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A NUMERICAL STUDY OF DISPLACEMENT BODY

AND CURVATURE EFFECTS ON INCOMPRESSIBLE

AND COMPRESSIBLE LAMINAR BOUNDARY LAYERS

By Stephen Fay Wornom

ABSTRACT

A numerical study has been made to develop a technique for

studying displacement body and curvature effects on incompressible and

compressible laminar boundary layers.

This technique has been applied to study such effects on incompres-

sible flow around cylinders at moderate to low Reynolds numbers and for

compression ramps at hypersonic Mach numbers by employing a finite-dif-

ference method to obtain numerical solutions.

The results indicate the technique can be applied successfully in

both regimes and does predict the correct trend in regions of large

curvature and displacement body effects.

This study concludes that curvature corrections should only be

attempted in cases where all displacement effects can be fully

accounted for.
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I. FORMULATION OF THE PROBLEM

1.1 Introduction

Since the 1950's, much attention has been given to higher-order

boundary-layer theory due to the academic challenge it presents and

also in hope that this inclusion of higher-ordered terms would enable

one to extend the boundary-layer concept to flow problems which

normally would be considered to exceed the limits of classical or

first-order theory.

Even though higher-ordered terms were beginning to be calculated

in the 1950's, it was only recently, in the 1960's, that all second-

order contributions were correctly identified. This was accomplished

by Van Dyke (1962a, 1962b) for incompressible theory and independently

by Van Dyke (1962c), Maslen (1963), and Lenard (1962) for compressible

theory, all of whom employed the method of matched asymptotic expan-

sions which results in two separate sets of governing equations - one

for the classical or first-order contribution and another for the

second-order contributions.

Effects to be studied here which were found to be of higher order

in an asymptotic sense can generally be classified as arising either

due to the surface curvature of the body under consideration or due

to its boundary layer interacting with the external flow field. Of

the two second-order effects which will appear in this study, perhaps

the easiest to understand and usually the most difficult to calculate

1
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is what is termed the displacement-body or displacement-speed effect

which arises due to the boundary layer interacting with the external

mainstream. This effect appears as a result of the viscosity influence

near a solid surface which tends to slow down the fluid in the region

near the wall and force it outward so that the effective body presented

to the mainstream is the original body plus the displacement thickness

of the boundary layer. Since the boundary-layer thickness is not

known beforehand, the difficulty in computing this effect is immediately

recognized. The other higher-order effect considered here is that of

surface curvature and presents no unusual difficulties.

In addition to clearly indicating what the second-order contribu-

tions are, another advantage of filtering out what are normally higher-

order effects as done by Van Dyke, Maslen, and Lenard is that all higher-

order equations are linear and therefore can be divided into several

additive effects each of which has a simpler physical meaning. However,

the purpose of this study is to examine problems where there are large

displacement and curvature effects. Thus, the distinction between a

first-order and a normally second-order effect may be small and as such

some advantage may be gained if we do not try to separate them as

normally done but rather seek only to filter out those strictly third-

order and higher contributions which appear in the analysis. The final

equations will therefore contain both the first-order and second-order

contributions given by Van Dyke, Maslen, and Lenard plus some addi-

tional third-order terms.
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Most studies of higher-order effects have been made adopting the

equations which have the higher-order contributions filtered out. In

reviewing the literature, we examine subsonic and supersonic external

flows separately since there appear basic differences in the nature

of their governing equations which affect the ease with which displace-

ment effects can be computed. Attention here is paid to cases where

displacement effects have been computed since once these are known

the effects of surface curvature can be easily handled. For subsonic

theory, the effect of displacement speed cannot usually be calculated

directly owing to the fact that the external governing equations are

elliptic thereby making its effect dependent upon the entire course of

the boundary layer. Thus, there have been very few cases where dis-

placement effects have been computed in subsonic theory. Kuo (1953)

calculated the displacement effect for flow over a finite flat plate.

Few shapes other than the finite flat plate have been investigated,

of these Van Dyke (1964) treated the parabolic cylinder where he was

able to calculate the displacement effect only near the leading edge.

Devan (1964) treated the Rankine half-body numerically.

In supersonic or hypersonic flow, the inviscid or outer flow

equations are hyperbolic thereby making the displacement effect local

in influence and therefore simplier in theory to calculate. Maslen

(1952) treated the semi-infinite plate with its mixed subsonic and

supersonic external flow regimes employing linearized subsonic and

supersonic inviscid theory for the flow due to displacement effects.

Most investigations of compressible second-order effects have been
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applied to blunt bodies in hypersonic flow. Individual second-order

effects at a stagnation point have been calculated by Lenard (1962),

Davis and Flugge-Lotz (1964a), and Fannelop and Fligge-Lotz (1965),

whereas extended solutions around blunt bodies were first reported by

Davis and Fliigge-Lotz (1964b) for a sphere,paraboloid, and hyperboloid,

and by Fannel6p and FlUgge-Lotz (1964) for a circular cylinder.

Of particular interest in this study are bodies with sharp leading

edges which are placed in a hypersonic mainstream. For problems of

this nature, there arise very large displacement effects - particularly

near the leading edge. Hayes and Probstein (1959) reviewed the early

literature relating to this subject which, due to the strong viscous

interaction present, is usually treated separately from supersonic

flows. There are many approximate solutions for flat plates in hyper-

sonic flow appearing in the literature. Dewey (1963) adopted the local

similarity concept for his analysis. Later, Chan (1966) employed the

momentum-integral method in his study. More recently, Sullivan (1969)

employed Lees (1956) cold-wall similarity analysis to extract an

approximate solution. Only one exact solution+ has been reported for

a flat plate in hypersonic flow and that was by Fliigge-Lotz and

Blottner (1962). Only in one case, has this theory been extended to

cover bodies with surface curvature and this was reported by Stollery

(1970) who did not include surface curvature effects in his approxi-

mate analysis. Thus to the author's knowledge, no studies have been

+Exact in the sense that no approximations were made to the
governing boundary-layer equations.
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made in this area which include both displacement and curvature

effects.

The first problem to be investigated in this study is that of

flow around a circular cylinder at moderate to low Reynolds numbers.

This flow will be investigated employing the composite second-order

incompressible boundary-layer equations and it is felt that displace-

ment and curvature effects should be sizable for the Reynolds number

cases studied. The second flow problem to be studied is that of flow

up a compression ramp in hypersonic flow. It has been noted by Van Dyke

(1969) that even for high Reynolds numbers, the effects of displacement

and surface curvature become significant for large Mach number flows.

For this study, the compressible second-order boundary-layer equations

will be employed.

From this study, large displacement and curvature effects were

found to exist. However, when both displacement and curvature effects

were accounted for, the differences observed in the wall properties

from that predicted by classical boundary-layer theory were only

noticeable in regions where the displacement effect could no longer

be classified as a higher-order effect and this occurred near the

leading edge of the compression ramp in hypersonic flow.

1.2 Formulation of the Governing Equations

For flow of a viscous fluid past a stationary body, Prandtl (1904)

observed that as the Reynolds number becomes large, a thin layer

develops near the body surface where the effects of viscosity and

heat transfer are significant and outside of which they are negligible.
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Prandltl formalized this concept from an order of magnitude analysis

of th! full Navier-stokes equations and thereby produced the now

famous boundary-layer equations. Following this lead, Van Dyke (1962a)

used the method or matched asymptotic expansions to obtain a formal

statement of the boundary-layer concept valid to second order in the

inverse square root of Reynolds number. Analyses of the individual

first and second-order effects for several incompressible flows were

made by Van Dyke (1962a) and (1962b). Similiar analyses for compres-

sible flow were made independently by Maslen (1963), Lenard (1962),

and Van Dyke (196 2c). Applications of these are discussed in

Van Dyke (1969). Here we choose not to filter out all higher-ordered

terms or to separate the second-order contribution from the first

order Praendtl boundary-layer equations. Tile purpose of this approach

is to determine a composite set of equalions which formally will

contain both the l'randt[l boundary-layersi ecautions and the second-order

contributions given by Maslen (196)5),Lenard (1962), and Van Dyke

(1962c).

The nallysis beglins by defining the ptrturbation parameter

c = 1/ VI l , (1.2-la!

and thereafter stretching the normal coordinate and velocities

according to the relation

+The following analysis was first presented by Davis, Werle, and
Wornom (1970) and is presented here as a review and in order to show
more of the details.
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n = EN, (1.2-lb)

and

v = Ev, (1.2-1c)

with all other variable assumed to be order one.

These are now introduced into the Navier-Stokes equations given

by Van Dyke (196 2c) with all terms of 0(1) and O(E) kept so that

the governing equations valid to second order (i.e., 0(c)) become:

CONTINUITY EQUATION

(rjpu)s + (hrJpv)N = 0 (exact) (1.2-2)

where j = 0 for plane flow and j = 1 for axisymmetric flow;

S-MOMENTUM EQUATION

p [uus + v(hu) + p = 1 (rJh2 r), (1.2-3a)
L~ Njs ··s hrJ 3N

where the shear stress is given by

T = 1 (uN - hNu/h) (1.2-3b)

N-MOMENTUM EQUATION

p = 2 (1.2-4)
DN =h
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ENERGY EQUATION

1
p(utIs+ hvH N) r

q = TAN
y 6N '

H = T + 1 u 2
2

4*Cp
a =k

k*

aN [hrj(q + ui

(heat transfer)

(total enthalpy)

(Prandtl number)

In the above equations the coordinate scale factors

defined as

r = ro + EN cos ewall'

and

h = 1 + cKN.

The viscosity law employed here will be either

a. Sutherland's law

(1.2-5b)

(1.2-5c)

(1.2-5d)

r and h are

(1.2-6a)

(1.2-6b)

_ = 1 + C' T3/2

T + C'

C*
C' =

( 7 - 1) M2T*

(1.2-7a)

(1.2-7b)

where

(1.2-5a)

and

where
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and C* = 198.60 R for air, or the

b. Linear viscosity law

P = C(s)T , (1. 2-8 a)
AX0 TO

where Ad is calculated using the Sutherland viscosity law and C(s)

is determined by requiring the linear law to match Sutherland's law

at the wall, that is,

C(s) 1 + C*/T* T_ (1.2-8b)
Tw/Tc + C*/T* TO

Only cases of constant wall temperature will be studied here so that

here

C(s) = Ca = constant. (1.2-8 c)

The boundary conditions represent the no-slip condition on

velocity

u(s,o) = O, (1.2.-9a)

the injection velocity at the boundary

v(s,o) = vw(s), (1.2-9b)

and the total enthalpy at the wall

H(s,o) = Hw(s), (1.2-9c)
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or the adaibatic wall condition

/H' a0= 0. (1.2-9d)
\6N/wall

The outer boundary conditions are more subtle than the wall conditions

because the edge of the boundary layer is not well defined. For this

reason we must look for matching conditions to mate the viscous flow

to the outer inviscid flow state.

In the present investigation, only cases where the outer flow

was irrotational were studied. Thus the first matching condition will

require that as N goes to infinity (i.e., the region where the

boundary layer merges with the inviscid flow), the boundary-layer

vorticity should asymptotically approach the inviscid value.t

Mathematically stated

X O, as N -, (1.2-10)

where to second order the vorticity in the boundary layer is given by

X = 1 h1(huJN (1.2-11)= h-l(hu)N.

The fact that the outer boundary condition must be applied at
infinity can be seen by letting no be a point in the region where
the boundary layer merges with the inviscid flow. Then the matching
conditions are applied as

N - No = no/E . (1.2-10a)

Since boundary-layer theory becomes exact in the limit as c - 0,
then N - o at the outer reaches of the viscous region.
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From equations (1.2-10) and (1.2-11), we find that

(hu)N - 0 as N -o , (1.2-12)

which results in

hu f(s) as N . (1.2-13)

To determine the function f(s), we apply the matching condition that

the viscous u-velocity profile as N becomes large matches the

inviscid profile near the body surface. This is the same matching

condition as used by Murphy (1953), Van Dyke (1969), and Davis,

Whitehead, and Wornom (1970). This implies that

f(s)/h - U(s,n) for small n, (1.2-14)

where U(s,n) is the inviscid U-component of velocity. Noting that

h = 1 + Kn, we can expand both sides of equation (1.2-14) in a

Maclaurin series for small n to obtain

f(s)(1 - n + ... ) U(s,o) +( n + ... (1.2-15)

From the condition that the outer inviscid flow be irrotational comes

the relation that

)(hU) (V-6(hU) 6as = 0 (1.2-16)
--n as =O
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Now if we solve equation (1.2-16) for AU and substitute it into

equation (1.2-15), we find that

f(s)(l - Kn + ...) " U(s,o)(1 - Kn) + (V)n + ... for small n.

(1.2-17)

In the outer flow the V-component of velocity can be expanded as

V = V1 + Ev2 + .... (1.2-18)

Thus equation (1.2-17) can be expressed as

f(s)(l - Kn + ...) U(s,o)(l - Kn) + [v + c- n + 

(1.2-19)

Noting that U(s,o) = Ue(s), (0V1/ as)S, 0 = 0 for any body, and

n = 0(e) for proper matching, we find from equation (1.2-19) that

to second order

f(s) = Ue(s). (1.2-20)

Here Ue is the inviscid surface speed on the body under considera-

tion and must be valid to second order, that is, it must contain the

displacement-speed effects delineated by Van Dyke (1962c). Therefore,

the resulting matching condition on the u-component of velocity

becomes

+See Van Dyke (1962c).



13

u " um = Ue/h as N -. (1.2-21)

The outer boundary condition on enthalpy can be found as follows.

As N -dcO in equations (1.2-3) and (1.2-5), it will be required that

the viscous terms vanish (i.e., the governing equations yield the

inviscid flow equations). This gives the condition that

p(umHs + hvHN) - 0 as N ->. (1.2-22)

Letting H be denoted as Hm as N - a, it is seen that

Hm = constant (1.2-23)

is a solution to equation (1.2-22). The obvious choice for the con-

stant is

Hm = He, (1.2-24)

where He is the inviscid total enthalpy on the body surface here

taken to be constant.

Therefore, the matching condition on total enthalpy becomes

H - Hm = He as N -. o. (1.2-25)
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In addition to the boundary and matching conditions given by equa-

tions (1.2-9), (1.2-'21), and (1.2-25), we must also identify how the

following quantities match with the inviscid flow. As N -X the

viscous terms must approach the following inviscid matching profiles,

denoted by the m subscript,

I im, (1.2-26a)

T Tm,me

P ' Pm'

(1.2-26b)

(1.2-26c)

and

P - Pm'

Letting N become large in equation (1.2-5c), we find after

tion from equations (1.2-21) and (1.2-25) that

2
Tm - He - um/2.

(1.2-26d)

substitu-

(1.2-27)

Similarly, equations (1.2-7) and (1.2-8) give that

1 + C' 3/2
C Tm -' 'Tm

Tm + C'
(1.2-28 a)

Am = C Tm
1J-, T,

(1.2-28b)

or
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Letting N approach infinity in the s-momentum equation and noting

that the viscous terms will be required to vanish as N-4 o, we obtain

PmUm aS + -m 0 as N A. (1.2-29)
au s 

If we now substitute -am from equation (1.2-27) into equation

(1.2-29), we find that

aPm aTm (1.2-30)
6s - s

Making the substitution for Pm in equation (1.2-30) from the equation

of state, we find upon integration that

Pm(SN) = Tm(,N W(N) as N . (12-31)

pm(s,N) [Tm(s,N) W(N) as N -* 03. (1.2-31)

To determine the function W(N), we apply the matching condition that

the viscous pressure distribution for large N should match the

inviscid pressure for small n, that is,

Pm(s,N) " P(s,n) for small n, (1.2-32)

where P(s,n) is the external inviscid pressure.

For small n we can express P(s,n) in a Maclaurin series about

n = 0. Thus
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lP(s,n) = P(s,o) + () n + .... 

From Van Dyke (1962c), the n-momentum equation evaluated at

becomes

(aP
VF/s, o

+ v s Ov
e (7-n/)s, o

- cUe ,

where Ue = U(s,o), Ve = V(s,o), and Pe = p(s,o).

be substituted into equation (1.2-33) to obtain

P(s,n) = Pe - Pe e(v)
/S, 0

+ Ve('V)

This can now be

- KUe n + ...

