
.
~
" NASA TECHNICAL

MEMORANDUM

INEXPENSIVE PROGRAMMABLE CLOCK

FOR A 12-BIT COMPUTER

by jalnes E. Vrancik

Lewis Resea1'ch Center

Cleveland, Ohio 44135

/ j

NASA TM X-2500

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1972

J

ERRATA

NASA Technical Memorandum X-2500

INEXPENSIVE PROGRAMMABLE CLOCK

FOR A 12-BIT COMPUTER

by James E. Vrancik

February 1972

The attached page 13 was inadvertently omitted in printing and should be inserted in the

report.

Issued August 1973

I

J

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM X-2500
4. Title and Subtitle 5. Report Date

INEXPENSIVE PROGRAMMABLE CLOCK February 1972

FOR A 12-BIT COMPUTER
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

James E. Vrancik E-6589

10. Work Unit No.

9 . Performing Organization Name and Address 112-27
Lewis Research Center

11. Contract or Grant No .
National Aeronautics and Space Administration

Cleveland, Ohio 44135 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration

14. Sponsoring Agency Code
Washington, D. C. 20546

15. Supplementary Notes

16. Abstract

An inexpensive programmable clock was built for a Digital Equipment Corporation (DEC) PDP -12.

The instruction list includes skip on flag; clear the flag, clear the clock, and stop the clock; and

preset the counter with the contents of the accumulator and start the clock. The clock counts at

a rate determined by an external oscillator and causes an interrupt and sets a flag when a 12 -bit

overflow occurs. An overflow can occur after 1 to 4096 counts. The clock can be built for a total

parts cost of less than $100 including power supply and I/O connector. Slight modification can be

made to permit its use on larger machines (16 bit, 24 bit, etc.) and logic level shifting can be

made to make it compatible with any computer.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Digital clock Unclassified - unlimited

Computer clock
Counter

19. Secur ity Classi!. (of this report) 20. Security Classi f. (of this page) 21 . No . of Pages 22. Price·

Unclassified Unclassified 14 $3.00

. For sale by the National Techn ica l Information Service, Springfield , Virginia 22151

INEXPENSIVE PROGRAMMABI£ CLOCK FOR A 12-81T CO\I\ PUTER

by James E. Vrancik

Lewis Research Center

SUMMARY

An inexpensive programmable clock was built for a Digital Equipment Corporation

(DEC) PDP-12. The instruction list includes skip on flag; clear the flag, clear the

clock, and stop the clock; and preset the counter with the contents of the accumulator

and start the clock. The clock counts at a rate determined by an external oscillator and

causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can

occur after 1 to 4096 counts.
The clock can be built for a total parts cost of less than $100 including power supply

and I / O connector. Slight modification can be made to permit its use on larger machines

(16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any

computer.

INTRODUCTION

A computer alone is a useless tool. It has the ability to solve many problems but

these problems must be described to it and it must be told how to solve them. Thus, the

engineer must be able to communicate with the computer. Likewise, any computer that

solves a problem and then keeps the answer to itself is useless. It too must have a way

of communicating with the engineer. Communication is accomplished by devices such as

teletypes, line printers, tape readers, etc. To the computer, each device must have a

name and often two names to distinguish the direction of data flow. Along with a name,

it must have a means of transmitting data or information. This is accomplished by a

computer interface.

This report describes a device called a programmable clock and its computer inter­

face to a DEC minicomputer, the PDP-12. The theory presented in this report is per­

fectly general and the clock can easily be interfaced to a different computer with only

slight, it any, modification.

There are commercially available devices that can do just what this programmable

clock does , and more, but they are relatively expensive. The purpose of this work is to

overcome the cost barrier and develop a very inexpensive interval timer that can be pro­

grammed by the computer. The design of the clock itself is relatively straightforward,

but the design of the interface between the clock and the computer is more complicated

and is considered in detail in this report.

