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5
i FOREWORD

The work described herein is being performed by TRW Inc. under the
sponsorship of the National Aeronautics and Space Administration under
Contract NAS 3-13469, This contract involves work similar to that con-
ducted under -Contracts NAS-3~9439 and NAS-3-2545, The purpose of this study
is to obtain design creep data on refractory metal alloys for use in advanced
space power systems, A listing of all reports presented to date on this pro-
gram is included in Appendix I,

The program is administered for TRW Inc, by E. A, Steigerwald,
Program Manager; K. D, Sheffler is the Principal Investigator with R, R,
Ebert contributing to the program. The NASA Technical Manager is Paul E,
Moorhead.
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Engineer
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TRW inc. MATERIALS TECHNOLOGY
ABSTRACT

Creep tests were conducted on two tantalum alloys (ASTAR 811C and
T-111 alloy), on a molybdenum alloy (TZM), and on CVD tungsten, The T-111
alloy 1% creep life data have been subjected to Manson's station function
analysis, and the progress on this analysis is described, In another test
program, the behavior of T-111 alloy with continuously varying temperatures
and stresses has been studied. The results indicated that the previously
described analysis predicts the observed creep behavior with reasonable
accuracy, In addition to the T-111 test program, conventional 1% creep
life data have been obtained for ASTAR 811C alloy, Previously observed
effects of heat treatment on the creep strength of this material have been
discussed and a model involving carbide strengthening primarily at the
grain boundaries, rather than in a classical dispersion hardening mechanism,
has been proposed to explain the observed results,
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, SUMMARY
/

Ultrahigh vacuum creep tast results have been obtained on four re-
fractory alloys during the current report period, Creep tests were conducted
on the tantalum base T=111 alloy (Ta-8%W-2%Hf) to provide additional creep
Jife data for this material and efforts were made to analyze these data
together with all of the previously obtained T-111 1% creep life data using
Manson's recently developed station function analysis. While the analysis
is not complete at the present time, results of the vork performed to date
are presented to document this new approach to parametric creep life cor-
relation, A limited amount of 2% and 5% creep life data which has been
obtained on the T-111 alioy is also presented, A creep test has been per=-
formed on a specimen of T=111 alloy having a duplex heat treatment (1 hour
at 3000°F (1649°C) followed by 1 hour at 2400°F (1316°C) which was designed
to simulate a post weld annealing treatment, No measureable difference
could be detected between the results of this test and the conventional
T-111 data,

In another phase of the program a creep test has been performed on
T-111 alloy with the stress and temperature varying according to exponential
equations which approximate the service conditions in an alpha-emitting radio-
isotope capsule, Results of this test were compared with predictions made
using previously described analytical techniques. This comparison showed
relatively good agreement between the predicted and the experimental results,
particularly regarding the value of the stall strain, which is a maximum
creep strain parameter that has been proposed for use in radioisotope capsule
design.

Additional creep life data have been obtained on the tantalum base
ASTAR 811C alloy (Ta-8%W-0.7%Hf~1%Re=-0,025%C) and an interpretation of pre-
viously observed influences of heat treatment on the creep strength of this
material has been developed, The proposed explanation involves carbide
strengthening at grain boundaries, rather than in the classical dispersion
hardening role. An experimental technique to provide additional support
for this hypothesis has been proposed,

The influence of high temperature liquid metal exposure on the creep
strength of ASTAR 811C has been evaluated. Results showed thata significant
reduction of 1% creep life at 2400°F (1316°C) and at 15 and 9 ksi (103 and
55,1 mN/m2 ) resulted from a 5000 hour exposure to liquid lithium at a tem-
perature of 2400°F (1316°C).
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LS
'.x-ﬁi f' The first of a series of creep tests on CVD tungsten annealed 100
E g hours at 3272°F (1800°C) was initiated during the current period, Results
FE of this test showed a steady state creep rate of 7.15 x 10~/ hr~! and an
L extrapolated 1% creep life of 14,000 hours at 2912°F (1600 C) and a 500 psi
YL (3.5 niM/m?),
?ff In a continuation of a previous study, the influence of both composi-
gt tion and processing on the creep strength of the molybdenum base alloy TZM
g has been examined, A specially processed disc having a higher than normal
. carbon content and forged at higher than normal temperatures was found to be
; : significantly stronger than a conventionally forged TZM disc,
.% 28;
Bl
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INTRODUCT I ON

/

Current desjgn concepts for space electric power systems specify
refractory metals and alloys in a number of high temperature applications
where the creep strength of other materials is inadequate, The utilization
of the refractory metal alloys depends upon the availability of suitable
design creep data. This program has therefore been undertaken to provide
the required creep information on selected refractory metal alloys,

The refractory metal components of the space power systems will
operate either in a space vacuum or in an environment such as potassium
vapor where the concentration of reactive gasses is extremely low, Because
of this fact and the well known sensitivity of refractory metal behavior
to interstitial contamination, the tests on this program have been conducted
in ultrahigh vacuum chambers at pressures of less than | x 107° torr, Ex-
perience during the program has shown that this pressure is low enough to
eliminate the possibility of environmental contamination during creep
testing, ;

The majority of tests conducted on this program have been of the
conventional constant load, constant temperature type, However, the applica-
tion of tantalum alloys for structural containment of alpha-emitting radio-
isotope fuels has led to a need to characterize the creep behavior of these
materials with continuously varying stresses and temperatures., |In response
to this need, both analytical and experimental techniques have been developed
to study the creep of T-111 alloy with exponentially varying stress and
temperature. The analytical results were described in a previous topicai
report on this contract!, and preliminary experimental data will be presented
in this report.
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EXPERIMENTAL PROCEDURE

Materials

Processing details_and sources of each of the test materials have
been summarized previously“, Chemical analyses of each heat of test material
are shown in Table 1,

Only one specimen of TZM alloy is currently on test, This specimen
was taken from a specially fabricated, stress-relieved disc of TZM alloy
(Heat KDTZM-1175) which had a higher than normal carbon content and which
was forged at very high temperatures (3400°F (1871°C). in order to provide an
improved carbide dispersuon-

The tantalum alloys are being evaluated predominately in the form
of nominal 0,030" sheet, although a few selected tests have been conducted
on T=111 alloy in the form of strip or plate, All of the tantalum materials
are being evaluated in the fully recrystallized condition, Typical micro-
structures for these test materials have been presented prevuously . The
standard heat treatment for the T-111 alloy is 1 hour at 3000°F (1649°C),
while the ASTAR 811C alloy is being annealed 1/2 hour at 3600°C (1982°C), A
small number of ASTAR tests were conducted on specimens from a General Electric
Co. corrosion loop program, Details of these tests are given in the discussion
section of this report,

The CVD tungsten test specimens were obtained in the form of 4" long
by .060" thick sheet-type creep test specimens which were vapor deposited and
machined to print by the vendor, Chemical analysis from a typical specimen
Is shown below:

Ciemical Analysis of CVD Tungsten Creep Specimen (ppm)

W ¢ 0 N H F
Bal. 29 12 3 2 -

while a typical microstructure is shown in Figure 1, The specimens were of
the duplex type, meaning that the cross section contained approximately 45
mils of a structure typical of the Fluoride deposition process, and approxi-=
mately 15 mils of a structure typical of the chloride deposition process.

The annealing treatment for these specimens was 100 hours at 3272°F (1800°C).
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TR W INC. MATERIALS TECHNOLOGY

General Test Procedures

The experimental program is devoted to the generation of design data
by creep testing sheet and bar specimens at temperatures and stresses which
will provide one half to one percent creep in 2000 to 25,000 hours. Two
inch gauge length, button-head bar-type specimens and double shoulder, pin
loaded, sheet type. specimens were used for testing of plate and sheet type
materials, The orientation of the specimen with respect to the working
direction is given below: '

g, Material Form Specimen Axis Parallel to

%

. Disc forging Radius

¥ Plate Extruding or rolling direction

§ .

; Sheet Rolling direction (except where

# Indicated)

: Both the construction and operation of the test chambers and the
: service instruments in the laboratory have been described in detail in

% previous reports (Appendix t). The creep test procedure involves initial
% evacuation of the test chamber to a pressure of less than 5 x 10-10 torr

at room temperature, followed by heating of the test specimen at such a

rate that the pressure never rises above 1 x 106 torr, Pretest heat

treatments are performed in situ, and complete thermal equilibrium of the

specimen is insured by a two-hour hold at tne test temperature prior to

load application, The pressure is alwaxs below 1 x 10°8 torr during the

tests and generally falls into the 10°10 torr range as testing proceeds.

Specimer, extension is determined over a two inch gauge length with an

optical extensometer which measures the distance between two scribed

reference marks to an accuracy of *50 microinches, .

