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INEXPENSIVE PROGRAMMABI£ CLOCK FOR A 12-81T CO\I\ PUTER 

by James E. Vrancik 

Lewis Research Center 

SUMMARY 

An inexpensive programmable clock was built for a Digital Equipment Corporation 

(DEC) PDP-12. The instruction list includes skip on flag; clear the flag, clear the 

clock, and stop the clock; and preset the counter with the contents of the accumulator 

and start the clock. The clock counts at a rate determined by an external oscillator and 

causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can 

occur after 1 to 4096 counts. 
The clock can be built for a total parts cost of less than $100 including power supply 

and I / O connector. Slight modification can be made to permit its use on larger machines 

(16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any 

computer. 

INTRODUCTION 

A computer alone is a useless tool. It has the ability to solve many problems but 

these problems must be described to it and it must be told how to solve them. Thus, the 

engineer must be able to communicate with the computer. Likewise, any computer that 

solves a problem and then keeps the answer to itself is useless. It too must have a way 

of communicating with the engineer. Communication is accomplished by devices such as 

teletypes, line printers, tape readers, etc. To the computer, each device must have a 

name and often two names to distinguish the direction of data flow. Along with a name, 

it must have a means of transmitting data or information. This is accomplished by a 

computer interface. 

This report describes a device called a programmable clock and its computer inter­

face to a DEC minicomputer, the PDP-12. The theory presented in this report is per­

fectly general and the clock can easily be interfaced to a different computer with only 

slight, it any, modification. 



There are commercially available devices that can do just what this programmable 

clock does , and more, but they are relatively expensive. The purpose of this work is to 

overcome the cost barrier and develop a very inexpensive interval timer that can be pro­

grammed by the computer. The design of the clock itself is relatively straightforward, 

but the design of the interface between the clock and the computer is more complicated 

and is considered in detail in this report. 

COMMUNICATION TECHNIQUES 

There are two popular fundamentally different techniques used to communicate with 
a computer. The first mode can be called the wait mode. It involves giving a device a 

command and then waiting until the command has been executed and the results are 

available. For instance, if the computer were programmed to take a voltage measure­

ment , it could issue a command to the voltmeter to begin taking a reading. The com­

puter would then enter a mode that would continuously monitor a "done flag" (flip-flop), 

which would be set by the voltmeter when it had completed its analog to digital conver­

sion. When the done flag is set, the data are ready and the computer would then read 

the voltmeter and clear the flag. This straightforward technique for servicing devices 

makes the software very simple. The problem is most input-output (I / O) devices are 

extremely slow compared to the computer speed, and thus a lot of computer time is 
wasted. 

The second mode of communication is the interrupt mode. In this mode the com­

puter again issues a command but does not wait for execution. Instead , it may continue 

to execute other instructions. When the device is done, it calls the computer by setting 

the done flag , which grounds the interrupt bus. When the computer senses that the in­

terrupt bus is grounded, it realizes that a device is trying to get service, and it goes 

through a software routine to determine which device is calling and how to service it. 
In the example of the voltmeter, the computer would issue a command to take a reading 

and then continue doing other jobs. When the voltmeter finished its converSion, it would 

set its done flag and ground the interrupt bus. The computer would realize it was being 
called. It would remember what it was doing and begin monitoring all the device done 

flags until it came to the voltmeter flag. It would realize the voltmeter was the one 
calling and service it and then return to its interrupted job. The software for this type 

of device servicing is much more complicated but well worth it for saving computer 

time. The interrupt mode capability can be turned on and off by software. The actual 

mechanics of the interrupt are discussed in the section on the clock programming. 
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Op-Code 

The word length for the PDP-12 is 12 bits. The easiest way of discussing the word 

is to divide it into four groups of 3-bits each, with each group an octal number. Thus , 

instead of 010111001011 , we have (2713)8' The first octal number is the op-code. 
Therefore, there are 80p-codes. Op-codes 0 to 5 are instructions like add, jump, 

deposit, etc. , op-code 6 is used exclusively for I/o instruction , and op-code 7 is for 

instructions that require no address like shift, skip, halt, complement the accumulator, 

etc. Here we will confine our discussion to op-code 6 , the I / O op-code. The next two 

octal numbers are the name of the device being referenced. In this particular case, the 
programmable clock's name is 138 so an instruction 613X is an I / O instruction refer­

encing the programmable clock. The last octal number (X) is used to generate pulses 

that permit the actual communication between the computer and the device. 