COMMUNICATION TECHNIQUES

There are two popular fundamentally different techniques used to communicate with
a computer. The first mode can be called the wait mode. It involves giving a device a

command and then waiting until the command has been executed and the results are

available. For instance, if the computer were programmed to take a voltage measure­

ment , it could issue a command to the voltmeter to begin taking a reading. The com­

puter would then enter a mode that would continuously monitor a "done flag" (flip-flop),

which would be set by the voltmeter when it had completed its analog to digital conver­

sion. When the done flag is set, the data are ready and the computer would then read

the voltmeter and clear the flag. This straightforward technique for servicing devices

makes the software very simple. The problem is most input-output (I / O) devices are

extremely slow compared to the computer speed, and thus a lot of computer time is
wasted.

The second mode of communication is the interrupt mode. In this mode the com­

puter again issues a command but does not wait for execution. Instead , it may continue

to execute other instructions. When the device is done, it calls the computer by setting

the done flag , which grounds the interrupt bus. When the computer senses that the in­

terrupt bus is grounded, it realizes that a device is trying to get service, and it goes

through a software routine to determine which device is calling and how to service it.
In the example of the voltmeter, the computer would issue a command to take a reading

and then continue doing other jobs. When the voltmeter finished its converSion, it would

set its done flag and ground the interrupt bus. The computer would realize it was being
called. It would remember what it was doing and begin monitoring all the device done

flags until it came to the voltmeter flag. It would realize the voltmeter was the one
calling and service it and then return to its interrupted job. The software for this type

of device servicing is much more complicated but well worth it for saving computer

time. The interrupt mode capability can be turned on and off by software. The actual

mechanics of the interrupt are discussed in the section on the clock programming.

2

Op-Code

The word length for the PDP-12 is 12 bits. The easiest way of discussing the word

is to divide it into four groups of 3-bits each, with each group an octal number. Thus ,

instead of 010111001011 , we have (2713)8' The first octal number is the op-code.
Therefore, there are 80p-codes. Op-codes 0 to 5 are instructions like add, jump,

deposit, etc. , op-code 6 is used exclusively for I/o instruction , and op-code 7 is for

instructions that require no address like shift, skip, halt, complement the accumulator,

etc. Here we will confine our discussion to op-code 6 , the I / O op-code. The next two

octal numbers are the name of the device being referenced. In this particular case, the
programmable clock's name is 138 so an instruction 613X is an I / O instruction refer­

encing the programmable clock. The last octal number (X) is used to generate pulses

that permit the actual communication between the computer and the device.

These pulses are called lOP pulses or input-output pulses. If the pulses are actually

used by a device, then they are renamed lOT pulses or input-output transfer pulses .

Device Selector

The logic required to use the lOP pulses to communicate is called a device selector.
The two middle octal number (and their complements) of the memory buffer (12 signal

lines) are brought out of the computer to each device. Six of the 12 lines are connected

to the device selector giving the device a unique name (number) (see sketch).

AAAA
1100 0 1011101

Bit ~ 3 4 5 6 7 8 ~
1m lOPs

Op -code

If the signal lines 3, 4, 5, 6, 7, and 8 are AND'ed together and the output is used to

enable gates, those gates will only be opened when device 13 is called.
Figure 1 shows a typical device selector. If the 6 input AND gate are assumed

wired to select device 13, then the three succeeding AND gates will be enabled during

this I / O instruction.

3

j

Bit

{

3
4

Memory 5

buffer !

From
computer

lOP 1

Bit ~ l 3 _4_5....,,-6 __ 7 ~8, \9 10 11,
Op-code 6 Device 13 Will gen~erate lOP;

pulses if corre­
sponding bit is 1

Device
select

High only if this is
device being called

lOT 1

(High if bit 11 high) 5 50;, '~""'}
Done

lOP 2
lOT 2 flag Interrupt request

(High if bit 10 highl R 0

rop 4 lOT 4

(High if bit 9 high)

Figure L - Device selector.

To
computer

Typically, but not necessarily the lOP 1 pulse is used to generate a skip pulse to

set the skip flag if it was actually this device that was calling the computer. Also typ­

ically the lOP 2 pulse is used to clear the flag within the calling device. The lOP 4 pulse

can be used for other purposes depending on the application. The device itself sets its

own flag when it wants to be serviced.