R AT

el RE AR YT 3

Specimen temperature is established at the beginning of each test
using a W-3%Re - W25%Re thermocouple., Since thermocouples of all types are
subject to a time-dependent change in EMF output under isothermal conditions,
the absolute temperature during test is maintained by an optical pyrometer,

' In practice the specimen is brought to the desired test temperature using a
calibrated thermocouple attached to the specimen as a temperature standard,
The use of this thermocouple is continued during the temperature stabiliza-
tion period which lasts 50 to 100 hours, At this time, a new reference is
established using an optical pyrcmeter having the ability to detect a tem-

. perature difference of *1F°, and this reference is used subsequently as the
primary temperature standard,
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Apparatus and Procedures for Exponentially Varying Stress and Temperature
Tests

A previous analysis' has shown that the stress o and absolute tempera-
ture T in a radioisotope capsule will vary according to the .equations:

- - =it
T=T, + (T)-T))e (1)
and
o = F(T) (1-e't)
' (2)
-\t =\t
= F{T, +[T0-TA]e Y(1-e "7)}
where
TA = ambient temperature (absolute)
Ty = initial capsule temperature (absolute)

isotope decay constant = In (2)/half life
.F = proportionality constant

The stress and temperature profiles provided by these equations are illustrated
in Figure 2, "The objective of the experimental program was to conduct creep
tests on T-111 ailoy with the stress and temperature changing continuously ac-
cording to the Equations 1 and 2 to evaluate the accuracy of the analytical
predictions based on constant load, constant temperature tests, To facilitate
this objective a computer program was written to calculate the desired values
of 0 and T at periodic intervals throughout each test (Appendix IV). A

typical output from this program is shown in Appendix V. These data correspond
to the experimental test $S-109 which was conducted during the current report
period. Values used for the starting temperature, half life, stress level,
etc. are shown at the beginning of the table, An ambient temperature of 75°F
was used in the calculations and the stress factor F was calculated by the
program so that the stress versus temperature profile would be tangent to the
yield strength versus temperature profile for the T-111 alloys, as indicated

by the stress level of unity. A detailed discussion of the meaning of each

of these parameters can be found in Reference 1, The width and thickness of
the specific test specimen to be used for each test is provided to the pro~
gram so that the loads and load changes may be calculated from the stress data,
The W-3%Re/W=-25%Re thermocouple outputs are generated internally by a sixth
order polynomial which was fit to calibration data supplied by Englehart, The
calibration factor shown in the heading is the deviation of the individual
thermocouple to be used for the test from the general W-Re calibration curve,
(This individual calibration is performed by the vendor on each thermocouple
purchased for the creep program,) The desired millivolts column shown in the
output includes this correction factor as well as the reference junction cor-
rection factor so that the indicated value corresponds exactly to the correct
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TR WINC. ’ MATERIALS TECHNOLOGY

temperature for the specific thermocouple being used for the test, The
actual millivolts and patch hole columns are used as set up data on the
experimental apparatus, as are the delta load columns,

The equipment used for continuous varying of the load consists of
a lead shot feeder and a collector assembly attached to the load train in
place of the static load pan. This equipment was described in an earlier
report, Reference 4, As used previously, the shot feeder was driven at a
uniform speed by a fractional horsepoger DC motor which provided a load
that increased linearly with respect to time. For the present tests it was
necessary to modify the motor speed control so that a continuously varying
loading rate could be achieved, This was done by adding a system of re=-
sistors, stepping switches, and patch boards to the system which allowed
complete flexibility in the programming of the loading rate with time,
Typical results obtained with this system are illustrated in Figure 3a
where the experimentally applied loads for the first 400 hours of test
$-109 are compared to the desired loads from Appendix V. These data demon=-
strate the extremely close accuracy of loading which this equipment provides.

Smed s 22 ¢ et

, Temperature variation was accomplished using a somewhat different
approach, A synchronous drive motor was attached to the temperature controller
(see Figure 4) and this motor was driven intermittently to achieve the desired
rate of temperature variation., A system of cams, stepping switches, and

patch boards (Figure 5) was used to program the rate of temperature variation
and thereby provide the desired temperature-time profile, Typical results

are shown in Figure 3b where the measured temperatures from the first 400
hours of test $~109 are compared with the desired values from Appendix V,
Again, there is extremely close agreement between the desired and the observed

values,

ST R < AN N SRR o N Lot L e A e s
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RESULTS AND DJSCUSSION

’

Presentation‘and discussion of the test results will be divided into
four sections concerning the T-111, ASTAR 811C, vapor deposited tungsten,
and TZM test materials, A summary of the tests conducted during this report

period is presented in Appendix || together with all of the previous tests
from the vacuum creep program, Creep curves for each test conducted during
Y the current reporting period are presented in Appendix II1},
T-111 Alloy Results
i
) Discussion of the current T-111 test results will be subdivided into
gf sections on conventional test results, parametric studies of the conventional
5 T-111 creep data, and results from the exponentially varying stress and tem-
B perature program,
g
o 1, Conventional Test Results
A;ﬁ Additional conventional creep tests were conducted on T=111 alloy
o during the current reporting period with the primary purpose of "filling in"
P areas in the Larson=Miller plot where sufficient data were not available to
g@ clearly define a scatter band, The additional data generated are summarized
gg on a Larson-Miller plot in Figure 6 and on a plot of temperature compensated
g creep rate versus hyperbolic sine of the stress in Figure 7, 6Both of these

-
J13)

S

plots shown good agreement with the previously published data®,

£

A limited amount of creep life data was obtained on T-111 alloy
during the current report period at higher creep strains than the previously
used 1% value, These results are summarized in.Table 2 and in Figure 8,
where the available 2% and 5% T-111 creep life data are compared on a Larson-
Miller diagram with the average of the 1% creep results from Figure 6, While
sufficient results are not available to define a scatter band, the data.pre-
sented allow an estimate of the 2% and 5% creep strengths relative to the 1%
creep strength, Presuming that the inherent data scatter at the higher
creep strains Is similar to the 1% data scatter, these relative strength
Increases can be used in conjunction with the low limit of the 1% scatter
band to design to 2% and 5% creep in T-111 alloy.

A AR W

A creep test was performed during the current report period on a
specimen of T=111 alloy having a duplex heat treatment (1 hour at 3000°F
(1649°C) followed by 1 hour at 2400°F (1316°C)) which was designed to simulate
a currently used post weld annealing treatment, Results of this test were
not measureably different from the conventional T-111 test results, as in-
dicated in Figure 6,

12
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TABLE 2

CREEP LIFE DATA FOR T-111 ANNEALED 1 HOUR AT 3000°F (1649°C)

Stress Temperature '~ Creep Life LMP
Test No, Heat No. KksT  mN/mZ °F °C Hours T°R (15 + log T)

Two Percent Extension

S-19 70616 8 55.1 2200 1204 3325 49,3
S-21 70616 12 82,6 2200 1204 1800 48,6
$-22 70616 20 138,0 2000 1093 1095 Ly 4
$=-27 D-1102 13 89.5 2000 1093 3350 45,6
$=-30 65079 3.5 24,1 2400 1316 1760 52.2
S=47 65079 24 165.0 1750 954 28,000%* 43.0
$-60 D-1183 35 241,0 1600 870 10,000 39,1
$-68 650028 1 6.9 2560 1403 24, 000* 58,5
B-44 650038 35 24, 2000 1093 26 Lo, 4
P-1 8049 19 131.0 2000 1093 3475 45,6
S-84 650028 1.5 10,4 2400 1316 7500%* 54,0
S-107 848001 20 138,0 1900 1038 790 42,2
Five Percent Extension

S-19 70616 8 55.1 2200 1204 6300* 50.0
S-21 70616 12 82,6 2200 1204 3235 he,2
$-30 65079 3.5 24,1 2400 1316 5000 53.5
$-60 D-1183 35 241,0 1600 870 13,000 39.4
B-44 650038 35 241.0 2000 1093 43 40,9

5-107 848001 20 138.0 1900 1038 - 2000 43,2

* Extrapolated
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2, Parametric Analysis of Conventional Creep Test Data

A new approach to tne problem of parametric representation of stress,
temperature, and creep life data was recently discussed by ﬂanson5. An ef-
fort is presently being made to apply this new technique, which is called
station function analysis, to the T-11]1 alloy 1% creep iife data generated
in this program, While the results of the analysis are not yet complete,
the following discussion is being presented to document the method and to
describe the current state of progress on this effort,

Station function analysis differs from previous methods in that it
involves essentially a "minimum commitment' to the form of the correlating
parameter., Conventional techniques for creep data correlation require that
a correlating parameter (or parameters) first be postulated and then curve-
fitting techniques are used to determine how well the parameter describes
the experimental data, The station function analysis is a method which
permits numerical values of the optimum correlating parameter to be cal-
culated without specifying the analytical form of the parameter. This ap-
proach has the significant advantage of providing a convenient means by
which the experimental data may be used to determine the best form of para-
meter for the specific material being tested.

The station function analysis is based on assumption that the creep
data can be represented by a generalized parametric equation of the form:

g (log ¢) = p(T) + f(log t) (3)
where t is creep life, T is test temperature, and o is stress, The well known
correlating parameters such as the Larson-Miller, the Manson-Haferd, the Orr-
Sherby-Dorn, etc.are included as special cases of this generalized parametric

equation, The Larson-Miller parameter, for example, which has the standard
form: .

