AERONAUTICAL ENGINEERING

A SPECIAL BIBLIOGRAPHY WITH INDEXES

Supplement 12

DECEMBER 1971

(Archived)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PREVIOUS BIBLIOGRAPHIES IN THIS SERIES

<table>
<thead>
<tr>
<th>Document</th>
<th>Date</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7037 (02)</td>
<td>February 1971</td>
<td>January 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (03)</td>
<td>March 1971</td>
<td>February 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (04)</td>
<td>April 1971</td>
<td>March 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (05)</td>
<td>May 1971</td>
<td>April 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (06)</td>
<td>June 1971</td>
<td>May 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (07)</td>
<td>July 1971</td>
<td>June 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (08)</td>
<td>August 1971</td>
<td>July 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (09)</td>
<td>September 1971</td>
<td>August 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (10)</td>
<td>October 1971</td>
<td>September 1971</td>
</tr>
<tr>
<td>NASA SP-7037 (11)</td>
<td>November 1971</td>
<td>October 1971</td>
</tr>
</tbody>
</table>

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Tisco, Inc.

Use of funds for printing this publication approved by the Director of the Office of Management and Budget June 22, 1971.
This special bibliography lists 296 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in November 1971 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).
INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering.

This supplement to Aeronautical Engineering—A Special Bibliography (NASA SP-7037) lists 296 reports, journal articles, and other documents originally announced in November 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). For previous bibliographies in this series, see inside of front cover.

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes—subject, personal author, and contract number—are included.

An annual cumulative index will be published.
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A71-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows:

Paper copies are available at $5.00 per document up to a maximum of 20 pages. The charge for each additional page is 25 cents. Microfiche (1) are available at the rate of $1.00 per microfiche for documents identified by the # symbol following the accession number. A number of publications, because of their special characteristics, are available only for reference in the AIAA Technical Information Service Library. Minimum airmail postage to foreign countries is $1.00. Please refer to the accession number, e.g., A71-10613, when requesting publications.

STAR ENTRIES (N71-10000 Series)

A source from which a publication abstracted in this Section is available to the public is ordinarily given on the last line of the citation, e.g., Avail: NTIS. The following are the most commonly indicated sources (full addresses of these organizations are listed at the end of this introduction):

Avail: NTIS. Sold by the National Technical Information Service at a standard price of $3.00 for hard copy (printed, facsimile, or reproduced from microcopy) of 300 pages or less. Documents in the 301 to 600 page range are sold for $6.00 in hard copy, and those in the 601 to 900 page range are sold at $9.00. Documents exceeding 900 pages are priced by NTIS on an individual basis. These prices apply retroactively to all documents in the NTIS collection, but in addition, documents of 300 pages or less that are over two years old (from date of announcement in Government Reports Announcements, or STAR for those items announced only in STAR) will have a surcharge of $3.00 added for a total price of $6.00. No additional surcharge will be added for documents over 300 pages.

Microfiche is available from NTIS at a standard price of 95 cents (regardless of age) for those documents identified by the # sign following the accession number (e.g., N71-10411#) and having an NTIS availability shown in the citation.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The price is given following the availability line. (An order received by NTIS for one of these documents will be filled at the SOD price if hard copy is requested. NTIS will also fill microfiche requests, at the standard 95 cent price, for those documents identified by a # symbol.)

Avail: NASA Scientific and Technical Information Office. Documents with this availability are usually news releases or informational brochures available without charge in paper copy.

Avail: AEC Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of U.S. Atomic Energy Commission reports, usually in microfiche form, are listed in Nuclear Science Abstracts. Services available from the USAEC and its depositories are described in a booklet, Science Information Available from the Atomic Energy Commission (TID-4550), which may be obtained without charge from the USAEC Division of Technical Information.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts, and are sold by University Microfilms as xerographic copy (HC) at $10.00 each and microfilm at $4.00 each, regardless of the length of the manuscript. Handling and shipping charges are additional. All requests should cite the author and the Order Number as they appear in the citation.

(1) A microfiche is a transparent sheet of film, 105 x 148 mm in size, containing up to 72 pages of information reduced to micro images (not to exceed 20:1 reduction).
Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by British Information Services (BIS), New York City. The U.S. price (including a service charge) is given, or a conversion table may be obtained from BIS.

Avail: National Lending Library, Boston Spa, England. Sold by this organization at the price shown. (If none is given, an inquiry should be addressed to NLL.)

Avail: ZLDI. Sold by the Zentralstelle für Luftfahrtdokumentation und -Information, Munich, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail: Issuing Activity, or Corporate Author, or no indication of availability: Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Other availabilities: If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line.

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA. A listing of public collections of NASA documents is included on the inside back cover.

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS). The annual subscription rate for the monthly supplements, excluding the annual cumulative index, is $18.00. All questions relating to subscriptions should be referred to the NTIS.
ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics
and Astronautics
Technical Information Service
750 Third Ave.
New York, N.Y. 10017

British Information Service
845 Third Ave.
New York, N.Y. 10022

Commissioner of Patents
U.S. Patent Office
Washington, D.C. 20231

ESRO/ELDO Space Documentation Service
European Space Research Organization
114. av de Neuilly
92-Neuilly-sur-Seine, France

Her Majesty's Stationery Office
P.O. Box 569, S.E. 1
London, England

NASA Scientific and Technical Information
Facility
P.O. Box 33
College Park, Maryland 20740

National Aeronautics and Space
Administration
Scientific and Technical Information
Office (KSI)
Washington, D.C. 20546

National Lending Library for Science
and Technology
Boston Spa, Yorkshire, England

National Technical Information Service
Springfield, Virginia 22151

Superintendent of Documents
U.S. Government Printing Office
Washington, D.C. 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Atomic Energy Commission
Division of Technical Information
P.O. Box 62
Oak Ridge, Tennessee 37830

Zentralstelle für Luftfahrtdokumentation und -Information
8 München 86
Postfach 880
Federal Republic of Germany
Two mainshaft face seal configurations for advanced gas-turbine engines were designed, fabricated, and tested. The seal concepts incorporated lift geometries which used the relative motion between the primary seal surfaces to provide positive separation (film lubrication). One design (self-acting) with shrouded Rayleigh step lift pads operated with a gas film separating the sealing faces. The other design (hydrodynamic) with a spiral grove geometry operated with oil-film separation. Tests of the gas-film seal demonstrated the feasibility of operation at gas temperatures to 1200 F, pressure differentials to 250 psi, and sliding speeds to 450 ft/sec. Excellent correlations with analytically predicted performance parameters were obtained. Face wear was less than 0.1 mil after 320 hours at an air temperature of 1000 F, a pressure differential of 200 psi, and a sliding speed of 400 ft/sec. Average air leakage during that test was 14 scfm. These operating conditions exceed the capability of conventional contact seals and the air leakage is 1/10 that of a labyrinth seal. Testing of the oil-film seal revealed an inadequate seal force balance.

Investigation of the drag coefficient of spheres at hypersonic Mach numbers for near-free-molecule flow conditions. Sphere drag data in the near-free-molecular regime for flow conditions close to earth satellite conditions, obtained by using a free-flight technique in the Ames 42-in. shock tunnel are tabulated, shown graphically, and discussed.
A71-40010

In an attempt to find some concepts which might bring some order into what are usually described as turbulent motions, some thoughts are presented, which might lead to an interpretation of some of these motions in fluids of small viscosity in terms of inviscid flows involving vortex sheets and rolled-up vortex cores. (Author)

A71-40081

A numerical solution of Navier-Stokes equations for a compressible viscous gas is obtained in the near-wake region behind the perpendicular (to the flow surface) trailing face of a plate in supersonic flow. The velocity, density, temperature, and boundary-layer parameters for the oncoming flow are known. The Navier-Stokes equations for the region of interest consist of two equations of motion, an energy equation, and a continuity equation. Pressure, density, and temperature are related by the equation of state. The viscosity and thermal conductivity coefficients are power functions of temperature. The boundary value problem for the region with specified boundary conditions was solved numerically by the finite difference method. The results for nine different cases of specified initial parameters are given graphically in the form of characteristic streamlines and pressure profiles.

T.M.

A71-40113

London, Institution of Electrical Engineers (IEE Conference Publication No. 80), 1971, p. 77-82.

Discussion of ways of providing pilots with necessary information without unduly complicating the information display. The need to provide the pilot with information from a number of sources which has already been processed to a certain extent is stressed, citing the head-up display as a good example of what can be done in this respect. The cathode ray tube is also characterized as offering great potential in relieving pilots of unnecessary data interpretation labor.

A.B.K.

A71-40114

Results of tests comparing the performance of operators of touch displays with that of operators of tabular traffic displays using a conventional keyboard. It is found that, in comparison with a display using a conventional keyboard, the touch display is quicker and easier to learn and use as a data entry device, requires no selection procedure for operators, is silent, avoids most search and coding problems, can be adapted for programmed instruction, and is preferred by its users. Moreover, the touch display is superior in both system-paced and operator-paced tasks, especially when programs permit the entry of blocks of data with a single touch.

A.B.K.

A71-40118

London, Institution of Electrical Engineers (IEE

Examination of the feasibility and effectiveness of an approach to air traffic control involving the use of alphanumeric labels in a series of experiments in which the work of an air traffic controller was simulated. These experiments dealt with various conditions of labeling, a comparison of various stages in the introduction of labeling, the use of call signs for addressing aircraft, the overlapping of labels, and means of overcoming the problem of overlapping. The most consistent finding from this series of experiments is that subjects are favorably disposed to radar labels, and that they prefer labels which give the most information of immediate use without the need to cross-refer to other data.

A.B.K.

A71-40119

Application of a field technique and a laboratory approach in a study of the effects of faults and delays in the air traffic control system on operator performance. The field technique chosen was that of a structured interview designed to discover how the operator felt about increasing automation in general, without too much emphasis being placed on faults and delays. The laboratory technique was designed to uncover shorter-term performance effects which might be induced by the occurrence of delays. The effect of machine pacing on the working rate in both the questionnaire and the laboratory work is noted.

A.B.K.

A71-40128

Description of an air traffic controller's display combining the functions of Primary and Secondary Surveillance Radars in providing height information and lateral information on aircraft in a unified spatial form. The composite picture seen on this display is an orthographic projection having a pictorial property that conveys an immediate general impression in three dimensions. Line-drawings illustrating the design and operation of this display are given.

V.Z.

A71-40131

A Head Up Display (HUD) is a means of providing information to the pilot while he is looking at the outside world ahead of his aircraft. The information appears focussed at infinity and within the pilot's normal field of view. The history of HUD systems is discussed together with the principles of operation, and civil HUD systems. Simulator studies are conducted to determine a suitable set of standard symbols for the HUD. The simulators used are of the normal type for aircraft simulator studies with the addition of the HUD.

G.R.

A71-40134

A V/STOL simulator study, carried out on the Hatfield fixed base simulation facility, is described in which the operational requirements of an aircraft flying profiles anywhere between the very shallow angles typical of conventional aircraft up to the limiting case vertical ascent and descent were investigated. A comparison of the head-up display VTOL and STOL studies indicates that properly processed director information need not be intimately related to quantitative information. A thorough assessment of the display concept showed that it was possible to provide the pilot of even a very complex aircraft with much of the information in a form that he would require to perform an accurate and safe landing.

V.P.

A71-40137

An avionic display system currently under development is described which combines electronic and mechanical technology and features processed information and raw data in several modes. Navigational geographic orientation is projected in the form of colored map charts from a film strip onto the phosphor of a CRT. The compass rose, bearing, and track pointers are either projected from the same rear port of the CRT or, alternatively, generated by the CRT electron beam. CRT displays of radar and symbology are written by the electron beam on the phosphor. Details of film transport, navigational overlays, and dynamic information overlays are discussed.

T.M.

A71-40167

A system of transfer functions relating the cornering force and aligning torque of a rolling pneumatic tire to its yaw angle and lateral displacement are developed from experimental and theoretical frequency response curves. These transfer functions consist of ratios of polynomials in the Laplacian variable s, which lead to a system of linear constant coefficient differential equations. The resulting equations have the advantage of both simplicity and accuracy and are ideally suited for use in dynamical analysis such as the study of wheel shimmy phenomena. These differential equations, along with the corresponding experimental frequency response curves, are compared with those derived from the widely used Moreland tire theory. This comparison reveals a number of inadequacies in the Moreland theory.

(Author)

A71-40168

The general assumption that phugoid motion occurs at a constant angle of attack is shown to be true only as long as the thrust line is not appreciably displaced from the aircraft center of gravity. Expressions for the frequency and damping of the phugoid are derived for the case where a displacement of the thrust line occurs.

V.F.

A71-40169

Vortex flow over helicopter rotor tips. John D. Hoffman and Henry R. Velkoff (Ohio State University.

Discussion of the effects of the trend to higher pressure ratios in aircraft gas turbines, which leads to higher exit temperatures from the compressor. The vibrational degrees of freedom of oxygen begin to be thermally excited resulting in a decrease of the ratio of specific heats. Some aspects of compressor technology are considered, and it is shown that in order to understand combustion kinetics from a fundamental point of view, the presence of vibrationally excited O2 in the combustor inlet is important.

F.R.L.

Extension of an earlier analysis (Spence, 1956), by means of similarity transformations, to the case of a two-dimensional, jet-flapped, symmetric wing in subsonic flow. The analysis assumes that the flow inside the jet is irrotational and bounded by vortex sheets across which it is prevented from mixing with the main stream, and that the jet is infinitely thin, but possesses finite momentum.

F.R.L.

Demonstration that the true two-dimensional flow over the two-dimensional finite wing can be found without the need to correct experimentally for the downwash provided the pressure distribution over the section is known from the test data. The method proposed applies to airfoil sections of any shape with or without blowing (or suction) provided the spanwise flow at the section where the experimental pressure distribution is obtained is negligible. It is also assumed that the contribution of the flowing (or suction) momentum to the lift is negligible.

F.R.L.

An adoption of matrix techniques is proposed as a method for the solution of torsional natural frequencies in a branch or geared shaft system. Both fundamental and higher mode shapes and frequencies are produced by a comparatively rapid and straightforward technique. The method is illustrated by a numerical example of a coupled turbine and reciprocating engine system driving a common propeller.

(Author)

A mathematical formulation for the analysis of the transient and steady-state flexible rotor dynamics has been developed. Newton's Laws of Dynamics as used here were found to be more direct and efficient than the alternate Lagrange energy approach. In addition, the influence coefficient technique, including both bending and shear flexibility of a rotor, is applied to correlate the load deflection effects between various rotor stations. The mathematical formulation considers the general nonaxisymmetric and nonsynchronous rotor motion which may result from the included in-phase and out-of-phase stiffness and damping functions at all bearing and rotor stations. Other rotor dynamic parameters considered are the rotor masses and mass moments of inertia and their eccentricities and misalignments. The effects of rotor drive and dissipative torque and the interaction between torsional and transverse motion are also included.

(Author)

Aircrew effectiveness was equated with the ability to interpret display data (perceptual judgments) and to make correct decisions when the choices are few in number (intellectual judgments). Eight hours' exposure to 100 dB(A) aircraft cabin noise had no effect on perceptual judgment ability or on the time required for intellectual judgment. During the second 4 hr of the 8-hr exposure there was a significant increase in the number of errors committed in the intellectual judgment task. A significant shift in hearing acuity threshold occurred, but normal hearing was recovered within 48 hr.

M.M.

Demonstration that spatial disorientation is still a significant flight safety problem. It is indicated that 192 mostly highly qualified USAF pilots lost their lives because of disorientation during the decade from 1958 to 1968 and that age, experience and phase of flight contributed little to these accidents. Operational analysis of training, of flight environment and of indoctrination programs is suggested to remedy this situation.

V.Z.

Description of a model launching technique for free flight testing in wind tunnels. It is to be used in a Ludwieg-tube operating in a Mach-number range from 3 to 12. Due to its performance and running time, a Ludwieg-tube is especially suited for free flight testing. The launching device and the recording setup are presented, and particulars are discussed regarding the choice and realization of optimum launching data.

(Author)

This paper reviews an advanced technique of simulation which dispenses with detailed mathematical representations by substituting a slaved aircraft model and wind tunnel. These constitute an analogue function generator of the required out of balance aerodynamic data. This information is transferred directly to a computer which simultaneously processes the equations of motion of the flight vehicle, using the solution to command the orientation of the model to the airflow. The technique gives good accuracy and results in substantial overall economies in the simulation of complex flight dynamic phenomena. A description is given of the control system for the model attitude gear and for the operation of the wind tunnel at continuously variable Mach number. Special modes of automatic operation of the facility are shown and an associated analysis system is discussed.

New York, Institute of Electrical and Electronics Engineers, Inc., 1971, p. 111-118. 5 refs.

The technique described was developed in order to measure directly the amplitude and spectral distribution of the total A.C. component of the aerodynamic force experienced by a single cylinder of circular cross section both in isolation and as a member of a tube bank. It can, however, be adapted fairly easily to make similar measurements on any body of aerodynamic interest which can be fixed to a support spanning a wind tunnel working section. Furthermore it is a fairly straightforward extension to measure also the mean D.C. component of the total force.

ONERA has equipped a small continuous hypersonic wind tunnel in view of exploring the possibility of electron beam probing, its limitations and the precision to be expected. The experimental set-up is described. The results presented concern the study of gas densities. In the simplest tests a flow section is visualized by translation of the electron beam. The quantitative reduction of the views obtained is analyzed. Within the range of densities explored, which are rather high for this method, several secondary phenomena should be considered if accurate measurements are to be obtained. The proposed theoretical model is applied to the study of isobaric boundary layers.

It is the purpose of this paper to describe the application of the Doppler-difference velocimeter in turbulence diagnostics. A jet of a subsonic wind tunnel was used as test flow, containing natural contaminations such as dust particles, being permanently present in the air, as scattering centers for the laser light. A short comparison with other techniques will be executed.

A dual scatter, both forward and back scatter, laser Doppler velocimeter, in addition to a direct readout, system is briefly described. The characteristics of the dual scatter system are such that no artificial seeding of flow is required to effect the measurements. With minor modifications and improvements, the dual scatter, both forward and back scatter, LDV system will supplant conventional measuring devices, i.e., pitot tubes, rakes, etc., and will be an operational instrument. In support of this conclusion, the application of the instrument to actual wind tunnel measurements including calibration of the one-foot transonic wind tunnel; flow field measurements of a simulated helicopter downwash in addition to flow field mapping across a high lift wing section are presented and discussed.

A 30-in. diam phased array radar antenna, designed for advanced tactical aircraft, incorporates 4000 separate heat dissipating elements. The heat dissipation of each element is nonuniform and varies with time, radar operating mode and location within the array. Approximately 4000 small passages between the elements were available for cooling. A major task associated with the antenna design was to distribute cooling air to these elements in a manner which would maintain the steady-state operating temperature difference between the interior (ferrite rod) of any two elements at less than 18 deg F (10 deg C) during rooftop tests. Steady-state outer surface temperature maps of the elements, for various operating modes, were obtained with a Polaroid camera attached to the video output of an infrared television system. Supplementing these temperature maps, a special microwave test fixture was used to determine the internal temperature rise of the element as a function of phase shift. Using the data obtained from the infrared television system and microwave test figure, the cooling distribution air was adjusted by systematically decreasing the available cooling passages until the maximum steady-state operating temperature difference between ferrite rods was reduced from 30 deg F to 17 deg F.
airplanes. New wire bundles will be added to the system at a rate of about two per week to reach a predicted machine capacity of 70 harnesses on a two-shift basis. By year’s end, enough data will be available to define a second generation machine. Primary benefits relate so far to tangible labor costs such as search, handling, and routing on board and off. Other beneficial areas expected to become more important later on include a significant reduction in the time required to build a harness and enhanced reliability of assembly.

M.V.E.

The articles cover the properties of wakes, including their formation, stability, and decay, and provide data on interactions between wakes and following aircraft as well as experimental methods of observing wake properties. A wide variety of topics is discussed, ranging from fundamentals of vortex motion to the possible methods for reducing the hazards associated with an encounter by a following aircraft. A panel discussion and author and subject indexes are included.

A.B.K.

Development of a frame of reference for a symposium on aircraft wake turbulence. The history of aerodynamic vortex research is reviewed, noting a pattern of unfolding complexity, as exemplified in the case of the Karman vortex street and the phenomenon of the edgetone. The genesis of the AFOSR (Air Force Office of Scientific Research) wake turbulence research program is described. Some of the challenging research opportunities contained within the problem are briefly commented on.

A.B.K.

Development of a simplified approximate model of the dominant effects of atmospheric stability on the transport of a trailing vortex wake. In this study the wake behavior is modeled analytically as a pair of infinite vortices in an inviscid, compressible, stably stratified atmosphere with entrainment characterized by a single parameter related to the difference between the density in a particular region of the wake and that external to the wake. It is found that the motion of such a vortex system is governed by a parameter \(Q\) which depends on the initial circulation and vortex spacing, on the atmospheric stability, and on the entrainment parameter. The nature of the transport follows one of two patterns, depending on whether \(Q\) is less than or greater than a certain critical value. If \(Q\) is less than the critical value, the circulation decreases more rapidly than the momentum and the vortices separate as they descend to an equilibrium level. If \(Q\) is greater than the critical value, the momentum of the vortices decreases more rapidly than the circulation and, after an initial period of slow divergence, the vortices attempt to converge as they descend. In both cases, the descent takes place in a well-defined characteristic time which depends solely on the atmospheric density gradient.

A.B.K.

Description of a pilot study of aircraft trailing vortices using a subscale model in a controllable laboratory environment. The essential feature of this laboratory facility is to have a vortex-generating wing moving along a pair of elevated rails so that the vortices shed by the wing remain relatively fixed with respect to ground-based instrumentation and can be observed and measured throughout their entire life-span. The vortices are rendered visible to two methods: by smoke traces and by drifting soap bubbles. A 16-mm movie camera is used to record the visible vortices. The smoke-traced vortices give better qualitative pictures, but the soap-bubble pictures are more suitable for quantitative studies. Hot-wire anemometer probes are also used to study the turbulence nature of the vortices.

A.B.K.