(1. 2-35a)

where

Pe(S) = P(s,o). (1.2-35b)

To second order within the boundary-layer region, equation (1.2-35)

may be written as (using the equation of state)

P(s,n) = Pe(1 + U cKN) + (O(e2 )
7 - 1T e

(1.2-36)

Noting that

Tm = (Te + Ue/2) - u/2,U e / 2 ) (1.2-37)

(1.2-33)

n = O

(1.2-34)
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equation (1.2-31) can be written as

Pm = W(N) Te + 1 Ul (12-38)

which when expanded for small n gives

Pm = W(N)Te + e n + . (12-39)
L 7- 1 Te

If we now apply the matching condition that pm(s,N) ~ P(s,n) for

small n, we find that equation (1.2-36) and (1.2-39) give that

W(N) = W = Pe/T7- 1 = constant (1.2-40)

for irrotational flow. Thus, equation (1,2-31) may be written as

pm(sN) = PeT )(1.2-41)

where Pe and Te are the inviscid pressure and temperature on the

body under consideration. Likewise, from the equation of state,

pm(s,N) can be written as

1

P (SPN) = Pe 7 (1.2-42)

where Pe is the inviscid density on the body under consideration.



It was noted previously that the viscous terms would be required

to vanish from the energy and s-momentum equations as N - o. As

the equations now stand this is not true. To see this, let N

approach infinity in the s-momentum equation, where the right-hard

side (RHS) becomes

RHS - 1 a h2rj I( 2 hN as N - , (1.2-43)

which when expanded gives

RHS '1 12h hNr M m + jh2rN4m + h2rJ2 hN a -f 2 hN r)

~hr0 ~h -6- -u-]

+ (h rjCm) i 4( hN) umi . (1.2-44)
h

Noting that h =1 + cKN,r = r
o

+ cN cos Owall, thus hN = rN = O(E),

we see that although the viscous terms do not vanish, they can be

seen from equation (1.2-44) to go to third order. Since the governing

equations are valid formally only to second order, these third-order

terms which are bothersome to the numerical analysis can be corrected

for by subtracting the limiting form of these same terms from the RHS.

Applying this correction the s-momentum equation becomes

p [u us + v(hu)N] + p a rJ(un h -)
6s hrJ N ~ h (1.2-4

(1.2-45)

18
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Similarly, letting N approach infinity in the energy equation we

find that the RHS becomes

RHS a rm (1 - 2a) hN 2
m

as N -ea, (1.2-46a)
srJ L oNTm

which after expansion becomes

RHS 1 il- 2a) r + rFm hNR um 2rJ u2 h
rJ a N(m mT m h m m h

(1.2-46b)

Again, the RHS does not vanish as required but it can be seen from

equation (1.2-46b) to be third order and as such will be corrected

for the same manner as the s-momentum equation. Applying this correc-

tion, the energy equation becomes

p(uH
s
+ hvHN) = 1 a a) u u _ u2 hN

.rJ NL QN a6N h

- (1 - 2a) m hN (1.2-47)

One final modification which leads to a simplier computational

scheme involves writing the pressure gradients in equations (1.2-4)

and (1.2-45) in terms of the velocity profile by first integrating

equation (1.2-4) from any point No to an arbitrary point N to give
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p(s,N) = p(s,No ) + N pu 2 dN. (1.2-48)

Realizing that

N hN .2
Pm(S,N) = m(No) +m dN, (1.2-49)

equation (1.2-48) can be written as

p(s,N) = Pm(s,N) + (s,No) - Pm(SNo)1 + JN (Pmu dNP

(1.2-50)

In the limit as - 0 for no fixed, No = --- and

p(s,N
o) - Pm(s, No) , so that equation (1.2-50) becomes

p(s,N) = pm(s,N) + hN( 2 d (151)n \ imm - p u2 dN, (1.2-51)

where pm(s,N) is given by equation (1.2-41).

1.3 Summary of Governing Equations in Boundary-Layer Variables

The compressible boundary-layer equations valid formally to

second order are

the CONTINUITY EQUATION

(ru) + (hr )N =0 (1.-1)
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the S-MOMENTUM EQUATION

p[u us + v(hu)N] - PmUm a + L N_
= 1 ah2riJ(uN hN u 

hrj 6N h
L

N u -2

2ur m 

u J I

pu2 dN

(1.3-2)

and the ENERGY EQUATION

p(uHs + hVHN) =
1 a hrJl

rJ aN _

(aH
(1-

-(1 - 2a) I N
i h

au
aN

um1

_ a 2 hN
h

(1.3-3)

The pressure in the boundary layer is given by

p(s,N) = Pm(S,N) + pu dN
I

EQUATION OF STATE

p(s,N) = 7 - 1 p(H - u2 /2)
7

VISCOSITY LAWS

Two viscosity laws will be employed. They are:

a. The Sutherland viscosity law

= 1 + C' T3/2

T + C'

(1.3-4)

(1.3-5)

(1.3-6a)

h N(PmUm 
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where

C' -~~C' 1 C* (1.3-6b)

and

b. The linear viscosity law

= C T, (1-3-7a)
Tco

where

1 + C*/ T* T (1.3-7b)
Tw/T. + C*/T i T:0

In equations (1.3-6b) and (1.3-7b), C* is taken to be 198.60°R

for air.

BOUNDARY CONDITIONS

The boundary conditions are the no-slip condition

U(s,o) = O, (1.3-Pa

the surface injection condition

V(s,O)= Vw(s), (1.3-8b)

a specified wall temperature

H(s,o) = Hw(s), (1.3-8c)

or the adaibatic wall condition

(6H/ aN)wall = O. (1.3-8d

The matching profiles which constitute the outer boundary conditions

are

u(s,N) ~ um = Ue/h as N - co, (1.3-8e)
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H(s,N) Hm = He as N - X , (1-3-8f)

1

p(s,N) " Pm = Pe(Tm/Te) as N , (1. 3-8h)

and

T(s,N) - Tm = He - Um/2 as N . (1. 3-8i)

In the above equations um, Hm, Pm, Pm, and Tm are the inviscid

profiles that the viscous profiles must match as the boundary layer

merges with the inviscid flow region.

1.4 The Governing Equations in Similarity Variables

It will prove convenient later if the governing equations are

put into similarity form so that when a self-similar solution exists

the equations will reduce to the proper form. The similarity form

is also better suited for numerical solution since the boundary layer

does not grow as fast in these coordinates.

Following the example of Hayes and Probstein (1959), Blottner

(1970), and Davis, Whitehead, and Wornom (1970), we choose the trans-

formed independent coordinates e and f to be



2j
=e = PeleUero ds, (1.4-1)

and

Ue N
-= PrJ dN. (1.4-2)

Equations (1.4-1-2) are generalized forms of the Gbrtler and Howarth-

Dorodnitsyn transformations. Note that for the incompressible case

P = Pe = be = 1 and equations (1.4-1-2) reduce to the expressions

employed by Davis, Whitehead, and Wornom (1970) and for classical or

first-order theory h = 1 and r = ro so that equations (1.4-1) and

(1.4-2) reduce to those coordinates originally due to Levy (1954) and

Lees (1956) and adopted by Blottner (1970), and others.

The transformed tangential component of velocity is defined as

F = u/um, (1.4-3)

and the transformed total enthalpy is defined by

G = H/Hm. (1.4-4)

Applying the above transformations to the continuity equation we

obtain upon integration that

hrjpv 6= -aE/ a2s Ti F drF as vl e 
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The transformed v-component of velocity will be chosen to be

V = - F2T - eS·=-\J ~ / ' /o(•;F d ) + Pwrovw\/ ,/(/s).

Thus, in terms of the similarity V-component of velocity the

v-component becomes

v = 1 a(
prJh as

Differentiating equation (1.4-6a)

can be written as

-V + 25
anq

(1.4-6b)

the transformed continuity equation

F +F = 0. (1.4-6c)

In the new coordinate system the convective operator becomes

(1.4-7)

Applying the above transformations to equations (1.3-2-3) the trans-

formed second-order compressible boundary-layer equations are obtained

as

CONTINUITY EQUATION

- v + 25 _F + F = 0,

(1.4-6a)

physical

- \/2-- F) ·
V2~ ~s

P!u a + hv a ) = PUm e2 F a + V a 
9 Ts 6N 2- as aE anr 

(1.4-8)



S-MOMENTUM EQUATION

a R ZF
arl A h r~

ENERGY EQUATION

arR2jl
RL 

+ Uma

He
1)F aF

arl
+ (1 - 2a) (F2

h\

= o(2~F ~G

The pressure at any point in the boundary layer is given by

p(s,N) = Pm + U I,

where um and Pm are given by equations (1.3-8e) and (1.3-8g).

EQUATION OF STATE

p = - 1 p(HeG - u 2/2).
7

Quantities not defined in equations (1.4-8-12) are defined as

R = r/r, 

(1.4-12)

(1.4-13)

z = (P (Y(Pelle) ,

26

h2} = p(F2 P) + 2PF 6F
6S

+

+ V aF
a6l + 2 Il (1.4-9)

Pm-

_ Pz

Pmz / J

-+ (2I

2h (F
h \

+ V 6Gj.
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25 bum 25 dUe

Um ~a ue dg

2h ah

h ~~ '
(1.4-15)

= Ph
2 'd ,

h 3

and

(1.4-17)

Equations (1.3-6-8) supply the remaining relations needed for computing

a solution.

BOUNDARY CONDITIONS

The boundary conditions are the no slip condition

F(~,o) = O, (1.4-18 a)

a specified wall temperature

G(S,o) = Hwall/He, (1.4-18b)

or zero heat transfer

(aG/al)wall = o, (1.4-18 c)

the surface blowing velocity

V(~,o) = Vw(), (1.4-18d)
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the outer matching condition on velocity

F - 1 as N -4 oo, (1.4-18 e)

and the outer matching condition on total enthalpy

G - 1 as N -o . (1.4-18f)

1.5 Boundary-Layer Properties

The dimensionless coefficient of skin friction is defined as

wall
Cf - 1 p~U. 2

2 wl o

T wall 

2ePw~wroJUe2 (6F)

\/ \T )wall

n 7wall

(1.5-la)

(1.5-lb)

This leads to the usual definition of skin friction

Cf = Cf/E 2pwlwr°oUe (aF)
v2 2a )wall

(1.5-2)

The dimensionless coefficient of heat transfer is given by the

Stanton number defined as

q*wall

pU,*o(H* - H.)

=(HePwiwro Ue G aG

a - (To - Tw) anwall

where

St, = , (1.5-3)
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where

q* = C *p6T*\ (1.5-4)
wall a ( n*/)wall

We can remove the Reynolds number dependence from the Stanton number

by defining

St. = St/E = ePwtwroJUe (T G (1.5-5)
a: a (To - Tw) a wall

The definition of the displacement thickness requires the mass

rate of flow of inviscid fluid past a body thickened by an amount 6

(measured in the N coordinate) to be equal to the viscous mass flow

past the real body. This definition yields the following relation

for the displacement thickness

ripmum dN = rjpu dN, (1.5-6)

where the displacement body is located at n = eS. When written in

similarity variables, equation (1.5-6) becomes

m~ =dr1 00 ( PM - F d~ , (5-5-7)
Jo P o P(-7)

where 5 is the displacement thickness measured in the r coordinate.

The relation between the transformed and physical displacement thickness

is given implicitly from equation (1.4-2) where it is seen that 6 can
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be written as

5-Jb p = F A drl . (1.5-8)
Ueroj pRj

1.6 Reduction to the Incompressible Case

For the incompressible case the density is assumed constant and

the variations in temperature are assumed small so that the energy

equation is uncoupled from the momentum law. Thus, for the incompres-

sible case p = Pe = be = 1 in accordance with the nondimensional

scheme and the governing equations become

the CONTINUITY EQUATION

~V + 25 6F + F = O,(1.6-1)

and the S-MOMENTUM EQUATION

anl hn L(- h j a-+an
t

(1.6-2)

where

R = r/ro, (1.6 -3a)

UeroJ S R 

P = Pe + 2Sh I (1.6-3c)
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= 2~ dUe
Ue2ro2j ds

h (1 - F2) dR.
h3

The transformed similarity coordinates ~ and T are given by

= s Uero 
j
ds,

and

N JU =Ueroj R dN.
i 25 . h

Expanding the LHS of equation (1.6-2) we obtain

LHS = h2 (a R2 j aF)
6Ti0h 6Ti

2hR2 J
h `\ hr~ hh

(1.6-5)

which can further be simplified by noting that

ah ah aN

ar, aN a5l

eCK V2 h

UeroJ RJ
(1.6-6a)

Thus, hqT/hi can be written as

h /hr = hr/h - jR /R.

and

Pe = 2_ dUe
Ue d~

I = h2 

(1.6-3d)

(1.6-3e)

(1.6-4a)

(1.6-4b)

(1 - F),

(1.6-6b)



With this simplification the s-momentum equation becomes

h2
a

R2j 6Fi= O(F2 _ 1) + 2aF aF V 6F+ 20 + 2+ aI.

(1.6-7)

To determine the pressure in the boundary layer we must first take the

limit of equation (1.3-8 g) as the flow Mach number goes to zero.

To do this, we write equation (1.3-8 g) in terms of the inviscid

Mach number Me to obtain

' 2~_/_

Pm = PeF 2 + -1 2) (1.6-8)m =Pe+2 Me _2-

which when expanded for small Me before letting Me X 0 yields

Pm Pe + 1 Ue 21 12)1 as Me - 0. (1.6-9)

Thus, the pressure at any point in the incompressible boundary layer

is given by

P(~'q) = Pe + 1 U(1 2 + u m I (1.6-10)

Where um is given by equation (1.3-8e). The boundary conditions

are given by equations (1.4-18a) and (1.4-18d-e).

+The remaining third-order term in equation (1.6-51 has been
neglected.

-L
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The incompressible forms of the boundary-layer properties are

given as the modified skin friction coefficient

(1.6-11a)

(1.6-11b)

(1.6-llc)

Cf wall /= 2r e F

1 p*U*2 2 al

* = A*·[ au) ,

Cf = ECf.

The displacement thickness from equation (1.5-7) becomes in the

transformed coordinate

= (1 - F) dl, (1.6-12a)

and the physical coordinate value is given as

006R0um dN = o

Jo
RJu dN. (1.6-12b)

Thus, we have shown that the second-order incompressible boundary-

layer equations presented by Davis, Whitehead, and Wornom (1970) are

the limit form of the equations presented in Section 1.4 as M. ~ 0.

where

and



In Chapter II, the incompressible second-order boundary-layer

equations will be employed to study the effects of longitudinal

curvature on wall properties for flow around a circular cylinder at

moderate Reynolds numbers where the displacement-body effects are

approximately known.



II. LONGITUDINAL CURVATURE AND DISPLACEMENT-

SPEED EFFECTS ON INCOMPRESSIBLE BOUNDARY LAYERS

2.1 Introduction

The major difficulty in applying the equations formulated in

Chapter I to a particular flow problem arises because at the present

time, the inviscid flow parameters necessary to match the boundary-

layer flow to the inviscid flow outside of the boundary-layer cannot

be easily calculated to second-order for an arbitrarily shaped body.

The purpose of this chapter is to develop a procedure for numer-

ically solving the incompressible equations valid to second-order and

to apply the procedure to cases where displacement-speed effects can

be approximately determined. This application will give a test of

curvature effects and will indirectly determine whether or not

displacement-speed effects are important.

The particular flow problem to which the theory will be applied

is that of flow around a circular cylinder. This problem was chosen

because the effects of curvature should become important at moderate

to low Reynolds numbers and because experimental and numerical data

in the form of wall pressure and shear stress distributions are

generally available in the open literature.

2.2 Governing Equations

The governing equations have been formulated by Davis, Whitehead,

and Wornom (1970) and as was shown in Chapter I, their resulting

35
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equations are the incompressible counterpart of the second-order

compressible boundary-layer equations formulated there.