P(log o) = (T + 460)(C + log t) (4)
can be transformed by taking logs of both sides:

log P(log o) = log(T + 460) + log(C + log t) (5)
which has the form of (3) with .

g(log o) = log P(log o)

p(T) = log (T + 460)

f(log t) = lo.(C + log t)

Similar transformations can be applied to other standard parameters to achieve
the desired form.

17
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Application of the station function analysis requires that specific
"stations' or discrete values of the three experimental variables be selected
prior to computing the ''station functions,'" which are the numerical values of
the p, f, and g parameters at each station, The range of stations selected
for each variable must contain the range of the experimental data and the
stations must be distributed within that range so that no two adjacent
intervals between stations are void of data, The values of the correlating
parameters at each station are then calculated by solving a system of
simultaneous. linear equations in which the discrete values of the station
functions are the unknowns, Each equation in the system represents data
from a single creep test. In order to have enough equations to solve for
all of the station functions, it is necessary that the total number of
stations be equal to or less than the number of data points available., The
detailed method of applying Equation (3) to each data point is best illustrated
by the following example.

The T-111 creep data selected for analysis by the station function
method are given in Table 3, while the stationsselezted for the analysis are
shown in Table 4, ldeally, it would be desireable for each station to cor-
respond to an experimental test condition, However, in practice this is
difficult to accomplish, particularly in the present case where the experi-
mental test conditions are not arranged at uniform stress and temperature
intervals, In:this case it was necessary to establish the stations at uniform
intervals and to.interpolate to obtain the station functions at the experimental
data points. This procedure will be illustrated using the data for test S-60
from Table 3, The value of the parameter for this test is easily seen to be
P1, Since the test temperature coincides with the 1600°F stati. in Table L,
However, the stress and creep life for this test fall between scations and
it will therefore be necessary to interpolate to obtain the g and f station
functions, The procedure used will be the linear interpolation method sug-
gested by Manson, Simply stated, this procedure says that the value of the
station function at a test condition intermediate between two stations will
be linearly related to the relative distances of the experimental test con-
dition between the two stations., Thus, for example, if an experimental test
condition fell exactly half way between two stations, it would be assumed
that the value of the station function for that test condition would be
exactly half way between the values of the station functions at the two
adjacent stations., If the test condition is 1/4 of the way between one
station and the other, the station function will be the sum of three quarters
of the value of the closer station function: and 1/4 of the value of the
farther station function, Fcr the specific case of test S-60, the log of
the test stress is 4,54k, which falls between stations g¢ and g4. Linear
interpolation thus. gives the value of the g function at this test condition:

ot RS e

tegs

B e DS SR TSN NN B R g,

PO

.699-14, .5hk-4,30]
g function at 35 ksi = {éj%%%:%j%%#%‘gs + %%,233-2.301; 97 (®)

= .399é + .6197,
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TABLE 3

T-111 CREEP TEST DATA USED IN STATION FUNCTIQON ANALYSIS

Test Temperature Stress ' 1% Creep Life

No, °F psi Log Stress Hours Log Life
$-60 1600 . 35,000 b, 544 8550 3.932
$-69 1625 30,000 4,477 . 16,506 4,218
S=47 1750 24,000 4,380 19,896 4,298
S-40 1800 17,000 4,230 . 8558 3.932
* 1800 17,000 L,230 9000 3.954
$-26 1800 17,000 4,230 9540 3.979
S-24 1860 20,000 4,301 4730 3.675
$-50 2000 8500 3.929 24 ,000%%* 4,380
S-34 2000 11,000 L,ok 10,800 L,034
S-27 2000 13,000 L1k 1880 3.274
$-59 2000 13,000 bk 13,350 4,126
$-25 2000 15,000 L,176 : 1340 3.127
$-22 2000 20,000 4,301 676 2,862
§~23 2120 12,000 4,079 3450 3.538
§$=-21 2200 12,000 4,079 1140 3.057
S-19 2200 8000 3.903 2000 3.301
$-33 2200 8000 3.903 2850 3.455
$-32 2200 5000 3.699 4050 3.608
5-35 2200 5000 3.699 5400 3.732
$=-31 2200 5000 3.699 - 6160 3.790
5-88 2300 3500 3.544 2565 3.409
S=42 2300 3500 3.544 ' 3810 3.581
S=-48 2330 2400 3.380 5500 3.740
S-84 2400 3560 3.544 3250 3.521
$=-30 2400 1500 - 3.176 860 2,934
$-68 2560 1000 3.000 2300 3.362
$-28 2609 500 2,699 55,000%* L,740

* |Interpolated data ~ doss not correspond to an actual test
*% Extrapolated
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%
H
£ TABLE 4
1,,)
A FIRST SET OF STATIONS CHOSEN FOR APPLICATION OF THE
P STATION FUNCTION ANALYSIS TO T-111 ALLOY
Stress Stations Temperature Stations Time Stations
Stress Log Station Temperature Station 1% Creep Life Log Statien
psi Stress Name °F Name Hours Life Name
500 2.699 9 1600 P 562 2.75  f,
) 1000 3,000 9, 1700 . Py 1000 3.00 f2
‘l; 2000 3,301 93 1800 p3 1780 3.25 f3
¥ 5000 3.699 9, 1900 Py . 3160 3.50  f,
: 10,000 4,000 gS 2000 p5 5620 3.75 fs
: 20,000 4,301 9 2100 Pg 10,000 h.oo  f,
50,000 4,699 9 2200 P 17,800 has  f,
i 2400 Pg 56,200 4,75 fy
é 2500 Po
'% 2600 P11
3
1
g
i
i
}
{
]
¢
B
¥
A
i
A

W
..

i
}
|
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The creep life function at the 8550 hour creep life for $-60 is obtained
similarly as:
f function at 8550 hours = (4.00-3,932) fo + (3.932-3.75) f, (7)
(§.00-3.75) '5 ~ T%.00-3.75) '6

= .27f5 + .73F¢
The form of Equation (3) for test $S-60 is thus
399, + .6197 =p + .27f5 + 73f
or, rearranging, . (8)
-3996 -.6197 tpt .27f5 + .73f6 =0

Similar procedures may be used to generate additional equations for each of
the remaining tests. The set of equations so generated will constitute a
set of simultaneous linear equations.

The next step in the station function analysis is to solve this set
of simultaneous equations for the unknowns, which are the numerical values
of the correlating functions at each of the preselected.stations, In order
to do this it is first necessary to rearrange the equations into a format
which is suitable for treatment by one of the standard methods for solving
simul taneous equations, To make the format more convenient the unknowns
will be renamed as X| through X,y instead of the previously used p, f, and
g names, The variables X; through X4 will correspond to gy through g7,

Xg through X;g will correspond to p; through p;;, and X]9 through X2 will
correspond to f} through f9‘ Using these variable names”the 27 simu?taneous
equations may be expressed in the form

IR 1 B T N e *ay a7, X7 7 b

e T Ll *ay07, %7 b
, \ .
' ' ' (9)
. .

7 SR LTS * 327,27, X27 = P2y

where the coefficients correspond to the coefficients calculated for each
data set using the linear interpolation technique. Again using the S-60
data as an example, inspection of Equation (8) shows that the coefficients

in the first row will be:
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a, e " -.39
;7 = ®
a.g = .l
a 93 = .27
ay, a4 = 73

and all of the rest of the coefficients in the first row will be zero, as
will all of the right hand b terms in Equation (9). In working with the
complete system it is generally simpler to speak in terms of the coefficient
matrix [A], which is the matrix formed by the individual a;, : coefficients,
rather than to write out the complete set of equations, |If [A] is defined
inthis way and if the column vectors [X] and [B] are defined as:

&lﬂ B]'
Xy b,

x1=|. (8) = | . (10)
*23 27

then by the rules of matrix multiplication the system (9) may be expressed
in the compact form:

[Al[x] = [B] . (1)

Using the assistance of a high speed digital computer, the coefficient
matrix shown in Table 5 was developed from the creep data in Table 3. Each
row of this matrix is labeled to show the creep test from which the equation
was constructed and the columns are labeled to show both the original and the
renamed unknowns,

Unfortunately it is not possible to directly solve a system of equa-
tions such as the one presently under consideration, The problem is that this
is a homogenous system, that is, one where all of the right hand b terms con-
tained In [B] are zero, and as such It does not have a unique solution, This

.type of system can be solved only by arbitrarily specifvying one or more of
the unknowns and then solving for the rest of the unknowns in terms of the
arbitrarily fixed values,

22




TRW inc.