The feasibility of utilizing a special purpose Doppler radar to investigate air motions in aircraft wakes is explored and tested. Two similar experimental methods are undertaken to investigate the potential value of the Doppler radar approach. The first method involves injection of radar reflecting chaff into the wing-tip vortex of an aircraft in flight, and subsequently recording the Doppler spectrum of the return from the chaff packet as obtained by the radar looking normal to the flight path. The second method consists of Doppler measurements in the wake behind aircraft on the approach to an airport during snow conditions, where natural snow crystals and flakes assume the role of radar reflecting tracers of air motion. The power spectra derived from both techniques reflect the distribution of velocities of scatterers (chaff elements or snow crystals) in the direction of the radar, weighted by the spatial distribution of the scatterers contained in the radar sensitive volume.

(Author)

Description of a laser Doppler system for the measurement of atmospheric wind velocity and turbulence. The system utilizes the Doppler frequency shift undergone by a beam of radiation when scattered by particles suspended in the flows. From the measurement of this difference frequency between the scattered and the reference laser light and knowledge of the geometry of the system, the velocity is directly determined. A three-dimensional version of the system, developed for wind-tunnel and jet-type flow studies, is described, as
well as a one-dimensional research unit. Comparisons of cup and hot-wire anemometer data with data obtained by the laser Doppler system regarding the time history of the wind velocity and the statistical properties of the wind velocity fluctuation are presented. The results of application of the Doppler system to the problem of detecting the presence of an aircraft trailing vortex are also cited.

A.B.K.

Peak velocity vectors measured in the transverse plane of the wake of a Convair 880 aircraft were found to be four times as high as wake rolls up faster than the investigations of trailing explored to identify the factors is

A.B.K.

The fluid dynamical aspects of the control of free vortices emanating from the wing or other parts of a flight vehicle are reviewed. Simple calculations based on slender-body theory are used to demonstrate the importance of controlling the strength, position and core stability and thickness of such vortices. From the equations describing vortex motion, conclusions are drawn as to how vortex properties can be influenced. In particular, a one-dimensional flow model for the vortex core flow is explored to identify the factors important in the determination of core thickness and stability. Simple energy arguments are used to clarify the phenomenon of vortex bursting and to draw conclusions as to what can be done to prevent or induce bursting. Examples of engineering applications of vortex control are given. In particular, recent advanced control schemes employed for the Saab A37 'Viggen' are described. (Author)

A.B.K.

Study of the effect of a drooped wing tip on the structure and position of its trailing vortex. Sparrow load distributions determined by vortex lattice theory show that the stronger vortex moves from the tip of the wing to the hinge of the drooped tip as the droop angle increases. Experimental results on model wings are given which present the strength and the induced velocity profiles of the rolled-up vortex as a function of tip geometry. These results confirm, at least qualitatively, the analytical prediction. It is concluded that a droop angle of approximately 90 deg is optimum and results in a maximum induced velocity which is half that produced by a plane wing.

(Author)

A.B.K.

The paper reviews the work done at the Royal Aircraft Establishment on the behavior of vortex wakes. Measurements of the development of wakes behind straight and swept wings are described. The results of observations on the formation of loops in a vortex wake, on the behavior of the wakes close to the ground and on the development of the wake from a slender wing are given in some detail. (Author)

A.B.K.

Classical analyses of aircraft wake formation assume that the wing span loading is (essentially) elliptic, and that in consequence the wake starts out being (essentially) flat. This assumption is incorrect: actual span loadings contain a logarithmic term, and in consequence there is an infinite upwash directly behind the wing just inside the wing tips. This explains why the aircraft wake rolls up faster than the classical analyses predict. (Author)

A.B.K.

Results of a wind-tunnel and flight investigation of the effects of a vortex dissipator plate fitted to the wing tip of an aircraft. The wind-tunnel investigation consisted of flow-visualization studies using smoke and a tuft grid as well as measurements with a hot-wire anemometer. Both the smoke and tuft-grid visualization studies indicated that the dissipator caused a significant reduction in the maximum tangential velocities in the trailing vortex. Additional studies with the anemometer showed significant reductions in the magnitude of the tangential velocities, increases in the cross-sectional dimensions of the core of the dissipated vortex, and changes in the turbulence structure. Limited flight tests with a dissipater plate fitted to a Convair 990 wing tip and using a Lear jet aircraft as a probe indicated that the rolling acceleration and the degree of roll control required was less in the modified vortex than in the unmodified vortex.

(Author)
Discussion of some theoretical and experimental aspects of vortex wake decay. Calculations of the sinusous instability of a trailing pair are extended, using a nonlinear vortex modeling technique, and the effects of initial parameters (particularly, the initially assumed wavelength) are examined. Realistic-looking vortices were generated using computer graphics. More generally, the modes of vortex decay may be demonstrated by flow visualization in water, using the hydrogen bubble technique. Vortex bursting is shown to be possible before and/or after the 'wavy' mode. These small-scale measurements are shown to be consistent with flight measurements. In another series of experiments, smoke injected into the core of the trailing vortex behind a C-130 wind-tunnel model showed marked resemblance until the adverse pressure gradient in the wind-tunnel diffuser caused vortex bursting. The effects of auxiliary blowing into or near the vortex core on vortex burst position in the diffuser are discussed qualitatively. The results of a computer simulation concerning the dynamic response and loads induced on an aircraft entering the trailing vortex of a lead aircraft of large size are discussed. In this study, McCormick's or Owen's semiempirical theories were judged as preferable for estimates of vortex decay with distance behind the aircraft.

A.B.K.

Results of flight tests conducted at two different test sites to gather quantitative data on aircraft vortex wake characteristics using the tower flyby technique. Vortex flow visualization for vortex vortex-wake decay. Calculations of the sinusous instability of a trailing pair are extended, using a nonlinear vortex modeling technique, and the effects of initial parameters (particularly, the initially assumed wavelength) are examined. Realistic-looking vortices were generated using computer graphics. More generally, the modes of vortex decay may be demonstrated by flow visualization in water, using the hydrogen bubble technique. Vortex bursting is shown to be possible before and/or after the 'wavy' mode. These small-scale measurements are shown to be consistent with flight measurements. In another series of experiments, smoke injected into the core of the trailing vortex behind a C-130 wind-tunnel model showed marked resemblance until the adverse pressure gradient in the wind-tunnel diffuser caused vortex bursting. The effects of auxiliary blowing into or near the vortex core on vortex burst position in the diffuser are discussed qualitatively. The results of a computer simulation concerning the dynamic response and loads induced on an aircraft entering the trailing vortex of a lead aircraft of large size are discussed. In this study, McCormick's or Owen's semiempirical theories were judged as preferable for estimates of vortex decay with distance behind the aircraft.

A.B.K.

Discussion of the transport/decay of vortex wakes from an overall perspective evolved from field observations, experiments, and theoretical work beginning 12 years ago. Most of the work involved the effects of wakes on meteorological experiments, rather than the hazards which the organized vortex wakes presented to subsequent aircraft. It is pointed out that this particular series of inputs warrants the conclusion that the atmospheric turbulence and stability often have much to do with determining the descent, spread, interaction, and decay of the vortices. Such factors can sometimes be dominant and, unfortunately, are almost impossible to duplicate in model experiments. A conclusion arising from this background is that the atmospheric environment must be considered in establishing the mechanisms of vortex interaction and decay, field experiments should include measurements of environmental factors and, in spite of the costs and difficulties of doing quantitative experiments in the atmosphere, the atmospheric laboratory should have a strong emphasis in any total attack on the wake problem.

M.M.

The linear stability of the trailing vortex pair from an aircraft is discussed. The method of matched asymptotic expansions is used to obtain a general solution for the flow field within and near a curved vortex filament with an arbitrary distribution of swirl and axial velocities. The velocity field induced in the neighborhood of the vortex core by distant portions of the vortex lines is calculated and compared with the sinusoidally perturbed vortex filament and for a vortex ring. General expressions for the self-induced motion are given for these two cases. It is shown that the details of the vorticity and axial velocity distributions affect the self-induced motion only through the kinetic energy of the swirl and the axial momentum flux. The presence of axial velocity in the core reduces both the angular velocity of the sinusoidal vortex filament and the speed of the ring. The vortex pair instability is then considered in terms of the more general model for self-induced motion of the sinusoidal vortex. The presence of axial velocity within the core slightly decreases the amplification rate of the instability. Experimental results for the distortion and breakup of a perturbed vortex pair are presented. (Author)

Investigation of the structure of straight line vortices in a uniform two-dimensional straining field. Two cases are considered in detail, irrotational strain and simple shear. In the first case, it is shown that steady exact solutions of the inviscid equations exist, in which the boundary of the vortex is an ellipse with principal axes at 45 deg to the principal axes of strain. There are two possible axis ratios provided that the ratio between the maximum rate of extension and the vorticity in the core is less than 0.15. The stability of the shapes is considered, and it is shown that the more elongated shape is unstable, while the less elongated one is stable to two-dimensional deformations. There are no steady solutions of elliptical form if the ratio between the maximum rate of extension and the vorticity in the core is greater than 0.15, and it is believed from some numerical work that in this case the strain field will cause the vortex to break up.

M.M.

Crow's (1970) stability theory for wave-like disturbances in a
pair of trailing line vortices is modified to take account of finite core radii and appropriate distributions of vorticity within these cores. The difficulties encountered by Crow in calculating the self-induction effects of each vortex are avoided. For a uniform distribution of vorticity within the cores, the self-induction function is shown to be expressible in terms of modified Bessel functions of the second kind. The essential features of Crow's theory are confirmed with only small numerical changes. The modified theory cannot be used to calculate the growth of perturbations deliberately introduced at the wing of an aircraft, but a further modified, discretized theory amenable to digital computation has been developed to investigate initial growth of these excited waves. Some results from digital computations are presented. M.V.E.

A71-40503

The decay of trailing vortex systems behind aircraft is studied by an analysis of the effect of turbulent shear on the decay of a single vortex. Essential in the study is an invariant model of the type used by the authors for boundary-layer and clear-air turbulent calculations in a previous study (1970). Equations of vortex decay based on this model are obtained, and the results of a typical calculation are given.

A71-40504

A model of a trailing vortex pair behind an aircraft is presented which is thought to represent a case of extreme vortex persistence and which therefore is relevant from the safety point of view. Three stages are considered in the analysis: a rolling-up stage directly behind the aircraft, a second stage in which the vortices act independently as constant strength equilibrium turbulent vortices, and a third stage where the vortices physically interact and decay in strength. An overall theory is presented encompassing all three stages and aimed at obtaining equilibrium solutions. Calculative examples are presented for all stages.

A71-40505

Results of flow visualization studies performed in a towing tank using an electrochemically activated dye. Although test Reynolds numbers were far below flight Reynolds numbers (10,000 vs 10,000,000), the results were strikingly similar to flight test data. Two types of instability were observed in the tank. An instability associated with the axial flow within the core was observed to destroy the flow in the neighborhood of the core without destroying the motion far from the core. A second instability involving the mutual interaction of the two vortices was observed but was somewhat masked by the first instability.

A71-40506

Flight tests conducted to evaluate the hazard for other aircraft by the turbulent wakes generated by such large jet transport airplanes as the 747 and C 5A showed that these wakes did not affect the wake probing aircraft any more than the wake of a 707. The dynamic responses of 737, CV 990, and F 86 aircraft were essentially the same when flying in the turbulent wakes of either the 747 or 707. The turbulent wake was found to level off and never descend more than 900 ft below the generating airplane. This indicates that a vertical separation of 1000 ft is sufficient to avoid wake turbulence. In approach and landing tests, it was found that the wake generated in ground effect does not roll up into strong trailing vortices. Consequently, wake turbulence is relatively weak near the runway in the landing flare and takeoff rotation areas. Recommendations which would virtually eliminate hazardous wake turbulence encounters are presented.

A71-40507

Aircraft response to turbulence including wakes. John C. Houbolt (Aeronautical Research Associates of Princeton, Inc., Princeton, N.J.). In: Aircraft wake turbulence and its detection; Proceedings of the Symposium, Seattle, Wash., September 1-3, 1970. Symposium sponsored by the Boeing Scientific Research Laboratories and the U.S. Air Force. Edited by J. H. Olsen, Arnold Goldburg, and Milton Rogers. New York, Plenum Press, 1971, p. 509-522. The nature of atmospheric turbulence and the means for establishing aircraft response is reviewed, both from discrete-gust and spectral interpretations. Application is then made to the situation of wake turbulence encounter to show the nature and magnitude of the loads that result. Specific cases are treated, with encounters perpendicular to and parallel to the wake, to bring out the main parameters that are significant. General relations are also developed to show how the wake 'gust' forces on the encountering airplane are related to the lift on the aircraft generating the wake. It is shown that normal loads in excess of 2 g's may be produced by a perpendicular encounter of a wake vortex, and that uncontrollable rolling moments may be caused by encounters along the axis of a vortex.

A71-40508

When an aircraft flies across the wake of another aircraft, it is subjected to changing airloads and moments induced by the trailing vortices of the first aircraft. The magnitude and characteristics of the time-dependent aerodynamic forces produced are investigated. Both aircraft are assumed to be in horizontal flight but the direction of flight of the second aircraft is assumed to be inclined at a small angle to the trailing vortices of the first aircraft. The airloads in this case will change relatively slowly with time and may be estimated with reasonable accuracy by quasi-steady aerodynamic theory without taking Wagner growth of lift effects into account. To illustrate the methods of analysis employed, calculations were conducted for an aircraft with rectangular wings.

G.R.

A flight test experiment is described whose aim was to evaluate the effectiveness of a properly mechanized automatic control system in minimizing aircraft upset due to wake turbulence. Graphs showing the closed-loop frequency response of the alleron actuator and the spoiler actuator are presented, and the outer loop control system is discussed. The improvement in the precision with which formation flying can be accomplished with the aid of the control system applies also to other precision control maneuvers such as landing and parapod.

V.P.

A model is presented to explain why fogs can be maintained for extended periods of time. The model considers the fog as a dynamical system whereby droplets depletion through fall is balanced by a continuous process of evaporation and condensation. The controlling parameters of the process are indicated. Possible means of fog dispersal by the velocity field induced by trailing vortices are suggested. (Author)

Semi-empirical formulae which represent the loudness of sonic booms heard outdoors as functions of their peak overpressures and rise times only were found to agree well theoretically with the accepted, more complex loudness calculations of Zeppler and Harel, and Johnson and Robinson. Moreover, in an experimental assessment using 34 sonic booms and up to 14 subjects, the semi-empirical relations correlated with judged loudness at least as well as did the more complex ones. The use of the semi-empirical formulae was recommended by virtue of their far greater simplicity. In particular, one such formula for loudness in phons is simply the decibel level of the peak overpressure minus twelve, with a further phon subtracted for each millisecond of rise time.

(Author)

The role of pilot fatigue, due to lack of sleep, irregular duty patterns, and sleep disruption, in pilot performance is analyzed. It is shown that sleepiness has much the same effect as alcohol on human skills and that there is a measurable deterioration of performance with lack of sleep. Inability to discriminate (or even detect) small signals was established in test subjects with two to three hours of sleep. Evidence is presented that pilot performance varies diurnally, and that it is affected by desynchronization of diurnal rhythm by time-zone crossing. Rest and duty schedules that would contribute to flight safety are proposed.

V.P.

Investigation of the basic characteristics of some silver-, copper-, and nickel-base brazing filler metals for application as possible cost-effective replacements for the Au-18Ni filler metal in an aircraft gas turbine engine component. A metallographic examination was conducted on brazed Au-18Ni joint specimens to evaluate brazing flow, joint microstructure, and interaction between the filler metal and the base metal. Oxidation and tensile shear strength testing of each filler metal was conducted up to 1200 F, followed by room-temperature fatigue strength testing of selected brazing filler metals. Actual vane-and-shroud compressor stator assemblies were brazed with selected filler metals and subjected to engine tests to evaluate their reliability under actual service conditions. It is shown that the ductility and strength of the filler metals investigated are related to the joint microstructure. Filler metals of Au-Ni and Cu-Mn-Co which are predominantly solid solution possessed excellent ductility and strength, whereas the properties of the filler metals of Ag-Cu-Pd and Ni-Cr-Si-B with intermetallic and/or autitic phases were considerably lower at gas width tested. The silver- and copper-base brazing filler metals were shown to be limited by their oxidation resistance, although high-temperature strength was adequate. Brazing filler metals 706 and 9217 satisfied the established goals of this program for service applications to 800 and 1000 F, respectively. (Author)

The problem of the impact of a shock wave against a stationary symmetric wing profile is solved with the aid of a difference scheme proposed by Godunov (1959). The diffraction phase of the shock wave is analyzed, and the development of both a supersonic and a transonic flow past a lenticular profile (thickness ratio of 6), for which the freestream Mach number of 0.87 is critical, is determined and compared with the experiment.

V.P.

The propagation of disturbances upstream is studied for supersonic and hypersonic viscous gas flows in which the boundary-layer-induced pressure gradient affects the solution for the boundary layer in the first approximation. Solutions are obtained for the shockwave/boundary layer interaction region, for a corner in supersonic flow, and for a hypersonic flow characterized by strong boundary layer interaction.

V.P.

The influence of disturbances arising in the boundary layer in three-dimensional flow is assessed for the flow about an infinite triangular plate. It is shown that a pressure rise leads to an increase in the heat-transfer and friction coefficients in flows with strong or moderate viscous interaction, while an increase in pressure results in a decrease of these coefficients. The disturbances caused by a
pressure increase propagate over greater distances than in the case of a pressure drop. The influence of boundary-layer disturbances on the integral characteristics of the flow increase with increasing sweep (the order of these characteristics can increase from 3 to 15% for an increase in sweep angle from 0 to 60 deg). V.P.

The attached potential flow of an incompressible fluid past two arbitrary airfoil cascades which move with respect to each other is analyzed. It is assumed that vortex trails behind the cascades are absent (quasi-stationary formulation). An approximate method of solving the problem for cascades with an arbitrary pitch is proposed, which is based on expressing the flow rate at the blade profiles in the form of a power series in a small parameter characterizing the distance between the cascades. Asymptotic formulas are derived for calculating the velocity circulation at the blades of a double-row cascade whose first row consists of densely spaced curvilinear profiles and the second of widely spaced straight blades. V.P.

Experimental study of the influence of gas rarefaction on the value of impact pressure in a thin-walled cylindrical tube with a sharp leading edge at subsonic flow velocities. Experiments were performed at zero angle of attack of Reynolds numbers from 0.59 to 6.99, Mach numbers from 0.2 to 0.7, and Knudsen numbers from 0.043 to 1.54. A formula is derived which makes it possible to interpret the readings of the impact probe for any levels of rarefaction (Knudsen numbers).

The design of an aircraft which is particularly suited for special needs in the developing countries is considered. It is intended to develop an aircraft able to carry a payload of one ton. Typical of the tasks envisaged for it are passenger and freight transport, crop spraying and dusting, distressed-area relief, air survey, and firefighting. A 70% (by size) version of the one-ton carrier was built to prove and demonstrate the intended aircraft configuration. The design of the aircraft is described, and the experience obtained with it in test flights is evaluated.

It is almost five years since carbon fibers were first introduced in the UK with the statement that carbon-fiber-reinforced plastics had been made which had a stiffness-to-weight ratio surpassing that of metals. The new fiber, it was said, was two or three times as strong as steel. Aerospace applications and applications in the medical field are considered for the new materials. Early claims for carbon fibers have been proved to be justified. There are, however, certain difficulties as, for instance, surface erosion problems. G.R.

Both as phenomena and as technical and operational challenges, clear air turbulence (CAT) and aircraft wake turbulence exhibit striking similarities. Both CAT and aircraft wake turbulence can cause loss of control of aircraft. Aircraft wake turbulence is a man-made atmospheric disturbance found behind all aircraft in flight. In its most severe form it is a threat principally to medium-sized and small aircraft. The most dangerous atmospheric disturbances of this type are those associated with the trailing vortex wakes of the jumbo jets. Aerodynamic aspects related to the aircraft wake turbulence are investigated giving attention to vortex theory. Measures considered for solving the problem include vortex breakup, vortex detection, and the maintenance of conservative separations, in time and in distance, between large and small aircraft.

Outline of a special test procedure to derive the relation between intelligibility scores and articulation index (AI) for time-varying aircraft noise. This relation is then compared with a relation between intelligibility scores and AI obtained for steady-state simulated aircraft noise. A secondary objective of the study was to compare various physical measures of aircraft noise with respect to their effectiveness in predicting speech intelligibility. It is shown that for a given AI, time-varying noise provides less masking than steady-state noise.

Review of experiments and theory relating to fan noise sources with emphasis on axial flow machines. The tones generated by supersonic and subsonic rotors at multiples of both blade-passing and disk rotation frequencies are discussed, with major attention to interaction or scattering processes, whereby a subsonic rotor gives rise to a supersonically rotating disturbance pattern. This may occur as a result of unsteady blade forces, or of nonlinear interactions within the flow itself. Three aspects of broadband noise generation by fan blades are described: radiation from turbulent boundary layers; scattering of incident turbulence; and the influence of secondary flows.

Investigation of the concept of satellite airports for large metropolitan areas. A methodology has been developed to analyze...
the different tangible and intangible factors involved in an airport location decision. A computer algorithm computes the optimum system of satellite airports and satellite collection-ports in a metropolitan. The satellite collection-port model, in addition to computing locations of collection ports in the region, can be used to compare various transportation modes for transfer of passengers to and from the main airport. The methodology has been tested using data from the San Francisco Bay Area. Depending upon the values chosen for the various parameters, based on 1980 traffic forecasts, up to seven satellite airports and four satellite collection ports, connected to the International Airport by rapid transit link extensions, were found to constitute an optimum system. F.R.L.

A71-40812

The ATLAS programming language was developed to provide for exchange of test requirements between airline avionic equipment suppliers and airline engineering and maintenance staffs. The language is easily readable by both men and machines. It expresses the stimulus and measurement requirements of a unit under test (UUT) in terms that are oriented to the parameters, pins, and physical constants as seen from the UUT. It can be employed either directly as a documentation language for manual or automatic test requirements, or with minor adaptations, as a compiler input language. Program organization, statement formats, vocabulary, and syntax diagrams are explained together with the implementation procedures. T.M.

A71-40829

Discussion of the principal features of meteorologic phenomena such as wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation, and radio activity which affect the flight of an SST, particularly during the transonic acceleration phase. It is pointed out that the operation of the Concorde does not presently seem to involve any risks for the atmosphere, with the exception of the effects of sonic boom, which are controllable, and of some pollution caused by exhaust gases. M.M.

