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THERMAL CONVECTION AT INFINITE PRANDTL NUMBER

I. INTRODUCTION

The problem of determining theoretically the heat transport through a con-

vecting layer of fluid bounded by horizontal conducting surfaces has received

much attention lately. Theoretical approaches to this problem may be placed in

two categories; (1) statistical theories, and (2) direct integration of the fluid's

equations of motion. Statistical theories seek to determine some of the statisti-

cally averaged properties of the flow field without computing completely the

turbulent temperature and velocity fields. Its virtue is that average properties

are smooth functions of space-time coordinates so that fewer parameters are

needed for their description than for the chaotic velocity and temperature fields.

On the other hand, direct integration of the equations of motion is certainly to be

preferred in those situations in which the flow field is non turbulent, and spacially

regular; it is also of interest to attempt a solution of the turbulent flow situation

by this second avenue. A reason for this statement is that current statistical

theories are not able to estimate accurately their errors. A suitably designed

integration procedure may thus be used not only to study the flow fields directly,

but also to assess the accuracy of proposed statistical theories.

Applications of some of the statistical theories to the thermal convection

problem has been made for the case in which the Prandtl, number, a, is put

equal to infinity (Herring, 1969). The statistical procedures studied included
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the direct interaction approximation (Kraichnan (1964)) and the quarinormal

approximation (an extension of that proposed by Tatsumi, Proudman, and Reid

(1954), and (1957)). Of these two, only the direct interaction appears to be a

physically acceptable procedure. It was found to reproduce accurately some

statistical results constructed from the direct integration approach. The study

was restricted to moderately small values of Rayleigh number (R '< 104) and to

the free boundary conditions.

An important question raised by the above study is which of the two methods -

the statistical approximation or a direct integration of the amplitude equations of

motion is most economical from the computational point of view. For the a - G0

limit, it appears that the direct integration method may be at least as feasible as

the statistical approach. The reason for this statement is that in this limit the

velocity field does not boundary layer, and consequently the statistical wave

number cascade of entropy and energy to large horizontal wave numbers is not

very severe. The velocity and temperature fields may then be represented by

relatively few horizontal wave number vectors.

A meaningful amplitude calculation must not only contain a sufficient number

of mesh points (or Fourier modes) to accurately represent the small scale

structure of the turbulent flow, but must as well represent its homogeniety and

isotropy. It appears that present day computors can deal with such a problem

provided the degree of turbulent activity is not too intense.
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The present paper presents some results of a direct integration of the

Boussinesc -Navier-Stokes equations for the thermal convection problem. The

Fourier .ransform of the equations of motion are integrated forward in time

until certain time average properties in the system become steady in time. The

init'al data for the temperature and velocity field are selected from a Gaussian

dcstribution having horizontal homogeniety and isotropy. Results are obtained

for the case in which the Prandtl number, oa, is put equal to infinity, which sim-

plifies the dynamics of the flow by effectively eliminating the vVv nonlinearity

from the momentum equation. The resulting equations should be valid provided

the Reynolds number of the flow is small. This condition does not preclude turbu-

lent flows, since the Pechlet number may be large. Our calculations here is a

preliminary step toward considering the more complicated case of finite c con-

vection.

The use of Fourier mode techniques permits an entirely energetically con-

sistent treatment of the nonlinear terms, and, more importantly affords a con-

venient basis for representing flow fields having dimensions of homogeniety.

The present problem is set up for a horizontally infinite system, and the initial

data are consistent with horizontal homogeniety.

Previous numerical calculations for thermal convection have been made by

Fromm (1965) and Deardorff (1964). Our calculations differ from theirs in several

respects. First, the present results for cr = co, whereas Fromm and Deardorff put

cx = 1. The system we study is therefore, in this respect, simpler. However, under
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these simplified conditions, we carry out a three dimensional integration of the

equations of motion, where the above authors restrict their results to two dimen-

sions. Moreover, the method of integration is designed to treat (approximately)

the flow situation in which the velocity and temperature fields have horizontal

isotropy and homogeniety.

