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LAMINARIZATION MODEL FOR TURBULENT EDDY TRANSPORT IN HIGHLY

ACCELERATED NOZZLE TURBULENT BOUNDARY LAYERS

by James F. Schmidt, Donald R. Boldman, and Carroll Todd

Lewis Research Center

SUMMARY

A laminarization model which consists of a completely laminar sublayer region
near the wall and a turbulent wake region is developed for the turbulent eddy transport
in accelerated turbulent boundary layers. This laminarization model is used in a dif-
ferential boundary layer calculation which was applied to nozzle flows. The resulting
theoretical velocity profiles are in good agreement with the experimental nozzle data in
the convergent region.

INTRODUCTION

The effect of strong flow acceleration on the turbulent boundary layer has often been
described as a "laminarization" process (refs. 1 to 5). The idea of laminarization is
that the turbulence in the boundary layer flow is believed to be greatly reduced and the
boundary layer becomes laminar-like for large flow acceleration. References 2 and 3
suggest that the laminarization process can be described by a greatly increased laminar
sublayer region with a significant decrease in the fully turbulent law of the wall region.
This laminarization region was expected to be primarily applicable to the low pressure
accelerated turbulent boundary layer (refs. 2 and 3).

In the present report, another laminarization model is presented which differs,
from references 2 and 3 in that a "true" laminar sublayer region (for y+ « 0 to 20) is
believed to exist for the near wall region, even for the high pressure accelerated bound-
ary layer. This "true" laminar sublayer region is defined as a completely laminar
region with negligible Reynolds stresses. As part of this assumed completely laminar
region near the wall, the wall generated turbulence region is eliminated by the flow
acceleration and only a reduced eddy transport is carried along in the outer part of the
boundary layer.



This present laminarization model is used in a similar solution analysis of the dif-
ferential boundary layer equations for an accelerated turbulent boundary layer (ref. 6).
This similar solution analysis is not described or repeated in the present report and the
reader is referred to reference 6 for all details and assumptions. The purpose of this
study is to show that calculations with a new laminarization model characterized by a
"true" laminar sublayer region near the wall gives good agreement with experimental
velocity profiles for highly accelerated nozzle flows. Theoretical boundary layer velocity
distributions are compared with experimental data from a 30° nozzle (ref. 7) and 10°
nozzle (ref. 8). The nozzle velocity data of references 7 and 9 were taken at a subsonic
station in the convergent portion of each nozzle operating at high and low stagnation
pressures without heat transfer.

SYMBOLS

Cf skin friction coefficient

M Mach number

PO stagnation pressure

TO stagnation temperature

u velocity parallel to nozzle surface

u+ velocity parameter, —

y coordinate normal to nozzle surface

yfr /P )1/2

y+ wall distance parameter, ^ w—^

6. incompressible displacement thickness

e • momentum eddy diffusivity

JM molecular viscosity

| empirical constant (0.018)

p density

T shear stress

Subscripts:

e edge of boundary layer conditions

w wall conditions



LAMINARIZATION MODEL

The present laminarization model consists of two distinct regions. The region near
the wall is assumed to be a completely laminar region until the y (wall distance param-
eter) approaches 20. Beyond this point a turbulent wake region is assumed and Clauser's
approximation (ref. 9) for this region is given by

em = (1)

where £ is an experimental flow constant based on low speed incompressible data and
the incompressible displacement thickness 6. is

u /e/
(2)

The value of e jumps from zero to a constant (see eq. (1)) at y+ = 20.

COMPARISON OF THEORETICAL RESULTS WITH EXPERIMENTAL DATA

The theoretical velocity profiles (from calculations using the laminarization model)
are compared with experimental data from a 30° nozzle (ref. 7) and 10° nozzle (ref. 8)
at the convergent probing location in each nozzle. The data used in this comparison
were obtained at high and low stagnation pressures without heat transfer. All of the
tests were conducted with room temperature air (TQ ~ 317 K). Stagnation conditions for
the tests are summarized in the following table:

Nozzle

30° (ref. 7)

10° (ref. 8)

Stagnation pressure,
o

N/cm (psia)

High

207 (300)

103.2 (150)

Low

31.0 (45)

10.32 (15)



