining the
initial profiles for the general case. The appropriate boundary condi-
tions and initial profiles for special cases of interest, such as no
blowing or air-to-air injection, are covered in the subsequent dis-
cussion of these special cases.

Solution Procedure and Finite Difference Equations

With the assumed initial profiles and parameters (egs. (50) and (51)),
the conservation equations are solved by successive iteration. The
coupled system of equations are solved in the following sequence:
continuity, y-momentum, elemental continuity, x-momentum, energy, and
equation of state. The most recent values of the profile parameters
and & are used in the computations. The density distribution is
necessary to solve the governing differential equations. After these

equations have been solved, updated values of density are computed from
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the equation of state which is compared with the previous density values
at each nodal point. The entire sequence through the governing equations
is repeated with the new density distribution until two successive passes
yield nearly identical (within 1 or 2 percent ) density values at corre-
sponding nodal points. The flow diagram which illustrates the solution
procedure is shown in Figure 6.

With the distribution for the tangential velocity gradient and the
scale factor k(n), the continuity equation (35) is numerically inte-
grated by Simpson's rule (eq. (49)) to give the updated shock displace-

ment distance, ©B:

5 = kil & (52)

and the mass flux distribution ev(n):

o [
sSov(n) =28 [ radn+ (ev), (53)
0]
The velocity profile, which is required in the solution of the
y-momentum equation is computed from the previous density distribution,

o(n), and the updated mass flux distribution, ov(7n), namely

_ pv(n)
p(n)

v(n) (54)

The y-momentum equation (33) is numerically integrated by Simpson's

rule (eq. (45)) to give the pressure distribution p(n):
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1
d
pM)=f ov — dn + pg (55)
Jn an

The pv(n) and v(n) profiles are tabulated from the continuity

equation solution and a central difference numerical differentiation

av(n)

scheme (eq. (46a)) gives T at the N-2 points within the shock
)

av(n
ay

layer. The values of at the body and the shock boundaries are
obtained from two-point forward and backward difference approximations,
respectively.

The elemental diffusion equation (39) is cast in finite difference
form by using the central difference formula (eq. (46d)) for the second
derivative diffusion term and the windward difference equations (( 47)

and (48)) for the first derivative convective term. The resulting equa-

tions are:

i

For n = 1,

(0p)y =1 (562.)
For n = 2,...,N=1,

[(ngpgblg)n_l + (+20%Dy,), - 25 (an) (kPov), (1 - SIGN):I(&F )got
22 22 22

- [("‘ P Dyp)p g * 2(FP DY)y (P Do)y

+ 25 (An) (kv ), (1 - SIGN)] (Ep)y + [(ngpenlg)n + (520D 5 )pay

+ 25 (Aﬂ)(ﬁgpv)n(SIGNﬂ i)y = O (560)



b3

For n =N,

Gf’F )N =0 (560)
where
SIGN = O if (pv)n <0
and
SIGN = 1 if (pv), >0

The formulation results in a banded (tridiagonal) matrix system of

equations of the form

B C O .. 0 (&'F)l Dy

Ap B OCp - 0 G Dy

0 Az Bg 05 ... 0 (al?)3 _ §? (57)
0 R Agar Byl Cne (p )y Dy.1

_9 R 0 Ay By (dp Iy Dy

where A,, By, and C, are the coefficients of the Ep)n-1> @pdns
and (af)n+l terms, respectively,.and D, are the terms appearing on
the right-hand side in equation (56). At the wall boundary, n = 1,

the coefficients are Bl =1, C) =0, D3 =1 and at the shock boundary,
n = N, the coefficients are Ay =0, By =1, Dy = 0. The system of
equations is easily solved by Potters' method, which is a form of
Gaussian elimination that is efficient for solving a banded matrix system
of equations (see Potters andConte). The solution to equation (56)
yields the total mass fraction distribution, at N nodal points, of the

ablation products, subject to the constraint that 0 < (&f)n's 1. The
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mass fractions of the individual air and ablation product elements are
then computed from equations (31) and (32).

The transport properties, p and P, required in the solutions to
the x-momentum and energy equations are obtained from a tabular lookup
as functions of the temperature, calculated in the FEMP subroutine, and
the pressure, obtained in the y-momentum equation solution.

The x-momentum equation (36) is next solved. The equation is cast
in finite difference form using the central difference expressions given
by equation (46) to approximate the first- and second-order derivatives.
Since the equation is nonlinear in the velocity gradient, a, an iterative
procedure is required for its solution. A quasi-linearization approach
(see Bellman and Kalaba) is employed which generatés the solution by a
rapidly converging iteration.

The x-momentum equation is quasi-linearized by the following tech-

nique: At a given nodal point, let

[J”T ] [au-n NCON a(i—lT P CEONCY
. 2 . .
- I:a(l_lil + l:a(l) - a(l_lﬂg (58)

where the superscripts i and i-1 refer to the values of a(n) at
the ith and i-1lth iterations, respectively.

Upon assuming that
. . o2
1im [a(l)-a(l DT 50 (59)
i o

the x-momentum equation becomes linear in a(i)(n) where

[a(iﬂe -~ pali-ly(d) E(HT 2 1w (60)
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Combining the finite difference formula for the derivatives
(eq. (46)) and equation (60) yields the finite difference form of the
x-momentum equation:

For n =1,

1) 2o (61a)

For n=2,...,N-1,

(02v)y  (sedp[(Pdng + )\ 1), Ql}a(i-lﬂ
25 (Aan) 26ReyS(AT])2 n-1 n

(k0)n[(Pr)n-1 + 2(Pu)y + (Ph)n41 ] (1)
n

- (va)n +
28Rey 4 (A1)2

(k0v), . (np)n[(pu)n + (p“)n+l] 5 (1)

25 (An) 2BRey  (A1)° n+l
[ (i_lzl 2 (61b)
=B +{(pPla
. n
For n =N,
(1) _ a (61e)
&y s

The subscript n refers to the nth nodal point in the shock layer and
the superscript 1 refers to the ith iterative value of a.

For a linear iteration on the velocity gradient, a, let

all) = al-d 4 e (62)

where €, 1is the error in the ith iteration at the nth nodal point.

" Substituting equation (62) for aéi) into equation (6l) yields a tri-

diagonal matrix system of equations of the form:



Anfpe1 * Bun F Cpfpa = Dy no= 2,01 (€3)

where the Ap, By, and C, are the coefficients of the a _

and aﬁiﬁ terms, respectively of equation (61b) for n = 2,...,N-1.
L

The term 55 is given by

n-n ‘n“n+l

| ; 2 . . .
55 =B + D{%(l—lz} - Anaéfil) -pa) ¢ o (11) (64)

for n=2,...,N-1. Since the boundary conditions are specified at the

body and at the shock, then the equations at the boundaries become:

1)

It
i
]
1

0 (or A4 0 and By

€1 C1 =D1

(65)

€

0 and By =1)

N =0 (or Ay = Cy = Dy

The matrix system of equations (64) and (66) is solved by Potters'

method and is iterated until
FIEREA

In this study, this assigned convergence interval, T, is 0.0l.

The total enthalpy distribution is obtained from the tridiagonal
matrix solution to the energy equation (38) in a single pass. As pre-
viously discussed, the total enthalpy derivative for the combined convec-
tive and diffusive heat flux terms is included explicitly in the matrix
solution for the Hn's, whereas the radiative flux term is computed using
the enthalpy profile of the previous iteration and the updated pressure
and elemental mass fraction profiles from the y-momentum and species

diffusion equation solutions, respectively. . The three-point central
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difference formulas for the derivatives (eq. (46)) yield the following

finite difference form of the energy equation:

For n = 1,
H =Hy
For n=2,...,N-1,
2 2 I
1 KTpu + (K [o]0) _ 6Rey(K2pv)n 0 N
2|1\ P P { 7=
2 An r /n-1 \r /n 2 A1 J
2 2 2
) 1 <K pu> + E(K pu) N <F~ pu> H_
2(An)2 Pr /n-1 \ Fr /n Py /n+l
2 2
K™p K=p
5 < u) ' < H> ) éEEX(Kepv)n Hn+l
o an2|\ Fr /n Pr /nel| 27
a (k% av + BRey «2q )
an\ P, dn K R,M
g n
For n =N,

~ (662)

(66b)

(66¢c)

The derivative terms appearing on the right-hand side of equation (66b)

are evaluated by the central differences formulas (eq. (46)).