The results may be compared to experiments for high Prandtl number

fluids. Recent experiments for such fluids have been reported by Rossby (1966),

Somerscales and Dropkin (1966), Dropkin and-Somerscales (1965), and most re-

cently by Somerscales and Gazda (1968). The results of Somerscales and Gazda

are of particular interest to us in that they present detailed measurements of

the mean temperature field and (r.m.s.) temperature fluctuation fields for a

range of Rayleigh numbers (7.39 x 105 < R < 3.21 x 108). A curious feature

of the latter authors results is that the measured mean temperature field is

asymetric about the midplane of the flow. Such an asymetry is compatible with

the Boussinesq equations for a horizontally infinite system, but it is difficult to

rationalize on the basis of theories of turbulent convection. For example, it is

well known that hexagonal cellular convection produces an asymetric mean tem-

perature field, but if the flow is time-fluctuating (as indeed the authors report)

it is difficult to see how the basic hexagonal plan form can persist for a long

time. Even if the flow is static, the hexagonal plan form may not be stable.

Asymetrics of the sort reported by Somerscales and Gazda have also been re-

ported by Somerscales and Dropkin, and by Dropkin, but not by Rossby.
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The results of the present calculation are in good agreement with the above

cited experiments with respect to the Nusselt number. Our results with respect

to the r.m.s. temperature fluctuation field, 0, are in only fair agreement; the

theoretical estimate of < 02 > 1/2 is too large near the boundary layer by - 40%.

This overestimate of 0 may be connected with the low level of turbulence activity

predicted theoretically. It is not clear to what extent this particular error is due

to the use of a- = co, and how much is due to an inadequate numerical treatment

of the problem.

Our conclusions regarding the theoretical existence of an asymetric mean

temperature field (of the sort found experimentally by Somerscales and Gazda)

are not so simple. The calculations indicate that an initial asymetry of the mean

field persists for a time long compared to a circulation time of a fluid particle.

Nevertheless, there is a clear tendency in the present calculation for the asymetry

to disappear, or at least to be reduced to a level much below that found by the

above experimenters. For those runs for which the initial data does not induce

any initial asymetry in the mean temperature field no measurable asymetries

developed. Such cases include those runs started near the conduction state with

completely random initial data. These results indicate that the hexagonal type

plan form is not stable (against finite perturbation). The predicted plan form

(insofar as one can speak of such) appears to be one in which the motion is

three dimensional, and consists of two interacting rolls, and suggests that found

by Rossby for large cr fluids if R > 10 4 . The shape of the mean temperature
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field is similar to that predicted by the quasilinear theory. The results at large

R (R > 0.5 x 106) have the overshoot region just exterior to the boundary layer.

However, the region is more diffuse in the present calculations that in the mean

field calculation.

II. THEORY AND INTEGRATION PROCEDURE

(a) The equations of motion and their Fourier decomposition.

The Boussinesq-Navier-Stokes equations at infinite Prandtl number may be

reduced to the following nondimensional form:

V v=O (1)

_V4 v aZ - V2 (2)

Hee 8= pw 7d - o (verae) (3)

(t _ wB X (4)

Here, v in the fluid velocity field, T = d +T is the temperature field, T is the

horizontal average of the temperature field, R is the Rayleigh number, k is a

unit vector in the vertical direction, i is (-dT/dz), and w is v z . The infinite

conduction - rigid boundary conditions imply that (Chandrasekhar (1960)):

6



T(O, t)= 0

T(Z = 1, t) = -1

aw 'aw
w(O, t) aw (01, t) t) = a (1, t) = O.

These equations for T are appropriate for perfectly conducting boundaries. The

nondimensionalization is such that the top plate is at Z = 1. We do not impose (ex-

plicitly) any lateral boundaries, in view of the fact that we are interested in the

solution of (1) - (4) under the condition of statistical (horizontal) homogenuity

and isotropy. A convenient way of treating such a system is to use Fourier

transform techniques, in the horizontal. We use it also in the vertical.

