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PRECEDING PAGE BLANYK NOT FILMED

Abstract

The unique solution of tidal wave propagation within the thermosphere

depends on the boundary conditions of the model. It is shown that the radiation

condition leads to such a unique solution. Any other boundary values give rise

to deviations from the physical solution with unrealistic physical parameters

in the environment of the boundaries. The thickness of these boundary layers

with unrealistic solutions is a few scale heights below the upper boundary of

the model and a few tens of scale heights above the lower boundary of the model.
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1. INTRODUCTION

Since the pioneering work of Harris and Priester (1962), much has been

written in the last decade about the diurnal variation of the neutral thermosphere.

Selfconsistent models considering the solar XUV-heat input as the generation

mechanism have calculated the corresponding pressure and wind fields at ther-

mospheric heights. They include one-dimensional models (Harris and Priester,

1962, 1965; Lagos and Mahoney, 1967; Blum, 1968; and Chandra and Stubbe,

1970), two-dimensional models (Dickinson et al, 1968; Volland and Mayr, 1970;

Isakov, 1971) and three-dimensional models (Lindzen, 1971; Volland and Mayr,

1971). The choice of the number of dimensions as well as the neglect of the

one or the other physical process like horizontal heat advection, ion-neutral

collisions, Coriolis force or viscosity naturally led to inconsistencies

between the various models. However, since computers are available to day

large enough to calculate systems of coupled differential equations, these dif-

ferences should be overcome some day if the same assumptions are made in

the various models.

Even then, however, there remains a big problem. It is the selection of

the boundary conditions for the model thermosphere. As it is well known from

the theory of ordinary differential equations, a system of m differential equations

of first order needs exactly m boundary conditions for its unique solution.

The dynamic behavior of the three dimensional thermosphere taking into

account heat; conduction and viscosity can be treated in the simplest form in terms

of a system of eight complex coupled linear inhomogeneous differential equations
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of first order for the calculation of the height functions of the various physical

parameters like pressure p, temperature T and winds v = (u, v, w). This requires

therefore the determination of eight complex or sixteen real boundary values for

the thermosphere model.

For convenience the thermosphere models are usually limited between the

heights of about 100 and 1000 km. These boundaries are completely artificial

and must be considered as open boundaries through which energy can be trans-

ported in each direction. The question arises therefore whether the boundary

values at these artificial boundaries can be determined uniquely or at least

whether they can be approximately selected such that the solution is consistent

with physical conditions.

We shall emphasize in this paper that the radiation conditions can provide

such a unique solution for the problem. A simple analytic solution for the

generation and propagation of tidal waves at thermospheric heights will be em-

ployed to demonstrate the implications and the fall stricks when more or less

arbitrary boundary conditions are used that violate these radiation conditions.

2. GENERATION AND PROPAGATION OF TIDAL WAVES

In order to show the influence of the boundary values on thermosphere

dynamics we shall select a very simple model. It is strictly valid for tidal

wave propagation within the lower nondissipative isothermal atmosphere. It is

however also approximately valid within an isothermal thermosphere and reflects

essential features of tidal and planetary wave propagation at thermospheric

heights. Our assumptions are
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a) Isothermy

b) Validity of perturbation theory

c) Heat input proportional to the mean pressure

d) Consideration of gravity waves only.

For convenience we furthermore shall consider only tidal waves with the

period of one solar day which is however in no way restrictive to the conclusions

to be drawn in the following.

From the equations of mass, momentum and energy, one can derive a system

of two linear inhomgeneous differential equations of first order for the various

Hough-functions of order n (e.g., Chapman and Lindzen, 1970; Volland and Mayr,

1971)

jkdZC+ 2 j A(1-K) + K-H P- = .
j ko d z c0] ( )n( ) Po i Jn

(1)

