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ABSTRACT

For three straight semispan model space shuttle wings, the maximum

total load (including vibrations) during rapid rotation from 66° to 0°

angle of attack, at Mach numbers from 0.28 to 0.60, was essentially no
higher than that measured (non-statistically) for buffet. During slow
rotation over the same angle range, there was no visible flutter. For

one of the wings, however, unstable aerodynamic damping was established

at two fixed angles of attack.
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INITIAL ROTATION-LOADING AND LOW-SPEED FLUTTER TEST
RESULTS FOR A STRAIGHT WING VERSION OF THE
SPACE SHUTTLE VEHICLE

by

Robert W. Warner
Phillip R. Wilcox
and

Bruno J. Gambucci

SUMMARY

Loading and flutter results are presented for rapid rotation and slow
rotation from 66° to 0° angle of attack for three semispan model space
shuttle wings (straight, aspect ratio 7, semispan 5 ft.), together with
total damping results at selected fixed angles. Mach numbers ranged from
0.28 to 0.60, Reynolds numbers per foot from 0.32 x 10 ft.”! to 3.66 x 10
ft. -1, and dynamic pressures from 21 psf to 243 psf. The maximum total
load(including vibrations) was not more than 12 percent higher than the
maximum mean load during rapid rotation scaled from the prototype, as compared
to 11 percent for (non-statistical) buffet in the present test and 17 percent
in a previous test. There was no visible flutter during slow rotation.

"Near flutter" (stable total damping but zero or unstable aerodynamic damping)
was established at several conditions for the basic wing but not for the
torsionally stiffer wing or for the torsionally stiffer wing with a leading
edge spoiler.

INTRODUCTION

During its return to earth, the space shuttle orbiter enters the atmos-
phere at an angle of attack of approximately 60° for braking purposes. At a
specified design Mach number, in the range from low supersonic to low sub~-
sonic, the orbiter rotates rapidly to a lifting attitude. The resulting
rapid load change suggests the possibility of structural vibrations large
enough to cause a significant dynamic overload, and the passage through the
stall region suggests the possibility of stall flutter. The present purpose
is to investigate these possibilities experimentally at low subsonic Mach
numbers for the straight, thick, high-aspect-ratic wing of reference 1 and
for two variations from that wing. An auxiliary purpose is to search for
low damping at fixed angles of attack.

At fixed angles of attack, stall flutter has already been investigated
for the straight wing of the space shuttle (references 2 and 3), but for a
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smaller model than the present wings and without a boundary layer trip.
Also at fixed angles, stall flutter has been investigated in reference 1,
but at high subsonic and low supersonic Mach numbers.

”A"

"BH

"BSP"

NOTATION
denotes basic wing
free-stream speed of sound
denotes torsionally stiffer wing
denotes torsionally stiffer wing with leading-edge spoiler

wing semichord at 3/4 semispan

normal force
S g

normal force coefficient,
root chord

tip chord

frequency, HZ

bending deflection signal
free stream Mach number
tunnel total pressure
free stream dynamic pressure

£§Eé% gﬁethaTiagologd at ghe minimuTogg the load curve immediately

the maximum mean

ratio of the maximum total load, including wvibrations, to the
maximum mean load

ratio of the mean load at stall to the maximum mean load
twice the planform area of the semispan wing model

geometric angle of attack relative to wind tunnel centerline
damping ratio

torsional deflection signal

relative density of wing, i.e., semispan wing mass divided by
mass of air in truncated cone with semispan wing as diameter

free stream air density

highest frequency involving first torsion
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TEST EQUIPMENT AND PROCEDURE

The model wing geometry is shown in figure 1, a schematic of the rotation
mechanism for the wing in figure 2, photographs of the rotation mechanism in
figure 3, the wing model installation in the 12-foot pressure wind tunnel in
figure 4, operating characteristics of the wind tunnel in figure 5, the mode
shape frame in figure 6, still-air mode shapes in figures 7 and 8, and a
sample unfiltered spectrum in figure 9.

Models

The model designated wing "A" in the present report is the wing model 2
of reference 1. As pointed out therein, the planform and section parameters
for wing "A" (and for all the present wings) are:

(full span)? _ (120)% _

Aspect ratio = = ~2070 * 7

S
2
25.5

. c
Taper ratio = E£ =

r

= 0.353

Leading edge sweep = 14°

&

S . 1035 in.?
2- n.

Airfoil profile (parallel to the flow): NACA OOXX-64

Semispan wing area

Root thickness ratio = 14%

Tip thickness ratio = 10%

All wings are supported by the same steel tongue. The tongue slips into
a tapered cavity (figure 1) in the base of each wing, a cavity molded into a
metallic potting material. The tongue extends 11.6 inches into the wing, a
distance corresponding to the wing-fuselage intersection on the full-scale
space shuttle vehicle.

