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ABSTRACT OF THE DISSERTATION

Electromagnetic Plasma Wave Propagation

Along a Magnetic Field

by

Craig Lee Olson

Doctor of Philosophy in Physics

University of California, Los Angeles, 1970

Professor Burton D. Fried, Chairman

Part I: Steady-state excitation of transverse plasma waves along a

magnetic field.

The linearized response of a Vlasov plasma to the steady-state

excitation of transverse plasma waves along an external magnetic field

is examined. Previous research is reviewed. Assuming a delta-function

excitation mechanism, and performing a detailed Vlasov-Maxwell equation

analysis using Fourier-Laplace transforms, the plasma response is found

to consist of three terms: a branch-cut term, a free-streaming term,

and a dielectric-pole term(s). These terms are examined analytically,

and numerically evaluated for a case in which the driving frequency

(W1) is slightly below the electron cyclotron frequency (wce). In addi-

tion to the least-damped pole term, it is shown that the free-streaming

term is always significant and the branch-cut term is significant when

1 " Wce' The infinite sequence of pole terms (that result from the

infinite number of roots of the appropriate transverse dispersion rela-

tion) is shown to be negligible except at positions very close to the

place of excitation. Effects of Krook model collisions are investigated,

xiii



as well as effects of a finite-width excitation mechanism.

Part II: Steady-state transverse plasma wave echoes.

The phenomenon of plasma wave echoes, introduced by Gould, Malm-

berg, O'Neil, and Wharton for the case of longitudinal electrostatic

waves, is extended to the case of transverse plasma waves that propagate

along an external magnetic field. It is shown that a transverse echo

results in lowest order only when one excitation is transverse and the

other is longitudinal. For this case, the second-order (nonlinear)

plasma echo response is computed from the Vlasov-Maxwell equations up

to an integral over the velocity variable v
z
. Transverse echo charac-

teristics are discussed and several experiments are suggested. The

integral over vz is evaluated by the method of steepest descent; the

results are explained physically and also evaluated numerically for some

specific cases. Several extensions are considered: (1) effects of

Fokker-Planck collisions and finite-width excitation mechanisms,

(2) effects of temperature anisotropy (TL 0 Tz), and (3) effects of

propagation just off-axis (kl # 0). Lastly, transverse echoes for the

case of no external magnetic field are examined.

In addition, several appendices concerning Part I and Part II are

presented, the most important of these being (1) a thorough investiga-

tion of the roots of the transverse dispersion relation (k |I Bo) for

real w and complex k, and (2) the method of steepest descent as used

in evaluating the branch-cut and phase-mixing integrals that occur in

Part I and Part II.

xiv



I. STEADY-STATE EXCITATION OF TRANSVERSE PLASMA WAVES

ALONG AN EXTERNAL MAGNETIC FIELD

1. Introduction

A sizable portion of the plasma physics research done to date

involves the theory of waves in plasmas. Of fundamental interest are

calculations or experiments concerning the damping (or growth) of the

basic types of wave motion a plasma can support. Two types of problems

are readily discernible: (1) the initial-value problem in which a wave

is imposed on the plasma at some specific time, and it is desired to

know how the plasma response decays (or grows) in time; and (2) the

steady-state problem in which a wave is continuously excited at some

point in a plasma, and it is desired to know how the plasma response

decays (or grows) in distance. We will be concerned with the steady-

state problem since it should be more readily realizable experimentally.

Purely longitudinal waves which experience spatial Landau damping

have been examined in theory extensively (since Landau's original

paper(1 )) by Gould(2 ) and by Johnston,(3 ) et al. (45) and in experiment

by Wong, D'Angelo, and Motley, et al. (6) However, the corresponding

work for purely transverse waves that propagate along an external mag-

netic field (and therefore experience cyclotron damping when the driving

frequency is near the cyclotron frequency) has received relatively little

attention to date.

Thus the problem to which we address ourselves is that of determin-

ing the response of a Vlasov plasma (a hot correlationless plasma) to a

localized steady-state excitation of transverse electromagnetic waves
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that propagate along an external magnetic field. We are specifically

interested in obtaining the form of the response when the excitation

frequency is just below the electron cyclotron frequency, i.e., when

electron cyclotron damping is significant. One primary objective of

this theoretical calculation is to obtain the cyclotron-damped response

and see if it is adequately represented by consideration of just the

"least-damped root" of an appropriate transverse dispersion relation.

We will find in general that it is not.

Another motivation for this work is that the response of a single

transverse excitation should be well understood before embarking on

studies of the nonlinear response of two spatially separated excita-

tions, such as occur in Part II of this dissertation where we shall

investigate transverse plasma wave echoes. The production of an echo

(as will be explained in Part II) depends on the free-streaming term of

the first-order distribution function produced by the first of the two

excitations. Thus in computing the response of a single transverse

excitation now, we will pay particular attention to the transverse

free-streaming waves that are produced.

We present a brief summary of previous research. First we review

work on the related problem of the steady-state excitation of longitu-

dinal plasma waves. Experimental verification of spatial Landau damping

was reported by Wong, D'Angelo, and Motley(6) who compared their exper-

imental results with a simple theory that involved just the least-damped

root of the appropriate longitudinal dispersion relation. Use of just

the least-damped root in this case was questioned by Gould(2 ) who rigor-

ously investigated the first-order (linear) response for the problem
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assuming an idealized dipole-grid excitation mechanism. Gould's results

showed that the true response was indeed more complicated than that

obtained from considering just the least-damped root and that the

response was approximately exponentially damped only over a restricted

region in space. Further theoretical work including the effects of

finite spacing of the pair of excitation grids and also a calculation

of the second-order (nonlinear) response was performed by Johnston.(3)

The longitudinal dispersion relation mentioned above has an infinite

number of roots. Fried and Gould ( 7 ) have examined in detail the loci of

the roots of this dispersion relation for real k and complex w .

Their results are pertinent to initial value problems in which a fixed

real k is imposed at a specific time and then the initial perturbation

decays (or grows) in time. Similarly, Kuehl, Stewart, and Yeh (8 ) and

Derfler and Simonen(9 ) have examined the roots of the longitudinal dis-

persion relation for real w and complex k . Their results are perti-

nent to steady-state problems (as discussed above) in which a fixed real

w is continuously excited and the resultant spatial perturbations decay

(or grow) in distance. We shall comment more on their results in

Appendix D.

We now consider the transverse excitation problem which we find

has only been partially investigated in the past. The principal paper

is that of Shafranov(
10 ) who considered a related problem, the half-space

problem. (The full-space problem that we shall consider is different

than the half-space problem in that, in addition to other effects, free-

streaming waves are produced by those particles that pass through the

excitation region. In the half-space problem particles never pass

3



through the excitation region but are reflected at the half-space

boundary where the excitation is applied.) Shafranov obtained a branch-

cut term and a pole term for the response (as we shall find also).

However, we note the following errors and inadequacies in his work:

(i) The saddle-point contours for the k (actually kc/w ) inver-

sion integral are drawn to the wrong asymptotes. Also the primitive

contour was closed in some unexplained manner whereas it should really

be deformed away from its initial position. In addition the resultant

saddle point contributions contain phase factors that do not occur in

usual saddle point theory.

(ii) Only one root of the appropriate transverse dispersion rela-

tion is considered whereas in fact there are an infinite number of them.

(iii) Useful values of the cyclotron damped root are not given. A

cubic equation is given, which if solved, gives the value of the cyclo-

tron-damped root at w = Wce (Wce is the electron cyclotron frequency).

The only other expression given for the value of the cyclotron-damped

root is an asymptotic result which cannot be derived rigorously as we

shall show in Appendix C.

(iv) No estimates are given for the range of validity of the branch-

cut term. In addition it is stated that the branch-cut term is the most

important term at large distances from the place of excitation for

Wce < X < WR (WR is the right-hand cutoff frequency); we shall find

that the branch-cut term is significant only very close to the place of

excitation.

Thus Shafranov's work represents only a first attempt at solving

the problem.
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Other research on the half-space problem includes Sach's( 1 1 ) work

on the effects of collisions on ion cyclotron waves. In this work two

least-damped roots were obtained by keeping two terms in the asymptotic

expansion (of the plasma dispersion function that occurs in the disper-

sion relation) with the result that the roots are not valid unless the

collision frequency is appropriately high. Another related work is that

of Platzman and Buchsbaum( 1 2 ) on the reflection and transmission of

transverse waves into a semi-infinite plasma. In this work a Lorentzian

zero-order distribution function was used (to simplify numerical calcula-

tions) and attention was focused on determining the effects of collisions

on the reflection and transmission coefficients. Lastly we note that in

an experiment directly related to our problem, Crawford et al. (13) have

attempted to measure spatial electron cyclotron damping but were unsuc-

cessful because of high collision rates. The results they did obtain

were compared with a simple, least-damped root theory. Clearly a thor-

ough rigorous theoretical investigation of the steady-state transverse

excitation problem is still needed, and that is what we shall present

shortly.

The transverse dispersion relation mentioned above has previously

been only partially examined. (We state explicitly that, as used hence-

forth, the transverse dispersion relation refers to wave propagation

exactly along the external magnetic field.) Many authors(
1
4 1 9 ) have

derived the transverse dispersion relation but all of them considered

real k and complex cu and then, at most, obtained an asymptotic

expression for the value of the least-damped root. Recently Kamimura

and Hasegawa (2 0 ) have presented numerical results concerning the value
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of the least-damped root (for real k and complex w ) for several

choices of the pertinent parameters. At present, however, there exists

no work that classifies and examines the infinite number of roots of

the transverse dispersion relation for real k and complex w .

Previous work on the roots of the transverse dispersion relation

for real w and complex k is even scarcer. Only isolated instances

may be found such as in Stix ( 1 7
) and in Shafranov(

1 0
) (as mentioned

above); in both of these the value of the cyclotron-damped root is given

exactly at w = wce ' Also, in Shafranov an asymptotic result is given

for w far from wce , a result which, as we shall show in Appendix C,

cannot be derived rigorously and is therefore incorrect. Crawford et

al. (13) have presented some numerical results for the cyclotron-damped

2 2
root (for wpe/ = 40 where w is the electron plasma frequency)pe ce pe

but no detailed study of the behavior of this root was made. Thus a

classification and thorough investigation of the infinite number of roots

of the transverse dispersion relation for real w and complex k is

still needed and that is what we will present in Appendix C.

We have performed a detailed theoretical investigation of the

steady-state transverse excitation problem assuming an external excita-

tion of the form

-ext~ (3,t) E ()[e x cos (c,t) + e sA ] (1.1)

5~Em (Z·~) (1.2)

Before commencing with our presentation we summarize the most important
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results that will be obtained:

(1) From a rigorous derivation starting with the Vlasov-Maxwell

equations we find that the first-order (linear) current response consists

of three terms as given in Eq. (2.85); a branch-cut term, a free-stream-

ing term, and a dielectric-pole term.

(2) Numerical evaluation of these terms for a specific case in

which w 1 is slightly below wce (with wpe/ ce = 0.4, c/a = 1120 ;

these being typical values for the UCLA Q machine) shows that, in addi-

tion to the pole term, the branch-cut and free-streaming terms have sig-

nificant amplitudes and penetration distances (see Figs. 7a-f). Thus

the plasma response is not correctly given by consideration of just a

"least-damped root."

(3) An analytical investigation of the three terms shows that the

penetration lengths of both the branch-cut and free-streaming terms

would approach infinity as w1 approached wce were it not for the

fact that certain dielectric functions are present (in these terms)

which effectively shield these terms and actually cause their penetra-

tion lengths to go to zero as 1 approaches Wce ' provided

(W /W )(c/a) >> 1 If (w 2w )(c/a) << 1 then no such shieldingpe ce pe ce

effect occurs. In addition we show that the infinite number of residue

terms (that occur because the transverse dispersion relation has an

infinite number of roots) is negligible except at distances extremely

close to z = 0.

(4) The physical nature of transverse free-streaming waves and of

the free-streaming term in (2.85) is discussed. Explanations are given

for (i) why transverse free-streaming waves have negative phase

7



velocities, (ii) why transverse free-streaming waves experience no cyclo-

tron damping, (iii) why the free-streaming term in (2.85) has an

accompanying pole contribution for 1 < 0 or w > Wce but not for

0 < 1 < ,ce ' and (iv) why the free-streaming term in (2.85) always

diverges at z = 0 and how this divergence can be removed.

(5) Effects of collisions on the three terms in (2.85) are examined

using the Krook model. It is shown that previous work by Crawford et

al. (13) (concerning the locus of points where cyclotron damping equals

collisional damping on a Te vs. Wl/Wce plot) is in error (see Fig.

10). The correct loci are then computed (see Fig. 11). From the results

it is shown that cyclotron damping measurements (with negligible colli-

sion interference) are just barely feasible on the UCLA Q machine (for

ne = 10 cm-3). In general, cyclotron-damping measurements would bee

more feasible at higher energies (T
e

> 0.2 eV) and lower densities

(n < 1010 cm-3 ).

(6) Effects of a finite-width excitation mechanism on the three

terms in (2.85) are examined. In place of (1.2), we consider two choices

of E1 (z) [square-shaped in (7.3) and Gaussian-shaped in (7.11)]. Both

choices yield qualitatively the same results which are: (i) the diver-

gence of the free-streaming term at z - 0 is removed, and (ii) that when

the width of the excitation region is greater than the characteristic

length of a specific term in (2.85), then that term is reduced in ampli-

tude. Thus, under certain conditions it is possible to diminish the

size of the branch-cut and free-streaming terms while leaving the

dielectric-pole term essentially unchanged.

In the course of obtaining the above results we shall refer to

8



Appendices A, B, C, E. Appendix A contains the solution of the linear-

ized Vlasov equation and Appendix B examines symmetry properties of the

transverse dispersion relation. A thorough investigation of the roots

of the transverse dispersion relation for real w and complex k is

given in Appendix C, as mentioned earlier. Lastly, Appendix E contains

an explanation of the method of steepest descent and a detailed account

of the paths of steepest descent used in evaluating branch-cut and

phase-mixing integrals. Material relegated to the appendices is

actually text material in the usual sense and it contains many results,

both analytical and numerical, that should be of general interest. This

material was placed in the appendices because it must be referred to

both now in Part I (the single transverse excitation problem) and later

in Part II (the transverse echo problem).

We proceed to give the results of our investigation of the single

transverse excitation problem.
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2. Derivation of the Linear Response from the Vlasov-Maxwell Equations

2.1 Formulation of the problem and method of solution using

Fourier-Laplace transforms.

We wish to compute the response of a hot correlationless plasma in

an external magnetic field to the spatial excitation of transverse elec-

tromagnetic waves that propagate along the direction of the external

magnetic field. The plasma is described by Maxwell's equations, and

the Vlasov equation which for a plasma in external magnetic and electric

fields is

f V + + .v= 0 (2.1)
;vr ) -M r, r7 ta>

where f = f(x,v,t) is the distribution function (normalized to unity)

of the species whose particles have charge q and mass m , c is the

speed of light, and the subscripts on E and B are used to emphasize

that these are the total fields (plasma fields plus external fields).

Taking the zero-order external magnetic field to be B = B e and

using cylindrical coordinates for the velocity v (as shown in Fig. 1)

we find

I V )x -i + 4E +S - = O (2.2)

where a = qBo/mc (a signed quantity) is the cyclotron frequency, and

the subscripts (p) and (ext) refer to (plasma) and (external),

respectively.

10
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We assume a perturbation expansion of f , E , and B with

(-xk, = ) + j (r ,V,t) + / (XŽ ,t) + -

(x ") A d ('x r) + E t) + (2.3)

BE, (x,) - = B (X, t-) + _ (,) - --

where 0, 1, 2, refer to terms of zero, first, second order. We take

Ext and B to be first order. Then in zeroth order, (2.3) is

-n .4 -o (2.4)

which means the zero-order velocity distribution is

i7•(Y) = /v( ,vy) (2.5)

In first order (2.3) is

-' V- + -E , -B T -o (2.6)t - M -, n C - , -x

To obtain the first-order (linear) response we must solve (2.6) together

with the appropriate Maxwell equations,

V x(a 4E¢x~) = C c t - (2.7a)

'V 7 (-a + -eey
c

+ +c t
sts ex -e + J > + f -x t .) fe~t) (2.7b)

where

_cgo = , Al (2.8)
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and n is the density of the species under consideration. To handle

all means of excitation we have kept Et B x J (all first--ext -ext -ext

order terms) in (2.7) but will later consider their effects individually.

We shall use Fourier-Laplace transforms to solve (2.6) - (2.8).

For an arbitrary function F(z) the Fourier transform and its inversion

are defined by

+oo

/=(k) - a F() e
-00

+oo

F() _ +7() (2.9)

-0o

Similarly for an arbitrary function F(t) , the Laplace transform and

its inversion are defined by

o00

Fro.,) -- rt F(r) e e > 

-00 + i 

where in the former we have assumed Im X > 0 initially to insure

+iwt
causality (then e -+ 0 for t + - ) and in the latter we require

6 to be such that the X contour is above all singularities of F(w)

The combined Fourier-Laplace transform pair and its inversion may be

written

13



0=) + cc, -i( k z -ccr)

,'(A-, u) =/ ,fe F z- s e,) e-
o -Q

= ) +i tk F -c&' 

- 0+z, -co

L aC'/> O

Using (2.11) we shall transform Eqs. (2.6), (2.7) to k, w space,

solve these equations in k, w space (a relatively easy task), and then

use (2.12) to transform back to z, t space (a relatively difficult

task).

2.2 Solution in transform space (k,w)

Taking Fourier-Laplace transforms of (2.7a,b) gives

2 [x (, E = B( extr) C (/ exr)

-k X (.8 + exr = c ( + J- ) + - (-,+ex )

(2.13a)

(2.13b)

where we have assumed Im w > 0 and

E( t=- o)) = oexrr

(2.14)8 (r=o) = Bex(t -o) =o

In (2.13a,b) B, E, and J are all now functions of k, w . Combining

(2.13a,b) we obtain

14
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(E+ Eexr) (C - )-Ck [ k ( +
(2.15)

Since we are dealing with transverse sources, k·J = k-E = 0
-- -ext - -ext

which implies k-E = k*J = 0 . Thus (2.15) is

(. t Eex)(j c2w/,) )7 = (2.16)

Equations (2.13a) and (2.16) summarize Maxwell's equations for our

problem.

We now solve (2.5) for fl which will be used later in computing

J1 ' Taking Fourier-Laplace transforms of (2.6) gives

(i-- ) V --n it : - wrf ) (2.17)

where we have used (2.13a) to eliminate B1 + Be . Expanding the

triple vector product in (2.18) we obtain

kVZ ()- C)(v , A x r) dL+ k -\/-(Y+Ee, '7 (2.19)

where we have explicitly used

= k eA (2.20)__k= ' 

15



In Appendix A it is shown that (2.17) has the solution [taking into

account the necessary periodicity in ~ , f1(0+2n) = fl($) , and the

fact that kl = 0 ]

/ 22

Z ai= (2.21)

-/ 0

where

' -Z~n (2.22)

To perform the integral in (2.21) we need expressions for E-v and

E av [which occur in (2.19)] in terms of t . To this end it is

useful to change to rotating coordinates.

In terms of the unit vectors

- (e - e) (2.23)

the velocity vector v is

v = e (2.24)

where

V (VX V,)

-/ (V cos 0 Vi 5sX) (2.25)

/ +i

Also

16



+ e- av2i! dVz~

where

+)

57v :i v e (2.27)
0 (2.27)

- / to=Y27C. ,

Now writing E - e_ E with summation over a=± 1 implied, and

noting that

e+- e+ 0o

A e
e_+.- e; = /

we obtain

E.v = o.v' e-

E' / -io' 

Thus g(*) in (2.19) becomes

7() = f (e,, + Eextr) e&do'

There is no 3af /a term because of (2.4). Performing the

gration in (2.21) we find

() =( ( ,o- ex-'o-) e- ' [(_
I f c j (Cu- va-CrA)

17

(2.28)

(2.30)

kv
Cu

(2.31)

,' inte-

/C V L
C4L 1ZC7, -~ J (2.32)

J = e+V ay e+ -5V+ + e_ V (2.26)

-
\ j,) 

kV )
2Ua

,k /o

l C/Ut- )D 



We may now compute J1 as given by (2.8),

J'= m/ dVt (2.8)

Noting that

3 ++ [
¢

' e] Vd 0 VL (2.33)

we see that since f l (S) u eia the only term of v e C d3v that

survives the * integration in (2.8) equals e_ (vl /1) 2r . There-

fore writing J1 = e aJ-a we obtain

~=ei ~ ,( ,7 t E5xrr) f litz l ldv [( cu );a + (J-¥vo . |____/, Ill~- )x•U1s ~ I (2.34)

where we have explicitly indicated a sum over species (e = electron,

i = ion). We assume the zero-order distribution function is an

anisotropic Maxwellian

-~V~t =/

iI$~ (Z v~ = ) =(2.35)

(a = [v211/ 2 [2KTz/m] 1/2 b = [v 2]1/2 = [2KT /m] 1/2, K

Boltzmann's constant). Then (2.34) reduces to

s eex i (- E )} (2.36)
/o- e, e } a-) W + a~n)

18



Returning to Maxwell's equations and writing Jext = 6-a Jext a

we find (2.16) is

( E/- +- Ee ') ( c - ) = 4w + (,T xr) (2.37)

We must now decide whether to consider (1) an external field source or

(2) an external current source:

(1) External field source (Ex 0, J = 0)

Using Maxwell's equations for just the plasma fields, (2.37) is

E ( -) i C Jr (2.38)

and since Etotal a = E1 0 + Eext a we find using (2.36) that

E (k,cO)E(k, c) exrZ - (2.39)
ToT' 0"

Er ( k,a, o-)

where cT(k,w,a) , the transverse dielectric function, is

__ _ / [ oVL - TL [
e,. (kc-~)_ J (kv~ -~ + a)

(w2 4wnq2 /m is the plasm frequency).

(2) External current source (J e 0, E = 0)-ext -ext

Using Maxwell's equations for the total fields, (2.37) is

E (cC2= i Cu (2.6 + ,e Z-a)

and using (2.36) we find

(2.40)

(2.41)

19



FVri ccj

E (kilt = E(,(kAc) =_
rorRwsC7 ("~" c,co) (2.42)

where eT(k,w,a) is still given by (2.40). Had we considered

Jtota 
=
J l + Jext c we would have found

JTr (k,a ) = (2.43)
To7RqL 0 7(o*v cv, a)

where again eT(k,w,a) is given by (2.40).

Noting the similarity of the results for an external field source

or an external current source, we arbitrarily choose to consider the

former and will therefore continue with (2.39) and (2.40). Then

specializing to the case of isotropic temperature (T. = Tz ) and per-

forming the integral over v
z

in (2.40), we obtain

E7 (k,%cr) V±\) kA
_+ 60 ( c ) Lz)-A[keQ O*C t + o )t tA (2.44)

where wpe' Wce = IBo/mci , a all refer to the electrons; wpi' ci =

IQBo/McI , A all refer to the ions; and Z is the plasma dispersion

function(21) defined by

f / ) , (2.45)

for Im and its analytic continuation for Im 0 . The sifrIm <>0 and its analytic continuation for Im [0 . The - signs

20



refer to different branches of the Z function; the choice of which

branch to use will be discussed shortly.

To complete the solution of our problem in k, w space we

explicitly specify the external field source to be

SexyE (fit) = 7(z)[ cos (/,t) + e, se N(WI A)] (2.46)

so 1 > 0 corresponds to a right-hand excitation while w1 < 0 corre-

sponds to a left-hand excitation. Writing E e a E we find

F (z, t) = °, r (2.47)
exr a-

Taking Fourier-Laplace transforms of (2.47) gives

(kc) (k)
exr + C/) (2.48)

We have now solved our problem in k, w space since we now have

expressions for fl(k,w) , ET+(k,,),a) , and Eext a (k,w) . Equations

(2.32), (2.39), and (2.48) combine to give

/L,_, kV -= ,a ) .(.ok, G) (2.49)

We proceed to perform the inverse Fourier-Laplace transform to obtain

fl(z,v,t) to be used in calculating Jl(z,t) , the final (current)

response.
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2.3 Inversion of solution to position space (z,t)

The inverse transform of (2.49) is

+-+i-4i +00 j k! - cuZ

=k E, (k) .

Zi+; -'00 -y r AT-+ -00 j)E ksi

,,-. T 1 (2.50)

where 6 > 0 is chosen so the primitive w contour, as shown in Fig.

2a, is above all singularities of the integrand of (2.50). The primi-

tive k contour lies along the real k axis, as shown in Fig. 3a.

The proper manipulation of these contours will show us whether to use

ET (k,w,a) or ST (k,w,a) in (2.50).
+

Branch-cut considerations

We reconsider the Z function of (2.45). As defined, the real

axis of the C plane is a branch cut of Z(C) . If initially Im C > 0

then Z+(M) should be used and its analytic continuation for Im C < 0.

If instead Im C < 0 initially, then Z (C) should be used and its

analytic continuation for Im C > 0 . Regions where Z_+() are

originally defined are shown in Fig. 4a. Note that Z+(C) must be

analytically continued across the branch cut (the real C axis) into

the region where Z_(C) is originally defined. [A convenient represen-
+

tation of Z+(C) that illustrates these points is
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w plane

WI

-- b

WI

W
t Ill 

I * 

FIGURE 2. CONTOUR IN 'ILE w PLANE.

(a) Primitive contour (Im w =
(b) Contour lowered (6-0) and

at w=wl (only the pole at

6>0).
deformed around pole
w=1l is shown).

(c) Contour lowered below the real axis (so on
horizontal part exp(-iwt)% exp(-[Im wit) - 0
as t - A)*
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(a)

(b)

(c)
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k plane

FIGURE 3. CONTOUR IN TilE K PLANE.

(a) Primitive contour.
(b) Primitive contour with ¢T+ specified. Also shown, for

Re w > wce' are the branch cuts, the pole at ko=(w-wce)/

v
z

(for vz>0), and the least-damped roots of cT+(kl,w)=O.

(c) Contour pulled above for z>O. The path of steepest
descent has been chosen for the branch-cut integral.

(d) Net result: branch-cut integral plus two residue terms.

24

(a)

i T+

T+ k
L0' 

(C)

(d)



p lPane/
//;F/,

Z_)e 

k plane ko

z_ Z(,,/

/

z_(C)

//////
// / /

1k plane
//Z+ 

(a)

(b)

(c)

k
use Z_ ()

plane
use Z+(t)

, fA (d)
FIGURE 4. BRANCH CUTS IN THE ; AND K PLANES.

(a) Branch cut in the 4 plane.
(b) Mapping of the branch cut in the ;e plane to the k

plane, k=(w-w ce)/ea , for Re w > "ce . Also shown

is the pole at ko=(- ce)/vz for vz>0.

(c) Branch cut in the k plane for Re w ' ce .
(d) Resultant choice of Z+(;) along the primitive contour

in the k plane.
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- o- 2

r-f

where a+(M) =

and P stands

We set a

that occur in

+ I C-_ (2) e
2

(2.51)

O and a (5) = -2 for Im C > 0

1 -1 = 0

2 0 < 

for principal part.]

= -1 for now. Then the arguments of the Z functions

CT (k,w,a) in (2.44) are
+

a.- ace
e ka_

A + ac£

kA (2.52)

where e, i, refer to electron, ion. Consider (e

the [e plane (the real Ce axis) maps onto the k

The branch cut in

plane according to

Oy (- cek = 'j 6're
(2.53)

Recalling that initially Im w = 6 > 0 and considering a single point

on the primitive w contour (i.e., an w of the form Re w + id ) we

find the branch cut in the k plane for Re w > Wce to be as shown in

Fig. 4b. Note that the points Ce = ±
+

when mapped onto the k plane

pinch the origin. If instead we have Re w < Wce then the branch cut

in the k plane would be as shown in Fig. 4c. The variable Ci gives

similar branch cuts (i.e., like Fig. 4b for Re w > -Wci and like Fig.