MATERIALS TECHNOLOGY

3 $ 5 ¢ . 8383 8§ $ 88 8 &5 288 3 58 5% 38 3 2
[ ST S S § PN S S S N S S Y S I A I L . 4
§3® ©o ©o 0o © © © © © © © © m © © © © © © © © © © © o o © 2
b .
§.3®o o 8 © 0o o © H‘ ©°'©® © © © © © © © o © © © o o o o © 3_
- X -
(] -
§§®o "] 8 o o o o % ? o 8 ©o o o o o oo o ©6 ©6 06 © © © © ©
N~ X
)
§—3® R 2 R 8 ¥ 00 8 o0 R 0o c0c o o oo 0o 2 0o o o o o o
“w O3 >~ . ] ]
g 2
o .
I g?,® P: e ° R. 2; S 2_ o o o o © © f’-. o o o Q. 9_ 3' o 5‘)_ 3; 3 o o o
R x
= 5
_S;Q@ © ©6 ©o 06 6 © 2 0 © 2 o0 0o 0 8 0 2 8§ B B o ¥ 2 3 & o 9 o
s x s ] TR 2 9 > e Qe . A
o
§:§,® © ©o o © © 0o © © © & © @& o o 3 3 '-3_ o o o 3 © o © o & ©
- — X . - H
o
§§‘® © © ©o ©o © © 0o ©o ©o o o § A o R oo 0o 0o 06 © o © o : o o
& :
o L]
§:.: o © © © 0 0 o © © © O o N o0 ©o o o 0o o © e o o o ;94. © o© E
<
%
=® R z
§5_-‘ © © © © © © © © © © © © © © © © © © © 0 © © o0 o0 o v ~ <
g
r4
> Qo
§E© © © © © © © © © © © © © © © © © © © © © o © © o0 °© < o ]
aex -g
§’8«® ©o © © © © © © © © © © © © © © © © o o0 © © o0 { -~ -~ e o 2
& ?
vi
z
§3® ©o ©c ©o ©o o 0o © ©o 0o ©o ©6 6 © © 6 ©6 © ©6 6 © -~ -~ R 0o © © © 8
Q= <
=
® y =
o
gz_:‘ l©o © © © © © © © © © © © © § ~- ~ =~ -~ ~-~ ~ ©o 0o © © o ©°o o S
e 8S “
w
x
% 8’5@ © ©6 o 0o 6 © © o © ¢ © © © 8 © © © © © © © © © © © © © =
g 8=-
2.0 3
™ g;'?" © © © © © © © =~ =~ =~ = ~ ~ © © © © o © 0 o © ©© © © © o° g
~ * w
9
§3© © © © c o © 2 © ©o © © © © © © © © © © © © © © © © © © w
st x &
® R : 8
§»-,~_, ©o ©o A -~ - -~ % © 0o © © © © © © © © © © © © © & © o o o
e x w
~® w o E
8= © & » © © © © © © @ © © © © © © © © © © © © © 6 ©& © ©o 2
sEox -
=0|- =
£~ N © ©o ©o ©o ¢c ©o o o © 0O 0O © 0 0 © ©0 © 06 0 © o6 o o o ©°
2
g§30|= I ¥ '
“S‘ T 7 | © © ©o o o ©c o o 0o 0 0o 0o © 00 © © 6 © o 6 © o°
]
8209] ¢ 2 . ® <
3 & 2 RRR _ o2 8 8 s
Y v = 3 4 o
g. * A S S U S S Fr T @ @ @ e & © © e e © °
«©
g.?’@ & 8 R o R e 9 € RN 28 % 0006 6 06 6 0 06 © o
o © o . . . . . . . . © . : . d "
68* ) 1 ' ) ) ] L} ) ] 1 . ]
« - - -
z @lec ¢ 0o 6 6o 0 ¢ 8 6 06 © © © © o 88 _ _ _ % 3803,
o ® ) ) ] ] ] ] ] ) ] ()
ggﬁ@ © © ©o © © © © © © © © © © © © © © o © © EI : 8; 3}. s © o
x
1 ¥
§5. © © © ©o ¢c © © © © 6 © © © © © © © © © © © © © . ©0 5T ©
-]
§3—@ © © © © © © © 6 6 0 © © © © © © © © © © o o0 © o o o =
x
g.
2 |OOOOOPOOCAROOBOOBOOGOOAGOOOOGB®



TR WINC. MATERIALS TECHNOLOGY

Actually, there is a procedure by which the number of arbitrarily
specified variables required for a consistent solution may be determined,
using the rank of the coefficient matrix, The rank of a matrix is defined
as the order of the largest none~-zero detriment which is contained within
that matrix, In the general case of a nonhomogenous set of n simultanec:s
linear equations in n unknowns, a unique solution is possible if and only
If the determinant of the coefficient matrix is not zero; that is, for a
unique solution the rank of the coefficient matrix must be equal to its
order n, In the special case of a homogenous set of n simultaneous linear
equations in n unknowns, a solution is possible only if the determinant of
the coefficient matrix is zero; that is, the rank of the coefficient matrix
must be at least one less than its order n, (If the rank of the coefficient
matrix is equal to the order n then the system will be found to be in-
consistent.,). |t can be shown, in fact, that the number of unknowns which
must be arbitrarily specified for the system to be solvable is equal to the
difference between the order of the coefficient matrix and the rank of the
coefficient matrix, Further, it is possible to determine which unknowns
can and which cannot be arbitrarily specified by removing from the coefficient
matrix the column corresponding to the unknown in question and determining if
the removal changes the rank of the resulting (n)x(n=1) matrix, I|f the rank
is not changed by the removal then the unknown may be arbitrarily fixed; if
the rank is changed then the unknown may not be arbitrarily specified.

Using the techniques described above a solution was obtained to the
system of equations represented by the coefficient matrix in Table 5, Un-
fortunately, it was found that the results were not physically meaningful;
that is, the values calculated for the station functions varied randomly in
the range between 1 and 1012 and showed no systematic variation with the
corresponding station values of the creep variables, [t was felt that this
result was caused by the fact that the system as shown in Table 5 was poorly
conditioned for a least squares solution, Using computerized techniques, the
rank of the matrix shown in Table 5 was found to have a value of 24, meaning
that it was necessary to arbitrarily specify three of the station functions.
0f more importance, however, was the fact that the value of the largest non-
zero determinant contained within the sub-matrix (that is, the 27 x 24 matrix
from which the coefficients of the arbitrarily specified unknowns had been
removed) had a value on the order of 10~7, meaning that even the solvable
system was very poorly conditiored for the least squares solution.

In an effort to determine the cause for the poor conditioning of the
codfficient matrix, the data were re-examined to see if any obvious incon-
sistencies could be detected. It was thought that perhaps the presence of
cuplicate tests where the creep life results were not identical (e.g., tests
§-26 and $-40) might cause difficulty in obtaining a meaningful solution. In
an ‘effort to eliminate this situation, the results of all of duplicate tests
were averaged, which left a net of 20 unique test results to work with, In
order to provide a solution in this case it was necessary to also reduce the
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number of unknown (stations) to a number near the number of tests., The
interval between temperature stations v.as therefore increased from 100 to
200°F, as illustrated in Table 6, The coefiicient matrix for the 20 tests

and 22 stations is shown in Table 7, Obviously additional data will have

to be generated to solve this (n)x(n-2) system. This will be done during

the coming report period by using a fai-ing procedure on a log stress log-
creep life plot, and then selecting one or two ''data'’ points between the

actual test points. The procedures discussed above will then be re-applied

to the selected data matrix to develop a solution for the 22 station functions,

3. Exponentially Varying Stress and Temperature Results

A previous reportl has documented the analytical methods available
for the prediction of varying stress and temperature test results. The
analytical approach to the problem involves the integration with respect
to time of a quantity which is dimensionally a strain rate:

€= ét ¢(t)dt (12)

where ¢ is the time dependent creep rate function, t is time and ¢ is the
total creep strain accumulated between time O and time t, Computer assisted
numerical integration techniques were used to integrate Equation (12) using
a previously developed hyperbolic size creep rate equation for T=111 alloy®,
By integrating in a step-wise fashion it was possible to plot the value of
the integral (which is total creep strain) at succe:zsively larger values to
t, thereby providing hypothetical variable stress and temperature creep
curves for the T-111 alloy, It was found that these curves displayed a
unique feature called the ''stall strain,'" which was essentially a peak in
the creep curve which occurred at the point in time where the rate of creep
extension was just balanced by the rate thermal contraction, Because of the
uniqueness of the stall strain it was felt that it would represent a signi-
ficantly better capsule design parameter than one of the more conventional
creep parameters such as rupture life or steady state creep rate.