The inviscid pressure gradient parameter 3 given in equation

(1.4-15) monitors the pressure gradient the inviscid flow produces in

the e direction. It will prove beneficial later in the incompressi-

ble study to also examine the flow in terms of what pressure gradient

the viscous flow sees. To do this we need to look at the viscous

pressure gradient in the e direction. Differentiating equation

(1.6-10) with respect to e we find that

6p dPe dU e U e e
- + Ue (1 - 2I) + (2.2-1a)

a d5 d d h a h2 a

where

I h2 hl (1 - F2) dn . (2.2-lb)
h3

+
Note that

dPe dUe
+ Ue - O. (2.2-2)

Rewriting equation (2.2-1a) in terms of the inviscid pressure gradient

parameter 3, we find

ap _U2 -(1 -2I) - 2 (2.2-3)
2525h ~

+This will be shown in Section 2.3a to be valid to second-order.
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If we define the viscous pressure gradient parameter as

2h 2 e? (2.2-4)
~v - U2 3~

it can be seen that the viscous pressure gradient parameter Pv will

always be opposite in sign of the actual 5 pressure gradient.

Substituting equation (2.2-3) into equation (2.2-4) we obtain

the following relation for Tv

6I
-2I)- 2t g,(2.2-5)

which gives a direct measure of the longitudinal pressure gradient at

any point in the viscous flow region.

Now examining the governing equations given in Section 1.6, it

can be seen that to numerically solve a general flow problem, it is

necessary in general to know e(), Ue(), K(), ro(~),

cos all (l), and an c. However, for the case of flow around a

circular cylinder j = 0 and, therefore, the only necessary parameters

are Pe(),' Ue(t), K(S), and .

In the present study, putting c = O, reduces the governing equa-

tions to the classical or first-order boundary-layer equations. For

this case Ue, the inviscid surface speed, can be taken from potential

theory or it can be calculated from experimentally measured wall pres-

sures using Bernoulli's equation under the assumption that the pressure

is constant across the boundary layer.
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However, if the governing equations are to be valid to second-

order, then Ue must include displacement-body effects. At the pre-

sent time this cannot be done directly. The next section seeks to

show how this difficulty can be overcome if the wall pressure distri-

bution is known.

2.3 The Pressure Gradient Parameter, Pe

a. General Discussion.- From equation (1.6-10) we find that the

wall pressure is given by

Pwall = P(,O) = Pe + Ue I, (2.3-1)

where

I ( - d (2.3-2)

The inviscid pressure, Pe, and velocity, Ue, can be related to

each other by first noting that to second order in the inviscid flow

region the s component of the Navier-Stokes equation is (see

Van Dyke (1962a))

U + - ~(hU) + 6P = 0.U as V +P (2.3-3)

On the body surface U = Ue(s), h = 1, P = Pe(s), and

V = Ve(s).

Therefore, on the surface, equation (2.3-3) becomes
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dUe r(U dPe
Ue ds ds

n=O

(2.3-4)

In the inviscid flow region the flow is assumed irrotational.

This leads to the result.that

(2.3-5)

Substituting this result into equation (2.3-4) we find that

dUe
e ds

+ V dVe + e = .
e ds ds

(2.3-6)

But from Van Dyke(1962a) the inviscid normal velocity component

can be expanded as

V =V +V e2Ve eI e (2.3-7)

On any surface without injection

Ve = 0 + CVe2 (SO ) ' (2.3-8)

which leads to the result that

dVe
Ve

is third order.

6v = a(hu) .
as an
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Therefore to second-order

e + Ue ,e = O (2.3-9)
ds ds

or

P + 1 U2 = constant. (2. 3-10)
e 2e

Evaluating the constant at the free-stream conditions gives

p + 1 U2 = p + 1 (2-3-11)
e 2 e (-

Upon substituting Ue from equation (2.3-11) into equation (2.3-1)

we obtain

Pwall - (1 + 2P )I (2.3-12)

1 - 2I

where I is given by equation (2.3-2). For classical or first-order

boundary-layer theory c = 0 and therefore I = O. Thus from equa-

tion (2.3-12), one recovers the well known result that to first order,

the inviscid surface pressure is equal to the wall pressure. To obtain

the inviscid surface pressure valid to second order, equations

(2.3-12), (2.3-2), and (1.2-6b) show that the actual wall pressure

must be corrected for longitudinal curvature effects.



41

Since the inviscid parameters necessary for a numerical solution

are Pe and Ue, it' is convenient to look at equation (2.3-12) in

terms of Ue. Using equation (2 .3-11), equation (2.3-12) can be

written as

1 - Cpwall 

Ue =P1 (2-3-13)
1 - 2I

where

Cpwall = 2(Pwall -P) (2.3-14)

Equation (2.3-13) gives the inviscid surface speed to second

order that would be necessary to produce the observed wall pressure

distribution. Thus, equation (2.3-13) should include the displacement

speed.

Cp can be computed using experimentally measured wall pres-

sure distributions, thus leaving only the integral I, (defined in

equation (2.3-2))to be determined from the boundary-layer solutions.

Assuming that the governing equations have been programmed for numeri-

cal solutions, the integral I can be determined in the following

manner. As was noted earlier, once the program has a Pe(), Ue(),

K(~), and an E, it can numerically calculate a boundary-layer solu-

tion at a particular station. To determine I and the value of Ue

to second order, an iterative approach will be used. We will guess

a value of Ue at a station, from this determine a Pe and then



compute a boundary-layer profile. Taking the value of I from this

boundary-layer profile, a new value of Ue will be calculated from

equation (2.3-13). Using this value of Ue, and new De will be

determined and another iteration will be made on the boundary-layer

solution. This process of updating the value of Ue after each

iteration on the boundary-layer solution will be continued until I

(and therefore Ue) converges.

b. Solutions Aft of a Stagnation Point.- The initial guess of

Ue at any station downstream of the stagnation point is obtained

from the following relation+ ,

Ue(New Station)
(Old Station) ( dUew 6S
e(Old Station) + ds !/(New Station)

(2. 3-15)

In this relation

'dUel

I\ )New Station

vious two values
dUe

Ue and ds at

(1.6-4a) and the

As is the step size in the s-coordinate and

was obtained by a linear extrapolation of the pre-

back along the body. With the initial first guess of

the new station, e is calculated using equation

definition,

+Since equation (2.3-15) is a two-term Taylor series expansion
for Ue New' the value of dUe/ds used should have been the value at

the previous station. However, for purposes of programming simplicity
and the fact that equation (2.3-15) only supplied an initial guess,

(dUe/ds)New Station was used instead.



2 dUe
e(Z) = 2 ds

Ue
(2. 3-16)

With these values of De, Ue, and g a boundary-layer profile is

computed. After each iteration the inviscid surface speed is updated

dU
using equation (2.3-13). e is updated after each iteration from the

ds

following relation.

dUe _ Ue(present iteration) - Ue(previous station (2.

ds As

Once Ue, ~, and

iteration is made

dU
of Ue and

ds

been reached. If

dU
dUe have been updated, De is updated and another

on the solution. This process of updating the values

is continued until some criteria of convergence has

IAe < 10-5 and AFw < 10
-

5 where

A e = lfe(last iteration) -Pfe(present iteration)[, (2.3-18)

and

FF = I( l wall (last iteration)- wall(resent iteration

(2.3-19)

the solution was considered to have converged for this study. Note

here that for numerical solutions of the first-order and second-order

problems AFw was held at 105.
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c. Solutions in a Stagnation Point Region.- At the stagnation

point ~ and Ue are zero. Thus it can be seen from equation (1.6-1)

and (1.6-7) that the ~ derivatives drop out of the governing equations

which then reduce to ordinary differential equations dependent oily

upon the parameter f and the scale factor h. p is computed using

equations (1.6-3c) and (2.3-16) while h is computed from equation

(1.6-3b) using an initial guess of h to evaluate the integral for

the first iteration and the calculated value for the next iteration and

so forth until the boundary-layer solution converges. Because Ue and

g are zero at the stagnation point, equation (2.3-16) which is used

in computing 3 and equation (1.6-3b) which is used to compute h

become indeterminate at the stagnation point. To obtain the values

of Pe and V27 /Ue (the indeterminate term in equation (1.6-3b) at

the stagnation point, we must expand Ue in a Taylor series about the

stagnation point for small s. Thus Ue(O + s) becomes

Ue = U's +..., (2.3-20)

where U' is the value of dUe/ds at the stagnation point.

Using equations (2.3-20), (1. 6 -4a),and (2.3-16) we find that at

the stagnation point,

e = 1, (2.3-21)

and
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1

F-01 

(2.3-22)U2, =
Ue

Thus the major difficulty at the stagnation point will be determining

the proper value of U. To do this, note that from equation (2.3-13)

we see that for Ue to be equal to zero at the stagnation point, Cp

must be 1 there. Both Homann (1936) and Grove, Shair, Petersen,

and Acrivos (1964) have shown this to be true to second order.
+

Expanding CP about the stagnation point, we obtain

Cwa = 1 + A22 + ....

Substituting the expansions of Ue and Cpwal1 about the stagnation

point into equation (2.3-13) and taking the limit as s goes to zero,

we find that

+Homann (1936) and Grove, Shair, Petersen, and Acrivos (1964) have
shown analytically from a boundary-layer analysis that at the stagna-
tion point

aR

Pwall dRe
(2.3-22a)

where a is a constant. Using a boundary-layer concept, they found
a to be equal to 8. More recently, Takami and Keller (1969) assumed
equation (2.3-22a) to be correct and estimated a to be 5.985 through
comparison with their numerical solutions of the Navier-Stokes equations
at Reynolds numbers of 50 and 60. Dennis and Chang's (1969) numerical
solutions for Reynolds numbers from 50 to 100 also give a " 6.

(2.3-23)



46

U' 2 (1 - 21o)12 (2.3-24)

where I
o

is the value of the integral I at the stagnation point.

Noting that for a circular cylinder K(t) = 1, equation (2.3-2)

in boundary-layer coordinates becomes

Io = ' j ( _ h2u)dN (2-3-25)

As an initial guess of U~ at the stagnation point, a second-order

estimate of equation (2.3-24) will be made. To do this, we only need

a first-order estimate of the integral in equation (2.3-25) and this

can be found by substituting the following expansions for u and Ue,

u = u1 + eu2 + ... (2.3-26)

Ue = Uel + £Ue2 + ... (2.3-27)

into equation (2.3-25) and keeping only terms of first order in that

integral. Therefore equation (2.3-25) becomes

= 1 dN (2. -28)
I, ·S~(·-,u 1

which can be expanded into
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jL ;(i Ul')dN +J L( d (2.3-29)

We can now identify the two integrals in equation (2.3-29) as

being the first-order displacement thickness °1, and the first-order

momentum thickness 01 so that we may write that

Io = E(61 + e1). (2.3-30)

From Schlichting (1968), the first-order values of 51 and 01 at

a stagnation point for a cylinder are

B1 = 0.458, (2-3-31)

and

01 = 0.206, (2.3-32)

where the value of dUe/ds at the stagnation point used to obtain

these values was taken from potential theory.

Thus the initial guess of U
o

at the stagnation point will be

taken from the following relation

U; = -A2 (1 - 1.328c)- 1/2 (2.3-33)
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where Io = 0.664e has been substituted into equation (2.3-24). The

constant A2 is to be determined from the wall pressure distribution

in accord with equation (2.3-23).

After each iteration on the boundary-layer solution, Uo is

updated using equation (2.3-24) until UO satisfies the following

convergence criteria AUO < 10- 5 where

AUO = IUO(present iteration) - UO(last iteration)l , (2.3-34)

and AFw < 10- 5 - AF was defined in equation (2.3-19).

Table I gives the initial values of UO obtained from equation

(2.3-33) using a series of various wall pressure distributions that

will be discussed in detail in Section 2.5b. Also included in this

table are the final values of UO obtained from the iterated boundary-

layer solutions.

2.4 Outline of the Numerical Solution Technique

The second-order boundary-layer equations have been programmed

for numerical solution using an implicit finite-difference method

similar to that developed by Fluigge-Lotz and Blottner (1962) and as

applied to higher-order boundary-layer theory by Davis, Whitehead,

and Wornom (1970).+ We want to outline here the procedure used to

numerically solve the governing equations when correcting the wall

pressure for curvature effects to obtain the second-order inviscid

+Details of the method of solution are given in Appendix A.



49

surface pressure. For a general station away from the stagnation

point the following procedure is employed:

1. The initial estimate of Ue is taken from equation (2.3-15).

The initial estimate of dUe/ds is made by extrapolating the previous

two station values to the new station.

2. ~ and De are computed using equations (1.6-4a) and (2.3-16)

and one iteration on the boundary-layer solution is performed.

3. Using equations (2.3-18-19) a check is made to see whether

the solution has converged. If not, the value of I from this solu-

tion is used to update the values of Ue and dUe/ds through equations

(2.3-13) and (2.3-17).

4. Steps 2 and 3 are repeated until the solution converges.

At the stagnation point the initial guess of dUe/ds is taken

from equation (2.3-33). For each iteration thereafter, dUe/ds was

updated using equation (2.3-24).

2.5 Discussion of Results

a. Wall Pressure Data.-Four sets of experimental wall pressure

data were used in this study. They were the experimental data of

Thom (1933) at Red = 174, and three sets of experimental data by

Grove, Shair, Petersen, and Acrivos (1964) -- two at Red = 175 and

the other at Red = 177. The Reynolds number Red is. defined as
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Re d P* U* d (2.5-1)

where d* = diameter of the test cylinder.

The d*/h* ratios employed in these experiments were 0.025, 0.1,

0.05, and 0.05 respectively, where

d* = diameter of test cylinder (2.5-2)

h* width of test section

All four sets of experimental data were assumed to represent

steady flow conditions although only the data at Reynolds numbers 175

and 177 were taken using a splitter plate behind the cylinder to insure

wake stability. Figure 2.2 shows the variation of the experimentally

measured wall pressure distributions for Reynolds numbers 174, 175

(d*/h* = 0.05 distribution only), and 177. The exact reasons for the

wide variations is not known but it seems to closely associated with

the splitter plate influence.

Two numerically obtained wall pressure distributions were also

used in this study. The first was obtained by Kawaguti (1953) from

a numerical solution of the steady-state incompressible Navier-Stokes

+The second-order boundary-layer equations were nondimensionalized
with respect to the nose radius of curvature shown in Figure 2.1.
Therefore,the Reynolds numbers appearing in the governing equations
through C is based on the radius of the cylinder. However, when
referring to the different Reynolds number cases, the Reynolds number
stated will be based on the cylinder diameter which is the Reynolds
number used in reporting the experimental and numerical data.
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equations at Reynolds number 40. The second one was obtained by Thoman

and Szewczyk (1969) from a numerical solution of the time-dependent

incompressible Navier-stokes equations at Reynolds number 200.

b. Curvefit Representation of the Pressure Distributions.- In

order to be able to compute the surface pressure at arbitrary stations

along the surface, least-square curvefits were applied to all the wall

pressure distributions used here.

Since steady-flow conditions are assumed, the wall pressure

should be symmetrical with respect to the body coordinate measured

from the stagnation point. For this reason, the four sets of experi-

mental data and the numerical wall pressure distributions were fitted

to a curve over the interval -180° to +180 by a least-squares technique

using the ratio of two Chebyshev polynomials of the form

IP

X CT(x)
nn

C Pwall - P_ _ n=O (25-3)
Pwall 1 p*U*2 I

2 00 ,) DnTn(x)

n=0

where IP is the number of terms in the numerator expansion and IQ

is the number of terms in the denominator. Tn(x) is given by the

recursion relation

Tn(x) = 2XTn_l(x) - Tn-2 (x), (2.5_4)
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where T
o

= 1, T = x, T2 = 2x2 - 1,... and x is contained on the

interval -1 < x < 1. Further details concerning Chebyshev polynomials

are given by Carnahan, Luther, and Wilkes (1969). Table II lists the

coefficients Co, C2 , C4,... and Do, D2, D4 ,... for the different

curvefits used. Because the wall pressure was taken to be an even

function of the body coordinate s, the odd coefficients were deter-

mined to be zero when the data was fitted over the interval -180° to +180° -

The criteria upon which the selection of the curvefits used in

this study was based will be presented in Section 2.5h where some of

the curvefit difficulties encountered will also be discussed.