1 d K nP,1d PI_] -4A 2 K - + 2 j A K - 2 A n.j ko d z oPo- Co Po

Here, the following abbreviations have been used:

wn vertical wind velocity of the Hough-functions 0n with frequency

p pressure amplitude Q = 7.27 x 10
-

5 s -

c o velocity of sound

pO mean pressure of the isothermal atmosphere

Jn = K Qn /Q po normalized heat function

Q component of the solar heat input generating the Hough-function a
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K = (7 - 1)/y

y ratio between the specific heats at constant volumn and at constant

pressure

A = y g/2 co0

g gravitational constant

hn equivalent depth of the Hough-function 60

Ho = 1/2 ko A scale of the isothermal atmosphere

k ° = Q/co

z height above ground

We ask for solutions of (1) assuming a constant normalized heat input within

the height range between zo and z1 and zero heat input'outside this region:

constant zO <Z < z

for (2)

° z < zO; z > z
1

and write the general solution for this problem as

w
= a +b

Co

(3)

Pn
-_ = F a + Fb b

Po

with

a (z) = G
a

+ Ca exp {- ha (z - z0 )}

for zo _ z < z1 (3a)

b (z) Gb + Cb exp {Nb (z - Z1 )}

4



and

a (z) = Da exp (- a z)

for z >; z < z• (3b)

b (z) = D
b

exp (
b

z)

Here it is

ka = (/ - 1)/2 Ho

Xb = (/3 + 1)/2 Ho (4)

4KHo
/3= 1- 4 h

F A (1 + - 2 K) . A (1 - D - 2 K)
a (1 - K - Ho/hb) (1 - K - Ha/h,)

Jn (1 +/3 - 2 Ho/hn) . In (1 - /3 - 2 Ho/h,)
2 A 3(1 - /) 2 A/3 (1 +/3)

C a Cb , Da and Db are integration constant to be determined below.

Evidently, solution (3b) is the solution of the homogeneous system in (1)

while (3a) is the solution of the inhomogeneous system (1) consisting of the sum

of the homogeneous solution (3b) and a particular solution of (1).

We want to consider furthermore only so-called trapped or evanescent

modes with negative equivalent depths hn. The fundamental symmetric diurnal

tidal mode (1, -1) discovered by Kato (1966) and by Lindzen (1966) is such a

trapped modewith h = - 12.3 km. Therefore, the exponential factor 3 in (4)

is real and greater than one. X and Xb become positive and the discrimination
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of the solution of the physical parameters in (3) is such that it consists of a term

a which decreases with altitude and a term b which increases with altitude.

It has been shown (Volland and Mayr, 1971) that at thermospheric heights

above about 160 km, nearly all important tidal and planetary waves of gravity

wave type are quasi-evanescent. That means, their equivalent depths h are

complex containing a large negative real part. Therefore, the solutions for these

waves at thermospheric heights do not differ very much from (3) apart from the

fact that now 86 in (4) contains a small imaginary part which is responsible for

a small phase change with height in the physical parameters wn and pn. Thus,

the solutions obtain wave properties. The quantities a and b in (3b) can be con-

sidered as the up- and downgoing characteristic waves of the problem, with the

square root in (4) being their eigen value. For tidal waves at thermospheric

heights above 160 km, f is of the order 1 < 1/3 < 2, while for planetary waves it

is 1.5 < 11 < 5.

3. THE BOUNDARY CONDITIONS

3.a The Radiation Condition

For a unique solution of our problem, we have to determine the integration

constant C and D in (3a) and (3b). Since the amplitudes of the characteristic

waves in (3b) decrease rapidly in the direction of propagation, we can consider

a thermosphere model as imbedded within an atmosphere infinitely extended in

the vertical direction. That means, we can neglect the earth's surface as well

as the outermost atmosphere above the upper boundary of the model.

According to our assumptions, the waves are generated exclusively within the

height range between z 0 and z I. Therefore, the waves generated there can only
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leave the boundaries. No upgoing wave can exist below zo and no downgoing

wave can exist above z 1 because no energy source is available to generate

these waves outside our model. This leads in a straightforward manner to the

formulation of the boundary conditions in terms of the radiation conditions:

a = 0O for z <z0o
(5)

b = O for z > z1.