As indicated in figure 1 and in reference 1, wing "A" has a fiberglass
skin over a stiff plastic foam interior with a birch spar at the 20% chord
position. The mass ratio M for the outer 807% of the semispan is

_ 608 x 107"
Peo

with p, designating the free stream air demnsity in slugs/ft.3. For the
present tests, the range of M is defined by:

W = 13.7 at M = 0.3, P, = 4107 psf
U = 156 at M = 0.6, P, = 381 psf

Additional information on the physical characteristics of wing "A" can be
found in reference 1.
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Wings "B" and "BSP" have no spar but have approximately the same mass
and u values as wing "A". They have a 0.020-inch thick 2024 T3 aluminum
skin over a honeycomb interior with fiberglass leading and trailing edges.
The honeycomb is filled with stiff plastic foam over the first (upstream)
147 and last 16.5%7 of the chord but is otherwise unfilled. For wing
"B", the bending deflections per unit tip load are the same as those for
wing "A" (figure 9 of reference 1) and the twist angles per unit tip torque
(pure couple) are one-fourth those for wing "A" (figure 10 of reference 1).
The bending deflections and tip load were at 407 chord, and the twist angles
were measured in planes normal to the 40%Z chord line.

These stiffness comparisons are assumed applicable to wing "BSP" also,
since "BSP" is simply "B" with a light leading edge spoiler added. The
spoiler is a fiberglass "T" section with the flanges (0.025" thick) glued
to the wing so that the projection normal to the wing (0.050" thick) is on
the 25% chord line. The projection height and flange widths are 5% of the
chord, ranging from 0.45" at the tip to 1.11" at the inboard end of the
spoiler (11.6" from the root).

Rotation Mechanism for Models

As indicated in figure 1, the models are supported by a tongue which
has a rotation axis passing through the quarter chord point of the mean
aerodynamic chord. This rotation is provided by mounting the tongue on the
rotation mechanism of fégures 2 and 3., The hydraulic cylinder (actuator)
drives the wing from 66  to roughly 0° angle of attack in as little as 0.4
seconds (A rotation time of 0,6 second for the model corresponds to the
estimated full scale rotation time of 6 seconds.) The time history of
angular displacement is roughly the integral of a half sine wave velocity
pulse and approximates the prototype time history estimated by analog
computer simulation. This time history is achieved by a servo valve,
shown in figure 2(a), together with a displacement feedback system and
servo command. The displacements are measured by an angular potentiometer.

It was required of the rotation mechanism developed for the present
test that the rapid rotation just described be achieved while retaining
adequate base fixity for overload and flutter testing. In an attempt to
meet this requirement, a massive design was utilized as seen in figure 3,
where the rotating disk is 1-1/2 inches thick. In addition, heavy duty
thrust bearings with close tolerances were used. The bearings are shown
schematically in figure 2 and were located at the ends of the longest shaft
that would fit into the wind tunnel mounting region. Specifically, the
bearings are 6-1/8 inches apart on a tubular shaft having a 5-5/16 inch
outside diameter and a 7/8 inch wall thickness. The inside of the shaft
contains the feedback potentiometer already mentioned and a second potentio-
meter used for recording angle of attack.

For additional root fixity in the various rocking modes of the rotating
disk, an upstream clamp and a downstream clamp were added, as seen in
figures 2 and 3. These clamps minimized rocking directly by their column
forces and indirectly by tightening the upper thrust bearing. They could be
activated and deactivated hydraulically at any fixed angle of attack.
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Apparatus and Instrumentation

The Ames 12-foot pressure wind tunnel was used in the present test,
with model installation shown in figure 4. The wind tunnel is a variable-
density, low-turbulence type that operates at subsonic speeds. Its
operating characteristics are given in figure 5.

Wing oscillations and wing loads were sensed by strain gage bridges
located in one-inch-wide slots in the tongue. The elements of the bridge
in the center slot are arranged in a 45-degree pattern relative to the
air stream, and this bridge is referred to as the "torsion gage'. The
elements of the other two bridges are normal to the air stream, and these
bridges are referred to as the "forward bending gage" and the "rear bending

gage'.

Frequencies, Damping Values, and Mode Shapes in Still Air

All still-air vibrations were activated with the model wings mounted
in the wind tunnel, as in figure 4. Several angles of attack were used to
check their effect on root fixity. All damping ratios and the corresponding
natural frequencies were found from decays which followed either a tap on
the wing tip with a mallet or a sudden shut-off of the air supply to an air
exciter at the wing tip.

The air exciter was particularly useful for high frequency modes, but
was used sparingly because it was a bulky device to move in and out of the
wind tunnel. It consisted of two large wheels driven by an electric motor,
with gear teeth arranged on the wheel circumferences so as alternately to
interrupt high-pressure air jets on either side of the wing tip.