The density distribution which was required in the solution to the

governing differential equations can now be updated by the equation of

state

Py = Pp [(ai )n,pn,hr]

(67)

at each nodal point. The updated values of pn provide the mechanism

for iterating the governing equations. Upon setting P, equal to either
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the newly computed values or some percentage of the old values of density,
péi_l) “and the new values p(i) (in order to speed convergence of the
flow field solution), the entire procedure, beginning with the continuity
equation, can be repeated until »

o(1) _ ,(i-1)

a = < e ¥ n . (68)
pr(ll)

The interval of convergence € used in this analysis is 0.02 or less.

Salient Features of the Implicit Finite Difference Algorithm

The implicit finite difference algorithm developed in the previous
section is really quite simple, yet sufficiently flexible to treat the
viscous radiating shock layer problem.

With the two- and three-point difference approximations for equally
spaced increments, the governing thin shock layer equations can be made
amenable to numerical solution without making unduly restrictive assump-
tions for the purpose of yielding analytically tractable solutions. The
tridiagonal matrix system of equations which results can be efficiently
solved by Potters' method, which requires only about 3n computations. as
contrasted to the (n)2 computations required for a full matrix
inversion.

Simple linear and quadratic profiles can be initially assumed as
functions of the boundary conditions. Or, one may take advantage of
prior knowledge of the solution behavior to begin with improved estimates
of the profile parameters (i.g., read in the parameter values at each
nodal point).

No singularities appear in the governing finite difference equations

gince ‘division by pv 1is not required in the present formulation of the
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problem. In the region where DV (or v) approaches zero, the diffusion
terms become important in the elemental diffusion equation (eq. (56)).
Likewise, the viscous terms predominate in the x-momentum and energy
equations (egs. (61) and (66)) near ov = O.

The method is an implicit scheme in which the unknown quantities at
point n are calculated asvfunctions of conditions at surréunding points
as well as conditions at the point itself. This is in contrast to
explicit schemes where the unknown quantities at a point are evaluated
solely as a function of conditions at a former point (such as the func-
tion and its derivative being evaluated at the n-1 point and then
extrapolated to the nth point to determine the unknown function). For a
given step size, implicit schemes are unconditionally stable (bounded ),
whereas explicit schemes may or may not be stable.

Tn the present approach to the two-point boundary value problem,
the boundary conditions are specified at the shock wave and at the body.
Since the matrix system of equations (for a particular governing equation)
‘is completely coupled across the entire shock layer (2,5., note the
appearance of (&F)n in the n-1th, nth, and n+lth elemental diffusion
equations (eq. (56)) and the known boundary conditions are included in
the system of equations, then the computed distributions between eéch
endpoint are bounded and are monotonic in behavior (with the exception
of the pressure, which reaches a maximum at the stagnatioﬁ point). Thus,
one has near-maximum information about the behavior and levels of the
unknowns which are to be computed and also a high degree of assurance
that the computer run will not be aborted because of overflow (numbers

larger than the computer will accept).
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Perhaps one of the biggésf advantages of the present approach over
initial vélue methods resides in the limited number of unknown quantities
which must be evaluated in order first to satisfy the governing differ-
entiaitequations and, secqnd, to provide the necessary inputs for the
radiative flux computations. In the present method, the unknowns are
only the properties themselves (pv, p, etc.) at each nodal point about
which one has maximum information as to the bounds on the values and
the general behavior of the properties across the shock layer. In con-
trast, consider the computations which must be performed in an initial
value treatmeht of the problem (such as Runge-Kutta forﬁard integration).
In the initial value approach for the solution of a single governing
equation, the unknown property and also its derivative'must be computed.
Generally, little information is available as to theAbehavior of the
derivative across the shock layer. As a consequence, the function or
derivative changes from point to point are generally closely controlled,
by restricting the step size, to maintain stability as the calculations
proceed downstream.

Yet there are several clear advantages of the initial value treat-
ment of the complete system of coupled governing equations. If all
boundary conditions are matched at the downstream side in the iterative
process, then, because of the strict stability requirements, one is
reasonably assured that all governing equations have been satisfied
both locally and globally, and the detailed distribﬁtions are sufficient
for the radiation>computations. Whereas, in the iﬁplicit finite differ-
ence approach, there is no assurance apriori that the coupled system of
equations will converge in the overall iteration scheme. It may be |

possible that two equations (935., the continuity and the x-momentum)
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may interact with one another such that the pv and a profiles
oscillate back aﬁd forth and never converge. Further, there is no con-
trolled step size from stability considerations. Thus, care must be
exercised in inputting the nodal spacing which will satisfy the govern-
ing equations both locally and globally. An indication of the required
nodal spacing can be obtained by a cursory examination of stability
requirements for the individual equations and by decreasing the step size
until the numerical solutions become asymptotic. These aspects, along
with the convergence behavior of the overall solution, are examined in

the Results and Discussion chapter which follows.
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RESULTS AND DISCUSSION

In this chapter the numerical results obtained from the solution td
ﬁhe governing equations developed in the preyious chapter are presented
and discussed. The solutions which were obtained in the various phases
in the development of the method are presented in the sequence of their
development, beginning with the constant density solutions and continu-
ing through the viscous radiating shock layer solutions with ablation
products injection. Results are compared with results from existing
approaches to the radiating flow field problem.

All numerical solutions were generated on a Control Data Corporation

CDC 6600 digital computer.

Constant Density Solutions

The results of the constant density study are presented in this
section. The convergence behavior of the solution for the reduced
system of equations that govern the flow of a constant density gas is
examined. Selected solutions are shown for inviscid and viscous flows.
Results are presented for a range of blowing rateé and Reynolds numbers.

The‘overall solution to the governing equations is by iteration
until satisfactory convergence is obtained on the density. For a
constant density assumption (and a viscosity and Reynolds number speci-
fication required for the viscous flow solution), the continuity,
x-momentum, and y-momentum equations can be solved independent of the
energy and diffusion equations. Naturally, the density is not iterated;
however, the remaining system of equations (continuity and x- and
y-momentum) are still coupled and, in the present approach, an iterative

scheme is required for their solution as indicated by Figure 6. The
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equations are solved "one at a time" by a method successive approxima-
tions until the éomputed values of pv, a, and p for two consecutive
iterations are within a specified accuracy at each nodal point. The
constant density solutions thus serve a twofold purpose. First, the
solutions provide a most fundamental means of studyiﬁg the convergence
behavior of the coupled system of equations for a wide variety of'blow-
ing rates and Reynolds numbers and thus permits an assessmént'of the
adequacy of the successive approximation iterative scheme. Second, it
provides an indication as to the nodal spacing requirements for the
implicit finite difference equations formulation.

Several cases were run for a range of typical blowing rates
((pv),, = 0 to -0.2), Reynolds numbers (Reyg = 1 to 10°), and nodal
spacings (N = 11 to 101) for a constant density of 20. and a viscosity
of 1.0. All solutions required about three or four iterations and a
total 2 to 4 seconds of computer time. No discernible differences were
observed in the computed pv, 7p, and a profilesor & for N = 11
and N = 101. It was observed that the computer times were a function
on the number of nodal points (the 2- and 4-second run times were for
the N =11 and N = 101 cases, respectively), whereas increasing the
blowing rates or Reynolds number had little or no effect on the com-
puter run times.

The convergence behavior of a typical constant density is shown in
figure 7 where the successive solutionsAto the continuity and x-momentum
equations are plotted. The solution is for a constant density of 20.,
a constant viscosity of 1.0, a typical Reynolds number of 105, and & -

bléwing rate at the wall of -0.2. Twenty-oné nodal points were used in
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the computations. Initial linear profiles for pv(n) were assumed.
The accuracy criteria required that the computedbvalues of pv(n),

p(n), and a(n) for two consecutive iterations be within 0.0l at each
nodal point (i.e., pvéi) - pv)éi_l) < 0.01 ¥ n). This accuracy
criterion was maintained throughout the entire course of the present

. study of viscous radiating flows. As indicated by the legend in |
Figure 7, the solution converged in four iterations which required
about 3 seconds of computer time.