Let 0 a denote the component of 0 (7) proportional to sin nTZ e r.a(i x+ g),
n

and let fin be the component of -(dT/dZ) proportional to cos n7 Z. Then Na and

/jn satisfy,

( + pa) LB wa + _C wa'a wa (5)( Tt n n - m 2 npq p q
m a=a +a

(d + 2) n - 22 E (w a - oin-m 0 n+ml(6)
m a

where

wa = Jm ema
m

v a =2 + a2
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a =R a2 s 4nma ((-l)"+m+l) ((-l)ncosh7a - 1)
nm -r4 (n2 -a2)2 nm (m2 +a2) 2 ( ( _ 1 ) sinh Tra - Tra)

and

2 Ca a P P a a ', a \ 

7T npq 2 2 a n,p+q

p p a

2

-
a

2 ),n+p(p 2 2 _)(P q) ( p, n+q 
+ q, n + p )

A derivation and discussion of these equations have been presented elsewhere

(Herring (1964)). Here we only note that the Jnam factor serves to eliminate the

velocity field from the oa = oc system. The last term in the definition of J repre-

sents the effect of the rigid boundary conditions.

(b) Initial Value Problem for Homogenious and Isotropic System

Consider those solutions of (1), (2), (3), and (4) which possess horizontal

homogeniety and isotropy. By this we mean that the spacial average of the v - T

fields (averaged over a finite but large area A) are independent of the horizontal

position of A, and depend only on the vertical distance from the lower boundary.

The linear dimensions of A should be large compared to correlation lengths such

as

f = f T(x) T(x + L) dL/f(T(x))2 dL.
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To set up such solutions as an initial value problem we employ the Fourier am-

plitude equations for 0na and T
n
. First the wave number space a is descritized

to a i, and (5) and (6) are replaced by a finite set of N equations for 0 i and Tn .

At t = 0, the Oa i are assigned random values by selecting each complex numbern

O"' from a Gaussian set of random numbers. The randomization is with respect

to ~i only and correlations between modes a0
-
a, (n # m) are permitted. In-

deed, such correlations are necessary if the initial temperature field boundary

layers. If we now take the limit of such a system as N - OD (in such a way that

the a ii's "fill up" the entire finite wave number plane) then the initial tempera-

ture field T (7, 0) becomes spacially homogenious and isotropic. We note that

this method of posing the problem is one for which horizontal averaging is iden-

tical to ensemble averaging over the initial set of randomly selected amplitudes.

In practice we must always deal with a finite number of the -a il's, and n s

(vertical wavenumber). With the above procedure for selecting initial data, the

truncated system can only achieve approximate isotropy and homogeniety. More-

over the subsequent development of the system will be spuriously affected by the

finite dimensionally of the system (N). Suppose, for example, a particular wave

number in a finite system is (accidentally) strongly excited at the initial time.

This mode (or perhaps another to which this mode transfers its energy by non-

linear interactions) will eventually have a dominant role in the system. If the

number of degrees of freedom of the system were very large, then the chance

over excitation of any mode would be correspondingly small; consequently it
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would take a very long time for it or the mode to which it transfers its energy it

feeds to become dominant.

In the mean time the average properties of the flow come to quasi-steady

equilibrium. It is the properties of the system during this quasi-steady state

which interests us. In the limit as the number of modes becomes infinite, this

quasi-steady state becomes a time stationary state. No mention has been made

here as to whether the flow is turbulent. Presumably, if the experimental flow

is turbulent the above method will give the turbulent results. If however the flow

is cellular and static, the present calculation may differ in principle from ex-

periments.

Because of practical limitations in the size of the calculations, it is impor-

tant to have some approximate measure of the degree of horizontal isotropy of

the T-field. It is measured by a two dimensional tensor,

Iij = dPQ aT axT /[dQ (V.T)

Here,

V -'i a/3i + j 3/3Xj, and Xi, Xj

are horizontal orthogonal coordinates. The volume of integration is over the

entire field. An elipse may be associated with I in the usua'x. way. If the flow is

isotropic in the X1 , X2 plane, the semimajor and semiminor axes are equal, for
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flows which only depends on one dimension, the semiminor axis is zero. We

define an isotropy parameter p as

p = 1 - (a - b)/(a + b).