The wall pressure data was not tabulated in the literature for

the Reynolds numbers 40, 175, 177, and 200 cases. Table IIIgives the

data points for these cases as they were read from graphs given in the

cited references. These points were the basis for the wall pressure

distributions employed in this study. Figure 2.3a-f show comparisons

between the pressure distribution curvefits selected for this study and

the data points used in obtaining such.

It was pointed out in Section 2.3c that at the stagnation point

Cwall should be equal to 1 to second order. Note that this is not

true of the wall pressure data shown in Figures 2.3a-d. This differ-

ence at the stagnation point is an indication of third and higher-order

effects present in the data.

Figure 2.3e and 2.3f show Cpwall to be approximately 1 at the

stagnation point for the Reynolds number 200 wall pressure data. This



appears to be an inconsistency as equation (2.3-22a)implies that the

stagnation value should be approximately 1.03 or 1.04. It is not

known how serious this inconsistency is, but some difficulties were

encountered in trying to find accurate curvefit representations of this

particular wall pressure data in the stagnation region (seeSect. 2.5h).

This inconsistency may have been the cause, but this is not known for

sure.

At other points along the body away from the stagnation point, the

third-order corrections influence on the wall pressure distribution is

not known. For want of a better method, the stagnation point values of

these higher-order effects (i.e., a/Red) were assumed representative

for all s and subsequently subtracted out of all the pressure data.

This amounts to translating the wall pressure curvefit distribution

after the data has been curvefitted+ so that Cpall equals 1 at the

stagnation point+ +.

When the wall pressure data was translated before curvefitting,
the resulting curvefit still reguired shifting because it usually was
not identically equal to 1 at the stagnation point. Such an unequal
shifting of the data and the curvefit resulted in a poorer representa-
tion of the wall pressure data than the above method.

++Other authors, namely, Dimopoulos and Hanratty (1968) fitted the
Reynolds number 174 wall pressure data to a polynomial of the form

6
Pwall = 2n ( 2.5-5 )

o U00 n=O

Using this pressure distribution, they obtained a Blasius series solu-
tion of the classical boundary-layer equations for the shear-stress
distribution. It should be noted that in doing their Blasius solution,
Dimopoulos and Hanratty (1968) did not need to shift their pressure
distribution since the stagnation value of Cpwal1 does not appear in
the final Blasius shear-stress equation.
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c. Effects of Curvature and Displacement Speed on Wall Pressure

Distributions.- Figures 2.4 a-e show the following wall pressure distri-

butions for all of the Reynolds number cases studied. Curve (1) gives

the inviscid surface pressure distribution obtained from potential

theory and it is the same in all the figures.+ Curve (2) shows the

wall pressure distribution taken from either experimental or numerical

data. Curve (3) shows the inviscid surface pressure valid to second

order obtained from equation (2.3-12) and the second-order boundary-

layer solution.++ Looking at the results in a different light, curve

(3) shows the inviscid surface pressure to second order that would be

required to produce the observed wall pressure distribution shown by

curve (2). As such, the difference between curve (3) and curve (2)

can be attributed to curvature through equation (2.3-12). Without the

curvature correction, eauation (2.3-12) implies the wall pressure is

equal to the inviscid surface pressure.

Figures 2.4a-e also give some indication of the effect the

boundary-layer displacement thickness has on the inviscid surface

pressure. If one assumes the inviscid surface pressure distribution

+Due to the presence of a wake behind a cylinder even at high
Reynolds numbers, the inviscid potential pressure distribution is

meaningless for 0 > 1000.

++Curve(4), shown inFigure 2.4c only, shows the wall pressure

that results from a solution of the second-order equations using the

potential theory inviscid surface pressure distribution to compute 3e'
Thus, curve (4) gives the wall pressure that would exist if the
inviscid pressure were given by curve (1).
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at infinite Reynolds number to be given by potential theory,+ then the

difference between cu'rves (1) and (3) of Figures 2.4a-e can be viewed

as a measure of the second-order contribution to the inviscid flow

(i.e., that due to flow over the displacement body).

d. Displacement-Body Effects.-For the governing equations to be

valid to second order, the inviscid surface speed Ue must be the

inviscid surface speed on the cylinder surface due to flow over the

displacement body. In Section 1.4 we defined a displacement thickness

5 such that the mass rate of flow of inviscid fluid past a body

thickened by an amount 6 is equal to the amount of viscous flow past

the real body. This definition yielded the following relation for the

displacement thickness 6

Ue dN = u dN. (2.-5-6)

In terms of the displacement thickness 6, the displacement body for

a cylinder is then given by 1 + Ec.

Figures 2.5a-e show the displacement bodies obtained in this study

for solutions of the complete +second-order equations. It should be

noted also that for the complete second-order solution, the inviscid

surface pressure shown in Figures 2.4a-e is the inviscid surface

+Due to the presence of a wake behind a cylinder even at very
high Reynolds numbers, this point is uncertain.

++
Complete here refers to solutions of the second-order equations

where the inviscid flow parameters are also valid to second-order.
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pressure which boundary-layer theory says is induced on the cylinder

surface due to flow over these displacement bodies. The thickness of

the boundary layer for the Reynolds number 40 case gives an indication

that these solutions are an extreme test of the limitations of the

boundary-layer concept.

Figure 2.6 shows the displacement body obtained from a classical

boundary-layer solution at Reynolds number 177 using the inviscid

surface pressure taken from potential theory to compute Pe'. Whereas

in Figures 2.5a-e the inviscid flow sees the approximate displacement

body, this is not true for the solution shown in Figure 2.6 where the

inviscid solution is also for a cylinder. Note that Figure 2.6 gives

evidence of a singularity in the displacement thickness derivative at

separation. + However, Figure 2.5d shows that when the viscous flow

was made consistent with the inviscid flow (i.e., the complete second-

order solution), there appeared to be no evidence of such an impending

singularity at separation.

e. The Viscous Pressure Gradient Parameter rPv- Figure 2.7

shows the values of the inviscid and viscous pressure gradient param-

++
eters on the cylinder surface for the Reynolds number 177 case.

Also shown are the values at the outer reaches of the viscous flow

region (i.e., where F = 1.0000). The large variation in the viscous

+Brown and Stewartson (1969) have shown that if there is a
singularity in the shear stress at separation, there will also be a
singularity in the derivative of the displacement thickness.

++The other Reynolds numbers cases were similar.
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pressure gradient parameter is an indication of large pressure gradi-

ents existing across the boundary layer. From Figure 2.7 and also

equations (1.4-18e), (2.2-lb), and (2.2-5) it can be see that

«v --- fi as N -X -. (2.5-7)

It is often suggested that separation of the classical boundary-layer

flow from a body results from the boundary layer being subjected to

a positive pressure gradient. For classical boundary-layer theory one

need only monitor the inviscid pressure gradient parameter Pe to

determine when the boundary layer sees a positive pressure gradient.

The reason for this is that for classical boundary-layer theory the

pressure is assumed constant across the boundary layer and as a result,

the viscous pressure gradient in the 5 direction is equal to the

inviscid pressure gradient. However, for the second-order equations

the viscous pressure gradient is not equal to the inviscid pressure

gradient. For this case the viscous pressure gradient parameter fv

+
must be monitored. Monitoring Pv' Figure 2.7 shows the portion of

the boundary layer nearest the wall undergoing a positive viscous

pressure gradient at separation. This causes the flow to separate at

the wall and in turn causes the rest of the boundary layer to separate

with it.

+Note from Figure 2.7 that if one were to monitor the inviscid
pressure gradient parameter X, he would led to the conclusion that the
boundary layer was undergoing a negative pressure gradient at separation.



58

f. Shear Stress Distributions.- Figures 2.8a-e show the shear

stress distributions obtained in this study. In each of these,

curve (1) shows the solution to the equations valid to second order

using the inviscid surface conditions obtained from equation (2.3-13)

by iteration and as such, represents the complete second-order solu-

tion. The remaining curves will now be discussed in terms of how they

compare with curve (1). Comparison of the complete second-order

solution, curve (1), with experimental results will be left for a

later section.

Curve (2) shows the solution to the classical first-order boundary-

layer equations using the inviscid surface pressure distribution

obtained from potential theory. This solution is the same for all

Reynolds numbers. The shear stress given by this solution can be

seen to be very much higher than curve (1).

Curve (3) shows the solution to the classical boundary-layer

equations taking the inviscid surface pressure to be approximately

equal to the observed wall pressure distribution. It was quite

surprising to find this solution virtually equal to the second-order

solution except near separation. This result can be rationalized

in the following way. Near the wall where N is small, h is

approximately equal to 1, and u is approximately equal to zero.
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Substituting these approximations into the governing equations + gives

a zero normal pressure gradient and reduces the remaining two equations

to the classical boundary-layer equations. Therefore, the flow near

the wall is approximately governed by the classical boundary-layer

equations even when curvature terms are included. Since both of the

solutions, curve (1) and curve (3), see the same wall pressure gradient,

this apparently results in their shear stress distributions being

approximately equal. We note in passing that, based on this point,

it is natural to conclude that an accurate means of obtaining the

wall pressures is needed in order to calculate the wall shear.

Curve (4) (shown in Figure 2.8 c only) gives the solution to the

second-order equations using the inviscid surface pressure distribu-

tions from potential theory to compute pe. This solution makes no

attempt to correct the inviscid surface pressure (potential) for

curvature effects. The wall pressure for this solution is not the

observed wall pressure distribution but the wall pressure that comes

out of equation (2.3-1). For the Reynolds number 175 case, this wall

pressure is shown by curve (4) in Figure 2.4c -- the wide difference

+The second-order incompressible boundary-layer equations are
given as:

continuity equation. u
s

+ (hv)N = 0 , (2.5-8)

s -momentum equation. u Us + v(hU)N + ps p= h (hu)N] N' (2.5-9)

euhN(25-0

N-momentum equation. (2.5-10
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between this and the actual wall pressure apparently causing the

difference in the shear stress distributions observed in Figure 2.8 c.

Note that for this case the boundary-layer solution failed to con-

verge after 30 iterations+(the maximum allowed for this particular

case) to the degree of accuracy required for this study.++ It is also

worthy of note that this solution lies closer to the complete second-

order solution than curve (2) shown in Figure 2.8c.

Curve (5) shows the solution to the second-order equations using

the wall pressure distribution to compute Be, that is, taking the

inviscid surface pressure to be approximately equal to the wall

pressure distribution. This assumption is often made since the measured

wall pressure distribution should contain displacement effects. If the

pressure is approximately constant across the boundary layer, then it

would seem that taking the observed wall pressure distribution to be

approximately equal to the inviscid surface pressure would be a valid

assumption. However, as was noted earlier, this assumption is not

a very good one for the Reynolds numbers studied here as can be seen

from the results in Figures 2.4a-e and also from the shear stress

results shown in Figures 2.8a-e.

g. Comparisons with Experimental and Numerical Shear Stress Data.-

In order to properly compare the numerical shear stress distributions

with experimental data, wall pressure and shear stress distributions

+Thirty iterations at that particular station.

++Computer output showed that the solution was in the process
of converging when the 30 iteration limit was reached.
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were needed which were taken at the same Reynolds number and under

the same test conditions. However, none were to be found in the

literature.

The experimentally measured wall pressure and shear stress dis-

tributions appear to be very sensitive to the test parameters d*/h*,

defined in equation (2.5-2) and c*/d* defined as the distance from

the cylinder centerline to the front edge of the wake splitter plate

ratioed to the diameter of the cylinder.

The influence of c*/d* ratio on the measured wall pressure can

be partly seen in Figure 2.2. For a Reynolds number difference of 2

between the 175 and 177 case, there is a slight change in the wall

pressure data. For the 175 case, _*/d* was approximately 2.5,

d*/h* was 0.05. For the Reynolds number 177 case, c*/d* was 3.4

and d*/h* was 0.05.

The effect of the d*/h* ratio on the measured wall pressure

distribution was shown experimentally by Grove, Shair, Petersen,

and Acrivos (1964). To illustrate here how much the d*/h* ratios

influence the numerical shear stress results, the measured wall

pressure distribution at Reynolds number 175 with c*/d* = 2.5 and

d*/h* = 0.1 was employed in addition to the Reynolds number 175 case

previously mentioned with a d*/ h* = 0.05 and a c*/d* = 2.5. Figure

2.9 shows a significant difference in the two Reynolds number 175

wall pressure distributions. Figure 2.10, which was obtained from a

solution of the classical boundary-layer equations taking the inviscid

surface pressure to be approximately equal to the observed wall
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distribution+ shows a comparison between the two resulting shear stress

distributions. Note from Figure 2.10, that the d*/h* ratio does not

appear to have much influence on the shear stress distribution in the

stagnation region. However, at points further back along the body,

the influence becomes noticeable. Figure 2.'10 strongly suggests that

when comparing numerical shear stress distributions obtained by this

method with experimental shear stress data that, in addition to matching

the Reynolds number, one should also match as closely as possible the

d*/h* ratio at which the wall pressure and shear stress data were

taken.

Of all the experimental shear stress data found in the literature,

the closest (in terms of the Reynolds number and test conditions) to

the Reynolds number 175 case where a splitter plate was used, was the

data at Reynolds number 167 with a c*/d* ratio of 2.5 and a d*/h*

ratio of 0.0833. Figure 2.11 shows a comparison between the classical

boundary-layer shear stress solution using the measured wall pressure

to compute Pe and the experimental shear stress data at Reynolds

number 167. Since Figures 2.9 and 2.10 show the wall pressure and

the resulting shear stress distribution to be very sensitive to the

d*/h* ratio, this fact should be kept in mind when studying Figure

2.11.

+In Section 2.5f, this solution was shown to be virtually the
same as the complete second-order solution. Therefore,because this
solution requires less computer time to run, it will be employed for
comparison purposes.



For the Reynolds number 174 wall pressure distribution which was

taken without the aid of a splitter plate, the nearest experimental

shear stress data was at Reynolds number 151. However, the d*/h*

ratio for the Reynolds number 174 case was 0.025, whereas for the

Reynolds number 151 case, d*/h* was 0.0833. Because of the wide

difference between the d*/h* ratios used in obtaining the experimen-

tal wall pressure and shear stress distributions for this case, it was

felt that any conclusions arrived at by comparison with this data

would seem open to question. Therefore this comparison was not made.

Similarly, for the Reynolds number 177 case, the large differences

in d*/h* ratios used to obtain the wall pressure and shear stress

data prevented a comparison of such.

Note, however, that Dimopoulos and Hanratty (1968) did compare

the Reynolds number 151 shear stress data with a Blasius series solu-

tion using a curvefit of the Reynolds number 174 wall pressure by

Thom (1933) to compute e.
+

The good agreement between experiment

and theory which they report, apparently results from an inconsistency

in their Blasius solution. Using the Blasius series taken from

Rosenhead (1963),++ and the wall pressure representations and constants

+Equation (2.5-5) gives the form of their curvefit representation.

++There seems to be some question as to which Blasius series
solution Dimopoulos and Hanratty (1968)used. Dimopoulos and Hanratty
(1968) report they used the Blasius solution given by Rosenhead (1963).
However, Dimopoulos (1968) reported that he used the Blasius solution
given by Schlichting (1960).
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of Dimopoulos and Hanratty (1968) (see eq. (2.5-5) and Table IV) we

could not reproduce their reported shear stress distributions. Figure

2.12 shows the Blasius shear stress distribution obtained in this study

for the Reynolds number 174 case using the curvefit coefficients of

Dimopoulos and Hanratty (1968). Also shown in Figure 2.12 is the Blasius

solution reported by Dimopoulos and Hanratty (1968) along with the

Reynolds number 151 shear stress data with which they compared.

Two checks were made on our Blasius solution. Taking the inviscid

surface speed on a cylinder (Ue = 2 sin 0), substitution was made into

Bernoulli's equation and expanded to obtain a pressure relation of the

form of equation (2.5-5). Picking off the coefficients in equation(2.5-5)

substitution was then made into our Blasius equation which was written

in terms of these coefficients. Our Blasius solution, using the con-

stants taken from potential theory, compared exactly with that reported

by Schlichting (1968). The second check was a finite-difference solu-

tion to the same equation using the wall pressure curvefit to compute

e-. Figure 2.12 shows that our Blasius solution agrees with the finite-

difference solution except near separation.