Still-air frequency and damping results are given in the following table
for wing "A" ("Clamped" means that the upstream and downstream hydraulic
clamps of figure 3 were activated and that check valves prevented, or nearly
prevented, return flow from the hydraulic actuator; "pressure off" means that
hydraulic pressure was removed from the actuator, after positioning, but not
from the clamps; wing root was at room temperature unless otherwise specified;
frequencies given without damping values were estimated from wind-on results
at low dynamic pressure):
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For wing '"B", frequency and damping values in still air are given
in the following table (with terminology as for wing "A"):
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The reader should be cautioned against overemphasizing the frequency and
damping contrasts in the foregoing tables. For example, the listed differences
in frequency for the first bending mode wing "A" are more probably due to errors
than to the listed differences in wing root and other conditions (with cycle
counting, for high damping, and oscillograph timing lines considered to be among
the possible sources of error). For the same mode, the damping values of 1.4%
and 1.0%7 with the wing root at 130°F and room temperature, respectively, are
well within a measurement accuracy.

If the damping results for wings "B" and "BSP" are considered to be results
before and after the wind-on test for essentially the same wing, then the 0.9%
value for 1lst torsion suggests a large change relative to the 2.3% value. It
would be more reasonable, however, to regard both values as part of the scatter.
The most reliable damping differences in the foregoing tables are those between
the clamped and unclamped conditions in first bending (with the damping in the
unclamped condition so high for wing '"B" that 1lst bending was not excited by the
mallet).

The mode designations for wings "B" and "BSP" were based on a previous
node-line determination for a different wing-root condition. For wing "A",
however, the mode designations were based on measured mode shapes; and the
"question mark" means that the mode labeled "lst torsion and second bending "
could not be excited in the mode-shape test.

For the mode shape measurement, 12 highly sensitive noncontacting capacitive
probes (proximity deflection sensors) were developed by Dean Harrison of the Ames
Research Center, Electronics Research Branch, and assembled in a mode shape frame
as shown in figure 6. The probe outputs were calibrated by deflecting the wing
statically and measuring the deflections opposite the probes with a dial gage.
Mode shapes, as forced by an electrodynamic shaker, were then determined with
wing "A" installed in the tunnel.

The mode shape results are presented for excitation at the leading edge
of the wing tip in figure 7 and at the trailing edge in figure 8. The four
lowest frequencies are presented in each case, and these represent the first
five modes except for the unexcited mode mentioned earlier. Frequencies are
somewhat different from those given earlier primarily because of the stiffness
and inertia of the shaker moving parts. The RMS displacements in the modes are
given in tables with the modal plots. These displacements are proportional to the
length of the modal vectors, and the relative signs of the vectors correspond to
the phase of the time histories in a simultaneous oscillograph display. Numerical
locations of the 12 deflection points are given in figure 7(a) only.

The mode shapes were measured not only to identify mode shapes but also
to serve as useful coordinates for possible future flutter analyses. The most
important coordinate information, which is not obtainable from node-line studies,
is the torsion present in the first bending modes of figures 7(a) and 8(a) and
the bending present in the mostly torsion modes of figures 7(c) and 8(c). A
suitable mean would have to be found between the modes of figures 7 and 8, of
course, if the results were to be used for coordinates.
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Test Procedure and Data Reduction

In the course of the test, the angle of attack ranged from 0° to 660,
the Mach number from 0.28 to 0.60, the dynamic pressyre giom 21 psf to %43 -1
psf, and the Reynolds number per foot from 0.32 x 10 ft to 3.66 x 10 ft .
Boundary layer trips were located 2-1/4 inches from the leading edge on both
sides of the wing and extended from the outer bolt-head fairing to the tip,
as shown in figure 4.

The test procedures for each air-flow condition started with a slow
(1 or 2 minute) rotation from 0O to 660 angle of attack. Then rapid rotations
were made from 66° to 0° with time durations of 0.4, 0.6, and 0.9 seconds.
Finally two minutes of random vibration data were taken at the fixed angle
or angles of attack which gave the maximum wing strain gage responsc (generally
in the stall region), and fixed angles of 00, 20, and roughly 66° were added
in most cases. In some cases, more than one wing-root clamping condition was
tried at the fixed angles of attack.

This procedure constituted a survey for flutter and large dynamic over-
load. 1In their absence, the survey was broadened by avoiding small steps in
fixed angle of attack, Mach number, and dynamic pressure.

At the fixed angles of attack, digital equipment was used to record the
mean static wing loads (indicated by the strain gages), the tunnel conditions,
and the angle of attack. At the fixed angles and also during the wing rota-
tions, magnetic tape was used to record the mean and vibratory strain gage
outputs and the angle of attack.