Since at the boundaries the physical parameters wn and pn must be contin-

eous according to well known hydrodynamic principles, a and b must be

contineous too at zo and z 1 within the isothermal atmosphere, and we find

from (3a), (3b) and (5) the solution which fulfills the radiation condition:

a (z) = Ga {1 - exp [- Xa (z - z0 )]}

for z < z < z (6a)

b (z) = Cb {1 - exp [Xb (z - zl)]}

a = O; b = b (zo) exp [Xb (z - ZO)] for z z(6b)

b = O; a = a (zl) exp [- Xa (z - z 1)] for z > zl

In order to show the general behavior of a and b, we made numerical

calculations which are based on the following somewhat arbitrary data set:

K = 0. 3; = 3; ha (z 1 - Z) = 10.

While K reflects mean lower atmospheric properties, /3 (and therefore

Hn/hn) has been chosen for convenience such that we obtain values for a and b

which are both of the same order of magnitude. f8 is a measure for the pene-

tration depth of the free internal waves. It is also responsible for the relative

importance of the upgoing wave a with respect to the downgoing
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wave b (see Eqs. (3) and (4)). With decreasing number fi, the upgoing wave

becomes increasingly larger than the downgoing wave (see Eq. (8)). The specific

number of /3 is irrelevant however in the following qualitative discussions due

to the normalizations which we introduce in order to become independent on

atmospheric data. The thickness of the layer was chosen large enough so that

the two boundaries become practically decoupled from each other. For a

normalization we use the quantities

- A 'A Wna= a; w =a+ b -
Jn Jn Co

G= Ga;G F a Fa (7)

A -F
Gb = Gb; Fb = Fb

a (z - z 0 ); =b (Z1 - z)

The imaginary number j in p corresponds to a phase shift of 6 h for pn

with respect to w, in the case of the diurnal variations. The vertical wind wt

peaks at the same time as the heat input Jn . Within the dissipative thermosphere

this phase relationship becomes more complicated (Volland and Mayr, 1971).

In Fig. 1, we plotted as solid lines a and b versus B. The right ordinate

is scaled according to ~ . As it is evident from (6), A increases from zero at

z 5 0 to an assymptotic value G above z - 5 which is the particular solution
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of (3). b, on the other hand, increases from zero at < 0 to Gb above

- 5. Both a and b, decrease exponentially outside the boundaries at z = 10 and

= 20 respectively and become insignificant after distances of A z, A : - 5

from these boundaries. This strong decay of the free internal waves justifies

our assumption about the infinitely extended atmosphere in our thermosphere

model.

Evidently, the constant particular solutions Ga and db are the solutions

for an infinitely extended thermosphere model with heat inputs everywhere

(zOd - Co; zl - co). These solutions are reached within the model at distances of

A z, Ag - 5 from both boundaries and indicate final stages where up- and down-

going waves are generated simultaneously at each height. The waves propagate

up- and downward away from the respective sources, however without changing

their phases. The sums of all these phase locked waves give two resultant up-

and downgoing waves of constant amplitude. Here it is always a > b (see (4))

because of

Ga (fi + 1)2 (8 - 1 + 2 K) > 1 f(> 1)
(/+23 +2 > 1 for (/ > 1). (8)

Gb (8 - 1) 2 (, + 1 - 2 K)

This ratio decreases with /3 and is infinite for /3 - 1. It shows that the

heat source predominantly generates upgoing waves which propagate into a region

of decreasing density.

If we consider an isothermal atmosphere bounded by the rigid earth's

surface and extended infinitely into the vertical direction we have to modify

our radiation condition (5) because the downgoing waves are totally reflected
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at the earth's surface (a (0) = - b (0)) which is equivalent to the condition that

the vertical velocity disappears there. Together with z 1 c o we obtain from (3)

a (z) = Ga - (Ga + Gb) exp(- h a z)

(Z >.) (9)

b (z) = Gb

Here again we can conclude that the influence of the earth's surface is significant

only within a distance of z' < 5 from below.