A71-40858

Conclusion of an article describing the properties of jet engines equipped with an afterburner as a means for temporarily increasing the thrust. Problems encountered with the control of exhaust noises are outlined, together with some operational advantages of afterburner engines during takeoff and landing. Changes in thrust caused by the replacement of convergent nozzles by convergent-divergent nozzles are illustrated graphically. T.M.

A71-40866

Experiments assessing of the relative merits of each of two methods for calculating the perceived sound level from either (1) weighted sound pressure level scales, or (2) the more complex loudness/noisiness computation scales, with respect to each method's ability to predict human perception of aircraft flyover noise. In the performed experiment, 32 subjects judged the noisiness of one hundred and twenty recorded flyover sounds. The most significant features of the results are reviewed. M.V.E.

A71-40868

Summary of the characteristic results obtained in a noise measurement program conducted on a series of propeller configurations operated at static conditions. The configurations consisted of 2, 3, 4, and 6 blade arrangements and were operated at low tip speeds and various blade angle settings. The radiated noise data were analyzed for all cases by on-line 1/3-octave band resolution and by subsequent 1% bandwidth analysis. M.V.E.

A71-40871

The formation, composition and properties of the carbon deposits affecting the performance characteristics of jet engines are discussed. General information on such deposits and details on their harmful effects are given, covering their distribution in jet engine components, the factors enhancing their formation (such as the component surface temperature, fuel properties and combustion chamber design), methods of estimating the deposit-forming properties of fuels and methods of deposit reduction and removal. Their harmful effects in gas turbine engines are summarized as (1) a reduced reliability and service life of hot-surface components due to obstructed heat removal and mechanical damage, (2) impaired power and cost performances due to increased hydraulic losses and lower combustion characteristics, and (3) a lower operational efficiency due to mechanical malfunctions. The monograph is intended for engineers, teachers and students concerned with the subject. V.Z.

A71-40875

Aerial photographic equipment covered by the Soviet abstract magazine 'Geodezia' from 1963 through 1968 is reviewed. Brief descriptions are given for topographic aerial cameras, aerial photography orientation equipment, onboard navigation instruments, and the AN/USG-28 mapping survey system. V.Z.

A71-40891

The definitions of various aeronautical terms related to the approach and landing of an aircraft are presented, giving attention to the approach area, the approach surface, the obstruction clearance surface (O.C.S.), and the obstruction clearance limit (O.C.L.). Within the approach area it may be necessary to restrict the creation of new obstructions and to eliminate or to indicate in some way certain objects in order to ensure the safety of the aircraft during the approach. Relations regarding the dimensions of the O.C.S. and the O.C.L. are analyzed, taking into consideration changes in the course of the aircraft due to new obstructions. A number of graphs are provided as a basis for determining the course of the aircraft during...
the approach procedure. Some changes in the current specifications are proposed.

G.R.

A71-40902

Description of calculations in which a slender body of revolution defined by a set of Lagrange coordinates moves into another set of Lagrange points that have associated with them an equation of state appropriate for air. The Lagrange grid used in the calculation is shown. All the plots were obtained automatically by an IBM 7030 computer as the problem progressed. Because of the cylindrical symmetry, only half of the problem need be calculated. The remaining half is obtained by reflection about the axis of symmetry. Thirty-five grid points were used in the radial direction. In the axial direction, grid points were added in front of and removed from behind the body as time progressed to minimize the computation time without affecting the results in the area of interest. A three-dimensional calculation with the same detail as the two-dimensional calculation presented would require 35 times the number of zones and four quadrants instead of one. By replacing the IBM 7030 with the STAR computer, a 150-fold increase in computation speed is achieved.

M.M.

A71-40906

A71-40907 *

The analysis reported by George (1969) is extended to an investigation which covers both front and rear shock strengths. The aircraft weight, effective length, and flight conditions are assumed given and lower bounds for shock strengths are found. The results obtained are presented in a number of graphs. An example is considered involving an SST aircraft 300 ft long, weighing 600,000 lb and flying at $M = 3.0$ in the U.S. Standard Atmosphere.

G.R.

A71-40908 *

Determination of the mean structure of the viscous flowfield downstream of the triple shock wave intersection on the basis of Pitot and static pressure probe measurements. The measurements were made in air flowing through an axisymmetric supersonic diffuser. The over-all features of the centerline Mach reflection are indicated in a graph by static pressures and Mach numbers along the centerline and along the edge of the slipstream.

G.R.
data for the two base geometries indicated a noticeable similarity between the two reattachment processes. (Author)

A71-41246

Development of the proposition that aspect ratio (AR) as such does not have a direct effect on either drag or performance, although it plays a major part in determining the induced drag coefficient. In practice, it is drag and not drag coefficient that must be overcome by thrust. It is considered that it is span loading, expressed as weight per unit length of span, and not AR, that determines how efficiently a wing performs its lifting function. Delta wing performance and individual drag components are discussed. F.R.L.

A71-41247

Description of a system (Accu-Park) to permit flight captains to park safely and accurately at the gate without relying on a guideman to relay signals to them. Basically, the system establishes a point in space with a visual track leading to that point. This point may be used as a stopping point, or parking position for the aircraft, or as a point of reference for a turn or other ground maneuver. The equipment consists of two boxes each of which has two vertical sections of narrow beam, high intensity neon. The rear neon section is red and projects 12 in. above the box; the front neon section is green and projects 8 in. These two neon sections form a 'gun-site' visible from virtually any distance, even on the brightest day. F.R.L.

A71-41300

Consideration of the possibility of using an aircraft heat viewer to study the radiation properties of various underlying surfaces. A brief description is given of the functional diagram of the device. The advisability of combining a qualitative survey-type thermal aerial photo with simultaneous radiometric measurements in such aircraft studies is indicated. A.B.K.

A71-41380

Study of the characteristics of the velocity field in the working section of a miniature wind tunnel developed for testing anemometers. The magnitude and location of the velocity vector at various points in the field were determined by a high-accuracy null method involving the use of a spherical probe. The working field was investigated with the aid of a pneumatic tube and a calibrated opening in a nozzle. On the basis of these studies, the non-uniformities of the velocity field in various cross sections of the field are determined, as well as the flow stability. A.B.K.

A71-41399

Discussion of the possibility of applying jet flaps to an autogyro rotor by exploiting the pressure jump between upstream and downstream of the nozzle occurring in the case of a rotor’s rotating blade as a consequence of air centrifugation in the blade’s internal duct. A numerical application for a twin-bladed rotor was made in the AVIAN Gyroplane. From a dimensional viewpoint, the advantage deriving to a rotor with a jet flap is the possibility of using diameters approximately 10% smaller than those of conventional rotors, the lift remaining unchanged. M.M.

A71-41491

Recent work on aircraft warning signals, navigation and anti-collision displays, and the autokinetic phenomenon carried out by the Canadian Forces is reviewed. Covered are two laboratory experiments on warning signals, three operational studies on anti-collision and navigation lights, and one laboratory experiment on autokinetic latency and displacement. The results are summarized as follows: pilots wearing spectaculars in flight are not less sensitive to peripheral visual stimulation than others. The tactile warning display studied is not effective in easing the workload of the visual system. Strobe lights of white rotating beacons should not be used on aircraft. Any rotating beacons operating in clouds can cause disorientation. Conventional navigation and anticollision lighting systems fail to indicate aircraft flight path and altitude. Aircrew should be briefed on, but not trained in, autokinetic motion. V.Z.

A71-41493

The potential of strobe lighting in aviation is discussed as an effective approach to the reduction of the ever increasing midair collision hazards. The Collision Avoidance System (CAS) developed by the Airline Transport Association and the more recent Pilot Warning Indicator (PWI) are assessed, noting the latter as the one which is more promising for the application of strobe lighting to assist pilots in sighting approaching aircraft. Arguments are given in favor of a speedy introduction of strobe lighting into aviation. V.Z.

A71-41494

The properties and performance of various aircraft flash light system designs used on aircraft since their introduction in 1957 are discussed. The evolution of the first prototype white anticolliion lights used on DC-6 into improved designs is reviewed. Some details are given on flash light systems used on Bonanza, DC-8 and 10, and Lockheed L-1011 aircraft in design tests. Tandem oscillating lights, fixed lamp rotating reflectors and lenses, the xenon flashtube, the quartz-iodine lamp, and flash frequencies are covered. V.Z.

A71-41499
Flashing lights on aircraft. L. D. Heynemann (Ministere des Armées, Service Technique Aéronautique, Paris, France). In: The perception and application of flashing lights;
A71-41500

Theoretical methods recently developed within United Aircraft are discussed in light of the new understanding they give to the aerodynamics of the helicopter rotor. Results of wake geometry prediction methods, supported by experimental data, emphasize the importance of wake effects on rotor performance and behavior. These effects are shown to be especially important in hover and low speed forward flight as well as for high speed flight at low disk angles. The influence of viscosity has been studied with particular emphasis on the development of the blade boundary layer. Using two independent boundary layer calculation methods, centrifugal pumping has been shown to play only a minor role with Coriolis forces and streamline curvature effects predominating. Away from separation and in the absence of large crossflows or excessive streamline curvature the boundary layer flow appears to be essentially two dimensional when taken in the direction of the external stream.

A71-41509

The aims of this paper are to establish the conditions under which a satellite system for marine and aviation use is economically viable, the features it must incorporate to make it operationally attractive, and the basis for the technical solution. The emphasis is on the aviation aspect, since this application is generally regarded as the nearer in time. Nothing is said however which is not also true of the marine environment, although there are inherent differences of certain economic and technical parameters.

A71-41517

A test equipment system designed to solve the maintenance problem for the DC-10 and future aircraft is described. The system provides computer control over the station and the testing function. A modular concept and method of construction allows a basic station configuration to be used for a variety of purposes with a maximum of commonality between various stations. The block diagram of the system is given and discussed.

A71-41519

A project aimed at ensuring smooth flow of civil air traffic, to coordinate it with military aircraft movements, and to improve ATC by introduction of new equipment and techniques is discussed. Particular attention is given to Mediator, the code name given to the plan for the modernization of the UK air traffic control service over the next decade. Under this plan, civil and military controllers work as a team, under the direct supervision of a 'crewwchief.' Among the principal improvements is the use of a secondary surveillance radar system and the introduction of bright radar displays.

A71-41569

Discussion of the effects of hyperventilation, defined as an inappropriate ventilation above that necessary to meet the requirements of the organism. The syndrome expresses itself by numerous symptoms, dominated by paresis and eventually by contractions of the extremities. Among aircrew, the cause is frequently psycho-emotional. An essential element of treatment is to explain the mechanism by which hyperventilation can be controlled.

A71-41571

Discussion of the use of chemical compounds to supply oxygen to air-transported patients, thus replacing heavy and cumbersome oxygen bottles. Highly oxygenated salts such as permanganates and especially chlorates are suggested. A chlorate of soda 'candle' enclosed in a generating assembly is described, and is considered to be a source of chemical oxygen suitable for many applications.

A71-41572

Consideration of the various factors involved in air transport of sick or injured persons, with an attempt to determine what pathological or psychological conditions forbid such transport. In general, a patient can be carried provided there is no inconvenience to the crew or other passengers. Among medical contraindications are serious heart conditions, certain respiratory and digestive ailments, glaucoma, otitis, and severe mental disturbance. As a rule, air transport is considered far superior to other means of carriage, and medical incidents in flight have been rare.

A71-41576

The world gliding championships of Marfa, Texas: Survey of the medicophysiological supervision of the French team (Les championnats du monde de vol-à-voile de Marfa/Texas...
Factors responsible for the lag of an aircraft's response to the pilot's or autopilot's command during an altitude-control maneuver are identified, and numerical calculations of lag magnitudes are performed for specific situations. In addition to exact calculations, a simple approximate method of solution is proposed and verified. The results can be used to describe control maneuvers during high-speed low-altitude flight over terrain obstacles.

T.M.

An extensive research program on fatigue damage mechanisms in welded aircraft structures included simulation of real loading processes with the aid of a parametrically excited loading system that provides random stress variations for nonstationary random loading with a complex pulse shape. The block diagram of the loading system is analyzed, and it is shown that under certain assumptions the calculated control probability of the random-pulse generator can be corrected to provide a required loading program.

T.M.

Description of a method for calculating the buckling stress for thin-walled open sections with a design-constrained direction of buckling. A simple formula is derived for taking into account the influence of the elastic foundation. A numerical example illustrates the difference between the buckling stresses for a section which is free to buckle in any direction and for a section with a design-constrained plane of buckling.

T.M.

The state of California has very recently proposed rules and regulations aimed at providing noise standards governing the operation of aircraft and aircraft engines for airports operating under a valid permit issued by the Department of Aeronautics. The proposed rules and regulations are critically examined with respect to their enforceability and feasibility. It is concluded that the proposed noise regulations appear to be unduly complex and will place a heavy financial burden upon airport operators when implementation is required by law. However, enforcement appears feasible. In the long run such regulations would accomplish a much needed reduction of noise levels in the vicinity of airports.

G.R.

Since 1960 BEA and BOAC have sponsored young men between 18 and 24 years of age for ab-initio pilot training. Applicants may be excluded on medical grounds at three stages of the selection procedure. An analysis of the causes of medical rejection at each stage was made. The results have been compared with those obtained by the RAF Aircrew Selection Center and the Royal Naval Officer Candidate Selection Board, the latter representing a group of applicants of similar age not connected with flying. In the Corporations and RAF, ophthalmic, ear, nose and throat and general medical conditions were the major causes of failure, in that order, accounting for some 88% of those rejected. In the Royal Navy, ophthalmic
conditions were by far the most important reason for rejection, followed by general medical causes. Ear, nose and throat diseases accounted for only 2%. A follow-up of candidates selected for training by BEA and BOAC shows that out of 625 candidates who could have completed training, 11 have had to give up flying permanently on medical grounds. On these figures it is concluded that there are no reasons to alter the selection procedure at the present time. (Author)

A71-41824
Study of simulated airline pilot incapacitation.

The risk factor in airline flight operations generated by partial loss of cerebral function of one crew member is discussed with regard to etiology, incidence and detection. Airline flight crews have received little instruction concerning subtle cerebral incapacitation, and no observations existed regarding the reactions of the crew members who remained unimpaired. An original study involving 36 line qualified B-727 flight crews was performed in an aircraft simulator. The pilot-in-command became nonfunctioning, but not unconscious, during approach for landing. Reaction times of the unimpaired crew members and their subsequent conduct are discussed. Educational recommendations are presented. (Author)

A71-41829
Performance and fatigue in experimental double-crew transport missions.

Six experimental transport missions using a double crew were flown in a C-141 on routes generating various combinations of long and short legs. Crews followed a 4/4 of 16/16 work/rest schedule within operational constraints. On-board crew-rest facilities were provided so that the plane could fly through the airlift system without crew changes or crew delays. The missions required approximately 55-60 hours to complete. The flying time averaged around 43 hours. Crew performance was evaluated by ratings made by an on-board flight examiner. There were no significant differences in flight examiner ratings. Subjective fatigue was measured by a rating scale. There were no significant differences related to work/rest cycles. There were significant differences related to mission profile and crew position. Sleep EEGs were recorded on the two navigators and were supplemented by self-reports from all crewmembers. There was a marked reduction in total sleep as well as stage 1-REM and deep sleep. Findings are discussed in relation to the demands of flying transport missions. (Author)

A71-41834
Investigation of fatal aircraft accidents - 'Physiological incidents.'

Incapacitating or distracting physiological phenomena occur with considerable frequency during aerial flight. Only rarely, however, have such 'physiological incidents' been firmly established as cause factors in fatal aircraft accidents. By tradition medical investigation of accidents has largely been restricted to cataloguing mechanical trauma and searching for preexisting organic disease. By definition 'physiological incidents' are transient functional disturbances and not expected, by the inexperienced investigator, to be amenable to demonstration after the fact. However, it is often possible to reconstruct, with high probability, physiological factors which initiated a sequence of events terminating in a fatal accident. Two cases are presented as illustrations. Attention is drawn to the fact that 'physiological incidents' and psychological factors undoubtedly underlie many presently obscure aircraft crashes. (Author)

A71-41840

General discussion of the air freight industry from the economic point of view. Forecasts suggest that air freight may show almost a tenfold increase in volume between 1968 and 1985. For this to happen, it is considered that air freight will have to break its relationship to air passenger travel. About half of the world's air freight already moves in all-cargo jets. The superior flexibility and high speed of air freight can more than make up for the higher cost in many situations. F.R.L.

A71-41842
Study of the flow pattern in front of a blade cascade in a two-dimensional supersonic flow.

Quantitative analysis of the flow pattern in front of a blade cascade in a supersonic gas flow, performed in accordance with the theory of flow in front of a blade cascade developed by Grodzovskii et al. (1967). On the basis of this analysis an estimate is made of the velocity in front of an infinite cascade for the case where the shock wave configuration and the velocity at a single point in front of the cascade are known. An estimate is also made of the loss in an infinite system of shock waves. A method of experimentally studying the flow pattern in blade cascades with the aid of two-dimensional wind tunnels in the case where only a small number of blades are present in the cascade is proposed and shown to be valid. A.B.K.

A71-41843
Conditions of existence of a normal shock in elements of an axial-flow supersonic compressor.

Determination of the conditions of existence of a normal shock in the blade spacings of the rotor and guide vanes of an axial-flow supersonic compressor stage with a finite number of blades. The equations which make it possible to calculate the flows satisfying these conditions are derived. In the case of the flow in the guide vanes the basic equations are integrated in finite form. It is shown that the realization of a normal shock in this case requires the creation of a large nonuniformity of the total pressure along the radius. In the case of the flow in the rotor the equations are integrated numerically. It is established that the required nonuniformity of the total pressure along the radius is smaller in this case than in the case of the guide vanes. A.B.K.

A71-41872
Practical calculation of maximum rate of climb.

Two simple analytical expressions of jet engine thrust are proposed for flight vehicle climb optimization. Procedures for determining the velocity of minimum time of climb are given for stratospheric and tropospheric flights. Correction factors are calculated for stratospheric and tropospheric flights. It is shown that the correction factors are higher for small engines than for large engines and increase with velocity much faster for the former than for the latter. V.Z.

A71-41984
A critical review of development of experimental methods in high speed aerodynamics.
The development of high speed aerodynamic test facilities during the past 25 years is reviewed. Deficiencies in aerodynamic testing are pointed out, possibilities of future improvements are suggested, and technical trends and future prospects are discussed.

M.V.E.

Historical review of work accomplished in the field of guidance technology, mainly with reference to inertial systems. The theoretical background is based on Newton's law of inertia. Much of the progress stems from work previously carried out on fire control developments which were based on the use of gyro units. Various types of inertial guidance systems are described.

F.R.L.

Discussion of the various phenomena and effects involved in metal embrittlement by hydrogen, and review of some of the countermeasures used. It is shown that any method which prevents the hydrogen molecule from dissociating to its constituent atoms on the clean metal surface will hinder the hydrogen metal interaction and forestall cracking.

M.V.E.

The type of organization suitable for programs involving the cooperation of a number of countries in aerospace projects is discussed. A typical example for such an international operation provides the development of the Concorde. The initial projects for an SST were presented during the time from 1960 to 1961. The maiden flight of the prototype took place in 1969 with a delay of about 2 years on the 1962 estimations. The basic organization for the Concorde project is discussed together with aspects of the work share given to the individual partners.

G.B.

The first stage of a Rolls Royce Dart centrifugal compressor provided a flow with suitable mach number and compressibility for testing a quasi-three dimensional flow model. As successful operation of the flow model depended on supplying the program with the correct inlet conditions an accurate experimental survey was required to determine the values of pressure temperature and velocity just upstream of the rotating guide vanes. It was the aim of this project to establish whether the flow was axysymmetric and to obtain the required parameters by traversing with suitable probes. Because of the number of inaccessible positions around the circumference the proof of axysymmetry was dependent on being able to relate the results from a small number of traversing planes with the rest of the intake.

(Author)

The lack of a uniform standard of recovery under state wrongful death statutes has spawned numerous problems unique to the aviation and shipping industries. Although both industries deal almost exclusively in interstate and foreign commerce, Congress has refused to enact federal wrongful death legislation that would control situations interfering with a state's interest in the application of its law. The resulting uncertainty provokes confusion. In cases invoking the admiralty jurisdiction, for example, state wrongful death law, used to grant relief otherwise not available, has often provided more restrictive remedies than would be the case under the maritime law, thus retracting effective application of federal standards. Drawing a parallel of air and sea commerce, an analysis based on the broad policies of maritime recovery for wrongful death is proposed, and it is suggested that the same arguments are available to the federal courts for the creation of a federal common law of aviation.

M.M.

The seven federal district and court of appeals judges composing the Judicial Panel on Multidistrict Litigation have the power to transfer cases involving the same questions of fact to a single district for consolidated pretrial hearings. The usefulness of this procedure in aircraft crashes is obvious, but limited. After developing the point that the existing procedures are not patterned for aviation litigation, it is argued that the interests of the litigants, especially the claimants, are not adequately protected, even harmed. Eight problems that together suggest the creation of separate procedures for aviation cases are separated.

M.M.

Prompted by the ever-growing trend toward acquisition of diversified business economic interests by single-corporate entities, Congress recently amended the Federal Aviation Act making it unlawful for any person to acquire a controlling interest in an air carrier without approval of the Civil Aeronautics Board. Issue is taken with the amendment for creating more problems than it solved. Noting that the legislation conferred unnecessarily broad powers on the CAB, guidelines are suggested for persons acquiring a substantial stock interest or otherwise assuming an influential relationship with an airline. A sensible approach to the new statute is suggested.

M.M.

The considerations underlying the design of an airport required to cope with passenger and baggage accommodation problems of the type created by the advent of Jumbo Jets like the Boeing 747 are outlined. Factors affecting the choice between a continuous type and a batching intra-airport type transit system are examined. An integrated system being installed at the Seattle-Tacoma airport is described and analyzed.

V.P.

Short-haul air transportation is discussed as an outstanding example of the need for cooperation among many disciplines to solve what once would have been a largely technological problem. All that
technology has to offer cannot be put to use until critical social questions have been answered and Government policies have been established. At the same time, the economics and goals of the communities, the industry concerned, and the aviation industry itself must be subjected to serious consideration. Only then can the necessary technology be focused to produce the hardware and procedures that fit the needs of the entire short-haul system. V.P.