The data reduction for dynamic overload consisted of putting the magnetic
tape output onto oscillograph paper for both the fast and slow angle sweeps and
making the appropriate measurements on the paper. For "mear-flutter" (where
the total damping is stable but the aerodynamic part is zero or unstable), the
data were reduced by playing the magnetic tape output through a band pass filter
into an autocorrelation computer (reference 4) for the two-minute segments of
random vibration data at the fixed angles of attack. The autocorrelation
computer measures the total damping for comparison with the still-air or
structural damping.

The band-pass filter was required to isolate individual modes in the
presence of many modes (see figure 9 for a sample unfiltered response spectrum).
For maximum speed of data reduction, the filter was set with both the high and
low pass at a single frequency; and this frequency was varied in a search for
low total damping.

The single frequency setting has the advantage of fine filtering but the
disadvantage of maximum filter effect on the measured damping. At one of the
frequencies of interest, 148 HZ, the filters had a f value of approximately
8.5% of critical, and measured wing damping values in that neighborhood are
obviously meaningless. As shown for a sample calibration in reference 5,
however, the single frequency setting can give accurate damping measurements
for low damping (less than 3% error for ¢ = 0.2% of critical). Unfortunately,
the equipment required for the calibration technique of reference 5 was not
available for the present test., Fortunately, the low damping values, particu-
larly '"mear-flutter", are the values of greatest interest.
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RESULTS AND DISCUSSION
Test Results

The bending strain gage signal in figure 10 is a typical time history
during rapid wing rotation from 66° to 0° angle of attack (nominal angles),
with (1) the dynamic load (at a particular angle) and (2) the stall and (3)
the minimum in the load curve immediately after the stall. Results on these three
quantities under various flow conditions are presented as functions of elapsed
rotation time for wing "A" in figures 11 through 13 and for wings "B" and "BSP"
in figures 14 through 16.

Results at fixed angle of attack, which comprise all of the quantitative
results associated with flutter, are presented as functions of dynamic pressure
for wing "A" in figures 17 through 21, for wing "B" in figures 22 and 23, and
for wing "BSP" in figures 24 and 25. These results include total damping, root
mean square bending oscillations, root mean square torsional oscillations, and

the ratio of the two oscillations at various Mach numbers, frequencies, and
fixed angles of attack.

Discussion of Results for Wing Rotation

The most important quantitative results for the space shuttle orbiter in
the wing-rotation part of the test are the ratios ( ) of the maximum total
load, igcludigg vibrations, to the maximum mean load %or the rapid rotations
from 66° to 0  angle of attack. A survey of figures 11 and 14 indicates, for
the three wings tested, that the maximum R? for an elapsed rotation time of
0.6 seconds was 1.12. This rotation time IS the most important of the three
given since it is scaled from that for the full-scale vehicle (6 sec.).

For the slow rotations, requiring 60 to 100 seconds, the maximum in
figures 11 and 14 was 1.11. This was caused by buffet at a = 66° prior
to rotation. Since the record time prior to slow rotation was less than 30
seconds,* it is possible that a longer record would give a higher . In
fact, information in reference 3 suggesgs an RDL of 1.17 for buffet of the
space shuttle straight wing at o = 60".

When the Rg values of 1.11 and 1.17 prior to slow rotation (if any) are
compared with the value of 1.12 for a rotation time of 0.6 seconds, it is
apparent that the maximum total loads (including vibrations) caused by rapid
rotation are no larger than those due to fixed-wing buffet. In fact, the
maximum of 1.20 in figures 11 and 14 and a rotation time of 0.4 seconds
is not muc% worse than 1.17, and the maximum of roughly 1.10 for 0.9 seconds
is the smallest of the maximums.

The vibrations caused by rapid rotation are transient responses to the
mechanical load changes at the beginning and end of rotation and to the aero-
dynamic load changes in the minimum in the load curve immediately after the stall
and stall regions (figure 10). Buffet is superimposed at a = 66 and possibly
at some of the rapidly traversed angles.

*No attempt has been made to present the buffet information statistically.
Records of 120 second duration were taken at o = 66 , but not for all cases.
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All vibrations large enough to affect the load time histories signifi-
cantly have a frequency near first bending, or approximately 30 cps. In many
cases there were so few cycles in the neighborhood of the stall and the minimum
in the load curve immediately after the stall that the vibrations could not be
distinguished from the mean, with figure 10 being a marginal case in this regard.
In some cases, particularly near o = 660, the oscillatory loads could not be
distinguished from the instrumentation noise (with figure 10 being marginal);
and RDL was listed as unity for these cases.

The reason that the ratios RD in figures 11 and 14 are so close to unity
is simply that the largest vibrations tend to occur in the middle of the loading
range specifically, in, or near, the normal force recovery between the minimum
in the load curve immediately after the stall and the stall illustrated in figure
10. In this region, the ratio of the single amplitude incremental load to the
mean load at a = 66° is sometimes quite large, with the largest being 0.43.
This ratio is not large enough, however, to produce loads higher than the mean
load at_a = 66 ; and RDL is always determined by the smaller oscillations at
a = 66 .