These pulses are called lOP pulses or input-output pulses. If the pulses are actually 

used by a device, then they are renamed lOT pulses or input-output transfer pulses . 

Device Selector 

The logic required to use the lOP pulses to communicate is called a device selector. 
The two middle octal number (and their complements) of the memory buffer (12 signal 

lines) are brought out of the computer to each device. Six of the 12 lines are connected 

to the device selector giving the device a unique name (number) (see sketch). 

AAAA 
1100 0 1011101 

Bit ~ 3 4 5 6 7 8 ~ 
1m lOPs 

Op -code 

If the signal lines 3, 4, 5, 6, 7, and 8 are AND'ed together and the output is used to 

enable gates, those gates will only be opened when device 13 is called. 
Figure 1 shows a typical device selector. If the 6 input AND gate are assumed 

wired to select device 13, then the three succeeding AND gates will be enabled during 

this I / O instruction. 
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Figure L - Device selector. 

To 
computer 

Typically, but not necessarily the lOP 1 pulse is used to generate a skip pulse to 

set the skip flag if it was actually this device that was calling the computer. Also typ­

ically the lOP 2 pulse is used to clear the flag within the calling device. The lOP 4 pulse 

can be used for other purposes depending on the application. The device itself sets its 

own flag when it wants to be serviced. 

The software that would be used to communicate would be something like this. If 

the software program was written in the wait mode and the computer was waiting for a 
response from the device, then the instruction would be 

6131 

Jump up one 

Service device 13 

/ skip on flag, or skip the next instruction if the flat is set 

/ jump to the instruction preceding this one 

/device 13 finally set its done flag and can now be serviced 

If the software is in the interrupt mode, the interrupt capability is turned on, and when 

device 13' s flag is set, an interrupt request line is pulled to ground and the program is 

interrupted. The computer finishes the current instruction, automatically stores the 

address of the next instruction in location 0000, turns the interrupt off, and goes to lo­

cation 0001 for its next instruction. The program at this point would resemble the fol­

lowing: 

0000 

4 

0000 / will contain the address of the next instruction before 

the interrupt 



0001 Skip if flag 1 

0002 Skip 

/ skip next instruction if flag 1 set (6011) device 1 is 

some other device in the system 

0003 Jump device 1 service routine 

0004 Skip if flag 13 / skip next instruction if flag 13 set (6131) 

0005 Skip 

0006 Jump device 13 service routine 

0007 etc. 

(Device 13 service routine) 

0200 6131 / clear the flag 

Service device 13 

Turn interrupt back on 

Jump back to program being executed before interrupt by using location in 

0000 as link 

Programmable Clock 

The general scheme of the programmable clock is shown in figure 2. An I / O preset 

pulse or an lOT 2 pulse clears the flag, resets the on-off switch, and clears the counter . 

The pulse is actually the output of a one-shot that is triggered by any convenient gen­

erator. In programming , the usual techniques would be to issue an lOT 2 (6132), load 

the accumulator with the two's complement of the number of pulses desired before an 

overflow occurs, and then issue an lOT 4. The lOT 4 opens the gate between the ac­

cumulator and the preset terminals of the counter for 500 nanoseconds . This presets the 

counter. The lOT 4 also turns on the on-off switch allOwing the oscillator pulses to be 

counted by the counter. If in the wait mode, the computer continuously issues lOT 1 's 

until an overflow occurs, and the flag is set allowing the lOT 1 to set the jump flag. If 

in the interrupt mode, when the flag becomes set the interrupt request line is grounded 

and an interrupt will occur. Interrogation of the flag by an lOT 1 will indicate the clock 

has caused the interrupt and may be reset if desired. In either case , an lOT 2 should be 

issued to clear the counter, reset the flag, and stop the counter . If the flag is left set , 

it will give a false indication of an interrupt if the interrupt is turned on or if an lOT 1 
is issued. 
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Figure 2. - Programmable clock block diagram. 