Three constant density solutions for no blowing are shown in
Figure 8: an inviscid case and two viscous cases for Reynolds numbers
of 1 and 10°. The Reyg = lO5 case is typical of the Reynolds number
of interest, whereas the Reyg = 1 is actually outside the limits of
applicability of the thin shock layer equations and is shown merely to
demonstrate that the present approach yields solutions over the entire
range of Reynolds numbers. The effect of the boundary layer and its
extent can be seen in Figure 8(a). TFor inviscid flow there is no
boundary layer and a nonzero veloclty gradient exists at the wall ﬁhich,

from equation (36), is given by aq = \/B/pl. For the Reyg = 100

case, most of the shock layer is inviscid, with only a thin boundary
layer present near the wall (to 7N = 0.03) where the velocity gradient
slope in y (i.e., da/dy) is a maximum, whereas for the Reyg =1
case, the entire shock layer is viscous and no abrupt changes in da/dy
are observed. The plot in Figure 8(b) indicates that there is little
difference in the mass flux distributions in the inviscid and

Reyg = lO5 cases. Also shown in thé figure are the transformed shock

layer thicknesses, & for the three cases. In the inviscid case, the
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stagnation line énalysis yielded‘a value fér & of 0.796, which is
close to the value correlated by Inouye (& - 0.78) from inviscid
analyses for the entire subsonic flow field surrounding a spherical
body. In the ReyS = lO5 case, the shock laYer thickness, & is
about 2 percent greéter than that for the inviscid case, whereas for
the Reyg = 1 case, the shock layer thickness increased about
25 percent. |

The influence of the blowing rate on the velocity gradient and
the shock layer thickness, yg, for a constant density is shown in
FPigure O where a 1is plotted in the physical coordinate system. The
figure indicates that the inner flow region from the body to the stag-
nation point (y - (y)pv=0 ~ 0.041) is drastically modified due to
blowing but that the inviscid outer flow is Virﬁually unaffected by
the blowing rate. For the constant density model, the shock wave
simply moves outward from the body as the blowing rate increases while
the inviscid outer flow retains the same character independent of the
blowing rate.

The constant density results demonstrate that, for a wide range
of blowing rates and Reynolds numbers, the solution to the flow equa-
tions converges in a minimum nﬁmber of iterations, the nodal spacing
requirements are indeed moderate, and the computational times are
reasonably short. With this knowledge, the behavior of the overall

solution with the variable density iteration can now be examined.

Non-Radiating Air Solutions

The overall convergence of the flow solution for a variable density

is examined in this section for an equilibrium air-gas mixture without
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radiation. Solutions for both non-blowing and the blowing of air into
air are presented. The air model consists of elemental mass fractions
of 0.78 nitrogen and 0.22 oxygen.

The development of stability criteria is diffiéult even for the
simplest of equations. For the coupled system of nonlinear equations
which are solved in this study, it becomes necessary to rely oﬁ the
behavior of the numerical solution in order to obtain informatioh of the
overall stability and convergence behavior of the solution. The results
of the information are reflected in the logic presented in the flow
diagram for the overall solution procedure shown in Figure 6. It should
be emphasized that Figure 6 represents the results of the stability
study which is used in all subsequent studies. The numerical results
which led to this particular iterative procedure for the variable den-
sity solutions are discussed below.

The solutions to be presented below are for the following free-

stream conditions unless otherwise noted.

Ul = 14%.6 km/sec
D, = 1.6 X 10'4 atmos
p! =2.38 x 10™7 gm/cmd

Rg = 3h2.7 m

It was observed_in the numerical solution that major oscillation
occurred in the enthalpy and the density, particularly in the viscous
region of the flow, as the iterative procedure progressed in time.
These enthalpy oscillations are shown in figure 10, which is a plot of

the calculated enthalpies at the first three nodal points adjacent to
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the wall and within the shock layer (Note that Hy = H = 0.1 and is
constant. ) versus iteration number, where one iteration represents one
complete pass through the governing squations. From the figure it can
be seen that the amplitudes of the oscillations generally decrease with
7 and, while it is not shown here, it was observed that after about
five iterations the enthalpy values had converged beyond 1 = 0.3.
However, the solutions near the wall did not converge but merely contin-
ued to oscillate even after thirty iterations.

The density profiles exhibited a similar oscillatory behavior as
the enthalpy profiles but in an inverse fashion (i.e., an overprediction
of the enthalpy led to an underprediction of the density). This is
because there is a strong inverse coupling between the density and the
enthalpy in the equation of state. The equation of state for air'has
been correlated by Smith, G. L. (see Garrett, Smith, and Perkins) in
the form p « pahb, where a and Db are positive exponents. Since
p is nearly constant, then an overprediction of the enthalpy obtained
in the energy egquation is a corresponding underpredictiop of the density
from the equation of state and vice versa. It is possible to get iﬁto
a resonant computing mode in which the density and the enthalpy oscil-
late back and forth and can be slowly convergent or even divergenf.

From the results it was not clear that the solution was divergent;
however, it was apparent that if it was converging near the wall it was
prohibitively slow.

Since the calculations appear to be oscillating about the solution,
then by proper damping of the calculated quantities it is possible to
speed convergence. Fox has discussed the method of underrelaxation

whereby the quantity(s) which are highly oscillatory are weighted (or
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damped) before they are used iﬁ‘subSeduent calculations. It was foﬁnd
that by weighting the enthalpy and the density profiles by a certain
percentage of their former value and their newly calculated values,
rapid convergence of the overall solution could be obtained. The
Weighted values of the enthalpy and the density at each nodal point are

computed from the following relations:

(HDAMP Jh (l Dy - HDAMP)hr(li)

jny
I

and

(1 1) (l)

(RODAMP )p + (1 - RODAMP)p

©
Il

The convergence behavior of the solution for damping factors of
0.5 and 0.9 is shown in Figure 11. Plotted in this figure are the
weighted enthalpy and the density values computed at nodal point 2.
Both solutions converged; however, it is apparent that, while over-
damping will insure convergence of an otherwise oscillatory solution,
it can be unduly time consuming. For most of the cases examined, both
with and without blowing, the 0.5 damping factors appeared to be near
optimum in terms of generating a converged solution in a minimum number
of iterations. For damping factors around 0.2 to 0.3, certain solutions
would converge but required more iterations than the 0.5 damping factor
cases. It was also observed that for the largest blowing rate (-0.2)
Eonsidered in this analysis, damping factors of 0.7 speeded convergence
of the solution by about a factor of 2 over the 0.5 damping factor
solution. Because of the sensitivity of the computer run times to the
damping factors, and since no attempt was made in the present study to

optimize the damping factors for a particular solution beyond that
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which was just discussed, the reader is reminded that subsequent dis-
cussions of camputer time relate closely to thé 0.5'damping facﬁors.
With a thorough study of damping fachor requirements for optimum solu-
tions, run times may be improved significantly.

In order to obtain an indication of the stability of the variable
density solution for various blowing rates, three cases for blowing
rates of 0, -0.1, and -0.2 were examined. The same free-stream condi-
tions givenipreviously and the 0.1 wall enthalpy value was specified.
Twenty-one nodal points were used across the shock layer. All solutions
converged to an absolute density accuracy of 0.01 for dsmping factors of
0.5. Tt was observed that the number of iterations of the governing
equations, and consequently the run times, increased with increasing
blqwing rate. For the (pv)w = Q, -0.1, and -0.2 cases, the number of
iterations required to obtain convergence were 11, 16, and 21, respec-
tively, and the corresponding computer times were 1.5, 2.5, and
3.5 minutes, respectively. The computer run times are well within
reason for the fully viscous shock layer with equilibrium air chemistry
computations.

The results obtained for the (pv)W = 0 and -0.1 cases are shown
in Mgure 12. On a physical scale the boundary layer for the (pv)W =0
case occupies about 5 percent of the shock layer and the combined inner
layer and boundary layer for the (pv)W = ~0.1 case occupies about
20 percent. The (pv)W = -0.2 results are not shown in the figure.

The (pv)w = -0.2 solution converged; however, in the_inviscid outer
region the enthalpy profiles were extremely. irregular. Enthalpy values
ranging from 0.45 up to about 0.7 (the latter value being greater than

the free-stream total enthalpy) were observed. To a similar degree,
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density profile irregularitieé and minor inconsistencies in the velocity
gradient profiles were observed. Initially, it was felt that this
oscillatory behavior of_the enthalpy was due tb the non-radiating gas
assumption because the conditions were sufficient to produce non-
adiabatic effects in the.outer inviscid region. About this time in the
study, the radiation computer code was fully incorporated into the pro-
gram and results were being generated with the radiation flux term
included in the energy equation. And, indeed it was observed that fhe"
slight oscillations which were present in the enthalpy distribution in
the outer inviscid region for the (pv) = O and 0.1 cases (Fig. 12(d))
were not observable in the radiating flow field solutions.