The first of a series of experimental tests to confirm this predicted
creep behavior was conducted during the current report period. The experi-
mental conditions for this test (No, $-109), which were discussed in the
experimental detaiis section of this report, are shown in Appendix V and in

"Figure 3, A hypothetical creep curve calculated for these test conditions

s compared with the experimental creep data from this test in Figure 9. The
shapes of these two curves are quite similar, and the experimental curve does
indeed exhibit a ''stall' phenomenon as predicted, Furthermore, the experi-
mental stall strain of 2.83% agrees quite well with the predicted value of
2.95%. The only significant difference between these curves is that the ex-
gerimental values fall somewhat below the predicted curve in the steepest
(highest creep rate) area of the curves, It Is not possible to evaluate from
the limited data available to date whether this difference .s the result of
the inherent scatter in creep test results, or Is the result of a systematic
deviation of the prediction technique from the real behavior, Additional
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TABLE 6

REVISED LIST OF TEMPERATURE STATIONS CHOSEN FOR
STATION FUHCTION ANALYSIS FOR T-111 ALLOY

Temperature " Station

°F Name
1600 P
1800 _ Py
2000 p3
2200 Py
2400 . Ps
2600 Pg
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PERCENT CKEEP
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COMPARISON OF CALCULATED AND EXPERIMENTAL CREEP CURVES FOR
EXPONENTIALLY VARYING STRESS AND TEMPERATURE TEST S-109
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tests will be performed during the coming report period, and the results
from these tests should indicate whether a systematic deviation exists,
These tests will also provide additional stall strain data for evaluation
of a stall strain correlating parameter which has been proposed for this
type of datal,

ASTAR 811C Ailoy

During the past report period, the primary emphasis of the effort
on the ASTAR 811C alloy was directed to the development of additional 1%
creep life design data on specimens annealed 1/2 hour at 3600°F, A signi-=
ficant number of design characterization tests were conducted and more
design tests are planned., Alsc, as with the T~111 alloy, some effort was
made to obtain creep life data for the ASTAR 811C alloy at larger strain
levels,

The 1% results of the currert design tests on the ASTAR 811C alloy
are plotted in Figure 6 together with earlier test results on this material,
The limited amount of creep life data which are available for the higher
strain levels are presented in Table 8 and are compared with the 1% data in
Figure 10, Results of the commercial heat of this alloy continue to show
strenaths which are slightly better than the earlier laboratory heats,
although the difference does not appear as great at the higher stress levels
as ‘'t did at the lower stress levels. Another interesting observation is
that this alloy appears to be significantly weaker in the high stress-low
temperature range than it is at lower stresses and higher temperatures., This
is an important point, as will be shown by the following discussion of
structural creep effects in the ASTAR 811C alloy,

Previous reports have discussed the influence of heat treatment on
the structure and creep strength of the ASTAR 811C alloy. The influence of
creep exposure on the structure of this alloy has also been evaluated, Re-
sults of these studies have shown that the annealing treatment can signif-
icantly influence the creep strength of the ASTAR alloy. For example, the
1% creep life at 2400°F (1316°C) and 15,000 psi (103 mN/m2) ranges from about
6000 hours for specimens annealed 1/2 hour at 3600°F (1982°C) to about 150
hours for material annealed | hour at 3000°F (1649°C). The previous studies
have indicated that this variation includes the effects of both graii size
and carbide morphology on the creep process. Ex~mination of the post-test
microstructure adds another puzzling note to these somewhat confusing
observations. It has been found that regardless of what thc pretest micro-
structure may be, the carbides in the post-test material are located pre-
dominantly at the grain boundaries., The puzzling thing about this observa-
tion Is that this sometimes drastic change in carbide morphology occurs
without the appearance of any significant change of creep rcte during the .
tests,
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CREEP LIFE DATA FOR ASTAR 811C ANNEALED 1/2 HOUR

TABLE 8

AT 3600°F (1982°C)

Stress Temperature Creep Life LMP
Test No, Heat No, ksi mN/nt2  °F °C Hours T°R (15 + log T)
TWo Percen?’ffsgnsion
S-74 650056 15 ‘103.0 2400 1316 1370 51.9
s-76 650056 25 162.0 2175 1191 1450 47.9
s-85 650056 20 138.0 2175 1191 8650% 49,9
s-86 650056 i5 103.0 2300 1263 7900%* 52,2
$-90 650056 35 241.,0 1850 1010 3814 42.9
$-91 650056 30 207.0 1950 1066 6500% 45.3
$-92 650056 25 162,0 2050 1121 14,000% 48,1
$-93 650056 3 20.7 2700 1482 3125 58.4
$-95 650056 8 55.1 2500 1371 ‘ 3575 54,9
$-96 650056 2,5 16.2 2750 1510 3670 59.6
$-97 650056 1.5 10,3 2900 1593 2680 61.9
Five Percent Extension
S-76 650056 25 162.0 2175 1191 2950 48,7
$-97 650056 1.5 10.3 2900 1593 L4600* 62.7
Ten Percent Extension
S-76 650056 25 162,0 2175 1191 4250 49,1
Fifteen Percent Extension
S-76 650056 25 162,0 2175 1191 4950 49,3
* Extrupolated
30
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Another interesting observaiion which was made during the current
report period concerns the previously noted reduction in the relative creep
strength of the ASTAR 811C alloy at the higher stress levels. It would
appear, in fact, that at very high stresses the strength of this material
may be approaching that of the normally weaker T-111 alloy. One of the
reasons for this observation is that it may relate to the resuits of Harrod,
Ammon, and Buckman, presented recently by Buckman7, which showed a distinct
‘'shift in creep mechanisms in this alloy in going from the low stress range
at 2600°F, where the creep life appeared to be strongly grain size dependent,
to the higher stress range at 2000°F, where the creep life appeared to be
essentially independent of grain size. This would indicate that the ASTAR
alloy is markedly superior to the solid solution strengthened T-111 alloy
only at temperatures and stresses where grain boundary sliding is the pre~
dominant deformation mechanism, [t cannot be stated, however, that grain
size is the only factor controlling the creep strength of this alloy, since
it was clearly shown that the presence of the carbide is necessary to achieve
the improved strength over the non-carbide containing material., To prove this
point, Buckman tested a non-carbon containing analog which had a composition
] essentially identical to the ASTAR 811C alloy except that it did not contain
3 ; carbon, Results of these tests showed that the. carbon free analog was signi=

¥ ficantly weaker than the ASTAR 811C alloy, thereby demonstrating the pro-
nounced effect of the carbide on the creep strength of this material,

Y A

Analysis of the observations presented above has led to the development
»f a theory concerning creep strengthening mechanisms in the ASTAR 811C alloy
which might explain all of the observed effects. The key observations which
led to the development of this hypothesis are that:

a) The presence of carbides appears to improve the creep
strength only in the temperature range where grain boundary
sliding is an important creep mechanism,

b) The bulk of the carbides in the post-test microstructure
appear to be concentrated at grain boundaries, irrespective
of the pretest microstructure,

R S . AP W I R i T A

The hypothesis is that the carbides provide their strengthening effects not
in the classical dispersion hardening way, but instead as grain boundary
strengtheners, If a classical dispersion hardening effect were present,
the strengthening effect should not disappear at the lower temperatures. On
the other hand, a grain boundary strengthening effect is consistent with the
observation that the strengthening is effective only at temperatures where

, grain boundary sliding is a significant creep mechanism, These observations

i are consistent with commonly observed effects in the nickel and cobalt baise

i superalloys, where carbédg pinning is a widely utilized grain boundary

g strengthening mechanism®s?, A true carbide dispersion strengthening effect
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.

is also inconsistent with the observation that the carbide has migrated to
the grain boundaries during testing, with no detectable influence 6n the
creep curve, Unfortunately, there is no information available at the pre-
sent time concerning how quickly this migration takes place. It would be
useful to know this, because if the period of migration occupies a significant
fraction of the test duration, then it would be expected that the grain
boundary strengthening would increase slowly, which would be reflected in

the creep curves as a continuously decreasing creep rate, Such an effect is
not observed and the microstructural information would therefore be useful

in determining whether or not the proposed hypothesis is correct. During

the coming report period efforts will be made to determine how soon after the
start of a creep test the change in carbide microstructure occurs.

In another phase of the ASTAR 811C test program, a study was made of
the influence of liquid metal exposure on the creep strength of the ASTAR 811¢C
alloy. Four specimens were obtained for these tests from the Gereral Electric
Company at Evendale, Ohio, All four specimens were taken from the original
Westinghouse NASV-20 heat and were annealed at | hour at 3000°F (1649°C) prior
to exposure. Two of these specimens were then exposed at G,E, to liquid
lithium for 5000 hours at 2400°F (1316°C), thereby providing diplicate pre- and
post exposure samples, After exposure all four specimens were delivered to
TRW for creep testing in the UHV creep laboratory,

The four specimens from the G.E. corrosion loop program were creep
tested at a temperature of 2400°F (1316°C) and at stress levels of 15 and
8 ksi (103 and 55.1 mN/m2), The testing was complicated by the fact that
the specimens were very small and therefore required special grips and pull
bars. Anotner complication of the small size was that the standard optical
cathetometer, which has a minimum working distance of 1-1/2'"", could not be
used for these tests, It was therefore necessary to use a traveling tele-
scope having the same accuracy as the cathetometer, which essentially doubled
reading errors because of the fact that two readings (one at each end of the
gauge section) were made instead of one. This problem, coupled with the fact
that the gauge section was only 1/2" (which is 1/4 of the usual 2'') meant that
the scatter on the creep curves for these tests was about eight.times the
usual amount. Despite this problem, it has been possible to obtain reliable
1% creep life data from these tests,
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Results of the four tests from the G,E. corrosion loop program are
summarized in Table 9, which shows a significant reduction of the 1% creep
life as a result of the liquid metal exposure. During the coming report
period efforts will be made to examine the pre- and post-liquid metal ex-
posure specimens to determine if some structural difference can be detected
which would account for the observed reduction of creep life,
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/ TABLE 9

SUMMARY GF CREEP_LIFE DATA FROM G.E. CORROSION_LOOP
SPECIMENS CREEP TESTED AT 2HOO°F (1316°C)