4c for Re w < - ci). In any case note that along the primitive
c1

26



contour in the k plane (the real k axis in Fig. 3a) we now know

that for both Be and .i we should use Z+ (and therefore ET )

for k > 0 and Z (and therefore cT ) for k < 0 . This result is

shown both in Figs. 4c and 3b where for clarity we have drawn a dashed

line for that part of the contour where c
T

is to be used and left a

solid line for that part of the contour where sT is to be used.
+

We may now calculate the integrals over k and X that occur in

(2.50). We shall perform the k integration and then the w integra-

tion since we have found this ordering to present fewer complications

than the reverse ordering.

The k integration

In Fig. 3b we show the primitive k contour with the choice of

c
T

or eT specified according to the above discussion. For a

typical point on the w contour (we have chosen Re w > Wce and

Im X = 6 << Re w for this figure) the branch cut is shown as well as

the pole at

- - /ce

(2.54)

for vz > 0 and also the poles at kl, where

E-; (kj ,) = O (2.55)

Only the least-damped roots of (2.55) in the Ce plane are considered

now. [The roots of ET (k,w) = 0 are discussed in Appendix C.]

In Fig. 3c we have pulled the contour above for Z > 0 being

careful to deform the eT side of the contour around the poles at ko
carfulto efom te c+ O
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and kl . Only the CT side of the contour "sees" the poles where

CT (kl,,A) = 0 . Note that if Re < ce then the cT side of the

contour would deform around the pole at ko for vz > 0 . (If vZ < 0,

the pole at ko lies in the lower-half plane and is missed altogether.)

We have chosen to deform the cT and eT paths to meet along a

curved path that will presently be shown to be the path of steepest

descent (P.S.D.) for this portion of the integral. This integral will

be called the branch-cut integral but note it is not evaluated along

the branch cut. As we move the outer part of the contour (the semi-

circle in Fig. 3c) out to infinity, the contribution to the integral

from this section of the contour becomes negligibly small (since the

integrand goes as eikZ/k ).

Thus we are left with the three contributions shown in Fig. 3d; the

branch-cut integral and the residues from the poles at ko and kl

We assume the latter to be a simple first-order pole, i.e., we assume

aE (k, 0-|) (2.56)

Explicitly the results of the k integration are then

A,(k) L
A77 C__ _ _

-a r ____

28



% E ,E(k) ekz
'I

0 (k[ ve 
? 5. D.