Tt appeared that the solutions were indicating that the radiative
fluxes must be taken into account in the energy gquation at the
1455 xm/sec velocity. Thus it was decided to run a lower velocity
case of 10 km/sec where radiation is not significant, and to observe
the behavior of non-blowing and massive blowing solutions, particularly
the enthalpy distributions. The results of this study are shown in
Figure 13 for (pv)w = 0 and -0.2 blowing rates. The numerical
results show that while there is improvement in the solutions for the
lower velocity case, the oscillatory behavior of the energy eguation
solution persisted. In retrospect, the improved behavior for the lowef
velocity case is due to the decrease in the Reynolds number (7.8 X lOu
and %.0 X lO4 for the UQ = 14.55 km/sec and the Up = 10.0 km/sec
cases, respectively) whicﬁ permits a coarser nodal spacing.

Tt was observed much later in the study, when the solution to the

elemental diffusion equation was required for the foreign ablation



61

product injection study, that the energy equation and the elemental
diffusion equations are similar and have coefficients on the derivative
terms which under further dimensional analysis reduce to about the same
order of magnitude. As will be subsequently discussed, the elemental
diffusion equation can be unstable unless the nodal spacing 1s made pro=-
hibitively small (An~ 10~%) and a windward difference formulation is
required to obtain meaningful &i profiles. The one notable difference

in the two equations is the appearance of the radiative heat flux and

term in the right-hand side of the energy equation. When radiation was
included, this term provided sufficient demping in the camputations to
yield accurate solutions to the energy equation. However, as a conse-
quence of the elemental diffusion equation study, a windward difference
form of the energy equation was also examined. Certain radiating cases
were rerun, replacing the central difference form of the energy equa-
tions, which is used in most of the results to follow, with the wind-
ward difference form. It was noted there were no significant differ-
ences in the radiative heat flux at the wall. Comparisons of the

results for the two formulations appear in a subsequent section.

Radiating Air Solutions

The viscous radiating shock layer solutions, including air-to-air
injection are discussed in this section. The present results are com-
pared with results from existing approaches.

General Results From the Present Analysis

The results obtained for (pv)W = 0, -0.1, and -0.2 cases are

shown in Figure 14 for the following free-stream conditions:

U} = 15.25 km/sec

p! = 2,72 x 1077 gm/em?

fo0]

|
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0! = 1.95 x 107% atm

-
and a nose radius of 3.048 meters.

A wall enthalpy ofv0.028 was specified which corresponds to a wall
temperature of 3,600o K. This temperature is_close to the steady state
ablation temperature predicted by Smith ’gg al. (1970). Twenty-one
nodal points were used for all computations with the exception of the
radiative flux computations where 11 points were used to avoid excessive
computer time. The intermediate values of the radiative heat fluxes
required in the energy equation solution were obtained by linear inter-
polation. Typical computer time ranged from about 30 minutes for the
no-blowing case to about 70 minutes for the (pv)w = -0.2 cases.

A comparison of the radiating solutions shown in Figure 14 (a) with
the non-radiating solutions shown in Figure 12(a) for slightly different
free-stream and wall enthalpies shows that the physical shock displace-
ment distance significantly decreases when radiation is taken into
account. However, the mass flux distributions were only slightly
altered in the 7-coordinate system. The significant decrease in ygq
when radistion is included is due largely to the non-adiabatic effects
in the outer inviscid region %hich results in higher values in density
(by almost a factor of 2 as shown by comparing Figures 12(e) and 14(e))
and t0 a samewhat lesser extent, the adjustment of the inner flow to the
wall boundary conditions. On a physical scale the outer inviscid region
occupies about 95, 75, and 60 percent of the total shock layer for
blowing rates of 0, -0.1, and -0.2, respectivel'yT

The y-momentum equation solution given in Figure'lh(b) shows thét
in all cases the pressure, as expected, reaches a maximum at the stag-

nation point.
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As previously mentioned, the inclusion of the radiative flux term
in the energy equation has a damping effect on the solution. A com-
parison of the velocity gradient prcfiles shown in Figures 13(a) and
% (c) for (pv)w_= -0.2 shows that the waviness in the velocity pro-

file vanishes when radiation is included. Further, the enthalpy

profiles (Fig. 14(d) for (pv)W 0 and -0.1) are regular, and although

the enthalpy profile for (pv)w -0.2 exhibits a slight waviness, it
is considerably improved over the large oscillations shown in

Figure 13(b) for the non-radiating cases. It is noted that this
improvement was obtained at an even higher Reynolds number than the

)

non-radiating cases (Rey, = 9 x 10" for the radiating case).

The radiative heat flux distributions across the shock layer are
shown in Figure 14(f). The positive heat flux values indicate that
the net radiative heat transfer is away from the body and the negative
values indicate toward the body. The nondimensional heat fluxes at
the wall are -0.0434, -0.0390, and -0.0369 (qﬁ,w~= 4150, -3740, and
-390 watts/cmg, respectively) for the (pv)W =0, -0.1, and -0.2 cases,
respectively. Thus for air-to-air injection at (pv)w =0, -0.1, and 0.2
the radiative heating rates are reduced 10 and 18 percent, respectively,
below the non-blowing rates. The absolute values of heat fluxes for the
blowing rate cases decrease slightly in the inner region in the direction
of the body; however, the results indicate that the inner air layer is
only moderately effective in absorbing the incident radiation from the
high—tempefature outer layer.

Tt is observed in Figure 14(f) that the radiative heat fluxes reach

a minimum near the stagnation point, which is expected based on an

examination of the governing differential equations. This feature



provides an important self-test of the overall accuracy of the present
method, i.e., the ability of the method to generate sufficiently
accurate thermodynamic properties wkich, when input into the radiative
heat flux computations, yield the minimum in the fluxes at the stag-
nation point.

More interesting and hnportant checks on the adequacy of the
present method for the stagnafion line solution can be made by com-
parison with solutions to the entire subsonic fiow field and by com-
parison with existing stagnation line solutions. The first exercise
serves not only as a check on the accuracy of the solution but also as
a check of the fundamental assumption that the stagnation line solution

can be decoupled from the entire region of influence.

Comparisons of Non-Blowing Results With Existing Solutions

Shown in Figure 15 is a comparison of the enthalpy profiles
generated in the present approach with the stagnation line enthalpy
profiles obtained by Suttles (1969) from a one-strip method of integral
relations solution and with those obtained by Falanga and Sullivan
from an inverse method solution.

The solutions are for non-blowing, with the following free-stream

conditions:

&=
I

1%.55 km/sec

O
1

= 2.377 x 1071 gn/cm?

p' = 1.6 X 107™% atm

and a nose radius of 3.427 meters. Both of the comparison solutions
are extracted from complete radiating solutions to the entire subsonic

flow field. The present solution is viscous, whereas the comparison
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cases are for inviscid flows; however, the comparisons are still meaning-
ful since for non-blowing conditions the boundary layer occupies only a
small percentage of the shock layer. The RATRAP computer code was used
in all three studies. The present solution for the enthalpy profile
compares favorably with the inverse solution in the inviscid region for
both N =11 and N = 21 points with radiative flux calculations at
11 points. While the inverse solution is considered more accurate than
the method of integral relations solution in defining shock layer pro-
files, it is interesting to note that the radiative heat fluxes pre-
dicted at the wall by the three methods fall within 3 percent of each
other.

A complete summary of the radiative heat fluxes calculated at the
wall is given in Table IT for the cases examined in the present study.
Also shown in the table are comparisons with existing sources.