1% Creep Life, Hours

Test Stress Not
EEL mN/m< Exposed Exposed
15 103,0 152 68
8 55.1 2600% 1575

* Extrapolated
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CvD Tungsten

A program was undertaken during this report period to characterize
the creep behavior of chemically vapor deposited tungsten creep specimens,
Thus far only one test has been conducted in this series at a temperature
of 2912°F (1600°C) and a stress of 500_psi (3.5 mN/m2). This test exhibited
a steady state creep rate of 7.5 x 10°/ hr~! and had an extrapolated 1%
creep 'ife of 14,000 hours, Additional tests will be run during the coming
report period so that a Larson-Miller plot can be constructed for this
material and compared with previous tungsten test results,

Molybdenum Base Alloy TZM

Only one TZM alloy test was in progres< during the current reporting
period on a specially processed lot of TZM wh: °~ had a higher than normal
carbon content and was forged in the 3400°F 71°C) vange to produce an
imprgved carbide dispersion, This test at 20.)°F (1093°C) and 22 ksi (15.1
x 10/ mN/m2) reached 1/2% creep at 16,293 hours, which ‘s -*'wnificantly longer
than anticipated for conventional TZM, While a TZM test .uld normally be
discontinued at 1/2% strain, this test is being continued Leyond that point
to check for possible creep rate instabilities at higher strain levels,

35



TR w INC. MATERIALS TECHNOLOGY

o .

CONCLUS IONS

/

Analysis of ultrahigh vacuum creep test data obtained during the
current report period has led to several significant conclusions, The
current 1% creep life results for the tantalum base T-111 alloy have been
found to agree well with previously obtained results from this program and
Manson's recently developed station function analysis has been applied in
an effort to correlate all of the T-111 alloy 1% creep data obtained to
date. The current state of progress of the analysis has been described in
this report. In addition, a limited amount of 2% and 5% creep life data
have been presented for this alloy. In another phase of the i-111 test
program, a specimen was tested which had a duplex heat treatment (1 hour
at 3000°F (1649°C) followed by 1 hour at 2400°F (1316°C)) which was designed
to simulate post-weld heat treatments applied to T-111 alloy, Results of
this test showed no measurable difference from the conventional T-111 test
data.

A test conducted on T-111 alloy with exponentially varying stress and
temperatures has shown that the creep behavior under these test conditions
can be predicted with reasonable accuracy using previously described analytical
techniques,

Creep test results obtained on ASTAR 811C alley during the current
reporting period have been shown to agree with previous test results on this
material, However, it has also been shown that at relatively high stresses
and low temperatures this alloy loses some of the strength advantage which
it has over T-111 alloy in the intermediate stress and temperature range. A
hypothesis has been advanced in this report to explain the previously observed
influence of heat treatment on the creep strength of ASTAR 811C alloy, The
theory proposes that the carbide strengthening in this material occurs primarily
at the grain boundaries rather than through a classical dispersion strengthening
effect. An experimental approach to obtain additional data concerning this
mechanism has been suggested,

In another phase of the program, a study has been conducted to evaluate
the influence of high temperature liquid metal exposure on the 1% creep life
of ASTAR 811C at 2400°F (1316°C) Results of this study showed that at both
15 and 8 ksi (103 and 55.1 mN/m2) an exposure of 5000 hours to liquid lithijum
at 2400°F (1316°C) caused a significant reduction of the 1% creep life,

Results of the first in a series of creep tests on CVD tungsten annealed 100
hours at 3272°F (1800°C) and tested at 2912°F (1600°C) and 500 psi (3.5 mN/m2)
showed this material to have an extrapolated 1% creep life of 14,000 hours and
a steady state creep rate of 7,15 x 1077 hr=! at these test condltlons.
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Results from a specially processed heat of TZM alloy (Heat KDTZM-
1175) having a higher than normal carbon content and forged at higher than
normal temperatures continue to show a creep strength superior to conven-
tionally processed TZM alloy,
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APPENDIX 11

SUMMARY OF ULTRAHIGH VACUUM CREEP TEST RESULTS
GENERATED ON THE REFRACTORY ALLOY CREEP PROGRAM
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1.2
$-104
S-104 POST CORROSION LOOP EXPOSURE SPECIMEN
$-108 PRE-CORROSION LOOP EXPOSURE SPECIMEN
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FIGURE 111-l. CREEP TEST DATA, ASTAR B11C HEAT NO. NASV-20 ANNEALED 1 HOUR AT 3000°F (1649°C), TESTED AT 2400°F
(1316°C) AND 8 KS! (55.1 mN/m?), Tegrs NO. S-104 AND $-108 FROM G.E., CORROSION LOOP PROGRAM, TESTED
IN A VACUUM ENVIRONMENT OF <1 x 10°% TORR., ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT
VARIOUS INTERVALS DURING THE TEST.
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10.0 }- N
&
3 -9
g 5.8 x 10°7 TORR
-
]
L
E 8.0} -
[y
6.0 - —
hoo L. -
2.0 |- ~———— 8.4 x 1077 TORR _J
2.8 x 10" Tom
o 1 ] _l 1 | | | 1
0 100 200 300 400 . 500 600 700 800 900 1000
TIME, HOURS .

FIGURE [11-5. CREEP TEST DATA, ASTAR B11C HEAT NO. 650056, TESTS NO. S-101 AND $-106, TESTED IN A VACUUM ENVIRONMENT OF <! x 10
TORR. ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS INTERVALS DURING THE TEST,
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PERCENY CREEP

0.4

12

0.4

0.6

0.k

T T T
$-90
$-90 TESTED AT 1850% (1010%C) AND 35 KSI (241 mN/m?)
$-91 TESTED AT 1950°F (1066°C) AND 30 KSI (207 mi/m?)
$-92 TESTED AT 2050% (1121%C) AND 25 KSI (162 mN/m?)

4.9 x 107" romn

' -10

5.3 x 10 TORR

-— 29 x 1072 Tomn

L b1 1 [
T T T —1
. 5-91

- 2.0 x 10° Tomr .
fo— 4.5 x 1079 ToRR

| Il il 1

4 | ¥ v

$-92

1.1 x 1072 Tom

——— 2,7 x 1072 TOMR
[ } I 1

] 1000 2000 Jooo hooo $000

. TINE, MOURS

FIGURE 111-6, CREEP TESY DATA, ASTAR B11C HEAT NO, 650056 ANNEALED 1/2 HOUR AT 3600°F (1982°C), TESTS NO. $-90, $-91, AND $.92,

TESTED (M A VACUUM ENVIRONMENT OF <) x lO'. TOAR, ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS
INTERWALS DURING THE TEST.
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0.'0 f; T T T
$-9h TESTED AT 16000F (8719C) AND 40 KSI (276 mN/m?
$-95 TESTED AT 2500%F (13719¢) AND 8 KSI (55.1 mN/m2) s-94
$-96 TESTED AT 2750°F (15109C) AND 2.5 KSI (16.2 mN/m2)
0.2 }+ -
1.4 x 10" ToRR -10
N 7.2 x 1077 YoRr
0 . | 4 J
] T ! $-95'
2.0 b _
8.8 x 1070 tomn
1.6 I R
1.2 .
a
]
3
(%]
£ 0.8 - -
5 . 1.0 x 1079 Tore
&
(Y
0.4 }6.7x 10" vonn N
0 i 4 5 1
T T v ! $-96
2.0 7
1.4 x 1072 Tomr
1.0} -
1.1 x 1078 Tomn
0! l ] 1 1 ]
1000 2000 3000 4000
TIME, NOURS
FIGURE 114-7. CREEP TEST DATA, ASTAR B11C MEAT NO. 650056 ANNEALED 1/2 HOUR AT 36009F (19829C), TESTS NO. S-94, S-95, and 5-96,

TESTED IN A VACUUM ENVIRONMENT OF <1 x 10-8 TORA.

INTERVALS OURING THE TEST.

ARROVS ON

THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS



TRW inc. MATERIALS TECHNOLOGY
1 T T T T T
, S-85 TESTED AT 2175°r2(119|°c) AND - 8.6 x 16"'0 TORR
b0 |- 20 kS (138 mN/m?)