/

E (k, c<2) 7 (k,o ' }

~~~~~~~C-4-Li(. ~ -F... h@- f
J q ,--,

I /-/ NZ) i J) e

7-C (oPZ )v

(2.57)i,(k) e

(k,- - C<., - qa) 'C

k=k,

for z > 0 , and where H(v z) is the Heaviside function

H//( ) = / for

O for

and

0 _ SGV ( R. co -o--Co)

B $-- 5GW (( tl)

Equation (2.57) is valid for a = + 1 (not just a = -1 as used in

the preceding discussion).

The branch-cut integral in (2.57) may be evaluated as follows.

From (2.44) and (2.51) we find

29
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00oo

s. [ _
cz-r G-i z e-4 4U Ar A 

. E:,(A) e -L). t + e

°(* [ ])ET(ka a- ,CV) - (2.58)

(e = 2 = ma2, kT= MA ). We evaluate this integral by the method

of steepest descent discussed in Appendix E. For z > 0 the electron

term of the integrand (i.e., the first term within { } ) has a saddle

point at

(C(V ) c)2 I 3 iz( e 3 )

(2.59)
O =- SG~, ( i C< + o-.e)

and the ion term has a saddle point at

_z-- KY) 1 a
Asi, ~ 1Az

~ -- 6Sc ('aa,, O"act) (2.60)

The correct choice of the P.S.D. and graphs of it are given in Appendix

E. Computing the first term of the asymptotic expansion about the

saddle point we obtain
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0

o

(2.61)

± Z i,(ks Je k be) [ i1) [ 2

which is a good approximation for

cc i ¢ / (2.62)

(as discussed in Appendix E). In using the method of steepest descent

we have implicitly assumed that the integrand of (2.58) had no poles

near the P.S.D. For W near wl the poles at k
°

and k
1

lie near

the real axis. Thus, ignoring possible interference of poles at kl1 s

caused by roots of ET (kl,w,c) = 0 other than the least-damped ones,
±

we conclude that use of the method of steepest descent is justified.

The w integration

We now perform the w integration in (2.50), which from (2.57)

and (2.61) is
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_ dfoai e Result of branch-cut

f(i,9Je v t) 
=

(C+ V ' ) integral, i,e, (2.61)

A1 (W V r2\

+

ik, f

In Fig. 2a the primitive w contour lies above all singularities of the

integrand of (2.63). We let 6 -) 0 deforming the contour around any

poles. In Fig. 2b we have lowered the contour until 6 = 0 and

deformed it around the pole at w = -awl (this is the only pole shown

in the figure). In Fig. 2c we have lowered the contour into the lower-

half plane. Since for t > 0 the contribution from the horizontal part

of the contour vanishes (e -it e-Jim tt 0 as IIm wl or t -, ),

we are left with just a residue term at w =-awl . Before writing down

this term we consider contributions from poles other than the one at

= -aw .

The remaining poles of the integrand of (2.63) occur in the w

plane where

(i) (2.61) has poles

32



(iii) k = Ae +o- _

(iv) s ( k ,u,,) -0

In general none of these poles will occur at w = -ow1 so none of them

will interfere with the response at frequency wl . HIowever, we shall

investigate all four of the above cases to determine if there is any

response at frequencies other than w 1

CASE (i): Consider just the first (electron) term of (2.51) which

has poles where any of the following are satisfied:

¢ o 0

.- C-e V~ + o _Q = 0 (2.64)

E7S(kZC.W~a) O

[Note from (2.59) that ke (w+Q)
2

/
3 so none of (2.64) would pro-se

duce simple poles.] By the following argument we show that roots of

(2.64) in the w plane cannot produce any legitimate pole terms.

First note that the position of the P.S.D. for the branch-cut integral

in the k plane depended on the value of w [see (2.59)]. Now any

w that solves (2.64) represents a pole in the k plane exactly on the

P.S.D. that corresponds to that w . Recall that in obtaining (2.61)

we assumed the integrand of (2.58) contained no poles on or near the

P.S.D. Thus if we could find an w that solved (2.64) we would have

to evaluate the branch-cut integral (2.58) by a different method (only
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for that w ) say by integrating along the real axis in the k plane.

But then the factors in (2.64) would never even occur in the calculation

and thus no pole term would result from the w that solved (2.64). We

conclude that any roots of (2.64) in the w plane can be ignored and

that (2.61) is a valid representation of the branch-cut integral only

for w evaluated at = -aow1

CASES (ii) AND (iii): For definiteness we set a = -1 and

consider electron waves so Q = -w . Then the residue term that

results from case (ii) is

/ (ct y '-e-
(2.65)

C = Cu

where

e (CdwceA>O cx= C'-';- e) (2.66)

and the residue term that results from case (iii) is

( .i Z - i~ -(k i + e,+w e) t

( vi +ei a-, ) ea) (kkVJ+"ce) | (2.67)

where because of (2.55) we must require
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(2.68)

By making a change of variable in (2.65) from w^ to kvz + Wce i.e.,

kA = v t -- ce

(2.69)

J = 

we see that the two residue terms, (2.65) and (2.67), cancel identically

with the following considerations.

For reference, the roots of sT [(W-Wce/Vz),w] = 0 in the complex

w plane are shown for a typical case in Fig. C-17b in Appendix C. Note

there are branches which have Im w > 0 (corresponding to growing

waves) which would be included in the w integration. The correspond-

ing roots of ET (k,kvz+wce) = 0 in the complex k plane are shown

in Fig. C-17a. Note there are branches which have Im k < 0 (corre-

sponding to spatially growing waves) but it seems these branches would

be excluded in the k integration since the primitive k contour runs

along the real axis. In fact, however, if we review the lowering of

the w contour, and follow the pole at k = -Wce /v
z

[the equivalent

"k" in sT (k,kvz+wce)], we would see that since initially Im w > 0

(and v > 0 always for z > 0 ), as Im w goes to zero and then

becomes negative, the pole approaches the k contour from above and

then indents it so it would be included in the final result even though
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it ends up in the lower-half k plane. (If v
z

< 0 the pole would

start beneath the primitive k contour and would therefore never make

a contribution.)

We conclude that the pole terms produced by cases (ii) and (iii)

cancel identically.

CASE (iv): This case is not allowed in that we assumed a simple

first-order pole occurred at kl in performing the k integration

[see (2.54)]. Even if a simple pole of higher order occurred in the

k integration, the term corresponding to case (iv) would be the first

non-zero derivative and would therefore not produce a pole in the

integrand of (2.63).

Thus in (2.63) the only pole we have to consider is the one at

w = -Ow1 , which gives

&( ,v,t) = B -ZI (2.61) evaluated at w = -Ow1]

or (C,+a)\

+/(V) El V(,v+ )

+ E(A-, e

(4,+ ) )r TRs (, - at, a)I

for z > 0 and where c
T
. (k 1,-aWl,a) = 0 . Equation (2.70) is valid

for a = + 1 (not just a = -1 as used mainly in the preceding

discussion).

36



Final expression for fl(z,v,t)

Using the symmetry properties (B.6) and (B.8) from Appendix B,

[+- (- k,- , - ,e_(-/-,, -)
I ~~~+

(2.71)
* . 7:r (- k A - 0 ,a-)

= (-+ k

J (-k*)

and the symmetry property

(2.72)

[which follows from the fact that El(z) is real], and then summing

over a = ± 1 [which has been implied since (2.28)], we find fl(z,v,t)

equals twice the real part of either the a = +1 term or the a = -1

term. We shall use the latter. Then specializing to electron waves

(SI = -Wce), and dropping the ion term in (2.61), we obtain

LK - -E32a

i ( 12 C r- 2/3 2 Z -

E +e Ae S eBI

> '(as cZ~ a? ( bASce)(sec C",-Lu~en ])T+(t~eFez ,),e L = E,·t _ S:· .eC /·;)
Z ) 

(2.73)

&- We . a-;W th

h(vz E, V~ 7 e-

+ ( e )
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ECe) e

for z > 0 and where

____ > _ e 

vise= tcL" Z M2 e(2.74)

o SgGN (C-(Jce)

Equation (2.73) gives the first-order perturbation to the electron's

zero-order distribution function. Note that although fl(z,v,t) in

(2.73) is for electrons, both ions and electrons enter into the

dielectric functions [see (2.44)]. The first term of (2.73) will be

called the branch-cut term (since it came from the branch-cut integral),

the second term will be called the free-streaming term (for reasons to

be discussed shortly), and the last term will be called the dielectric-

pole term (since it comes from the root(s) of the transverse dielectric

function).

38



2.4 Calculation of Jl(z,t)
:__

The first-order current response is

f, Xr) (I, r) V td3 v (2.75)

From earlier considerations [(2.33), etc.] the integration over 4 and

v leave

-/- /t ·e
e yp·I ck= Wee

and dielectric pol e terms.

To facilitate computation of the free-streaming term integral in

an idealized delta-function source with
ti()=ci()(.7

_foo~~~ ~~(2.76)

for z > 0 . Note that only particles with v > 0 contribute to the

free-streaming term but that all particles contribute to the branch-cut

and dielectric pole terms.

To facilitate computation of the free-streaming term integral in

(2.76) and because at present we have no other preferences, we assume

an idealized delta-function source with

(a) (2.77)
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so

E,('tk) -= ~/ (2.78)

where t1 is a constant with units of electric potential. Recall that

fo(vz) was assumed to be Maxwellian in (2.35). Then the integrals in

the branch-cut term and the dielectric-pole term in (2.76) are of the

form

- C X-? /Ce (2.79)

where Z is the plasma dispersion function defined earlier in (2.45).

The free-streaming term phase-mixing integral

The free-streaming term integral in (2.76) is

ox = SG\ (4C/~-ce)

and we shall perform this integral in the complex vz/a plane by the

method of steepest descent described in Appendix E. The appropriate

saddle point of the integrand of (2.80) is

= 2e (2.81)

and the first term of the asymptotic expansion about this saddle point

is
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6
2 L2 2

~Ad V· Ec
7
( J/ w CUe ··) (2.82)

which is a good approximation for

| \ it ./2 (2.83)

A complete account of the paths of steepest descent associated with

(2.80) and an error discussion concluding with (2.83) are given in

Appendix E.

The primitive contour of (2.80) in the complex v z/a plane is

shown in Fig. Sa. In Figs. Sb, c, d, the primitive contour has been

deformed to the appropriate P.S.D. depending on the value of w1 . The

saddle point v /a [defined by (2.81)] is shown as well as the

dielectric pole at

\_ Ccv-ce

a - k. (2.84)

where

(kO,)=o

Note that there is a pole contribution for w1 < 0 or l
I

> wee but

not for 0 < w1 < Wce ' Thus the free-streaming term (2.80) has the
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plane
(a)

(b) w <0

Vs /a

\4/a

Vs/a

(C) O<° I<W ce

(d) wl >ce'

FIGURE 5. CONTOURS IN THE v /a PLANE USED IN EVALUATING (2.80).

The primitive contour in (a) is deformed to the appropriate
path of steepest descent in (b),(c),(d) according to the
value of w

I
. The saddle points (vs/a) and poles (vl/a)

are defined by (2.81),(2.84) respectively.
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saddle point contribution (2.82) for all values of w1 and a residue

contribution only for w < 0 or 1 > Wce . These results, including

the absence of a residue term for 0 < 1 < 0ce , will be discussed

further in a special section on transverse free-streaming waves.

Final expression for Jl(z,t)

Combining the results of the above saddle point integration with

(2.79) and (2.76) we arrive at our final result for the current

Jl(z,t)

_a,, ( ) =

6(u/2 ce) / - i

C.
tz

for z > and where85)

for z > 0 and where
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kse [2 l(%c4Z a e

/ . 7

> (ov/-ffiv'e) N F1 3 e 6
$l = /I fore
= 2a

S (c)= / for ,Vo, C >ce (2.86)

O for <

In (2.85) the terms remain in their original order, i.e., branch-cut

term, free-streaming term, and then dielectric-pole term except that

the S(w) portion of the last term is the residue contribution from

the free-streaming term for w 1 < or l1 > Wce

Before discussing the behavior of the terms in (2.85) in general,

we shall present the results of a numerical evaluation of these terms

for a specific case.

44



3. Numerical Evaluation of (2.85) for Response with Electron Cyclotron

Damping

We present the results of a numerical evaluation of (2.85) for

values of the excitation frequency w1 just slightly below ce . This

choice of frequencies was made in the interest of studying electron

cyclotron damping but in addition this choice clearly illustrates the

various sizes and types of terms that comprise (2.85).

First we must consider the effects of all the roots of the trans-

verse dispersion relation. We have drawn the equivalent of Fig. 3d for

o < W1 < Wce in Fig. 6, in which we display the positions of all roots

of CT (k,wl) = 0 , not just the least-damped ones. (The roots of the

transverse dispersion relation are discussed in Appendix C and are

summarized in Fig. C-15.) Also shown in Fig. 6 is the branch-cut P.S.D.

contour as chosen in Appendix E (see the discussion concerning Figs.

E-1 - E-3 for details). As used earlier in Figs. 3 and 4, £T (E, 

is to be used on the dashed (solid) line contours in Fig. 6.

We see from Fig. 6 that in addition to the least-damped root

(marked k1 ) we must consider the effects of the infinite sequence of

roots and also the pure imaginary root. In the next section we shall

show that the infinite sum of residues produced by the infinite sequence

of roots is negligible except at positions extremely close to the place

of excitation. Accordingly we shall neglect the infinite sequence of

roots for now. Note that the pure imaginary root in the upper-half k

plane in Fig. 6 is missed by the deformed contour altogether so it never

enters the calculation for 0 < 1 < Wce ' Thus the only root we have

to consider is the least-damped (cyclotron-damped) root.
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FINAL CONTOUR IN THE K PLANE FOR 0 < l < Wce '

Roots of cT+(k,wl)=O are shown by dots and roots of

CT (k,wl)=O are shown by crosses. Also shown are the

branch-cut P.S.l). contour (which differs from that of

Fig. 3d because now w < wce) and the contours that

encircle the various poles ( CT. [ET+] is to be used

on the dashed [solid] line contours) for z>0.
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We comment on some characteristic lengths. The branch-cut and

free-streaming terms in (2.85) have the characteristic length

(3.1)
=0- I

lw, celU, 

while the pole term has the wavelength

2~ 2r c

A ' %_ -K =7 'I C Ice
L _2,e j

(3.2)

For our example we shall find 1 Z c/Wce .

normalize all distances to the basic length

7 =
{C At~

Thus we have chosen to

c/Wce , i.e., we define

o(S=2)
.A _ Ax~'2

(3.3)

_ / 2 zr

/ ('ie') E Ceie]

For reference, if fce = Wce/2r = 2.25 GHz (a typical value), then

c/wee z 2 cm.

In evaluating (2.85) we selected values of the plasma parameters

attainable on the UCLA Q machine, i.e., c/a = 1120 and Wpe/wce = 0.4.

Then writing

r = (R. Lexx + y]--/ ~ a IOZ.-
(3.4)
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with !J1 given by (2.85) we numerically calculated Jx vs. i for

several values of l/ce in the range 0.985 < wl/ce < 0.999 . The

results are presented in Figs. 7a-f. The actual values of w
1
/wce and

the corresponding values of the parameter r defined by

C
ce (3.5)

are given in the caption of Fig. 7. All of Figs. 7a-f are drawn to the

same vertical and horizontal scales to aid in comparing the wavelengths

and amplitudes of the various terms. And in each of these figures the

length Xo is indicated explicitly while the length A
1

(which is

simply one wavelength of the pole term) is easily discernible.

We briefly note the following features in Figs. 7a-f.

Figure 7a: The branch-cut term is negligible, the free-streaming

term is significant for 0 < z 3X
0

and the pole term is significant

from z = 0 or to large values of z since it is only weakly damped.

Note that %o << .1 . All of these features hold for smaller values of

l/Wce 

Figures 7a-f: As Wl/Wce increases, the branch-cut term grows in

amplitude and penetrates further into the plasma, reaching peak penetra-

tion at about Wl/Wce = 0.996 (r = 4.5) . The dashed branch-cut curves

computed by setting ET (k se'1) equal to one in (2.85) show that if

the dielectric function cT (k se'l) were not present, the branch-cut

term's penetration length would continue to grow with X0 approaching

infinity as wl approached Wce . The free-streaming term always
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FIGURES 7a-f

In Figures 7a-f we present plots of Jx [defined in (3.4)] vs.

Z [=Z/(C/wce)] for the branch-cut, free-streaming, and cyclotron-

damped pole terms of (2.85). ( wpe/Wce = .4 , c/a = 1120 ) All

figures are drawn to the same vertical and horizontal scales, which

are fully labelled only in Figure 7a. In Figures 7b-f, eT+(kse, l)

was set equal to one in (2.85) to produce the dashed branch-cut

curves, and cT_ (Wl-ce/vs,Wl) was set equal to one in (2.85) to

produce the dashed free-streaming curves. Values of Wl/Wce 

=](wl/W ce)-lic/a , To= o/(c/wce)=l/r , and klc/wce are as follows

(values of klc/ ce were obtained from Figure C-5):

Figure Wl/Wce r o klc/Wce

7a .985 16.8 .06 3.64 + iO.02

7b .990 11.2 .09 4.28 + iO.145

7c .994 6.7 .15 5.39 + iO.91

7d .996 4.5 .22 5.76 + il.68

7e .9975 2.8 .36 5.89 + i2.32

7f .999 1.1 .89 5.95 + i2.96
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Free-streaming term
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Cyclotron-damped pole term
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FIGURE 7a: W1l/ce = .985
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FIGURE 7b: wl/Wce = .990
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FIGURE 7c: w1/We = '994
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FIGURE 7d: /ce = '996
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FIGURE 7e: Wl/Wce = .9975
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FIGURE 7f: wl/W ce= .999
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diverges at z = 0 . As 1l/Wce increases, the free-streaming term

penetrates more as its amplitude decreases; roughly, maximum penetra-

tion occurs for W1/Wce z 0.994 (r I 6) . The dashed free-streaming

curves, computed by setting ET [(W(l-ce/vs) 'l ] equal to one in

(2.85), show that if the dielectric function eT [(Wl-Wce/Vs),wl] were

not present, the free-streaming term's penetration length would also

continue to grow with X , approaching infinity as w1 approached

Wce ' The cyclotron-damped pole term shows increased damping and a

smaller wavelength as WI/Wce increases.

Figure 7f: The branch-cut and free-streaming terms are significant

only for 0 < z << X = 1 while the pole term is significant for

0 < z < 2 , the later limit being due to the heavy cyclotron damping.

Note that X
o
= l

1
. For still larger value of 

1
/Wce (i.e., 0.999 <

W1/Wce < 1 , or equivalently 1 > r > 0 ), the branch-cut and free-

streaming terms' penetration lengths go to zero while X - ; at the

same time A1 decreases (but not to zero) and the pole terms' penetra-

tion length decreases (but not to zero).

We conclude that the branch-cut and free-streaming terms attain

sizable magnitudes and penetration lengths for Wl/Wce within a certain

range of values. More specifically, for the present parameter values,

we shall find in a following section that collisional damping dominates

cyclotron damping for Wl/Wce < 0.99 . Thus, for the present parameter

values, cyclotron damping measurements would be feasible only in the

range 0.99 < Wl/Wce < 1 . And we see from Figs. 7a-f that within this

range, both the branch-cut and free-streaming terms are quite signifi-

cant. In fact, for 0.996 < Wl/Wce < 0.998 approximately the first
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1/3 or 1/4 of the distance over which the pole term (and therefore

cyclotron damping) could be measured has dominant interference from

the branch-cut and free-streaming terms.

With the above specific results at our disposal, we return to

(2.85) to discuss the general behavior of the three terms that comprise

that equation.
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4. Analytical Investigation of (2.85)

In this section we shall examine the general behavior of the three

terms in (2.85) for all values of 1 . We shall find that the branch-

cut and free-streaming terms have definite characteristics in each of

the regions r >> 1 , r - 1 , r << 1 , where, as given earlier,

r E I(lw/We)-l1 a. [For reference, note that (1) r >> 1 for all
lce a

values of w1 except those very near Wce , and (2) the r regions

are symmetrically located about w1 = Wce .] The shielding effect that

occurs in the branch-cut and free-streaming terms, as noted in Fig. 7,

will be discussed further. Lastly, in considering the pole term, we

shall investigate the infinite number of residues that occur (because

there are an infinite number of roots to the transverse dispersion rela-

tion) and show that their effects are negligible in general, except at

positions very near z = 0 (the place of excitation).

The branch-cut term in (2.85).

This term has the characteristic length Xo 0 a/ Il-wce 

Observe that

\k~e/ho kseI =: ( i(4.1)

Thus at z = O (and for any w1 except w1 = Wce ), the factor

(ksec2 1) X k2ec2 co and therefore the branch-cut terms' amplitude

O0 . For z # 0 the behavior of this term depends predominantly on

the value of the parameter r :

r >> 1. In this region Xo is a very small distance and the

branch-cut term effectively damps out in a distance of a few Xo
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because of the exponential factor which goes as exp[-(z/ ) 2/3] .

Even for 0 < z < X ° the branch-cut term is essentially negligible

because, although (k sel) z 1 , we find that

k 2 c | |J / | (4.2)
se 

(for e2 /W2 not too large). Thus in this region the branch-cut termpe ce

is negligible in general.

r = 1. As wl approaches e the branch-cut terms' amplitudece

increases (because of the l/(l-Wce] factor) and the term penetrates

farther into the plasma (because Xo increases). If there were no

dielectric functions in the denominator of the branch-cut term, then

both the amplitude and penetration length of this term would go to

infinity at w1 = Wce . Ilowever, the dielectric functions are present

and their shielding effect is strong enough (for r < 1 ) to damp out

the branch-cut term a significant distance before the exponential factor

does, i.e., before z = Xo . (This effect was noted earlier in Fig. 7.)

A result of this effect is that the branch-cut term attains a maximum

penetration distance for some value of r larger than one. [In Fig. 7

2 2
(for Wpe/ce = 0.4, c/a = 1120) maximum penetration occurred at

r- 4.5 .]

r << 1. In this region the shielding effect described above domi-

nates, which may be seen as follows. At z = Xo we find Iksel Z 1/Xo

and
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2
WPe c

(4.3)

Thus at z = X , the branch-cut term goes as

+ 2 Cc

Pe ce

which, for pe/2ce not too small, is << 1 and therefore negligible.

In this case, the branch-cut term attains a sizable magnitude only for

Iz| << « 0 . However, for Izl < < Xo the branch-cut term is not truly

valid since then the saddle point asymptotic expansion breaks down (as

shown in Appendix E). Thus, although the peak behavior near z = 0 of

the branch-cut term in Figs. 7e,f can be explained analytically, we

shall refrain from doing so because this term is not truly valid there

anyway.

2 2
The above results hold for (Wpe/ce )(c/a) >> 1 If on the other

hadn ( pe/e) (c/a) << 1 , then (4.4) indicates that the branch-cut
pe ce

term would have a sizable magnitude at z = X
o

and therefore a sizable

penetration length (since X0 -) - for r << 1 ). In this case the

branch-cut term's penetration length would simply approach infinity as

W1 approached Wce ' Thus effectively, in this case of extremely low

densities and/or extremely high magnetic fields, the plasma does not

exhibit the collective shielding effect that occurred above.
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The free-streaming term in (2.85).

This term also has a characteristic length X ° . Note that

{47t: cz \ ;8 0(4.5)

A significant feature of the free-streaming term is that it always

diverges at z = 0 due to the factor 1/vS . Physical reasons for the

presence of this divergence and conditions under which it is removed

will be discussed in a following section on transverse free-streaming

waves. For z # 0 , the behavior of the free-streaming term depends

predominantly on the value of r :

F >> 1. In this region X0 is a very small distance and the free-

streaming term effectively damps out in a distance of a few X . The

dielectric function ET [(Wl-We/V s)' l] Z 1 so the free-streaming

term is approximately

which depends only on the ratio z/Xo . It follows that the amplitudes

of this term's peaks remain approximately constant but the peaks shift

to larger values of z as wl approaches we (because then 10

increases). Thus we find in this region that the free-streaming term

is always significant for 0 < z < 3X0 say.

F z 1. As w1 approaches wce the free-streaming term penetrates

further into the plasma but at the same time, its amplitude decreases

as the dielectric function begins to exhibit a shielding effect. This
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effect dominates as r + 0 and the effective penetration length

recedes back to zero. From Fig. 7 we note that an "effective penetra-

tion length" is not a clearly definable Qjuantity but that for some

value of r larger than one (e.g., r z 6 in Fig. 7), the free-

streaming term does in some sense exhibit maximum penetration.

r << 1. In this region the shielding effect described above domi-

nates, which may be seen as follows. For IZl Xo , IVs/al z IZ/Xol

< 1 and we find

roe c

1('(v ,5 )1> ho r (4.6)

Thus for Izl < X the free-streaming term goes as

/ p, X/ r3

2
(\ (W %Wce AC C (4.7)

02 , 2

which at z = o is << 1 provided Wpe/Wce is not too small. In this

case, the free-streaming term, like the branch-cut term, attains a

sizable magnitude only for IZI << Xo . [Equations (4.6), (4.7) for

z = Xo may be compared to the corresponding branch-cut term Eqs.

(4.3), (4.4).]

2 2
If (pe/2ce )(c/a) << 1 then according to (4.7) the free-streaming

pe ce

term, like the branch-cut term, would have a sizable magnitude at

z = Xo (thereby exhibiting no shielding effect) and accordingly its

penetration length would approach infinity as w1 approached Wce '
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The dielectric-pole term in (2.85).

The pole term(s) represent the collective modes of the plasma. As

noted earlier, a pole term has wavelength X1 = 2f/Re k=

[2ir/(Re k 1 c/w )](c/W ) which, for the least-damped pole, is of order

c/ ce for w1 near wce . The amplitude of the pole term depends

mainly on the factor Z +(C) where Ce = (W-w ce)/kla ' The quantity

I Z+(%e)I is largest (of order one) for w1 near wce ;elsewhere

IZ+(,e)l - 1/Ce ' a/c which is typically quite small.

The waveforms produced by the pole terms are governed by the zeros

of the transverse dielectric function, i.e., by the roots of eT(k,w) =

O for real w and complex k . These roots are discussed in detail

in Appendix C which should be read at this time. A summary of the

types of roots for the various frequency ranges is given just preceding

Fig. C-14. With the results of Appendix C, the pole terms may be com-

puted for any desired value of 1 

The least-damped pole and any pure imaginary poles may be readily

computed. However, the infinite sequence of poles that always occurs

is more difficult to evaluate. In the following we obtain an upper-

bound estimate for the magnitude of the infinite sum of pole terms.

The infinite sum of pole terms.

For 0 < w1 < Wce the branch-cut P.S.D. contour in the k plane

(as shown in Fig. 6) is such that only a portion of the infinite

sequence of roots [of ST (k,w) = 0 ] is enclosed. This situation

occurs whenever w < Wce as may be seen from Fig. C-13. For

1 > Wce the branch-cut P.S.D. contour (as shown in Fig. 3) is again

such that only a portion of the infinite sequence of roots [now of
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ET (k,w1) = 0 i is enclosed. In all cases the saddle point kse as

given in (2.85), moves as w1 or z is varied, so the number of roots

enclosed also varies. Thus we have chosen to evaluate the full infinite

sum of residues, knowing that in any actual case the net effect will be

smaller than the estimate we will obtain. Without loss of generality

we consider w1 > rce , and therefore the roots of £T (k,w1 ) = 0

Asymptotic expressions for the values of the roots in the infinite

sequence are obtained in Appendix C. As given in (C.35) such roots of

CT (k,w1) = 0 in the e plane ( e =[wl-wc]/ka) are given by
e e

.7T

(4.8)
p = War m =% 34,%- 5*-

and at such roots we have from (C.32)

D E

o [ /- + - ]e)

.Pe (4.9)

(W/'-os6ce) c2 

We proceed to evaluate the residue terms.

For yel| e 3 we know

2

i:ye e z 2 g(4.10)
e e e

so from (4.9), at a root, we have

64



D -/ E- /
+ 

t+(3e)= _e gs (4.11)

For now we assume the second term in (4.11) is negligible and take

D-/
zgt~~~(4)~~ z re -(4.12)

Another result we need is

To simplify this, we note that for

i.e., for

C. a ET>3a (4.14)
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(since ICeI > 3 ), we have

style Ye "r, 2 r
(vt t-24-24 ()

- n, (6"$ Ce) 
(4. 15)

- 12 D &e z

using (4.12).

We may now calculate the infinite sum of residue terms, which we

shall call Using (4.8), (4.12), and (4.15), we find

if ) )i eiDet (k,"') 2 )
+W

I ~~; I = fl~~~~ ,
'2' /'C k =/

where c (wl-wce/2Ava . Since

_ cP

o ";e// :FM=J _ m1 3/Z

for cz j 0 , we conclude that

2
Oa

< / _ (D/) __

-- 7 C4p.e D j z

If cz = 0 , (4.16) remains finite since

= /.259
473/zA=3

(4.19)

66

k 7 Ark, )

D A

cZ

ff;
22 z tnr 'z D l3 3/>

Re
(4.16)

2
Cl

(4.17)

(4.18)



We see that if inequality (4.14) holds (i.e., if r < 1 ) than

(4.12) and the final result (4.18) hold. In the opposite limit

-"/~ce - >> 3 (4.20)

(which corresponds to r >> 1 ) we find

E-/
(re~ +(4) x z(4.21)

and

2 ce 1 (sce)2()

(3, c7s CLWPse (4.22)

For cyclotron damping measurements we would usually have w1 Z Wce

z W * Then at z = a/We d X (A = [4rne2 /KTe 1 /2 is the Debye
pe Pe d d e

length), we see from (4.18) that IIJ < 1 for r < 1 and from (4.22)

that I~[ < c2/a2 for r >> 1 . Thus very close to the place of exci-
oo

tation (z = 0) the infinite sum of pole terms may have a significant

effect. On the other hand, at z = C/wce both (4.18) and (4.22) show

that IJI < a/c which is typically very small. Thus the effects of
oD

the infinite sum of pole terms is confined to a small region near the

place of excitation. [To substantiate the above conclusions for the

case of Fig. 7, we summed the first several thousand pole terms numeri-

cally using (4.11), (4.13) and indeed it was found that the sum was

significant only extremely close to z = 0 .]
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5. Physical Picture of Transverse Free-Streaming Waves and the Free-

Streaming Term in (2.85)

We wish to investigate the physical significance of transverse

free-streaming waves and explain why these waves have negative phase

velocities (for z > O ) when 0 < wl < ,ce , and why these waves

experience no cyclotron damping. Then we want to investigate the free-

streaming term in (2.85) and explain why this term has no accompanying

pole contribution for 0 < w1 < ce and why this term diverges at

z = 0 . In addition to present considerations, free-streaming waves

merit special attention since they are the basis of echo phenomenon

(such as we will consider in Part II).

5.1 Physical picture of transverse free-streaming waves.

We consider the situation shown in Fig. 8a. A continuous uniform-

density beam of electrons flows in the +z direction along an externally

applied magnetic field Bo = ezBo . All particles in the beam have the

same velocity v
z

in the +z direction and the same magnitude of

velocity Iv.l in the perpendicular direction. The directions of the

perpendicular velocities are uniformly distributed; this is represented

in Fig. 8b by the uniform ring of dots plotted in perpendicular velocity

space (v
x

, vy). Each dot represents a particle and the particles are

uniformly spaced on a circle of radius Ivll . Thus if the perpendicu-

lar current

= (5.1)

were calculated, the result would be J, = 0 as illustrated in the

lower portion of Fig. 8b.
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FIGUiRE 8. CREATION OF A TRANSVERSE FREE-STREAMING WAVE.

The beam and excitation at z=O are shown in (a).
The velocity distribution and current Jx are shown
for z<0, z=O, z>0 in (b),(c),(d) respectively.
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Returning to Fig. 8a, we have placed an idealized excitation mech-

anism at z = 0 which lets particles pass through freely but subjects

them to the external field

exr(') - [ e cos( t) + e, Sit (t)] • (e) (5.2)

[as used earlier in (2.46), (2.77)]. The effect of this external field

is that as a particle passes z = 0 it receives a net impulsive change

in its momentum, which we shall call mAv . If a particle passes

z = 0 at time t we find

zt + 
2

aEV - 5 I~ex = ! Zf ext

2 (s.3)

where 6t (6z) is the time (distance) a particle spends subjected to

the force qEext . (Actually 6t, 6z - 0 while Av remains finite.)

The important point is that all particles that pass z = 0 at the same

time receive the same Av regardless of the direction of their perpen-

dicular velocity vectors.

In Fig. 8c we show the effect on the velocity distribution when

Av points upward. Each particle receives a Av upward so the circle

of Fig. 8b is just displaced upward a distance Av . If we calculate

JL from (5.1) we shall find a net current in the -Y direction (since

q = -e for electrons) and this is indicated in the lower portion of
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Fig. 8c.

Now imagine what happens to the beam segment with the velocity

distribution of Fig. 8c as this segment moves downstream (z > O) with

velocity v
z

. Since every particle (electron) rotates in the right-

hand direction at the cyclotron frequency Wce , it follows that the

velocity vector of every particle maintains a fixed magnitude but

rotates at frequency we Thus, as shown in Fig. 8d, the velocity
ce

distribution is a displaced circle that rotates at frequency Wce .

The net current Jj rotates at Wce also, as is shown in the lower

portion of Fig. 8d.

In summary we note that a beam segment with v
z > 0 has J, = 0

for z < 0 . As the segment passes z = 0 it obtains a net J. , and

as it moves downstream with velocity vz the current J, rotates in

the right-hand direction at frequency e W

The shape of the wave produced downstream depends on the relative

size of and ce If = Wce each new segment that passes

z = 0 obtains a J, exactly in phase with the Jl 's of all the other

segments that passed earlier. The established waveform, as shown in

Fig. 9b, moves downstream with velocity vz and rotates in the right-

hand direction at frequency wce . If W1 # Wce then the excitation

and established J 's rotate at different frequencies, and the resultant

waveform is a helix. For w < Wce the waveform is as shown in Fig.

9a. (Note that this waveform occurs even if e1 = 0 .) For 1l > Wce

the waveform curls in the opposite direction as shown in Fig. 9c. We

emphasize that all waveforms shown in Fig. 9 move downstream with veloc-

ity v z and rotate in the right-hand direction at frequency Wce
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J vsz

/ I-~<~~ (a) WI<Wce

(b) w Wce

(C) W1 >We

FIGURE 9. TRANSVERSE FREE-STREAMING WAVEFORIS ACCORDING TO

VALUE OF 41 .

All established waveforms propagate with velocity vz
and simultaneously rotate at frequency Wce '
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We compute the phase velocities of these waves as follows. If

Wce = 0 it is clear that one wavelength equals v
z

times the time for

one complete cycle of excitation at frequency w1 , i.e., X = vz(2l/wl).

If ce 0 we find

2 7r (5.4)

which can be seen by noting that an observer in a frame rotating with

the electrons (at frequency ce ) sees the excitation as having a

frequency w1 - Wce )
'

Thus

va (5.5)

If we consider one of the waves in Fig. 9 at some fixed z (> 0) we find

the motion of the excitation at frequency w1 is exactly duplicated by

the J_ of the wave (but delayed by a time z/v
z

and rotated through

an angle of zw ce/V
z

radians). Thus the phase velocity of one of

these waves would be

VPO - i kie) (5.6)

Note that Vphas
e

< 0 for 0 < w
1

< wce which means the wave looks like

it is propagating toward z = 0 whereas in fact all the particles com-

prising the wave are moving away from z = 0 (since v
z
> O ). This

apparent paradox may be explained as follows.

Explanation of why transverse free-streaming waves have negative

phase velocities (for z > O) when 0 < w1 < ce 

First consider the useful analogy of a rotating barber-shop pole.
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The pole does not translate but the stripes appear to be moving upward.

If the pole actually translated slowly downward (while still rotating)

then the stripes would still appear to be moving upward (but slower) to

a fixed observer. Thus the stripes would appear to be moving in a

direction opposite to the direction the pole was moving. This situation

is an exact analogy to that of transverse free-streaming waves for

0 < 1 < ce

More quantitatively, consider any waveform in Fig. 9 and choose a

point on it. In time At the point moves a distance vzAt in the *z

direction and it also rotates through wceAt radians in the x-y plane.

Therefore to maintain constant phase (i.e., to keep up with a vector

J1 that points in the same direction as a vector drawn to the original

point), besides moving ahead vzAt we must move an additional Az due

to the wce rotation where

a Ce L t

A 2rr

or

,( = V '-c/t (5.7)

using (5.4). Thus the phase velocity is

V- &t - d2 Vv

from translation from rotation (5.8)

[using (5.7)], which agrees with (.6). But this calculation explicitly

[using (5.7)], which agrees with (5.6). But this calculation explicitly
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shows that the w rotation can dominate the v translation causing
ce z

the phase velocity to be negative for 0 < l < ce . Hence it is

important to consider transverse free-streaming waves not as fixed

waveforms that just translate, but as waveforms that translate and

simultaneously rotate.

Explanation of why transverse free-streaming waves experience no

cyclotron damping.

Another unique consequence of transverse free-streaming waves is

that they propagate freely, experiencing no cyclotron damping. This may

be seen as follows. Consider a beam of particles with velocity v
z

that have established a free-streaming wave with k = l-wce/vz as in

(5.5). Then a test particle with velocity V in the z direction sees

a Doppler-shifted frequency X given by

a=,-iV = - ) 

(5.9)

We se e e only if V = v , which means

We see from this result that on = ce Only if V = vZ ,which means

that the only particles that could cyclotron damp the wave are the very

same particles that comprise the wave. Thus there is no cyclotron

damping effect. It follows that when many free-streaming waves are

created, each with a different v
z

, they will each propagate freely,

not being damped via absorption energy by particles in the other waves.

5.2 Physical picture of the free-streaming term in (2.85).

Referring back to (2.76) we see that the saddle point free-streaming
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contribution to Jl(z,t) in (2.85) is just the result of a superposition

of many free-streaming waves, each represented by

exp(i[(wl-wce/vz)Z-wit]) and weighted by the factor fo(vz)dvz . The

apparent strong damping of the saddle-point contribution is due to phase

mixing; all of the free-streaming waves created actually continue to

propagate downstream (unless destroyed by collisions) but the sum of

their J,'s (due to the different wavelengths and phases involved)

quickly adds to zero.

Explanation of why the free-streaming term in (2.85) has an accom-

panying pole contribution for wl < 0 or w1 > Wce but not for 0 < wl < ce

In (2.76) we note the presence of the dielectric function

cT [(W1-wce/Vz),wl] which represents the collective effects of the

plasma. We find that if some free-streaming wave has a vz(real) such

that l-W ce/Vz (real) is nearly equal to the k1 (complex) of an

allowed collective mode [i.e., sc. (kl,wl) = 0 1 then that collective

mode may be excited according to the following considerations. We con-

sider z > 0 as above, for which all free-streaming waves have v > 0.

Then in evaluating (2.76) by the saddle-point method, we note that the

v
z

contour is deformed to that half of the v
z

plane wherein

exp[i(wl-wce/Vz)z] represents a damped wave. Accordingly a collective

mode will be excited, and a pole will result [from the root of

ET ((W1 -ce/v
z

),W1 ) = 0 in the v
z

plane] only if the kl of the

collective mode represents a damped wave also.

For w1 > Wce all free-streaming waves have positive phase veloci-

ties. In addition, the roots of ET (kl,w1 ) = 0 that have Re kl/w 1 > 0
+4

76



also have Im k
1

> 0 (corresponding to damped waves for z > 0 ). Thus

it is not surprising that when the contour in the vz plane is

deformed we pick up a residue contribution (see Fig. 5d).

For w 1 < 0 a similar result occurs (see Fig. 5b).

For 0 < 1 < Wce all free-streaming waves have negative phase

velocities. But the roots of Ec
r

(kl,Wl) = 0 that have Re kl/w 1 < 0

also have Im k < 0 (corresponding to growing waves for z > 0 ), so

in effect there is no collective mode that has the characteristics of

a damped free-streaming wave. Thus it is not surprising that when the

contour in the vz plane is deformed (for this case), the pole is on

the "wrong" side of the contour and hence there is no residue contribu-

tion (see Fig. 5c).

Explanation of why the free-streaming term in (2.85) diverges at

z = 0 and how this divergence can be removed.

Lastly, in (2.76) we note the presence of the factor 1/vz . This

factor is proportional to the amount of time a particle spends traversing

the excitation region, as may be noted from (5.3). It is this factor

which causes the divergence of the free-streaming term at z = 0

Physically, this divergence may now be explained as follows.

Consider an excitation like (5.2) but which, in place of the z

dependence El(z) = D1 6(z) has El(z) = ¢1/A for -A/2 < z < A/2

and is zero elsewhere (then the 6-function character is retrieved in the

limit A - 0 ). Now if the time a particle (with velocity vz ) spends

in the excitation region (-A/2 < z < A/2) is much smaller than one

period of the excitation, i.e., if
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A 2_ 

v- z / (5. 10)

then the excitation field will not have enough time to change direction

as the particle passes. Consequently the particle will receive a net

impulse in one (transverse) direction as a result of passing through the

excitation region. As long as (5.10) holds, the smaller v
z

becomes,

the larger the impulse the particle receives. In the limit of an infini-

tesimal but non-zero A we find the v
z

0 particles receive a huge

impulse as they pass z = 0 , and accordingly the total response [as

given by the free-streaming term in (2.85)] diverges at z = 0 .

On the other hand, if A is really finite, then from (5.10) we

conclude that the v z 0 particles see a perturbing force which is

spread out over the excitation region and which rotates at frequency

W1 ' Accordingly the vzz 0 particles do not acquire a huge impulsive

change in their v,'s with the result that at z = 0 the total response

no longer diverges. Thus a finite-width excitation (A # O) removes the

divergence. (Two examples of finite-width excitations will be con-

sidered shortly.)

It should be clear from this discussion that if collisions signifi-

cantly affect the vz 0 particles (as Fokker-Planck collisions do,

but simple Krook model collisions do not) then the divergence of the

free-streaming term in (2.85) at z = 0 would also be removed (even

for A + ).
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6. Effects of Collisions on (2.85)

The Krook Model.

In the above we have neglected collisions. Now we wish to deter-

mine for what values of the temperature Te and density ne collisional

effects are significant. Specifically we want to know when collisional

damping dominates and when cyclotron damping dominates. To this end we

may use the Krook, Bhatnager, Gross model for the collision term in the

Landau-Boltzman equation. Then the Vlasov equation (2.1) is to be

replaced by

_f S r[ +c ax F - = )CO4
a-tX + 

x

ToToR. z

_

' v 
=
L

(6.1)

where v is an effective collision frequency. An appropriate choice

for v is

e h + (6.2)

where vee,' ei' ven represent effective collision frequencies for

electron-electron, electron-ion and electron-neutral collisions,

respectively.

First consider yen . An extensive accumulation of experimental

data concerning ven is presented by S. Brown. (22) From these data we

conclude that for our choice of parameters (T
e
= 0.2 eV, neutral gas

mainly N2, neutral gas pressure po < 10 mm: these being typical
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values for the UCLA Q machine), v may be neglected in the following.

Now consider vee and Vei . In the literature there exists some

confusion as to what Vee' Vei should represent and whether Vee or

vei or both should be used in (6.2). Often v in (6.1) is called an

effective collision frequency for momentum transfer without any explicit

indication of whether the momentum transfer occurs in electron-electron

or electron-ion collisions. In other cases it is explicitly stated

that v represents a self-collision time (electron-electron collisions

only).(12) In previous work on the collisional damping of transverse

plasma waves, Crawford et al.(13) claim the dominant collision process

is electron-ion collisions and hence use v = Vei . Sachs(1 1) presents

a collision term (developed by Liboff) which for Te = T
i

and no net

drift velocity between species reduces to v = V where v isee ee

Spitzer's(23) self-collision frequency. To further confound the situa-

tion we note that Vee Z Vei according to Kaufman et al. Perhaps

the easiest (but least satisfying) solution is that of Platzman and

Buchsbaum(
1 2 ) who avoided the issue altogether by simply choosing a

number for v . Tanenbaum concludes that the Krook collision model is

"really applicable only to cases where self-collisions are of predomi-

nant importance."(25 )

Since our interest lies in determining only when collisions are

significant we have, without resolving the above conflict, chosen to

use v = vee (self-collision frequency) with the understanding that

this v may differ from the true effective collision frequency by at

most a factor of 2. Thus we shall use
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- 6 1>7
V- = 1r - 2.9 /O - A

Te'/ zo

-A- /.S-,/' /o/ C 3 a

(6.3)

where n is the electron density in cm-3 and T is the electron
e e

temperature in eV.

Then reviewing the derivation of (2.85) when collisions are

included by (6.1) we find that (2.85) should be replaced by

T (Z,t) =

2 / -[(e-, + r-Cce),x / -I _ j

,| eC C. L

pee a(6.4)AfS (c-o (o<+;v- 7e ,1CSe/) (kSe'WO .C) I
(6.4)

-(, t C) ]z [ - I --- , z - ;, 

--

FJ1 ¥s'- C +i¥-,"-e ) i7 vs

/z 14- /u r

/ I~=~,

for z > 0 and where v is given by (6.3). Now
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kse = [ r:ceL2 1 e c)

t5 = F (t + Or - ace) > 1 3 i < (6. 5)

a. = - ?

and

(Oc.) /j Mz 2) + ( (6.6)

whereas a and S( 1w) are as given earlier.

The main effect of collisions in the transverse excitation response

given by (6.4) will be in the pole term; the cyclotron-damped root of

CT (k,wl) = 0 will be altered due to the presence of collisions. The

branch-cut and free-streaming terms in (6.4) will also be affected but

we defer discussion of this until later. For now we consider the effects

of collisions on the cyclotron-damped root of cT (k,w) = 0

Cyclotron damping vs. collisional damping.

The transverse dispersion relation derived earlier for the colli-

sionless case, as given in (2.44), is (neglecting ions)

7T+(/%4 ) / (2c (6.7)

When collisions are included using (6.1), the transverse dispersion

relation is
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E ( )'c" = / 62 Be w (GC + v = Jr
,+ k, c(C / - At_+ (6.8)

where v is given by (6.3). For I,l E I(w+iv- ce)/kal > 3 , we may

use the first term of the asymptotic expansion of the Z function

[Z(C) = -1/C] in (6.8) to obtain

ET (k, ) = / + o
( Zc ) (CI + - Cce) (6.9)

which is simply the cold plasma dispersion relation with collisions

included.

To estimate where cyclotron damping is comparable to collisional

damping, Crawford et al. (13) computed the locus of points where Im k

of the root of the hot plasma dispersion relation without collisions

(6.7) equals Im k of the root of the cold plasma dispersion relation

with collisions (6.9). We have numerically performed the same calcula-

tion for two sets of parameters with the results shown in Fig. 10;

curve 1 corresponds to Crawford's parameters (and his curves), whereas

curve 2 was computed for our parameters. These loci show that for a

given w , as Te increases, collisional damping decreases and cyclo-

tron damping increases. However, these loci contain a major flaw and

that is the following. Use of the cold plasma dispersion relation (6.7)

as an approximation for the hot plasma dispersion relation (6.9) is

justified only for ISCI > 3 . But along the hatched portions of the

curves in Fig. 10, ICV <I 2 so (6.9) should not be used. Indeed, as
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Te
(ev)

1.0

Cyclotron damping
dominant
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.1- Collision damping dom.
O.95 I 96 97 98 99 1I00

.95 .96 .97 k .98 .99 1.00
FIGURE 10. LOCUS OF POINTS WHERE HOT PLASMA CYCLOTRON DAMPING

EQUALS COLD PLASMA COLLISIONAL DAMPING.
13

Locus of points, following Crawford et. al. , where Im k of
the least-damped root of (6.7) equals Im k of the root of
(6.9). CURVE 1: f =2.25 Glz, pe / ce=4 (n =1012 cm-3 ).

CURVE 2: fce=2 .2 5 GHz, W pe/ce=4 (n =10 cm3).

(Curve 1 corresponds to Crawford's parameters.)
These loci are meaningless however for those portions
shown hatched (see text).
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we shall now show, the true loci never turn upward (as w/wc 1 ) as

the loci in Fig. 10 do.

To correctly compare cyclotron damping with collisional damping, it

is apparent we should compare the roots of (6.7) with the roots of (6.8).

Let

L = Im k of the root of (6.7)

M = Im k of the root of (6.8)

then L represents the effects of cyclotron damping whereas M repre-

sents the effects of cyclotron damping plus collisional damping. Thus

roughly, L/M represents the fraction of the total damping due to

cyclotron damping. Accordingly we have numerically calculated the locus

of points where cyclotron damping accounts for 80%, 50%, 20% of the

total damping (L/M = 0.8, 0.5, 0.2) with the results displayed in Fig.

11 as curves A, B, C, respectively. The curves of Fig. 11 were computed

for the same parameters used to compute curve 2 in Fig. 10; in particu-

lar note that curve B in Fig. 11 does not turn upward as curve 2 in

Fig. 10 does. Also note that to measure cyclotron damping we must be

above the shaded region in Fig. 11 for collisional effects to be negli-

gible. For Te = 0.2 eV this means we should consider only frequencies

in the range 0.988 w/wce < 1

In the shaded region for Te > 0.1 eV in Fig. 11, the total

damping is very small. Thus one should not interpret curve A of Fig. 11

to mean that collisional damping is becoming as large as cyclotron

damping, but rather that cyclotron damping is becoming as small as

collisional damping. This conclusion is apparent when one considers
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CYCLOTRON DAMPING AND COLLISIONAL DAMPING COMPARED
CORRECTLY.

A. 20% collisional damping
B. 50% collisional damping
C. 80% collisional damping

and 80% cyclotron
and 50% cyclotron
and 20% cyclotron

damping.
damping.
damping.

( f 2.25 CGAz, pe/, ce=. 4 [ne=1010 cma3] )
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actual values of Im k of the roots of (6.7), (6.8) such as those

displayed in Fig. 12 for Te = 0.204 eV. Note that in Fig. 12 colli-

sional damping is significant only when cyclotron damping is very small.

Also note that a typical cyclotron damping length (for negligible colli-

sional damping) is (for wl/Wce = 0.99)

C

~/ ac 2 cM.

and damping lengths of this order should be easily observable experi-

10 -3
mentally. Thus for the parameters of Fig. 11 (ne = 10 cm

pe/w ce = 0.4), experimentally, measurement of electron cyclotron damp-

ing rates would be feasible only for Te > 0.1 eV.

As the density ne increases, collisional effects rapdily become

more significant since v ' ne . For example consider values of Im k

for n = 10 cm as given in Fig. 13. We see that for
e

0.988 < l/Wce 1 ,

Im k
no collisions

> 0.8
with collisions

but that at w1 /Wce = 0.998 , Im kc/wce z 8 which implies a damping

length of 1/Im k = 0.27 cm, which is too small for accurate experi-

mental measurement. Thus for "high" densities (ne > 1010 cm 3) we

must go to "high" temperatures (Te >> 0.2 eV) if we wish to obtain

a range of frequencies over which the cyclotron damping length is

unhampered by collisional damping and also large enough to be easily

measurable experimentally.
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FIGURE 13. EFFECTS OF COLLISIONS ON THE CYCLOTRON-DAMPED ROOT.
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Effects of collisions on the branch-cut and free-streaming terms.

In the regions where cyclotron damping rate measurements are

feasible, the collisional damping rate is small; i.e., from the above

considerations we find

v c
GraCZe~~~~ cz(6.10)

Accordingly, in these regions, the free-streaming perturbations will

eventually damp away by collisional damping (these perturbations are not

affected by cyclotron damping) but phase mixing of these perturbations

[as given by the free-streaming term in (2.85)] will occur long before

the individual perturbations themselves are destroyed by collisions.

Explicitly, when (6.10) holds, the free-streaming term in (6.4) differs

only slightly from the corresponding term in (2.85); the analysis of

Section 4 holds and the free-streaming term still diverges at z = 0

(As mentioned earlier in Section 5, Krook model collisions do not

remove this divergence, whereas Fokker-Planck collisions do, as will be

shown in the echo case of Part II.)

If (6.10) does not hold, i.e., if

y c
-c-- - (6.11)

then the analysis of Section 4 does not hold because the parameter r

which is now

' +c= ce' / 
e ce (6.12)

is never < 1 (even for w1 = ce ). Thus the shielding effect described
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earlier for r 5 1 never occurs in this case. On the other hand, the

characteristic length A which is now

CZ

n lIng +a ii tel (6.13)

no longer approaches infinity as w1 approaches wce , and the exponen-

tial factor in the free-streaming term still damps this term away in a

distance of a few X .
0

Similar remarks apply to the branch-cut term. If (6.10) holds

then the branch-cut term in (6.4) differs only slightly from the cor-

responding term in (2.85) and the analysis of Section 4 remains valid.

If (6.11) nolds then the branch-cut term (like the free-streaming term)

exhibits no shielding effect as wl approaches wce but it still damps

away in a distance of a few A
°

where X
°

is given by (6.13).
0 0
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7. Effects of a Finite-Width Excitation Mechanism on (2.85)

Up to now we have used the shape factor

E(F) = S) (7.1)

in the transverse external exciting field

£ex,(7Ct) = Ci- e+x e 5/N (7.2)

(This form of excitation for transverse waves is the mathematical equiv-

alent of the dipole-grid excitation mechanism for longitudinal waves.)

The choice of a delta function in (7.1) is useful for computational

purposes but unrealistic in that it is probably experimentally unattain-

able. Indeed it is difficult to conceive of a mechanism (or even a

limiting case thereof) that would produce a field like (7.1), (7.2). On

the other hand, these are conceivable mechanisms that would produce a

field like (7.2) provided El(z) had a finite z dependence. In this

section we shall examine the effects of a square-shaped El(z) and a

Gaussian-shaped El(z).

First note that in Section 2 we have already carried the general

calculation for arbitrary E1(z) up to (2.76). Thus we only have to

alter the derivation from (2.76) to the final result (2.85). Just

glancing at (2.76), (2.78), (2.85) indicates that inclusion of a new

E
1
(z) will simply produce new amplitude factors for the branch-cut and

dielectric-pole terms while the free-streaming term will be affected in

a more significant way.
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Square-shaped E1(z).

Consider the square-shaped El(z)

E,( F) -for Z 
E/(e) =

j

for - -- 2

(7.3)
O for < <>

(A > 0) for which

=S/' (k)
5~~~~~~~~~~~(k) Li(7.4)

Using (7.4), the pole term in (2.85) acquires an additional ampli-

tude factor of sin(klA)/klA . If A << X, (X1 = 2W/kl) then

El(kl) Z D1 and the pole term is essentially unaltered. However, as

A increases, the factor sin(klA)/kl
1
A oscillates and its magnitude

decreases. If kl A = ni (n = 1,2,...) , i.e., if A = n(X1/2) then

El(kl) = 0 identically. Therefore if we want to avoid these zeros and

maximize El(kl) we should have

! !< -- (7.5)

Since A
1

is typically a few centimeters, condition (7.5) should be

easily attainable.

Both the branch-cut and free-streaming terms in (2.85) have

(roughly) the characteristic wavenumber ko = 27r/Ao (Xo = a/w1l-wcel) 

so from the above considerations we conclude that both of these terms

will acquire additional amplitude factors of sin(k A)/koA . Thus if

2 X(7.6)
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we shall have El(ko) : 01 and the amplitudes of both the branch-cut

and free-streaming terms will be maximized.

In general, condition (7.6) is harder to attain than (7.5) because

in general XA << X
1
. However, in studying cyclotron damping our

interest lies in the pole term and in fact it would be to our advantage

to have the branch-cut and free-streaming terms smaller than as given

by (2.85). In that case it would be useful to have A such that

0< O << (7.7)2 2

because this would help diminish the size of the "unwanted" branch-cut

and free-streaming terms.

If we are explicitly concerned with the detailed behavior of the

free-streaming term we must evaluate the free-streaming term integral in

(2.76) more carefully, taking into full account the explicit v z

dependence of E1[(wl-wce)/vz] . Physically the integral in (2.76) is

more complicated now because the particle trajectories are altered con-

A A
tinuously over the region < z < Z rather than abruptly at z = 0

Using (7.4) for El(k) the free-streaming term integral in (2.76)

becomes

[v e.- e2
_/t~ AK-r-w~e -e J { t(t) ( -}(7.8)

/ / et (trace)t ( '
o- 2i(CY6%e)A ___

Evaluating (7.8) by the method of steepest descent we find the free-

streaming term contained within the large brackets { } in (2.85) should
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be replaced by

c5 (%-ae)°< e+^)1 2 X+ a]
213

~~~Ce e+io

(7.9)

_ 
.,

where

S±_ = [1 -_ se) ___ (E_ (7.10)

When A - 0 (7.9) reduces to the free-streaming term in (2.85).