VELOCITY PROFILES

All theoretical velocity profile comparisons with experimental data are made on the
basis of the usual u+ against y+ velocity profile formulation. The experimental u+

against y* velocity distributions use the skin friction coefficient Cf from the corre-
sponding theoretical calculation. Figure 1 shows a comparison of predicted with
measured velocity profiles at the convergent nozzle probing station in the 30° nozzle
operating with the short inlet (ref. 7) and the high stagnation pressure, 207. 0 newtons
per square centimeter absolute (300 psia). The predicted velocity profile (using the
laminarization model) is in excellent agreement with the experimental data! In addition,
the predicted velocity profile using the eddy diffusivity distribution developed from zero
pressure gradient flow (see ref. 6) is readily seen to be considerably below the measured
profile (see fig. 1). These comparisons assume that the local similarity calculation
method of reference 6 is valid for nozzle flows. The predicted velocity profile for a
completely laminar boundary layer is also shown in figure 1 and provides a basis of a
known reference for the fully turbulent and laminarized turbulent boundary layer. From
the experience obtained by carrying out the numerical calculations with the similarity
method, it can be concluded that if the eddy diffusivity is appreciable in the near wall
region the predicted velocity profile with fall greatly below the measured profile. In
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Figure 1. -Comparison of predicted with measured velocity profiles at convergent nozzle probing station (Me = 0.10)
for 30° nozzle with short inlet. Cold flow; stagnation temperature, 317 K; stagnation pressure, 207.0 newtons
per square centimeter absolute (300 psia).
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figure 2 the predicted velocity profile (using the laminarization model) is also in good
agreement with the measured data for the 30° nozzle with the long inlet (338 cm). An
interesting point to note about this inlet flow is that a fully developed turbulent boundary
was evident at the nozzle entrance. o

At the low stagnation pressure (31.0 N/cm abs (45 psia)) no experimental velocity
profile data is available at the convergent nozzle probing station for the 30° nozzle with
the short inlet. However, the theoretical prediction of the velocity profile (using the
laminarization model) is of particular interest since it is in such close agreement with
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Figure 2. - Comparison of predicted with measured velocity profiles at convergent nozzle probing station (Me - 0.10)
for 30° nozzle with long inlet. Cold flow; stagnation temperature, 317 K; stagnation pressure, 207.0 newtons
per square centimeter absolute (300 psia).

the velocity profile calculated for a laminar boundary layer (see fig. 3). As expected
the skin friction coefficients tabulated in figure 3 for the turbulent calculation (using the
laminarization model) and the laminar calculation are almost identical. The predicted

'o
velocity profile (using the laminarization model) at high pressure (P0 « 207.0 N/cm
abs (300 psia)) is also included in figure 3 in order to demonstrate the large effect that a
reduced total stagnation pressure has in laminarizing the turbulent boundary layer. This
laminarization effect is believed to result from a greatly increased percentage growth
of the "true" laminar sublayer region to the total boundary layer as the stagnation pres-
sure is reduced.
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Figure 3. -Effect of total pressure on predicted velocity distribution at convergent nozzle probing station (Me = 0.10)
for the 30° nozzle with short inlet. Stagnation temperature, 317 K.

In figure 4 a comparison of the predicted with measured velocity profiles at the con-
vergent nozzle probing station for the 10° nozzle (ref. 8) is made for the high and low

2 2stagnation pressures (103.2 N/cm abs (150 psia) and 10.32 N/cm abs (15 psia), re-o
spectively). At the high stagnation pressure (103. 2 N/cm abs (150 psia)) the predicted
velocity profile from the numerical calculation using the laminarization model is in good
agreement with the measured data (see fig. 4). At the low stagnation pressure (10. 32

2N/cm abs (15 psia)) figure 4 shows that the numerical calculation (with the laminariza-
tion model) predicts a velocity profile which is generally above the experimental velocity
data in the laminar sublayer region. An attempt was made to improve this comparison
of the theoretical laminarized turbulent boundary layer with experimental data. Changing
the extent of the "true" laminar sublayer region from y+ of 20 to 30 resulted in good
agreement of the predicted velocity profile with experimental data (see fig. 5). This
necessity for increasing the extent of the laminar sublayer region may be a function of
stagnation pressure through a local Reynolds number effect or even a function of flow
acceleration.

The present laminarization model is not intended to be a generalized eddy transport
model but rather a new description of laminarization which could be extended in scope
and application in the future. Further research is required in order to determine the
extent of the conditions in which the proposed model is applicable.
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Figure 4. - Comparison of predicted with measured velocity profiles for 10° nozzle probing station (Me = 0.20).
Stagnation temperature, 317 K.
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CONCLUSIONS

The present laminarization model appears to describe the turbulent eddy transport
in accelerated turbulent boundary layers for the convergent region of nozzles without -
heat transfer. This conclusion is a result of a comparison of the theoretical velocity
profile (using laminarization model) with experimental data at high and low stagnation
pressures. An additional result is that, at low pressures, the velocity profile from a
laminar boundary layer calculation is very similar to the velocity profile obtained from
the accelerated turbulent boundary layer calculation (using the laminarization model).

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 19, 1971,
132-15.
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