Figure 2.12 shows that their good agreement was apparently due to

an inconsistency in their Blasius solution. Appendix B gives the

Blasius solution obtained in this study in terms of the constants in

the curvefit equation given by Dimopoulos and Hanratty (1968).

Because the Reynolds numbers 40 and 200 wall pressure distribu-

tions were taken from numerical solutions of the full Navier-Stokes

equations, the shear stress distributions were available from the same



"test" conditions. Using the following relation, the shear stress

distributions were obtained from the vorticity distributions on the

cylinder surface reported by Kawaguti (1953) and Thoman and Szewczyk

(1969)

f -2wall (2.5-1)

Figures 2.13 and 2.14 show comparisons between the boundary-layer

shear stress distributions and the shear stress distributions obtained

by Kawaguti (1953) and Thoman and Szewczyk (1969). Figures 2.13 and

2.14 shows good agreement between the boundary-layer solution and the

full Navier-Stokes solution. Why there seems to be better agreement

between the boundary-layer solution and the Navier-Stokes solution

at Reynolds number 40 rather than Reynolds number 200 is not known.

h. Curvefitting Difficulties.- The selection of the particular

wall pressure curvefits used in this study was based on two criteria.

The first criteria was that when a particular wall pressure curvefit

was used to compute e', the Pe distribution computed had to be a

well-behaved function. The second criteria consisted of selecting

(from among all the curvefits that satisfied the first criteria), the

curvefit which to the eye, appeared to best represent the wall pressure

data.

Since most of the curvefit difficulties encountered were with

the Reynolds number 200 wall pressure data, this case will be used for

illustration. Two curvefits of the Reynolds number 200 wall pressure
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data will be discussed -- curvefit A and curvefit B. Curvefit A,

shown in Figure 2.3e; appeared to give the best representation of the

Reynolds number 200 pressure data of all the different curvefits

tried. However, it did not satisfy the first criteria. Figure 2.15

shows the Pe distribution that results when computed using this wall

pressure distribution. The unexpected flat portion from approximately

200 to 400 is what is termed here as a not well-behaved function. How

this flat part of the De distribution affects the boundary-layer

shear stress results can be seen in Figure 2.16. Up to the flat part

of the Pe distribution, the boundary-layer shear stress agrees fairly

well with themore exact Navier-Stokes solutions of Thoman and Szewcyzk

(1969). Then the effect of the flat portion of the De distribution

seems to be to shift the numerical results away from the Navier-Stokes

solution. The reason for the horizontal portion in Figure 2.15 can

be traced back to the derivative of the wall pressure shown in Figure

2.17. Whenever the wall pressure derivative became flat in the approxi-

mate area shown, the Pe distribution computed from that curvefit

distribution also changed in the same area. Figure 2.3e shows curvefit

B which was selected as the best curvefit satisfying both of the cri-

teria given above. Figures 2.18 and 2.19 show that both the pressure

derivative and the computed Pe using curvefit B are well behaved.

Figure 2.20 shows a comparison between the classical boundary-layer

shear stress and the numerical shear stress.

It should be noted here that, although the wall pressure curvefits

selected were the best we could obtain, it was felt that some,
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particularly curvefit B of the Reynolds number 200 wall pressure data,

did not represent the data accurately enough. Examining Figure 2.3e,

it can be seen, for example, that curvefit B does not represent the

stagnation region wall pressure data very well. + Upon examining the

shear stress results obtained by using curvefit B to compute Pe and

the shear stress results obtained by using curvefit A to compute e',

it is noted that curvefit A, which gave the best representation of the

stagnation region wall pressure data also compared more favorably with

the experimental results in that region. Further evidence that the

numerical shear stress is sensitive to the wall pressure representa-

tion can be seen from Figures 2.21 and 2.22. Figure 2.21 shows a

comparison between two different wall pressure representations of the

Reynolds number 174 data. Both appear to be fairly good representa-

tions of the wall pressure data. However, Figure 2.22 shows that when

both pressure distributions are used to compute Pe and a classical

boundary-layer solution, one pressure distribution leads to separation

whereas the other does not.

2.6 Conclusions

In summary, the accuracy of the method presented here for studying

the effects of curvature on boundary layers at moderate Reynolds numbers

seems to be limited by the accuracy of the measured wall pressure data

and the accuracy of the wall pressure curvefit representation. Although

+In Section 2.5b it was noted that the stagnation value of C
appeared to be low (implied by eq. 2 .3-22a)). Whether this Pwall
contributed to the poor curvefit representation in the stagnation
region is not known.
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there was a lack of experimental shear stress data taken under the same

test conditions as the wall pressure data, what data there was strongly

indicates that given a very accurate wall pressure representation, the

agreement between the boundary-layer shear stress and the experimental

shear stress data would be very good, even for Reynolds numbers as low

as 40 for cylinders. In addition, we conclude the following:

1. For all the Reynolds number cases studied, the effects of

longitudinal curvature on the boundary-layer wall pressure are signifi-

cant as attested to by Figures 2.4a-e. This implies that if one knew

the second-order inviscid surface conditions and wanted to determine

the wall pressure (viscous), the omission of longitudinal curvature

effects would result in large errors in the flow properties at the

wall.

2. For the Reynolds number cases studied, large pressure gradients

(implied above) were found to exist across the boundary layer. This

would seem to exclude any hope of obtaining a good representation of

the flow from classical boundary-layer theory. However, to the con-

trary, it was found that if one had a measured wall pressure distribu-

tion and was only interested in shear stress results, a classical

boundary-layer solution using the measured wall pressure distribution

to compute Pe would be sufficient.

3. For the complete second-order solution, there appeared to be

no evidence of an oncoming singularity in the displacement thickness

on a cylinder at separation such as is indicated by a classical

boundary-layer solution.



III. A STUDY OF LONGITUDINAL CURVATURE EFFECTS ON COMPRESSIBLE

BOUNDARY-LAYER FLOW WITH DISPLACEMENT THICKNESS INTERACTION

3.1 Introduction

In Chapter II, the effects of longitudinal curvature on incompres-

sible boundary-layer flow were studied for the case of flow around a

circular cylinder by taking the measured wall pressure distribution

and determining what the inviscid properties were that produce that

wall pressure. By this indirect method the effects of longitudinal

curvature and displacement speed were ascertained to second order.

In this chapter, we want to study the effects of curvature on

compressible boundary-layer flow for a case where the displacement-

body effects can be computed directly using some approximate method to

compute the inviscid flow properties. Attention then is drawn toward

supersonic flows where a multitude of approximate schemes are available

- for example, linear thin airfoil theory or other comparable models.

For this reason, it was decided to extend the finite-difference

work of Fliigge-Lotz and Blottner (1962) in which they computed

directly the displacement-body effects on a flat plate in hypersonic

flow. Here interest will be directed toward curved body surfaces at

hypersonic speeds.

Although the analysis by Cheng, Hall, Golian, and Hertzberg (1961)

was not restricted to flat plates, it was not until 1969 that the

curved surface case was studied. At that time, Stollery (1969)

extended the analysis of Cheng et al. (1961) and Sullivan (1969) to
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cover curved body surfaces in regions of strong and weak interaction.

These approximate theories did not, however, take into account varia-

tions in pressure across the displacement body or boundary layer due

to the curvature of the body as will be done in the present study.

In addition to studying curvature effects, this chapter also seeks

to shed light on the possible existence of a saddle-point type behavior

that can emerge in these types of problems from numerical solutions.

Such behavior for the strong interaction problem was observed by

Garvine (1968) with his viscous shock-layer flat-plate solution.

Baum (1968) observed similar findings with his supersonic boundary-

layer solutions. However, the more recent papers of Sullivan (1969),

Stollery (1970), and Cheng, Chen, Mobley, and Huber (1970) did not

encounter a saddle-point behavior. If indeed a saddle-point behavior

does exist for this type of interaction problem, it should show up

in the present study and will have to be overcome. Once the inter-

action process is modeled correctly, the way will be clear for further

studies on curved surfaces in supersonic flows.

The particular problem to be investigated here is that of two-

dimensional laminar flow up a cubic compression ramp at Mach numbers

6, 8, and 12.25. This problem was chosen because the displacement-

body effects should be sizable and the curvature effects can be easily

handled since the surface curvature is everywhere analytic. In

addition there exists some experimental data due to Stollery (1970)

for the Mach number 12.25 case which will serve as a basis of com-

parison in this study.
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3.2 Governing Equations

a. Viscous Region.- The governing equations for the viscid region

are the second-order compressible boundary-layer equations presented

in Section 1.4 of Chapter I. Details of the numerical method of

solution used here are given in Appendix A.

b. Inviscid Region.- Examining the governing equations for the

viscous region, it is seen that the inviscid properties necessary to

compute the boundary-layer solution at a particular station are Pe,

Ten, e, Pe, Ue, dUe/dS, and . In this section, it will be

shown how to relate these to the inviscid pressure Pe and pressure

gradient dPe/ds at the desired station. Once e,' Pee and Ue are

known, e is determined by numerical integration employing a trapezoidal

rule.

For this study, the tangent-wedge formula is employed to compute

the inviscid pressure on the displacement body under the assumption

that the displacement body is a streamline for the inviscid flow model.

With this approximation the pressure at any point on the displacement

body is taken to be equal to the pressure on a wedge whose half-angle

equals the local inclination angle of the displacement-body tangent.

Physically this approximation gains its validity from the fact that

at hypersonic speeds the shock layer is sufficiently thin on slender

bodies to assume that the variations in pressure and streamline angles

will be small across the shock layer. Thus, the surface values are

approximately the same as those at the shock. In addition to the

above limitations, the tangent-wedge approximation can be seen to
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neglect centrifugal-force effects that result from curvature of the

body. None the less, this pressure law has become generally acceptable

as a model of hypersonic inviscid flows and will be employed here due

to its extreme simplicity. It was also adopted by Flugge-Lotz and

Blottner (1962), Sullivan (1969), Stollery (1970), and other authors

and thus its use here allows a direct comparison with other viscous

solutions. Another important feature as pointed out by Sullivan (1969)

is that the tangent-wedge approximation gives a single relation valid

for both the strong and weak interaction regimes.

From Hayes and Probstein (1959) the tangent-wedge pressure law

can be written as

where

PD y + o7 + + + +

= a d
8 = 0wall + c d- ,jds

(3. 2-la)

(3.2-lb)

and it is understood that the local inclination angle, e, of the

displacement-body tangent is sufficiently small as to make the

sin 0e 0 a valid approximation.

In equation (3.2-la), PDB is the inviscid pressure induced on

the displacement-body surface. To determine the inviscid pressure on

the actual body in terms of the pressure on the displacement body, we

first expand the pressure about the body surface in a Maclaurin series

thus obtaining
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P(s,o + ce) = PDB = P(s,o) + ( p + ... (3.2-2)

Noting that P(s,o) = Pe' equation (3.2-2) can be solved for Pe

to obtain

Pe = PDB _ . (3.2-3)

From equation (3.2-3), it is seen that to obtain Pe formally valid to

second order we need only to retain terms in the /(P term to

0 (1). To do this, we note that the inviscid n-momentum equation

written in terms of the present coordinate system as given by Van Dyke

(1962c) is

a= -P av + vvn - nUj (3.2-4)

If we now apply the ordering scheme given by Van Dyke (1962c),

that is,

U = U
1

+ EU
2
+ ... (3.2-5a)

p = P1 + C2 + .. (3.2-5b)

V = V1 + CV2 + (3.2-5c)..

to equation (3.2-4), we obtain
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p -(Ul + -U +) U1 + aU2'V 

+U" 
+

h '= +as as

+ (VU + UV2 + ·) v + + K U2 + 2
an an / h

(3.2-6)

On the body surface h = 1 and Vl(s,o) = O, thus to 0(1) equation

(3.2-6) becomes

( ) K= 1 (S,O)U2(s,o). (3.2-7a)

Noting that pl(so) and Ul(s,o) are simply the inviscid surface

values for the case where displacement-body effects are neglected,

they can be easily calculated once they are related to the inviscid

pressure by setting 0 = e wall in the tangent-wedge pressure law.

However, it was found that the variation in pressure across the dis-

placement body was very large for the compression ramp study, and it

was reasoned that some advantage might be gained by including the

higher-ordered terms in the last expression in equation (3.2-6). For

this reason, it was decided to take

)( n KPeu (3.2-7b)

where Pe and Ue are the inviscid surface values which include

displacement-body effects.
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Upon substitution from equation (3.2-7b), equation (3.2-3) may

now be written as

~e= '~DB - K eUCE6. (3.2-8)Pe = PDB PeUe8 (-8)

Here Pe and Ue depend implicitly on Pe as will be shown later

and an iterative solution will be employed to extract the value of

Pe from equation (3.2-8).

Note that for the flat-plate study the curvature is zero and

equation (3.2-8) gives the result that to second order Pe = PDB'

In order to relate Te, ge, Pe, and Ue to the inviscid sur-

face pressure Pe' it will be assumed that the shock layer is

isentropic as was done by FlUigge-Lotz and Blottner (1962) as well as

most other investigators of the problem.

Note that for the present model, the inviscid pressure on the

displacement body is given by the tangent-wedge pressure law which

although being approximate is nevertheless generally accepted as being

valid. In addition to the inviscid pressure, it is necessary to have

two other properties with which to define the isentropic flow. The

second property is

He = Hc , (3.2-9)

which in no way limits the flow model since it is exact.

The remaining property sought is the isentropic constant here

taken to be the free-stream value given by
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Pe/Pe = PP,.- (3.2-10)

This assumption is not without precedent since all previous authors

have adopted it. The alternate approach of evaluating the isentropic

constant directly behind the leading-edge shock is unacceptable since

the effective shock angle is not known aproiri. However, it should

be pointed out that downstream along the body the outer reaches of

the boundary layer merges with an inviscid flow that has crossed a

much weaker portion of the leading-edge shock and as such the effective

isentropic constant in this portion of the flow would be expected to

be nearer to the free-stream value. Thus, the inviscid surface pres-

sure is taken to be related to the temperature through the relation

Pe/Pm = (Te/T,)Y . (5.2-11)

Assuming that Pe/PFc is computed from the tangent-wedge relation,

equation (3.2-11) may be solved for Te to obtain

Z-1

Te = T.(Pe/PO ) Y , (3.2-12)

which can be used to evaluate me by either the Sutherland viscosity

law (equation (1.3-6)) or the linear viscosity law equation (1.3-7).

Substituting for Te/TO in equation (3.2-12) from the equation

of state, we find that
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Pe = (Pe/P)' (3. 2-13)

where it is noted that p. = 1 in the present nondimensional scheme.

To obtain Ue as a function of Pe/Po we note that on the

body surface

He = Te + Ue/2 (3.2-14)

from the total enthalpy relation. If we first write the total enthalpy

constant He as

He = T, + U/2 (3.2-15)

and note that UN = 1 and T. = , equation (3.2-14) can be

solved for Ue to find that

11/2

Ue = 1 + 1 (P,/ (3.2-16)

Thus, we have shown through equations (3.2-12-16) that assuming an

isentropic flow behind the shock, Te, Le, Pe, and Ue can be related

to the inviscid surface pressure Pe'

Similarly dUe/dS can be related to the pressure gradient by

first noting that
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dUe L dUe ds _ 1 dUe
(3.2-17)

de ds d Pe eUe ds

To relate the pressure gradient dPe/ds to the velocity gradient

dUe/ds, we observe that the inviscid s-momentum equation when written

in terms of the present coordinate system is from Van Dyke (1962c)

P =- ua + v a (hU)] (3.2-18)
ds as an

Employing the irrotationality condition given in equation (1.2-16),

equation (3.2-18) when evaluated at the wall becomes

dPe F +dUe

ds + Vds (3.2-19)

Ordering terms in the above equation according to equation

(3.2-5),we obtain that to second order

dPe dU,
de- de (3.2-20)

ds eUe ds

which allows equation (3.2-17) to be written in the desired form

dUe --dPe/ds

e e e+The analysis presented here is for the plane flow case Th(3.2-21

+The analysis presented here is for the plane flow case. Thus
j O.
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Returning to equation (3.2-8), we may now write it in the

following form once substitution has been made for pe and Ue from

equations (3.2-13) and (3.2-16)

Pe PDB E5 1 2 Pe 2 PPe = PB so i 1 + 2 \( e 1/- e] (3.2-22)
P. P. P. (Y-lM2, Pa/ (y2))M2 pP.