5.86 TESTED AT 2300%F (1263°C) AND
15 KSI (103 mN/m“) .

0.8 — -

0.6 - - -

‘e—9.8 x 107'0 ToRR

0.b |- i
a
w
w
[ 4
u -
|~ 0.2 | -
w
L)
[4
w
[
~— 2.9 x 10-9 TORK
{ | 1 1 { 1
0 f 1 ] ! ! !
s-86
1.2 |- -
0.8 |- 8.7 x 107'° ToRR _
0.4 -

~4.0 x 10~2 TORR

| ] | |

0 1000 2000 3000 4ooo $000 6000 7000
TIME, HOURS

FIGURE 111-8. CREEP TEST DATA, ASTAR B11C HEAT NO. 650056 ANNEALED 1/2 HOUR AT 3680°r (1982°),
TESTS NO. S-85 AND $-86, TESTED IN A VACUUM ENVIRONMENT OF <!x 10™° TORR,
ARROWS ON THE FURVES INDICATE CP*MBER PRESSURE AT VARIOUS INTERVALS DURING THE
TEST. '
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4.0 T T T T T

$-93 TESTED AT 2700°F (1482°C) AND
‘3 Ksl (20.7 mN/m2)

$-97 TESTED AT 2900°F (5593°c) AND

3.0 - 1.5 KSI (10.3 mN/m®) =
2.0 2.4 x 1072 T0RR d
1.0

7.6 x 1072 Tome T

a 0 . [ {
bl ] ! | T T
(-4
(8]
b $-97
x
w
2
w
e 4.0 |- -
3.0 |- -
a b
2.0 L 1.9 x 10™° TORR _
|
- 1.0 -

1.8 x lo‘8 TORR
1000 2000 3000 4000 5000 6000

TIHE, HOURS

FIGURE 111-9. CREEP TEST DATA, ASTAR 811C HEAT NO. 650056 ANNEALED 1/2 HOUR AT 3600°F
(1982°¢), TESTS NO. $-93 AND S-97, TCSTED IN A VACUUM ENVIRONMENT OF
<l x 10~8 TORR. ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT
VARIOUS INTERVALS DURING THE TEST.
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{ T T T
5-88 HEAT 650028, ANNEALED | HOUR AT 3000°F (164399C) FOLLOWED BY 1 HOUR AT 2400%F (1316°¢)
1.6 TESTED AT 2300 OF (12639C) AND 3.5 KSI (24.1 mN/mZ) =
$-98 MEAT BLBOOT, ANNEALED ! HOUR AT 3000°F (16‘4902) .
TESTED AT 25600F (1404OC) AND 1 KSI (6.9 mN/m€)
$-99 MEAT 650028, ANNEALED 1 HOUR AT 3000°F (1649°C) s-88
V2 TESTED AT 2700°F (14820C) AND 0.5 KSi (3.5 mN/m2) ]
*“F 5-105 HEAT 650028, ANNEALED 1 HOUR AT 30009F (1645°C) | N
TESTED AT 1700°F (327°C) AND 35 KSI (241 mN/m2) 2.8 x 10-10 ToRR
cB — -
7.2 x 10-10 1oRR
'Y -4
fo———— 3.4 x 10°9 TORR
) I 1 [l ]
1 T 1 T
* $-98
A 1 ~
2.9 x 109 ToRr
.2 -
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3 2 N
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| L
- t } = 1
©
&
o $-99

1.2 x 10-% ToRR

— 1.7 x 16°8 tors

[} of -

i 1 1 1

T T L I

$-105
6.0F .
ol > 4.3 x 10-'% TORR .
1.1 x 1072 vorm

2.0 -

1 1 1 L
0 1000 2000 3000 . 4000

’ TIME, HOURS

FIGURE 111-11, CREEP TEST DATA, T-111, TESTS NO, $-88, 5-98, $-99, AND $-105, TESTED IN A VACUUM ENVIRONMENT OF
<l x 10-8 TORR. ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS INTERVALS DURING
THE TEST.




TR WINC. MATERIALS TECHNOLOGY

PERCENT CREEP

1.2

0.8

0.4

-— 2.4 x 10‘9 TORR

e 3.6 x 10'9 TORR
| 1

i N |

1000 2000 3000 L4000 5000 6000
TIME, HOURS

FIGURE I11-12, CREEP TEST DATA, T-111, HEAT NO, 650028 ANNEALED 1 HOUR AT

3000%F (1649°¢), TESTED AT 2400°F (1316°C) AND 1.5 KSI (10.4 mN/m2) |
TEST NO. S-8L4, TESTED IN A VACUUM ENVIRONMENT OF <1 x 10-8 TORR.
ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS INTERVALS

DURING THE TEST,
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' L T T |

10.0 b 5_60 HEAT D-1183 TESTED AT 1600%F (870°C) AND 35 KSI (241 mN/m2)
$-69 HEAT 650028 TESTED AT 1625%F (885°C) AND 30 KSI (207 mN/m?)
8.0 |-
6.0 -
UN )
1.3 x 1072 ToRR
S
w
5 .
- 2.0
& -9
] 2.4 x 1077 TORR
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i 0.9 TORR

o
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.
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1 | 1

0 2000 4000 6000 8000 10,000
TIME, HOURS

12,000

14,000 16,000 18,000

FIGURE 111-13, CREEP TEST DATA, T-111 ANNEALED 1 HOUR AT 3000°F (IS“SOC), TESTS NO. S-60 AND S$-69, TESTED IN A VACUUM

ENVIRONMENT OF <1 x 10-8
DURING THE TEST,

TORR.

ARROWS ON THE CURVES INDICATE CHAMBER PRESSURE AT VARIOUS INTERVALS
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'APPENDIX 1V

LISTING OF BASIC COMPUTER PROGRAM TO CALCULATE STRESS AND
TEMPERATURE SET-UP DATA FOR EXPONENTIALLY VARYING STRESS
AND TEMPERATURE TESTS
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100 REM PROGRAM TO CALCULATE LOAD AND TEMPERATURE FOR VARIABLE
110 REM STRESS AND TEMPERATURE CREEP TESTYT
120 REM DATA ARE ENTERED IN LINES 1410 THROUGH 1510 AS FOLLOWS:
130 RFM 1410 THERM@COUPLE CALIBRATION FACTOR,TEMPERATURE CONTROLLER
140 REM DRIVE MBTOR SPEED '(HOURS PER REVOGLUTION)
150 REM 1420 TEST NUMBER
160 REM 1430 STARTING TIMEL,TIME INCREMENT
170 REM 1440 AMBIENT TEMPERATURE
180 REM 1450 CONSTANTS FOR YIELD POLYNGMIAL
190 REM 1460 STARTING TEMPERATURE,STRESS LEVEL,HALF LIFE
200 REM 1470. SPECIMEN WIDTH AND THICKNESS
205 REM 1480 THROUGH 1510 CONTAIN PATCHBOARD SETUP INFORMATION
210 REM THE PROGRAM CALCULATES THE STRESS FACTOR FGR A YIELD KISS
220 REM AND THEN CALCULATES THE STRESS,TEMPERATURE, AND LBAD USING
230 REM THE EQUATIONS:
240 REM TEMP=TA+(TO-TAY*EXP(-LAMBDA*TIME)
‘250 REM STRESS=F*SL*TEMP*(1-~EXP(~LAMBDA%TIME))
260 REM LOAD=STRESS*AREA
270 DIM Z(100),G8C100)2,R(50),V(50),U(50),E(50)
280 READ V2,R6
. 290 READ B3
300 READ S9,D1,TB,A0,A1,A2,T2,L,HsW»TS
310 FOR 1I=4 T® 96 STEP 2
320 READ G$(CI)
330 NEXT 1
340 LET TO =(T2-32)%5/9 +273.16

350 LET T9 = (TB=32)%5/9 + 273.16

360 LET L9 = LBG(2)

370 LET D = LOG((1-T9/(TO0-T9))/2) o
380 LET ES = EXP(D)

390 LET Tt = T9+(TO-T9JX*ES

400 LET F = AO+A1*T1+A2%T1*T1

410 LET F = F/T1/(¢1-ES)

420 LET Z(1) = -A0-Al1*TO~-A2%TOXTO ’

430 FOR C = 1TO10 ’
440 FOR N = 2T8100

450 LET T = D*(N~1)/100

460 LET ES

= EXP(T)
470 LET T1 = T9+(TO-T9)*ES

480 LET Z(N) = F#T1%(1-E5)-A0-A14T1-AZ¥T1%T1
490 IF Z(N)<Z(N-1) G@ T@ 520

S00 LET X= Z(N)

510 LET K1 = N

520 NEXT N

530 LET T =K1%D/100

540 LET E5 =EXP(T)

550 LET T1 = T9 +(TO-T9)*ES

560 LET Y = AO+A1*T1+A2#T14T1

570 IF ABS(X/Y)<.0001 G@ T@ 620

540 LET F = F*(1=X/Y)

590 NEXT C
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600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
80O
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

PRINT *“KISS SUBROUTINE FAILED T@ CONVERGE'