Comparisons of Air-to-Air Injection Results With Existing
Solutions

The viscous radiating solutions for air-to-air injection with
(pv)W = -0.1 are compared in Figures 16 and 17 for the following

free-stream conditions:

U! = 15.25 km/sec
ol = 2.72 x 1077 gn/cm’
p' =1.95 X 10-4 atm

and a nose radius of 3.048 meters. The wall enthalpy is 0.028 which
corresponds to a wall temperature of 3,600° X.
Shown in Figure 16 are comparisons across the entire shock layer

with the results of Rigdon et al. (1969) and with results supplied by
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Wilson® in a private communication from his method presented in 1970
and by Smith, G. L.* in a érivate communication from the Smith et al.
(1970) method for identical conditions as those given above. In
general, for air-to-air injection, the flow field results from all
approaches are in fairly good agreement although there are notable
detailed exceptions in the flow field structure which are discussed
below. Also, the wall radiative heat fluxes computed by Wilson, Smith
et al. and in the present analysis are within 5 percent, whereas the
results of Rigdon et al. are about 30 percent higher. This disagree-
ment is attributed primarily to the differences in the radiabion model
employed in the first three approaches (RATRAP) and that employed by
Rigdon et al. (SPECS).

Although the radiative heat fluxes predicted by Wilson are in good
agreement with the present method, there was a notable 10 percent
difference in the shock layer thickness predicted by Wilson and by the
other three approaches. The possible sources of this difference are
associated with the x-momentum equation solution and are discussed

below.

Tangential Velocity Gradient. There is fairly good agreement in

all the tangential velocity gradient results in the inviscid outer
region for all the solutions and, in general, somewhat poorer agreement
near the body as shown in Figure 16(a). Near the body the present

results for the velocity gradient are close to the results obtained by

*This author is indebted to Mr. XK. H. Wilson of the Lockheed
Aircraft Corporation and Dr. G. L. Smith of the Langley Research Center
for generating the computer solutions for direct comparison with the
present approach.
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Rigdon et al. (1969). The major differences near the body in the
present solution and those obtained by Wilson'(l970) are due to differ-
ences in the computed inner layer and boundary layer thickness as shown
in Figure 17(a).

The major source of the discrepancy in Wilson's inner region
solution and the present results is probably due to differences in the
assumptions made for the pressure gradient coefficient, (aep/axg)x=o-
The higher the pressure coefficient, the more rapidly the oncoming
flow sweeps around the body and, thus, the smaller the standoff
distance. The value of the pressure gradient coefficient is not well
defined at the present. Wilson assumes a coefficient of -3.0, whereas
the value of -2.0 is assumed by Rigdon et al. and in the present
analysis. Smith et al. use a value of -2.5 which has been correlated
by Inouye on the basis of inverse flow field solutions.

A case was run to examine this effect. The pressure gradient
coefficient was set to -2.5 and the shock was considered to remain
concentric. Thus, the velocity gradient behind the shock became, by
equation (42), ag = vﬁ;ﬁg = 1.12. The results indicated that the
shock layer thickness decreased 7 percent, which agrees more closely
with Wilson's shock layer thickness. However, most of the adjustment
occurred in the outer inviscid region (by virtue of the higher velocity
gradients in this region). As shown in Figure 18 there was not any
significant change in the inner region of values of the velocity
gradient or in the extent of the inner region.

Two assumptions are made by Wilson which are not necessary in the
present method. First, because of numerical stability problems, Wilson

treats the inner region as inviseid and begins his fully viscous
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calculations near the inner region and boundary layer interface. A case
was run assuming that the first five nodal points, up to y/yS =~ 0.04
were inviscid. This was accomplished by setting p = O at these points.
There was no discernible differences in the fully viscous and the
inviscid/viscous solutions. This indicates that the inviscid inner
region assumption is valid for the massive blowing problem..

The second assumption made by Wilson in his solution to the govern-
ing equations is that of a constant density viscosity product across the
shock layer given by Pu = (pu)w. Since the value Pp within the
boundary layer for the comparison case examined was about one-half that
of the wall value, it was decided to examine this assumption. Two
cases were run for (pv)w = 0 and -0.1 in which the density viscosity
products appear in x-momentum and the free energy equation was set
equal to (pu)W at each nodal point. The results of the constant pu
cases and the corresponding variable pup cases were nearly identical.
This is shown in Figure 19. The results tend to indicate that while
viscosity is important in the boundary layér, it need not be too well
defined in the computations since the boundary lsyer is actually a thin
transition region which adjusts to the outer and inner flow regions.

Returning to Figure 16(a), the results from the integral solution
of Smith for the total shock layer thickness agrees fairly well with
the present results; however, his inviscid inner layer thickness agrees
more closely with Wilson calculations.

Also shown on this figure are the solution obtained by Wilson and
Hoshizaki (1969) from their integral solution approach. The comparisons .
indicate that the method, which was sufficient for the non-blowing

radiation studies, is not adequate for the strong blowing conditions.
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Total Enthalpy. The total enthalpy results across the shock layer

are compared in Figure 16(b). With the exception of the differences in
the shock displacement distances which have been noted, the present
results compare favorably with the results of Wilson. The enthalpy
results of Smith et al. (1970) are fairly good overall. Their method is
based on a one-strip integral relation solution for the outer inviscid
flow couﬁled with an integral solution for the boundary layer and inner
inviscid region. It is not expected to yield the detailed flow field
structure results obtainable from the other approaches (i.g., Wilson
(1970), Rigdon et al. (1969), and the present method).

Temperature. The temperature results obtained from the four
approaches agree fairly well in the outer inviscid region with somewhat
poorer agreement in the boundary layer and near the wall as shown in
Figure 16(c). Since the radiative heat fluxes are strong functions of
temperature, the results near the wall are compared in more detail in
Figufe 17(b). The present results compare favorably with the results
of Wilson. It is unfortunate that, because of differences in the
radiation models, no direct comparison can be made with Rigdon et al.,
who‘also solves the fully coupled viscous radiating shock layer equa-
tions. However, it is apparent from theilr temperature profile that the
radiation model has a strong influence on the resulting temperature and
the radiative heat flux predictions.

The temperature results of Smith et al. shown here indicate that
the temperature is nearly constant in the inviscid inner region, whereas

all other solutions indicate an appreciable drop in temperature going
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toward the body due to radiation exchange. This author has been
advised by Smith that their constant temperature results were due to
a programing error which affected the energy equation solution near
the wall and that they now expect the temperature to increase more
rapidly with y.

Radiative Heat Flux. The radiative heat fluxes are shown in

Figure 16(d). The present results indicate that the inviscid inner air
layer is relatively ineffective in reducing the radiation to the wall
and, as a consequence, the wall heat flux results of Wilson and of
Smith et al., who predict thinner inner layers, agree well with the
present results.

A swmary of the predicted heat fluxes at the wall for the various
air-to-air injection rates is given in Table 2-A.

Tt is interesting to note that the radiative heat fluxes at the
wall converged much more rapidly than the detailed thermodynamic proper-
ties across the shock layer. A typical example of the sensitivity of
the radiative heat flux at the wall on the density profile is shown in
Figgre 20. It was observed that the heat flux at the wall for the
(Dv)w = ~0.1 case converged within 2 percent of its final value after
only five iterations, whereas the density values in the inner region
(n = 0.2 and 0.4) were about 50 percent below their final value. This
indicates that the radiative heat fluxes at the wall for air-to-air
injection may not be as sensitive to the thermodynamic properties in
the inner region as previously expected. If one is interested only in
the gross quantity of the heat flux at the wall, then the 1 or 2 percent
density convergence criteria could be relaxed considerably to provide
substantial savings in computational time for air-to-air injection

studies.
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As previously noted, the air in the inner region is not too effec-

tive in'absorbing the incident radiation from the high-temperature outer
layer. However, since certain chemical specie of ablators are strong
absorbers and emitters, the flux to the wall may be sensitive to the
relative amounts of these speciés. If this is the case, then a detailed
definition of properties across the shock layer is desired. Thus, the
density convergence criterion of 2 percent was retained in the subsequent
ablation study.. |

Stability Study of the Elemental Diffusion and Energy Equations

The solution to the elemental diffusion equation is required in
the analysis of the radiating shock layer with ablation product injec-
tion. In extending the present method from the air-to-air injection
analysis to the ablation products injection into air, it became evident
that problems of mmerical stability existed in the solution of the
elemental diffusion equation. Presented in this section is the stability
study which led to the windward difference formulation for the elemental
diffusion equation and the subsequent reexamination of the energy equa-
tion formulation.