To determine the surface pressure gradient dPe/ds in terms of the

displacement-body pressure gradient, we differentiate equation (3.2-22)

with respect to the s-coordinate and solve for dPe/ds to obtain

dPe dPDB C d(K) + 2 (Pe) 2 Pe
ds ds ds (7-1)MC P

d Cdb rl rd + 2 liPe _ 2 A-L (y-l)M \P L"/ (Y-l)M 2

(3.2-23)

Note that equation (3.2-22) cannot be solved explicitly for the

inviscid pressure Pe. Thus, when equations (3.2-22-23) are applied

at a station, an initial guess of Pe/Pw will be used to evaluate

equations (3.2-22-23) for the first iteration, thereafter the value

of Pe/P, from the previous iteration will be used until the overall

solution and thus Pe/Po converges.

To compute dPDB/ds necessary for evaluating equation (3.2-23),

the tangent-wedge pressure law is differentiated to give
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dP 3DB 7_ P (E6" + 'wall) 2 2
dPD _P_ 2(2_2-1 w L_ + 2B2Me 2 + 2BMwe(1 + B2M2 1/

ds (1 + B2 M2O 2 )1 /2 L 
(3.2-24a)

where

= wall + d5, (3.2-24b)

and

B = 1 . (3.2-24c)

In summary, the inviscid properties necessary to compute a

boundary-layer solution at a particular station are Pep Te, le, Pe,

dUe
Ue, dde, and . This section has shown how these are related

to the inviscid surface pressure Pe and its gradient dPe/ds and

as such the problem is now reduced to one of the determining Pe and

dPe/ds. Furthermore, through equations (3.2-1) and (3.2-24) the

values of Pe and dPe/ds can be seen to depend only upon the unknowns

5' and 6". Thus, once 5' and 6" are known all inviscid pro-

perties can be computed.

3.3 Solution at a General Station

As was noted in Section 3.2, all inviscid properties can be

calculated once 5' and 5" are known. Therefore, the overall

method of solution can be summarized as follows. (1) Make an initial

+Note that ( )'E d and this notation will be used
ds

interchangeably.



estimate of 5' and 5". With these estimates calculate all the

inviscid properties and make one iteration on the boundary-layer solu-

tion. (2) From that boundary-layer profile, integrate equation

(1.5-7) and determine the displacement thickness 5 
+
. Employing

finite-difference formulas calculate 5' and 5". (3) Repeat steps

(1) and (2) until the solution has converged within some acceptable

error.

a. Initial Estimates of Inviscid Properties.- To apply the solu-

tion technique at some general station, we will estimate the inviscid

properties necessary to compute a boundary-layer profile by adopting

the following estimates on 5' and 5".

NS = bS + 5 s (3-3-la)

and

5hNS = 5 OS + s5tS h s , -lb)

where As is the step size in the s-coordinate and the subscripts

NS and OS refer to the new station and old station respectively.

b. Interaction Technique.- Using the initial guess at the boundary-

layer profile described immediately above, equation (1.5-7) is

integrated to determine the new estimate of the displacement thickness

5. With the following two-point derivative laws

+See Appendix A for details of method employed to calculate 5
once 5 is determined from equation (1.5-7).
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8i = (51 - 52)/S1, (3.3 -2a)

(3. 3-2b)

51" = (51- )/As l,1 1 2 1
(3.3-2c)

or the three-point derivative laws

_ Asl(Assl + Z s2) / 1 ' 2 551 = 1 __
n~l~ 1 As2 (,ksl

1
+ s2 ) 2)2 +As; (As

1
+ As

(3.3-3a)

?, =- 2Assl(Asl + As2 ) 62 63 i - _ 1 )
As2 Ats3 (As 1 + As2) \Lsj (As1 + As2 )!

(3. 3-3b)
' / 1 1 'i

\ Z1 s1 (As1 + A`S2 ) 2,1

,, Asl(ASl+ s2 ) | ,/ 1 1
1 'nS2 I11 t\sl (As1 + zS 2)

1~~~~
As2 (Asl + As2 )2 J

-j

(3.3-3c)

the displacement thickness derivatives are updated. In the above

difference formulas the error in the two-point law is O(As). The

advantage of the three-point laws is that the error in the 6'

5T (6i - 5;)/Asl ,
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formula is O(As2 ). Figure A shows the grid for both laws which have

been written for a variable step size.

Downstream

As2 S s

A 5 2 1

Solution known here / Unknown station

Figure A

Using the new estimates of 5' and 6" the inviscid properties can

be updated and another boundary-layer profile calculated and this

cycle one would hope to repeat until the solution converges, that is,

stops changing within some criteria. However, it was found that the

above iteration process was divergent which is in agreement with the

results of FlUigge-Lotz and Blottner (1962). The technique they

employed to obtain a convergent scheme is as follows. Assuming a

value of Pe/Po , the inviscid properties were computed and a boundary-

layer profile was calculated from which a new estimate of Pe/Po was

made. Assuming a second value of Pe/PCO' the above process was

repeated. Then with the assumed and corresponding calculated values

of Pe/P, between two consecutive iterations, a linear extrapolation

was made to determine the value on an assumed versus calculated plot

where (Pe/P)assumed equaled (Pe/P )calculated. With this value

as the new assumed value, the above cycle was continued until the

+Fliigge-Lotz and Blottner (1962) computed the pressure gradient
with a two-point difference formula between the pressure at the new
station and the pressure at the previous station.
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actual calculated value of Pe/PX equaled the assumed value within

some acceptable error.

The method employed here to obtain a stable interaction process

is very similar to that employed by FlUigge-Lotz and Blottner (1962).

At a new station the initial estimate of 8"' is held fixed when

calculating the inviscid pressure gradient on the displacement body

(equation (3.2-24)) until the calculated value of 8" stops changing

to some arbitrary level which in this study required

aZ"/b"ave < 10- 5, (3-3-4a)

where

,n" = b "(present iteration) - B"(previous iteration)l,

(3.3-4b)

and

b"tave = l(present iteration) + b"(previous iteration)l

(3. 3-4 c)

Although the 8" value used to compute dPDB/ds is held fixed in the

above process, 8' is allowed to adjust according to equation (3.3-2a)

or (3.3-3a). Thus, the inviscid properties are updated after each

iteration.

The value of b" which was held fixed when computing the pressure

gradient we will call 8
G
, the subscript indicating a guessed value.

The calculated value of 8' corresponding to 5" will be called C"
G C



meaning calculated. If we now make a plot of all 5G versus 5"

points, then it can be seen that the desired solution has been found

at a particular station when 5" = 5" This being true, we need only
C G

to check to see whether 5C = 8" within some prescribed criteria. If

GC GC -3-a

where

a"G = 05"(calculated value) -5"(guessed value)|, (3.3-5b)

and

GC = b15"(calculated value) + O"(guessed value)[, (3.3-5c)

is met, the solution was considered to have converged at a particular

station. If equation (3.3-5) was not satisfied then the present

5,655 point and the previous one were used to linearly extrapolate

what the desired value of 5" should be. With this extrapolated

value of 5" as the new G" value, a new 5" value was computedG C

and equation (3.3-5) was checked again. The process of extrapolating

the two previous values of 5" and 5C to obtain a new 5" value

was continued until equation (3.3-5) was satisfied. When satisfied

the program moves on to the next station. Figure 3.1 shows the varia-

tion of 5" and 5C for the M. = 9.6 flat-plate case. In all

+This method was found to be stable for accuracies as small as
10-8 in equation (3.3-5a).

85
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examples this variation was found to be approximately linear and the

most guessed values necessary was 3 or 4.

The station at which the interaction is initiated is special in

that the above technique cannot be applied there. The methods employed

to obtain the initial profiles are given in the next section.

3.4 Initial Profiles

As was noted in Chapter I in order to begin the numerical integra-

tion of the boundary-layer equations, the solution must be known at

the initial station. Thus the profiles at the initial station must be

fed in or computed in some manner.

The present study will be limited to bodies with a sharp leading

edge whose leading-edge surface is approximately flat and at zero angle

of attack relative to the mainstream. Thus, near the leading edge

where the interaction will be initiated, we will adopt for our analysis

the boundary-layer equations without curvature effects. Two similarity

methods will be put forth with which to compute the initial profiles.

The first considered is the classical strong interaction solution here

called the hypersonic limit method, and the second its modified form.

a. Hypersonic LTimit Method.- The similarity method presented here

for obtaining initial profiles and inviscid properties is basically the

one given by Lees and Probstein (1953) who obtained a first-order esti-

mate to the displacement thickness and surface pressure by expanding

these quantities in asymptotic series and calculating the leading term

in the expansions. The first-order estimate obtained by Lees and

Probstein (1953) was subsequently adopted by Fliigge-Lotz and Blottner (1962)
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in their work with insulated walls. The reason for the present version

is to allow for a wider variation in wall temperature.

With this method, we note following the analysis of Hayes and

Probstein (1959) or Sullivan (1969) that certain simplifications

become apparent if one considers the case where the inviscid Mach

number Me tends toward infinity. Writing equation (3.2-14) in terms

of the inviscid Mach number we obtain that

Te - 1 -* 0 as Me - , (3.4-!a)

He 1 + 7 .- a)2

2 e

2T
e _ 1 --0 O as Me -* , (3.4-1b)

Ue2 2- M2
e 2 M e

and

2He 1- + 1 1 as Me 0 *. (3.4-lc)
2 -2

Ue e M e

2

If we assume also a linear temperature-viscosity law thus making

Z = 1 and set the - terms equal to zero in equations (1.4-8-10),

the limit form of the governing equations for the self-similar flow

are obtained as

CONTINUITY EQUATION

dV
- + F = O, (3.4-2)d~l
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S-MOMENTUM EQUATION

F" - VF' - 0(G - F2) = O, (3.4-3)

and the

ENERGY EQUATION

G" - aVG' + 2(a - 1)(FF') = 0, (3.4-4)

where 3 which is given by

2

= + 2
T e

dUe Ue (3.4-5a)

\ Ue ue d \2 Te

in the hypersonic limit goes to

~ d=(e/P (3- 1(34-5b)
Thso Pli (me/Po )

2

This last result is obtained by first employing the definition of

along with the hypersonic limit value of Ue ~ constant implied by

equation (3.4-lc). Thus, it can be seen that in order to obtain the

initial profiles from a numerical solution of equations (3.4-2-4),

one must first determine the proper value of T in equation (5.4-3).

Following the lead of Shen (1952) and Hayes and Probstein (1959),

we adopt the following pressure model

Pe/P- =C - 1/2 (3.4-6)

where C is a constant which must be determined.
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Substitution of equation (3.4-6) into equation (3.4-5b) leads to

the familiar result ('see for example Hayes and Probstein(1959)).

- 7 -1 (3.4-7)

Thus, with the

seen that solutions

boundary condition

compute the initial

In addition to

inviscid properties

puted from equation

To compute C

neglected, equation

value of T given by equation (3.4-7), it can be

to equations (3.4-2-4) depend only upon the

Gwall = Hw/He which when supplied allows one to

profiles.

the initial profiles, one must also know all the

at the initial station, all of which can be com-

(3.4-6) once C has been determined.

, we first observe that when curvature effects are

(1.5-6) may be written as

6 = j , T eU d
Pe Ue 0 \ Te Ue ,

(3.4-8)

which becomes in the hypersonic limit

= 1 2 c1 [Los2 Vj
Pe/Po dx]

Pe/PCo

Q = (Y - 1) Mo_ I Q s ,
C

(3.4-9)

where

(G - F2) d .Q, =0
so

(3.4-10)
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The derivative of the displacement thickness given in equation (3.4-9),

is now substituted into the tangent-wedge pressure law and the resulting

pressure set equal to that obtained by equation (3.4-6) to give in

the limit of Mm- co

-1/2 2 (dM)0 (3.4-11)

where near the leading edge we have made use of the fact that

= wall + c d__ c db (3.4-12)
ds ds

and B is given by equation (3.2-24 c). After substitution for 6

in equation (3.4-11) from equation (3.4-9), we find that

=C =4 )M. /c (2B/2 s/ (3.4-13)

where

p*U*s*
Re (3.4-14)

which now allows us to write equation (3.4-6) in the standard form

Pe/Po = X , (3. 4-15)
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where here

=3 (y - 1) 2B Q, (3.4-16)

and

X = M e (3.4-17)

The only inviscid property at the initial station not known but

required for later solutions is 5 which can now be computed by

substituting equation (3.4-6) into the definition of 5, integrating

to obtain

: 2C C s / (3.4-18)

In equation (3.4-15), X is recognized as the hypersonic interaction

parameter which indicates large displacement induced pressures in

regions of large X . Thus, regions of large X have come to be

called strong interaction regions whereas regions of small X have

come to be called weak interaction regions. Note that once the wall

temperature is specified, equations (3.4-2-4) can be solved numerically

and Q (equation (3.4-10)) can be evaluated thus determing a for

that particular wall temperature. Hayes and Probstein (1959) present

tables of a versus wall temperature for a representative range of

flow variables as obtained from an analysis similar to the above but

originally presented by Lees and Probstein (1953).
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b. Modified Hypersonic Limit Method.- In the discussion of results,

it will be shown that a bump appears in the computed surface pressure

gradient when the above hypersonic limit method is employed to obtain

the initial profiles and inviscid properties. Because the bump

appeared immediately downstream of the initial station, it was reasoned

that one source of it was due to the fact that at the initial station

the inviscid properties were the hypersonic limit ones whereas at the

succeeding stations this limit is not applied. That is to say, when

computing the inviscid properties at the second station, there are

terms included which were considered of higher order at the initial

station where the hypersonic limit was applied. Therefore, in order

to remove one possible source of the bump, the modified hypersonic

limit method was formulated. This formulation consists of keeping

higher-ordered terms when computing the inviscid properties at the

initial station, thus making that station more consistent with the

downstream stations. As before, we will take the inviscid surface

pressure to be correctly given by equations (3.4-15) and (3.4-16-17)

where Q in the modified method is given by

Go ( 2H Fe He) , (3.4-19)

which in the hypersonic limit can be seen to reduce to equation

(3.4-10). In addition, we will assume also that the governing equa-

tions for initial profiles are correctly given by the limit equations
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(3.4-2-4) and (3.4-7). Thus, it is seen that the initial profiles

for both hypersonic limit methods are identical and the only

difference is in the method employed to obtain the inviscid properties.

To compute a from equations (3.4-16) and (3.4-19), an iterative

approach will be taken. Assuming the initial profiles have been

numerically obtained, a is estimated and the necessary values of

Te and Ue to numerically integrate equation (3.4-19) are determined.

With this value of Q, a new estimate of a is made and the cycle

repeated until a is calculated within some acceptable error.

Once a is determined, all inviscid properties with the excep-

tion of e are known. To compute ~ in the modified method, we

will set the relation of 3 given in equation (3.4-5a) equal to its

hypersonic limit value and solve for 5. Thus,

2
_- PeteTeUe

e 5= - +L2 de ,(3.4-20)

Ue2 jds

which can now be computed. The value of 5 necessary to compute 6'

at the next station is obtained from equation (3.4-8) whereas 6' is

determined by equating equation (3.4-15) to the tangent-wedge pressure

law and solving for 6'.

To compute the additional values of 5 and 5' necessary to

apply the three-point difference laws at the next station the

following procedure was adopted. For the modified method 5' was computed

as stated except s is given a value two As steps upstream of the
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desired station. The additional value of 8 for the modified method is

obtained from a two-term upstream Taylor series expansion about the

initial station. For the hypersonic limit method 8 and its deriva-

tives were computed from equation (3.4-9) by taking a value of s two

As steps upstream from the desired station.