Here a is the semimajor axis and b is the semiminor axis. The p-parameter

does not completely characterize the angular distribution of the flow, since p = 0

for the nonisotropic hexagonal or square plan form also. p characterizes the

second moment of the angular distribution only. A complete characterization of

the angular distribution, needs a specification of the rest of the moments.

(c) Method of Truncating the Wave Number Spectrum.

The truncation procedure used here to reduce the infinite system of equations

for On and fn to a finite set guarantees two important properties of the flow:

(1) entropy conservation and (2) the prescription must be appropriate to describe

an approximate horizontally isotropic system. Entropy conservation is

simplest to guarantee: one may verify from equations (5) and (6) that any trun-

cation prescription which selects an arbitrary set of a i and the first N vertical

wave number for 6A", and the first 2N vertical wave number for in satisfies a

finite wave number version of the entropy conservation law:

N 2N N 2N 2N

d ea 12 E If 2 + V -
l

a 12 V n- Y2 + Z (7)E
dtnd. n n n= n n7
n,Ct n n'ct n=l n=l
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In applying the above truncation prescription, the convolution term in (5) is taken

to be non zero only if the three wave numbers a, a', a" satisfy a = a' + a

How to choose the set a i so as to best achieve the goal of isotropy in the hori-

zontal is not so clear. Two possible methods suggest themselves.

The first method is prescribed by generating a set of a ls by the equation

i= ( i n +jm) C, (n, m) i = (O 1, 2, ") (8)

and then discarding any a i for which

l I 1 < a0, or al > al.

Here a 0 and al are arbitrary cut off wave numbers and c is an arbitrary constant.

For a calculation to be realistic ao and al must be outside the entropy containing

region of the spectrum. It is clear that for a finite system the above procedure

favor square plan forms.

A second method consists in first generating a set of constant length vector

by means of the formula,

cos PNd + sin on p =O, O 1, ' N*

and then constructing all sums and differences aq of this set for which ao < aql _< ar

This gives exact isotropy under a finite rotation of angle (P/N*)7, P = 0, 1, 2, ... N*,

and does not favor any plan form unless N* is divisible by 4 or 6, for which
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square or triangular (hexagonal) plan forms are preferred. This second method

gives a larger number of nonlinear terms than the first for a given total number

of modes included in the system.

(d) Numerical Integration Procedure

The numerical integration method consists in a modified second order pre-

dictor corrector technique. This relatively low order of the scheme is dictated

by machine storage considerations. The modification referred to consists chiefly

of a stabilization of the high wave number modes. Equations (5) and (6) may be

symbolically written as

d
d+ X - F(x).

A formal integration of this equation yields

X(t + A) = X(t) e
-

vA + f dt' evt F(X(t') ).

From this equation we extract the following (constant A) second order predictor

correction scheme:

y(t + A)= X(t) e - VA + v 1 - a)F(X(t) -A)) + aF(X(t) (10)
( ) ()2v {()}(10)

X(t+A)X(t)e-V+ (e-VA) F X(t + A) X(t)2v F(X(t)) + F(y(t + A). (11)
+ 2 (1

13



Here y ( t + A) is the predicted value of X ( t + A); a is an as yet arbitrary num-

ber, whose value affects the stability (but not the order of accuracy) of the scheme.

If a = 1 the above procedure (except for the e-VA-factor) is the standard Adams-

Moulton method.

Methods based on (10) and (11) are not entirely compatible with the entropy

constraint (7). To see this, consider the simple case in which v = 0, and T = 0.

Then (7) implies that

l 12

n,a

is a constant of motion, while (10) and (11) give

2 I ea (t + A) 1 2 = l ea (t) 1 2 + 6 (A3 X)

We chose a so that the long time average of the entropy constraint is most nearly

satisfied. Clearly one way of doing this is to pick a value of a each time step

which forces (7) to be satisfied. However, this is too complicated to be practical,

and some numerical experimentation persuaded us that a = -1/2 is the best,

simplest overall choice. Nordsieck has pointed out that the choice a = -1/2 (for

second order integration schemes) best preserves the finite time step reversi-

bility condition for reversible systems. He also points out that this scheme is

the most unstable. However, in our system, the present scheme is stabilized by

conductivity factors e- v A serve to stabilize.
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An integration technique which preserves the entropy constraints exactly is

to transform dependent variables from the (complex) On' field to variables E

and ', where 0 = rE eiO. Such a scheme was tried, but gave excessively large

error for E near zero because of stability problems.