The software that would be used to communicate would be something like this. If

the software program was written in the wait mode and the computer was waiting for a
response from the device, then the instruction would be

6131

Jump up one

Service device 13

/ skip on flag, or skip the next instruction if the flat is set

/ jump to the instruction preceding this one

/device 13 finally set its done flag and can now be serviced

If the software is in the interrupt mode, the interrupt capability is turned on, and when

device 13' s flag is set, an interrupt request line is pulled to ground and the program is

interrupted. The computer finishes the current instruction, automatically stores the

address of the next instruction in location 0000, turns the interrupt off, and goes to lo­

cation 0001 for its next instruction. The program at this point would resemble the fol­

lowing:

0000

4

0000 / will contain the address of the next instruction before

the interrupt

0001 Skip if flag 1

0002 Skip

/ skip next instruction if flag 1 set (6011) device 1 is

some other device in the system

0003 Jump device 1 service routine

0004 Skip if flag 13 / skip next instruction if flag 13 set (6131)

0005 Skip

0006 Jump device 13 service routine

0007 etc.

(Device 13 service routine)

0200 6131 / clear the flag

Service device 13

Turn interrupt back on

Jump back to program being executed before interrupt by using location in

0000 as link

Programmable Clock

The general scheme of the programmable clock is shown in figure 2. An I / O preset

pulse or an lOT 2 pulse clears the flag, resets the on-off switch, and clears the counter .

The pulse is actually the output of a one-shot that is triggered by any convenient gen­

erator. In programming , the usual techniques would be to issue an lOT 2 (6132), load

the accumulator with the two's complement of the number of pulses desired before an

overflow occurs, and then issue an lOT 4. The lOT 4 opens the gate between the ac­

cumulator and the preset terminals of the counter for 500 nanoseconds . This presets the

counter. The lOT 4 also turns on the on-off switch allOwing the oscillator pulses to be

counted by the counter. If in the wait mode, the computer continuously issues lOT 1 's

until an overflow occurs, and the flag is set allowing the lOT 1 to set the jump flag. If

in the interrupt mode, when the flag becomes set the interrupt request line is grounded

and an interrupt will occur. Interrogation of the flag by an lOT 1 will indicate the clock

has caused the interrupt and may be reset if desired. In either case , an lOT 2 should be

issued to clear the counter, reset the flag, and stop the counter . If the flag is left set ,

it will give a false indication of an interrupt if the interrupt is turned on or if an lOT 1
is issued.

5

Accumulator Gate~~~~m

On-off
switch

Reset

or

1/0 preset

Flag

K

lOTI

Skip bu s

o 1----:--:------:------:--:-­
Interrupt request bus

Figure 2. - Programmable clock block diagram.

DESIGN DETAILS

The engineering schematics used to describe the device are the following:

(1) Device selector and lOT generator
(2) Preset data gate
(3) Counter

(4) On-off switch, done flag, clock pulse generator

The numbers close to the terminals of the integrated circuit (IC) gate are the pin

numbers and numbers such as 2 Ac and c indicate the second AND gate IC (actually

NAND) and the third NAND within the IC, respectively. Actually, c is redundant since

the pin numbers specify the exact gate.

Device Selector and lOT Generator

The complete device selects and lOT generator is shown in figure 3. The output of

inverter 21d is high only when the device 138 is called. This enables the three NAND

gates 5Aa, 5Ab, and 5Ac. Thus, when an lOP 1 or lOP 4 pulse occurs, they become

6

I

1

Device 13

N14 K2 CD IOP 1 H
3

@ lOP 2 H N14 M2 21b

N14V2 ® 110 preset H 11

@ 9 8
lOP 4 H SAc

N14 P2 10

13

IOTl

IOT 2

lOT 4

Skip on flag

Clears counter
Clears flag
Stops counter

Presets counter
Starts counter

lOT 1 To skip gate

lOT 2a Clears data 0 to 3
Clears flag

IOT 2b Clears data 4 to 7

8
lIe lOT 2c Clears data 8 to 11

10 Stops counter

IOT4 Set "start count"

II! IOT 4a Opens gates 0 to S

12
2la lOT 4b Opens gates 6 to 11

2

Figure 3. - Device selector and IOTgenerator.

lOT 1 and lOT 4 pulses which communicate back to the computer or to the device. An

lOT 2 pulse occurs when either input (pin 12 or 13) to 5Ad goes low. Pin 13 goes low if

an I/O preset pulse occurs. An I/O preset pulse is generated by a pushbutton on the

computer console to initialize all I/O devices before starting. Pin 12 can go low if de­

vice 13 is being called and an lOP 2 occurs.