3.5 Discussion of Results

a. Flat-Plate Studies.- The first case investigated was that of

flow over a flat plate with displacement thickness interaction. This

case was originally investigated employing finite-difference methods by

Flugge-Lotz and Blottner (1962). Thus, this case will serve as a

test case with which to compare the present study.

The other justification for studying this case lies in a con-

troversy over whether or not branching solutions result when problems

of this nature---particularly the flat-plate case--- are investi-

gated numerically. Garvine (1968) observed a saddle-point (or

branching) behavior with his viscous shock-layer solution for the

flat plate. Similar behavior was noted by Baum (1968) with his super-

sonic boundary-layer solutions. However, Fligge-Lotz and Blottner

(1962), Sullivan (1969), Stollery (1970), and Cheng, Chen, Mobley,

and Huber (1970) did not observe any tendency toward branching solu-

tions and thus a reworking of the hypersonic flat-plate case seems

appropriate as a test of the generality of Flugge-Lotz and Blottner's

technique.
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1. Initialization Procedures and Effects.- In Section 3.4, two

methods were given with which to compute the initial profiles neces-

sary to begin the interaction. The method adopted in this study was

the second of these - the modified hypersonic limit method. The

reason for selecting this method can be seen from Figure 3.2 where

the second derivative of displacement thickness - the most sensitive

solution function, is shown for the case of a plate in a Mach 12 free-

stream. Figure 3.2 shows an oscillatory type behavior developing when

the hypersonic limit method is employed to obtain the initial profiles

but shows a smooth transition when the above modified scheme is

employed. Since the pressure is a function of 5' it becomes apparent

that 6" reflects the behavior of the pressure gradient in the

s-direction. Thus, to assure a smooth pressure gradient in the

s-direction for the first several stations the modified method was

adopted. Figure 3.3 shows the wall pressures corresponding to the

above case for both hypersonic limit methods. The differences in

wall pressure between the two methods can be seen to fall outside of

the plotting resolution implying the oscillations of Figure 3.2 are

apparently of only secondary importance to the overall solution.

Figure 3.4 gives an indication of the effect of step size on the

solution near the initial station in terms of how it influences 6"

From equation (3.4-9), we obtain upon differentiation that for the

strong interaction region (large X)

i" s-5/4 . (3.5-1)
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Thus, on Figure 3.4 equation (3.5-1) should appear as a straight line

and with this in mind step sizes of 0.0025 and 0.005 were chosen

since they yielded the approximate desired behavior.

Figure 3.5 shows the step size effect on the computed surface

pressure to be very small and to diminish as the solution proceeds

downstream again pointing to the basic consistency of the present method.

2. Downstream Instabilities.- As the solution marched downstream

there appeared an oscillatory behavior in the computed surface pressure

gradient for the flat-plate case (and the compression ramp case dis-

cussed later) resulting in an unwanted termination of the computation.

A similar behavior was observed by Cheng, Chen, Mobley, and Huber

(1970) with their fully viscous shock-layer solutions in which they

found the instability to enter through the continuity equation. They

reasoned that its cause was due to the diminishing wall slip influence

allowed in their solution which resulted in a loss in accuracy in the

technique used to integrate the continuity equation. The instability

in this study also seemed to originate with the continuity equation

although no concrete explanation can be offered as to its origin.

Initially, it was believed that the oscillatory behavior was

associated with the method employed to obtain the initial profiles

and/or related to the original step size employed. Therefore, the

first modifications made were those reported in the previous section.

When those modifications failed to eliminate the instability it was

then felt that the oscillatory behavior might be related to errors
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present in the finite-difference derivative laws used to compute 5'

and 5". Thus, a study was made to determine if the more accurate

three-point derivative laws would be more appropriate. Figure 3.6

shows the computed second derivative of displacement thickness

employing both laws and it can be seen that the three-point difference

laws allows the solution to proceed further downstream to an s of

0.11 before running into the stability problem again. From Figure

3.6, it became apparent that although the derivative difference scheme

exerted some influence on controlling the instability and apparently

eliminated it for a while, another method would have to be found to

abolish it from the problem.

Taking a hint from the identification by Chen et al. (1970) of

the continuity equation as the source of the instability, the method

adopted here for filtering out this oscillatory behavior consisted of

simply averaging the V-velocity profile - as it was being calculated -

with its counterpart for the same value of q one station back along

the body. Such a technique is formally valid to the same order as

the difference equations, that is, to order As and therefore intro-

duces no new errors to the solution. Figure 3.7 shows the computed

surface pressure for the Mm = 9.6 flat-plate case for both the

solution with and without the averaging technique. The pressure

gradient behavior can be seen in Figure 3.8 where the second deriva-

tive of displacement thickness is shown to vary smoothly over the

entire region considered for the filtered solution.
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Since the M. = 12 flat-plate case showed no oscillatory behavior

this case was run with and without the averaging technique to ascertain

what effect the averaging had on the computed solution. As might

have been expected, the differences between the two solutions was

virtually undetectable.

3. Comparison of Experimental and Theoreticl Flat-Plate Results

Example 1

The first case studied was the M,, = 9.6 flat-plate case pre-

viously investigated by Fliigge-Lotz and Blottner (1962). The flow

conditions for this case are given as

M = 9.6 (3-5-2a)

v* = 12.54 R (4.5-2b)

y = 1.4 (4.5-2c)

a = 1.0 (3.5-2d)

Res /s* = 0.846 x 105 (3.5-2e)

Tw/T ° = 1.0 (3.5-2f)

and

L*= 1 inch. (3.5-2g)

Figure 3.9 shows the pressure induced on the plate surface when a

linear viscosity-temperature law is employed to compute the numerical
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solution. Also shown are favorable comparisons with the results

reported by FlUigge-Lotz and Blottner (1962) and the experimental data

of Bertram and Blackstock (1961). The present solution was initiated

at s = 0.01 which corresponds to a X of approximately 25 and is

therefore in the strong interaction regime. Figure 3.10 shows the

above displacement thickness to be slightly lower than that predicted

by classical boundary-layer theory. As s becomes large, the skin

friction behavior can be seen from Figure 3.11 to approach that

predicted by classical boundary-layer theory.

Example 2

The flow conditions for the second example are

M = 12 (3.5-3a)

To = 3960°R (3-5-3b)

y = 1.4 (3.5-3c)

a = 0.70 (3-5-3d)

Res /S* = 0.79 x 105 (3.5-3e)

Tw/To = 0.15 (3-5-3f

and

L 1 inch. (4.5-3g)
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This case was previously investigated by Sullivan (1969) who obtained

an approximate solution by employing Lees (1956) cold-wall similarity

analysis. The interaction for the present example was initiated at

s = 0.01 which corresponds to a X of approximately 58.

Figure 3.12 shows the pressure induced on the plate surface when

a linear temperature-viscosity law is employed for the numerical

solution. Also shown are the approximate solution of Sullivan (1969),

the second-order weak interaction theory reported in Hayes and

Probstein (1959), and some experimental data by Hall and Golian (1960)

along with two points from the present study employing Sutherland's

viscosity law-equation (1.3-6). As can be seen from Figure 3.12,

for X < 6.5 the present solution employing a linear temperature-

viscosity law virtually reproduces the second-order weak interaction

result. The differences between the values of wall pressure obtained

by employing the linear law and Sutherland's viscosity law indicate

only a small influence due to the viscosity law employed.

Shown in Figure 3.13 is the heat transfer to the wall along

with the experimental data of Hall and Golian (1960). The agreement

appears acceptable.

The displacement thickness and skin friction for the above case

are shown in Figures 3.14-15 and for large s are observed to

approach the behavior predicted by classical boundary-layer theory

thus indicating a diminishing displacement-body effect.
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b. Compression Ramp Studies

1. Geometry and Flow Conditions.- The locus of points on the

body surface are given by y = x3/150 up to x = 5.1 inches where

the cubic surface merges with a 280 wedge.

The flow conditions for this case are taken from Stollery (1970),

who in addition to experimentally investigating the flow also calculated

some approximate solutions with various approximate inviscid pressure

laws. However, in his analysis, curvature effects were neglected and

one of the purposes of this chapter is to determine whether curvature

effects are important for problems of this type. The flow conditions

studied here were

M, = 6, 8, and 12.25 (3.5-4a)

To = 23400 R (3.5-4b)

y = 1.4 (3.4-4c)

= 0.72 (3.5-4d)

Res /s* = 0.858 x 105, 0.458 x 105, and 0.258 x 105 (3.5-4e)

%?0To = 0.223

and

L* = 1 inch. (3.5-4g)

Sutherland's viscosity law was employed for the ramp study.
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2. Displacement Effects.- The first study was made at M, = 12.25

and was aimed at determining the effects of the displacement body on

the wall pressure for the case where curvature effects were neglected-

hereafter referred to as the displacement problem. Figure 3.16 shows

the wall pressure that results from flow over the displacement-body

when curvature effects are neglected. Also shown in Figure 3.16 is

the wall pressure when displacement-body effects are ignored, that is,

e = ewall. As can be seen from Figure 3.16,the wall pressure which

includes displacement-body effects predicts the trend in the experi-

mental data very well up to an x of approximately 2.5. From x " 3

on, the displacement solution approaches the wall pressure where dis-

placement effects are ignored thus indicating that the local body

angle Owall is dominating the displacement-body effect. This

behavior is verified by the displacement thickness distribution of

Figure 3.17 - showing a marked thinning of the boundary layer aft of

the x = 3 point. Figure 3.17 also shows a comparison between the

displacement thickness obtained in the present study by considering

displacement-body effects alone and the approximate theories of

Cheng et al. (1961) and Sullivan (1969) as applied by Stollery (1970).

Thus, it is encouraging to find the present solution closely following

that given by Stollery using Sullivan's method and clearly delineating

a marked thinning downstream on the body. Figure 3.18 gives the wall

heat transfer ratio q/qF.p. where qF.P. is the heat transfer predicted

by classical boundary-layer theory which was found for this case to be
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qF.P.= 0o.2503 s-
1
/2, (3.5-5)

along with the experimental data of Stollery (1970). The solution which

includes displacement-body effects appears to predict the trent

reasonably well up to x = 2 but thereafter drops below the experi-

mental results.

As was mentioned previously in Section 3.5a(2), the instability

discussed there appeared for the above case when the averaging tech-

nique on the V-velocity profile was not employed. However, in this

case the instability appeared at a much larger value of s(x ; 1.86)

and the point at which it appeared was found to depend on the step

size As. For example, when the step size was doubled aft of x = 1.1

over the previous step size, the instability did not appear until

x ; 2.32. Thus it appears that a second possible method of elimina-

ting the instability would result from a careful selection of the

step size increment (As).

3. Curvature Effects.- In the study of the effects of surface

curvature on flow up the Mach 12.25 compression ramp, an attempt was

made to analyze curvature as it affects the inviscid properties by

allowing for a pressure variation across the displacement body,

independent of curvature as it affects the viscous region by also

allowing for a pressure variation across the boundary layer.

The first such investigation sought to determine the effect on

the interaction problem of allowing for a pressure variation across
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the displacement body with no variation in the boundary-layer pressure.

Figure 3.19 shows the wall pressure that results from that case where

only the inviscid curvature corrections associated with the displace-

ment body were considered, that is, the pressure across the boundary

layer was taken to be constant while the pressure across the displace-

ment body was taken to vary according to equation (3.2-22). Also

shown in Figure 3.19 is the wall pressure for the displacement problem

alone. From Figure 3.19, it can be seen that the curvature correction

is surprisingly large - Figure 3.20 showing the increase to be on the

order of 20 to 50 percent in the region of interest. Figure 3.20 shows

that the pressure correction closely follows the local variation of the

ratio of displacement thickness to the radius of curvature (or so0).

It is quite clear then that even with the relatively small values of

so shown in Figure 3.20, the inviscid normal pressure gradient

encountered implies sizable normal pressure gradients are to be

expected in the viscous region therefore indicating our solutions are

necessarily incomplete at this point.

When an attempt was made to analyze boundary-layer curvature

effects without first adjusting the inviscid flow properties for

displacement or curvature effects (i.e., we took 0 = Owall), a

branching type behavior was observed in the flow properties as the

solution marched away from the leading edge. Figure 3.21 shows the

above resulting wall pressure distribution dropping off towards

zero (corresponding to an expanding flow) when the computation

terminated. The cause for this behavior seems to be the low
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estimates of inviscid surface pressure near the leading edge obtained

by taking 8 = Owall coupled with the increasing variation in pres-

sure across the boundary layer - approximately 13 percent at the

point of termination. Noting that the surface curvature is negative,

it can be seen from equations (1.2-4) and (1.2-6b) that the maximum

pressure in the boundary layer must occur at the wall which from

equations (1.3-8 g), (1.3-8 e), (1.3-8i), and (1.4-11) is obtained as

Pwall Pe + UeIwall' (3.5-6)

From equation (3.5-6), it is observed that if the estimate of Pe is

low+ then there will be a correspondingly low value of wall pressure

in the boundary layer. When this is coupled with a large variation in

pressure across the boundary layer, the resulting effect is to cause

low, unrealistic densities to occur in the outer reaches of the viscous

region. This in turn results in a subsequent increase in displacement

thickness that would have been offset had interaction effects been

included simultaneously. However, since displacement effects are not

included there exists no mechanism by which the boundary layer can

adjust to the real problem. We note that a method was found to filter

out this expansion branch and consists of averaging the pressure

integral in equation (1.4-16) in exactly the same manner as the

V-velocity profile was averaged to eliminate the oscillatory

+In the region of concern, Figure 3.16 shows this estimate
(e = Owall) to be 50 to 90 percent lower than that predicted by the
displacement problem solution.
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instability. Figure 3.21 shows the wall pressure obtained when the

averaging technique is employed along with the inviscid surface

pressure obtained as stated by taking 0 = Owall Exactly why this

correction works is unknown but it is worth repeating that the inclu-

sion of displacement effects would itself relieve the problem and is

therefore not of immediate concern to the overall effort.

When displacement-body effects were included for the above case

in addition to the boundary-layer curvature effects already accounted

for, the branching type behavior which occurred near the leading edge

was overcome temporarily but reappeared again at approximately

x - 1.57. The reason for its reappearance is due once again to low

estimates of the inviscid surface pressure. However, for this case

the cause of the low surface estimates of Pe is due to the large

variation in pressure across the displacement body which exists but

has not been accounted for here. Figure 3.20 indicates the inviscid

surface value of pressure at x = 1.5 should be approximately 50 per-

cent higher than the displacement-body value which was used for this

case. With the inclusion of this final surface curvature effect, we

come to what will be referred to as the complete second-order solution.

2. The Complete Second-Order Solution.- When all the second-

order effects due to displacement body and surface curvature were

accounted for, no branching type behavior was observed in the flow

properties. Figure 3.22 gives the wall pressure for the complete

second-order solution along with the wall pressure predicted by

classical or first-order boundary-layer theory, that is, neglecting
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displacement and curvature effects. Near the leading edge where the

surface curvature is small, Figure 3.22 shows the displacement effect

to be large and to diminish as the solution proceeds downstream. In

addition, Figure 3.22 implies that although the effects of displace-

ment speed and longitudinal curvature cause' large pressure gradients

to exist across both the displacement body and the boundary layer all

along the body surface, their effect on the wall pressure is only

noticeable in regions where the displacement speed is clearly the

dominant effect. Figure 3.23 shows the trend in the wall heat trans-

fer data to be predicted reasonably well by the complete solution up to

x - 2. The skin friction for the complete solution is given in

Figure 3.24 along with the values predicted by classical boundary-

layer theory and the present interaction technique when curvature

effects are neglected. Even though we realized that the displacement

effect was dominant near the leading edge, it was nevertheless quite

surprising to learn from Figure 3.23 that the curvature effect does

not noticeably influence the skin friction distribution for values

of x less than approximately 2.5.