The developments and progress in on-condition monitoring (OCM), which consists in instrumenting a hydraulic system so that changes in critical operating parameters are noted as indicators of component deterioration, are reviewed by examining the basic features of some OCM systems previously and currently used to check aircraft hydraulic systems. The systems examined are: BITE (built in test equipment), TARAN (test and repair as necessary), and the advanced AIDS (airborne integrated data system) which permits the monitoring of hydraulic equipment during flight. Some hydraulic system innovations in the Boeing 747, the Lockheed L-1011, and the DC-10 are discussed. V.P.

Topics discussed include a quantitative evaluation of the performance of an inertially aided area navigation system, a description of a carrier aircraft inertial navigation system, the use of the OMEGA system in airborne applications, an analytical model for performance analysis of a regional air traffic control system, the interdependence of navigation and surveillance in ATC, new UTC time signals, a one-way step-scan microwave landing guidance system, a high-scanning-rate Doppler-scanning landing guidance system, the design of a microwave scanning-beam aircraft guidance system, design considerations for oceanic satellite systems, and a satellite air traffic control center for the North Atlantic.

A.B.K.

Air traffic control today depends on radio, radar, and human interpretation thereof. In bad weather, with enlarged blocks, delays of one to two hours are common, and four-to-eight-hour delays are not uncommon. Were there a means to continuously identify longitudinal position of each aircraft to the order of a few hundred feet on the ground and 1/2 nautical mile in the air (and even closer on landing and takeoff), and velocity to the order of 1/2 foot per second, most delays would disappear since aircraft would operate under better than VFR conditions and with improved flight-control inputs. The economic benefits to the airlines in delay time saved would provide a basis for funding the equipment to work the problem in these terms. Tomorrow's commercial inertial navigation can be expected to perform with accuracy measured in hundreds of feet. Using such a system, one can envision each aircraft knowing its coordinates, velocity, etc., and so informing the air-traffic-control center via data links with the whole operation at computer speeds.

(Author)

An analysis of inertial navigation system performance data was carried out to assess the probable impact of inertial navigation on the aircraft collision risk in the North Atlantic region. The data base used for this study consisted of terminal accuracy data collected by Air France between July 1968 and April 1970 using the Litton LTN 51 system. These data were used to calculate the collision risk between two aircraft flying at the same nominal flight level on adjacent tracks. The generally conservative assumptions used in adapting the data base to the collision risk formulae are explained and justified, and the mathematical techniques used in deriving the collision risk results are derived and discussed. The inertial system's error sources are treated in a statistical sense to infer the en route error behavior from the terminal error data. Collision risk estimates are derived for easterly and westerly transatlantic flights. The tails of the probability distribution associated with the terminal errors were modeled using both Gaussian and first Laplacian assumptions. The results of this relatively conservative analysis shows that there is strong evidence to support the concept that the widespread use of inertial navigators will lead to reduce separation standards in the North Atlantic region while maintaining present safety standards.

(Author)

The contribution of an inertial navigation system (INS) combined with present and projected VOR/DME to the accuracy and efficiency of area navigation is evaluated by comparing system performance with and without INS aiding. Sensitivity to INS quality is described by showing area navigation performance using high and medium accuracy production INS. The increased accuracy of the INS aided area navigation system is evaluated with respect to its impact on decreasing the protective airspace requirements, greater waypoint location flexibility, and increased accuracy of vertical navigation between waypoints. To complete the description of an inertially aided AREA-NAV system, the basic computational techniques and trade-offs for optimally mixing sensor information are presented.

(Author)

The CAINS (Carrier Aircraft Inertial Navigation System) was developed as a second generation fleet aircraft inertial navigation system. A system design approach not only assured that inertial navigation accuracy consistent with the state-of-the-art would be achieved, but that system reliability and maintainability would be enhanced. A primary goal in the development of CAINS was a rapid reaction capability, which utilizes both thermal modeling and statistically filtered alignment modes. By virtue of the rapid reaction requirement, a digital data link system was developed for input of reference navigation data aboard ship. This data link capability has been utilized for vectoring information as well. The mode flexibility of CAINS as a central aircraft navigation system suggests other uses of the data link for tactical navigation modes. The CAINS system represents the first step in a break of the traditional position of the INS (Inertial Navigation Set) as an exclusively self-contained navigation system.

(Author)

Utilization of the OMEGA radio navigation system in airborne applications is considered. A brief description of the system is given with particular emphasis on the various OMEGA configurations. Three of these are discussed with regard to accuracy and suitability for airways operations. They are unaided OMEGA, integrated OMEGA/Inertial and Differential OMEGA. Actual OMEGA phase data are used in the accuracy analyses, along with empirically-derived spatial and temporal correlation models for OMEGA errors. A potential for OMEGA utilization is indicated; recommendations for additional studies in this area are given. (Author)

This paper presents an analytical model which may be applied in the performance analysis associated with the system design of an ATC system for the NAT region. The model is formulated and exercised to demonstrate the effect of several parameters on lateral separation standards for parallel flight lanes. The introduction of a satellite navigation and communication system together with a self-contained inertial navigation system allow a substantial reduction in lateral separation. (Author)

This paper addresses the Army's approach to air traffic management. The objective is to provide the Army with the most cost-effective system which will permit high densities of aircraft to operate, flying at low altitudes to avoid enemy radar, under day/night and near-all weather conditions. The unique aspects of Army helicopter tactical operations are discussed as well as a model of the operational environment. An examination is made of the input factors as well as the systems engineering approach being followed to ensure that the various functions of the Army's air traffic management system are addressed on an integrated basis. (Author)

The authors discuss the concept of 'independent navigation and surveillance.' Several operational examples are given, and these cases are used to illustrate the interdependence of navigation and surveillance. The authors conclude by posing a question as to the merits of the independence requirement as set forth by the 'Project Beacon' Task Force and the Alexander Committee. (Author)

It is inevitable that an integrated communication, navigation, identification (ICNI) system will be eventually implemented as a part of our airways system. The rapid growth of air traffic forecast for the balance of the century and the great strides being achieved in technology make it appropriate to commence development of such a system at this time. The design of such a system must be constrained by a number of technical and economic factors. Among these are an economically feasible implementation plan, a selection of spectrum, a high degree of operational flexibility and a broad capability of functional performance. (Author)

The operational experience and recent evaluation data pertaining to the performance of TALAR, a step scanned microwave landing system is reviewed. The data reviewed covers a period of approximately 10 years. The basic functional operation of a step scan system is described - i.e., TALAR. A family of landing systems is then derived via modular interchange with the base line unit. Operational configurations such as short take off and landing, asynchronous split site, multiantenna and multichannel are described. (Author)

Description of the Doppler Scanning Landing Guidance System (LGS), a microwave system for providing air-derived azimuth and elevation angle guidance by simultaneously frequency coding space over wide coverage angles. Angle guidance is derived in the air by the measurement of the Doppler shift of the radiated frequency relative to a nonmoving reference carrier transmission. Frequency coding is provided by effectively moving a small, wide-angle radiating antenna along a track perpendicular to the runway centerline to provide a Doppler-shifted, angle-dependent frequency. The system has inherently very rapid scanning. F.R.L.

Comparison of the various factors involved in choosing coordinates for the microwave landing guidance system. The technical uncertainties concerning the data rate and antenna beamwidth requirements indicate a desire for the format to accommodate electronically scanned antennas and the associated conical beam shapes. The performance limitations and the complexity of computing elevation paths indicate a desire to preserve the planar beams formed by mechanically scanned antennas. An analysis of the impact of conical coordinates on various airport equipment configurations and aircraft avionics installations is presented. It is concluded that a signal format with provision for either planar or conical beams can minimize the risk of the technical uncertainties in the format. F.R.L.
A71-42091

Technical matters that must be optimized in the design of a scanning-beam guidance system are typified by: beamwidth; beam geometry; sampling rates; beam velocity; 'dwell times'; modulation techniques to encode angle data on the beam; and the choice of microwave frequency. The design of an aircraft landing guidance receiver and pilot displays suited to the sequential reception of short 'bursts' of precision angle data from several scanning-beam ground sources of elevation and azimuthal guidance will be outlined. Several operational and user advantages derived from the application of this new technology will be noted.

(Author)

A71-42092

Several organizations, civil and military, have produced operational requirements for guidance systems suited to the foreseeable long term needs of aviation. The envelope of these requirements is examined and related to the technical problems and possible solutions. By far the most important common feature is seen to be the change of emphasis from 'guidance' to 'position measurement' and this will demand corresponding innovation in both aircraft and Air Traffic Control instrumentation. A number of fundamental problems of microwave systems are examined. There are sources of difficulty that will arise in practical testing and which may preclude the full range of requirements from being satisfied. Programs of evaluation to provide fundamental measurements of performance and to examine all the newly proposed operational aspects should be carried out in advance of a definitive system design.

(Author)

A71-42096

Discussion of program planning for aeronautical satellite systems which will lead to improved communications, air traffic control, and other services in airspace over oceanic areas. Information is provided on previous aeronautical satellite effort; the DOT/FAA Management Structure for the satellite program; a view of improvements needed in providing oceanic air traffic services; and a preliminary program and plan for implementing the improvements.

F.R.L.

A71-42125

Review of innovations introduced at some airports to improve their operational efficiency. A Muirhead Sendox system of internal document delivery introduced at London Heathrow Airport, a pneumatic ground power source for towing Boeing 747 aircraft introduced by Aer Lingus, high-temperature test trolleys for subsonic flight, underground jet-start compressors used at Sydney Airport, lithium floor coating used at the East Midlands Airport, and unit air conditioning plant units ordered by the British Ministry of Defence are covered.

V.Z.

A71-42236

European A300B airbus. Aircraft Engineering, vol. 43, Sept. 1971, p. 18-20, 22, 23 (7 ff.).

The design features and performance characteristics of the Airbus are discussed. The electrical system, flying control, air conditioning, fuel systems, and C56-50A engines of the craft are covered. Details are given on the constant speed drive, the flying control circuits, the rudder, tailplane, airbrake, lift dump and flaps and leading-edge slats control systems. Further topics include the servocontrols, radio compass, compressor, combustor, high and low pressure turbines, and the bearings and seals of the engines. An exploded drawing of the craft with indexed components is included.

V.Z.

A71-4237

It is possible to identify five zones of the future within which quite different processes exist for progressing into novel aeronautical techniques and systems. The first three zones include very short term improvements, applicable research, and long term research. When considering Zone 4 one may postulate technical progress but one must take due note of nonaeronautical happenings. The reconsideration of the turbopropeller using Hyfil blades for quiet STOL duties is cited as an example of the Future Historic Zone 5.

G.R.

A71-4238

The rotor performance is computed for the two modes of VTOL flight, hover, and cruise. The different conditions in the two modes of operation demand variable blade geometry in terms of blade twist, as well as aerofoil camber. The high thrust in the hover mode must be obtained with a minimum of blade area to avoid excessive drag in the cruise mode. To achieve this a fairly high tip speed must be combined with high lift coefficients. In the cruise mode on the other hand, tip speed, and lift coefficients must be reduced considerably. This leads to a high advance ratio.

G.R.

Aspects of handling research during the years from 1935 to 1945 are related together with problems which had to be solved during the war years, giving attention to combat operations, accident prevention, and improvements in the basic understanding of the handling characteristics of military aircraft. Current work discussed includes the development of handling criteria, work in the Avionics Department, and investigations concerned with the pilot in order to improve his personal equipment.

G.R.

Parametric vibration is a generic term for the oscillatory type of motion which can occur in a structure having time dependent variation of its parameters such as its inertia or stiffness. Aspects of parametric instability are analyzed and autoparametric instability is considered. Various aspects of aircraft dynamics are studied, the aspects chosen being the few known or thought to be significant in the realm of parametric oscillations.

G.R.

Brief discussion of the basic requirements for commercial STOL aircraft and of the current trend of manufacturers toward the use of high bypass ratio turbofans and very advanced lift systems. A computational method is developed for the quick evaluation of takeoff and landing performance, allowing for an easy comparison of different configurations. The method takes into account safety requirements such as speed maneuvering margin, critical engine failure at takeoff, landing field length factor, passenger comfort, and pilot limitations due to the human factor. The method is illustrated by means of a numerical example.

M.M.

After underscoring the limitations connected with the use of the conventional lifting line theory, a formulation is proposed for Prandtl's integral equation using a suitable reducing function for the local angle of downwash with respect to the corresponding value at infinity. It is thus possible to evaluate accurately the aerodynamic loads also for very low aspect ratio wings within the scope of a linear theory.

M.M.

A71-42289 Kalman-Bucy Filter for air navigation by means of VOR/DME and air data system (Un filtro di Kalman-Bucy per navigazione aerea mediante VOR/DME e air data system), Alvaro Lucifredi (Genova, Universita, Genoa, Italy). L'Aerotecnica - Missili e Spazio, vol. 50, Apr.-June 1971, p. 139-143. 9 refs. In Italian.

Examination of the VOR/DME air navigation equipment, and description of the mechanization of a Kalman-Bucy filter in order to improve its accuracy through velocity measurements available from an airborne AIR DATA SYSTEM (ADS). The Markov model shows an example of solution of a problem with nonlinearities in the measurements, and represents the ADS errors as colored noises, whereas the VOR and DME errors are represented as the sum of a constant random term plus a white noise. Numerical data pertinent to such errors are given, together with the filter formulas, both for the case of continuous and for that of intermittent measurements.

M.M.

Discussion of mathematical models for a group of aircraft tracking logics without smoothing of tracks. These logics are described by systems of transient equations which make it possible to calculate the mean numbers of true and false tracks. As a measure of tracking reliability, a definition is given of the tracking probability and the latter is used for comparing the merits of the various tracking procedures considered. The models make it also possible to calculate the storage capacity requirements the used computer should meet.

M.V.E.

In March 1970, six Alcyon balloon systems were launched from Pretoria, South Africa. An Alcyon system includes a zero pressure balloon and a superpressure spherical balloon with a GHOST gondola. The objectives of the investigation were to test the stabilization efficiency of the Alcyon system during the transition between night and day. The results obtained demonstrate the suitability of the system for scientific studies. However, some technical improvements are required to enhance system reliability.

G.R.

The fundamentals of aircraft propulsion are presented in a form suitable for the practicing engineer and operator as well as for the student. In addition, emphasis is laid on the design aspects of the work and the conflicting requirements which must be reconciled in order to produce worthwhile engines and components. Topics discussed include propulsion cycles, gas turbine compressors, the expansion system of turbine engines, combustion systems for turbine engines, the installation of aircraft engines, engine dynamics and control, the ramjet engine, rocket propulsion, the piston aircraft engine, mechanical and material considerations in the design of turbine engines, and basic flight vehicle performance.

A.B.K.

The distribution of travel among private automobile, common-carrier transit systems, and taxi within a major city is examined, taking into consideration as an example the conditions in Boston. The hidden costs of the widespread use of the automobile in intercity traffic are community disruption, destructive pollution, traffic congestion, and land loss. Common-carrier systems such as bus, rail and rapid transit have not succeeded in alleviating the problems associated with automobile travel. Economic and technical factors are analyzed to explore the potential of air systems competing with the auto over distances greater than 5 mi, taking into account the true costs of the automobile. The new breed of STOL aircraft can be quieter than ambient city noises. It is pointed out that replacing automobiles by common-carrier air transportation would also be highly desirable to reduce the pollution of the atmosphere in urban and suburban areas.

G.R.
A71-42894

Corrosive delamination. Frank J. Riel (Rohr Corp., Chula Vista, Calif.). (U.S. Air Force Materials Laboratory and Society of Aerospace Material and Process Engineers, Air Force Materials Symposium, Miami Beach, Fla., May 19-22, 1970.) SAMPE Journal, vol. 7, Aug.-Sept. 1971, p. 16-20. Discussion of the findings of an extensive test program for developing a basic understanding of corrosive delamination: (1) a significant factor in corrosive delamination of adhesive bonded structures is galvanic corrosion occurring between dissimilar metals or alloys in the selected configuration; (2) corrosive delamination will occur whenever the adhesive is bonded to a thin film of an alloy which is anodic, with respect to the remainder of the metallic structure, providing that an electrolyte is simultaneously in contact with both the anodic and the cathodic alloy; (3) corrosive delamination can be reduced substantially by avoiding the occurrence of the circumstance outlined in (2); and (4) where nonclad alloys are used in areas exposed to corrosive environments, the exterior surface must be protected by appropriate means in order to limit surface corrosion. M.M.

A71-42681 # **Plane air jets expelled into a blind alley (Istеченie ploskoi vozduushnoi strui v tupik).** E. P. Dyban, A. I. Mazur, and E. Ia. Epik (Akademia Nauk Ukrainskoi SSR, Institut Tekhneyskoi Tekhnik, Kiev, Ukrainian SSR). Inzhenerno-Fizicheskii Zhurnal, vol. 20, June 1971, p. 1020-1026. 6 refs. In Russian. Flow visualization experiments with jets expelled from two-dimensional nozzles into plane-parallel and parabolic type closed ducts revealed the existence of two flow modes in a plane-parallel duct: a symmetrical mode and a mode characterized by unilateral starting of the jet. In plane-parallel ducts with length-to-width ratios from 1.5 to 7.6, the jet in the symmetrical mode has no initial length and its range does not exceed 1.5 nozzle widths. The configuration and length of the duct, the initial turbulence of the flow, the Reynolds number, and the counterpressure at the outlet of the duct have no appreciable effect on the flow. V.P.

A71-42766 # **Low speed aerodynamics and the Science Council’s National Goals.** R. J. Templin (National Aeronautical Establishment, Ottawa, Canada). Canada, National Research Council, Division of Mechanical Engineering and National Aeronautical Establishment, Quarterly Bulletin, no. 2, 1971, p. 1-15, 17-20. This article describes some of the details and the results of a paper exercise carried out sporadically since November 1970. A simple version of the so-called 'relevance tree' forecasting method was used to relate the Science Council's list of National Goals to relevant research gaps in low speed aerodynamics. The exercise was performed mainly out of curiosity, partly as to the nature of the method itself, and partly as to the results it can produce. The numerical results of the 'relevance' marking system used appear to be sensitive to individual judgment, and may merely indicate which bandwagon the scorer prefers. On the other hand, the relevance tree provides a simple graphic display of the possible connections between specific research areas, and broad national goals. Enough details are given to permit the reader to use his own judgment. (Author)

A71-42787 * # **Injection into a supersonic stream from the windward side of sweepback injectors at angle of attack.** M. Hersch and L. A. Poveneuli (NASA, Lewis Research Center, Hypersonic Propulsion Section, Cleveland, Ohio). Journal of Spacecraft and Rockets, vol. 8, Oct. 1971, p. 1101-1103. 5 refs. The technique of windward injection into the supersonic stream was used to minimize vortex disruption and permit greater capture of the vortex by the jet. With windward injection using configurations A and B mounted at 18 and 22 deg angle of attack, respectively, helium was carried over the sweep edge and captured by the leeward vortex. No helium was detected over the leeward side of configuration A at 12 deg angle of attack using windward injection. This indicates that a minimum angle of attack is needed for helium to be carried from the windward to leeward regions. It is noted that windward injection might be a useful injector-cooling technique. M.M.

A71-42832 # **Some considerations relative to the prediction of unsteady air loads on lifting configurations.** Holt Ashley (Stanford University, Stanford, Calif.). Journal of Aircraft, vol. 8, Oct. 1971, p. 747-756. 37 refs. Contract No. AF 44(620)-68-C-0036. Discussion of a personal viewpoint on several fundamental issues whose understanding is expected to contribute to improved unsteady lifting surface and interference theory. The position adopted is that the subject under discussion should properly include control surfaces and similar devices which create slope discontinuities or gaps in the geometry of otherwise nearly planar lifting systems. The first question addressed is that of loading singularities inherent in linearized potential theory. They are classified as: (1) local, in the sense that both the nature and magnitude of the singularity are determined by boundary conditions in the 'inner field;' or (2) global, in the sense that the entire boundary value problem must be solved to determine their details. Results are reviewed relative to discontinuities in surface slope, planform shape, dihedral angle, and suggestions are made for combining them into numerical solution schemes. M.M.

A71-42833 * # **Flight investigation of the influence of turbulence on lateral-directional flying qualities.** James A. Franklin (Princeton University, Princeton, N.J.; NASA, Ames Research Center, Flight and Systems Research Branch, Moffett Field, Calif.). Journal of Aircraft, vol. 8, Oct. 1971, p. 796-802. 5 refs. Contract No. NSR-31-001-104. Flight evaluations using a variable stability airplane were made to determine the independent and interacting effects of simulated turbulence disturbances and lateral-directional dynamics on flying qualities associated with a precision heading control task. Turbulence was described in terms of rms roll and yaw disturbance magnitude, correlation between roll and yaw disturbances, and the bandwidth of the turbulence power spectrum. Variations in dynamics included roll damping, directional stability, and Dutch roll damping. Trends in pilot rating obtained in the test program with variations in turbulence disturbances and airplane dynamics are explained in terms of measures of precision of task performance, pilot control workload, and pilot compensatory behavior derived from time histories of the flight evaluations. (Author)

A71-42834 # **Comparison of constant lift-coefficient climbs with flight-manual climbs for a jet transport.** Federick V. Thomasson and Gerald Cook (Virginia, University, Charlottesville, Va.). Journal of Aircraft, vol. 8, Oct. 1971, p. 810-812. Research sponsored by Teledyne. Aircraft climb trajectories utilizing a constant lift coefficient are investigated for the KC-135. Analytical and numerical approaches are presented. The objective is to climb to a prespecified altitude with a given amount of fuel and maximize the range. The optimum constant C sub L is determined and the corresponding trajectory compared with that resulting from flight-manual climbs. Although the constant C sub L strategy is easy to implement, its resulting efficiency is not as great as that resulting from the flight-manual climb. (Author)

A71-42836 # **Dynamic performance characteristics of mixed and unmixed turbofan engines.** Franz N. Fett. Journal of Aircraft, vol. 8, Oct. 1971, p. 820-825. 7 refs. Mixed and unmixed type turbofans, having identical rotating components and thermodynamic cycles, are compared in terms of transient characteristics and steady-state off-design operation. Effects of step changes in fuel flow rate, nozzle area, inlet pressure, ambient
temperature and air bleed are illustrated on both the fan and compressor operating maps. Results show significant differences in the dynamic behavior of the mixed and unmixed turbofan engines without the influence of an engine control. Off-design steady-state operating points are also different. Both effects are more pronounced in the low-pressure fan than in the high-pressure compressor. Such characteristics are important in the design of a compatible engine control unit. (Author)

Investigation of the thermal stability of prototype fuels at temperatures up to 1000 F in connection with the possible use of hydrocarbons as fuels for hypersonic aircraft. The presence of oxygen has a deleterious effect on the observed thermal stability, as measured by a high-temperature coker, even at concentrations in the sub-ppm region. After developing a GLC method for determining oxygen in hydrocarbons down to 10 ppb, the effect of O2 was explored with decalin at concentrations down to the level of detection. No effect was noted at O2 concentrations up to about 3 ppm, but thereafter it was found that thermal stability decreased rapidly with increasing equilibrium oxygen concentration in the range up to about 10 ppm, more slowly up to about 15 ppm, and showed little subsequent response up to the saturation limit (about 300 ppm). Methylcyclohexane and a naphthenic jet fuel were not investigated as completely, but demonstrated somewhat similar but individual behaviors. It appears that the depositing tendency of the fuel is generally related to the basic kinetics of the oxidation of hydrocarbons but the reasons for the idiosyncracies of individual hydrocarbons are obscure. (Author)

An exact inversion of the lifting line equation for wings of elliptic planform with arbitrary spanwise upwash is provided. The formula is applied to the example of a sinusoidally twisted wing as originally introduced by Prandtl and Betz (1927). The result is compared with Prandtl's result for the infinite lifting line. The circulation around the midspan section of a sinusoidally twisted lifting line is shown in a graph. G.R.