But for A j 0 note that (7.7) does not diverge at z = 0 (since when

+ 0 we have c T [(I-W ce/vs +), W] 1 . The l/v factor in

(2.76) which caused the z = 0 divergence earlier, was effectively

removed in (7.8). Thus, as stated earlier, a finite-width excitation

mechanism removes the z = 0 divergence of the free-streaming term in

(2.85).

Gaussian-shaped El(z).

In place of (7.3) we now consider a Gaussian-shaped El(z)

A(7.11)

(7.11)(~ _-~ a 
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(A > 0) for which

(7.12)

The field described by (7.11) is more realistic than that of (7.3) in

that any excitation mechanism will be accompanied by a shielding sheath

with an exponential dependence like that of (7.11). The consequences

of (7.11) are very similar to the consequences of (7.3).

Thus when El(z) is given by (7.11) we find the pole term in

(2.85) acquires an additional amplitude factor of exp[-k1 2A2/4] which

is z 1 for k 2A2 << 4 , i.e., for1

2
iZ <(< 2k QF, > (7.13)

Similarly the branch-cut and free-streaming terms in (2.85) each acquire

(roughly) an additional amplitude factor of exp[-ko2 A2/4] which is

z 1 for

(7.14)

Thus as earlier, if

o < o A< id z<<c (7.15)

the sizes of the branch-cut and free-streaming terms will be diminished

from those in (2.85) whereas the pole term in (2.85) will remain essen-

tially unaltered.

Evaluating the free-streaming term more carefully, we find that

the free-streaming term integral in (2.76) should be replaced by
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Az (W-w2e) 2 92

00 'va2 - Yjr

VIcz. Vj E(6 Cc Goe as) (7.16)

[Note that this integral, like (7.8), does not diverge at z = 0 .] We

shall evaluate (7.16) by the method of steepest descent for the two

limits Izl >> A and IzI << A (the latter limit being of interest

since from it we can obtain the size of the free-streaming term at

z = 0 ).

(i) [zj >> A. In this region we may consider the A exponential

factor in (7.16) as part of the slowly-varying portion of the integrand.

Then evaluating (7.16) shows that the free-streaming term in (2.85)

simply acquires an additional amplitude factor of

exp (-_[A2(l-ce)2]/[4vs2]) where v
s

remains as given in (2.76).

(ii) jzl << A. In this region we may consider the factor

exp[i(wl- ce/Vz)z] in (7.16) as part of the slowly-varying portion of

the integrand. Then the free-streaming term contained with the large

brackets { } in (2.85) should be replaced by

e S, e{ ( /t 'eQ') (7.17)
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where now

VS = ~(~-~e~ (

Expression (7.17) gives the amplitude of the free-streaming term at

Z = 0 .
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8. Conclusions

We have examined the linearized response of a Vlasov plasma to the

steady-state excitation of transverse EM waves by an idealized delta-

function excitation mechanism, (1.1) - (1.2). We summarize the main

conclusions:

(1) The plasma response is given by (2.85) which is valid for any

value of w 1 . (For use in the pole term, the roots of the transverse

dispersion relation for real w and complex k are discussed in

Appendix C.)

(2) For cyclotron-damping measurements, the following points must

be considered:

(a) The branch-cut and free-streaming terms in (2.85), in addition

to the pole term, have significant amplitudes and penetration

lengths (see Fig. 7).

2 2
(b) If ( e/ce )(c/a) >> 1 , then the branch-cut and free-pe ce

streaming terms are shielded for r = I(1/W) - 11 c 1

and their penetration lengths go to zero as r goes to zero.

If (w 2/w )(c/a) << 1 , then no shielding effect occurs andpe ce

both the branch-cut and free-streaming terms' penetration

lengths go as o
°

= a/wl-wceI which approaches infinity as

r goes to zero.

(c) Use of only the "least-damped root" in the pole term was

justified by showing that the remaining infinite number of

roots of the transverse dispersion relation has a negligible

effect except at distances very close to the place of excita-

tion (z = 0).
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(d) Collisional effects dominate the damping except when w is

near wce (see Fig. 11).

(e) For w > Wce the cyclotron-damped root is so heavily

damped (see Appendix C) that it is probably not possible to

measure it experimentally.

(f) A finite-width excitation mechanism removes the divergence at

z = 0 of the free-streaming term, and selectively reduces

the amplitude of the three terms in (2.85). Under special

conditions [(7.7) or (7.15)] the branch-cut and free-streaming

terms are reduced significantly while the pole term is left

essentially unchanged.

From (d) and (e) we conclude that cyclotron-damping measurements

should be performed in a narrow range of frequencies just below Wce

(e.g., 0.998 < l/Wce < 0.999 for the parameters of Fig. 7). This

range of frequencies can be deduced from graphs like Fig. 11. It was

concluded that cyclotron damping measurements are barely feasible for

10 -3 10 -3
T = 0.2 eV and n = 10 cm . For higher densities (ne > 10 cm

one must go to much higher temperatures (T
e

>> 0.2 eV) because the

Coulomb collision frequency, (6.3), goes as v . n /Te3/2

(3) A special section on transverse free-streaming waves showed

how these waves are created and explained iany of their interesting

properties (e.g., negative phase velocities for 0 < 1 < ce ' absence

of cyclotron damping, etc.). The free-streaming term in (2.85) was

shown to be the result of the superposition of many such free-streaming

waves, and explanations were given for some unusual properties of this
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term (why there is no accompanying pole contribution for 0 < < 1 < ce '

why this term always diverges at z = 0 , etc.). Since free-streaming

waves are responsible for the production of echoes, all of the unique

features of transverse free-streaming waves discussed above will be

especially significant when considering transverse plasma wave echoes

in Part II.
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II. STEADY-STATE TRANSVERSE PLASMA WAVE ECHOES

1. Introduction and Physical Picture

The phenomenon of longitudinal plasma wave echoes, introduced by

Gould and O'Neil 
26 ) and subsequently observed experimentally,(2 7

-
29 )

may be described as follows. If in a hot collisionless plasma a wave

with wavenumber kl is excited at some time which subsequently damps

away; and if another wave with wavenumber k2 is excited at a later

time and it also damps away; then at a still later time an echo with

wavenumber [k2-kll will appear and subsequently damp away: this is

called a temporal echo process. The corresponding process for spatial

echoes is also readily visualized: if an excitation at frequency w1

is made continuously at some point in a hot collisionless plasma and

the response damps away in distance; and if further away another excita-

tion at frequency w2 is made continuously whose response also damps

away in distance; then still farther away an echo at frequency Iw2-w1I

will appear and subsequently damp away in distance. In this work we

focus our attention on spatial echoes since they are more readily exper-

imentally attainable.

An echo results when the free-streaming perturbations produced by

a first excitation are appropriately reordered by a second excitation.

But since these perturbations are relatively sensitive to small angle

Coulomb collisions, such collisions may destroy the formation of an

echo. Alternatively though, the collision process--can be investigated,

as well as micro-turbulence, and also details of the particles' zero-

order velocity distribution function by the appropriate use of echoes.(30 )
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Thus echoes may serve as an important diagnostic tool.

In this work the echo process described above for longitudinal

plasma waves is generalized to the case of transverse plasma waves.

This extension should greatly enlarge the potential importance of echoes

as a diagnostic tool. Also we shall find transverse echoes offer a

much richer variety of phenomenon to investigate than purely longitudi-

nal echoes offer. In addition, a new use for echoes will be suggested

and that is to excite instabilities in a well-controlled and localized

manner.

We first present a physical picture of the echo process. We choose

to have a transverse excitation with frequency w1 at z = 0 and a

longitudinal excitation with frequency w2 at z = L as shown in Fig.

1. Both excitations produce waves with vectors along an applied extern-

al magnetic field B = e B . Considering just those particles with

cyclotron frequency Sl and velocity vz , we see that the first excita-

tion produces a free-streaming wave with wavehumber [(wl+Q)/vz] , as

discussed in Section 5 of Part I. For z > L the second excitation

modulates the first's free-streaming wave to produce a wave with wave-

number [(&
2

+Wl+Q)/vz] . The net phase 4 of the wave for z > L

includes the phase for 0 < z < L and the phase for z > L , i.e.,

5= V L + V v }(Z_-)

=[ { +(C9-+.a) w - ] + (1.1)

When we add the effects of many beams with different vZ's (to obtain

the net current or electric field) we find that all their phases are
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different and therefore the net response phase mixes to zero everywhere

except where

i.e., at

L/z L

° ,'Jz +n ~'u/+ -0(1.2)

which defines the location of the echo peak.

The above physical picture is based on free-streaming particles

that are non-interacting. If interactions are taken into account, then

the possibility of exciting collective modes exists. The location of

the echo peak remains unchanged (since it still depends only on the

free-streaming terms) but the resultant echo shape may be appropriately

enhanced. We shall study these effects via a full Maxwell-Vlasov

equation analysis.

In the following we consider wave propagation exactly along the

direction of an external magnetic field and we present a concise mathe-

matical explanation of what type echo is produced, given,the types of

each of the two excitations (longitudinal or transverse). We find that

a transverse echo is produced in lowest order only when one excitation

is longitudinal and the other is transverse. For such excitations, or

more specifically for

e hert) =i(t)[e Xos c n-o +ea r ) c e-L)[ cos Crst] (1.3)

we then derive the second-order (nonlinear) echo response from the
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Vlasov-Maxwell equations, up to an integral over the velocity variable,

v
V*

We then discuss transverse echo characteristics, summarizing the

results in Fig. 2. The final integral over v
z

is evaluated by the

method of steepest descent and numerical evaluation of the results for

three specific cases are presented in Figs. 3-5.

Several important extensions are then considered: (1) effects of

Fokker-Planck collisions and finite-width excitation mechanisms,

(2) effects of temperature anisotropy (T, Z Tz), and (3) effects of

propagation just off-axis (kL # 0).

Lastly, transverse echoes for the case of no external magnetic

field (Bo = 0) are examined and their characteristics are summarized in

Fig. 6.

In performing the above calculations, reference will be made to all

five appendices. As stated in the Introduction of Part I, the appendi-

ces contain many useful analytical and numerical results. Of special

significance for the present echo calculation are Appendix C (on the

roots of the transverse dispersion relation for real w and complex k),

Appendix D (on the roots of the longitudinal dispersion relation for

real w and complex k ), and Appendix E (on the method of steepest

descent as used in evaluating phase-mixing integrals).
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2. Derivation of the Second-Order (Nonlinear) Echo Response from the

Vlasov-Maxwell Equations

2.1 Formulation of the problem.

The Vlasov equation for a plasma in an external magnetic field has

already been discussed in (2.1) - (2.7) of Part I for the perturbation

expansion

X (a 9,r) = f(v) * ( X,k,t) +f(X v, t) +*--

Ep ( x,,) = E, _,) + 2<_ xt +... (2.1)

fBp~(r> t) _ B.,(t) + a_(xt) +-

In the notation used there, the Vlasov equation is in zero order,

aS ° - o ; (2.2)

in first order,

a + . i E + T a+- o (2.3)
dt -) a x 5

and in second order,

t +' s - 2
+

-
v X

- ' any

-~r(= -nZn 0(Z,+w 3) f c vx (8,+Bx Rnt)]. ;(2.4)

- A --e/t c- - --

The nonlinear term (the right-hand side) of the second-order equation,

(2.4), is the term that will produce an echo. Given two excitations,

we will solve (2.4) to obtain the echo response.

107



Note that the right-hand side of (2.4) serves as an effective

driving term (effective external source) for the full equation. It fol-

lows, as we shall find shortly, that in Fourier-Laplace transform space,

efr> or c x ( B + seIr)] ,(.
2~ ~ ~ ~ - (2.5)

Let E represent [(E1 + E xt) + v x (Bl + B )] for the transversee ex cc- --1 Bext

case or [E1 + E xt] for the longitudinal case. Then in general, if

two spatial excitations are made as shown in Fig. 1, we will have

E = EC ) + E (W2 ) (2.6)

and

(2.7)

so the product E a fl contains four terms. Each term produces a

response at the sum or difference of the frequencies involved, as

follows:

[E(c.h'z) ;r(] fc(W ) O. 2 c(2.8a)

I 0, 24't~zw , (2.8b)[-(CZ)& ] (WZ) 0 , 22 2 (2. 8b)

[FI : . ] Qez) Ce a (2.8c)

[~-( S . ] (,V.) ± - c 2 (2.8d)

The first two terms are second-order corrections to the individual exci-

tations (at zero frequency and the second harmonic) and these would
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characteristically damp away in a few Landau damping lengths from the

position of the individual excitations. The last two terms represent

the nonlinear interaction between the two excitations and these are what

drive the echo. Typically the fields (E's), and the branch-cut and

dielectric-pole portions of fl damp away in a distance 6 << L where-

as the free-streaming part of fl persists indefinitely (if there are

no collisions). Thus if we are interested in echoes only for z > L ,

we know E(w1 ) will be essentially zero at z = L , and therefore the

only term we need consider in calculating the echo is (2.8d). Similarly

for echoes at z < 0 , we need consider only (2.8c).

2.2 Possible echo types.

We now give a concise explanation as to what type of echo will be

produced, given the types of excitations (transverse or longitudinal)

that are made. Consider just the ~ dependence of f2 in (2.5) (the

angle 4 is defined in Fig. 1 of Part I). For a transverse excitation,

we know that E - X e±i and fl ' e% i [see (2.30) and (2.73) of

Part I]. Similarly we shall find that for a longitudinal excitation

both E *v and fl have no P dependence. The current response is

= IV

22 (2.9)

using the circular polarization representation of Part I [see (2.33) of e

using the circular polarization representation of Part I [see (2.33) of

Part I], and where we have indicated only the 4 integration. If f2

has no 4 dependence then the only term of (2.9) that survives the ,
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integration is the e term so the resultant J2 will be a longitudinal

wave. If f2 ' e i then the only term of (2.9) that survives the

integration is the e^ term so the resultant J2 will be a transverse

wave. Recall that f2 a [E *aJ fl and that for an echo calculation

fl comes from the first excitation and [E comes from the second

excitation. Let t represent a transverse excitation and l represent

a longitudinal excitation. Then for excitations in the sequence listed,

we will obtain the following echo types:

t- t
(2.10)

7'

These results are for the lowest-order echoes that will occur when all

waves considered propagate along the direction of the external magnetic

field Bo . Later we shall consider the effects of having propagation

just off-axis.

The strictly longitudinal case (X-?+j) is the original echo case

investigated by Gould and O'Neil, et al.,(2 6 ) and subsequently verified

experimentally. (2729) The production of a longitudinal echo by two

transverse excitations (%t7-t ) has been investigated in theory

only.(20 ) We shall be concerned only with the combinations that produce

transverse echoes, i.e., tf-' t and 7'- t. These cases have not

been investigated previously.

2.3 Transverse plasma wave echoes.

We choose to make a f excitation with frequency w1 at z = 0
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and an I excitation with frequency w
2

at z = L as shown in Fig. 1.

Explicitly we choose

e(a t) ECoS e[V(os(> EZ(,-LsACI(7<] (2.11)

where the El(z) term is the same transverse excitation used in Part I,

and the E2(z-L) term is the longitudinal excitation at z = L . By

considering echoes at both z > L and z < 0 we can investigate both

the Af case (for which the echo is at z > L ) and the t7' case (for

which the echo is at z < 0 ). For the transverse excitation we already

have an expression for fl(z,vz,t) [i.e., (2.73) of Part I] and we

can easily obtain an expression for E(z,t) [by taking the inverse

Fourier-Laplace transform of (2.48) of Part I]. We shall need analogous

expressions for the longitudinal excitation and we now give a brief

summary of them.

In first order the Vlasov equation (2.3) is linear in E, B, and f

and therefore the effects of the longitudinal excitation may be con-

sidered independently of the effects of the transverse excitation. We

assume that the longitudinal wave propagates exactly along the direction

of the external magnetic field B so k, E, and B all lie along

the same direction and fl has no 4 dependence. There is no induced

magnetic field so V x E = 0 (this is the well known electrostatic

case). The appropriate form of the Vlasov equation is then

_~ -- - + _E - _ (2.12)

which combines with Poisson's equation (the appropriate Maxwell equation)
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to give (7 )

E (kE) =ku)
TO'°7" ¢. (k, 0) (2.13)

where

9 (kc9) = / - ktZ;4 t (ha) AA ) (2.14)

for which we assumed fo (vz) is Maxwellian. Symmetry properties of the

longitudinal dielectric function cE(k,w) are discussed in Appendix B

and a brief summary of what is known about the roots of Ec(k,w) = 0

for real w and complex k is given in Appendix D.

The longitudinal part of the external excitation is from (2.11),

where for definiteness we require w
2
> 0 ,

E (,-t) = E (Z-L) - cos (c ,t)

2-

_ eve

- E 2 rZ(B-L j )~r 17_l _iSDt (2.15)

s=@/

which has the Fourier-Laplace transform

-;kl

SE- 52 (C + SCAZ) (2.16)

Henceforth we shall drop the summation symbol, although summation over

s = + 1 will still be implied. Then from (2.13) and (2.16) we have

2'o+ F,/ (2.17)
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whose inverse transform is

too

,E (z, t) =- eT-- 2

-00

Noting that for real k

zeros in the upper-half

shown in Fig. 2 of Part

Zke Oe c+ _

-co +z2_00+;6

,-) 7C

w
(2.18)

and complex w the function CZ(k ,) has no

w plane, ( 7 ) we lower the w contour (as

I) and obtain

+ 0" i =)e

E <ee)C ez e J 2 EefkSCisz) (2.19)

We proceed to calculate the echo response for the tf case and

then the At case.

2.3.1 1'. Case

We may rewrite the second-order Vlasov equation (2.4) as

a42 + ¥- - ) .)r ax O (2.20)

where

'g,(0) = f [IE + Lx .. j-~~,)(8

(2.21)

Equation (2.20) is of the same form as the first-order equation and thus

has the solution (as shown in Appendix A)
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27r

-- / o (2.22)

The Maxwell curl equations combine to give [in analogy to (2.16) of

Part I]

o (
Z Z

)= WIT, (2.23)

where

U- _ ' A~f4 > V(2.24)

The gl term in (2.22) contributes to J
2

exactly as the g term

contributed to J-1 in the single transverse excitation case examined

in Part I. The g2 term in (2.22) produces what may be considered an

external current and which we shall designate as J2 ext where

2The part of f2 that (2.25)

- 2 exr I depends on g2 J

Then in analogy to (2.43) of Part I we find

,.- =

ZTror .a- (2.26)

We proceed to calculate J2 ext

For this, the 7If case, we have

y~Z~ (~~~6~~) =7 E C~,v~) (2.27)

from fexcitation from excitation (2.27)
at z = L at z = O
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Combining (2.19) with the free-streaming part of (2.73) of Part I, and

then Fourier-Laplace transforming, we obtain

-kz i 4 ur t i0t rk) e

a |{t (2.28)

\; Vz ( ) a } i,, 

where

k = (2.29)

moving the 3/3vz operator to the far left and interchanging orders of

integration gives

Z al 2v) Iz _;_(,,-++,) t 0

00 ee 2 

The integral over z equals 2(k'-k+k) Performing the remaining

two integrals, we obtain

,(k,) £ (k-Ak,) -i ( k - ,) L
(W-cWa) ET-- ,-O~",)E -7 F(4z-k,~ w~)j (2.31)

E<v-R cl2
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where

Cu = - Swc( - °orCJ.3
(2.32)

Since g2 (~) ,- ei , the part of f2 associated with g2 is, after

performing the ~' integration in (2.22),

¢ i c)) = i 5z (3 ) (2.33)

where g2(~) is still given by (2.31).

The "external current" that drives the echo is given by (2.25).

Performing the integrations over 4 and v , we obtain

-z ext - -z (2.34)
0

where

{ } { (v) ,(k,) (k-k) t ,) 1
VZ (W- %) ( 4, . -4tUY) E (4-4,, S=Z)k

Integrating (2.34) by parts then gives

coJ = e* (-2)I } (2.35)

Using (2.35) in (2.26) we find
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L (k c,) =
-2 rTOT,9

e(-) c (2.36)

The actual response is the Fourier-Laplace transform of (2.36),

i.e.,

J (,Z) :/","4 c o ( ) e- f
-2 7o07;,_ ('2) -- 7 zTO L (2.37)

The primitive contours in the w and k planes are the same as given

earlier (in Figs. 2a and 3a of Part I). We perform the k integral

first. Branch-cut integrals arise from proper consideration of

et(k-kl,sw2 ) and ct(k,w) in the denominator of (2.37) but these give

a damped response at z = L whereas the echo response occurs typically

a good distance away from z = L . The dielectric poles in the k

plane of e£(k-kl,sw
2
) and t (k,w) also produce damped responses

near z = L . Thus to obtain the echo response we need consider only

the double pole at k = (w-aQ)/v
z
. Since the integrand of (2.37) con-

ik(z-L)
tains the factor e , we pull the primitive k contour above

for z > L and below for z < L . Then since we have Im w > 0 , we

obtain a contribution only for z > L , i.e.,

0o

J (?,t ) : e i c/V [ (v) E,(k,)
Z To0ro O l 3 E 7(A ,)J4-- ~ 7'0'~9,' O(-ak -;
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~/(4/ ke- ik

d

t

'
f- j-) e- ( - k"z L 't" k t

I , '4 _ -___ ___ ____ ___

27 (W-c1,J) at ___(k-k, E</¢,@) J,. A

vz (2.38)

Lowering the w contour we obtain a residue contribution at = w ,

j (?,) =

cO Oti tvg)Si(4)zg~z AdA ik3(v-zo) -/Zt (2.39)

e C e(-Z) g

0 J ET( -a-Ck ) E(,k2,S >S) E7(4( 3 )

where

;k ( -L)

A( k) 1 E (k-,sw,) e (i ,)J

Ak~~~v~) ~~~~~ = ~

- (2.40)

kZ- =

°k z -Swz2 L

r- a' c°3 + xz
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Recall that we are still supposed to sum over s = ± 1 and

a = + 1 . When this is done we find [using symmetry properties (B.6)

and (B.8) from Appendix B] that the s = +1, a = +1 term is the

complex conjugate of the s = -1, a = -1 term so the response is just

twice the real part of either term. Similarly the s = -1, a = +1

term is the complex conjugate of the s = +1, a = -1 term. Thus with

a new dummy index s , we have (arbitrarily using a = -1 ),

J- (.,,t) = z2 e C (-/-) -
-z rror'L s = +_ /

co q i k3 C(-o2 (2.41)

I t
o/ 9e 6;( 4, 7~/) (ke , t2) E7 ( k3 , ) 0

where

C = -Lr t'
2 Y 7n

a / kE 2 ( k: - k, ) e X'( - ) }l
* S(>-~>,752)E 'k-k~b_) |

-C" = /,1 + S Z

k = ' z
z

A- 3 , 

VZ

0( = scAl (4Cta) = = SGN(C + AZ)
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k/ C= +
VZ

(2.42)

E. = C 6-z L

° + -(t +.a)o=2C,.,z .s~ -~+n )



In (2.41) - (2.42) we have explicitly specified which branches of the

dielectric functions are to be used.

Equation (2.41) gives the transverse echo response for te excita-

tions. Note that since k
3

depends on v
z

there will be phase mixing

everywhere except near z = z
°

, the position of the echo peak. We

defer calculation of the integral over vz in (2.41) and further dis-

cussion of this, the if case, until after we have investigated the

let case, which we now do. [Numerical results concerning (2.41) for

some specific cases will be given in Figs. 3-5.]