We now turn to the discussion of the physical parameters w and p from (3)

and (7). These parameters are plotted as solid lines in Fig. 2. w and p have

finite values at the boundaries of the model and disappear at infinity. While

w is positive everywhere, p is negative below the height 'i sob = 0.3 and it is

positive above that height. The height zi sob therefore is an isobaric layer

where the phase of~ jumps by 1800. Since the horizontal winds are proportional

to the pressure, they too become zero there and jump in phase. This means that

Zisob is the center of the circulation cell of the associated wind system. The

winds blow away from the maximum of the heat source above Zisob and blow

toward the maximum of the heat source below Zi sob in the same manner as in

the case of thermally driven winds (e.g. land-sea-breezes).

Pressure and vertical wind become constant far enough away from the

boundaries (AI, Ag > 5) and obtain the values

2 - 1 + 4K
w = Ga + Gb =

2 K (?2 _ 1) (/ > 1)

4
P = Fa Ga + Fb Gb

~~~~P -~ G
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Because of our assumption about the validity of perturbation theory, solutions

for Eq. (6) can be determined for various regions with different mean tempera-

ture and different heat input and they can be superimposed so that realistic

temperature and heat input distribution of the atmosphere can be simulated to a

sufficient degree of accuracy (see e.g., Volland and Mayr, 1970).

Since the thermosphere above 200 km is nearly isothermal and since the

heat input can be considered as proportional to the mean pressure in a first

order approximation (Hays, 1970), solution (10) gives already a fair estimate

of thermosphere dynamics. For the implications due to the dissipation effects

within thermospheric heights see Volland and Mayr, 1971.

3b. Arbitrary Boundary Conditions

We have seen in section 3a that the unique solution of our problem involves

the radiation condition which necessarily needs a discrimination of solution (3)

in terms of the eigenfunctions or characteristic waves a and b. This is possible

in the simplest case considered in this paper. It is also possible to find analytic

expressions for the characteristic waves if heat conduction is taken into account

(Volland and Mayr, 1970). However, in the general case which includes heat

conduction and viscosity at thermospheric heights, no analytic solutions for the

eigen values and the characteristic waves are known.

For this and other reasons most authors started from system (1) or an

equivalent more complicated system and solved this system numerically. There-

fore, they were forced to select more or less arbitrary boundary values for the

physical parameters at the lower or (and) the upper boundary of thier models.

A very common boundary condition is
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Pn = T = u n = vn = 0 at z o

(11)

PO n = d Tn/d z = d un/d z = dvn/d z = 0 at zl

if heat conduction and viscosity are included in the model. The arguing is that

according to (11) the fluxes of mass, momentum and energy vanish at the upper

boundary z , and the hydrodynamic fluxes of energy disappear at the lower

boundary z0 (Dickinson et al., 1968).

In the case that only heat conduction is taken into account, the number of

boundary values reduces to four. Following Harris and Priester (1962), they

are very often taken as

Wn = Pn = Tn = 0 at z (12)
(12)

dTn/d z = 0 at z
1
.

In the case of the nondissipative lower atmosphere, the lower boundary condition

is at the earth's surface:

w = 0 at zo = , (13)

while the upper boundary condition is the radiation condition according to Wilkes

(1949) or is taken from the condition that the vertical energy flow vanishes

(Siebert, 1961).

We want now to simulate these boundary conditions and to discuss their

physical meaning. Since we have only the two physical parameters wn and p,

available in our simplified model we first set

Wn = Pn = 0 at z or z
1.

(14)
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It follows immediately from (3) that strictly speaking no realistic solution is

consistent with that boundary condition because it violates a general principle of

wave propagation namely that the time averaged wave energy wn pn must be

different from zero within the entire propagation range

Next we consider the condition

Wn = Z0

at (15)

Pn = Z1

which has some similarity with tidal water waves in an ocean of finite deepness.

It means, the solid bottom of the ocean leading to the boundary condition wn = 0

corresponds to the bottom of our model while the open surface of the ocean to

the air which gives pn = 0 is the top of our model. There exists also a corre-

spondence between this model and electromagnetic waves ducted within a wave