Additional inverters were used to accommodate fanout requirements for the lOT 2

and rOT 4 lines.

Preset Data Gate

The preset data gate is shown in figure 4. The rOT 4 pulse opens all the preset

gates lA, 2A, and 3A. If any input line is high, the output will be low and will preset the
appropriate bit in the counter. The most Significant bit in the computer is numbered

bit o. r chose to number the most Significant bit in the counter number 11.
Numbers such as N14H2 are computer numbers and refer to the DEC-PDP-12.

Row N, column 14 specifies the card location in the computer and pin B, side 1 specifies
the pin location on the card.

7

- - - ,

I
I

~J

N14 H2

£2

D2

SI

PI

Ml

Ll

Jl

HI

El

Dl

Bl

Data gate

rOT 4a

® 1 3
'IAaf

@ 4 6
5l1Ab

CD 9~ 8
1011Ac

CD 12
~11

CD 1~
~2Aa

3

CD 4~ 6
5l2Ab

9
5 I612Ac 8

0 ~ 13 2Ad 11

CD 1~ 3
2]3Aa

0 4~ 6
513Ab

CD 9 8 iOl3Ac

® 12,..---., 11
TI1 3Ad

rOT 4b

To JK
preset
o

2

3

4

5

6

8

9

10

11

Figu re 4. - Preset data gate block diag ram.

Counter

The 12-bit counter is shown in figure 5. The counter is actually three completely

separate four-bit counters. The first flip-flop (FF1) changes state each clock pulse .

The second flip-flop changes state only when the first flip-flop is one. The third

changes state only when the first and second flip-flops are one , and the fourth flip-flop
changes state only when all three previous flip-flops are one.

Each of the three four-bit counters has a one's detector that changes state if all

flip-flops within that counter are one. These one's detectors are used to enable the

clock pulse to get through to the next four-bit counter. Thus, the second four-bit counter

8

l __

lAa lAb lAc lAd

8

6

Clock
o to 3

Figu re 5. - Counter.

9

l
L

gets a clock pulse only when the first four-bit counter overflows. This is described in

detail in figure 6.

On-Off Switch, Done Flag, Clock Pulse Generator

The on-off switch in figure 6 is a bistable flip-flop that enables NAND date 4Ab

when on. The lOT 4 pulse turns the switch on and lOT 2c turns it off. If NAND gate

4Ab is enabled (on), the clock pulses from the one-shot OSl can pass through. The

pulse width is approximately 500 nanoseconds.

The clock pulses will set the done flag FF 12 if the input gates are enabled. This

happens if all the bits in the counter are one which sets the one's detector to the proper

state. When the done flag is set, two things happen. The interrupt request bus is

grounded, and if the interrupt routine is enabled, an interrupt will occur. Also, the

skip bus NAND gate 4Aa will be enabled so an lOT 1 pulse can get through to the com­

puter to cause a skip. This skip in the computer program will identify the calling device

as the clock. The computer program should then issue an lOP 2 which will clear the

done flag and remove the interrupt request bus ground.

The clock pulse generator consists of three one-shots. The first one-shot is trig­

gered from a discrete wave -shaping network of a transistor, diode, and two resistor s.

Each time the input goes negative, the one-shot will generate a 500-nanosecond pulse.
Therefore, the one -shot will pulse at the same rate as the frequency of the input voltage.

The clock pulse generator has an input impedance of 22 kilohms and can tolerate and

use any oscillator voltage from ±2 to ±100 volts. The rise time on the input should be at

least 1 volt per second. The clock has been tested over a frequency range from 1 hertz

to 500 kilohertz.