2.3.2 I'f Case

The derivation proceeds exactly as in (2.20) - (2.26) but then

instead of (2.27) we have

[ C OT-L )]- r _ \ 

from texcitation from !excitation (2.43)
at z = 0 at z = L

The expression [TOTALk,) + c v x BTOTAL(k,w)] for a trans-

verse excitation was calculated earlier to be [see (2.31) and (2.39) of

Part I]

nY £s ( ,)+ C VX R (iJ,J(]. +_

- e. (2.44 + ) 
oz E~ ,(k, lx C l GVz ) ~ga (2.44)
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Using (2.48) of Part I for E ext(k,w) , the inverse transform of (2.44)

is

r, t ,) LZoL c - X 70r r t) I _
ljh-Tr'4 4 - 7-,, T 

(2.45)

.00 ,, j-ro ,'k iak ,'e, A .Vv= r e- e t / + :_' _<)a _ .> kV, I
g -i crld 00 G7' z

The expression for fl(k,v,w) for a longitudinal excitation is

7f(Zf~I mex(X- W) a) y I'
/(k, .1 c= = _

6'e(k,) i (a/- ky)

which follows directl

E xt(k,w) and then t

the free-streaming pa

/(F., 1)=

ly from (2.12) and (2.13). Using (2.16) for

taking the inverse transform of (2.46), we find

art of fl(z,v,t) is, for z < 0 ,

ao kz(z -
/ ) + Isc-,t

, (_Ve) g5(kZ) aXVz e
1;n 2a Y E(k2,- so

2.47)

where k2 = -sw2/v
z

. Equations (2.43), (2.45), (2.47) combine to give

2 z 2 z( -2 ~ 1 ~ 'r-ti~ O C _____ ____

2 V~~~~ T / I I~~~~
(2.48)

I /+ V/ 
V( ~:w /aD, 0-W& .)Vz
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This expression is more complicated than the corresponding expression

for the X7 case, (2.28), mainly because of the factor

(l· La) a At J

which in the t7c case was just a/3vz

We proceed to calculate J2 TOTAL(z' t) in the same manner as used

for the 7t case in (2.28) - (2.42). This computation is more

involved than that of the t7 case but the final result is similar to

the final result of the tif case. Omitting the details of this calcu-

lation, we find:

Or- (,tt) = 72 2
-2 rorTz = +/

0>Z °(9t) 6S(4o) (4 Are) "t'(e'- ) (2.49)

-or ? e ? s Ek( 4) F

where

' k3~~ d3

< V" > = ;fl)dt
Zf ( 
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and the k's, C, w3, and zo are as defined in (2.42). Equation

(2.49) gives the transverse echo response for if excitations. Note

that only particles with v < 0 contribute to the echo [i.e., note
0
f dv

z
in (2.49)] and that there is a response only for z < 0

_60

[i.e., note 6(-v
z)

factor in (2.49)]. Note, however, that particles

with all values of v contribute to the e's in (2.49) and thus
z

particles with vz > 0 may affect the echo shape.

Having obtained the transverse echo response for both the ti and

7f cases we continue by investigating the consequences of these

results, (2.41) and (2.49), and then actually performing the integrals

over v
z

to obtain echo shapes for some specific cases.
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3. Transverse Echo Characteristics

Equations (2.41) and (2.49) represent the transverse echo response

for the species of particles that has cyclotron frequency Q and zero-

order distribution function fo(vZ) . Thus there is an electron echo

and an ion echo and since z0 depends on 2 , i.e., from (2.42)

Z°+ (3.1) ° 32 bz t S (scs, 4 n) (3. 1)

it follows that in general the electron and ion echo peaks will occur

at different locations. Also note that since

Cc3 = C + gW2 (3.2)

it is possible to have echoes at the sum (s = +1) or difference (s = -1:

of the excitation frequencies.

Recall that w 2 is always positive and that w1 may have either

sign, wl < 0 corresponding to a left-hand (LH) excitation and w > 0

corresponding to a right-hand (RH) excitation. We adopt the convention

that RH polarization of a wave means that the J (or E ) associated

with the wave rotates in the same direction as electrons gyrate in the

zero-order magnetic field B . (N.B. This differs from the usual-o

convention in optics where polarization is referred to the direction of

propagation of the wave.)

Now consider just tiy echoes, which exist only for z > L

From (3.1) this places restrictions on the allowed values of w1 and

W2 . Thus to obtain a 7J' echo for electrons (S = -Wce) at the differ

ence frequency (s = -1) we must have

)
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L
> L

or

>2 > ('u% e)(33
(3.3)

Furthermore, since from (2.41) J2 X Re e^+ exp[i(Wl-w
2
)t]} , the

region of w1, w
2

space defined by (3.3) will be divided into two

regions; for wl > w2 the echo will have LH polarization, for w 1 < w2

the echo will have R}! polarization. These two regions are shown in

Fig. 2 as regions IV and V respectively. In Fig. 2, each region shown

has distinct echo characteristics; i.e., type ( t7 or i7f ), polariza-

tion, frequency, and direction of propagation (+ or 4-) of the waves

comprising the echo are all indicated. The boundaries of each region

are obtained in the manner used to define regions IV and V above. As

shown, Fig. 2 applies to electron echoes but it can be used for ion

echoes by interchanging RH and LH everywhere, including along the wl

axis, where then w 1 > 0 would mean a LH excitation.

The transverse echoes we have been considering offer a much more

abundant variety of phenomena than those which occur for purely longi-

tudinal echoes ( L/-e ). We summarize the basic differences and new

features:

1.) Echoes can occur at the sum or difference frequency whereas in

the longitudinal case the echo occurs only at the difference frequency.

2.) The echo location (zO ) and frequency (w3 ) depend on the
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FIGURE 2. 'TRANSVERSE ECHO CHARACTERISTICS.

This figure applies for electron echoes; for ion echoes interchange RH and LH everywhere.



species, whereas in the longitudinal case both the electron and ion

echoes occur at the same position and at the same frequency. By saying

W
3

depends on species we mean that it is possible to have the electron

echo at the sum frequency while the ion echo is at the difference fre-

quency. We emphasize though that given w1', 2 there is only one

electron echo (with z0 > L or z0 < 0 ) and similarly only one ion

echo.

3.) The polarization of the echo may be different than that of

the initial w 1 excitation. For example, in region IV, the excitation

has RH polarization while the echo has LHI polarization.

4.) The propagation direction of the waves comprising the echo

may be away from or toward the excitation region whereas in the longitu-

dinal case, the propagation direction is always away from the excitation

region. The cases where the waves propagate toward the excitation

region are those which have 0 < w3 < Wce and the phenomenon involved

is the same as that of the negative phase velocity free-streaming waves

that occur for a single transverse excitation if 0 < w1 < ,ce ' as was

discussed in Part I.

5.) There is a unique echo for every value of w1 , W2 whereas in

the longitudinal case -w1' W2 represented the same echo phenomenon as

+ 1 ,' w2 ; the only difference being that the echo appeared on the

opposite side of the excitation region.

We now comment on a few of the many interesting experiments sug-

gested by Fig. 2.

1.) Consider echoes in region IV. With an initial high frequency

(W1 > Wce) RH polarized excitation and with w2 > 1 we may generate
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an echo that is a low frequency LH polarized Alfven wave.

2.) We may examine the consequences of echoes comprised of waves

which have negative phase velocities by considering echoes in regions

II and V, since in both of these regions we have 0 < w3 < ce .

3.) Note that an echo occurs even if w1 = 0 . This means that

if the first excitation is simply a fixed transverse electric field,

i.e., like

- er XE (3.4)

and if a longitudinal excitation is made at frequency w
2

, then a

transverse echo with RH polarization will occur at the same frequency

W2 ' at the location

ezl L

° " 'z- ~ce (3.5)

Thus a longitudinal wave may be "converted" into a transverse wave (of

the same frequency) which is localzied about a specific position (zo)

in the plasma. This novel feature occurs in both regions II and III.
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4. Evaluation of Transverse Echo Shapes

4.1 Use of the method of steepest descent.

We proceed to evaluate the integral over v
z

that occurs in (2.41)

for the 7f echo case. [The integral in (2.49) for the -it echo case

can be evaluated in the same manner.] Using a Maxwellian distribution,

t(V) = /;i ef(v ) =Ie ez (4.1)

assuming delta function sources [as in (2.77)-(2.78) of Part I] so

,(k,) = (*k) = i

and considering just electron echoes ( = -w ce), we find (2.41) becomes

j (i,t)
2 TR0 7 9TL

s=+I cI o e 3 (- 
3

-L)S-=±/ L-~ ~ ~ ~~(t-£ (4.3)

where the integral we must evaluate is

(c, - .ce) (Z- 4o) _ ( v 2

' dV, v2.
K 7CZ ( )e

( a) C ( 6 g of, 0 ( LX

(4.4)

a EAs (k- ,, -s z) 

C- ( k, s ,)

;>7, (k7 '-?)
43 k= ks

Er( k &) (4.5)
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In (4.4) we have explicitly indicated the v
z

dependence of the k

arguments of the C's.

We evaluate (4.4) by the method of steepest descent as discussed in

Appendix E. The appropriate saddle point of the integrand of (4.4) is

VS r W( ce io) 1 R -
- -lr e (4.6)

where 6 = ± 1 for [(3w-ce)(Z-Zo)] > 0 . The primitive contour

(O < vz/a < m) in the complex v z/a plane is deformed through the

appropriate saddle point along the path of steepest descent, care being

taken to indent the contour around any poles caused by the c's in (4.4).

The three possible pole terms arising from the dielectric functions

involving wl' 2,' w3 in (4.4) will be referred to as the pole 1, pole

2, pole 3 terms, respectively. Thus we find

i = I + SZ Icon i
'SRwOOLE XI/ 'PoLE 1(4.7)

The saddle point contribution is

sA,(v) e (4.8)

('Vs) eji,( -VS 7z S ) 2) i)

[which is valid for (Z-zo)(W 3 -Wce)/al > 0.12 as discussed in Appendix

E]. Assuming simple first-order poles in each case, the three pole

terms are:
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2

(i A3 "c, ; ,( - ,- t
I zF77 A, (V) e

V 7( Zr 3v ce ,L3)
7c< ce

____ kEe(k ) C e

7-- '2

(vD,(3 ') e.

iztr a A,(V3) e

2e /-/ __ m/L,_23 \ V

CZ V3 · / ( (4$, L2) a E ] )J

|.

where v1 , v
2
, v

3
are defined by

. ( - - -e )

E ( s C) = o

\ v- ;%3) = 0

(ec~f tuce' ) O
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/ + i (o --

,k

A,(v3 ) = i -3 + 2k- (?o-_L)

k ke; (k,t, k,) if k e _a ( k, Sz

, 6(k, &") * 2 'Ex 42 k'5-Z) 4fi
ArC~~~~~~A prime (' \fw

Are dosienaowhee to a

A prime (') denotes differentiation with respect to k , and

V. - Ice
/ V.

t'

where i = 1, 2, 3.

s5"/2

2 -= ^Z 

z- a9cek(3 _ 

The factor Yi equals ± 1 depending on which

direction the contour encircles the pole in question, and if there is
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no pole Yi = 0 .

In (4.11), note the abundance of terms in A1 (v 2 ) and Al(v
3
) as

compared to Al(vl) . These terms occur because when the third and

fourth terms of A1(vz
) , as given in (4.5),are evaluated at pole 2 and

pole 3 respectively, second-order poles are produced. The new terms

in Al(v2 ) and A1(v3) come from the rather complicated residue

expressions that result from these second-order poles.

Concerning the sizes of the various terms in the Al(vi) factors

in (4.11), we find that all terms that contain an c, £', or E" are

typically of order one. Noting that

Ik,( 0 L)I = IA-,L| = | |(4.13)

and that the pole terms are important only if Ivi/aI < 3 [because of

the exponential factors exp(-v 2 /a2 ) in (4.9)], we find Ik3 (zo-L)

>> 1 provided

L L 6vce ( 'c

|-- C e- c 
>

(4.14)

ce

Since typically Lce /c is >> 1, we find (4.14) holds if w is not

>> 1) in which case theextremely close to Wce (Iwl/Wce - a >> 1) in which case the

underlined term in each A(vi) in (4.11) is the dominant term. If w1

is extremely close to Wce (l|l/0ce - 1{ a << 1) then the Al(vi)'s

must be evaluated in full. In any case, the Al(vi)'s are only amplitude

factors for the various pole terms. More specifically, the Al(Vi)'s

have no z dependence [except for the slight z dependence in the
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underlined terms in (4.11)] and, therefore, they can affect the echo

shape only by affecting the size, but not the shape, of the pole terms.

4.2 Numerical examples of transverse echo shapes.

First we explain why we should not evaluate (4.8), (4.9) analyti-

cally by using asymptotic exmapsions for the Z functions involved. In

the saddle-point term (4.8), the arguments of the Z functions contained

in the three e's are all identically equal to vs/a , which is defined

by (4.6). Typically we shall want to compute the echo shape for

0 < I(z-zo)(W3-wce)/aI ~ 10 say, over which range we have 0 < IVsl/a

< 1.8 , for which Z(vs/a) is clearly not in its asymptotic limit.

Similarly for the ith pole term in (4.9), the arguments of the Z func-

tions contained in the three e's are all identically equal to vi/a ,

which is defined by (4.10). As mentioned earlier, the i t h pole term

is significant only if Ivi[/a < 3 [because of the exponential factor

exp(-vi2/a2 ) in (4.9)], in which case Z(vi/a) is clearly not in its

asymptotic limit. Thus, when the saddle point and pole terms are sig-

nificant, the Z functions involved are clearly not in their asymptotic

limits. Hence it is rather pointless to rewrite (4.8) and (4.9) using

asymptotic expansions for the Z functions involved because the result-

ant expressions would not be valid at the very places we would like to

use them. (These remarks apply also to the purely longitudinal echo

case. In particular, the final expression for the spatial longitudinal

echo case of Gould and O'Neil ( 2 6 ) was computed using the asymptotic

expansion of the Z function and accordingly their result is essentially

of little value since it does not apply to any cases wherein the saddle

point and pole terms are significant.)
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Thus we have numerically evaluated (4.8), (4.9) for three cases of

the 7f' echoes with the results presented in Figs. 3, 4, 5. (As in

Part I, we chose wpe/wce = 0.4 and c/a = 1120 , these being typical

values for the UCLA Q machine.) Choices of w1 , w2 for each case are

given in Fig. 3, which may be compared with Fig. 2 to obtain the echo

characteristics. (The hatched regions in Fig. 3 will be shown to be the

regions wherein the pole 1 or pole 3 terms are significant.) Values of

the poles vi/a were obtained from Appendices C and D. Note that cases

1 and 2 are echoes at the sum frequency (w1 + W2) whereas case 3 is an

echo at the difference frequency (w1 - W2)'

In Fig. 4 we have drawn the appropriate saddle point contour for

each case. Recall from Part I that for 0 < wl < wce the free-streaming

pole appeared on the "wrong" side of the contour and therefore never

contributed to the final response (see Fig. 5 of Part I). For the echo

calculation, poles 1 and 3 also appear on the "wrong" side of the con-

tour for 0 < m1 < Xce and 0 < w
3

< ce , respectively; the "right"

side of the contour being that for which the pole 1 term contributes

for z < z0 and the pole 3 term contributes for z > z0 . However, in

the echo case the primitive vz contour is deformed upward, say, for

z < z0 , and downward for z > z0 , so a pole will always be enclosed

somewhere, even if it is on the "wrong" side. In those cases where

pole 1 or pole 3 is past the end of the contour in Fig. 4 we mean that

the pole occurs at some v
i

where Ivil z c and therefore the corre-

sponding pole term is insignificant because the exponential factor

exp(-v2 /a2) [in (4.9)] is zero for all practical purposes. Note that

any pure imaginary poles (as in case 1) never come near the saddle
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PARAMETER VALUES FOR THREE CASES OF 7f ECHOES.

( wpe/ ce = .4, c/a = 1120 )

Vl/a W2 /Wpe V2 /a1w/mce

274-id6

1.21-i.205
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1.2

1.2
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i68.7
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Case I

Case 2

Case 3

73 v
2 -aZ plane

-- - -

- - - -

I/

- -s--,-
- ILI2 1F

3i

SADDLE-POINT CONTOURS FOR THE THREE ECHO CASES OF
FIGURE 3.

In each case the primitive contour in the complex v z/a

plane (the real axis for 0 < Re v
z

< c) has been deformed

to the appropriate saddle-point contour for z < z0 (solid

line) and z > z
0

(dashed line). The saddle points are

indicated by X's and the three poles by dots.
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point contours.

In Fig. 5 we display numerical results of echo shapes for the

three cases. From (4.3) we see that J X Re I and in Fig. 5 we have
x

plotted

Po,- + =, po- ] (4.15)

against zc/wce using (4.8), (4.9). For these calculations we chose

Lc/ce = 10 . (For the typical value wce/27r = 2.25 GHz, c/wce z 2 cm,

and L = 20 cm.) We note the following results:

CASE 1. There are no pole contributions so the echo shape is

determined entirely by the saddle point contribution. The echo width

is large (compared to a/wce ) because the saddle point term's charac-

teristic length ja/w3-wcel is relatively large (because w3 Z wce ) '

Also the amplitude is relatively large because the dominant term in

A
1
(vs ) , i.e.,

641 e/|·e~z,- = k c e (4.16)

[see (4.13), (4.14)] is z c/a (because w1 wce ).

CASE 2. There are contributions from the saddle-point, pole 1,

and pole 2 terms. The saddle-point term exhibits a very narrow peak

because la/Z3- cel z a/wce (because w3 3 Wce ). Also the amplitude

of the saddle-point term is relatively small because the dominant term

in A1 (vs) , i.e., (4.16), is relatively small (because w1 z ce )

Both the pole 1 and pole 2 terms occur on the z > z
°

side of the echo
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but since the pole 2 term is much smaller than the pole 1 term (primari-

ly because exp[-v22/a 2 ] << exp[-v1 2/a2] ), only the pole 1 term makes

a visible contribution in Fig. 2. The amplitudes of both pole terms are

also governed by the dominant term of A1(vi) , i.e., (4.16), which for

this case is relatively small (because 1 w e ).

CASE 3. There are contributions from the saddle-point, pole 2,

and pole 3 terms. The echo frequency w3 is just below the cyclotron

frequency and the resultant echo has a large amplitude and an extensive

width. Both the amplitude and width of the saddle-point term are large

because both la/w3-wce and lik
3
(z-L)I [i.e., (4.16)] are relatively

large. Similarly the pole 3 term has a large amplitude and penetration

length. The pole 2 term occurs on the z > z side of the echo, buto

it is not visible in Fig. 5 because it is much smaller than the pole 3

term (since exp[-v22/a2] << exp[-v32/a2 ] ).

4.3 Physical meaning of the echo terms and where they are

important.

The saddle-point term (4.8) represents phase mixing of the free-

streaming waves that comprise the echo. This term is always significant

in the echo peak region, which is centered at z = z0 and which has a

characteristic width or order Ia/w3-cel 

The pole 1, 2, 3 terms in (4.9) represent the collective effects

of the plasma in response to the free-streaming terms that result

respectively from the w1 excitation, the w2 excitation, and the

effective w 3 excitation. We emphasize that only the free-streaming

terms enter the echo calculation; i.e., velocity-dependent free-
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streaming terms [in fl(z,v,t) and El(z,t)] of the form

exp[i(w/vz)z] contribute to the echo whereas collective oscillations

of the form exp[iklz] (where kl is a fixed complex number) do not.

An important consequence of this is that the collective oscillations of

fl for the first excitation at wl [as given in (2.73) of Part I] may

persist past the echo position since they do not interfere with the

established echo at w3 or produce any new echoes.

We now determine for what values of w1 , W2, 2 3 the corresponding

pole terms are significant in comparison to the saddle-point term. The

size of a pole term is determined predominantly by the size of the

factor exp[-vi2/a2 ] which (for IRe vil >> JIm vil) is very small

fctr Ivil/a > 3 say, and therefore the pole terms are significant

only for Ivil/a < 3. For the pole 2 term we consider the least-damped

root of E£(k,w) = 0 as discussed in Appendix D. For Iw21 < wpe the

root is pure imaginary and no pole term results. For 1w21 > wpe the

root is complex, but only for I121 > 1.08 wpe is jw/"k"al = {v2/a{

< 3 (see Fig. D-1). Thus only for 1w21 > 1.08 wpe is the pole 2 term

significant . Similarly for the pole 1 and pole 3 terms we consider

the least-damped roots of £T(k,w) = 0 as discussed in Appendix C.

From Fig. C-2, we note that Iw-w ce/"k"al = Ivi/al < 3 only if

: Wce ' Thus the pole 1 and pole 3 terms are significant only if wl

or W3 is very close to wce (as shown by the hatched regions in

Fig. 3).

Finally, in evaluating (4.4) we consider the 1/vz 3 factor which

causes the echo amplitude to diverge at z = z0 . This behavior also

appears in the saddle point term (4.5) because, as given by (4.6),
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v -. 0 as z *- z. The l/vz factor in (4.4) is presumably due to

three factors of 1/v
z

: one for the excitation at wl [see the free-

streaming part of (2.73) in Part I], one for the excitation at w2

[see (2.47)], and one for the echo response at w3 . Recall that for

the single transverse excitation in Part I, the free-streaming term

diverged at z = 0 (as explained in Section 5.2 of Part I). For simi-

lar reasons the echo diverges at z = z
o

. In the next section we

shall show that Fokker-Planck collisions and/or finite-width excitation

mechanisms remove this divergence at z = z .
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5. Effects of Fokker-Planck Collisions and Finite-Width Excitation

Mechanisms.

We first discuss the effects of collisions and finite widths in

the excitation mechanisms from a physical point of view. Recall from

Part I that for a single transverse excitation, the inclusion of a

finite z dependence in E ex(z,t) reduced the amplitude of the free-

streaming term and also removed its divergence at z = 0 . Physical

reasons for the removal of this divergence were given in Section 5.2 of

Part I. For similar reasons we shall find in the echo case that inclu-

sion of finite z dependence for the t excitation and/or the I exci-

tation effectively removes the divergence of the echo response at its

peak z = z0 .

When velocity-dependent collisions are taken into account, we can

make the following physical picture. We consider delta-function excita-

tion mechanisms. Then we note the echo problem as derived above

reduced essentially to the consideration of free-streaming waves that

propagate in one direction (the z direction). Since B = B e , the-0 oz

particles that comprise these waves have helical orbits that are con-

fined to lie along the z direction. Each free-streaming wave has a

definite wavelength and is characterized by the velocity v
z

of the

particles that comprise the wave. The effect of long-range collisions

(such as Coulomb collisions) is principally to "slide" the particles

along the field lines. Thus collisions can effectively spatially

reorient the particles in a particular free-streaming wave. And those

particles that suffer collisions may no longer be in phase with the

wave. In the limit of many collisions there results a mixture of free-
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streaming particles with uncorrelated phases so no net wave is

discernible.

The Fokker-Planck collision term, when Coulomb collisions are con-

sidered, is particularly effective in destroying those free-streaming

waves whose particles have velocities near v
z

= 0 . Since these are

the particles that cause the divergence of the echo at its peak, we

find that the aforementioned collisions are effective in eliminating

this divergence.

We now compute these collisional effects using the Fokker-Planck

equation

At+- ' - - _ +x- -, r v F.

=/5 ttDSfX} + LI'Z 2 } (5.1)

where D
1

and D
2

are the frictional force and diffusion coefficients

respectively. Considering a single transverse excitation, we recall

that the free-streaming part of fl goes like

e i( F/- ' (5.2)

[see (2.73) of Part I]. When the Fokker-Planck operator acts on this

fl we find

1 fD j = + i 9 au, c/ `JE
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(2 fo C -t- a ,1 + 1i- Jj 4 ') Vz 'r~~~~~~

T (5.3)
-I

2
z {{ ( C - (C, F) 2 )

+2 /X 3 } / l V9 3

Since generally

(i = 1,2) we conclude

(i = nant1,2) we conclude

dominant term in F.P.

;aZv- -- Di 
(5.4)

that the underlined term in (5.3) is the

{fl} provided

(W°-C ce) >|> /
(5.5)

Thus we may write

F·· , =t - ef 4

(5.6)

provided (5.5) holds.

Now assume that E and B damp away in a small
--l TOTAL Z- TOTAL

distance d . Then for z > d and z >> [a/wl-wcel [so (5.5) holds]

we may rewrite the Fokker-Planck equation (5.1) as
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/+ LV_5 -2- eves
__ - - 1, (5.7)

Recalling that fl ' ei and Laplace transforming (5.7), we find

_ ____ ( ')rfe (5.8)

where we have assumed fl(t=O) = 0 . Equation (5.8) has the solution

;6(Z) = ;((ff=(') t <7 Z (5.9)

Thus we have derived an equation which gives fl(z) in terms of the

initial spatial value fl(z=0O) . This derivation [(5.7) - (5.9)]

parallels that of O'Neil (30 ) for the temporal longitudinal case.

Thus in the echo calculation (specifically for 7tf echoes), the

free-streaming term fl acquires the factor

o v Dz (atAce) -I ' Z

ev

over the range 0 ,< z < L . For z > L we have, in place of (5.2),

i ( e 5 + (3 (-L) (5.10)

and therefore, in place of (5.6),

(L~//) =D| )l + (@3 " ) (,-] (5.11)Ve,( ' ·z 
v u
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Thus for 7? echoes, the integrand of (4.4) should include the factor

_~~f[LDz(c>,-kefl av-/ (5.12)
e

If D2 does not depend on z we may perform the integrals in (5.12)

to obtain the factor

-D iS ( 4 j( .) j (5.13)

in the neighborhood of the echo peak. In obtaining (5.13) we used

(-The factor ) represents the effects of Fokker-Planck collisions.

The factor (5.13) represents the effects of Fokker-Planck collisions.

(Numerical examples will be given later.)

To investigate the effects of finite-width excitation mechanisms

we assume the excitation fields are given by (2.11) with

e_ do (5.14)

(i = 1,2) so

T eo (44)'Y (5.15)

Thus the integrand of (4.4) should include the factor
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e Z/4- ve(5.16)

Combining the above results we find that when both Fokker-Planck

collisions and finite-width excitation mechanisms are taken into account,

(4.4) should be replaced by

. A,(V') e _

o iWi~·)3)C( vwc &c5i3 ()

where

~F~ ( L )2C5& 2 3 1 (5.18)

For Coulomb collisions the Fokker-Planck diffusion coefficient as

derived by Thompson ( 31 ) may be put in the form

DT A- 1 -- = 4A z (5.19)

Using the series representation(3 2

and the asympt 3 +otic series

and the asymptotic series(32)
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e/-f(f) =,/_ e +.1 > /

we find

D; (v)= [ 2~~ ] is | z ul < c (5.20a)
c2_

D2(VZ) 7~]¥[ )>> / (5.20b)VZ) [
7 ,C 1Cr~J /

The integrand of (5.17) is now so complicated that in general it is

only feasible to evaluate the integral by numerically integrating along

the real axis in the complex vz/a plane. However, we can make the

following useful comments.

Evaluation of (5.17).

If (5.17) is evaluated by the saddle-point method, then the pole

terms that occur are no more difficult to evaluate than earlier. Since

each pole occurs at a single fixed point in the complex vz/a plane,

th
we note that the i pole term in (4.9) simply acquires an additional

factor of

(5.21)

To obtain a usable result, we assume Ivzl >> a so we may use (5.20b).

Then the factor (5.21) is

2 

e , .(./=) s(5.22)
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where

(5.23)

We shall evaluate F for a numerical example, but first we consider

the saddle points of e~
(

z
) where

-(ZYVZ .7 e)_ _ V5 ,2 (5.24)

We note immediately that even when the vz dependence of D2 is

neglected, the equation that defines the saddle points, 3 v vz )} 0,
z

is a seventh degree polynomial. It is apparent that it is worthwhile

to use the method of steepest descent now only in special limiting

cases. For example, it would be useful to know the height of the echo

peak. Thus setting z = z° we shall investigate the limits when

(i) collisions effects are dominant, and (ii) when finite-width effects

are dominant.