Except for the lowest q, 1in figure 11(a), there is a tendency in figure

11 for the highest values of due to rapid rotation to occur for the lowest
values of gq . A possible expldnation for this tendency is that the oscillations
at o = 66 are relatively independent of q, while the mean loads are propor-

tional to q_. Such independent oscillations might be caused by the mechanical
load changes mentioned earlier.

No such parametric variation with q, 1s apparent in the values for
the torsionally stiffer wings "B" and "BSP" in figure 14, and those values
are somewhat lower than the corresponding values for wing "A" in figure 11.
The lower values may result simply from a smoother application of mech-
anical load Ey the hydraulic cylinder at the start of rapid rotation (a = 66° ).
Such variations could also occur on the full-scale vehicle due to the pilot or
autopilot.

It is also apparent in figure 14 that the spoiler on wing ''BSP'" did not
greatly affect the values. On the other hand, the ratio (not plotted) of
the maximum vibration amplitude to the maximum mean load was lower by a factor
ranging from two to three for wing "BSP" than for wing "B". This could result
from the fact that the spoiler essentially removed the minimum in the load curve
immediately after the stall in the mean load variation. (Note that for the double-
flagged symbols, the values of RD in figure 16 are very close to those of RS in
figure 15).

The ratios (R_.) of the mean load at stall to the maximum mean load and
(R;)) of the mean load at the minimum in the load curve immediately after the
stall to the maximum mean load are given in figures 12 and 13 for wing "A" and
in figures 15 and 16 for wings "B" and "BSP". These ratios may be important if
they occur at slightly different times on opposite wings of the space shuttle
vehicle and thereby contribute large rolling moments. Some of the R_. data in
figure 12 has been flagged to indicate that the stall angle was not reached
during the most rapid part of the rotation. For the slow rotations, some R
data was eliminated when there was a jump in strain gage readings at the stall.
This jump may have been caused by a slight slippage between the wing and the
tongue, and there was a zero change (but not a slope change) in the strain-gage
calibrations before and after the tests.
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It is important to realize that the present results are load results,
i.e., normal force results, and not lift. The magnitudes of the maximum
mean loads are defined by the Cy values given in figures 11 through 16.
These are derived from the strain gage outputs, calibrated to give bending
moment, under the assumption that the wing center of pressure lies on the
mean aerodynamic chord, as illustrated in figure 1.

The ranges of Mach number and dynamic pressure given in figures 11
through 16 result from variable blockage as the wing rotates from o = 66°
to a = 0°. The time lag in arriving at the final tunnel conditions for a =
0° is unknown, but it is reasonable to assume that the tunnel conditions for
o = 66° apply throughout the rapid rotations.

The results discussed so far pertain to the maximum total loads (includ-
ing vibrations) caused by rapid rotation. Stall flutter, on the other hand,
would tend to be inhibited by rapid, as opposed to slow, rotation. During
the slow rotations referred to earlier, there was no visible flutter of any
kind, that is, no visible steady or growing oscillations (to indicate zero or
unstable total damping).

For a sound speed, a,, of 1050 ft/sec, for a semi-chord, b, of 0.55 ft
at the 3/4 semispan, and for a circular frequency, w,, of 836 rad/sec (the
highest frequency involving 1st torsion of wing "A"), the stall flutter
parameter, w,b, is 0.44. For wings "B" and "BSP", w, 1s 868 rad/sec, and

aoo

web 1is 0.45.

Ay

Both of these mab values are lower than the value of 0.48 for which

o
stall flutter occurred for the straight space shuttle wing model of reference
2. Hence, wings "A", "B", and "BSP" should have exhibited stall flutter for
consistency with reference 2. By the same token, wing model one of reference
1 should have had stall flutter at the higher subsonic speeds (0.6 = M = 1.0).
The reason for this inconsistency may be Reynolds number effects associated
with the fact that the model of reference 2 is only one~third the size of
the present models and has no boundary layer trip. On the other hand, flutter
is often such a delicate balance of small damping forces that the inconsistency
may be only an apparent one, particularly in view of the '"near flutter" results
to be discussed next,

Discussion of Results for Fixed Angles of Attack

The autocorrelation computer was used for measuring total damping to
determine "near flutter". This could be done only at fixed angles of attack
since the computer requires a stationary random data sample. The fixed angles
selected were those which yielded the maximum response in torsion and bending,
together with 0°, 2°, and 66° in most cases.
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"Near flutter" is defined herein as occurring when the total damping
is stable but the aerodynamic part is zero or unstable. The total damping
is the aerodynamic part plus the structural (or still-air) part. Due to
accuracy limitations in the damping data, "near flutter" is considered to
be established only when the total damping is less than half of the lowest
applicable value of the still-air damping, to be probable between the half
value and the full value, and to be possible between the full value and
twice the full value.