Initially, a central difference form of the elemental diffusion
equation was used and an attempt made to solve the fully viscous
radiating shock layer equations, including ablation product injection.
The diffusion equation solution was unstable in the first pass through
the equation resulting in values of Tp at certain nodal points.which
were outside the ranges of c>§_&%,§_1.o. The program was immediately
aborted in the equilibrium chemistry calculations because of negative
mass fractions of the individual species. The reason for this instabil-

ity was investigated both analytically and numerically.
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The properties vary too rapidly across the shock layer in the
variable density solution to perfdrm any meaningful analytical analysis

of the stability of the equation. Fowever, some insight into the
stability of the equation and the associated nodal spacing requirements
can be obtained from a constant density, constant diffusion coefficient
assumption.

For a constant P and Dyp across the shock layer, the elemental

diffusion equation (39) becames

2 2
pv = -
an 5 an2
Let
o
—EEGJ' = 7
an
thus,
7Y - T Y
P"D1o

where the primes are used to denote the derivative.

Central differencing the two above equations yields

%+l - %n-1 _ 7n+#l + Tn-1
2 An 2
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In matrix form the above equations become
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For stability, the determinant of the matrix must be positive (see, e.g.,

Crandall). Thus,
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The nodal spacing requirement for stability can be established when it

is noted that
5 =0[1] and pv=0[1]
For a constant density of 20, the nodal spacing requirement becomes

pfDyp| 400 Dyp
o6 | o] o[1]

an < ~ 0o[400 Dy, |

Since Do is typically of order 10'6, then Aﬂ]f_h X 10‘“.
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This nodal spacing requirement is prohibitive in this analysis
since it would require at least 2,500 nodal points across the shock
layer to generate a stable solution. However, a case was run in which
1,001 nodal points were used for the elemental diffusion equation solu-
tion with the same 21 points used for the other equations. Although.
some improvement was noted in the solution (for which only about 3 seconds
was required to solve the diffusion equation), it did not eliminate the
instability.

The numerical results which substantiate this stability analysis
are shown in Figure 21. The computed mass fractions for a diffusion
coefficient of 10’6 is shown in Figure 21(a) for a model spacing of 0.05.
The solution is clearly unstable. The resulﬁs obtained when the
coefficient was increased to 1.25 X lO'u and An was set to 0.1 (which
accomplishes the same stability effect as decreasing the model spacing
to 4 x 10'4) is shown in Figure 21(b). The sharp oscillations have
vanished, but &? still exceeded the value of 1.0. The case was rerun
for a nodal spacing of 0.02 with no noticeable improvement. Only when
D12 was raised to 1072 did the &F monatonically decrease from 1.0
at the wall to 0.0 at the shock.

Since the central difference form of the elemental diffusion
equation was inadequate, a windward difference form for the convection
term was employed. Windward differencing provides autcomatic damping of
the profiles and has been shown in time-dependent studies of fluid and
heat flow problems to be required in order to obtain meaningful solu-
tions (see, e.g., Richmeyer; Larkin; and Khajeh-Nouri ).

A physical explanation given for using windward differencing is

that if fluid is flowing downstream the upstream cell influences the
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downstream cell more than the downstream cell influences the upstream
cell. It is correct for supersonic flow that the downstream conditions
have no influence on the upstream flow, whereas the upstream conditions
may have a pronounced effect on the downstream flow. Even for the stag-
nation line where the flow is subsonic and each cell or nodal point
influences all other cells, the explanation that the upstream cell
influences more than the downstream cell is palatable.

The mathematical reason for windward differencing is that higher
order harmcnics that are introduced into the solution because of finite
difference approximations to the differential equations decay exponen-
tially, whereas for central difference formulations these higher order
disturbances can be exponentially amplified.

The results obtained for both central and windward difference forms
of the diffusion equation are shown in Figure 22. The computations were
for a viscous radiating solution assuming binary diffusion coefficient
based on an atomic hydrogen-atomic nitrogen mixture. The windward
difference formulation yields a stable solution in which a% monatonic-
ally decreases across the shock layer.

A check case was run to establish the effect of the demping on
the &F profiles that is introduced by the windward difference formu-
lation. This damping, which is a form of artificial viscosity, tends
to smooth or smear out the gradients more than is natural. To check
this, both central and windward difference solutions were obtained for
diffusion coefficients which yield stable solutions for central differ-
enice approximations. The results from these two formulations, shown in
Figure 23, indicate that the windward difference formulation does not

introduce any noticeablé artificial viscosity.
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The enthalpy profiles in the non-radiating equilibrium air solution
for the (pv)w = -0.2 case were shown iﬁ Figure 13 to be unstable.
These profiles exhibited an oscillatory behavior similar to the constant
density &F profiles for the central difference approximations. As
previously mentioned, the enthalpy profiles became smooth when the
radiation term was included, and at that time no more attention was
devoted to the non-radiating solutions. However, after the elemental
diffusion equation solutions were obtained, it was decided to reexamine
the energy equation, neglecting radiation, to see if the central differ-
encing assumption was responsible for the oscillations in enthalpy.

An order of magnitude analysis of the coefficients on the second
derivative term of the energy and elemental diffusion equation revealed
that these coefficients could be the same order of magnitude. This
analysis is given below.

For constant density and constant transport properties assumption,
the energy and the elemental diffusion equations (egs. (38) and (39)),

respectively, can be written as (where the convective term on the right-

hand side of the energy equation has been neglected).

aH _ Pu  4%H
v &= o %O
dn SReyPr dn2
and
~ o~ 2~
pvd“F=_p2Dl2d°"F=_ pp  dog
an 5 4t SReySc an2

where Sc, the Schmidt number, is given by

1
Sc = ? -
p DlE
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Since the Prandtl and Schmidt numbers are typically of order unity,
then the energy equation and the elemental diffusion equation are con-
trolled by the same stability requirements.

As a result of this analysis, the convective term in the energy
equation <pv %E> was recast in windward difference form and the non-
radiating equilibrium alr solution for (DV)W = =0.2 was rerun. The
enthalpy, density, and velocity gradient profiles became smooth. The
x-momentum and energy equation solution results are plotted in Figure 2k
and compared with the previous central difference solutions.

A significant change in the shock layer thickness also occurred
when the windward difference form of the energy equation was used to
improve the profiles. The shock layer thickness, Vgr wWas reduced by
about 12 percent from 0.0703 to 0.0622 in going from central to windward
difference form. It was found that this reduction in vy waes due
primarily to the large blowing rate which introduced the strong
oscillations in the profiles for the central difference formulation.

The (Dv)W =0 and (pv)W = -0.1 non-radiating cases were rerun with
the improved formulation of the energy equation. There was no change
in yg for (pv)w = 0 and there was a 3 percent reduction in Vg for
the (Dv)W = -0.1 case.

The strong oscillations in the enthalpy profiles were not present
in the radiating solutions. However, the (pv)w_= -0.1 case for
U = 15.25 km/sec was rerun to determine the effect of the windward
difference approximation in energy equations. The radiation flux at
the wall was unchanged and shock standoff distance increased by only

2 percent.
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As a result of this study it was decided to retain the windward
difference form approximation for the radiating ablation products

analysis which follows.

Radiating Flow Field Solutions With Ablation Products

The solutions to the fully coupled viscous radiating flow field
with ablation products injection are presented in this section. The
results of the present analysis are compared with existing solutions.
The binary diffusion model assumption is also investigated in this
section.

The heat-shield material is considered to be a carbon phenolic
ablator composed of 90 to 95 percent carbon and the remaining elemental
mass fractions consisting of nitrogen, oxygen, and hydrogen. Exact
values of the elemental mass fractions of each of the constituents are
specified for the particular cases presented.

Check on the Binary Diffusion Model Assumption

The binary diffusion coefficients were computed on the basis of
the dominant species present. For the ablator, the dominant species
is atomic carbon and for air it is atomic nitrogen, hence the binary
diffusion coefficient for atomic carbon atomic nitrogen diffusion was
used in the computations.

However, to obtain an indication of the validity of the assumption,
two cases were run at identical conditions with the exception that
atomic carbon/atomic nitrogen was used in one solution in calculating
the diffusion coefficient and atomic hydrogen/atomic nitrogen was used
in the other solution. A comparison of the elemental diffusion equa-
tion solution for the ablator mass fraction profiles with the two

assumptions is shown in Figure 25 for the conditions noted there. The
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two profiles show that the results differ in the mixing region and its
extent, with the ablator elements extending further into the shock layer
for the hydrogen-nitrogen diffusion coefficient. This is to be expected
since DH-N is almost an order of magnitude larger than DC-N’ as shown in
the figure.