(i) Collisional effects dominant.

If we have

Z] (5.25)

where v5 is a saddle point to be chosen, then

)'DZ (VZ) v
V 5 ,z2 (5.26)

To proceed we assume Ivzj >> a , then using (5.20b), we find the

appropriate saddle point to be
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v- = (SF) " - (5.27)

where F is defined by (5.23). Accordingly we obtain

-/.65F s

(5.28)

where we have evaluated the constant 5/44/5 = 1.65 . If instead

IVzI << a , then using (5.20b) we find the appropriate saddle point

to be
/

_a _ tee, 2(5.29)

and

2

-,.82 F 7

A/ (v,) e

() ( "s, ' ) M; ouzta)Eit 0,') (5.30)

7 2/7
where we have evaluated the constant - (10/3/') /7 z 1.82

Summarizing these results, we find from (5.22), (5.28), and (5.30)

that Coulomb collisions decrease the size of the pole terms and the

saddle point term (at the echo peak) according to the factors, roughly

POLE TERMS e (/z)(5.31a)
e ~~~~~~~~~('v'//'~
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ECHO PEAK

-

e

e /o I< /
(5.31c)

For the parameter

n = 1010 cm
-
3 ),

values used earlier ( wpe/ ceW 0.4 , c/a= 1120 ,

we calculate F from (5.23) to be

F = 3-/o /

3

Then using values of wl, w2, w3 as given in Fig. 3, we find

FC = (2-ia) (4 -ce) 

(3) ) ( C )) 3

(/ 3 IG6) ( _L)L Ce ) e

CASE 1

CASE 2

CASE 3

Thus if (Lwce/C) = 10 the echo will be essentially destroyed in all

three cases. However, if (Lce /c) = 1 , the case 2 echo would be

clearly visible. Thus for the parameters under consideration, trans-

verse echoes could be seen, but only for small values of (Lwce/) .

3Of course, since F X n/Te , collisional effects could be reduced

substantially by going to higher temperatures or lower densities.
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(ii) Finite-width effects dominant.

We return to our consideration of (5.24). If

oD2 (vs ) v 
<< < z '| r|(5.33)

where v
s

is a new saddle point to be determined, then

2 ,2

v (~ad)'~~ - < -(5.34)

and the appropriate saddle point is

T's = (5.35)

and

A, (v) e

477- (R)Z( t5 i 4(95} 2 i 959) (5.36)

which may be compared with (7.17) of Part I for the single transverse

excitation. Note that even if A
1

or A
2

is zero, the result (5.36)

still holds.
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6. Effects of Temperature Anisotropy (T, j Tz)

We return to the collisionless transverse echo case and investi-

gate the consequences of having T Tz . Assuming an anisotropic

Maxwellian distribution

Jf(z, = ~c~,fo (9)A ] (6.1)
Iv~rcz 7

2

(where a = 2icT z/m , b = r21xT±/m ), and carefully reviewing the deri-

vation for 7Lt and if echoes, we find that only the following modifi-

cations are required:

(i) 7t CASE: replace fo(vz) in (2.41) by
0 Z~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L

(ii) /7 CASE: no change.

(iii) Ec(k,w): no change.

(iv) ET(k,w): has already been given

Part I. The roots of

complex k , and T_ #

Appendix C in (C.45) -

Thus for electron echoes in the 7t case,

tude factor of

[

for TI i Tz in (2.40) of

eT (k,w) = 0 for real w ,

T are discussed inz

(C.54).

there is an additional ampli-

,]2~~~ ~(6.2)

and for the /f case, there is no change.

The only significant difference from the previous echo results
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comes from the possibility of having different dispersion character-

istics for the transverse waves. In Appendix C, we conclude that for

w O there is no appreciable change in the positions of the roots of

ET (k,w) = 0 from their positions in the isotropic case. Thus for

w g 0 , there is essentially no change in the echo results given

earlier. On the other hand, if w sz 0 and there is a temperature

anisotropy, then the fire-hose instability may occur. [We obtain the

usual criterion for the onset of this instability in (C.53).]

Thus a novel use of echoes is suggested and that is to choose w 

to be in a stable region and w3 to be in an unstable region so only

the echo would excite the instability. Use of an echo to examine

instabilities has the advantage that at the position at which the

instability is excited, i.e., the echo position, there is no external

excitation mechanism (grids or current loops, etc.) to be considered.
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7. Effects of Propagation Just Off-Axis (k. L O)

Up to now, we have considered all waves to be propagating exactly

along the direction of B . In an actual experiment, this may be

difficult to attain and undoubtedly the excitations will produce waves

that propagate slightly off-axis so kL would be small but non-zero.

We now investigate the consequences of having such slightly-off-axis

wave excitations.

Consider the longitudinal excitation first. If the excitation is

made slightly off-axis, then the ETOTAL field of the wave it produces

will have mainly a z component, but also small x and y components. Thus

_E = 4x. A + + e E (7.1)

where 6 represents the small transverse electric field (161 << JIE).

As shown in Appendix A, the corresponding driving term for the first

order Vlasov equation is [for isotropic fo(v)]

ov, 'i s/t ( 0 0')(7.2)

which is to be used in (A.5), i.e.,

ij 0 2;7-

/)= ?ei fd + 0') e
wh e re (7.3)

where
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)L= seev

C-

n2

(iZ S/_/)_ 1 K ~i a
X -- -V > 

X VL ;?> 

+ at 'd z

E Z

where

<2 d'e
0

Using the Bessel function identity( 3 2 )

e
+ 00

= E e (1)

together with

we find

I

T (X) = (-)7- a(x)
-,,- E7(

=2e 0 (A
/2

Then using the series expansion
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Thus

(7.4)

(7.5)

y

(7.6)

(7.7)

(7.8)n integer

(Ir-,)2r
0~~~

(7.9)

i(Y 1 ) = 

;i z, "- i X r.,. (0t- 0 ')

/ =- 00



2 {(X)-/ x
l,) '7' (o,/) 1

we find that for

n integer
x real

IXI << 1 (i.e., kl I much less than the reciprocal

of the gyroradius, IvL/Qzl)

~c~ ~/ ~(,,~,m)

- i a 26 (' 2)]+ 

a;L
'd r1 VL

-t ( w_/ + /e ) 0iX 49 (4),

+(l, - r-)[4 , i(\) I y / a + L/ 

_0

+ e

v

/ zt

yt 

e
' +/ I X yV-LZ /6

,- et _ 0 ) [vtz ;, v.(-)

(-F)~·+ +Ea Dt,( )]

i, (2

+ S, 1Z i(-W)]+ ,L 
·~~"-~~~]

L [ Vg (Z8) ] 

- fi-+ Vv~7 t/ )[ V - W L 

( f eta ( -) + 4 -'42 (-)

V-2 / kfI+Z ) ? J\,
P +i - r

;_. 2 L '> VL (T 4 d

E f ) \1)]

-t W 8)z ( "
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(- ( V )X(_4) +e d i(f)]
/ 2-isg e+i3s V +0 .

-(&-' e __z _ X (> )J 2

+ (_3 e [3 ) AO() +) (7.11)
wF \~-- v +3 xal VLc

which is correct through terms of order 2 .

To zero order in X we retain only the three underlined terms.

If in addition 6 = 0 , then only the double-underlined term remains

-fl~d) = mi('Y~,.Y) -(7.12)

in agreement with (2.46) obtained earlier. For 6 # 0 we include the

single underlined terms

To f irst and second order in , wen the a dditional myri (7.ad13)

To first and second order in X , we obtain the additional myriad

of terms in (7.11). Considering the e in ~ factors (where n is an

integer), we note that as n increases, the terms become higher order

in X and therefore have smaller magnitudes (since 1XI < < 1 ).

Knowing the * dependence of fl , we proceed to find the 4 depend-

ence of ETOTAL . We need to know the 4 dependence of both fl and
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ETOTA
L to establish what types of echoes and other miscellaneous

responses are generated by the new terms created by the off-axis

excitation.

If we compute

_,7, -my~i~c((7.14)

we find that J1 and ETOTAL no longer obey a simple scalar relation

but instead they obey

JT = c-.E/ o- -EoTsO (7.15)

where the elements of the conductivity tensor a could be extracted

from (7.11) but this information is not needed for our present purposes.

Noting that Maxwell's equations for the plasma fields give

(a--kC2)= - i (7.16)
Pt o seA t

[as in (2.38) of Part I] and that ETTA
L

= LASXT we find
-TOTAL -PLASMA -EXT

6 E e ~X~~t-~ ~(7.17)

where the dielectric tensor E is

e-= /I+ 0r
/2" - kCz "- (7.18)

Thus

E 7or~z -/E
TorL Ce -exr (7.19)

and it follows that in general ETOTA L and XT re not necessarily
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parallel. Nonetheless, if the excitation is made just slightly off-

axis, both ETOTAL and ~EXT will be directed almost along the z

direction.

Since [from (2.33) of Part I]

(7.20)

the only terms of fl(0) that survive the 4 integration in (7.14) are

those with a C dependence of e 
±
i or those with no c dependence.

Accordingly J1 has terms of the form

e± terms of fl()

ez terms of f1(M)

This spatial behavior of J1 eventually

of ETOTAL [via (7.16) - (7.19)] and we

(2.27) of Part I]

[terms of

+ e ±[terms of

that went as e
i
¢,

such as (7.13)

that had no C depen

such as (7.12)

becomes the spatial behavior

finally obtain [using (2.26) -

that had no ~ dependence]

that went as e ±i ]

(7.21)

In the right half of Table I, we have summarized the above results

concerning the ~ dependence of fl($) and ETTA L longitu-

dinal excitation made slightly off-axis. If we repeat the derivation
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f EXCITATION

1 '( 6+EX+... )

e±i. ( E+6X+... )

e±i2. ( E+6X2 +... )

e±i3 *( EX2+... )

1 .( 6+EX+... )

e±i ,( E+6X+... )

1 .( E+6X+... )

e±i. ( 6+EX+... )

e±i2. ( 6X+EX2+... )

e±i35,( 6A +... )

1 .( E+6X+... )

e
±

i ,( 6+EX+... )

TABLE 1. THE * DEPENDENCE OF fl(0) AND Etoal FOR SLIGHTLY

OFF-AXIS t AND f EXCITATIONS.

For the 7 excitation E = I(Etotal)ll and 6 = I(Etotal)zI.
For the , excitation 6 = i(Ctotal)ll and E = I(Etotal)zI.
In all cases X = kLv ./S

z
. If the excitations are made

just slightly off-axis, then I|A<<1 and I6I<<lEtotall and
the dominant terms are the underlined terms.
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in (7.1) - (7.21) for a transverse excitation made slightly off-axis,

we note we would begin by assuming

-E =~ exE +e eE + E eg (7.22)

where E = e(TOTAL) and I16 << IETOTALI . But since (7.22) is the

same as (7.1) with 6 and E interchanged, it follows from (7.1) -

(7.21) that we can obtain the results for a 7' excitation simply by

interchanging 6 and E in the results of the / excitation. We

thus obtain the left-hand side of Table I. The dominant terms for both

types of excitations are shown underlined. We have not shown the

resonant denominators that are associated with most terms but these can

be readily deduced from (7.11).

We may now easily deduce the new types of echoes that are produced

by the off-axis terms in fl(Q) and ETOTAL v . We know from the

argument used to obtain (2.10) that if g2(r) X e 1
i where

one -- the other' (7.23)

excitation excitation

there will be a transverse echo and if g2 (O) has no * dependence,

there will be a longitudinal echo. From Table I, we can easily obtain

the 4 dependence of g2 (4) for all possible combinations of excitations.

We can then construct Table II which gives the echo type and amplitude

for the various possible excitations. We note that the dominant echo

6
(which is underlined in Table II) has corrections of order 6 X and

that there is always an echo of the opposite type of order 6

To demonstrate the wide variety of echo locations involved, we
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je, E2

I( E6

fIL J*

+ E6, + ... )

+ E2A +. .)

( E6 + E2 + ... )

_t( E + E6A + ... )

j( E6

j( E

( E 2

t( E6

+ E2A + ... )

+ E6X + ...)

+ E2A + ... )

TABLE 2. ECHO TYPES FOR SLIGHTLY OFF-AXIS EXCITATIONS.

Shown are the echo types and their amplitudes.
Here E and 6 refer to either the .e or the 7
excitations. The dominant echo types are
underlined.
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note that for tr excitations we may have terms like

Vi,¢ 9 II-/ I e_ , Itl
X X and E ~ (7.24)

where m, n, r, t are all integers. An echo will occur only if (m+r)

equals ± 1 (which gives a 7f echo) or zero (which gives an Z echo).

We may easily deduce that the echo will have frequency

3as = by .+S W2 s = +/ (7.25)

occur at location

(wy + t n) L

(z+ rn) + s[ (+m-) (7.26)

with an amplitude factor of

E ZA -/, *t e (7.27)

In summary, we note that if the t and 2 excitations are made

slightly off-axis, the lowest-order echoes for on-axis excitations as

given in (2.10) will be the dominant echoes, but there will be correc-

6
tion terms of order 6 X also present. In addition, there will be an

echo of the opposite type ( 2 if the dominant echo is f , or 7 if

6
the dominant echo is e ) of order E , as well as many other echoes

that are higher order in and X , and that involve interactions

between harmonics of the cyclotron frequency [as in (7.24) - (7.27)].

However, typically we may have

X Z(7.28)
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and then all terms involving X may be neglected. In this case we

find that only the dominant echo and the echo of the opposite type

(which is of order E ) occur. And for any of the four possible types

of echo excitation in Table II, we note that the echo of the opposite

type always occurs at a location different from that of the dominant

echo. Thus the dominant echo should always be clearly distinguishable.
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8. Transverse Echoes for B = 0
-o

For the limit of no external magnetic field, we set Wce' Wci

equal to zero wherever they occur in the above calculations. Thus the

final results for the 7' case and the / 7 case derived above for an

external magnetic field, i.e., (2.41) and (2.49), carry over directly

by simply setting wce' Wci = 0 in them. Thus echoes with frequency

sC = as/+ f z (8.1)

occur at location

(~zZ
°Z C=7. 4 (8.2)

The appropriate echo type diagram in w1 , w2 space is shown in Fig. 6

(compare to Fig. 2). Note that many of the interesting features of

transverse echoes in an external magnetic field have disappeared:

(1) there is no echo at the sum frequency (IW11 + I121) ; (2) there

are no negative phase velocity waves (as occurred earlier for 0 < wl <

Wce or 0 < W
3
< Wce ); and (3) the ion and electron echoes occur

with the same frequency at the same location. Furthermore, echoes in

regions 1, 2 represent the same phenomena as echoes in regions 3, 4.

The only interesting feature that remains is the polarization change

that occurs for 1w21 > I1wl , i.e., for t- echoes in regions 2, 3.

The transverse dielectric function ET (k,w) for Bo = 0 is

examined in Appendix C, in Eqs. (C.55)-(C.58). The basic dispersion

relation is shown in Fig. C-14a where we note there is an evanescent

region for IwI < w and a propagation region for Iwi > p . In
pe pe
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Fig. C-14b, we have plotted Iw/kal vs. w/we . Considering the

roots of ET [(W/Vz),w] = 0 , we note that w/"k"a = vz/a and since

Iw/kal X c/a (from Fig. C-14b), any echo pole terms [as in (4.9)] will

be insignificant since they contain the factor exp[-vi2/a 2]

exp[-c2/a2 ] which is essentially zero. (Rigorously the distribution

function should be zero for Ivzl > c so there should be no pole con-

tribution whatsoever for Iw/kal > c/a .) Thus the pole 1 and pole 3

terms will never contribute to the echo shape. The only possibility of

echo shape enhancement is a pole 2 term on the side of the echo

furthest away from the excitation region (i.e., z > z0 for t7

echoes and z < z0 for It echoes).
O
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9. Summary

We have examined the second-order (nonlinear) echo response that

follows from the Vlasov-blaxwell equations when two spatially separated

steady-state excitations are made. We found that given the types of

excitations, the lowest-order echo is given by (2.10). Assuming the

excitation (2.11), we then derived the transverse echo response up to

an integral over v
z

for both the te case [i.e., (2.41)] and the

/74 case [i.e., (2.49)]. The various characteristics of transverse

echoes were discussed and summarized in Fig. 2, after which several

possible experiments were suggested.

Evaluating the integral over v
z

by the method of steepest

descent, we obtained the saddle-point contribution (4.8) and the three

pole contributions (4.9) for the & echo case. Results of nmmerical

evaluation of these terms for three specific cases were given in Figs.

3-5. The physical meanings of these terms were discussed, and it was

determined that (i) the saddle-point term is always significant,

(ii) the pole 1 (pole 3) term is significant only if w1 Wce (W3 

Wce) , and (iii) the pole 2 term is significant only if 1w21 > 1.08 Wpe.

We continued by examining several additional effects, some of

which occur only for transverse echoes in an external magnetic field

(as we have been considering). First, in examining the effects of

Fokker-Planck collisions and finite-width excitation mechanisms, we

found that the resultant integral over v
z
, (5.17) was very compli-

cated but that it could be evaluated by the method of steepest descent

in special limiting cases; we obtained approximate solutions in the

limits when collisional effects dominate and when finite-width effects
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dominate. We concluded that for the parameter values of Figs. 3-5

10 -3(i.e., pe/w = 0.4, c/a = 1120, n = 10 cm ), transverse plasma

wave echoes could be seen but only for Lw ce/c 1 . In general, to

reduce collisional effects, it would be more feasible to observe trans-

verse echo phenomena at higher temperatures or lower densities.

Next we investigated the effects of temperature anisotropy

(T
A
~ Tz) in the zero-order particle distribution function. We con-

cluded that the only interesting effect was if w1 = 0 or w3 Z 0 in

which case the firehose instability may be initiated. A novel use of

transverse echoes was then suggested and that was to have w1 in a

stable region and w
3

in an unstable region so that the instability

would be excited only at the position of the echo.

Then we examined the consequences of having propagation just off-

axis (kL # 0). We found that if finite Larmor radius corrections were

neglected, then the usual first-order echo would occur and this would

be the dominant echo; but in addition, an echo of the opposite type

would also occur (but at a different location and with a smaller ampli-

tude). It was also shown that if finite Larmor radius effects are

included, then a myriad of associated higher-order echoes appear.

Lastly we considered transverse plasma wave echoes when B = 0
-o

The resultant echo characteristics were summarized in Fig. 6. It was

concluded that this case was much less interesting than the case for

B $ 0 and also that for B = 0 the transverse echo would never be-enhanced by collective oscillations at frequencies 

enhanced by collective oscillations at frequencies we and w3 .
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APPENDIX A

SOLUTION OF THE LINEARIZED VLASOV EQUATION FOR Bo, kL, kz, ALL NON-ZERO

We consider the linearized Vlasov equation in k, w space as used

in (2.17) of Part I, i.e.,

i(k.V-w) -A-~ -- z
(

V
)

(A.1)

where

() = [ v kxE k..2
- ToL TO (A.2)

Equation (A.1) has been solved in a particularly convenient form by

Fried and Hedrick,(3 3 ) and we give here a brief summary of their method.

We may write (A.1) as

( & - kSvLco s0) f + na =i Cu _L v - g (0)

or

t /) /= (0
ao "/ .)o SI

or

a+4f } = 5(° e.) 0 _CZ_)_n
_0-rt

(A.3)

where

Clu = a,-kezW

X = k-L V1

_ - i
Ir 5 C_

A/ = A -V//, _ - wr 
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Then integrating (A.3) from 4 to p + 2w gives

-e
-Ij(0) f ,) e= +6 zz 

=/I ?(4'
- ft-/ ')

or using the change of variable p' + 0' + 2w and explicitly evaluating

the H's we obtain

s(o = e- dfce' (O 0) e
e 27rr /) 0(e (-) / 

(A.5)

To express gl in terms of 4 explicitly we let

E , e,= ex Ei-> e + e E,

and take k to be in the xy plane (Bo = e zB). Then (A.2) isto e i th xyplaz o

x )Vx + ez + )/ 7 4

eV -4/ 1< (VI/L tE~~
-I - r£ 4 c

dvt
f. _9 t 

Vw e a*

+&* k ( \v, a

+Ey k (x v V ± )

q x ( ~ave ,V xbY

(v Ej vI- L l1f
) x , ,v

vx = VL cos 

/ = V N S/,V 
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(A.6)

x 9tFV ) (A.7)

Since

(A. 8)

i Y0 '- ,' X .5/A (0t 6')

9'(0) -!

r -0) e



= Cos 

- -= S//v / a--

S//v X v
Vl_ 

\/1, 9+ VL C) %

but we may ignore the 3/3¢ operators when they occur in (A.7) because

3af/3~ = 0 from (2.4) of Part I. Thus

y/(0) = ,, [ Xc 0 { \/

+ Es, s/),v {C 'DV _ 
+

tEa V. ° _ x- C.ost G}

(A.10)

where

(A. 11)

a~ oG = V. .. v - Vo,, 

which vanishes for an isotropic f .
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APPENDIX B

SYMMETRY PROPERTIES OF THE TRANSVERSE AND LONGITUDINAL

DIELECTRIC FUNCTIONS

From the definition of the plasma dispersion function as given in

(2.45), (2.51) of Part I we can derive the identities

t ~,( be = - [2-Tj" t E(B.1)

[ (] = +(r) (B.2)

(where * means complex conjugate).

We first discuss the symmetry properties of the transverse dielec-

tric function [as given in (2.44) of Part I] for w = -aw
I

as occurs

in (2.70) of Part I,

%+G~ (4 - -e,,) = 4 

' F Ak- G) k ^ + -d, CLr1 1 ; (B.3)(A~c(-, -[ k[-o(,,-,-A , ,-,A ,-

We may write

and tn it - A (B.4)

and then it follows trivially that

E~(-c7k,-ec -)+ -4= +- k,
0= +/ -(B.5)
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Also, from (B.4) and (B.2), we have

E,( C4, _- = F k W/ 0-)

= F[k, z

-= (T- a - w,, -)

And since

a 

we find

[ C%(0C -,7- a-)

j]
where we have used (B.5) on the left side of (B.8).

The longitudinal dielectric function, as introduced in (2.14) of

Part II,

k-zw ~_,~ -CEt+;(k, ) = /- k"At~ z .i(_ A) (B.9)

may be written

E+(ku) = P[~e:; w

since
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(B.7)

a E (-+a-k -c,
(B.8)

(B.10)

k, *- aCe- e
k~-t. C~

. +(-) = -2- 2? _ + ()
(B.11)
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Similarly, the transverse dielectric function as used in (2.73) of

Part I and thereafter

'EI(-- -= ¢ (*cj- a {k ( Cd- Ce
-A r(A

may be written

Ir-(kc) =- F[k, 7'A + ( k Curt Z/~~ /-- 

Let E+(k,w) represent ET (k,w) or EP (k,w) and let

w/a, w/A, w-wce/a, or wwci/A . Then in this general

W represent

notation we

have

(B.14)

Now let w be real and consider the roots of

(B.15)

in the complex k plane. From (B.14) we have identically

F[ w, w -+ (W)] = 

Taking complex conjugates gives

vC t k ̂ , 2, *I|XF (Ik )t ]

or using (B.1)

F ), , (o., = 0
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.~w+(<±

(B.13)

(B.16)

(B. 17)

(B.18)

F ,J ;k -(% -



which is just

_ (-k*, c) = o (B. 19)

Now consider (B.17) again and use (B.2) to obtain

[F ~* Ž.z t(9V)] 0= (B.20)

which is just

E_+o= ( e o=°(B.21)

Thus if k is a root of c+(k,w) O0 it follows from (B.19) that -k*

is a root of the same equation, and from (B.21) that k* is a root of

E (k,w) = 0 . Hence if k + iy (k, y real and positive) is a root of

c+(k,w) = 0 , then the other related roots would be located as shown in

Fig. B-1.
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k plane

E+(k,W) =0
0

E (k,w )=O

FIGURE B-1.

E+(k,w)-0
.

E_(k,)-0=O

SYMMETRY PROPERTIES OF ROOTS OF TIlE TRANSVERSE AND
LONGITUDINAL DISPERSION RELATIONS FOR REAL w AND
COMPLEX k.

Roots of c+(k,w)=O in the complex k plane for real w

[showing that E +(k,w)=O implies that c+(-k*,w)=O,

c_(k*,w)=O, and c_(-k,)=O()]. Both the transverse

and longitudinal dispersion relations obey this

symmetry.
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1. Summary

In this appendix we examine the roots of the transverse dispersion

relation for real w and complex k . The major results obtained are:

1. The cold plasma dispersion relation with negligible warm

plasma damping (C.9), (C.10) is valid for all w except w z Wce

For w < WL and X > wR , Im k is essentially zero. For 0 < w <

Wce it is shown that no simple expression for Im k can be derived,

and it is concluded that the root comes from the algebraic terms of the

Z function involved. The basic dispersion properties are given in Fig.

C-1.

2. The locus of roots in the complex e plane of the hot plasma

dispersion relation is given in Fig. C-3. The loci are classified

[least-damped or cyclotron-damped (for w z ce ) root; infinite sequence

of roots; pure imaginary roots] and the corresponding roots in the k

plane are then investigated.

3. Numerical results concerning the cyclotron-damped root for w

slightly below Wce (Figs. C-4a,b,c, C-S) and for w slightly above

Wce (Fig. C-6) are presented. An expression for the value of this root

at w = ace is given by (C.30). It is noted that for wce < < 

both the hot plasma cyclotron-damped root and the "cold plasma" pure

imaginary root contribute to the response of a single transverse excita-

tion.

4. The infinite sequence of roots is examined both numerically

(Figs. C-7, C-8) and analytically. It is shown that these roots are

caused by the term 2/Hi e -
2 that occurs in the asymptotic expansion

of the Z function involved. Expressions are given for the approximate

181



values of these roots (C.35) and the value of the term 2/ii e at

these roots (C.32).

5. Pure imaginary roots are found to occur for wL < < R .

For wL < W < O and Wce < w < wR the pure imaginary roots are just

the cold plasma evanescent roots (C.36), but it is shown that these

roots occur only in one-half of the k plane. For 0 < w < wce the

pure imaginary root must be calculated numerically.

6. For reference, the locations of all the roots of ET (k,w) = 0

are summarized in Figs. C-9, C-10.

In addition, several investigations involving the transverse dis-

persion relation are made:

7. A physical explanation of the cyclotron-damped root results

is given using Figs. C-ll, C-12.

8. The cyclotron-damped root may be computed to very good

approximation by using the two-pole approximation 
3 4
) for the Z function

involved, but only for w < wce . For w > wce the cyclotron-damped

root passes through the region defined by Im C < 0 and Ir[ < 3

wherein the two-pole approximation should not be used (see Fig. 13).

9. Effects of anisotropic temperature are examined (TL Z Tz).

The usual criterion for the firehose instability is obtained. In gen-

eral it is concluded that the roots for the anisotropic case are essen-

tially the same as the roots for the isotropic case, except if w z 0.

10. The transverse dispersion relation in the limit B ~- 0 is

investigated. Using Fig. C-14 it is shown that Im k of the l-east-

damped root is always essentially zero.