Where applicable still-air values are given in figures 17 through 25,
they are taken from the tables in the section on "Frequencies, Damping Values,
and Mode Shapes in Still Air". Where applicable values are not available for
figures 17 through 25, the value of ¢ = 0.0l is used for the criteria just
stated. The still-air ¢ values are not adjusted for frequency differences
between still-air and wind-on conditions because those differences may be
measurement errors.

For wing "A", on the basis of the present criteria, "near flutter" is
established at M = 0.28 with a = 64° in figure 17(a), at M = 0.30 with a =
2° in figures 18(a) and 18(b), and at M = 0.45 with o = 2° in figures 20(a)
and 20(b). For wings "B" and "BSP", "near flutter" is not established.

The complete results for the criteria are presented for wing "A" in
the following table:



Degrees

M [s1
0.28 64
0.28 64
0.28 48
0.28 64
0.28 48
0.30 +2
0.30 2
0.30 2
0.30 18
0.30 20
0.30 2,14,18
0.40 64
0.40 64
0.40 64
0.45 2
0.45 2
0.45 13.5
0.45 13.5
0.45 18
0.45 2
0.60 0
0.60 0
0.60 13
0.60 19
0.60 0, 25
0.60 0, 25

174

174
174
34
34
174

174
90

98
174

34
133

133
34
133

133
133
133
133

34
182

182
133

83

Mode
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Description
3rd Bending and

2nd

1st

3rd
2nd

1st
2nd

3rd
2nd

1st

1st
3rd

1st

Ist
3rd

Ist

3rd
2nd

1st
3rd

2nd

Torsion

Bending

Bending
Torsion

LA)

Torsion
Bending

"

Bending
Torsion

Bending

Torsion
Bending
"

Bending

Torsion
Bending

"

Bending

Bending
Torsion

"

Torsion
Bending

Bending

and

and

and

and

and

and

and

121-129 1st Torsion and
3rd Bending

34 1st Bending

Strain

Hydraulic Wing Gage "Near

Pressure  Root Type Figure Flutter"
Off Clamped Bending 17(a) Estab.
Off Clamped Torsion 17(b) Probable
Off Clamped Torsioa 17(b) Probable
Off Clamped Bending 17(c) Absent
Off Clamped Bending 17(c) Possible
Off Clamped Bending 18(a) Estab.
Off Clamped Torsion 18(b) Estab.
Off Clamped Bending 18(a) Possible
Off Clamped Bending 18(a) Probable
Off Clamped Torsion 18(b) Possible
Off Clamped Bending 18(c) Absent
Off Clamped Bending 19(a) Possible
Off Clamped Torsion 19(b) Possible
off Clamped Bending 19(c) Absent
Off Clamped Bending 20(a) Estab.
Off Clamped Torsion 20(b) Estab,
off Clamped Bending .20(a) Absent
Off Clamped Torsion 20(b) Absent
Off Clamped Torsion 20(b) Absent
On Unclamped
Off Clamped Bending 20(c) Absent
On Unclamped Bending 21(a) Possible
On Unclamped Torsion 21(b) Probable
Off Clamped Bending 21(a) Probable
On Unclamped
Off Clamped Bending 21(a) Possible
On Unclamped Torsion 21(b) Absent
On Unclamped Bending 21(c) Probable
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For Wing "B" the following table applies:

Strain
Degrees HZ Mode Hydraulic Wing Gage "Near

M o £ Description Pressure Root Type Figure Flutter"
0.30 12,14,16 148 1st Torsion On Clamped Bending 22(a) Possible
0.30 14 148 " On Unclamped Bending 22(a) Possible
0.30 12 180-186 3rd Bending On Clamped Torsion 22(b) Probable
0.30 13,14,16 180-186 " On Clamped Torsion 22(b) Possible
0.45 13 148 1st Torsion On Clamped Bending 23(a) Possible
0.45 14 148 1st Torsion On Unclamped Bending 23(a) Possible
0.45 10,12 175-182 3rd Bending On Clamped Torsion 23(b) Possible
0.45 14 175-182 " On Unclamped Torsion 23(b) Possible
And for wing ''BSP"
0.29 25 175 3rd Bending On Clamped Torsion 24 Probable
0.29 28 175 3rd Bending On Clamped Torsion 24 Possible

0.45 29,31 175 3rd Bending On Clamped Torsion 25 Probable
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With reference once again to flutter in the stall-angle region (stall
flutter), the preceding table for wing "A" indicates probable '"mear flutter"
at M = 0,30 with a = 18° in figure 18(a) and at M = 0.60 with a = 13° in
figure 21(a). The table for wing '"B" shows probable '"near flutter" at M =
0.30 with o = 12° in figure 22(b) while that for wing "BSP shows the same at
M =0.29 with o = 25° in figure 24 and at M = 0.45 with o = 29° and 31° in
figure 25. (The frequency for wings 'B" and "BSP" is described as third
bending but may contain some of the torsion usually associated with stall
flutter.) Since there is a probable "near flutter" in the stall-angle
region, it is possible that a reduction in structural damping by, say, a
factor of two would produce actual stall flutter. Thus, the inconsistency
between the present results and the observed stall flutter of reference 2
may well be only apparent.