DESIGN DETAILS 

The engineering schematics used to describe the device are the following: 

(1) Device selector and lOT generator 
(2) Preset data gate 
(3) Counter 

(4) On-off switch, done flag, clock pulse generator 

The numbers close to the terminals of the integrated circuit (IC) gate are the pin 

numbers and numbers such as 2 Ac and c indicate the second AND gate IC (actually 

NAND) and the third NAND within the IC, respectively. Actually, c is redundant since 

the pin numbers specify the exact gate. 

Device Selector and lOT Generator 

The complete device selects and lOT generator is shown in figure 3. The output of 

inverter 21d is high only when the device 138 is called. This enables the three NAND 

gates 5Aa, 5Ab, and 5Ac. Thus, when an lOP 1 or lOP 4 pulse occurs, they become 
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Device 13 

N14 K2 CD IOP 1 H 
3 

@ lOP 2 H N14 M2 21b 

N14V2 ® 110 preset H 11 

@ 9 8 
lOP 4 H SAc 

N14 P2 10 

13 

IOTl 

IOT 2 

lOT 4 

Skip on flag 

Clears counter 
Clears flag 
Stops counter 

Presets counter 
Starts counter 

lOT 1 To skip gate 

lOT 2a Clears data 0 to 3 
Clears flag 

IOT 2b Clears data 4 to 7 

8 
lIe lOT 2c Clears data 8 to 11 

10 Stops counter 

IOT4 Set "start count" 

II! IOT 4a Opens gates 0 to S 

12 
2la lOT 4b Opens gates 6 to 11 

2 

Figure 3. - Device selector and IOTgenerator. 

lOT 1 and lOT 4 pulses which communicate back to the computer or to the device. An 

lOT 2 pulse occurs when either input (pin 12 or 13) to 5Ad goes low. Pin 13 goes low if 

an I/O preset pulse occurs. An I/O preset pulse is generated by a pushbutton on the 

computer console to initialize all I/O devices before starting. Pin 12 can go low if de­

vice 13 is being called and an lOP 2 occurs. 

Additional inverters were used to accommodate fanout requirements for the lOT 2 

and rOT 4 lines. 

Preset Data Gate 

The preset data gate is shown in figure 4. The rOT 4 pulse opens all the preset 

gates lA, 2A, and 3A. If any input line is high, the output will be low and will preset the 
appropriate bit in the counter. The most Significant bit in the computer is numbered 

bit o. r chose to number the most Significant bit in the counter number 11. 
Numbers such as N14H2 are computer numbers and refer to the DEC-PDP-12. 

Row N, column 14 specifies the card location in the computer and pin B, side 1 specifies 
the pin location on the card. 
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Figu re 4. - Preset data gate block diag ram. 

Counter 

The 12-bit counter is shown in figure 5. The counter is actually three completely 

separate four-bit counters. The first flip-flop (FF1) changes state each clock pulse . 

The second flip-flop changes state only when the first flip-flop is one. The third 

changes state only when the first and second flip-flops are one , and the fourth flip-flop 
changes state only when all three previous flip-flops are one. 

Each of the three four-bit counters has a one's detector that changes state if all 

flip-flops within that counter are one. These one's detectors are used to enable the 

clock pulse to get through to the next four-bit counter. Thus, the second four-bit counter 
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Figu re 5. - Counter. 
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gets a clock pulse only when the first four-bit counter overflows. This is described in 

detail in figure 6. 

On-Off Switch, Done Flag, Clock Pulse Generator 

The on-off switch in figure 6 is a bistable flip-flop that enables NAND date 4Ab 

when on. The lOT 4 pulse turns the switch on and lOT 2c turns it off. If NAND gate 

4Ab is enabled (on), the clock pulses from the one-shot OSl can pass through. The 

pulse width is approximately 500 nanoseconds. 