IV. RESULTS AND DISCUSSION

(a) Mean Properties of the Flow

Results for the mean temperature field T (Z) and the r.m.s. temperature

field ib(Z)=(<T2 (r,t)> - <T>2 )l / 2 are presented in figures (1) - (2) for a range

of Rayleigh numbers R = 4 x 103, 10 4 , 105, and 7.39 x 105 . These results are

both horizontally and time averaged. The horizontal wave number spectrum is

determined by the second method described in section IIIC, and the parameters

are, N* = 6, a0 = 1 FY, a, = aI2. The number of vertical wave numbers

ranges from 5 forR = 4000 to 20 for R = 106. We postpone till section IVC a

discussion and estimation of the wave number truncation error. The time

averaging of the ib and T fields was carried out only over the last portion of the

time displacement of the system - after the excursion in N
u

had become less

than 10%. Time integrations were stopped when the time average of N. become

steady to three significant figures. The isotropy parameters for the R = 4 x 103

and R = 10 s runs are shown in figure 3.

Results for the averaged Nusselt number are shown in figure 4. The range

of Rayleigh number covered does not warrant an extraction of a power law from
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the data. However, if one assumes a Nu - R1
/ 3 law (as has been analytically

forecast by Roberson for two dimensional convection) then a continued fraction

extrapolation of the data predicts

N - 0.945 R'1 / 3 for R - co .

The points in figure 4 give the experimental results of the author cited in the

introduction.

(b) Comparison of Present Calculation with Quasilinear Theory and with

Experiments

It is of interest to compare the present results with those of the quasilinear

theory, which simplifies the basic equations (1), (2), and (3) by deleting the

last term in equation (3). A comparison of the two calculations is presented

in figure (5) for the mean temperature field T(z), at R = 105. For the

quasilinear system, N = 11.5 while for the complete system N = 9.18. The

main difference between the two calculations is seen to be that the overshoot

region, just exterior to the boundary layer is much more diffuse according to the

present calculation than according to the quasilinear calculation. The inclusion

of the fluctuating-self interactions does not completely remove the overshoot

region, as was one time thought (Herring (1964)).

The numerical results may also be compared to experiments at high Prandtl

number. Figures 6 and 7 give a comparison of the present results for T and

16



1
T/2 at R = 7.39 x 105 with the recent experimental results of Somerscales and

Gazda. The most important differences between the present results and the ex-

perimental results is the fact that the present results for T and qj are very

nearly symmetric about the mid-plane of the flow. Such a high degree of sym-

metry is not a result of time averaging but is also obtained at any instant pro-

vided the system is near the steady state. This disparity is curious. Within

the framework of the Boussinerg approximation, an asymmetric T and k fields

may be expected if the large scale part of the flow field is nearly statis and if

the plan form of the motion is more or less hexagonal. By this we mean that

the 6(x, y, z)-field has its large scale (vertical) structure dominated by modes

60, 0 ', and 0a".(a = a' + a".) such that d0, t0' and 0" are in phase (for an

exact hexagonal plan form, a= = (a, = 02). The asymmetry corresponds to

ascending (descending) columns of fluid of high velocity but low crossectional

area and descending (ascending) columns of fluid of small velocity but large

crossectional area. The direction of asymmetry is arbitrary in the Boussinerg

approximation and is determined by the slight dependence of viscosity on the

density. Our calculations admit such a solution-provided these solutions are

stable to finite perturbations. Apparently these solutions are not stable in as

much as the solution we find passes a near symmetric T field. Our solutions

compound to having the large scale part of the 0 ( x, y, z) field discribable by

modes $0, 02', and 6"- (a = a' + a") such that a,' 2 0a"., and 0a being (ap-
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proximately) the harmonic of e'a and 0" . If only these three modes are in-

cluded in the calculation, and if the solution is static, then it may be verified

that the solution has exact mid-plane symetry. This solution corresponds to

two roll structures superimposed at an angle of 300. A possible explanation of

the disparity is that Somerscales and Gazda actually sampled the temperature

along a line in a convective cell, which remained fixed in space during the

course of the measurement.