A detailed analysis of the heat flux distributions for the two
cases indicated a maximum difference in the radiative heat fluxes of
% percent which occurréd in the outer inviscid mixing region (n = 0.7),
as shown in Figure 26. At the wall, the nondimensional heat fluxes
differed by less than 1 percent (-0.02892 and -0.02917 for Dy_p and
Dopy» respectively). The shock layer thicknesses, Yyg, were 0.04173
and 0.04168 for Dy_y and Dy_ys respectively. Thus, it appears for the
conditions examined in this study that the binary diffusion model
assumption is valid.

General Results From the Present Analysis

The results obtained for (pv)W = 0, -0.1, and -0.2 cases are

shown in Figure 27 for the following free-stream conditions:

(=)
8 -
I

15.25 km/sec

o' =2.72 x 107 gn/cmd
"

! 1.95 X 107" atm

e}
]

and a nose radius of 3.048 meters.
A wall enthalpy of -0.049 was specified which corresponds to a .
0
wall temperature of 3,600 K for the carbon phenolic ablator injection

cases with the following elemental mass fractions:
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&, = 0.9207
&y = 0.0086
&O = 0.0491
&H = 0.0216

For the non-blowing case, air is adjacent to the wall for which an
enthalpy of 0.028 corresponds to the wall temperature of 3,600° K.

In general, the profiles and parameters are much the same as those
for the air injection cases with the exceptions of the enthalpy profiles
for the (Ov)w = -0.2 case and the radiative heat flux predictions.

Even with thé windward difference form of the energy equation, the
enthalpy profile for the (pv)wA= -0.2 ©blowing rate was irregular near
the stagnétion point. This solution had not completely converged when
the calculations were terminated on the computer after an accumulation
of nearly 2 hours of machine time. However, it was near convergence.
Apparently, this blowing rate is near the stability 1limit for obtaining
the technique employed here for the solution to the governing equations.
As can be seen in Figure 27(f), the density and temperature profiles,
which are used in the radiative heat flux computations, are much
better behaved than the enthalpy profiles.

It can be seen from the radiative heat flux profiles of Figure 27(g)
that the flux out of the shock (at T = 1.0) increased with increasing
ablator mass injection, whereas for the air-to-air injection cases the
flux at the shock was nearly insensitive to the blowing rate (see
Fig. 14(f)). The heat fluxes at the wall, which are of primary interest,
decreased significantly with blowing rate for the carbon phenolic
ablator (66 and 61 percent of the non-blowing radiative heat flux rate

for the (pv), = -0.1 and -0.2 cases, respectively). Thus, the
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ablation products are considerably more effective than air in reducing
the heat flux to the wall.

Tt is not clear if the large negative heat flux near the stagnation
point for the (Dv)w = =0.2 case is real or if it is a result of the
uncertainty in the thermodynamic properties calculations. However, it
is quite likely that the effects of this point on the resulting heat
flux at the wall is washed out in the radiation exchange between this
point and its surrounding points. This case is compared with the solu-
tion of Rigdon et al. (1969) in the next section.

Comparisons of Ablation Product Injection Results With
Existing Solutions

Two carbon phenolic injection cases were run for comparison with
the results of Smith et al. (1970) and Chin at a blowing rate of -0.076,
and for comparison with Rigdon et al. (1969) at a blowing rate of -0.2.
The pertinent free-stream and wall conditions are noted in Figures 28
and 29 for these corresponding cases. In general, the results for the
thermodynamic and flow properties are in reasonable agreement, but
there are noticeable exceptions relating to the heat flux computations
which are discussed below.

In the Chin comparison case, it should be noted that the close
agreement of the wall heat flux prediction with Chin's computations may
be Fortuitous. Chin's earlier radiation model is sufficiently different
from RATRAP to make any quantitative comparison meaningless. This
is evident from Table 2 where it is observed that the non-blowing
radiation heat fluxlprediction of Chin and of the present method differ
by 20 percent.

The comparison of interest for this case is with the results of

smith et al. (1970). It is noted in Figure 28(d) that the present
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solution predicts a wall heat fluxvabout 30 percent lower than that of
Smith. An important conclusion made in their paper is that the radia-
tion to the wall is not attenuated as much as previously predicted by
Chin and by Rigdon et al. (1969). This was attributed to the presence
of large percentages of CN in the mixing region which is a strong emitter.
A comparison of the mole fractions of the major chemical species is shown
in Figure 28(d). The comparisons are good considering the differences
in the temperature distributions; however, it is noted that the peak
mole fraction for CN predicted by the present method is only about one~-
half that of the comparison case. This discrepancy in the level of CN
occurs in the region where Smith et al. (1970) employ a cubic fit to the
elemental diffusion equation in order to join the wall products in the
inner shear layer with the air composition beyond the boundary layer.

It thus appears that contrary to thekair—to-air injection study results
whiéh did not require too accurate a resolution of properties near the

wall, the ablation products study indicates that these properties must

be well defined near the wall to generate accurate wall radiative heat

flux predictions.

The comparison with Rigdon et al. (1969) indicates reasonably good
agreement in the radiative heat flux profiles, although there are sig-
nificant differences in the radiation models employed. The predicted
shock layer thicknesses are within about 5 percent. A slight waviness
is noted in Rigdon's pv profile (Fig. 29(a)) near the stagnation
point (y/yS = 0.3). In all the cases calculated by the present method,
the pv profile was smooth in this region. It is not apparent if this
irregularity predicted by Rigdon et al. is real or if it related to

their numerical procedure for integrating ocut in both directions from
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the stagnation point. It is noted that their solution also exhibits an
irregularity in the temperature profile near the stagnation point as does

the present solution.

Summary of the Wall Radiative Heat Flux Predictions

A sumary of the wall radiative heat fluxes calculated by the
present method for the various conditions examined in this study and
corresponding comparison results from previous investigations are tabu-
lated in Table 2. With the exception of the non-blowing results of
Suttles (1969) and the air injection comparison case with Wilson (1970),
the present method predicts slightly to much lower heating rates than
calculated by previous investigators.

These results are also summarized in Figure 30, which illustrates
the effectiveness of the carbon phenolic ablator products in reducing
the wall radiative heat fluxes. As can be seen from the figure, there
is general agreement of all sources that air injection is moderately
effective in reducing the heat transfer to the wall and, with the
exception of the Smith et al. (1970) results, that the ablation products
of the carbon phenolic heat shield is highly effective in reducing the
fluxes.

As can also be seen from Figure 30 and Table 2, there is no con-
sistent agreement from any sources when both the non-blowing and blowing
results are considered. For sources which use different radiation
transport models (Rigdon et al. (1969) and Chin), this disagreement is
due, at least in part, to the differences in the radiation model. For
sources which use the same model, Smith et al. (1970) and the present
method, this disagreement is attributed to.the numerical procedures

employed. There was insufficient data available to fully evaluate
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the Wilson (1970) results, with the exception of the assessment of the
validity of the assumptions required in his analysis. These assump-
tions have been previously discussed and shown to be valid for the
(OV)W = -0.1 air-to-air injection case.

For air-to-air injection, the present results indicate a 10 and
17 percent reduction in the wall radiative heat fluxes for (pv)W = -0.1
and -0.2, respectively. For carbon phenolic ablation products injection
at corresponding blowing rates, the reduction is 36 and 39 percent,
respectively. Since ablation rates are typically expected to be about
0.1 (see Smith et al. (1970)), then the 36 percent reduction in the
radiative heat fluxes represents a significant savings in heat-shield

weight.



85

SUMMARY AND CONCLUSIONS

An implicit finite difference scheme is developed for the fully
coupled solution of the wviscous radiating stagnaticn liae equations
including strorg blowing. Solutions are presented for both air-to-air
injection and ablation products injection with blowing rates up to
20 percent of free-stream mass flow rates. The free-stream conditions
examined are typical of interplanetary return conditions into earth's
atmosphere near the point of peak radiative heating in the entry trajec-
tory. A detailed radiative transport computer code (RATRAP) which
accounts for both continuum and line radiation exchange processes is
utilized in the study.

Sfarting with a minimum number of assumptions for the initially
unknown parameters and profile distributions, convergent solutions to-
the full stagnation line equations are rapidly obtained by a method
of successive approximations. No singularities exist in this formu-
lation of the finite difference equations. Damping of selected pro-
files is required to aid convergénce of the massive blowing cases;
however, even for these cases, no patching of the viscous and inviscid
regions is required. The results demonstrate fhat windward differencing
of the convective term in the elemental diffusion equation is required
for a stable solution to this equation. While the central difference
approximation to the energy equation yields satisfactory solutions
when radiation is included, the results are considerably improved for
blowing rate of 0.2 when the .convective term is windward differenced
in this equation also.