One final test of the technique developed here for studying

displacement and curvature effects consists of varying the flow

Mach number and free-stream unit Reynolds number to determine their

influence on the computed wall pressure and heat transfer. Figures

3.25 and 3.26 show the effect of free-stream Mach number on the com-

puted wall pressure and heat transfer respectively and it is observed

that a decrease in Mach number results in a decrease in the computed
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wall pressure but an increase in the wall heat transfer rate. The effect

of varying the free-stream Reynolds number while holding the flow Mach

number fixed can be seen in Figures 3.27 and 3.28 where the corresponding

distributions of wall pressure and heat transfer are shown. From Fig-

ures 3.27 and 3.28, it is observed that small decreases in the free-

stream unit Reynolds number give rise to an increase in the computed

wall pressure and a reduction in the heat transfer rate. Of spe-

cial interest is the solution shown in Figures 3.27 and 3.28 which termi-

ated due to separation of the viscous flow from the ramp surface. Figure

3.29, which gives the skin friction distribution in the region where it

goes to zero, shows no unusual behavior as the point of zero shear stress

is approached - in fact the computation proceeded downstream of the

zero shear stress point (Cf = 0) before the numerical method employed

to solve the boundary-layer equations became completely unstable due

to the reversed flow region near the wall occurring downstream of the.

separation point. In noninteracting boundary-layer theory, it is

generally accepted that the skin friction derivative dCf/ds has

a singularity at the point of separation and several studies have

been made on this phenomena (see for example Brown and Stewartson

(1969)). There was some doubt as to whether the compressible

nonadiabatic wall case was singular at separation. However, recent

studies by Werle and Senechal (1971) have implied that this case is

also singular. It has been suggested that if the boundary layer were

+We note here that since a reversed flow region occurs aft of
the zero skin friction point, there arises some question as to whether
the solution is valid beyond that point.
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allowed to interact with the mainstream as done in this study, there

would not occur a singularity in the skin friction derivative at the

separation point as obtained in noninteracting theory. This behavior

in the presence of interaction is confirmed in Figure 3.29 where it

is seen that no singularity is observed at the point of separation.

Thus this verification stands out as an important result obtained from

this study.

3.7 Conclusions

From this study of displacement and curvature effects, the

following conclusions were reached.

1. No branching behavior was observed for flat-plate interaction

solutions.

2. Instabilities may occur in the numerical technique downstream

of the leading edge unless the continuity equation solution is damped

by a method similar to the averaging technique employed here.

3. Accounting for boundary-layer curvature effects requires a

good estimate of the inviscid surface pressure in order to avoid low

unrealistic pressures in hypersonic boundary layers. Large inviscid

and viscid pressure variations were found to exist across the displace-

ment body and boundary layer for hypersonic flow over curved surfaces.

4. When the boundary layer is allowed to interact with the main-

stream, there appears no singularity in the skin friction derivative

at the point where the boundary layer separates from the body surface.
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5. The technique developed here to handle the complete second-

order theory predicts the trend in the wall properties for regions

of strong interaction with the mainstream and merges with the behavior

predicted by classical boundary-layer theory for regions of weak

interaction.



IV. GENERAL CONCLUSIONS

From this study of displacement and curvature effects, the

following conclusions were reached:

1. Finite-difference methods can be applied to the composite

second-order boundary-layer equations to obtain numerical solutions.

No new difficulties were encountered from such an application that are

not also present in similar numerical solutions of the first-order or

classical equations.

2. For cases where the influence of displacement speed and curva-

ture are both large, these effects must be accounted for simultaneously

in order to avoid sizable errors in the wall properties as well as

numerical difficulties.

3. If one is only interested in wall properties, good estimates

of these quantities can be obtained from numerical solutions of the

first-order equations taking the inviscid surface pressure to be

approximately equal to the observed wall pressure.

4. Comparisons of the composite second-order solutions with

experiment are respectable.
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VI. APPENDIX A

NUMERICAL ANALYSIS SECTION

The method presented here for obtaining numerical solutions to the

boundary-layer equations is basically the one developed by FlUgge-Lotz

and Blottner (1962) for solving parabolic differential equations with

some later modifications by Davis (1970). The presentation here

follows closely that of Davis (1970).

The s-momentum and energy equations can be written in the general

form of a parabolic differential equation which is

2+ - + an 2W + 2 3 + +4 0 (1-A)

6~2 6-q 6~

where 5 and 1 are the similarity coordinates.

We now replace the derivatives in equation (1-A) with finite-

difference quotients by first expanding for the unknown quantity, w,

in the r direction about the point m,n (see Figure 1-A) by means of

a Taylor series expansion, and then determining the derivatives to

give a truncation error on the order of the step size squared.

n+l

~n+1 l /m, n

ATFn n-l

~n-l n-2

m-l m m+l

Figure 1-A
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Adopting a variable grid step size in the r direction to allow

for more grid points in the region near the body where the changes

are the most rapid, the derivatives at the point m,n for a central

difference scheme are obtained as

(6w/6n)m,n = IAln-l/ATln(Aln + Alln-l)JWm,n+ 1

+[(A/in- A1]nl)/nA1 Wmn

- I/An/Ann-l(ATn + AT1n-l)JWm,n-1

- (3w/63 )m nAtnATnl , (2-A)

and

(62w/a]2)m,n = 12/An(Ann + Arn-1)JWm,n+l

- (2/A)InAnl)wm,n + I2/A0n-l(Aqn

+ ATnl)Jwmnl - 12(4w/4\ An AnnA'n_-

_- (a3W/a3)mn(aAn - Ann-l)
3

21 (4 w/4)mn -(A n_1
)

2
12 mn n Arn-

(3-A)

The derivative in the e direction is given by a two-point difference

scheme which has a truncation error of O(A~) if equation (1-A) is

evaluated at station m (assuming stations m - 1, m - 2, ... to be

known) and O(A2 ) if equation (1-A) is evaluated at the point

m - 1/2 (Crank-Nicholson scheme).
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Substitution of these difference quotients into equation (1-A)

yields a difference equation of the form

Anwnl+ Bnwn + Cnwn_l = Dn, (4-A)

which can be readily solved (see Richtmyer (1957)) once the boundary

conditions are specified.

SOLUTION PROCEDURE FOR INCOMPRESSIBLE STUDY

The overall method of solution as applied to the complete second-

order incompressible equations is as follows. Beginning at the stag-

nation point the 6w/~ term is equal to zero thus reducing equation

(1-A) to an ordinary differential equation. After making initial guesses

of all flow profiles and carefully evaluating all inviscid properties

to avoid indeterminancies, integrate the s-momentum equation using the

numerical method. Next integrate the continuity and the pressure

integral equations employing a trapozoidal rule. With these new

estimates of the pressure integral and velocity profiles update the

inviscid properties and remaining flow variables and resolve the

s-momentum equation once again and continue this cycle until the solu-

tion stops changing within some acceptable error. After convergence

has been reached step down the body one station and repeat the

above process using the previous station solution as the initial guess

at the new station flow profiles. At downstream stations, the aw/ a

is evaluated using the previous station flow profile.
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SOLUTION PROCEDURE FOR COMPRESSIBLE STUDY

The overall method of solution for the interaction study differs

only slightly from the incompressible case. For the complete second-

order solution we begin at the selected initial station where the

aw / term is set equal to zero. After making initial guesses at

the inviscid properties and flow profiles, we integrate the energy

equation using the numerical method. With this new estimate of the

total enthalpy profile; update all viscous properties related to

temperature. Next, upon solving the s-momentum equation, integrate

the continuity equation, the pressure integral, and the displacement

thickness integrals employing trapozoidal rules. After obtaining

new estimates of displacement thickness and its derivatives, update

the inviscid properties and return to integrate the energy equation

thus completing the cycle. When convergence has been reached, the

program steps down the body one station and continues this process.

The method employed here to extract the displacement thickness

from equation (1.5-7) is as follows. We first integrate both sides

of equation (1.5-7). Now, we must determine at what point the left-

hand integral is equal to the complete right-hand integral. This is

done by a simple Fortran "IF" statement. If the desired value of the

left-hand integral falls exactly on a grid point, then T is simply

the value of - at that grid point. Should the desired left-hand

integral value fall between two grid point, a linear extrapolation was

employed to determine the correct value of displacement thickness.

Knowing, 5,6 was then computed from equation (1.5-8).
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Step size for the incompressible study

For both the incompressible and compressible study, a constant

step size was taken in the B direction and was n = 0.1. For

the incompressible investigation a step size of As = T/720 was

chosen along the body surface.

Step size for the compressible study

a variable step size was chosen for the compression ramp inter-

action investigation. For x < 0.5, kAs = 0.0025, for 0.5 < x < 0.8,

As = 0.005, and for x > 0.8 As was 0.01. The run time for the com-

plete second-order solution at M = 12.25, Res = 0.858 x 105 with

these step sizes was 59 minutes on a CDC 6000 series computer. For

the M = 6,8 cases, the run-time was approximately 23 minutes.



VII. APPENDIX B

THE BLASIUS SHEAR STRESS FOR A GIVEN WALL

PRESSURE DISTRIBUTION

The form of the wall pressure distribution is that given by

Dimopoulos and Hanratty (1968)

6

1 p*U*2 2n
2 n.=O

(1-B)

where 0 is measured in degrees.

From Rosenhead (1963), the inviscid velocity is assumed of the

form

U = U* Uo s + bs + b4s + b6 6 + ...) (2-B)

The odd terms in equation (2-B) for the assumed symmetrical flow are

zero as noted by Rosenhead (1963). The constants UO, b2, b
4

...

are unknowns and must be determined in terms of the constants in

equation (1-B).

TheBlasius shear stress is given by

* 1/2
T*wall p*U*U' d*

_wall coco _

U-x U 'I I
Coc o L 

= (Eo + s2 + + s4E4 + s6E6 + s 8 ) ,

(3-B)
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where

E = f"(O),
0 0

E
2

= b f (0) ,

E4 = b4fj(O) +

E6 = b6 f6(0) +

E8 = b 8 f8(O) +

b 2 f2 2 (o) ,

b4b2 f42 (O) + b2f222( and

(4c-B)

(4d-B)

b6b 2 62() + b4f44(o) + b4b2f4"22(O) + bf4444(4 ·)

(4e-B)

The functions "f" are tabulated

now to determine the constants b2,

pressure constants given in equation

Noting that for a cylinder

in Rosenhead (1963). We wish

b
4

,... in terms of the wall

(1-B).

s* = 0 - d* ,
360

(5-B)

then defining

e --

36o

U* = U*Ue(1 + e 2b2 + eb44 + e6b6 +.. ) 

+This term was not given by Rosenhead (1963).

(4a-B)

(4b-B)

gives

(6-B)

(7-B)
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The inviscid flow is assumed

equation which can be written as

to be governed by Bernoulli's

dP - *U* d (8-1

Substituting the expressions for Ue and Pe (P4e P*wall) into

equation (8-B), we obtain the following relations for the constants

b2, b4 ,-... 

i a4 (ga-
b2 2 2' (9a

2 a2e2

2 a2 4
b4= 6 2e (9b.

2 2 4 a2 16 a3
2 2

b8 = 1 10 j 8 + a 

4 2

_ 2 a4 3 a4a6 /e 8 .
128 a4 16 aI

2 2 '

B)

-B)

-B)

-B)

(9d-B)

The constant UO given in equation (7-B) is given by

+ oe n e2
Here we take + Uet e e e

and
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U0, e 2 a, ~(10-B)
U° -e

We need now to express the shear stress given by equation (3-B) in

terms of the skin friction used in this study which is

wall (l-B)
1 .* U

2

This works out to be

Cf = Y2 U s (Eo + 2E2 + sE4+s6E6 + 8E 8 ). (12-B)
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TABLE I.- NUMERICAL VALUES OF dUe/ds AT THE STAGNATION POINT

Uo = dUe/ds

Red 40 174 1 7 5a 175b 177 200+ 200+ +

Potential theory value 2.2.000 2.000 2.000 2.000 2.000 2.000 2.000

Initial guess equatior 1.793 1.634 1.8o8 1.824 1.818 2.046 1.574
(2.3-33)

Final value iterative 1.799 1.645 1.813 --- 1.823 2.042 1.587
solution

aHere d*/h* = 0.05

bHere d*/h* = 0.10

+Obtained using curvefit A given in Figure 2.3e

++Obtained using curvefit B given in Figure 2.3e
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TABLE II.- COEFFICIENTS FOR EQUATION (2.5-3)

aHere d*/h* = 0.05

bHere d*/h* = 0.10

+For curvefit A in Figure 2.3e; Here Clo = 0.000755 and C12 = -0.001139.

++For curvefit B in Figure 2.3e

Red 40 174 175a 175b 177 200+ 200 ++

CO -0.558049 -0.742972 -0.433693 -0.535618-o0.408033 -0.689683 -0.671619

C2 -0.766625 -1.096550 -o0.508736 -0. 81814 -0. 480901 -1.013466 -0. 783360

C4 -0.226734 -0.441596 -0.051834 -0.355295 -0.051616 -0.388269 -0.048946

C6 -0.149193 -0.153810 -0.055420 -0.101078 -0.038286 -0.074742 -0.079605

C8 - - - 0.033631 - - - 0.028899 -0.004973 0.046323

Do 1.0 1.0 1.0 1.0 1.0 1.0 1.0

D2 1.312803 1.438642 1.110520 1.520587 1.173784 1.493048 1.051067

D
4

0.581078 0.650948 0.222962 0.704213 0.260563 0.608359 0.248946

D
6

0.195990 0.176749 - - - 0.178288 - - - 0.111925 - - -

I0.04267 

D8 0.042673 0.027034! - - - 0.018078 - - - - - -
8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
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TABLE III.- DATA POINTS USED IN THE WALL PRESSURE CURVEFITS

Cpwall
\~ Red

0 4o

0 ° 1.120

18.8° 0.918

37 50 0.281

56.3 ° -0. 394

75.00 -0.824

93.7° -o.-927

112.5° -.0.824

131.1 ° -0.694

150.00° -0.607

168.80 -0.563

180.0° -0.544

Cpwall

1 7 5a 1 7 5 b 1 7 5 c

00 1.032 1.202 1.050

20° 0.651 0.887 0.666

40 o.o 0.095 -0o.025

600 -0.575 -0.666 -0.633

800 -0.726 -0.950 -0.747

100 ° -0.596 -0.760 -50. 95

120 -0.476 -0.601 -0o.482

140 ° -0.438 -0.557 -o0.418

160° -o.426 -0. 5381 -0o.406

1800 -o. 438 -o. 532 -0.392
______ 0.52-05

aHere

bHere

CHere

d*/h* = 0.05

d*/h* = 0.10

d* h* = 0.05

+Data taken from Kawaguti (1953)

Data taken from Grove, Shair, Petersen,

and Acrivos (1964)

Data taken from Thoman and Szewczyk (1969)

~1Cpwall

200

00 1.000

13.950° 0.814

20.9250 0.642

27.900° o.451

34.875 °0 0.232

41.850° o.

48.825 °0 -0.256

55.8000 -0.479

62.725° -0.721

69.7500 -0.894

76.725 ° -0.991

83.7000 -1.032

90.675 °0 -1.022

97.6500 -0.977

104.625 ° -0.922

111.600 ° -0.874

125.550 ° -0.791

139.5000 -0.731

153.450 ° -0.698

167.400 ° -0.684

180.0000 -0.675

1I
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TABLE IV.- COEFFICIENTS FOR EQUATION (2.5-5)

+

+Reported by Dimopoulos and Hanratty (1968) for Red = 174
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Figure 2.2 Surface Pressure Distributions at Red = 174, 175, and 177.
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Figure 2.3 Curvefits of the Surface Pressure Distributions (a) Red = 40.
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Figure 2.3 Continued (d) Red = 177
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Figure 2.3 Concluded (e) Red = 200
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Figure 2.8 Continued (c) Red = 175.
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Figure 2.10 Test Tunnel Wall Effects on Computed Shear Stress Results.
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Figure 2.15 Inviscid Pressure Gradient Parameter Distribution Using

Curvefit A at Red = 200.
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A at Red = 200.
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Figure 2.18 Inviscid Pressure Gradient Parameter Distribution Using
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Figure 2.21 Comparison of Wall Pressure Curvefits to Experimental Data at Red = 174.
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