The computed qp field shown in figure 7 overestimates the r.m.s. temperature

fluctuation field near the boundary layer by about 40%. This overestimation is

probably due to the absence of strong small scale turbulence in the numerical

experiment, and to its presence in the real experiment. What is not clear is

how much of the difference is due to the fact that our numerical results are at

infinite o-, and the experiment at finite a-, and how much is due to the inadequate

numerical representation of the small scale structures.

The computed values of the Nusselt number are in good agreement with

experiment (N
v

(R = 7.39 x 105) = 9.03 compared to our 9.18). However, this

agreement is somewhat accidental, and depends on our arbitrary choice of ao.

We shall examine in section IVC the dependence of the T-field on ao; it turns

out that the value of N = - (dT/dz)z=0 depends more sensitively on a0 than

(dT/dz) at other values of Z.
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(c) Discussion of Accuracy of the Calculation

The two important sources of numerical errors is the present calculation

are time descritization error and wave number truncation errors. To eliminate

the time step errors, the time step was decreased until the evolution of

certain selected quantities whose accurate evolution was desired were predicted

with tolerable accuracy. These quantities were the Nusselt number, the isotropy

parameter, p, and the entropy spectrum defined by

Sa = 0d -'
n n n

a=la|

Naturally, this means that certain other quantities, for example Oa for a and n

in large, are not predicted with great accuracy. The time steps were, At = 0.01,

for R = 4,000; At= 0.025, for R = 104; At = 0.0025 for R = 10 s , and At = 0.001,

for R = 7.39 x 105.

Wave number truncation errors exist both with respect to the vertical cut

of wave number, n
o

, and with respect to the horizontal wave number cut offs

a 0 and al. The appearance of significant vertical wave number truncation error

is manifest by spurious oscilations in the mean field of frequency 7rn0 . Such

errors thus easily recognized are easily eliminated.

Assessment of horizontal wave number truncation error is more difficult,

since such errors do not manifest themselves in terms of easily recognizable
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unphysical behavior for 0(r, t) or T(7, t). For example, the 0 and T fields for

the quasilinear system behave quite reasonably despite the fact that these ampli-

tude contain only one a. It appears plausable that these errors are eliminated

for a given vertical wave number n if S°0 and S l are much smaller than
n n

the peak value of Sa: in other words the spectrum S' should be adequately

represented within a wave number band ao, a1 . Data on this point is presented

in Table I for R = 7.39 x 105 . From these data, it appears that there is little

truncation error near ao. Also, there appears to be little error in the large

scale part (the odd modes) of the Sh-field. However, the even modes appear to
n

have an appreciable error, since near a1 these intensities are maximum. These

errors, however produce little change in the mean field or q (z)-field.

Another assessment of the a-truncation error may be obtained by rescaling

the a-spectrum by multiplying each value of a by a constant factor. Such a

scale change amounts to selecting a new (and in principle exact) solution to the

T, 0 system. If both of the a spectra cover the energetically significant portion

of a-span one expects little difference in the horizontally averaged properties

of the flow. However, our results cover only a small annulus in a -space, so

that it is important to have some measure of the difference. Figure 8 and 9

give a comparison of the T and I-fields for ao = 1/1v and ao = 1.0. The

respective values of Nu are 9.18 and 10.21. We observe that the two mean fields

are indistinguishable, with only slight differences in the qp fields. Apparently N

is the most sensitive to a rescaling of the a spectrum of all the mean field
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quantities. This fact seems to vitiate any claim to predicting accurately the Nu

versus R curve at large R. However, we note that of T and b are insensitive

to the above variations of a%.