The method discussed for the determination of skin-friction drag is derived on the basis of Reynolds numbers referred to the wing root-chord. An expression for the local skin friction is obtained from the Prandtl-Schlichting turbulent skin-friction formula for a smooth plate. The local skin-friction coefficient is presented as a function of the root-chord Reynolds number and planform geometry. A series approximation derived is found to be nearly exact, differing from strip integrated values by only 0.4% for the worst case. G.R.

An equation for the chordwise vorticity is derived. The equation gives the chordwise additional (or noncambered wing) loading in terms of circulation at N equal length panels or segments along the wing chord. The formula can be used to prove mathematically that finite element loading methods converge on the exact answer as the number of elements is increased. Factors for chordwise loading are considered. The factors can be applied directly to finite aspect ratio lifting surface theories that are based on elemental horseshoe vortices, constant vorticity panels, or for multiple load and downwash lines. G.R.

A71-42841 # Effect of unsteady pressure gradient reduction on dynamic stall delay. Franklin O. Carta (United Aircraft Research Laboratories, East Hartford, Conn.). Journal of Aircraft, vol. 8, Oct. 1971, p. 839-841. 9 refs. A possible theoretical mechanism for the delay in dynamic stall is discussed. The theory is confined to a comparison of the unsteady and quasi-steady chordwise potential flow pressure distributions. It is shown that the unsteady pressure gradient over the forward portion of the airfoil is less unfavorable than the steady pressure gradient. Hence it can be inferred that a measurable stall margin exists for an unsteady motion relative to the steady state stalling angle, and that this stall margin increases with frequency. G.R.
STAR ENTRIES

N71-34001* North American Rockwell Corp., Los Angeles, Calif.
ESTIMATED PERFORMANCE AND STABILITY AND CONTROL DATA FOR CORRELATION WITH XB-70-1 FLIGHT TEST DATA
The results of a study program established by NASA to provide supporting information for correlation studies based on small-scale rigid-model wind tunnel test data and recent findings from flight tests of the XB-70-1 airplane are reported. The ultimate objective of the overall program is to validate with flight results combined analytical and wind tunnel test techniques for determining performance, stability, and control characteristics of flexible aircraft.

N71-34002 Royal Netherlands Aircraft Factories Fokker, Amsterdam.
T-TAIL AEROELASTIC ANALYSIS FOR FOKKER F-28

N71-34003 Royal Inst. of Tech., Stockholm (Sweden). Dept. of Aeronautical Engineering.
ON THE INDUCED DRAG OF THIN PLANE DELTA WINGS: AN EXPERIMENTAL STUDY OF THE SPANWISE DISTRIBUTION OF THE LEADING EDGE FORCES AT LOW SPEEDS
Sven-Olof Ridder May 1971 56 p refs (KTH-Aero-TN-57) Avail: NTIS The induced drag characteristics of some 60 degree delta wings of identical planform but with different leading edge radius spanwise distributions were investigated in a low speed wind tunnel. Of the wings tested the one with a constant leading edge radius along the edge gives the widest C sub L-range for low induced drag. The spanwise distribution of the local leading edge forces has been measured by means of a separate leading edge panel element mounted on a sensitive strain gauge balance.

N71-34004* Cornell Aeronautical Lab., Inc., Buffalo, N.Y.
A SECOND ORDER SLENDER WING THEORY FOR WINGS WITH LEADING EDGE SEPARATION IN SUPERSONIC FLOW
A second order slender wing theory was developed for calculating the supersonic flow over low aspect ratio wings with subsonic leading edges and leading edge separation. The theory is second order in terms of the ratio of span to chord. The theory was developed by using a combined application of the method of strained coordinates and matched asymptotic expansions. The Brown and Michael flow model was used to model the leading edge separation. The theory is compared with experiment for delta wings and provides a substantial improvement over previous slender wing results but still overestimates normal force. The theory qualitatively predicts the correct Mach number trend and approaches the correct level for a sonic leading edge. The trend is somewhat overpredicted, however, producing best agreement at the higher Mach numbers.

N71-34005 National Aerospace Lab., Tokyo (Japan).
DEVELOPMENT OF THE FA-200XS EXPERIMENTAL AIRPLANE
1970 30 p refs In JAPANESE; ENGLISH summary (NAL-TR-229) Avail: NTIS The FA-200XS is an experimental airplane being developed to investigate the operational problems of STOL type airplane. The plane is generally similar to the original FA-200 (Aerobatic Category Certification) light airplane, but is equipped with full span slats and flaperons, as well as a boundary layer control system using distributed area suction located on the leading edges of flaps and ailerons. The experiments for the developments consists of 2- and 3-dimensional wind tunnel tests, and several series of flight tests to investigate the aerodynamic characteristics of the FA-200X and FA-200XS.

N71-34006 Brussels Univ. (Belgium).
AERODYNAMIC PROPERTIES OF A FLEXIBLE BLADE GRID (PROPRIETES AERODYNAMIQUES D'UNE GRILLES D'AUBES FLEXIBLES)
Charles Hirsch 1969 160 p refs In FRENCH (NT-21) Avail: NTIS Theoretical and experimental determination of flexible wing profile deformation are presented. Calculations were made using variable flexible blade grids and changing Reynolds numbers. Graphs and charts are included. Results indicate theoretical and experimental calculations are in good agreement with each other. Transl. by E.H.W.

N71-34008 National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va.
HYPERSONIC AERODYNAMIC CHARACTERISTICS OF A VARIABLE-DIHEDRAL DELTA-WING SPACECRAFT CONFIGURATION
James C. Ellison and Bernard Spencer, Jr. Washington Sep. 1971 21 p refs (NASA-TM-X-2391; L-7752) Avail: NTIS CSCL 22B An investigation of a variable-dihedral delta-wing spacecraft concept has been conducted in a hypersonic flow apparatus at a Mach number of 10.03. Angle of attack was varied from -5 deg to about 38 deg at angles of sideslip of 0 deg and -5 deg. Static longitudinal and lateral-directional characteristics were investigated for wing dihedral angles of 0 deg, 30 deg, 60 deg, 90 deg, and 110 deg for both 0 deg and 13 deg of wing toe-in.

N71-34009 National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va.
ANALYTIC STUDIES OF SOUND PRESSURES INSIDE
THE DUCT OF DUCTED PROPELLERS
(NASA-TN-D-6345; L-7378) Avail: NTIS CSCL 01A

The sound-pressure field of a rotating ducted propeller in forward flight is analyzed by replacing the duct by an infinite coaxial circular cylinder and assuming that the bladeloading distribution associated with the thrust and the torque can be represented by a distribution of acoustic pressure doublets acting at the propeller disk. Trend studies are made to ascertain the effect on the pressure distribution inside the duct of variations in the duct by an infinite circular cylinder and assuming that the bladeloading distribution associated with the thrust and the torque can be represented by a distribution of acoustic pressure doublets acting at the propeller disk. Trend studies are made to ascertain the effect on the pressure distribution inside the duct of variations in propeller loading, tip clearance, free-stream Mach number, tip Mach number, and hub-tip ratio. The effect on the pressure distribution of concentrating the loading at various radial positions on the propeller blade is also investigated. Author

N71-34012# United Aircraft Corp., East Hartford, Conn.
A TRAILING-EDGE CORRECTION FOR SUBSONIC SLENDER-WING THEORY
Avail: Univ. Microfilms Order No. 70-18463

Sleender wings, the aspect ratio is greater than the lifting surface theory for small aspect ratio, is a singular perturbation problem and exhibits nonuniformities wherever its first-order chordwise loading is nonanalytic. The most useful example is the straight trailing edge, normal to the undisturbed free stream, located at the station of maximum span. The trailing edge nonuniformity is analyzed using the method of matched asymptotic expansions. Universal corrector potential problems are formulated but not solved. The dependence of the lift upon aspect ratio and planform geometry is given explicitly and the universal constants required to be used by using Lawrence's theory of slender wings as a model of the full problem. Dissert. Abstr.

N71-34013# United Aircraft Corp., East Hartford, Conn.
R. T. Walge Jul. 1971 126 p refs
(Contract NAS1-10459)
(NASA-CR-111929) Avail: NTIS CSCL 01C

A preprototype study is presented of the CH-54B tail cone in which component fabrication, testing, and analysis were done, and the strength adequacy of boron/epoxy reinforced members was verified. The vertical stiffness of the CH-54B tail cone was maintained with an approximate 70 percent saving in stiffening weight by the application of boron/epoxy reinforced stringers. The boron/epoxy stringer reinforcement was configured such that the stiffness of the current production aluminum tail cone was achieved with minor changes. A boron/epoxy strip 0.75 x 0.250 inches was bonded to the vertical legs of the standard aluminum stringers. A joint analysis detailed the end taper of the boron/epoxy reinforcement necessary to reduce the peak shear stresses. Conventional and boron reinforced panels were fabricated and comparative shear and compression panel tests conducted. Test results indicated that the shear capability of the panels was unchanged by the presence of the boron, while the compression test results showed the reinforced panels capable of withstanding higher loads. Of significance is the fact that an adequate bond and tapered boron/epoxy joint was achieved. Author

N71-34014# United Aircraft Corp., East Hartford, Conn.
CH-54B BORON/EPOXY REINFORCED TAIL CONE DETAILED STRUCTURAL SUBSTANTIATION Final Report
D. W. Lowry and S. Ciardullo Jul. 1971 381 p refs
(Contract NAS1-10459)
(NASA-CR-111930) Avail: NTIS CSCL 01C

A detailed structural analysis was made of the tail cone and the cross-section of the CH-54B helicopter reinforced with boron/epoxy stringers. A conservative analytical approach was used in that the analysis for the critical flight conditions included the assumptions of no stringer reinforcement, and partial stringer reinforcement. Positive margins of safety were shown in all conditions. The boron/epoxy reinforced stringers necessitated minor tail cone modifications and the structural stiffness of the current CH-54B tail cone was maintained. Author

N71-34015# National Aeronautics and Space Administration, Washington, D.C.
REPORT OF THE COMMITTEE FOR AIR TRANSPORT ON PLAN 8 [RAPPORT DU COMITE DES TRANSPORTS AERIENS SUR LE PLAN 8]
Jean Cahen-Salvador Washington Sep. 1971 91 p
Transl. into ENGLISH from French report (NASA-TR-F-13947) Avail: NTIS CSCL 01B

The conclusions are summarized of studies which the French Committee for Air Transport conducted. The studies were aimed at defining proposals and recommended directions in the air transport for the coming five years. The material is presented in three sections that deal with (1) options, goals, and general data; (2) resources and their programming; and (3) the financial envelopes. D.L.G.

N71-34016# Kaman Avidine, Burlington, Mass.
AUTOMATIC GUIDANCE FOR VTOL AIRCRAFT Final Report
(Contract NAS12-2097)
(NASA-CR-121768; TR-86) Avail: NTIS CSCL 01B

A simple perturbation feedback scheme is developed for automatic guidance of a VTOL aircraft with a velocity-command flight control system. By neglecting the delay required to attain a commanded velocity and by using ground range to touchdown rather than time as the independent variable, a reduced model having two state variables (altitude and crossrange) and three control variables, components of commanded velocity, was obtained. The model is linearized by taking first-order perturbations about a nominal trajectory. By minimizing a performance index which was quadratic in both the state and the control variables, an effective linear feedback guidance law was developed. The performance of the guidance concept was evaluated by means of a six-degree-of-freedom digital simulation of the YHC-1A tandem rotor helicopter with the NASA/ERC velocity-command flight control system. Simulation results indicated that the scheme can successfully handle a variety of off-nominal conditions, including initial condition errors, winds, and uncertainties in aircraft characteristics. Author

N71-34017# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.
AIRFLOW CONTROL SYSTEM FOR SUPERSONIC INLETS Patent Application
Glenn A. Mitchell, inventor (to NASA) and Bobby W. Sanders inventor (to NASA) Filed 11 Jun. 1971 10 p

In addition to fixed and variable bleed devices provided for controlling the position of a terminal shock wave in a supersonic inlet, a plurality of free piston valves are disposed around the periphery of a cowling of a supersonic engine inlet. The free piston valves are disposed in fixed passages. Each valve begins at a bleed port in the cowling that is located in the throat region of the inlet where the diameter of the centerbody is near maximum and terminates at an opening in the cowling adjacent to this bleed port. Each valve is controlled by a reference pressure. NASA

N71-34018# Cranfield Inst. of Technology (England)
The PREDICTION OF EMPTY WEIGHT RATIO AND CRUISE PERFORMANCE OF VERY LARGE SUBSONIC
JET TRANSPORT AIRCRAFT
D. Howe Jan. 1971 20 p refs
(Cranfield-Aero-3) Avail: NTIS
The empirical trend of the empty weight ratio of long range subsonic jet transports is analyzed in order to enable the cruise performance of very large aircraft to be predicted. Each of the main items which go to make up the empty weight is dealt with individually in order that the effect of size on each can be established. Consideration is given to the effect of increased wing loading on take off runway requirements. It is concluded that it would be feasible to produce an aircraft capable of carrying up to 1000 passengers over the great majority of all transatlantic routes. Such an aircraft would have an empty weight ratio of about 0.5 and would weigh approximately twice as much as the largest subsonic jet at present in existence.

Author

N71-34019# Loughborough Univ. of Technology (Eng). Dept. of Transport Technology.
A SOCIAL SURVEY INTO ANNOYANCE CAUSED BY THE INTERACTION OF AIRCRAFT NOISE AND TRAFFIC NOISE
C. G. Bottom and D. M. Waters [1971] 15 p refs
(TT-7102) Avail: NTIS
The procedure which was adopted to investigate the community response to combined noise from aircraft and road traffic is described. A social survey was conducted at nine sites at three levels of aircraft and traffic noise with thirty-five interviews per site. The mean results without regard to traffic noise level show good agreement with previous data, but there are significant variations with respect to traffic noise level. The use of the noise pollution level concept, which describes the noise climate as a function of mean energy level and the standard deviation of sound level, leads to strong correlation and median dissatisfaction with the total noise environment.

Author

N71-34020 International Civil Aviation Organization, Montreal (Quebec).
AIRWORTHINESS COMMITTEE, NINTH MEETING
1971 112 p Meeting held at Montreal, 18 Nov. - 4 Dec. 1970
(DOC-8925; AIR-C-9) Copyright. Avail: Issuing Activity
Agenda items for the International Civil Aviation Organization's Ninth Meeting of the Airworthiness Committee included: review of progress on the development of acceptable means of compliance and provisional acceptable means of compliance; STOL and VTOL aircraft; airplane performance problems; provisions to enable aircraft to withstand bird strikes; crash survival; airworthiness aspects of Resolution A17-17 of the 17th Session of the Assembly; exchange of views items; preparation of a revised work program, work to be done, and assignment of tasks to members; and consideration of a need for a tenth meeting including, as necessary, proposals for a tentative agenda. Committee actions and recommendations on the agenda items are included.

J.G.M.

GLOBAL DISPERSION OF SUPERSONIC TRANSPORT EXHAUST IN THE STRATOSPHERE
C. Berman and A. Goldberg Jul. 1971 21 p refs
(D180-12981-1) Avail: NTIS
Calculations were made for the possible peak regional concentration of supersonic civil transport fleet exhaust emissions into the stratosphere. The heaviest traffic occurs in the Northern Hemisphere zone. Peak concentrations are reduced from those levels calculated for the assumption of an atmosphere with zero motion by moderating effects of zonal winds and interzonal turbulent diffusion. For a diffusion coefficient of 2 x 10 to the 9th power sq cm/sec, the regional peak value for the global dispersion of supersonic civil transport exhaust is a factor of 1.68 greater than a world average based on a uniform distribution.

Author

N71-34022# National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va.
THE INFLUENCE OF VERTICAL WIND GRADIENTS ON THE LONGITUDINAL MOTION OF AIRPLANES
Joseph G. Waring Sep. 1971 19 p refs
(NASA-TN-D-6430: L-7871) Avail: NTIS CSCL 01B
An assessment of the influence of wind shear on the longitudinal motion of airplanes is presented. It was assumed that the wind is completely horizontal and its speed varies linearly with altitude. It is shown quantitatively that both glide and climb performance are influenced by wind shear and that trimmed flight at constant airspeed, attitude, and with fixed controls is along a parabolic path relative to the ground. The problem of the landing approach in a wind shear is examined in some detail. Small-disturbance theory indicates no wind-shear effect on the short-period motion and the time for the phugoid to damp to half amplitude but the phugoid frequency and damping ratio vary considerably with wind shear. A nondimensional quantity which depends on the wind shear and airspeed is shown to be a fundamental parameter influencing the longitudinal dynamic behavior of the airplane.

Author

ENVIRONMENTAL POLLUTION: NOISE POLLUTION, SONIC BOOM. VOLUME 1 Bibliography Report, Apr. 1970
Apr. 1971 86 p refs
(AD-722910; DDC-TAS-71:9-1) Avail: NTIS CSCL 20/1
The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included.

Author (GRA)

N71-34024# Aeronautical Systems Div., Wright-Patterson AFB, Ohio.
Dale E. Creech and Donald H. Gray Jan. 1971 56 p refs
The report describes standardized methods for analyzing ground flotation characteristics for aircraft of various designs based on the type of airfield construction. The methods described were applied in an analysis of the KC-135 aircraft to illustrate the techniques. These methods can be applied to any aircraft to determine its flotation characteristics in relation to a given type runway.

Author (GRA)

N71-34025# Litchfield Systems, Northport, N.Y.
AERONAUTICS AND AIR TRAFFIC CONTROL
(Contract NASw-1849)
(NASA-CR-1833) Avail: NTIS CSCL 01B
A study and evaluation is made of the broad aspects of air traffic control and its relationship to the future of aeronautics. Present ATC techniques of controlling air traffic primarily by ground personnel are compared with new concepts wherein the pilot becomes a more active participant in the traffic control process. Adequate progress in ATC cannot be expected until far better testing, validation, and design tools become available. Some candidates for new national facilities for testing various aspects of ATC and related aeronautics are identified. ATC technology in its broadest sense is essentially emerging as a new professional area. New programs and courses in ATC technologies are needed in curricula of colleges and universities to produce sufficient numbers of qualified graduates. Improved communications between the diverse disciplines impacting ATC progress is essential. Often a given government agency
N71-34028 represents but a few of the many disciplines involved. It is urged that an improvement in the application of the total government resources in ATC technology be made. The fractional elements within government, industry, and the universities required for the solution of ATC technology can be brought together and focused on a progressive national solution.

Alitalia Airlines Flight 618. made a hard landing at approximately 1321 EDT. September 15, 1970. The accident occurred following a localizer approach to Runway 4R. The glide slope portion of the Instrument Landing System (ILS) was inoperative. There were no fatalities. The 10 crewmembers and 146 passengers evacuated the aircraft after it came to a stop in a sandy area to the west of Runway 4R. Sixty-nine occupants, 11 of whom were hospitalized, sustained injuries. The aircraft departed the left side of the runway and as it continued in a divergent path from the runway it ground-looped to the left before coming to a stop. The fuselage split open in an area just aft of the wing. Three of the engines separated from the aircraft during the landing rollout. The National Transportation Safety Board determined that the probable cause of this accident was the use of reverse thrust in flight. contrary to published procedures. with a resultant uncorrectable high sink rate. The captain's decision to use reverse thrust and not to execute a missed approach was a reaction under stress occasioned. at least in part. by air traffic control (ATC) instructions which led to positioning the aircraft too high and too close to the runway. ATC vectored the aircraft to the final approach path under IFR conditions and in the absence of an operating ILS glide slope.

The results of an investigation of the fatal crash of a DC-8 aircraft at Kennedy Airport. New York on September 8, 1970 are presented. The crash occurred shortly after takeoff due to loss of elevator control and eleven crew members were killed. Cause was determined to be a piece of asphalt from the eroded runway jamming the elevators. Analysis of records obtained from the flight data recorder and the voice recorder contributed to final decision regarding accident cause.

A Douglas C-54D. HC-AON. of Ecuadorian registration. crashed at Miami International Airport. Miami. Florida. at approximately 0734 e.s.t. April 14. 1970. The aircraft was being operated as an international cargo flight by Compania Ecuatoriana de Aviacion. The accident occurred during the initial climb. following an instrument takeoff on Runway 27 right at Miami International Airport. The flight was en route from Miami to Panama City. Panama. the first leg of a flight.
terminate at Quito, Ecuador. The two pilots, the only occupants of the aircraft, were killed, and the aircraft was demolished by impact and postimpact ground fire. The board determines that the probable cause of this accident was improper monitoring of the flight instruments during a takeoff in instrument meteorological conditions. Additional pertinent factors were the use of improper procedures after takeoff and the reduced visibility due to fog.