It should be noted that the preceding tables do not contain the observed
variations of damping with dynamic pressure, q_ . (Note that g, is directly

proportional to the square of the commonly used flutter paramg%er \] s

bwa7 U

where GJ 1s the root torsional stiffness and V is the flow velocity.). The
"near flutter" criterion in the tables is based on the lowest damping in the
q_ variations. The variations can be seen in figures 17 through 25, and the
only comment to be made at present is that figure 17(a) indicates the possi-
bility of a sharp dip in damping at q_ = 85 psf.

Figures 17 through 25 also contain variations with q_ of the root mean
square oscillations, both bending, h, and torsion, 6, and also their ratio.
It should be noted that, except for lst bending, the frequencies specified
on the figures were those filter settings which gave the lowest damping
values on the correlator, and do not restrict the frequency content of the
oscillations.

The damping values read on the torsion and bending gages in figures 17
through 25 should be the same since spatial filtering should not affect
decays which are frequency filtered. The damping differences noted between
the (a-) and (b) figures probably result from differences in signal level
at the frequencies of low damping, plus the fact that the filters affect the
damping measurements least for the lowest measured damping levels.

Standard deviations have been calculated for two of the damping values
by dividing the random data into five segments. For the point in figure
20(a) having a mean ¢ of 0.003, the standard deviation i1s 0.001; and for
the point in figure 17(c¢) with a mean 7 of 0.012, the standard deviation is
0.002.

Some mention should also be made of the possibility that the measured
damping values may be affected by wind tunnel resonance, the organ-pipe
effect from wall to wall across the stream, Since resonant frequencies
across a circular section are not known, it would be desirable to repeat
the test in a different wind tunnel.
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Effect of Root Fixity on Flutter and Overload Results

The still-air damping values, £z, tabulated in an earlier section cover a
range from 1.0% to 2.6% of critical for all vibration modes with the wing root
clamped and essentially the same range (0.9% to 2.8% of critical) for all modes
but first bending with the wing root unclamped. These damping levels resulted
from bearing slop in the wing rotation mechanism, and even the lowest values are
enough higher than the damping for most wind tunnel models to cause occasional
differences in flutter results. These lowest values, however, are typical values
for a full scale vehicle; and, fortunately, the lowest values are the most believable
of the present measurements,

With the wing root clamped, there was no established, or even probable, 'near
flutter" in first bending at fixed angles of attack. In the higher frequency modes,
there was no substantial total damping difference in figures 17 through 25 due to
clamping and unclamping the wing root; and the clamping insensitivity of the still-
air damping has already been noted. With the most likely still-air damping values
being typical for full scale, then, it would seem that the (necessarily unclamped)
rotation test is reasonably representative as to flutter.

In the overload results of the rotation test, however, the predominant
frequency was first bending. For this mode, unclamping the wing raised the
still-air damping from 2.1% to 4.1% of critical with wing "A" and from 1.9% to
6.7% of critical for wings "B" and "BSP" (the latter two wings being considered
identical in still-air damping). Thus, if the aerodynamic damping additions are
relatively small, the damping in the critical first bending mode will be unreal-
istically high during wing rotation.

Fortunately, however, damping values around 6.7% of critical do not signifi-
cantly change the magnitude of an undamped vibratory response to rapid wing
rotation. Undamped vibrations would persist longer, of course, (namely, forever),
but the decreasing mean load during rotation would leave the ratios unaffected
(with RDL being the ratio of maximum total load, including vibra%ions,_to maximum
mean load).

CONCLUDING REMARKS

A rotation loading and flutter test has been conducted in the Ames 12-foot
Pressure Wind Tunnel at Mach numbers from 0.28 to 0.60 for a semispan model space
shuttle wing (straight, aspect ratio 7, semispan 5 ft) and two variations from
that wing.

The following conclusions are based on the part of the test in which the
wing was rotated rapidly from 66 to O  angle of attack and also rotated slowly
between the two angles:

(1) At an elapsed rotation time of 0.6 seconds, scaled from the full
scale vehicle, the maximum total load (including vibrations) is only
12% higher than the maximum mean load for the basic wing. This is not
much worse ghan the (non-statistical) buffet overload figure of 11%
at o = 66 in the present report and is better than the 17% for
buffet in reference 3.