11. Lastly, in Fig. C-15, it is shown that the roots of
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ET [(-wce/Vz),] = 0 (v z real) in the complex w plane are centered

about w = wce while the roots of ET (k,kvz+We) = O (vz real) in

the complex k plane are centered about k = 0

2. Warm Plasma Results

2.1 Use of the asymptotic expansion of Z( e).

From the symmetry properties discussed in Appendix B we find it is

sufficient to obtain only the roots of

(4Nf) + A O (C. 1)

For Maxwellian distributions, the Z functions in (C.1) have the

asymptotic expansion

_ (/ / __ = '- _ + 

(kc- - -

where

or+(r) = o for

/

2

To good approximation we may use

' r > O
-= 

< 0

+(3s) =- i ( (on

for I|{ 
>

3. Using (C.3) in (C.1) we obtain
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2 1
k 7i _ _ Ir_ _e _ _ ___

k2 =-i 1/- Ic L 4t(Wc <((L+e 2

e% a 4 Jr)- 2 j
t ir4 co $(re) --e -r + +r(0) -1 e Z7

where

e_7 A- aCe
e key? - = A

Then assuming IRe kl >> IIm ki so

k Z - (W k)2+2L (W-)(A )

and equating real and imaginary parts in (C.4), we find

d,9C - = C--- ic/eccc/ (W -WC.e)

2 /

A .' 1 O C
(C.6)

(C.7)
-A' 4- = 2 C) e a, (0- )

Equation (C.6) gives just the cold plasma dispersion relation while

(C.7) gives the damping associated with a finite temperature.

2.2 Problem of a+(Re).

Evaluation of the a's in (C.7) produces some

From (C.2) we know a+(Ce) and a+([i) are each

Thus for w positive it follows from (C.7) that

zero. Accordingly in (C.5), if w > Wce we have

unexpected results.

positive or zero.

Im k is positive or

Im (e > 0 ,
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Im Si > 0 so a +( e ) = aC(c
i

) = 2 . However, for 0 < w ce weece

have Im Se < 0, Im Si > 0 so a+( e) = 0, a+(0 i) = 2. This last

result is surprising since it claims all the damping is due to the ion

term in (C.7).

Thus we are faced with the following dilemma. If we neglect the

ion term in (C.1) and use (C.3) for Z+(Ce) then for 0 < w < wce we

cannot legitimately find any root, not even the cold plasma root (C.6).

This occurs because if we assume Im k > 0 we find a+(C
e)

= 0 so

Im k = 0 ; if we assume Im k = 0 , then we find a +(e) = 1 so

Im k > 0

The solution to this dilemma must be that, for 0 < w < w , Im k
ce

is caused by the algebraic terms of Z+(Ce) . Indeed we shall find

shortly from numerical considerations that the least-damped root, for

w slightly below Wce occurs in the half of the Be plane wherein

a+(Ce) = 0. The point is that for 0 < w < Wce and IJC > 3 there is

no simple expression for Im k like (C.7).

However, we shall find that Im k for the least-damped root is

negligible except for I el < 3 which occurs only when w is very near

Wce . Thus the cold plasma dispersion relation (C.6) with Im k = 0

is a valid approximation for 0 < w < Wce except for w very near wce

2.3 Basic dispersion properties.

Henceforth we shall ignore the ions in (C.1) and investigate the

electron dispersion relation

CZ r- /co) (C 8)
(C.8)
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Then (C.6), (C.7) become

(C.9)

,k -
0 C2( k k)Z + (C. 10)

We understand that (C.10) is valid only if (Re k)
2

as given by (C.9)

is positive. In addition (C.10) is to be used only for w1 < 0 or

> Wce , in which case we shall soon see that IceI is so large that

we may simply set Im k = 0 . According to the above discussion, for

0 < w < wce and IceI > 3 we may also set Im k = 0

We have plotted the cold plasma dispersion relation (C.9) in Fig.

C-1 for w e/ce = 0.4. Note that k goes to zero at w = 0 and at

the right- and left-hand cutoffs defined by

Rcc L L= 2 [c ce Iie + V 2 (C.11)R7 Z T C "-

In the propagating regions (w < wL' 0 < w < Wce, > WR) k

whereas in the evanescent regions (wL < w < O, Wce < w < wR)

pure imaginary.

In Fig. C-2 we have plotted log10oICe vs. w (for wp,

0.4, c/a = 1120) where Ce = (w-wce)/ka and k is given by

Note that [cel is extremely large everywhere ([cel >> 3) e:

X = Wce , in which case (C.9) is not valid and we must solve

numerically to obtain the desired root.

is real,

k is

e/ce =

(C.9).

xcept for

(C.8)
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Equation .(C.9) is plotted for (Re k)2 > 0 [solid line] and for (Re k)2 < 0 [dashed line].
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3. Hot Plasma Results

3.1 Locus of roots in the (e plane.

We proceed to investigate the hot plasma results obtained by

solving (C.8) numerically. We first examine the locus of roots of

(C.8) in the complex (e plane. Later we shall consider specific

types of roots and compute their actual values in the complex k plane.

In terms of (e = (- ce)/ka , the transverse dispersion relation

(C.8) may be written

e +, = |ze) cz t -"~e) , (C.12)

For now we assume the te2 term on the right-hand side of (C.12) may

be neglected, i.e., we consider

T"+(Il ) _ 2 (C.13)

Then in the spirit of Fried and Gould ( 7 ) who examined the roots of the

longitudinal dispersion relation for real k and complex w ) followed

by Kuehl, Stewart, and Yeh (8 ) (who examined the roots of the longitudi-

nal dispersion relation for real w and complex k ), we note that we

can find the locus of roots of (C.13) in the complex 5e plane by

plotting solutions of

Thena t e sui on o=0 (C.14)

Then a true solution to (C.13) exists if for a point on the locus given
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by (C.14) we have

X+ L9 '] [' At (C. 15)

We have calculated the first several branches of the loci of roots

given by (C.14) and these are shown in Fig. C-3, where for points on

the solid (dashed) lines we have Re[ e3Z+(e ) ] > 0 (< 0). Noting

[(6/-4&e C a > O for cu < o, c '- G>ce

e < 0 for O<4 < ce

we conclude that in Fig. C-3 the solid lines are valid loci for w < 0

or w > w while the dashed lines are valid loci for 0 < w < w .

The various loci in Fig. C-3 may be classified according to the

types of roots they represent:

(a) The least-damped root in the [e plane. (For X near Wce we

shall refer to this root as the cyclotron-damped root.) In Fig. C-3,

for w slightly below wce the cyclotron-damped root is on the dashed

loci just above the real axis; as w approaches ace, the root

approaches Be 0O . For w = ace the root is at Ce = 0 ; for w

slightly above wce the root is on the curved solid loci that begins

at ie = 0 and progresses downward.

(b) Infinite sequence of roots. We refer to the infinite number

of loops of loci that progress downward in the lower-half Ce plane in

Fig. C-3. For a given value of w we find there is but one root on
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FIGURE C-3 LOCUS OF ROOTS OF THE TRANSVERSE DISPERSION RELATION

C13 IN THE PLANE FOR REAL w
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FIGURE C-3. LOCUS OF ROOTS OF THE TRANSVERSE DISPERSION RELATION

(C.13) IN THtE ~e PLANE FOR REAL w.

The solid lines apply for w<O or ,>~ce ' the dashed

lines for Ocwwce . See text for full discussion.
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each loop. And for IW/WceI < 5 say, each root lies very close to the

-45 ° line. This will become clearer when we consider specific

examples (in Figs. C-7, C-8).

(c) Pure imaginary roots. Note that the whole imaginary (e

axis is a locus because every point on it is a solution to (C.13).

More will be said about all of these roots when we consider the

corresponding roots in the complex k plane.

Figure C-3 is based on Eq. (C.13) which is valid only when the ( 2e

term on the right-hand side of (C.12) is negligible, i.e., when

F a - sce) 1 2

or

|ez e | %< 2 ~)z c (C.17)

This inequality holds for Fig. C-3 (for which Ie| < 5 ) except pos-

sibly when w X Wce - But using Ce = (w- ce)/ka , (C.17) is

(iw )2 4-C.</ (C.18)

which we shall find holds when w - Wce . Thus Fig. C-3 is valid for

all values of w .

If we wanted to compute the loci for Ike >> 5 we would have to

include both terms on the right-hand side of (C.12). In that case we

could not easily calculate the loci because it is not possible to
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isolate the Ce dependence from the w dependence in (C.12) to obtain

an equation in the form of (C.14). Instead, the loci would have to be

constructed by actually calculating all the roots of (C.12) for many

values of w . Generally though it is not necessary to know all the

loci accurately for ICeI > 5. In fact, the least-damped root for

w < WL' W > WR (which has ICel >> 5) has already been computed in

(C.9), (C.10). And the approximate values of the roots in the infinite

sequences (for ICeI > 3) will be obtained in a following section.

Thus in general, Fig. C-3 should be sufficient for all applications.

3.2 Roots in the complex k plane.

(i) Cyclotron-damped root (w slightly below w ce).

As discussed earlier, the cold plasma result (C.9) with Im k = 0

is a valid representation of the least-damped root of the transverse

dispersion relation (C.8) for 0 < w < Wce provided tel' > 3 . For

W Z Wce ' Icel 
<
3 and (C.8) must be solved numerically. For w z Wce

we consider the regions w < Wce and w > Wce separately since our

main interest lies in the former (w < w ) for which cyclotron-dampingce

measurements would be made. In the latter (w > w ce) the damping is

typically so large that it would be difficult to ever measure it exper-

imentally. In this section we present values of the cyclotron-damped

root for several cases where w is slightly below wce . In the fol-

lowing section we briefly consider the cyclotron-damped root for w

slightly above Wce

We have solved (C.8) numerically using the following Nyquist
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complex root finding scheme. We seek solutions in the Be plane of

&j - jce) C CZ/ 6u -66e)
+(4e [ (C.19)

[as in (C.12)]. For each desired value of w we guess a value for the

root Ce (such as the cold plasma value or a point on the appropriate

locus in Fig. C-3) and then compute

A/ 2 / (i el e)
=2N i F( ) (C.20)

on a closed contour in the (e plane that encloses the chosen Ce . If

we find N = 0 there is no root enclosed by the contour whereas if

N = 1 there is precisely one root enclosed in which case we compute

2F 7-) (C.21)

which gives a value for the root better than our original guess. Using

this Ce and choosing a smaller contour we repeat (C.20), (C.21).

After a few such iterations we obtain the correct value of the root

Ce . Then using

A x - L ce

C~ e(C.22)

we compute the value of the corresponding root in the k plane.

These calculations were performed using the Fried, liedrick,

McCune(34 ) two-pole approximation for the Z function that occurs in

(C.19). The results so obtained compared favorably (Re k and Im k
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agreed within about 2%) to some sample results for which Z+()e) was

computed exactly. Thus use of the two-pole approximation for this case

was justified.

In this and the following sections we consider only roots in the

right half of the complex k plane since the corresponding roots in

the left half and also the roots of cT (k,w) = 0 are then easily found

using the symmetry properties summarized in Fig. B-1. Now consider the

first quadrant of the complex k plane wherein (C.19) has only one

root for 0 < w < < ce , and since the Z function in (C.19) has a+(Ce) =

0 there [using the Z function representation (2.51) of Part I], this

root comes from the algebraic part of the Z function. We have calcu-

lated this (cyclotron-damped) root for several values of the parameters

Wpe/wce and c/a with the results displayed in Figs. C-4a,b,c, and

C-S. (The parameters of Fig. C-S are typical values for the UCLA Q

machine.)

We note the following features in Figs. C-4a,b,c, and C-S. First

consider Re k . If w e/ce is fixed, then for a finite temperature

as w approaches wce ' Re kc/wce approaches a finite cutoff value

instead of becoming infinite as it does for a cold plasma. Moreover,

as the temperatures increases (c/a decreases), this cutoff value

decreases. If c/a is fixed (as in Fig. C-5) then the cutoff value of

Re kc/wce increases as wpe/wce decreases. These results are

explicitly shown by the cutoff formula

kC 2fal 4/wo C 3

ce

which will be obtained in the next section.
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Since Re k has a finite cutoff value, the phase velocity w/Re k

does not approach zero (as it does in the cold plasma case) when w

approaches Wce Instead it remains of the order of the speed of

light since

VPH" = = , ee C,./ C (C.23)

where we have noted from Figs. C-4, C-5 that Re kc/wce is typically

of order 10 for w z wce . Of course the particles that are responsible

for cyclotron damping are not those that move at vpHASE but rather

those that see a Doppler-shifted frequency w-(Re k)v equal to w .
ce

Those particles have velocity

4J 4Jce ( ce/)
V = C

-{04 4e C (C.24)

which, of course, approaches zero as w approaches wce

Now consider Im k . Note in each of Figs. C-4a,b,c (for w pe/wce

fixed) that for weak damping, increasing the temperature causes the

damping to increase whereas for strong damping ( w extremely close to

Wce ), increasing the temperature causes the damping to actually

decrease. A similar effect occurs in Fig. C-5 (for c/a fixed) where

for weak damping, increasing w pe/ce increases the damping whereas for

strong damping, increasing w pe/ce actually causes the damping to

decrease. These effects will be explained physically in Section 4.1.
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(ii) Cyclotron-damped root (w slightly above w ce) .

In the immediate vicinity of w = wce the cyclotron-damped root

has Be = O . From the power series representation of the Z function,

Z+ (S) =-2f+ [ -_,+ -
-

-
(C.25)

we find to good approximation that

Za(ri) > - 2 {+ i> V(C.26)

for I|4 << 1 . Using (C.26) in (C.12) we find the transverse disper-

sion relation becomes

c kc -e 2e C -2 'Pe c
_tcA 1 ((i f ec 'S_ vc = 0c

cvu l ce a aQe (C.27)

which is correct provided

Ckc/ (C.28)
kc

Since Ikc/wce is of order 10, say (for 0n z Wce ) ' (C.28) holds only

for I[(W/We) - 1] a| << 1 . Note that (C.27) is a true quartic

equation.

For w Wce i.e., for I[(W/ce) - 1] cI << 1 the second and

fourth terms in (C.27) may be neglected (as can be justifed a posteriori)

leaving

Ae) =ce U1ZZa (C.29)ceO 
·
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In this case the principal root of interest is

oncei~e a ( i(C.30)~'ce [Z{ e J

which gives the value of the Re k cutoff exactly at w = Wce as

mentioned earlier.

For w near wce i.e., for I[(W/W) 1] al 1 ,we have

solved the full quartic equation (C.27) analytically and numerically

evaluated the solutions (which are quite complicated). We found that

Re k was essentially constant near w = wce while Im k increased

uniformly as w increased. Thus the cyclotron-damped root is given

by (C.30) for w = wce and this root is well behaved as w departs

from w
ce

To study the behavior of the cyclotron-damped root for w > Wce

(i.e., for [G(w/c 1]/w c > 1 ) we must resort back to solving (C.19)i.e., for [ ce a

numerically. For w > _ce the two-pole approximation for the Z func-

tion in (C.19) may not be readily used, as will be explained in Section

4.2. Thus we have used the exact Z function to obtain the results

presented in Fig. C-6; shown are the hot plasma results [obtained by

solving (C.19)], together with the cold plasma result (C.9). We have

considered frequencies in the range w < wce to w > WR to give a

complete picture of the behavior of the cyclotron-damped root in the

evanescent region Wce < X < .R ' (In Fig. C-6, the cold plasma

results duplicate a small portion of Fig. C-2 while the hot plasma

results duplicate part of the w e/ ce= 0.4 curves in Fig. C-5.)

The dip (at w > Wce ) in the hot plasma Re k curve in Fig. C-6

202



kc
Wce F

5

.95

FIGURE C-6.

1.00 1.05 Oce 1.10 1.15 1.20
t Cce tWR

COMPARISON OF HOT PLASMA AND COLD PLASMA ROOTS IN THE
EVANESCENT REGION wce < W < WR *

Comparison of the hot plasma cyclotron-damped root of
(C.8) to the cold plasma root (C.9). (c/a=1120,
wpe/wce=.4) For w>wce , Im k of the hot plasma root
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flattens out as c/a or wpe/wce decreases.

Note the large difference between the hot plasma root and the cold

plasma root for ace < w < w
R

in Fig. C-6. Actually there is no true

discrepancy because the "cold" plasma pure imaginary root is also a

valid hot plasma root (as will be discussed shortly). And, in fact,

both roots are included in the response for a single transverse excita-

tion. [In Fig. 3 of Part I, only the cyclotron-damped root of

cT (k,wl) = 0 is shown; actually the pure imaginary ("cold" plasma)

root of ST (k,
1
) = 0 also produces a residue term for wce < < R.]

Since the dominant root is the one with the smallest value of Im k ,

we see in Fig. C-6 that the "cold" plasma root dominates for most of

the region ace < W < WR ; only for w m Wce is the cyclotron-damped

root dominant. Thus the sharp transition from pure real k to pure

imaginary k that occurs at w = wce in the cold plasma case is effec-

tively smoothed out when finite temperature effects are included.

(iii) Infinite sequence of roots.

In the above discussion we examined the cyclotron-damped root of

(C.19). For w > ce this root is on the first curved solid locus in

the lower-half Ce plane in Fig. C-3. Hlowever, note that this branch

is just the first of an infinite number of similar branches that pro-

gress lower and lower in the Ce plane. And it is important to

realize that the lower the branch is in the Ce plane, the less

damped the corresponding roots in the k plane are, because k X l/e

[see (C.22)]. Accordingly the most-damped root in the Ce plane is

the least-damped and possibly most significant root in the k plane.
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We proceed to examine these roots.

We present first, in Figs. C-7, C-8, the results of two numerical

examples which show the infinite sequence of roots in the Ce plane

and the corresponding infinite sequence of roots in the k plane.

For these examples we chose values of w in the interval ce < < < R

although the resultant distributions of roots in the Ce and k planes

remain qualitatively the same for all values of w . Note that the

roots in Figs. C-7a and C-8a are specific points on the loci of roots

given earlier in Fig. C-3. Also note from these figures that as IC

Xo, IkI + 0 . Thus as just explained, the most-damped root in the 5e

plane is the least-damped root in the k plane.

For all values of w the roots in the k plane approach the

origin along a 45° line as Icel approaches infinity. There results

an infinite number of roots in the k plane whose real and imaginary

parts approach zero. This is a rather disturbing result since it seems

these roots might dominate the response of a steady-state transverse

excitation. Fortunately, however, when the appropriate infinite sum

of residues is computed (as is done in Part I) we find that the response

is not significantly affected by the infinite sequence of roots except

at positions very close to the place of excitation.

Approximate values of infinite-sequence roots.

We now obtain an expression for the approximate value of the roots

in the infinite sequence in the Ce plane. Considering only IceI > 3

we use the asymptotic expansion of the Z function [as given by (C.3)]

in the transverse dispersion relation (C.12). We restrict our attention
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to Im B
e
< 0 so a+(Te) = 2 and therefore

l(3e) e (C.31)
+ ze

We shall (1) show that the term 2v5i exp[-Ce2 ] causes the infinite

sequence of roots, (2) obtain an expression for the approximate value

of these roots, and (3) obtain an expression for the term 2-ri exp[-e2]

evaluated at these roots (the latter expression for use in Part I, in

calculating the infinite sum of residue terms associated with the

infinite sequence of roots).

Using (C.31) in (C.12), the transverse dispersion relation becomes

_ E

D _ [ C[co(Cso- W(W ~e) 1 (C.32)

(_r (~- ce) 

c

Z 

We restrict our attention to the fourth quadrant of the 5e plane

(since any root Ce in the fourth quadrant has the corresponding root

_-e* in the third quadrant, as follows from Appendix B). Then

Be = IRe Bel - i IIm 5el and the left-hand side of (C.32) may be

written as

Not that thaco-[ {re) C(l' e)
2

- {Ia}]) equas t76 he n f2(C.33)
2V-ie e = 2'ie e

Note that the factor exp(-[(Re 5)2 -(Im C)2]) equals unity when e
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is on the -450 line in the Be plane, and that this factor changes

size very rapidly (for ICe' > 3 ) when Ce departs from the -450 line.

Thus even though the magnitude of the right-hand side of (C.32) may vary

considerably, by only slightly departing from the -45° line, the left-

hand side of (C.32) can match it and a root occurs. (This explains why

.the infinite-sequence roots are always near the -45 ° line.) Also, at

a root the phase factor in (C.33), [2(Re te)l(Im Ce)I + n/2] , must

equal the corresponding phase factor of the right-hand side of (C.32)

plus any integral multiple of 2r . (This last consideration explains

the multiplicity of roots.) Thus we have shown qualitatively how the

term 2iri exp[-Ce 2 ] produces the infinite sequence of roots.

To obtain an expression for the approximate value of the roots of

(C.32), we note that a root occurs whenever the magnitudes (and phases)

of the right- and left-hand sides of (C.32) are equal. From the above

discussion we know the roots are near the -450 line. Thus we set

Ce = pei( 4 ) (p real, > 0) everywhere in (C.32), (C.33), except in

the factor exp(-[(Re e ) 2 - (Im Ce)2]) . Then, at a root, the phases

of the two sides of (C.32) must be equal, i.e., we must have

X? + - se ?H - + 21 7r (C.34)

2
where n = 0,±1,+2,.... For Inl > 3 , we have p z 2nn . Alterna-

tively we may say that the roots in the infinite sequence are given by

P = g f s 3, 4, 5,-** (C.35)

P = V'2~ ~ = z, ~, % .-- (C.35)
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and the value of the term 2vri exp[-e 2 ] at such roots is simply

given by the right-hand side of (C.32) evaluated at the roots. In

(C.35) n starts at n = 3 because in using (C.31) we assumed

IReI > 3. It follows from Fig. C-3 that only the first two roots of

the infinite sequence (which have IceI < 3) need to be calculated

accurately while the rest of them are given approximately by (C.35).

[In the above, note that it was not necessary to express Z+(Re)

in terms of Fresnel functions for Ce along the,-450 line and then use

asymptotic expansions for the Fresnel functions to obtain the approxi-

mate values of the intercepts of the loci of (C.12) with the -450 line

(as was done for the longitudinal case in Refs. 7 and 8) since we were

able to obtain approximate values for the roots and even the value of

the term 2/ii exp[-ce2 ] at these roots by simply considering the

asymptotic expansion of the Z function.]

The infinite sequence of roots in the Be plane, as discussed

above, occurs only in the lower-half Ce plane (Im Be < 0). [For

Im e > 0, a +(e) = 0 and there is no 2/Hi exp(-Ce2) term to pro-

duce the infinite sequence of roots.] We now determine where the cor-

responding roots in the k plane are. Since k = (w-w ce)/e a ,

Im e < 0 implies Im k < 0 for w < W and Im k > 0 for w > wCe
e ce ce

Thus the infinite sequence of roots occurs in the lower-half k plane

for w < wce and in the upper-half k plane for w > Wce

(iv) Pure imaginary roots.

The hot plasma dispersion relation (C.8) has the pure imaginary

root (s)
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k P= _+ ec (c.~2 /
Lc\ (~7 %ve) )- ](C.36)

(for wL < w < ° and Wce < < wR) but only if the root is in the

half of the k plane wherein Im (e > 0 . In the half of the k plane

wherein Im Ce < 0 there may be a pure imaginary root of (C.8) but it

is not given by (C.35) because the term 2vii exp[-Ce2] (which goes

as exp[+1Ce12] for Be pure imaginary) was not adequately considered

in obtaining (C.36).

For a pure imaginary root, 2 = -1%12 and the hot plasma dis-

persion relation (C.12) may be written as

e Q -ePoe C j + CL /e lel (C.37)

Note that the right-hand side of (C.37) is positive for w < 0, w > wce

and negative for 0 < w < w . Thus we distinguish the following two
ce

cases.

(1) m < 0, w > ce : From Fig. C-3 we know that for w < 0,

w > Wce any allowed pure imaginary root has Be = +il4e[ in which

case o+(Ce) = 0 . And we note in general that the right-hand side of

(C.37) is very large (except for w extremely close to ce). Thus

any root of (C.37) will have ICel > 3 in which case the cold plasma

results are valid; i.e., for w < wL , w > A there is no pure

imaginary root whereas for 
t
L < < O and ce < w < there is one

pure imaginary root, given by (C.36), that occurs in the half of the
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k plane wherein Im Ce > 0 .

(2) 0 < w < ce : From Fig. C-3 we know that for 0 < w < Wce

any allowed pure imaginary root has (e = -iI[el in which case

a+(Ce) = 2 . In this case (C.37) may be written as

l+ -a {c a c (- ) , - + (C.38)

[in which Z represents the principal part integral of Z+(Ce) as

given in (2.51) of Part I]. Since exp[+ICe12 ] is a rapidly growing

function of Icel we note that the root of (C.38) will typically have

ce I < 4 , say. In general, (C.38) must be solved numerically.

Thus cold plasma theory predicts pure imaginary roots only in the

two evanescent regions wL < w < 0 and wce < w < w
R
. Hot plasma

theory also predicts these roots occur (but only on the side of the k

plane wherein Im ce > 0 ). In addition, hot plasma theory predicts a

pure imaginary root for 0 < w < Wce

3.3 Summary of roots in the complex k plane.

The cold plasma dispersion relation (C.9) with negligible hot

plasma damping (C.10) is valid in the two propagating regions w < WL

and w > wR. In the propagating region 0 < w < ce except for

X z wce a root is also given by (C.9) but with no damping term. For

W z Wce we must solve the full hot plasma dispersion relation (C.8)

numerically. Some numerical calculations of this root are given in

Figs. C-4, C-5 for w slightly below Wce and in Fig. C-6 for w

slightly above Wce

212



In the half of the k plane wherein Im 1 e < 0 there are an

infinite number of roots of (C.8) which asymptotically approach the

origin in the k plane along a 450 line. Some numerical results con-

cerning these roots are presented in Figs. C-7, C-8, and the approxi-

mate values of these roots are given by (C.35).

Also, pure imaginary roots occur for some values of c . For

w < WL and w > wR there is no pure imaginary root, whereas for

c L < w < 0 and ce < W < wR there is a pure imaginary root given by

(C.36) (that occurs in the half of the k plane wherein Im e > O )

For 0 < w < wce there is also a pure imaginary root, which can be
ce

found by solving (C.38) numerically.

We have summarized these results in Fig. C-9 which shows the roots

of T (k, ) = 0 for all choices of w . We have used the symmetry
+

property (from Appendix B) that all roots in the left-half k plane

are mirror images about the imaginary axis of roots in the right-half

k plane.

In Fig. C-10 we have summarized the roots of cT (k,w) = 0 and of

E
T

(k,w) = 0 (shown by crosses) in the upper-half k plane. The

roots of ET (k,w) = 0 are mirror images across the real axis of the

roots of ET (k,w) = 0 (this symmetry property was also given in

Appendix B).
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4. Special Considerations

4.1 Physical explanations of cyclotron-damped root results.

In this section we want to explain physically the (cyclotron-

damped) Im k curves of Figs. C-5, C-6. As discussed earlier, cyclo-

tron damping is caused by those particles whose Doppler-shifted frequency

is approximately equal to the cyclotron frequency. Roughly, the damping

particles are those which have v
z

within

where v is defined exactly and Av approximately by

c' - ( )V = ace

[al-"(,k)(Cti) -W = ° Ce eel(C.39)

in which a is some small number (like 0.001). Thus

Av (C.-40)

an- h n oonce (C.40)

and the number of damping particles N is roughly

IV 4 () a V (C.41)

Using a Maxwellian distribution for fo(vz)

(()242)

(v)we = (C.42)

we have
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C-'- e J (C.43)

In each of Figs. 5a,b,c we consider n and B fixed and examine
0

the effects of varying Te . Using (C.39) - (C.43) we show in Figs.

C-ll the particles responsible for the damping. Note that increasing

T
e

broadens the tails of fo(vz) and lowers the center peak. For weak

damping, v is out on the tail of fo(vz) and therefore increasing

Te increases N. For strong damping (w = ce ) v Z 0 and therefore

increasing Te actually decreases N . This explains the behavior of

the Im k curves in Figs. Sa,b,c.