Author (GRA)

Alternative measures, and combinations of measures. To provide relief from aircraft noise in affected communities around John F. Kennedy International Airport are presented. Recommendations for reducing aircraft-noise problems are discussed.

Author (GRA)

With respect to airplane noise in the high noise areas next to John F. Kennedy International Airport, the report considers certain legal aspects of state and local compulsory soundproofing proposals with respect to new and existing structures. The study is made primarily in light of Federal and New York state constitutional provisions and certain state and local legislation.

Author (GRA)

A computer simulation approach is used to determine the performance of various idealized collision-warning radar systems under actual flight conditions. A data base consisting of twelve hours of radar traffic data from the Atlanta, Ga., terminal was obtained in cooperation with the FAA and NASA, and is used to determine statistical data on the performance of the various systems. Probabilities of alarms, average alarm rates, and statistics on alarm durations are estimated for the systems considered. The results of the computer simulations indicate that the ideal alarm problem in the terminal area is much more severe than had been previously recognized. With simulated systems that have been proposed as providing sufficient warning to aircraft, a number of excessive alarms would have occurred under the flight conditions represented by the data. The most promising systems investigated that appear applicable to both general and commercial aviation will provide a minimum warning time on the order of thirty seconds for a co-altitude treat under the flight constraints assumed.

Dissert. Abstr.

A study was conducted to compare the characteristics of hypersonic research facilities considering research capability, versatily, adaptability, system confidence, and costs. The results of the research requirements analysis and the design and cost synthesis of the ground facilities are presented.

D.L.G.

Based on the results of a previous study, which compared the characteristics of a broad group of flight research and ground research facilities, parametric studies were initiated to refine the facility designs and obtain sensitivity information in the neighborhood of near optimum designs. The results are presented of the research requirements analysis and the synthesis of the ground research facilities.

D.L.G.

A previous study identified five facilities, out of eleven considered, as those which could provide the necessary technological increment at minimum costs. The present study involved refining the definition of the equipment and components associated with the five facilities to improve the base from which detailed cost estimates and development assessments were made. The results are presented of the analysis of the ground research facilities which refined the description of the more favorable concepts.

D.L.G.

A series of studies was conducted to assess the research requirements for hypersonic aircraft and define several desirable hypersonic research facilities based on these requirements. The results of these studies are summarized and include: (1) definition of the major research tasks applicable to operational hypersonic systems, (2) design of two attractive flight research vehicles and five conceptual ground research facilities, and (3) a quantitative evaluation of individual facility capability to accomplish the identified research tasks.

D.L.G.

N71-34299# Vanderbilt Univ., Nashville, Tenn. Dept. of Mechanical Engineering.

A STUDY OF JET IMPINGEMENT ON CURVED SURFACES FOLLOWED BY OBLIQUE INTRODUCTION INTO A FREESTREAM FLOW

John W. Tatum, Norman M. Schnurr, John W. Williamson, and John H. Dunlap 15 Apr. 1971 117 p refs

(Grant NGR-43-002-034)

N71-34277# John H. Dunlap 15 Apr. 1971 117 p refs

E.M.C.

THE NUMERICAL CALCULATION OF PLANE STEADY TRANSONIC FLOWS PAST LIFTING AIRFOILS

(D180-12958-1) Avail: NTIS

Numerical solutions of the transonic potential flow for flow past lifting airfoils with free stream Mach number less than unity are presented. The work is based on the method of Murman and Cole. Modifications to the basic finite difference equations are discussed which yield improved resolution of weak shock and greater accuracy near the sonic line. The proper treatment of boundary conditions and the Kutta condition are discussed in detail. Extensive computations for four airfoils are presented and the results are compared with theory and experiment where applicable.

Author

N71-34276# Lockheed Missiles and Space Co., Palo Alto, Calif.

UNSTEADY VISCOUS GAS FLOW BETWEEN TWO SOLID WALLS, ONE OF WHICH IS FREE AND VIBRATES AT HIGH FREQUENCY

Avail: NTIS, National Translations Center, John Crear Library, Chicago, Ill. 60616

The general equation of the pressure distribution in a thin viscous gas layer between two solid walls of arbitrary shape was developed. To investigate the quasistationary process in the gas layer, the free solid wall was allowed to vibrate at high frequency with no low frequency vibrations. The unsteady gas layer motion was investigated by allowing motion to occur in addition to the free wall vibrations. The plane gas motion between walls was then considered with an arbitrary perturbation superposed on the high frequency vibration of the freely vibrating wall. Finally, the stability of the free solid wall was considered.

J.G.M.

N71-34274# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.

MIXING OF HYDROGEN INJECTED FROM MULTIPLE INJECTORS NORMAL TO A SUPERSONIC AIRSTREAM

R. Clayton Rogers Washington Sep. 1971 35 p refs

(NASA-TN-D-6476; L-7896) Avail: NTIS CSCL 20D

The mixing of hydrogen downstream from a row of sonic injectors normal to a Mach 4 airstream was investigated to determine the effect of injector spacing. Injectors at spacings of 12.5 and 6.25 injector diameters were operated at ratios of jet dynamic pressure to free stream dynamic pressure between 0.5 and 1.5. Nominal free stream conditions were a stagnation temperature of 300 K and stagnation pressures of 1.38 and 2.07 MN/sq m. Turbulent boundary layer thickness at the injection station was 2.70 injector diameters. Measurements of hydrogen volume fraction and pitot and static pressures were made between 7 and 200 injector diameters downstream from the injectors. Results of the investigation indicated that the hydrogen penetration trajectory was not appreciably different from single injector results, being proportional to the 0.300 power of the dynamic pressure ratio. Maximum concentration decay with downstream distance for the wider injector spacing was correlated with a correlation of ratio of jet mass flux to free stream mass flux; for the closer spacing, the rate of decay of the maximum concentration was inversely proportional to the 0.286 power of the ratio of jet mass flux to free stream mass flux.

Author
The results of an experimental evaluation of low cycle thermal fatigue in laminated porous wall turbine vanes are presented. Details of the laminated porous wall vane design are given together with a description of the cascade test facility and associated instrumentation. Three test vanes were exposed to rapid cyclic gas temperature variations over a range from 1150 F to 2800 F. After 110 cycles of operation, transverse (chordwise) cracks were observed in the leading edge region of all three test vanes. Subsequent metallurgical and structural analyses indicated the primary failure mechanism to be low cycle thermal fatigue. Agreement between predicted and observed fatigue life was very good.

Author

N71-34945*# Curtiss-Wright Corp., Wood-Ridge, N.J.

TIP-TURBINE LIFT PACKAGE DESIGN

R. Jaklitsch, A. Leta, W. Pratt, and R. Schaefer

Jul. 1971

222 p

(Contracts NAS3-14327; NAS3-12423)

A layout design of a lift fan driven by a two-stage hot turbine at the fan blade tips is reported. Layout drawings, a description of the lift package system, and a discussion of the design analyses are presented. Areas of major design analyses included segmented and continuous turbine blade support rings, a hot-gas scroll, hot-gas seals during transient thermal and maneuver load conditions, main support bearings, and system weight.

Author

N71-35128*# Clemson Univ., S.C. Mechanical Engineering Dept.

OPTIMIZATION OF STRUCTURES TO SATISFY AEROELASTIC REQUIREMENTS

Final Report

Carl S. Rudisill

31 May 1971

19 p refs

(Grant NGR-41-001-027)

(NASA-CR-111995) Avail: NTIS CSCL 20K

Equations for finding the derivatives of the flutter velocity of an aircraft with respect to structural parameters were derived. A numerical procedure was developed for determining the values of the structural parameters such that a specified flutter velocity constraint is satisfied and the structural mass is a relative minimum. A search procedure was developed which utilized two gradient search methods and a projected gradient method. The procedure was applied to the design of a cantilevered box beam. A method for the optimization of a complex structure to satisfy a divergence velocity constraint has been developed and tested on a cantilevered box beam. This method is very similar to the method of optimization for a flutter velocity.

Author

N71-35134*# Aeronautical Research Labs., Melbourne (Australia)

CONSIDERATIONS RELEVANT TO THE VIBRATION TESTING OF AERONAUTICAL STRUCTURES HAVING NONIDEAL CHARACTERISTICS

M. G. Chandravert

Dec. 1970

25 p refs

(ARL/SM-355) Avail: NTIS

The nonlinear features of the response of aeronautical structures to dynamic excitation forces are presented. In order to make the description of the structures more realistic, possible additions to the usual linear terms in the dynamical equations are considered. Possible consequences of a limited generalization of the linear framework usually assumed are reviewed with reference to the concept of mode and influence of initial conditions.

Author

N71-35196*# Cornell Aeronautical Lab., Inc., Buffalo, N.Y.

EXPERIMENTAL INVESTIGATION OF LEADING-EDGE SHOCK IMPINGEMENT AND INTERACTION HEATING ON A 1/80 SCALE MODEL OF A NASA STRAIGHT WING ORBITER CONFIGURATION AT MACH NUMBERS 8 AND 16

C. E. Rogers

Aug. 1971

128 p refs

(Contract NAS9-11084)

(NASA- CR-115159; CAL-AA-2977-Y-1) Avail: NTIS CSCL 20D

The leading-edge shock impingement and interaction heating on a 1/80 scale model of a NASA straight-wing orbiter configuration were investigated. The tests were conducted in the 96-inch Hypersonic Shock Tunnel at Mach number 8 (nominal) and Reynolds numbers of 2 million through 10 million per foot and at Mach number 16 at Reynolds numbers of 1 million and 1 million per foot. Model angle of attack was varied from 0 to 70 degrees and model sideslip angle was varied from 0 to 3 degrees. Measurements of chordwise local heat-transfer rates were made at five locations on the wing from the leading edge to 20 percent of the chord length. Sensors were placed to measure the steep gradients occurring in regions where the fuselage bow shocked intersected the wing, where interactions from the fuselage were expected and in nondisturbed regions. In addition, measurements of spanwise local heat-transfer rates were made along the 17% chord line to help define the location and magnitude of the impingement and interaction heating. Schlieren photographs were also obtained to help define the flow field. The details of the test program and a description of the model, instrumentation and shock tunnel are presented. The results are presented in tabular and graphical form along with a brief discussion.

Author

N71-35197*# National Aeronautics and Space Administration.

Langley Research Center, Langley Station, Va.

COMPARISONS OF THEORETICAL AND EXPERIMENTAL PRESSURE DISTRIBUTIONS OVER A WING-BODY MODEL AT HIGH SUPERSONIC SPEEDS

Lloyd S. Jernell

Washington Sep. 1971

83 p refs

(NASA-TN-D-6480; L-7881) Avail: NTIS CSCL 20D

An investigation was conducted to determine the effectiveness of various theoretical methods in predicting the pressure distribution over a wing-body configuration at high supersonic speeds. Theoretical pressure coefficients are compared with experimental values obtained on delta planform wing-body model at Mach numbers from 2.30 to 4.63 and angles of attack to approximately 11 deg.

Author

A COMPARISON OF METHODS USED IN LIFTING SURFACE THEORY

D. L. Woodcock (RAE, Farnborough, Engl.)

Jun. 1971

149 p refs

Supplement to the Manual on Aeroelasticity Part 6; see N65-24758

(AGARD-R-583-71) Avail: NTIS

A joint research project organized by the AGARD Structures and Materials Panel is reported. The purpose of the project is to establish the relative merits of different methods of calculating the air forces on oscillating wings, and to provide a standard which can be used in the future for comparison or test purposes. A scheme of cases to be considered was set up which covered variations of the parameters: planform geometry, mach number, reduced frequency and mode of oscillation. Contributions came from six countries using nearly thirty different methods and comprising nearly eight hundred calculations. The tabulated results are preceded by descriptions of the various methods used and by a comprehensive system of annotation.

Author

N71-35201*# Polytechnic Inst. of Brooklyn, Farmingdale, N.Y.

Dept. of Aerospace Engineering and Applied Mechanics

WISCUOUS FLOW ALONG A CORNER, PART 3: EFFECTS OF AXIAL PRESSURE GRADIENT

Bernard Grossman and Stanley G. Rubin

Feb. 1971

70 p refs

(Grant AF-AFOSR-1843-70)

(AID-726548; PIBAL-71-4; AFSOR-71-0074T) Avail: NTIS CSCL 20/4
The laminar, incompressible flow along a corner formed by the intersection of two thin airfoils is considered. The effects of small axial pressure gradients on the flow in the vicinity of the corner are determined as a perturbation to the flow along a corner formed by intersecting flat plates. The method of matched asymptotic expansions is used to determine the cross-flow induced second-order boundary-layer flow away from the corner, and these results serve as the asymptotic boundary conditions for the corner-layer analysis. The effects of both favorable and adverse pressure gradients on the cross flow are discussed. The corner-layer equations are solved numerically with a relaxation procedure. The results for the corners formed by intersecting thin wedges and intersecting Joukowski airfoils indicate that there are substantial interface effects even for very thin airfoil shapes, i.e., small axial pressure gradients.

N71-35202
West Virginia Univ., Morgantown. Dept. of Aerospace Engineering.

ANALYSIS OF A CIRCULATION CONTROLLED ELLIPTICAL AIRFOIL
Jack P. Ambrosiani and Nathan Ness Apr. 1971 186 p refs
(Contract N00014-68-A-0512; Proj. Themis)
(A D-72-6434, TR-30) Avail: NTIS CSCL 01/A

The effect of trailing edge blowing on the circulation along an airfoil section is considered theoretically. The analysis is self-contained in that specification of the ambient conditions, flight conditions, and blowing conditions gives the sectional lift and drag coefficients on the prescribed airfoil section. The method of solution is an iterative one, and involves the matching of an assumed sectional lift coefficient with the sectional lift coefficient calculated from the actual pressure distribution over the body in the presence of trailing edge blowing. In order to obtain the pressure on the wall in the wall jet region a full boundary layer analysis is required over the airfoil. The Karman-Pohlhausen integral method is used in the laminar region and the Nash and Hicks turbulent layer analysis is used in the turbulent region. Using the boundary layer properties on the upstream side of the wall jet, along with conservation of mass and momentum relations through the mixing zone, a new wall jet profile is found at the downstream end of the potential core. The wall jet region is then analyzed using integral methods including entrainment. The analysis represents an extension to the calculation method proposed by Kind, and reconfirms the feasibility of obtaining high lift coefficients with relatively low blowing rates.

Author (GRA)

N71-35203
New York Univ., N.Y.

DIFFRACTION OF SHOCK WAVE BY A THIN WING: SYMMETRIC AND ANTISYMMETRIC PROBLEMS
Max Gunzburger (Ph.D. Thesis) 1969 122 p
Avail: Univ. Microfilms Order No. 70-19282

An analytical solution is obtained for the pressure distribution throughout the flow field due to the diffraction of a plane shock wave of arbitrary strength by a thin lifting or nonlifting wing moving in the opposite direction. For symmetric wings, the thickness is represented by a source distribution, while an antisymmetric wing is represented by a vortex distribution. The shock condition is fulfilled by extending the solution behind the shock into the region ahead of the shock and then finding the proper image behind the shock. For symmetric wings, the intensity of the source distribution is directly related to the thickness of the wing. For antisymmetric wings, the intensity of the vortex distribution is related to the inclination of the wing surface by an integral equation which can be reduced for each instant in time to an equivalent integral equation for a three dimensional steady flow. For a two dimensional plate at angle of attack an explicit solution for the pressure is obtained for a special combination of shock strength and wing speed.

Dissert. Abstr.

N71-35204
National Aeronautics and Space Administration, Ames Research Center, Moffett Field, Calif.

AERODYNAMICS OF LIFT FAN V/STOL AIRCRAFT

Jerry V. Kirk, Leo P. Hall, and Brent K. Hodder Sep. 1971 8 p refs
Prepared in cooperation with Army Mobility Equipment Res. and Develop. Center.
(NASA-TM-X-82086) Avail: NTIS CSCL 01B

Lift fans have been shown to be effective for providing direct lift for V/STOL aircraft. The aerodynamic characteristics of podded lift fans located for and aft of the wing to allow higher wing loading and reduce constraints on wing design are considered. The important results are summarized, and the induced aerodynamic effects of various pod locations are shown. Because efficient use of the propulsion system may dictate that the fans also be used for high-speed cruise, the effectiveness of various methods for vectoring the fan flow from the cruise to the lift direction for low-speed transe is presented. An investigation was made for the aerodynamic characteristics of a 1.3 pressure ratio lift fan. Noise constraints were not placed on the design and construction of the fan, but subsequent modifications were incorporated to alleviate noise. Measurements of sound are given for the modified and the original fan operating in cross flow.

Author

N71-35205
Goodyear Aerospace Corp., Akron, Ohio.

DESIGN, FABRICATION, AND STATIC TESTING OF FIRST-STAGE ATTACHED INFATABLE DECELERATOR (AID) MODELS
B. A. Johnson 15 Sep. 1971 106 p refs
(Contract NAS1-10105)
(NASA-CR-111934; GER-15267) Avail: NTIS CSCL 01C

Wind tunnel models of AID canopies were attached directly to a payload in a method which simulated a first-stage AID. All models had 140-deg conical aeroshells as their forebodies, and each model had four spring-actuated forward inflates mounted on the internal hard structure to provide for initial deployment. Full inflation and final pressurization was accomplished by four aft canopy inflates on each model. An inflation test was conducted in an environmental chamber to investigate packaging, deployment, and inflation characteristics of the models prior to wind tunnel testing.

Author

N71-35206

ADVANCED GENERAL AVIATION PROPELLER STUDY
Rose Worobel and Millard G. Mayo Apr. 1971 211 p refs
(Contract NAS2-586)
(NASA-CR-11426) Avail: NTIS CSCL 01B

Methods for predicting the performance, noise, weight, and cost of propellers for advanced general aviation aircraft of the 1980 time period were developed and computerized. A propeller sensitivity study based on the computer program is presented for five representative general aviation aircraft. Conceptual design studies are included for three propellers selected from the sensitivity studies to check the weight and cost estimating procedures. Problem areas exist in the methodology defined and follow-on studies are recommended. A listing of the computer program is presented.

Author

N71-35207
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio.

PRELIMINARY STUDY OF AN AIR GENERATOR-REMOTE LIFT FAN PROPELION SYSTEM FOR VTOL TRANSPORT
(NASA-TM-X-67916; E-8543) Avail: NTIS CSCL 01B

A simplified mission analysis was performed to evaluate the effects of tip-turbine pressure ratio and lift-fan pressure ratio on payload and noise of a VTOL airplane. The propulsion system consisted of four 15,000 pound thrust lift fans, eight 7500 pound thrust lift fans, and four air generators which were also used as the cruise engines. A range of 500 statute miles with two takeoffs and landings was selected along with a cruise
Mach number of 0.75 at an initial cruise altitude of 25,000 feet. The allowable gross weight was calculated to be 88,700 pounds. Cruise L/D was varied parametrically from 8 to 12 to determine its impact on the propulsion system and payload. Cruise performance calculations showed that the four air generators used as cruise engines provided reasonable cruise performance. A tip-turbine pressure ratio of 4 and a lift fan pressure ratio of 1.15 gave a near-maximum payload of 12,800 pounds (62 passengers). From these preliminary results, it is concluded that the remote air generator lift fan propulsion system is a promising VSTOL transport propulsion system. Author

The selection of adhesive and coating formulations and the development of manufacturing sequences and conditions for lightweight low-permeability brace materials for use in high-altitude decelerators are reported. Permeability and physical property data are presented along with formulas and process conditions for Mylar metallizing and Saran coating materials. J.M.

A flight investigation was performed with the Dornier DO 31 VTOL transport to evaluate the performance, handling, and operating characteristics that are considered to be important when operating a commercial VTOL transport in the terminal area. The tests concentrated on the transition, approach, and vertical landing. The mixed jet-propulsion system provided a large usable performance envelope that enabled simulated IFR approaches to be made on 7 deg and 12 deg glideslopes. In these approaches management of thrust magnitude and direction was a primary problem, and some form of integrating the controls will be necessary. The handling qualities evaluation pointed out the need for additional research to define flight-path criteria. The aircraft had satisfactory control and stability in hover out of ground effect. The recirculation effects in a vertical landing were large below 15 meters. Author

The potential impact of advanced technology in 1985 on four classes of general aviation aircraft were studied to recommend areas where further research and development will help to realize the potential improvements. The four categories include conventional, STOL and V/STOL performance in 4 to 9 place aircraft, with helicopters included in the study. The requirements for each category are listed. The study procedure of: (1) establishing an optimized design configuration in each category, based on present technology; (2) investigating and pinpointing the most promising areas of applicable technology; (3) applying the selected advanced technology to each of the present technology designs; and (4) assessing the results and making recommendations. The areas of advanced technology include those of aerodynamics, propulsion, structural materials, avionics, flight safety, automatic control, noise, and emission abatement. These are assessed individually and in combination by means of a computerized analysis. The recommended combinations were then studied to determine their potential impact on the overall transportation system, after which, the areas of technical support are recommended. Author

An investigation and test of cores used in purchase cable for aircraft arrestment gear is made to determine if there is a core material superior to that presently used. Consultations with representatives of the wire rope industry and acknowledged authorities in the field of fiber testing, research and development are conducted. Wire rope core materials are selected and tested. Recommendations are made, with requirements for further testing, of possible superior substitutes. Author

The manufacture and testing of dynamically scaled store models for release in transonic wind tunnels is described. Considered in brief detail are some methods adopted in making both light and heavy models in fiberglass using simply constructed dies, and high speed recording techniques. Author

The investigation was conducted to determine the dynamic stability derivatives of an externally blown jet-flap transport configuration having clustered inboard pod-mounted engines and full-span triple-slotted flaps. The results showed that the model had positive damping in pitch, roll, and yaw up to the stall angle of attack. The application of power resulted in an increase in pitch damping at high angles of attack and a moderate increase in yaw damping for the higher flap deflections but had no consistent effects on roll damping. For a given level of total engine thrust, the damping derivatives were generally not affected by frequency or by having one engine inoperative. Author

Semiempirical formulae which represent the loudness of sonic booms heard outdoors as functions of their peak overpressures and rise times only, were found to agree well theoretically with the accepted, more complex loudness calculations of Zepler and Herel, and Johnson and Robinson.
AIRBORNE DISSEMINATION DEVICES Final Report
5 Mar. 1971 27 p refs
(AD-726350; MTP-8-3-080) Avail: NTIS CSCL 15/2

Procedures are prescribed for evaluating the functional suitability and compatibility of airborne dissemination devices.