STOP :
LET L1 = L9/H
LET A = W*TS
PRINT
PRINT
PRINT
PRINT
PRINT"LOAD AND TEMPERATURE DATA FOR VARIABLE STRESS AND TEMPERATUREE
PRINTVw=ececncccnns cemrrecsscrrm e a=- cecrverrrsvanccsncnesana --el
PRINT
PRINT
PRINT"TEST NUMBER...ooa,.oo.oooo.oocoo ":B%
PRINT"STARTING TEMPERATURE«cccecceceoeee™3T23"F"
PRINT *STRESS LEVELQ.....ooocooﬁooootoo"}L
PRINT"HALF LIFE..“...........0.....0."’“".HQURS.'
PRINT"STRESS FACTOReees0s0ec0cesccesnes®™3F3"PSI/C DEG."
PRIINT"WIDTH'..'..‘....‘......'........"’w,"INCHES"
PRINT"THICKNESSesoeessoocssooscoccenee™3TS3"INCHES"
PRINT“A’REAC.....‘."...‘...........'..Q.'}A;"SQ. IN."
PRINT"THERMECOUPLE CORRECTION FACTORe«"3V23"MILIVOLTS"
PRINT*DRIVE MOTOR SPEEDsscecsccescscee3R63"HOURS/REVOLUTION
PRINT.
PRINT
PRINT" TEMP DSIRED ACTUAL PTCH STRESS LOGAD DELTAS
PRINT"HOURS DEG. F MILVLT MILVLT HOLE PSI POUNDS LB. B8
PRINT"=s==== s===== SE=====  ,====s= z=== s===== =s===== s=z==c=H
PRINT
LET P9 =0
FOR T =S9TOH STEP D1
LET E = EXP(~-L1*T)
LET Tl = T9+(TO~=T9)*E
LET TS = (T1-273.16)%9/5 + 32
LET V5==1.7475441.128B11E=2%T5~3+424975SE~6%TSt2+4.37152E-9%T51t3
LET V5=V5-2.30307E~12%TS514+5.38581E-16%T515-4.79086E-20*T516
LET V5=V5«.56+V2

IF T<>S9 THEN 980
LET V1=V5
LET Vé6=V]=-V5
LET R5=50%V6*R6/D1

LET RC1)=INT(RS/2+.5)%2

F@R 1=1 TO SO

LET UCI)=R(I)*D1/R6/50

LET v(I)=vV1~U(C1)

LET ECI)=VS~V(])

IF ABSCEC1))<=.01 THEN 1180

IF I=1 THEN 1120

IF SGNCEC(CI))»=SGNCECI~-1)) THEN 1120

IF ABS(E(I))<=ABS(E(I-1)) THEN 1180

LET vi=Vi-U(I-1)

LET RS=RCI-1)
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1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

GO T
IF E
RCI+
Ge T
RCI+
NEXT
PRIN
LET
LET
LET
LET
LET
LET
LET
LET
LET !
LET
LET
LET
IF T
GO T
LET
LET
PRIN
PRIN
NEXT
PRIN
PRIN

"PRIN

PRIN
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
END

@ 1200
(1)>.01 THEN 1150
1)=R{I)+2
2 1160
1)=R(1)=2
I
T1
Vi=V1=UCI)
R5=R(1)
S = F*L*T1*(1-E)
P = S%A
D6 =P~P9
D7=D6#%453.6
P9 =P
TS=INTC10%TS5+.5)/10
VS=INTC(1000%V5+.5)/1000
V8=INTC1000%V]1++5)/1000
RS5=INTC100%R5+.53/100
D6=INTC100%D6+.5)7100
=S9 THEN 1320
8 1340
vé=0
R5=0
T T3TAB(6)3TS53TAB(14)3V53TAB(22)3VB83TAB(31)36G8S(R5)3TAB(37)3S53
T TABC(46)3P3TAB(S55)3D63TAB(62)3D7
T
T
T
T
T
«014,24
S~109
0,2
15
97584.97846,-81.77844242, .,02342763
2600,1,400
¢ 49943, .02986
E-TsE=63E~5,E~4,E~3,2-2,E~1,D-10,D~9,D-8,D=75D=65D~5,D~4
p-3,b-2,D~1,C~10,C~-9.C~8,C~-7,C~-6,C~5,A-1,C~4,C~-3,C~2,C~1
8-10,B-9,B-8,B~7,B-6,B-5,B-4,B-3,B-2,B~1,A~10,A-9,A~-8,A~7
A=6,A=S5,A=4,A~-3,A=2 '
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APPENDIX V

TYPICAL OUTPUT OF COMPUTER PROGRAM TO CALCULATE STRESS
AND TEMPERATURE SET-UP DATA FOR EXPONENTIALLY
VARYING STRESS AND TEMPERATURE TESTS
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LEAD AND TCMWPERATURE OATA FOR VARIABLE STRESS AND TEMPERATURL TEST

Gemcmmemccucnancnsaascsntttanaceanssnnsmacacencansvrrotsnsnsrnncne

TEST MUMBER $-109
STARTING 1L 2600 ¥
STRESS LEVEL. 1

MALF LIFEes.. 400 KOURS

STRESS FACTC@Roase
WIOTHewoooo
THICHNESS
ARCA.
THERWOCCUPLE CORIECT

18N FACTER

76,4269 PS1/C DEG.
0.49943 INCMES
0.027926 INCHES
0.01491 S9.
0.014 MILIVELTS

DRIVE MOTOR SPEED.cvecersssanaves 24 HOURS/REVRLUTIEON

TEmMP 0SIACO ACTUAL PICH STRESS LEAD DELTA OELTA
MOURS  DEG. F  MILVLT MILVLT NELE rsi PRBUNDS Le. GRANS
RESES  mESESS 228882 sEfees ee33  eeesss  sSsssss  amsms
0 2400 29.849 2%.849 o o o 0
2 2991.3 29.762 25.763 C-a 448.18 6.68389 4$.48 3031.72

4 2582.6 2%.674 2%.473 C-2 $92.2%% 13.3082 &.62 3003.%6
¢ 2373.9 25.587 6 (-a 1332.26 19.848 456 2974.42
2%.5 C-a 1768.22 26.3495 6.3 2%94%9.09
2%.412 C-a 2200.18 32.8112 é6.44a 2921.97
25324 Ces 2620.15 3%.1934 6.38 289%.0¢
2%.24 C-a ITST.AR 45517t 6.32  286M.36
2%.1%) C-a 3472.3 S$1.7823  8.27 284t.87
2%.067 C-a 3888.52 57.9895 (.21 2B1%.58
24.981 Al 4300.9 64,1392 6.1% 2789.3
24.895 C-a 470%.44 70.2218 6.09 2763.62
24,88 C-a S1t4.15 74.2679 4.04 2737.9%
24.728 A-¥ $S5t5.18 82,2477 3.98 2712447
24.62Y C-a 88.1719 5.92 2667.19
24,954 A-1 94.0407 5.87  2662.11
24.47 C-a 99.8%47 3.81 2637.23
24.38% A= 105.61a 3.76 2612.%4
2%.301 C-a 181.32 .1 2388.04
24.218 A-1 156.972  S.65 2%63.74
24,132 A=l 122,971 3.4 233%.62
24.048 A=} 128,117 5.99 2319.69
23.945 23.966 A-) 123.64 S.a9 2491.9%
23.881 23.8B) A-~) 139.0%2 R468.4
23.798  23.799 A-) 144,442 2445%.0)
A=l 10043.7 149.782 2421 .85
A=l 10398.0 19%.07 2398.84
A~ 10749.6 160,308 2376.02
A-) 11097.3 165,49 23%3.38
c-3 11442.1 170,635 2330.91
A~ V1783.3 179,728 2308.62
Aet 12121.4 180.766 2286 .31
CeY 12454.1 185,798 2264.%7
A=l 12787.7 1%0.702 2242.8
C-5 13114 195.599 2221.21
C-3 134412 200.449 2199.78
A=y 13763.3 20%5.2%2 2178.52
c-3 14082.2 210.008 21%7.44
C-3 14398.% 214.718 2134.92
C=> 14710.8 219.382 2115.7¢
c-5 15020.4 224.001 2095.17
C-3% $15327.3 228.%7% 2074.74
C-S 15634 233.100 20%54.47
c=5% 15931.7 231.58% 20J4.34
c-3 184229.5  242.0) 2014.42
C-9% 16524.4 244,428 3
C-5 16816.3 2%0.782
C-4 1710%.4 2%%.09) 1958.%2
C-$ 17391.7 295,381 1936.2
C-¢ 17478 243,588 $1917.03
c-3 179%3.4 267.772 1894.0t
C-4 18233.4 271.9:i% 187913
c-3 183%08.3 2746.016 1860, 43
C-¢ 18780.7 280.977 1841.R7
C=¢ 19050.3 284.097 1823.49
Cc-3 19317.2 288.07¢ 1805.10
C-e 1958 <) 292.016 1187.04
C-6 19842.9 295.916 1769.08
C-4 20101.7 229,717 173124
C-6 303,599 J.82 1733.8%
C-s 307.382 3.78 1716
C-¢ J1.12¢ .78
c-6 314.233 I.M
C-7 Jis.802
C-6 322.132
C-é J25.727
Cc-7 329.28%
C-¢ 29316.% 0
c-7 223%0.1 334.29
c-6 22781.4  339.738
C-7 23010.2 342,158
C-¢ J44.929
C7 34 111
C7 3%3.178 1500.24
C-7 23902.1  )56.4%) 1484.57
C-7 24119.2 359,49 1449.02
C? 24334.1 )62.8%4 3.2 14%93.99
C-7 24348.7  364.065 317 1438.3
c-1 247%T41  J69.822 Jd.%e 142312
(23] 24965.) 372,307 3.1 1408.07
€7 25171.2 J37%.378 3.07 139314
c-7 23218 378.417 3.04 1378.3)
Ce8 235% .6 DJ01.42) 1363.464
C-? £37% 84,097 1349.07
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