guide with one electric and one magnetic wall (Budden, 1961). The lower

boundary condition in (15), by the way, is identical with the boundary condition

at the earth's surface used in (9) leading to the same solution in (16a) far enough

away from the upper boundary.

The resultant up- and downgoing waves corresponding to this boundary

condition (15) have been determined from (3) and become (assuming exp {- i (z1

- zo)} << 1)

13



a - Ga - (Ga + Gb) exp (- a (z - z0 )}

for z 0 < z ~ z1 (16a)

(Fa Ga + Fb Gb)
b - Fb exp {Xb (z - zl)}

a = al - Gb exp X- A (z - z
0
)}

for z < zO (16b)

b Gb exp {Xb (z - 0O)}

a -Ga exp {- a (z - Z1 )}
for z > z1 (16c)

FGa
b = bl I- exp {;b (z - z 1)}

Fb

The normalized values 4a and b are plotted as dashed lines Fig. 1. Here we

notice that in order to maintain condition (15), an upgoing wave a 1 must exist

below zo (see Eq. (16a)) and a downgoing wave b1 must exist above z 1 (see Eq.

(16c)). Thus, condition (15) can only be obtained by the superposition of the

waves generated by the internal heat source within the model (z 0 z i ) and of

two additional waves generated by two respective sources outside of the model.

Due to the strong decay of these waves in the direction of propagation, the influence

of those fictive sources diminishes with increasing distance from the boundary

and virtually disappears at distances of A2, AC > 5.

The corresponding physical parameters w and p are plotted as dashed

curves in Fig. 2. Here too, outside the model, pressure and vertical wind

increase exponentially due to the corresponding up- and downgoing waves and

give rise to an increasingly unrealistic situation outside the model.
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An equivalent explanation for the situation which is caused by the boundary

condition (15) is the following: The boundaries of the model are a solid bound-

ary at z0 and an open boundary to a vacuum at z 1. The waves generated within

the model by the internal heat source are reflected at both boundaries. The

reflected waves interfer with the primary waves which lead to the deviations

in Fig. 1 and 2 (the dashed curves) from the undisturbed conditions (the solid

lines). The source outside the model can be considered then as fictive sources

in "mirror points" in a similar sense as in the case of an electromagnetic dipole

field above an electric wall with infinitely large electric conductivity.

If we assume any other combination of wn and p, at the boundaries except

the unique one derived from the radiation condition

n = a t (17)
po Co z

we obtain equivalentresults. We conclude therefore: The introduction of arbitrary

boundary values (not consistent with the radiation condition) leads to a wave

structure which is unrealistic outside the boundaries of the model and within

distances of

10 H
A zo 0 from the lower boundary z0

z°-f 1

and (18)

10 Ho
A zl= from the upper boundary z1./3+1

However, inside this region, that is, far enough away from the boundaries

within the model, the wave structure becomes identical with the exact physical

solution for our problem.
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The same conclusion can be drawn for the more sophisticated models which

include heat conduction and viscosity. Application of boundary values of the

form of (11) or (12) necessarily leads to "reflections" at the boundaries and

thus to deviations from the realistic solutions. Because of the strong decay of

the downgoing waves, the errors introduced by the upper boundary conditions

are not so significant if one considers only those results as physically acceptable

which are below a few scale hieghts from the height of the upper boundary (see

Eq. (18)). However, in the case of the lower boundary, the penetration depth

of the waves from below may be much greater than a few scale heights (e.g.

about 20El- for the diurnal tidal (1, -1) mode in the height range between 180

and 200 km). Therefore a tidal wave generated within the lower atmosphere below

zo = 100 km may penetrate into the thermosphere and may contribute significantly

to the density amplitude even at 200 km altitude. A unique separation of this wave

from the waves generated within the thermosphere above z
0

by the internal heat

input is only possible via the application of the radiation conditions.
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Figure 1. Normalized upgoing (a) and downgoing (b) characteristic waves versus altitude in a model thermosphere.
Solid Lines: Radiation condition. Dashed: Arbitrary boundary conditions.
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Figure 2. Normalized pressure p and vertical wind w versus altitude in a model thermosphere.

Solid lines: Radiation condition. Dashed lines: Arbitrary boundary conditions.
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