Comparisons are made with currently existing solutions to the

radiating shock layer problem. The present method predicts lower
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wall radiative heat fluxes for carbon phenolic ablation than those pre-
dicted by previous investigators.

The results indicate that the ablation products are highly effec-
tive in blocking the incident radiation from the high-temperature outer
layer of the shock. For blowing rates of 0.1 and 0.2, typical reductions
range from about 35 to 40 percent of the non-blowing radiative heat
fluxes at the wall.

The inner air layer is shown to be relatively ineffective in block-
ing the incident radiation, hence the thermodynamic properties need not
be as well defined for air injection as for ablation product injection.

The binary diffusion model assumption was examined in the present
analysis and, while a multicomponent diffusion study may remain meaning-
ful for conditions and ablators other than those examined in the present
study, the results indicate that the multicomponent diffusion model is
not required.

The present results are sufficiently encouraging to recommend that
the present method be extended to radiation calculations in the presence
of chemical nonequilibrium. Since the solution to the governing flow
equations requires only about 5 percent of the total computational
time, with the radiation flux computation comprising the remaining
95 percent of the time, the implicit finite difference scheme should be

relatively efficient for performing the computations.
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Table 1. Diffusion coefficient
molecular constants

Molecular constants

Species E/k, ok O, X M, gm/gm mole
C 30.6 |3.385 12.01
N TL.4 |3.298 .01
H 37.0 |2.708 1.008
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Figure 1. Diagram of various assumptions for the analysis of radiating
shock layers (from Anderson, 1968, p. 2)
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Figure 2. Spectral heat flux distribution for air from SPECS
radiation code (Thomas, 1967)



Shock wave

Figure 3.

Flow-field coordinate system

91

Body surface.



Shock
¢ Body surface

X
u .

L R .
Us b\

. e -

o v
Poo
0!1,oo

Figure 4. Flow-field coordinate system in the transformed coordinates

26



93

Node number N—\ : n+lnn-1

Notes: (1) N must be odd
(2) Nodel points are equally spaced in 71

Figure 5. Finite difference network
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solution
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(a) Velocity gradient distributions

Figure 8. Constant density solutions for inviscid and viscous flows

without blowing
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Influence of blowing rate on velocity gradient for the
constant density solutions
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solution - equilibrium air without radiation
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(a) Continuity equation

Figure 12. Equilibrium air solutions without radiation
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(c) X-momentum equation

Figure 12. Continued
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Figure 12. Continued
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Figure 13. Comparisons of the solutions in velocity regions where
radiation fluxes are and are not significant
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Figure 14. Equilibrium air solutions with radiation included
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(b) Y-momentum equation

Figure 14. Continued
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(¢) X-momentum equation

Figure 14. Continued
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(d) Energy equation

Figure 14. Continued
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Figure 15. Comparison of the enthalpy profile along the stagnation line with
solutions from complete subsonic flow field calculstions -
equilibrium air with radiation and without blowing
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(c) X-momentum equation

Figure 27. Continued
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(d) Energy equation

Figure 27. Continued
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APPENDIX

RADIATION MODEL

The RATRAP radiative transport model developed by Wilson (1967)
has been discussed in great detail by Wilson (1967), Suttles (1968),
and Wilson and Hoshizaki (1969). A summary of Suttle's discussion on
the development of the governing radiative transport equation employed
by RATRAP and some details of the radiation model are given in this
appendix.

The RATRAP code, which includes the detailed line radiative calcu-
lations (sometimes referred to as RATRAP II, since it has been upgraded
by its originators, see Wilson and Hoshizaki (1969)), is written for
the calculation of the radiative heat flux at any point within a planar
(tangent) slab in which the thermodynamic properties vary in only the
direction normal to the slab. Local thermodynamic and chemical equi-
librium is assumed. A distribution of two thermodynamic variables
plus the elemental mass fractions for carboh, nitrogen, oxygen, and
hydrogen gaseous mixtures is required for the radiation computations.

For the tangent slab approximation, there is no component of heat
flux in the x-direction. Thus the magnitude of the radiative heat flux
vector is the radiative heat flux in the y-direction which is expressed

as

SN
|qR| = qR’y‘ =L /:) Iv(es ey)dQ dv (A—l)

where I, is the specific intensity, e, 1is the unit vector in the

arbitrary direction in which I, is evaluated as shown in Sketch A,
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and £ and v are the solid angle and the frequency of radiation,
respectively. (Note that the quantities are dimensional; however, the
primed symbol used to denote dimensional quantities in the main body of

this study is dropped in this appendix for simplicity.)

//// I\)(s)c_eS
e .
s

Boundary
surface

Sketch A

The differential equation governing the radiastive transfer (see,

e.g., Vincenti and Kruger) which is given by

ar
EEE av(Bv - IV) (A-2)
has the solution
s s
s - oy (€)de :/ﬁ ., (€ )dE
I,(s) =f a,(g)B,(g)e” & dat + 1,(0)e" ©
0

(A-3)
where a, is the modified linear absorption coefficient, B, is the

Planck function given by



3 -1
B. =2 x 1077 %E(m/kﬂ - 1] (A-d)

v c

IV(O) is the radiation intensity coming from the wall and € and ¢§
are dummy variables for the integrals such that & <€ < s and
0< & < s, as shown in Sketch A.

Equations (A-1) and (A-3) can be combined (see Suttles (1968)) to

yield

o A~y | pY
q‘R,y = 2:1\/;) j; o, B, Eo /; a, de|dE
Vg :
- / a,B By f a, dedt|dv (A-5)
vy y

when the heat fluxes into the slab at the boundaries are neglected.
¢ .
The quantity E2<U/\ o, d;> is the exponential integral described by
¥

Kourganoff and is given by
l -
B, (t) =f e at (A-6)
O ..

In order to evaluate eqﬁation (A-5), it is necessary to calculate
the spectral linear absorption coefficients «,, which are functions of
the thermodynamic properties (p and T) and the number densities of the
chemical species. Twenty chemical species are considered in the
thermodynamic calculations. They are Cp, Np, Op, Hps C, N, 0, H, CO,
CN, CpH, CsH, GyH, HON, Cplp, €7, CT) N, o*, and H'.

The total spectral absorption coefficient is separated into
continuum and line contributions in the RATRAP calculations. The

continuum spectral absorption processes considered are the free-free

161
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transitions (acceleration of free electrons in the vicinity of
atoms and ions) of C, C', N, N', 0, O and the free-bound and
bound-free transitions (deionization and ionization, respectively,
of the H atoms and positively ionized particles. Molecular
bands aré also included in the continuum calculations. These
molecule contributions and frequency intervals from Wilson and

Hoshizaki (1969) are tabulated below.

Table A. Molecular band systems used in RATRAP

Molecule Frequency range for significant

contribution absorption photon energy, ev

H, Werner 11 <1iv < 15.494
Photoionization 15.40k <nv < 25

Cy Swan 1.8 <1iv < 6.0
Fox Herzberg 1.8 <hv<5.35
Mulliken 5.35 <#v < 6.0
Freymark 1.8 <hv < 6.0

CN Violet 2.0 <hv < 6.0

CO kth Positive 7<#1v<10

N, Birge-Hopfield 11 <4#v < h.2

02 Schuman-Runge 7T <4Hv < 9.2

For the calculation of the continuum contribution to the heat
flux, the absorption coefficients for the individual species are
weighted with their respective number densities and approximated by
curve fits over frequency ranges. The heat flux equation (A-5) is
subsequently evaluated by numerically integrating over y and over

frequency, using 11 values of y and 31 values of frequency.
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The atomic line radiation component arises as a result of the many
bound electronic transitions which occur in the atomic nitrogen and
oxygen species (line radiation from carbon and hydrogen species are not
included in RATRAP). This component is obtained by first grouping
certain line contributions within various frequency intervals. The
net line radiation is then calculated by summing the contributions
from these line groups. Eighteen line groups, with a total of 65 lines,
are used in RATRAP.

The total radiative heat flux at each point is obtained by adding

the continuum and the line radiation contributions.