If the on-off switch is on, the output of one-shot OSl is used as the clock pulse for

bits 0 to 3. It is also used to strobe the input gate of OS2. The input gate to OS2 is

enabled. if bits 0 to 3 are on. Under this condition, the next pulse that comes from OSl

will produce an output pulse from OS2. In effect, OS2 fires only when there is an over­

flow from bits 0 to 3, and this pulse is used as the clock pulse for bits 4 to 7.

Similarly, the clock pulse for bits 4 to 7 is used to strobe the input gate of OS3.

The OS3 is enabled if bits 4 to 7 are on. Since a clock pulse for bits 4 to 7 occurs, only

when bits 0 to 3 are on, the effect is OS3 pulses only when there is an overflow from

bits 0 to 7.

10

~
~

On-off switch

Clock pulse generator

IOT4~

2
Clock

'::.0 • • 0 to 3

t5V
IOT 2c ;':;' ~ .. u , Done flag

3

61 ~
OS -

3 Skip bus 13
K2

1 " .. ~ u ;

Interrupt 14
request bus M2

IOTl

E g
§ lIb One only if §
E 0 to 3 one §

61 • Clock
OS 4 to 7

IOT 2a

2

~"""''\\ ~

':0,..

i. .. II IIIIIIII ... IIII UIlII "l" 11 11:

~ 3 4 ~
~ 1111 111111 .. "".111111111 ,111111

Ze ro only if 0 to 3 one

Zero only if 4 to 7 one

See counter drawing (fig. 5)

'\
Clock
8 to 11

tllIllllIlI.U".II.II'"III.II.IIIIII.II.,11I1111

: One only if
4 to 7 one

8

Zero only if
7 Ab P 8 to 11 on e

See counter drawing (fig. 5)

Figure 6. - On-off SWitCh, done flag, clock pulse generator.

RESULTS

This clock was built and tested on a DEC PDP-12 computer and was found to operate

correctly as designed. A parts list is included in tables I and II along with a price list

of all components. The total price of the clock parts was less than $100. All IC logic

elements are TTL. The clock was designed with minimum cost as a prime objective.
The fact that every gate (total of 55) in every IC was used demonstrates the gate effi­
ciency of the design.

The counting rate is determined by the frequency of an external oscillator. Each

cycle increases the count by one. The counter will overflow and give an interrupt after

one to 4096 counts, depending on the programmed preset.

A simple extension of the number of flip-flops and preset gates will extend the num­
ber of bits to any size computer, and level shifting will adapt it to computers not TTL

compatible.

TABLE I. - INTEGRATED CIRCUIT COSTS

Integrated Number Name Number of Total Cost Total

circuit used gates per number each cost

integrated of gates

circuit

SN7400 5 2 input NAND 4 20 $1. 86 $ 9.30
SN7404 2 Inverter 6 12 1. 55 3.10
SN7410 1 2 input NAND 3 3 1. 24 1. 24
SN7420 2 4 input NAND 2 4 1. 54 3.16
SN7470 13 JK flip-flop 1 13 1. 97 25.61
SN74121 3 One-shot 1 3 3.46 10.38 - ---

55 $52.79
L.....-.

TABLE II. - TOTAL COSTS

Integrated circuits $ 52. 79

P ower supply 29.00

Digital Equipment Corporation 12.00

plug in cards

Transistor , diode , resistor s 1.00

Mounting board, wire, etc. ~

$98 .79

12 NASA-Langley, 1972 _ 8 E -6589

- I

I

i

CONCLUDING REMARKS

An inexpensive programmable clock was designed, built, and tested on a DEC­

PDP -12 minicomputer. The clock is capable of being programmed by the computer to

give an interrupt after 1 to 4096 time increments. The time increment is dependent on

the frequency of an external oscillator. The interface to the computet allows the com­

puter to stop the clock, preset the clock time interval, start the clock , clear the done

flag, and skip or flag. The total cost of the parts for the clock was less than $100.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio , October 29, 1971,

112-27.

~~------

13