The clock pulses will set the done flag FF 12 if the input gates are enabled. This 

happens if all the bits in the counter are one which sets the one's detector to the proper 

state. When the done flag is set, two things happen. The interrupt request bus is 

grounded, and if the interrupt routine is enabled, an interrupt will occur. Also, the 

skip bus NAND gate 4Aa will be enabled so an lOT 1 pulse can get through to the com­

puter to cause a skip. This skip in the computer program will identify the calling device 

as the clock. The computer program should then issue an lOP 2 which will clear the 

done flag and remove the interrupt request bus ground. 

The clock pulse generator consists of three one-shots. The first one-shot is trig­

gered from a discrete wave -shaping network of a transistor, diode, and two resistor s. 

Each time the input goes negative, the one-shot will generate a 500-nanosecond pulse. 
Therefore, the one -shot will pulse at the same rate as the frequency of the input voltage. 

The clock pulse generator has an input impedance of 22 kilohms and can tolerate and 

use any oscillator voltage from ±2 to ±100 volts. The rise time on the input should be at 

least 1 volt per second. The clock has been tested over a frequency range from 1 hertz 

to 500 kilohertz. 

If the on-off switch is on, the output of one-shot OSl is used as the clock pulse for 

bits 0 to 3. It is also used to strobe the input gate of OS2. The input gate to OS2 is 

enabled. if bits 0 to 3 are on. Under this condition, the next pulse that comes from OSl 

will produce an output pulse from OS2. In effect, OS2 fires only when there is an over­

flow from bits 0 to 3, and this pulse is used as the clock pulse for bits 4 to 7. 

Similarly, the clock pulse for bits 4 to 7 is used to strobe the input gate of OS3. 

The OS3 is enabled if bits 4 to 7 are on. Since a clock pulse for bits 4 to 7 occurs, only 

when bits 0 to 3 are on, the effect is OS3 pulses only when there is an overflow from 

bits 0 to 7. 
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RESULTS 

This clock was built and tested on a DEC PDP-12 computer and was found to operate 

correctly as designed. A parts list is included in tables I and II along with a price list 

of all components. The total price of the clock parts was less than $100. All IC logic 

elements are TTL. The clock was designed with minimum cost as a prime objective. 
The fact that every gate (total of 55) in every IC was used demonstrates the gate effi­
ciency of the design. 

The counting rate is determined by the frequency of an external oscillator. Each 

cycle increases the count by one. The counter will overflow and give an interrupt after 

one to 4096 counts, depending on the programmed preset. 

A simple extension of the number of flip-flops and preset gates will extend the num­
ber of bits to any size computer, and level shifting will adapt it to computers not TTL 

compatible. 

TABLE I. - INTEGRATED CIRCUIT COSTS 

Integrated Number Name Number of Total Cost Total 

circuit used gates per number each cost 

integrated of gates 

circuit 

SN7400 5 2 input NAND 4 20 $1. 86 $ 9.30 
SN7404 2 Inverter 6 12 1. 55 3.10 
SN7410 1 2 input NAND 3 3 1. 24 1. 24 
SN7420 2 4 input NAND 2 4 1. 54 3.16 
SN7470 13 JK flip-flop 1 13 1. 97 25.61 
SN74121 3 One-shot 1 3 3.46 10.38 - ---

55 $52.79 
L.....-. 

TABLE II. - TOTAL COSTS 

Integrated circuits $ 52. 79 

P ower supply 29.00 

Digital Equipment Corporation 12.00 

plug in cards 

Transistor , diode , resistor s 1.00 

Mounting board, wire, etc. ~ 

$98 .79 

12 NASA-Langley, 1972 _ 8 E -6589 
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CONCLUDING REMARKS 

An inexpensive programmable clock was designed, built, and tested on a DEC­

PDP -12 minicomputer. The clock is capable of being programmed by the computer to 

give an interrupt after 1 to 4096 time increments. The time increment is dependent on 

the frequency of an external oscillator. The interface to the computet allows the com­

puter to stop the clock, preset the clock time interval, start the clock , clear the done 

flag, and skip or flag. The total cost of the parts for the clock was less than $100. 

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio , October 29, 1971, 

112-27. 
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