V. CONCLUDING COMMENTS

In the present paper we have developed numerical solutions to the full

scaled three dimensional thermal convection problem, at infinite Prandtl number,

and for rigid boundaries. The procedure used was designed to give an approxi-

mate account of horizontally homogeneous and isotropic flow situations. To

implement this we used the Fourier transform of the equations of motion. Our

results, which included a maximum of 36 horizontal wave number vectors and

20 vertical wave numbers appear to adequately describe the flow fill up to

R = 10 ; beyond this R the results appear to show horizontal wave number trun-

cation error. This error seems to affect the boundary slope of the mean

temperature field more than other mean quantities, such as T and pb. Despite

some numerical uncertainties, certain of the qualitative features of the flow fill

are predicted with reasonable confidence.

The mean temperature field T developes a negative gradient just exterior

to the boundary layer, similar to that predicted by the quasilinear method. Thus

the presence of the fluctuating-self-interactions does not entirely remove the

negative gradient region, but does weaken it and makes it more diffusive. This

type of mean temperature field is probably characteristic of large a- fluids, and
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appears to result from the fact that at large a the flow is characterized by large

scale velocity field sweeping small scale temperature structures into the

boundary layer.

We do not find the large asymetrics in the mean temperature field reported

by Somerscales and Gazda. Moreover, it does not appear likely that this result

depends on wave number truncation error, since this behavior is primarily con-

nected with the large scale part of the T-field. Possible reasons for this dis-

crepancy are (1) the possibility that Somerscales and Gazda measured not the

horizontal mean temperature field but rather the temperature field at a fixed

vertical position in a slowly evolving convective cell, (2) in the experiment,

the vertical boundaries play a significant role, (3) the finite (but small)

value of Reynolds number in the experiment affects the results. At any rate, it

appears that the hexagonal type asymetry in the mean field is definitely not

stable with respect to finite perturbations.

The dynamic of the flow as emerge from the numerical calculation consists

of almost static large scale cells with more rapidly fluctuating small scale

structures superimposed on them. The flow field is three dimensional (it does

not degenerate into rolls) large scale part converts (roughly speaking) of rolls

superimposed at an angle of 30 ° . The precise value of this angle depends on our

method of selecting the a -spectrum, and no great significance shall be attacked

to its value.
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n/a 0.7425
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0.1072E-04
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0.1008E-05
0.2558E-05
0.1501E-05
0.8817E-06
0.6162E-06
0.5188E-06
0.6226E-07
0.1044E-07
0.4123E-07
0.1338E-07
0.2876E-08

0.3942E-04
0.4508E-04
0.5760E-04
0.7151E-04
0.8646E-04
0.1684E-04
0.3266E-04
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0.4788E-05
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0.2043E-08
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0.5385E-06
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0.1700E-06
0.2604E-07
0.1404E-06

0.1738E-03
0.3492E-02
0.3022E-03
0.9957E-03
0.3683E-03
0.6156E-03
0.9284E-04
0.4409E-03
0.2000E-04
0.1870E-03
0.9539E-05
0.7036E-04
0.2677E-05
0.1501E-04
0.1012E-05
0.2890E-05
0.1786E-06
0.2483E-06
0.9024E-07
0.1604E-06
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Table 1

p(fi, a)

1.0253 1.2374 1.3789 Total
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Figure 1. Mean temperature, T, as a function of z for R =4.103, 104, 105 ,
and 7.39* 105
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Figure 3. Isotropy parameter (see text), p as a function of time for R = 4*103, and 105.

28

3
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Figure 4. Nusselt number as a function of R for quasi-linear and present calculation. Points, o, give Somerscales
and Gazada (1968) experiments, and points, A, give Somerscales and Dropkin (1966) experiment.
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Figure 5. Comparison of present mean temperature profile, T, with quasi-linear
theory. Here R = 105 .
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Figure 6. Comparison of present calculation of T with experiment of
Somerscale and Gazda (1968).
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Figure 7. Comparison of r.m.s. temperature fluctuation field with experiment of
Somerscales and Gazda (1968).
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Figure 9. Comparison of 4'for a0 = 2-1/2 with jrfor a0 = 1, for R = 7.39*105.
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