(2) For a rotation time of 0.4 seconds, the above overload figure
increases to 20%.

(3) For a wing stiffer in eorsion, the 12% overload figure decreases
somewhat; and no further change is caused by the addition of a
leading-edge spoiler.

(4) There was no visible flutter (steady or growing oscillations)
during the slow rotations between o = 66° and a = 0° for any of
the wings.

The following conclusions are based on the part of the test in which
total damping was measured from random samples at the fixed angles of
maximum response, generally supplemented with a = 0°, a = 2°, and o = 66°:

(1) "Near flutter" (stable total damping but zero or unstable aero-
dynamic damping) is established at M = 0.28 with o = 64°, at M =
0.30 with a = 2°, and at M = 0,45 with a = 2° for the basic wing.

(2) For the torsionally stiffer wing, 'mear flutter'" is not established,
with or without a leading-edge spoiler.
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Figure 2.- Schematic of rotation mechanism.
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(a) View from downstream.

Figure 3.- Photographs of rotation mechanism with wing at 66° angle
of attack.
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Figure 3.- Concluded.
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Figure 5.- Operating characteristics of the Ames 12-foot pressure
wing tunnel.
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TRANSDUCER

Figure 6.~ Mode shape frame with wing on dummy mount.
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(a) 1st bending, £ = 42.5 Hz.

Figure 7.- Mode shapes for wing "A" at a = 15° with shaking at leading
edge of wing tip (Station 4).
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(b) 2nd bending, f = 85.7 Hz.

Figure 7.- Continued.
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(c) 1st torsion and 3rd bending, f = 141.7 Hz.

Figure 7.- Continued.
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(a) 1st bending, f = 39.5 Hz.

Figure 8.- Mode shapes for wing "A" at o = 15° with shaking at trailing
edge of wing tip (Station 12).



STATION

N—0O0OWONOOHLUN—

Cemm )
2

91

i2 le

DISPLACEMENT,
in. (rms) 3

0.225x 1073

(b) 2nd bending, f = 81.8 Hz,.

Figure 8.- Continued.




STATION

OCONOOTONPLWN —

00—)-—

————

DISPLACEMENT,
in.(rms)
0.048 x10~3 ) o

J

3.074

6.897

4.110

0.586

0.349

0.655 1

2.988
3.376
4.170

9.460

3.144 I

(c) 1lst torsion and 3rd bending, f = 140 Hz.

Figure 8,- Continued.



STATION

N—OO0o~NOOTUIDAUN —

—
Q.
~

-

DISPLACEMENT,
in.(rms)

0.013x10-3
0.486
0.532
4.051
0.906
1.529
2.479
3.371
3.763
1.625
3.581
2.348

L9

(d) 3rd bending and 2nd torsion, f = 170 Hz.

Figure 8.- Concluded.
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Figure 9.- Unfiltered response spectra for wing "A", M = .45, a = 2°,
deo = 146.8 psf.
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Figure 10.- Time history of bending during wing rotation with a sweep
time of 0.6 sec. and Mach numbers from 0.49 to 0.60.
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Qe » ID/ft2
a=66° Q=0°
o 18,1 —21.0
O 25.3 —29.4
¢ 43,3 — 50.3
D 59.6 — 69.2
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(a) M=10.28 (at @ = 66°) to 0.30 (at o = 0°).

Figure 16.- Ratio (Rp) of mean load at dip to maximum mean load for
rotation of wings '"B" and "BSP".
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(b) M= 0.40 (at a = 66°) to 0.45 (at o = 0°).
Figure 16.- Concluded.
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Figure 21

ZETA ¢

[
(_D_) = 0|20 MV rms
Qoo /pef psf

f AS NOTED

WIND ] a AS NOTED

ON

HYDRAULIC PRESSURE OFF
WING ROOT CLAMPED EXCEPT
FOR FLAGGED SYMBOLS, FOR
WHICH HYDRAULIC PRESSURE

L ON, WING ROOT UNCLAMPED

STILL-AIR DAMPING FOR
f=85Hz
a=5°
HYDRAULIC PRESSURE ON,
WING ROOT CLAMPED
STILL-AIR DAMPING FOR
f=175 Hz
a=5°
HYDRAULIC PRESSURE ON,
WING ROOT CLAMPED

f=83 Hz £ f=182 Hz
a='9°\ a:o°

'y N\

é
00
6~f=133 Hz
a=13°

I L 1 Y-S

50 100 150 200 250

dep, Psf

(a) Bending at 83 Hz (2nd bending), 133 H; (lst torsion and

3rd bending), and 182 Hz (3rd bending and 2nd torsion).

.~ Total damping and root mean square oscillations at M = 0.60

for wing "A".
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