Author (GRA)

N71-35219#

PRINCIPLES OF DESIGN OF VERTICAL TAKEOFF AND LANDING AIRCRAFT
(AD-726572; FTD-MT-24-247-70) Avail: NTIS CSCL 01/3

The book is dedicated to the draft designing of a comparatively new type of aircraft possessing the takeoff and landing properties of helicopters and other flight characteristics peculiar to aircraft. The characteristics of their aerodynamic configurations basic parameters, gravimetric characteristics, and designs with various power plant compositions are examined. Turboprop (TP) and turbojet engines (TJ) (ordinary and special) were used in the composition of the latter both as sustainer and hoisting, and as composite engines accomplishing in one unit the role of the first and the second.

Methods are given for calculating the specific vertical takeoff and landing aircraft (VTOL) processes of flight, for example the transfer from vertical flight to horizontal flight and conversely.

Author (GRA)

N71-35220#

DESIGN OF STRUCTURAL ELEMENTS OF AIRPLANES AND HELICOPTERS. TEXTBOOK FOR THE PLANNING OF COURSE AND GRADUATE WORK
(AD-726586; FTD-MT-24-247-70) Avail: NTIS CSCL 01/3

The book is a reference text on the design of aviation structural elements. It discusses criteria for the selection of materials for the designing of airplanes and helicopters. Techniques for increasing the strength of the materials and for their connection into units and assemblies are discussed against a background of assuring minimum weight and cost.

Author (GRA)

N71-35221#

Gunter Stein and Allen H. Henke May 1971 276 p refs
(Contract F33615-70-C-1190)

The program develops a practical design procedure for aircraft augmentation systems based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments. These use 5 x 2 x 3 mixed-design analysis of variance. A reformulated optimal model-following control problem is used as the cornerstone for the procedure. Design criteria are expressed as model differential equations satisfying available handling-quality data. The reformulation includes optimality over multiple flight conditions and constant gain and measurement realizability.
constraints. A computational algorithm is developed to solve the new optimization problem. The algorithm successfully handled 20th-order F4C lateral-axes dynamics and optimized five flight conditions simultaneously. The results of the validation experiments were fully positive with strong correlation between performance and pilot opinion data. Author (GRA)

A medico-legal examination was undertaken to determine the possible cause of a jet aircraft crash. The remnants of the aircraft and the pilot's body were examined. The results indicated the crash was caused by collision with a bird. The collision caused the hermetic seal of the cabin and the aerodynamic characteristics of the aircraft to be destroyed, resulting in loss of control by the pilot. The examination also revealed that the pilot received head injuries from slivers of glass on impact. E.H.W.

The report studies the performance characteristics of the air cushioned landing and takeoff system for aircraft during its stiff-operation mode. Stiff-operation is obtained during the early stage of the takeoff period or the later stage of landing. Its chief feature is that the pneumatic supply chamber of bleed air is in almost parallel configuration with the ground. The supply air flows vertically down through the bleed holes and is then deflected outward. This part of the report contains the theoretical treatment of the problem. The results are in the form of a cushion pressure ratio in terms of the supply (trunk) pressure. Analysis was performed, based on incompressible viscous theory. Author (GRA)

The monograph is written primarily as an aid to pilots and is divided into three main sections. Part 1 concerns aerodynamic and flight characteristics of supersonic aircraft, with information on the aerodynamics of supersonic velocities and characteristics of the aerodynamic layout and piloting of supersonic aircraft in takeoff and landing stability and controllability at different flight regimes. Part 2 deals with the future development of piloted aircraft, giving the basic flight-tactical characteristics of piloted aircraft. Part 3 involves the basic concepts concerning the motion of spacecraft in the gravitational field of planets. Author (GRA)

The report covers the use of fixed-wing aircraft employing innovations to free fall and circling-line techniques in the rescue of personnel and delivery and retrieval of equipment. The technique involves the deployment of a line from the aircraft while a controlled turn is maintained, causing the line to describe a diminishing spiral earthward. Successful launches of dummy weights up to 203 pounds suggest this technique can feasibly be employed in personnel rescue. Included in the testing were various aircraft, altitudes, speeds, lines, and line lengths. Line tensions were measured. Proposed future efforts toward man-rating the system include measurements of launch G forces and the assessment of system reliability. Author (GRA)

A STUDY OF TECHNIQUES FOR CALCULATING MOTION-DRIVE SIGNALS FOR FLIGHT SIMULATORS
Bjorn Conrad and Stanley F. Schmidt Jul. 1971 81 p refs
(Contract NAS2-5458) (NASS-CR-114345; Rept-71-28) Avail: NTIS CSCL 14B
An experimental test plan was developed using the formation-flying task for the validation and refinement of washout circuits (solutions of the motion drive problem). The test plan was executed in conjunction with NASA scientists and test pilots and the results obtained are given. Certain general concepts were also tested, such as the feasibility of motion cue scaling in preferred coordinates, and the usefulness of formation-flying as an experimental tool for motion testing. Some of the results include: (1) a demonstration of the effectiveness of angular-rate and force scaling as a motion attenuation device in realistic simulations, (2) the mechanization and validation of two washout circuits for the All-Axis Motion Generator, and (3) the determination of circuit parameters that can serve as initial trial values for a wide variety of tasks.
D. L. G.

N71-35386*# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.
GENERAL THEORY FOR WALL INTERFERENCE FOR STATIC STABILITY TESTS IN CLOSED RECTANGULAR TEST SECTIONS AND IN GROUND EFFECT
A theory is developed which predicts the interference velocities and interference gradients caused by the walls of the tunnel. Large wake deflections are allowed in both the lateral and vertical directions. The theory includes V/STOL and conventional wall-interference theories and ground effect as special cases. Symmetry and interchange relationships between the interference factors are developed and extensive numerical results are presented. Use of the interference factors to correct data depends upon the availability of detailed aerodynamic treatments in nonuniform flow of the model under test. In most tests the available aerodynamic treatments will be found either inadequate or too time consuming for rigorous routine correction of data relating to lateral-directional stability.

In the analysis of air terminal congestion two distinct interlocking systems have to be considered: (1) the air traffic control system, with its sensors, communication links, computers and displays; and (2) the mechanical system composed of the runways, the ground and air space surrounding them, and the aircraft in their various states of takeoff and waiting for takeoff, of landing, joining the landing pattern, in stacks and so on. The tools of analysis developed in the present report are concerned with the second of these systems, in which the phenomena of congestion are in fact the phenomena of waiting lines and their interactions. A set of tools for calculating the quantitative effects on the performance of the air terminal of various assumed conditions, operational options, and suggested technical improvements is described. The effects on the performance are to be expressed in terms of throughput rates, delay reductions, and diminished numbers of aircraft not accommodated.

A STUDY OF TECHNIQUES FOR CALCULATING MOTION-DRIVE SIGNALS FOR FLIGHT SIMULATORS
Bjorn Conrad and Stanley F. Schmidt Jul. 1971 81 p refs
(Contract NAS2-5458) (NASS-CR-114345; Rept-71-28) Avail: NTIS CSCL 14B
An experimental test plan was developed using the formation-flying task for the validation and refinement of washout circuits (solutions of the motion drive problem). The test plan was executed in conjunction with NASA scientists and test pilots and the results obtained are given. Certain general concepts were also tested, such as the feasibility of motion cue scaling in preferred coordinates, and the usefulness of formation-flying as an experimental tool for motion testing. Some of the results include: (1) a demonstration of the effectiveness of angular-rate and force scaling as a motion attenuation device in realistic simulations, (2) the mechanization and validation of two washout circuits for the All-Axis Motion Generator, and (3) the determination of circuit parameters that can serve as initial trial values for a wide variety of tasks.
D. L. G.
utilized in the ninety (90) foot span hangar is the same basic system used in the fifty-eight (58) foot span hangar. The concept utilizes sectional arches of aluminum I-beams and 3/4 in. thick modular sandwich panels of polystyrene foam or paper honeycomb faced with sheet aluminum. Arch segments are connected with pairs of aluminum hinges, and the adjacent panels are fastened to the beams with camlocks. Variable length spacers between the arches allow for adjustment to minor terrain variations. A full size two-arch evaluation segment was constructed and field tested.

Author (GRA)

N71-35397# Cincinnati Univ., Ohio. Design Research Collaborative.

James M. Alexander, John R. McNiktine, Karl H. Markel, and Bahram Bahramian Wright-Patterson AFB, Ohio AFSC Dec. 1970 309 p refs

(Contracts AF 33(615)-3242; F33615-67-C-1259)

(A-D-727047; ASD-TR-70-26-Vol-1) Avail: NTIS CSDL 13/13

Aircraft maintenance hangars (50 to 60 ft. span) and general purpose shelters (24 to 30 ft. span) are needed by the Air Force as part of the inventory of mobility equipment. Several concepts are presented. Studies were made for hangars utilizing double curvature modular panels which, when joined together, would form a structurally sound vault. Panels were fiberglass reinforced polyester skins on 1-3/4 in. thick paper honeycomb cores. Panel sizes were limited by the 463 L pallet system. The complexity of integral connecting hardware required to transmit the design stresses rendered this approach uneconomical. A variation utilizing aluminum skins on 3 in. thick single curvature cores resulted in excessive cubage in the packaged mode. A concept utilizing sectional arches of aluminum I-beams and 3/4 in. thick modular sandwich panels proved much more successful.

Author (GRA)

N71-35398# Army Test and Evaluation Command, Aberdeen Proving Ground, Md.

MEMBRANE, AIRFIELD SURFACING Final Report 1 Jul. 1971 19 p

(AD-726891; MTP-7-3-071) Avail: NTIS CSDL 01/5

The procedure describes test methods and techniques for evaluating membrane, airfield surfacing, and for determining their suitability for service use by the U. S. Army.

Author (GRA)

N71-35420# Polytechnic Inst. of Brooklyn, Farmingdale, N.Y. Dept. of Aerospace Engineering and Applied Mechanics.

NUMERICAL METHODS FOR TWO- AND THREE-DIMENSIONAL VISCOUS FLOW PROBLEMS: APPLICATION TO HYPERSONIC LEADING EDGE EQUATIONS Interim Progress Report S. G. Rubin and T. C. Lin Apr. 1971 114 p refs

(Grant AF-AFOSR-1843-70)

(AD-726547; PIBAL-71-8; AFOSR-71-0778TR) Avail: NTIS CSDL 20/4

Several explicit and implicit finite-difference methods, useful for treating two- and three-dimensional viscous flow problems, are compared. These techniques are applied to the single-layer equations previously developed by the authors for continuum leading-edge studies. Stability and accuracy of different schemes, effects of linearization, boundary conditions, coordinate systems and grid size, and the need for iteration are discussed. Solutions are presented for equilibrium and rotational non-equilibrium flow fields and comparisons with experimental data are provided. Different models for the pressure gradient (px) term in the streamwise momentum equation are discussed and it is shown that the effects of upstream influence appear in certain px representations that may be useful when these effects are important. The relationship to so-called sub- or super-critical flows is demonstrated. For three-dimensional geometries, a new predictor-corrector method is devised and tested for stability properties. For a right-angle corner geometry, solutions are compared with explicit results obtained with step sizes three orders of magnitude smaller. The need for iteration in obtaining accurate and consistent results is emphasized. The use of these techniques for two-dimensional unsteady Navier-Stokes solutions is discussed.

Author (GRA)

(AD-726805; FTD-HC-23-868-70) Avail: NTIS CSDL 14/2

Development is reported of a method of studying the velocity pulsations of a high-temperature hypersonic flow, based on the existence of an interference between the total stagnation pressure pulsations behind the direct shock and the longitudinal velocity pulsations. The theoretical possibility of studying velocity pulsations of a hypersonic working flow in an aerodynamic facility with the aid of miniature pressure transducers is shown. The method developed makes it possible to obtain data concerning the velocity pulsations of a hypersonic working flow with an rms error in amplitude of plus or minus 26 percent and an rms error in frequency of plus or minus 1.5 percent in the frequency range from 20-6000 Hz and with an rms error in amplitude of plus or minus 7 percent and an rms error in frequency of plus or minus 0.3 percent in the frequency range from 0 to 120 Hz.

Author (GRA)

N71-35447# Purdue Univ., Lafayette, Ind. Joint Highway Research Project.

The application of remote sensing systems to the development of master engineering soil plans is discussed. The remote sensing systems consisted of aerial photography, infrared imagery, side-looking airborne radar imagery and multispectral imagery. The multispectral analog data were used in conjunction with a digital computer to semi-automatically produce thematic maps and statistical analysis of reflectance of surfaces. Inference techniques were used to evaluate the photography and imagery.

Author (GRA)

N71-35453# National Oceanic and Atmospheric Administration, Miami, Fla. Environmental Research Labs.

(NOAA-TR-ERL-198-RFF-4) Avail: SOD $1.50

The three Research Flight Facility (RFF) aircraft, supporting the overall program of BOMEX, flew 146 missions for approximately 1138 hours. During these flights, almost three million digitally recorded meteorological observations, numerous sea-surface temperature and water vapor flux measurements, over two million cloud and radar photographs, and other special data were obtained for subsequent analysis and research application. The scientific objectives of the program, the RFF aircraft capabilities, and the instrumentation systems that
An inventory of the BOMEX field experiment data collected by the RFF from May through July 1969 is given.

N71-35585
Department of Highways, Ontario, Downsview.
TRANSPORTATION AIR POLLUTION
M. D. Harmelink and W. J. Peck
Jun. 1971
35 p.
refs

A brief state-of-the-art survey of transportation air pollution is presented. First, the primary types of transportation pollutant are described, namely, hydrocarbons, nitrogen oxides, oxidants, carbon monoxide, sulfur oxides, lead, and particulate matter. Methods of measurement are listed and emission rates for various travel modes (automobiles, diesel trucks and busses, railway, and aircraft) are discussed. The effects of these primary pollutants on health, psyche, vegetation, and materials are described. Finally, various solutions to transportation air pollution are discussed, ranging from automobile emission controls and alternatives to the spark-ignited internal combustion engine to increasing use of public transportation, development of new modes of public transportation, and consideration of air pollution in transportation planning.

N71-35494
Naval Intelligence Command, Alexandria, Va.
Translation Div.
THE PROBLEM OF INCREASING THE ACCURACY OF MEASUREMENT OF THE SURFACE TEMPERATURE OF SEAS AND OCEANS BY MEANS OF AN AIRBORNE INFRARED RADIOMETER [K VOPROSO OB UVELICHENII TOCHNOSTI IZMERENIYA TEMPERATURA POVERKHOSTI MOREI I OKEANOV S POMOSCHU INFRAKRASNOY RADIOMETRICHESKOY APPARATURY SSMOLOLET-AL].
N. Verenchikov
16 Jul. 1971
refs

The use of infrared radiometric apparatus to measure the surface water temperature of seas and oceans is seen increased use at the present time in the Soviet Union and abroad. Its installation aboard aircraft allows data to be collected from large areas in a short period of time. It is extremely important that the measurement errors be as small as possible. The errors in measurement may be divided into static and dynamic varieties. Static errors include those involving errors in the apparatus itself and those which are caused by the effect of the atmosphere on the measurement results; dynamic errors are encountered in connection with averaging the water surface temperature due to the finite dimensions of the field of vision of the apparatus and its inertia.

N71-35546
Monsanto Research Corp., Dayton, Ohio.
THERMALLY RESISTANT POLYMERS FOR FUEL TANK SEALANTS
James A. Webster and Thomas J. Morrow
Jul. 1971
79 p.
refs

The development of imide, isocyanate, and silicone linked fluorocarbon polymers for use as sealants in fuel tanks of advanced high speed aircraft is described. Synthesis and polymerization of polymer intermediates representing perfluoro alkylene and perfluoro alkylene ether segments and amine, isocyanate, or silyl groups are discussed. Polymer evaluations including thermal and oxidative stability, fuel resistance, and stress corrosion of a titanium alloy are discussed.

N71-35658
Army Test and Evaluation Command, Aberdeen Proving Ground, Md.
TOOLS, AVIATION
Final Report
1 Jul. 1971
36 p.
refs

The procedure provides techniques for evaluating and formulating useful evaluation tools for evaluation of aircraft. The technique provides techniques for evaluating and formulating useful evaluation tools for evaluation of aircraft.

N71-35774
National Aviation Facilities Experimental Center, Atlantic City, N.J.
MINIMIZE SNOW AND WEATHER EFFECTS-VORTAC TASK 2 TACAN ANTENNA
G.J. Hartranft
Sep. 1971
24 p.
refs

The various techniques used to minimize the effects of snow and ice on the RTA-2 TACAN antenna are discussed. The techniques were: (1) a wire-wrapped radome with current flowing through the wires attached to the external surface of the radome; (2) enlarge radomes; (3) coating existing radome with hydrophobic materials; and (4) providing a polyurethane shroud over the existing radome with movement of the shroud provided by the antenna vibration, wind, or air inflation. The polyurethane shroud showed the most promise of all the techniques tested.
LANDING SYSTEM (AILS)
John L O'Connor Sep. 1971 180 p
(Contract DOT-FAWA-4816)
Avail: NTIS
The design, development, and field and flight tests of an all-weather landing system developed for the FAA are described. This system, which uses scanning microwave antennas, provides precision azimuth, elevation, and range guidance information to equipped aircraft, and also provides aircraft space position information to a ground monitoring console. Basic design information is provided on the system and the various units that make up the system. A description of the delivered equipment is also presented. Various tests that were conducted with the equipment, in order to indicate conformity with the contract specifications, are also described. Although limited in scope, the tests indicated performance better than specified, with one-sigma standard deviations of 0.028 degree in elevation angle, 0.021 degree in azimuth angle, and 75 feet in range. It is concluded that the objectives of the development and test program to provide highly accurate space position data for guidance and control of approaching and landing aircraft to touchdown were met.

N71-35779# National Aviation Facilities Experimental Center, Atlantic City, N.J.
Barry S. Brayer Sep. 1971 38 p
(FAA-RD-71-85; FAA-NA-71-13) Avail: NTIS
The development and testing of a 100-watt solid state VHF omnirange (VOR) transmitter are discussed. The VOR provides azimuth guidance to enroute aircraft in the national airspace system. The transmitting system tested is used to generate signals Results of the tests provide data for establishing specifications for the next generation of VOR transmitting equipment.

AIR NAVIGATION. CHAPTER 7
(AD-726603; FTD-MT-24-340-70) Avail: NTIS CSCL 17/7
The methods of automatic coordinate reckoning continue to be improved on the basis of the success of aviation automation using analog and digital resolving devices having various electronic (including micromodular) elements and units. There are numerous versions of instruments which perform the automatic computation of current MS coordinates. They receive information from organizations-manufacturers in various designations: ground-position indicators, navigation indicators, navigation computers, automatic navigation devices, авиграfs, navigation independent system, and others. The questions of navigational use of only the geotechnic coordinate computers are considered which completely pertain to the use of more recent computers during their work in emergency conditions of the independent navigation system NAS-1. Author (GRA)

N71-35980# Edgerton, Germeshausen and Grier, Inc., Las Vegas, Nev.
USE OF AERIAL SURVEYS FOR DETERMINING PLUTONIUM CONCENTRATION
(EGG-1183-1517; Conf-710401-2; L-1030) Avail: NTIS
A Pu aerial survey using an array of NaI detectors that are set up to sense the 60 KeV gamma ray from Am-241, a decay product of Pu-241 is described. The detecting system was mounted inside an Air Force helicopter and flown over known concentrations at the Nevada Test Site. Author (NSA)

N71-36120#* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.
NASA TURBINE COOLING RESEARCH STATUS REPORT, 1971
(NASA-TM-X-2384; E-6164) Avail: NTIS CSCL 21E
The turbine cooling program, including research in progress and research being performed for Lewis, is discussed. The report represents the status of work through April 1971. From comparisons of predicted and experimental results, areas requiring further research efforts are identified. Flow, heat-transfer structure, and life considerations are presented. Cooling concepts for application to future aircraft engines are also discussed.

N71-36253#* National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va.
NASTRAN: USERS EXPERIENCES
(NASA-TM-X-2378; L-7980) Avail: NTIS HC $9.00/MF $0.05 CSCL 20K
The application of the NASTRAN computer program to a wide variety of static and dynamic structural problems is discussed. The conference papers presented focus on vibrations, structural design, systems and operational problems, evaluations and innovations, and new capabilities for NASTRAN.

N71-36260* Vought Aeronautics. Dallas, Tex.
NASTRAN DIFFERENTIAL STIFFNESS ANALYSIS OF AN AIRCRAFT CANOPY
Avail: NTIS HC $9.00/MF $0.95 CSCL 20K
The comparisons of internal load and stresses as generated by the NASTRAN differential stiffness and static analysis methods are presented for a tandem side opening canopy. A description of the structure analyzed and the load condition for which it is analyzed are included along with several computer and hand generated plots. The comparisons of the two methods show a general decrease in the internal member loads obtained by the differential stiffness method of analysis over the static method of analysis.

N71-36269* Naval Air Development Center, Johnsville, Pa.
STATIC AND DYNAMIC ANALYSIS. F-14A BORON HORIZONTAL STABILIZER
Avail: NTIS HC $9.00/MF $0.95 CSCL 01A
A static stress analysis and a dynamic modal analysis of the horizontal stabilizer of the F-14A aircraft has been conducted employing the NASTRAN program. The structural model contains 1518 elements including bars, rods, shear panels and orthotropic and isotropic membrane elements with 1357 degrees of freedom. Static deflection and stresses, including thermal stresses, under maximum load at room and at elevated temperatures are calculated and results are in good agreement with experimental data. Through application of Guyan Reduction the number of degrees of freedom used in the dynamic analysis is reduced to 137. The frequencies and mode shapes for the first two modes are obtained.
N71-36273*# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.
MODAL ANALYSIS OF A NINE-BAY SKIN-STRINGER PANEL
Avail: NTIS HC $9.00/MF $0.95 CSCL 20K
The results obtained using a NASTRAN normal mode analysis of a nine-bay skin-stringer panel 68.66 cm (27 inches) by 93.98 cm (37 inches) of typical aircraft construction are presented. The aluminum panel was made up of a plate, Z section stringers, and channel section frames and was assumed to have fully fixed edges. Stress and mode shape data for the lower order modes obtained from a NASTRAN analysis of a 266-grid-point division of the panel are presented and compared with experimental data.