In Fig. C-6 we consider n and Te fixed and examine the effects

of varying Bo . In this case increasing wpe/wce means decreasing

Bo (but to maintain the same horizontal position in Fig. C-5 we must

keep w/wce fixed). In Fig. C-12 we show the particles responsible

for the damping; note that v and Av change while fo(vz) remains

constant. [This may be seen by writing (C.40) as

= \-e ( ace /) C

(C.44)

o( wee ) C

and noting in Fig. C-6 that Re k pe)pe/e) pe/e ] For

and noting in Fig. C-6 that (Re kc/w )(w /w ) ce w /w ce. Forpe pe ce pe c
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weak damping, the number of damping particles depends mainly on v

which is out on the tail of fo(vz) . Thus decreasing Bo decreases

v thereby increasing N o For strong damping (w = ce ) v z 0 and

the number of damping particles depends mainly on the velocity spread

width Av . In this case decreasing Bo decreases Av thereby

decreasing N . This explains the behavior of the Im k curves in

Fig. C-6.

4.2 Why the two-pole approximation for Z(1) should not be used

in calculating the cyclotron-damped root for w > ce
ce

In this section we explain why the two-pole approximation( 4 ) for

Z(C) should not be used in computing the cyclotron-damped root for

W > ce . As shown in Fig. C-13, the locus of this root begins at

Ce = 0 (for X = wce ) and progresses downward as w increases. As will

be explained, the two-pole approximation is in error in the region

defined by Im C < 0 and kI~ < 3. Since the cyclotron-damped root

passes through this region for w > w ce , the two-pole approximation

should not be used in computing the root in this region.

For Im C > 0 the two-pole approximation matches the first two

terms in the power series [Z+(r) z i/ir - 25] for small C and the

first term in the asymptotic series [Z+(t) z - 1/5] for large 

For Im C < 0 one is instructed to add on the term 2/ii e
- 2

.

Clearly this is correct only for |C| > 3 because only the asymptotic

series (which is valid for [ > 3 -) has the-term' ivT o+(C) e
-

.

The power series has no additional term for Im C < 0 . Thus, as
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series and asymptotic series of Z+ () are useful
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should not be used for Im C < 0 and 1 s [I4 s 3 (see
text). Also shown is the locus of cyclotron-damped
roots for w 2 Wce , as given in Fig. C-3.
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presented, the two-pole approximation is in error in the region defined

by Im C < 0 and W1 1 3.

We are left with the problem of deciding specifically when the

term 2/ii eCC
2

should be added on. (Presumably this should occur for

Im C < 0 and I1C somewhere between 2 and 3.) Furthermore, at the

place where the term is added on, the two-pole approximation for Z(4)

will effectively suffer a discontinuity, whereas the true Z function is

continuous. To avoid this artificial discontinuity, the exact Z

function should be used in the troublesome region. In summary, for

Im t < 0 and

for 1i1 1 add nothing;

for 1 ~ 3 use the exact Z function; and

for 3 < | [ > 3 add 2Rii e- .

In actual practise, such as in computing the cyclotron-damped root for

X > Wce it is probably least confusing to use the exact Z function for

all Im C < 0 .

4.3 Effects of anisotropic temperature (T, f Tz).

All of the above work was done for TI = Tz . For T£ # Tz we

have from (2.40) of Part I that, neglecting ions,

G_ pX(e,-,- /- (_ (C.45)
r(kiv, Ile o

Taking fo (vz) to be Maxwellian, we obtain
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jt (42-6) z { ()() 2C (C.46)

where a- 1- (TI/T) and Z'() -Assuming ie >

and IRe kl >> lIm kl , and proceeding as in (C.3) - (C.7), we find the

least-damped root of E
T

(k,w) = 0 to have
+

-C [ C/(0~e)2 -

_ T[ (C.47)

[/- 2 (c) (W -ce)2

If we assume

{ /- °< o( > 

[/~ )Z c~~)- C_ > 0 (

then as we found earlier for (C.10), Eq. (C.48) is valid only for
< wL or w > R . For 0 < X < ce (w cew) we must ignore (C.48)

and conclude that the root is undamped and given by (C.47).

In general, the only situation of real concern is if by is such

that
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C

[/- / z ( --c)] ) -( °(C.51)

which is

(\_ i) C¢ 2 C(< / Ape ) (C.52)

For w _ O this is

7f_ z) 2()(Me (C.53)

which is the usual criterion for obtaining the firehose instability. (1 8 )

In (C.46) note that the coefficient of Z'(Ce)

'Z2 2 ( )V~ C:~~ ~(C.54)

is typically very small, in which case the roots of (C.46) are essen-

tially the same as the roots of the isotropic case (TL = Tz). Only if

w z 0 does (C.54) become significant, in which case the roots of (C.46)

would differ significantly from those of the isotropic case.

4.4 The transverse dispersion relation for Bo = 0 .

In the limit of no external magnetic field, the transverse disper-

sion relation (C.1) becomes

6c1 lfpcwAe (C.55)

(k'ZC E kz + r- k A (C.55)
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Neglecting the ions and proceeding as in (C.3) - (C.7) we find the

least-damped root to have

Z c4 -'[ Z](C.56)

Z Cz (Z. ,&)2e + ke (C.57)

Equation (C.56) is plotted in Fig. C-14a. Note that both X > O and

and this is displayed in Fig. C-14b. Since c/a is typically very

large (>> 3) we note that lw/kal is also very large (except if

w z 0); this justifies our use of the asymptotic expansion (C.3) to

obtain (C.56) - (C.57) and it also means that the damping as given by

(C.57) is zero for all practical purposes.

4.5 Roots of cT [(- ce/Vz),w] = 0 in the complex w plane and

roots of eT (k,kvz+wce) = 0 in the complex k plane (for v
z

real).

Substituting k = (w-ce)/vz in (C.8) we find

7i (a-+4 Wce ) = 0 (C.59)

is
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kc ()

idpe~~ H i/ ~~~(a)

0

Wpe

3g

2 a

C

a

0 I PopeI 2 3

FIGURE C-14. THE LEAST-DAMPED ROOT OF THE TRANSVERSE DISPERSION
RELATION FOR B w O.

(a) Plot of (C.56); the solid line applies for (Re k)2 >0,

the dashed line for (Re k)2<0.

(b) Plot of (C.58).
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(u/-&• - " '? :- (Lu-'y ~- co'(-Qu -avoe) + 5 C
(C.60)

Note that the argument of the Z function in (C.60) is real (v
z is real)

and has no W dependence. Thus, given a value for v
z

, (C.60) is a

cubic equation in w which has three exact analytic solutions. In the

cold plasma limit (a - 0), and for IVz/cI << 1 all three roots of

(C.60) are w z wce . For a hot plasma, we have calculated the locus

of roots of (C.60) for a typical case in Fig. C-15b; note that all

three roots remain very close to w =ce 

Substituting w = kv
z

+ Wce in (C.8) we find

(C.61)
f+( , * g +ece) '°

is

A(- c +\) +ke(Z ),\kC. ) +k ce e -zi +[ cz,(2)1 °

(C.62)

which is a cubic equation in k . In the cold plasma limit all three

roots of (C.62) are k z 0 . For the hot plasma parameter values used

in Fig. C-15b we have plotted the locus of roots of (C.62) in Fig.

C-15a. Note that the roots of (C.62) may be obtained from the roots of

(C.60), or vice versa, by use of the change of variable

VZk o>-ce (C.63)

In particular Fig. C-15a may be obtained from Fig. C-15b, or vice versa,

by use of (C.63).
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(a)
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-I-

Imw
0.03t Wce

1.03

Rekc
Wce

(b)

Rew
Wce

-0.03
FIGURE C-15, (a) LOCUS OF ROOTS OF (C.62).

(b) LOCUS OF ROOTS OF (C.60).

[ c/a1120, w pe/Wce= .4 Vz/an-10++10 ]
The arrows indicate the directions the roots move as
vz/a progresses from -10 to +10.
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APPENDIX D

ROOTS OF THE LONGITUDINAL DISPERSION RELATION FOR REAL w AND COMPLEX k

From the symmetry properties discussed in Appendix B we find it is

sufficient to obtain only the roots of

_ _2

c+ (*w 4 (- / a-' At 4A) (D.1)

Using the asymptotic expansion of the Z function

a+(fl f - i - zi_ + e (D.2)

and proceeding exactly as in (C.1) - (C.7) we obtain

(D.3)

9= ·(G2 aZ ~+ eG2 A2)(4 k) Z3 A3. 

(D.4)

where a+ = o+(5e) = a+(S
i
) and Be = w/ka , i = w/kA . None of

the problems associated with a+, e) of the transverse case occur in

this, the longitudinal case.

Considering Im 1e < 0 o a+(Ce) = 2 and neglecting the ion

terms in (D.3) - (D.4) we find

_ - _ _ -/42 1 (D.5)

_l _/
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C-

- '2 - /] e

[P;e
k~l ~~z _1 ]

/,, 

- 2 : Leize a re

(D.6)

where kd = ,y (Wpe/a) is the electron Debye wavenumber. Equations

(D.5) - (D.6) are valid only for 4e I > 3 since the asymptotic expan-

sion of the Z function (D.2) was used in their derivation. From (D.5)

we have

(D.7)

Setting Be = 3 in (D.7) and solving

Thus only for the narrow range wpe <
pe -

formulas (D.5) - (D.6) valid.

For w > 1.08 w we must solve
pe

the ion term, (D.1) is

for w we find w = 1.08 wpe

w < 1.08 w are the asymptotic
pe

(D.1) numerically.

Pe

Neglecting

(D.8)

Kuehl, Stewart, and Yeh(8) have plotted Re k/kd and Im k/k vs.

/pe corresponding to the first four least-damped roots of (D.8) in
pe

the Be plane. Also, Derfler and Simonen(9) have numerically tabulated

the first four roots of (D.8). In both cases, for w > 1.4 wpe the

damping of the higher-order roots becomes comparable to, and even less

than, that of the "least-damped" root. However, Gould (
2
) has evaluated
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the first few residue terms that occur for a longitudinal excitation

and concluded that use of just the "least-damped" root is probably a

valid approximation.

For computational purposes, it is especially useful to know the

value of the least-damped root for w near w . Since for w <pe pe -

w ~ 1.25 ap the graphs of Kuehl, Stewart, and Yeh may not be read
pe

accurately (especially Im k/kd ) we have also calculated the least-

damped root of (D.8) for w < w < 1.5 w and this is displayed in
pe - pe

the top of Fig. D-1. Also shown are the asymptotic results, (D.5) -

(D.6). In the bottom of Fig. D-1 we have plotted ICel vs. W/Wpe

for the true least-damped root of (D.8). Note that as deduced above,

the asymptotic results (D.5) - (D.6) as shown in Fig. 10 are good

approximations only for pe< w 1.08 we .

To obtain the results in Fig. D-l, the true least-damped root of

(D.8) was calculated using the correct function Z'(t) rather than the

two-pole approximation. (34) The latter was tried but found to be very

poor in this case. More specifically, when the two-pole approximation

was used in (D.8) for 1.15 w < w < 1.5 p we found the least-damped
pe - pe

root had Re k/k
d

in error from its true value by 3%-18% and Im k/kd

in error from its true value by 15%-40%; and when w went below

1.15 pe , Im k even went negative. The reason for this poor behavior
pe

is presumably due to the fact that the two-pole approximation for

Z' (G) matches only the first term of the asymptotic series for Z'(C)

accurately whereas the basic asymptotic form of the longitudinal disper-

sion relation (D.5) - (D.6) requires for its derivation the first two

terms in the asymptotic series of Z'(~) .
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(D8)
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1.0

FIGURE D-1.

1.1 1.2 W
Wpe

1.3

THE LEAST-DAMPED ROOT OF THE LONGITUDINAL
RELATION FOR REAL w AND COMPLEX k.

1.5

DISPERSION

Top: Comparison of true and asymptotic results.
Bottom: Plot of Iw/kal for the true root.
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APPENDIX E

METHOD OF STEEPEST DESCENT AS USED IN EVALUATING

BRANCH-CUT AND PHASE-MIXING INTEGRALS

We present here a brief summary of the method of steepest

descent ( 3
5 ) as used in both Sections I and II.

Consider an integral of the form

+ (W)
nw

(E.1)_I=- F() e
C

where F(W) is a slowly-varying function of W and ¢(W) is a

rapidly-varying function of W . Then the integrand of (E.1) has

saddle points at W0 where

0'(Wno = 0 (E.2)

We assume the initial contour C is along the real axis in the complex

W plane. Then rewriting (E.1) as

- (w) = / F(W) e

C

s (w) - 0 (w,)
(E.3)

we note that if we deform the contour C through the saddle point at

W = W along a path such that
O

Jo(W) - 0(wW.)} = 0 (E.4)

i.e., a path of constant phase, then the integral in (E.3) may be

approximated as follows.

We first expand ¢(W) about W = Wo
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0(/)- =i (W) + Z. 0 (to) (W-°) +-.)2 1 /v6( 0)(v-03+ ' .
(E.5)

so

0 (W) 0(k0) O ( W.(w))(W-W o)2

(E.6)

We then specify the desired path of constant phase C' by imposing the

transformation of variable

z-"(w/ ) (-w,'- W" 2 (E.7)

where T is a real variable. Thus (E.3) becomes

._ _(Wo) / (E.8)

where the integration contour runs along the real axis in the complex

T plane. [Note that the integrand of (E.8) decreases rapidly as ITI

increases; had we chosen +T2 in (E.7) the integrand of (E.8) would

have increased rapidly as ITI increased.] Assuming F(T) is suffi-

ciently slowly varying, and extending the limits of the T integration

to T = + X we may write

-7~/c~--7- 2
-72 , ( 0r)O) e_/r T (T) 7 -T-:

(E.9)

since the exponential peaks the integrand of (E.8) about T = 0

Actually the limits at T = + X are not' required; the result of (E.9)

will be obtained as long as T covers the range -3 < T < +3 and
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F(T) is approximately constant over the same range. Combining (E.8),

(E.9) we obtain finally

r V- (WX'F(.) e
i T V 0k (E.10)

This result is the first term of an asymptotic expansion for I , more

terms of which may be obtained (at least in principle) by keeping more

terms in the Taylor series expansion for ¢(W) in (E.5).

Returning to the original integral (E.1), we note that the change

of variable used in (E.7) for the approximate case suggests that we use

the change of variable

0 (W) - 0 (w) = - T
2

(E.11)

(with T real as before) in the exact case (E.1). The path of constant

phase defined by (E.11) for -a < T < +- is the path of steepest

descent. [The path obtained by using +T in place of -T in (E.11)

is the path of steepest ascent.] To obtain an analytic expression for

I we must first invert (E.11) to obtain W as a function of T

Then this W(T) is used in F(W) and dW to give

I = [= e w(T)] (E.12)

where the integration contour runs along the real axis in the complex

T plane. Presumably the integrand of (E.12) could be written as a

_T2

power series in T times e and the integration could be performed

analytically term by term.

In actual practise the required inversion of (E.11) may be
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difficult and one often resorts back to using (E.10) as an approximation

for I . In this case some comment should be made on the range of

validity of (E.10). To this end we consider values of W that are near

Wo and on the path of steepest descent in the range defined by

'"(w) (W - W.) / (E.13)

Then (E.10) is a good approximation to I provided:

(i) Any singularities of ¢(W) occur for values of W far from

those defined by (E.13).

(ii) F(W) varies negligibly, i.e.,

F (W) - F(O) <

| F(Wo) (E.14)

for values of W within the range defined by (E.13).

(iii) The terms in the Taylor series expansion of O(W) past those

terms used in (E.6) must be negligibly small. Using the

first term dropped to represent the error, we must have

/ ,0 //(E.15)

which, combined with (E.13), requires

I/V-z (i)I <-' | 3 I (E.16)

We now apply the above results to some specific cases as used in

Sections I and II.
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Branch-cut integral in the k plane.

We consider Eq. (2'.58) of Part I which is of the form

=
F () e (k)

(E.17)

¢(k)= - (( c"ce)

This form of +(k) occurs generally in the branch-cut integral that

arises in a spatial problem (with a zero-order Maxwellian velocity

distribution) when the inverse transform of fl(k,w) [or El(k,w),

etc.] is computed, so the following results should be of general

interest. The integrand of (E.17) has three saddle points given by the

three roots of

3 2 (C-o-' c)
z

e
Zk ~ =M-Z~ [ e(E.18)

where k
s

represents a saddle point. The paths of steepest descent

defined by (E.11), i.e., by

0 (k) - 0 ( 5 ) = -T 2

are given by the roots of

k3 - k/ k+ i+ k + T
z

+ i z = (E.19)

where

./ ee

z (W -wC) (E.20)
_ _
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and T runs along the real axis from T = - - to T = + - . The

quantity Z is the characteristic dimensionless parameter associated

with (E.17). In terms of Z , the saddle points are given by the three

roots of

3 - 2 2

2)e_ (E.21)

The paths of steepest descent are calculated as follows. We

choose a value for Z and then select a specific saddle point from the

three given by (E.21). We then solve the cubic equation (E.19) analyti-

cally which gives three values of K for each value of T ; two of

these roots are points on the desired path of steepest descent while

the third root is extraneous [for T = 0 the three roots of (E.19) are

s', Es, and - Ks ' the latter being extraneous]. Then by numerical-

ly evaluating the expressions for the two desired roots for several

values of T (-ao < T < +X) we are able to plot the desired path of

steepest descent.

We now display the results of our calculations. In Fig. E-1 we

show the paths of steepest descent for Z = + 1 . Note that according

to (E.21) any specific saddle point for Z = +1 changes its phase by

27r/3 radians as Z changes to Z = -1 . Thus the resultant distribu-

tion of saddle points and paths of steepest descent are the same for

Z = +1 and Z = -1 . To see how the contours actually shift as Z

goes through zero, we have performed the following calculation. We let

iG
Z = e with 0 < 0 < 2w so Z takes on values of points on a unit

circle centered at the origin in the complex Z plane. We then calcu-

lated the saddle point contours for several significant values of 8
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with the results displayed in Fig. E-2. The contours for e = 0° , 180°

are of course the same as the contours for Z = + 1 given in Fig. E-1.

Note that as 8 increases from 0° to 1800 all three saddle points

rotate rigidly in the counterclockwise direction.

Of special significance in Fig. E-2 are the cases 8 = 450 and

8 = 135° where in each case one of the contours violently changes shape.

Consider the case 8 = 1350. Then suppose we had been using contour 2

(which has one endpoint at infinity) to evaluate some integral for

0° < 8 < 135°. We note that as 0 crosses 8 = 1350 the endpoint at

infinity of contour 2 is diverted back to the origin and therefore con-

tour 2 is no longer suitable for evaluating the integral; we must there-

fore change to contour 1 as 8 crosses 8 = 135°. This behavior is

known as Stokes phenomenon and the lines in the 2 plane defined by

Z = r ei(/4) r ei(3
n
/4) (r real and 0 < r < ) are called Stokes

lines. Note that for 00 < 8 < 1800 contour 1 in Fig. E-2 never

exhibits Stokes phenomenon and may therefore be used for all values of

6 within the given interval.

Thus, in Part I, in evaluating (2.58) we have chosen to use contour

1 of Fig. E-2. The first term of the asymptotic expansion, (E.10), then

gives the result (2.61). We now estimate the errors involved in using

(E.10) as discussed with (E.13) - (E.16).

First we construct a graph to aid in establishing over what values

of K , F(K) [as defined by (E.17)] must be essentially constant. We

scale (E.19) appropriately by dividng it by ;2 to give

3- ' ]/ + / = o
L kUs~ - ~~~(E.22)
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where - k

7h _ _ (E.23)

We consider only E real so T is real. Then in Fig. E-3 we have

plotted "contour 1" of (E.22) for Z > 0 . (For Z < 0 the contour is

just mirrored about the imaginary axis.) With the aid of Fig. E-1 one

may easily estimate the range of K over which -F(K) should be approx-

imately constant. The dominant portion of the integral comes from

ITI < 2 say [see (E.12)]. Thus we set ITI = 2 . Then given a value

for 2 we calculate I|T from (E.23) and find the two corresponding

points on the contour in Fig. E-3. The segment of the contour between

these two points is the range of K over which F(K) should be

approximately constant. In particular for Z = 1 (cutoffs at ITT = 2)

a large portion of the contour is needed whereas for large Z , say

Z = 27 (cutoffs at 1TI = 0.66) a smaller portion is needed.

Upon examining F(k) of (2.58) of Part I with the aid of Fig.

E-3, one notes that the only poles of F(k) that may be troublesome

are those in the infinite sequence of poles that come in along the 450

line (see Appendix C) in the k plane (and therefore also in the K

plane). But I(C-wce)/kal is very large at these poles so the exponen-

tial in (E.17) should make any pole effects negligible. The slowly

varying behavior of F(k) is roughly like 1/k3 (for w/k << c),

so using F(ks) instead of F(k) in (E.9) does of course introduce an

error, which becomes negligible for large Z . Thus, preferably, we

should have I[Z >> 1 .
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Lastly we find that the requirement (E.16)

by direct calculation from (E.19) reduces to the requirement IZ[ >> 1

This means that the asymptotic expansion method used to derive (E.10)

breaks down when IZJ becomes less than a characteristic length

[a/(w-wce) ) , in which case (2.58) would have to be evaluated numeri-

cally (along the path of steepest descent for convenience) to obtain an

accurate result.

Thus, in Part I, (2.61) is an accurate result for IZ1 >> 1 and

it is still a good order-of-magnitude estimate of (2.58) for IZI z 1
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K plane
3

2

-2 -I

-2

FIGURE E-1. SADDLE-POINT CONTOURS OF (E.17) FOR Zu±l.

Shown are the saddle points of (E.17) as given by (E.2])
and the paths of steepest descent as given by (E.19)
for Z+±1. This figure holds for Z=.1 or Z=-1 although
any specific saddle point rotates through 2w/3 radians
when Z goes through zero, as is shown in the next
figure.
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Jl
)

0= 0

I

3
0=90 ©

2

93

L
3-=
9=440

II,

0=1340
2

1
0=460

J
0=1360

0= 1800

FIGURE E-2.. EVOLUTION OF THE SADDLE-POINT CONTOURS OF (E.17) FOR

Z a e A8 e VARIES FROM 0° TO 1800.

Saddle points and paths of steepest descent are as given
by (E.21), (E.19) respectively. Note Stokes phenomenon
that occurs when e = 450 and e = 1350 .
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K plane

FIGURE E-3. SADDLE-POINT CONTOUR OF (E.17) IN TIHE K PLANE WITH T
SPECIFIED ALONG THE CONTOUR.

Shown is the path of steepest descent of (E.17) in the

K (-K/Z2 /3) plane for X real and with values of T (=T/Z1/3)

specified along the contour [see (E.22),(E.23)]. This

plot is useful in estimating the range of the variable K

over which F(K) should be approximately constant.
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Phase-mixing integrals in the v
z

plane.

We consider Eq. (2.80) of Part I and Eq. (4.4) of Part II, both of

which are of the form

. = fF (¥i) e (V)Jvz

_____ = (> ei (E.24)

This form of ~(v
z
) occurs generally in a spatial problem (with a zero-

order Maxwellian velocity distribution) when the free-streaming part of

fl(z,v,t) is integrated over vz to give Jl(z,t) (or 1 , etc.).

Thus again the following results should be of general interest.

We note immediately that *(vz) in (E.24) may be obtained from

¢(k) in (E.17) by the transformation

.- wce

kE (E.25)

so all of the graphs for the previous case apply to the new variable

[(W-Wce)/vz] . Of course we want graphs in terms of v
z

directly, so

we would have to invert the previous graphs point by point according to

(E.25) to obtain the desired graphs. Instead, we shall write out the

appropriate equations in terms of v and solve them, although at any

stage we can check our results by comparing them to the previous case

using (E.25).

The integrand of (E.17) has three saddle points given by the three

roots of

(E.26)
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where v is a saddle point. The paths of steepest descent defined by

(E.11), i.e., by

0 (V ) - 0 (VS) =
- T

are given by the roots of

v + V { -Y - V sZ = J (E.27)

where
V

(E.28)Z = r (- -Wce)
%~ _~ CzQ

and T runs along the real axis from - a to + a. Once again the

quantity E is the characteristic dimensionless parameter. In terms

of E the saddle points are given by the three roots of

7r

3 -
V 2 (E.29)

We note for reference that in terms of K = kz as in (E.20), the

transformation (E.25) is

-v (E.30)

The paths of steepest descent

method used in the previous case.

choice of Vs two of the roots of

path of steepest descent while the

the three roots of (E.27) are Vs,

are calculated from (E.27) by the

As earlier, given Z and a specific

(E.27) are points on the desired

third root is extraneous [for T = 0

Vs , -2V
s
, the latter being
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extraneous].

In Fig. E-4 we show the saddle-point contours for Z = +1 and

Z = -1 . Note that the contours for the two cases are not the same

but are mirror images about the real axis of each other. In Fig. E-5

i8
we let 7 = e with 0 < 8 < 2w as earlier. We see that as 0 goes

from 0° to 1800 all three saddle points rotate rigidly in the counter-

clockwise direction, but only through l/3 radians. Also we find

contours 2 and 3 exhibit Stokes phenomenon at 8 = 450 and 8 = 1350,

respectively. Note that contour 1 does not exhibit any Stokes phenome-

non for 00 < 0 < 1800 and therefore this is the contour we choose to

use.

To aid in establishing over what values of V, F(V) must be

essentially constant, we construct a graph similar to Fig. E-3. We

scale (E.27) appropriately by dividing it by 2 to obtain

V- 7-}- i- o (E.31)

where

7-r

-T (E.32)

As earlier, we consider only Z real so T is real. Then in Fig.

E-6 we have plotted "contour 1" of (E.31) for Z < 0 (for Z > 0 the

contour is just mirrored about the real axis). Also, as earlier, we

may set ITI = 2 and then given Z we can compute JIT from (E.32)

to obtain the cutoffs on the contour in Fig. E-6.
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Thus using contour 1 and the first term of the asymptotic expansion

(E.10), (2.80) of Part I becomes (2.82). Similarly in Part II, Eq.

(4.4) becomes (4.8). Roughly the integrand of the first case goes

X 1/V while the integrand of the second case goes X 1/V3 . Thus with

the aid of Fig. E-6 we conclude that F(V) in each case is sufficiently

constant provided IZI >> 1 but that even if 1Z[ 1 1 the errors

involved should not change the results greatly.

Lastly we note that the requirement (E.16)

by direct calculation from (E.24) reduces to the requirement I|Z >>

0.12. Thus the asymptotic expansion method used to derive (E.10)

breaks down in this case only when 1il becomes much smaller than a

characteristic length la/(w-wce ) .

Thus the free-streaming term in (2.85) of Part I and the echo

saddle-point contribution (4.8) of Part II are accurate for IZI >> 1

but still good approximations for IZI 2 1 ; these results lose their

validity only for 151 significantly less than one.
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V plane

(a) Z=+I

VS

V plane
IV

Vs
_CC

-I 

-1

(b) Z=- 1
Vs

I I

vs. ~~~~~

FIGURE E-4. SADDLE-POINT CONTOURS OF (E.24) FOR Z±l.

Shown are the saddle points of (E.24) as given by (E.29)
and paths of steepest descent as given by (E.27) for
Z.+1 and i=-1.
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3

0=90° 2

3

2

3
= 440

2

9= 1340
3

N

0=460

0=1360

3
= 1800

FIGURE E-5. EVOLUTION OF THE SADDLE-POINT CONTOURS OF (E.24) FOR

" a ie AS e VARIES FROM 0° TO 180° .

Saddle points and paths of steepest descent are as given
by (E.29), (E.27) respectively. Note Stokes phenomenon
that occurs when 0 u 450 and 0 * 1350° .
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FIGURE E-6. SADDLE-POINT CONTOUR OF (E.24) IN THE V PLANE WITH T
SPECIFIED ALONG THE CONTOUR.

Shown is the path of steepest descent of (E.24) in the

V (-V/Z 1 / 3 ) plane for Z real and with values of T (=T/Z1/
3
)

specified along the contour [see (E.31),(E.32)]. This

plot is useful in estimating the range of the variable V

over which F(V) should be approximately constant.
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