Author

N71-36278*# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.
APPLICATIONS OF NASTRAN TO COUPLED STRUCTURAL AND HYDRODYNAMIC RESPONSES IN AIRCRAFT HYDRAULIC SYSTEMS
Avail: NTIS HC $9.00/MF $0.95 CSCL 20K
It is demonstrated that the NASTRAN computer program can be used to analyze the coupled fluid and structural responses of multibranch pipes as occur in aircraft hydraulic systems. The techniques used to model hydraulic lines with NASTRAN are explained. Example problems are presented which demonstrate the validity of the analytical model for a simple standpipe system and which demonstrate that the technique is promising as a basis for detailed dynamic analysis of hydraulic systems of actual aircraft.

Author

N71-36280*# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.
NASTRAN AS ANALYSIS TOOL IN A STRUCTURAL DESIGN OPTIMIZATION PROCESS
Avail: NTIS HC $9.00/MF $0.95 CSCL 20K
The use of NASTRAN as the analysis tool in a structural design process is described. A section of an aircraft fuselage type structure with rings, stringers, and skin idealized by 408 finite elements and 858 degrees of freedom was optimized in an analysis evaluation and redesign closed cycle. NASTRAN was employed in the analysis step, with the evaluation and redesign steps supported by separate programs, and data transfer was carried out by hand. This procedure proved to be workable with turn-around time for one redesign cycle requiring one day. Approximately five redesign cycles were needed to converge to an optimized design.

Author

N71-36282*# Lockheed-California Co., Burbank.
The USE OF NASTRAN IN THE ANALYSIS OF LARGE COMPLEX AIRFRAME STRUCTURES: MODELING TECHNIQUES AND ORGANIZATION
Avail: NTIS HC $9.00/MF $0.95 CSCL 01A
The NASTRAN system has been found to be very versatile, fairly easy to use when following the rigid format, with many outstanding features, and as a practical tool for large scale aircraft analysis. A brief evaluation of the NASTRAN system based predominantly on a large airframe analysis is presented.

E.M.C.

N71-36284*# Boeing Co., Renton, Wash.
DATA MANAGEMENT REQUIREMENTS FOR LARGE PROBLEMS
Avail: NTIS HC $9.00/MF $0.95 CSCL 08B
It is recommended that the NASTRAN computer code can be configured to interface with the requirements of other finite element computer programs utilized in production analyses such as those employed in the 747 and SST airframes. Substructuring is also shown to be a necessary tactic for the processing of large finite element problems.

E.M.C.

N71-36290*# McDonnell-Douglas Astronautics Co., Huntington Beach, Calif.
AN EVALUATION OF CURRENT NASTRAN DISCRETE ELEMENT MODELS FOR MONOCOQUE AND SEMIMONOCOQUE STRUCTURES
Avail: NTIS HC $9.00/MF $0.95 CSCL 20K
The current discrete element analysis models in NASTRAN, Levels 8.1.0 and 11.1.0, are evaluated for semi-monocoque and monocoque structures. Comparative results are presented with the FORMAT-3 general-purpose code for a swept wing statics analysis and a Skylab substructure vibration analysis. Good agreement between Level 11.1.0 and FORMAT-3 is demonstrated; however, a major error in Level 8.1.0 was discovered on the Skylab vibration problem. The computational performance of NASTRAN was superior to FORMAT, but the vibration rigid format was found to have several inefficiencies. Comparative results are also presented between Level 11.1.0 and STACUSS, SLADE, BOND, UNIVALVE, and another special-purpose code. Results for two of the structures analyzed, a cylindrical shell and an elliptic plate, indicate curved discrete elements are significantly more accurate than the plate elements in NASTRAN for the same number of degrees of freedom.

Author

N71-36292*# National Aeronautics and Space Administration, Langley Research Center, Langley Station, Va.
VIBRATION STUDIES OF A FLAT PLATE AND A BUILT-UP WING
James H. Starnes, Jr., In its NASTRAN: Users Experiences Sep. 1971 p 637-846
Avail: NTIS HC $9.00/MF $0.95 CSCL 01A
The natural vibration frequencies of a clamped flat plate and a built-up wing were computed by two different finite element computer programs and compared with existing experimental data. The results indicate that by using a finite element program it is possible to obtain the accuracy desired for parametric design studies even for complex built-up structures. However, the differences in central processing unit execution times between the two programs revealed that it is economically feasible to develop automated design procedures or make parametric design studies involving many iterations only if computer programs tailored for very efficient operation are available.

Author

N71-36299*# Computer Sciences Corp., Silver Spring, Md.
NASTRAN PLOTTING CAPABILITIES
Avail: NTIS HC $9.00/MF $0.95 CSCL 08B
Plotting improvements and techniques for NASTRAN static, modal and transient analyses plots are discussed. The five common software functions performed by all the plot generating routines are reviewed. Static rigid, modal rigid, and transient
Rigid format plotting are illustrated using a delta wing analysis problem. J.M.

N71-36323# Battelle Memorial Inst., Columbus, Ohio.
ANALYSIS AND CHARACTERIZATION OF MATERIALS SUITABLE FOR AIRCRAFT STRUCTURE Final Report, Nov. 1968 - Apr. 1970
(Contract F33615-67-C-1168)
(AD-727017; ARL-71-0014) Avail: NTIS CSCI 14/2
The report provides descriptions and discussion of the analytical methodologies used most extensively during 4 years of chemical and structural analysis effort carried out in cooperation with the materials research program of Aerospace Research Laboratories. Author (GRA)

N71-36381# Aircraft Research Association, Ltd., Bedford (England).
REPORTS CATALOGING AT THE AIRCRAFT RESEARCH ASSOCIATION C. C. Barnett Jul. 1971 19 p refs
(Rept-22) Avail: NTIS
A computer produced cataloging and subject indexing system for report material acquired by the Aircraft Research Association Library is described. Keyword listings with indexes under author and originators, references will be used to produce a monthly accessions list, monthly and annual cumulating catalogs. The keywords will be supplied manually by using a specially constructed thesaurus. Author

N71-36387# National Industrial Pollution Control Council, Washington, D.C.
EXHAUST EMISSIONS FROM GAS TURBINE AIRCRAFT ENGINES Feb. 1971 28 p
Avail: NTIS
Air pollution by gas turbine aircraft engines is discussed. The emissions that are considered air pollutants include: smoke and particulate matter, carbon monoxide, nitrogen oxides, unburned and partially oxidized hydrocarbons, and sulfur oxides. The emission extent, airport conditions, odors, and fuel vapors are also discussed. It is recommended that programs to obtain better definition of the meteorology and atmospheric chemistry and physics in the upper atmosphere should be accelerated.
F.O.S.

N71-36388# National Industrial Pollution Control Council, Washington, D.C.
NOISE FROM GAS TURBINE AIRCRAFT ENGINES Feb. 1971 24 p
Avail: NTIS
The reduction of aircraft noise at airports is discussed in terms of jet exhaust noise. Improvements to suppress noise are presented and include the operational procedures of routing approach and takeoff turns away from populated areas. It is concluded that no immediate breakthroughs are foreseen and further noise reduction will be achieved only in small increments.
F.O.S.
Typical Subject Index Listings

ACCIDENT PREVENTION

- Military pilot handling characteristics, discussing combat operations, accident prevention and blind landing
 - [NASA-CR-111172] N71-11466

ACOUSTIC MEASUREMENTS

- Propeller vortex noise analysis by on-line 1/3 octave band resolution, discussing characteristic results from noise measurements on various propeller configurations
 - [NASA-CR-111172] N71-11466

ACUITY

- Aircraft noise effects on hearing acuity and perceptual and intellectual judgment tasks
 - [NASA-CR-111172] N71-11466

ADHESIVE BONDING

- Corrosive delamination occurrence, reduction and prevention in metal-metal adhesive bonded aircraft structures
 - [NASA-CR-111172] N71-11466

ADHESIVES

- Adhesive and coating material formulations and manufacturing processes for lightweight low-permeability braces for use in high altitude decelerators
 - [NASA-CR-111172] N71-11466

AERIAL PHOTOGRAPHY

- Aerial land rover for special needs of developing countries as passenger and freight aircraft, crop spraying and dusting, aerial survey and fire fighting
 - [NASA-CR-111172] N71-11466

- Aerial photographic equipment survey, describing topographic cameras, aerial photograph orientation equipment, onboard navigation instruments and mapping survey systems
 - [NASA-CR-111172] N71-11466

- Aircraft heat viewer for underlying surfaces radiation properties, suggesting qualitative survey type thermal aerial photo combination with simultaneous radiometric measurements
 - [NASA-CR-111172] N71-11466

AERIAL RECONNAISSANCE

- Airborne IR linescan equipment for commercial aerial survey, discussing operational principle, temperature sensitivity, data processing and individual system components specifications
 - [NASA-CR-111172] N71-11466

- Application of aerial reconnaissance and remote sensor techniques to development of master engineering soil plans
 - [NASA-CR-111172] N71-11466

AERODYNAMIC CHARACTERISTICS

- Aerodynamic aspect ratio effects on drag and aircraft performance, noting span loading as major force on wing lifting function
 - [NASA-CR-111172] N71-11466

- Low speed wind tunnel measurement of induced drag characteristic of three 60 degree delta wings with different leading edge spanwise distributions
 - [NASA-CR-111172] N71-11466

- PA-2001S experimental aircraft for investigating operational problems of STOL type aircraft
 - [NASA-CR-111172] N71-11466

- Calculations of aerodynamic properties of flexible wing grid using Reynolds number
 - [NASA-CR-111172] N71-11466

- Aerodynamic characteristics of lift fan installation for direct lift V/STOL aircraft
 - [NASA-CR-111172] N71-11466

- Aerodynamic characteristics and flutter of T-tail aircraft configurations
 - [NASA-CR-111172] N71-11466

- Aerodynamic and flight characteristics of supersonic aircraft and spacecraft motion in planetary gravitational fields
 - [NASA-CR-111172] N71-11466

AERODYNAMIC COEFFICIENTS

- KC-135 aircraft climb trajectories for optimum constant lift coefficient, range and fuel amount
 - [NASA-CR-111172] N71-11466

- Theoretical analysis of trailing edge blowing effects on circulation around airfoils based on iterative solutions with lift coefficients
 - [NASA-CR-111172] N71-11466

- Calculations of helicopter airloads using lifting surface theory compared with experimental data
 - [NASA-CR-111172] N71-11466

AERODYNAMIC CONFIGURATIONS

- Lifting configurations unsteady air loads prediction, investigating loading singularities in linearized potential theory
 - [NASA-CR-111172] N71-11466

- Aerodynamic characteristics and flutter of T-tail aircraft configurations
 - [NASA-CR-111172] N71-11466

- Draft designing of vertical takeoff and landing aircraft
 - [NASA-CR-111172] N71-11466

AERODYNAMIC FORCES

- Fluctuating aerodynamic force measurement on stationary circular cylinder spanning wind tunnel, using direct method without support interference
 - [NASA-CR-111172] N71-11466

- Airloads and moments changes of aircraft flying over trailing vortices, investigating time dependent aerodynamic forces
 - [NASA-CR-111172] N71-11466

- Calculated values of air forces on oscillating thin wings obtained by linearized potential flow
 - [NASA-CR-111172] N71-11466

AERODYNAMIC LOADS

- Drooped wing tip effects on trailing vortex sheet structure and position from spanwise load distribution determination by vortex lattice theory
 - [NASA-CR-111172] N71-11466

- Lifting configurations unsteady air loads prediction, investigating loading singularities in linearized potential theory
 - [NASA-CR-111172] N71-11466

AERODYNAMIC NOISE

- Propeller vortex noise analysis by on-line 1/3 octave band resolution
 - [NASA-CR-111172] N71-11466
AERODYNAMIC STABILITY
octave band resolution, discussing characteristic results from noise measurements on various
gas turbine configurations
A71-40868
AERODYNAMIC STABILITY
Dynamic stability of jet transport configuration with high thrust-weight ratio and externally blown
jet engines [NASA-TN-D-6480]
A71-35213
AERODYNAMICS
High speed aerodynamic test facilities development over past 25 years, discussing deficiencies and
improvements
A71-41904
Lifting line theory extension to low aspect ratio wings, proposing formulation for Prandtl integral
equation
A71-42298
Low speed aerodynamics, detailing relevance tree technological forecasting method of Canadian
science council national goals list
A71-42766
AERODYNAMICS
Experimental aerelastic analysis to determine airworthiness of T-tail configuration of F-28
aircraft
A71-34002
AEROACOUSTICS
Aeromagnetic future, discussing aircraft noise reduction, computer techniques and aircraft design
evaluation
A71-42237
AEROSPACE ENGINEERING
Evaluation of air traffic control parameters and relationship to future of aeronautics
A71-34025
AEROSPACE ENGINEERING
Carbon fiber reinforced plastics, considering aerospace and medical applications
A71-40702
AEROSPACE MEDICINE
Medical rejection statistics of applicants for BEA/BOAC pilot training, considering ophthalmic, ear, nose, throat and
general health condition
A71-41823
AFTERBURNING
Jet engines with afterburners, describing exhaust nozzle control, takeoff and landing advantages and
thrust variations
A71-40858
AIR CARGO
Airfreight economics and growth forecast, discussing rates, cost and technological aspects
A71-41840
AIR COOLING
Infrared and thermal evaluation of tactical aircraft phased array radar antenna design with cooling air
distribution for steady state operating temperature maintenance
A71-40424
AIR CURRENTS
Aircraft wing tip vortex air motion measurements, utilizing Doppler radar techniques
A71-40689
AIR FLOW
Slender body of revolution in supersonic and subsonic air flow, calculating boundary conditions
with Lagrange formulation
A71-40963
Visco-slipstream flow downstream of triple shock wave interaction in supersonic diffuser air flow, using pitot and static
pressure probe measurements
A71-40981
AIR JETS
Symmetrical and unilateral sticking flow modes of nozzle air jets expelled into plane-parallel and
parabolic ducts
A71-42681
AIR NAVIGATION
Aerospace combined display system for area navigation, discussing design, color map projection, overlays, CRT unit and
viewability
Satellite navigation system for aviation and marine use, examining operational requirements, economic
viability and technical solutions
A71-40137
A71-41509
NAVIGATION ROLE IN AIRWAYS SYSTEMS DEVELOPMENT
Conference, Saddle Brook, New Jersey, April 1971
A71-42077
Combined inertial navigation and VOR/DME systems contribution to area navigation accuracy and
efficiency
A71-42080
Unaided, integrated and differenential OMEGA navigation configurations, comparing accuracy and
suitability for airways system operations
A71-42082
Analytical model for air navigation and ATC system design, demonstrating system parameters effects on
lateral separation standards for parallel flight lanes
A71-42083
Navigation and surveillance interdependence in ATC
A71-42085
Air traffic control integrated communications, navigation and identification system, discussing
design, economics, technology and flexibility
A71-42086
VOR/DME air navigation equipment using Kalman-Bucy filter and airborne air data system /ADS/
A71-42289
Navigational accuracy resulting from midcourse signals relayed by two synchronous ATS-1 & ATS-3
satellites and application to aircraft navigation [NASA-CR-121977]
A71-35770
Development and testing of VHF omni directional range beacon for aircraft azimuth guidance
[FAA-RD-71-65]
A71-35779
Automatic computation of navigation coordinates using analog and digital computers
A71-35782
AIR TRAFFIC
Air piracy /hijacking/bibliography, considering national and international law, extradition,
punishment, prevention and safety assurance for passengers and crews
A71-41617
AIR POLLUTION
Types of measurement, and solutions to air pollution problems caused by transportation vehicles
A71-35485
Air pollution by gas turbine aircraft engines
A71-36387
AIR TRAFFIC
Aircraft anticollision flashing lights, discussing current practices within national and
international air traffic regulations regarding flash frequency, color and light sources
A71-41099
AIR TRAFFIC CONTROL
Fast time digital computer simulation model for evaluation of man-machine interface /display/
problem of ITC system including personnel and equipment
A71-40112
Computerized touch display for ATC tasks compared to conventional keyboard tabular display performance
A71-40114
ATC display devices with computer-derived alphanumeric labels on radar screen, examining
feasibility and effectiveness
A71-40118
ATC display device man-computer interaction faults and delays effects on operator performance
A71-40119
Air traffic controller height and plan position indicator composite picture display system design
and operation, combining functions of primary and secondary surveillance radars
A71-40128
DK military and civil ATC coordination, discussing Mediator plan for modernization of communication
and navigation equipment and techniques
A71-41519
National Aviation System stage A ATC displaying digitized radar data positions together with
automatic track positions
A71-41634
Commercial ATC, considering VFR, flight control and inertial navigation
A71-42078
Analytical model for air navigation and ATC system design, demonstrating system parameters effects on
lateral separation standards for parallel flight lanes
A71-42083

A-2
Fabrication and field testing of aircraft maintenance hangars and general purpose shelters

Nonlinear flight dynamic simulation using wind tunnel and aircraft model as analog function generator and computer for motion equation processing and command orientation

Aircraft noise effects on hearing acuity and perceptual and intellectual judgment tasks

Time varying aircraft noise effect on speech intelligibility, discussing test for relation to articulation index

Prediction methods for human aircraft noise perception, assessing weighted sound pressure level or complex loudness-noisiness computation scales

Aeronautics future, discussing aircraft noise reduction, computer techniques and aircraft design

Relations between aircraft and road traffic volume and noise tolerance in communities

Aircraft noise problems in vicinity of Kennedy International Airport, New York and recommendations for noise reduction

Legal aspects of compulsory soundproofing for structures next to John F. Kennedy International Airport

Aircraft parts lubrication friction and wear problems, discussing failure modes, solid and liquid lubricants, component damage and lubrication systems

Aircraft performance Aerodynamic aspect ratio effects on drag and aircraft performance, noting spin loading as major force on wing lifting function

Aircraft response to pilot or autopilot command during altitude control maneuver, calculating lag magnitudes

Short haul air transportation, discussing performance requirements, community acceptance and navigation and landing aids

European airbus design and performance, covering electrical systems, air conditioning, engines and flying control circuits

Nort performance and design for hover and cruise VTOL flights

Takeoff and landing performance evaluation for commercial STOL aircraft, noting high bypass ratio turboprop and high lift systems use

Correlation studies based on wind tunnel test data and flight tests to determine performance, stability and control of IB-70-1 aircraft

FA-2005 experimental aircraft for investigating operational problems of STOL type aircraft

Analysis of influence of wind shear on longitudinal motion of aircraft during approach and landing

Aircraft pilots

Fixed wing aircraft employing free fall and circling-line techniques in rescue of personnel and retrieval of equipment

Aircraft reliability

Actions and recommendations of Ninth Meeting of Airworthiness Committee

Aircraft safety

Trailing vortex pair behind aircraft, presenting equilibrium characteristics and effects on safety
AIRCRAFT WAKES

[NASA-TF-D-6426] N71-34027

Numerical analysis of plane steady transonic flows past lifting airfoils with freestream Mach numbers less than unity
[0460-12956-1] N71-34275

Numerical analysis of laminar, incompressible flow along corner formed by intersection of two thin airfoils
[AD-726546] N71-35201

Theoretical analysis of trailing edge blowing effects on circulation around airfoils based on iterative solutions with lift coefficients
[AD-726434] N71-35202

AIRFREIGHT MATERIALS

Metal embrittlement by gaseous hydrogen, discussing countermeasures against hydrogen metal interaction and cracking
A71-41999

AIRFRAMES

Analysis of feasibility of designing transport aircraft to carry up to 1,000 passengers and methods for predicting aircraft performance
[CHAPFIELD-A268-3] N71-34018

Reference text on design of aviation structural elements
[AD-726586] N71-35220

Evaluation of NASTRAN system based on large complex airframe analysis
N71-36282

AIRCRAFT DESIGN

Analysis of aircraft ground flotation

Unsteady pressure gradient reduction effect on airfoil dynamic stall delay
A71-42841

AIRCRAFT WAKES

Aircraft wake turbulence and detection - Conference, Seattle, September 1970
N71-40482

Aircraft wake turbulence, reviewing aerodynamic vortex research as exemplified by Karman vortex street and edgewise phenomenon
N71-40483

Atmospheric stratification effects on downward motion of aircraft vortex wakes, developing approximate model
N71-40486

Subscale modeling of aircraft trailing vortices in controllable laboratory environment
N71-40488

Aircraft wing tip vortex air motion measurements, utilizing Doppler radar techniques
N71-40489

Peak velocity vectors in transverse plane of jet transport aircraft wake, measuring tip vortices core size
N71-40491

Vortex wakes behind straight and swept wings, noting formation of loops and trails close to ground
N71-40494

Spanwise lift distribution over wings and wake formation in this airfoils of finite aspect ratio in linear subsonic potential flow
N71-40495

Trailing vortices behind wing tip with vortex dissipator, using wind tunnel flow visualization and flight tests
N71-40496

Vortex wake development and aircraft dynamics, using computer graphics and flow visualization techniques
N71-40497

Boeing 747, Lockheed C-5A and other aircraft vortex wake characteristics by tower flyby technique
N71-40498

Vortex wakes transport and decay for various aircraft types, flight modes and meteorological conditions
N71-40499

Aircraft trailing vortex pair linear stability, obtaining flow field near curved vortex filament with swirl and axial velocities
N71-40500

Turbulent shear effect on isolated trailing single vortex decay behind aircraft
N71-40503

Trailing vortex pair behind aircraft, presenting equilibrium characteristics and effects on safety
N71-40504

Flow visualization of aircraft trailing vortex wakes in towing tank with electrochemically activated dye, noting flow instability
N71-40505

Flight tests for hazard evaluation to other aircraft from wake turbulence generated by large jet transport airplanes
N71-40506

Airloads and moments changes of aircraft flying over trailing vortices, investigating time dependent aerodynamic forces
N71-40508

Flight test experiment to evaluate mechanized automatic control system to minimize wake turbulence effects on aircraft
N71-40509

Aircraft wake turbulence relation to CAS, discussing flight control loss, jumbo jets trailing vortex wakes breakup and detection and safe aircraft spacing
N71-40704

AIRFIELD SURFACE MOVEMENTS

Unassisted aircraft parking system /Accu-Pack/, discussing equipment design safety and accuracy
N71-41247

Analysis of aircraft ground flotation characteristics based on aircraft type and airfield construction
N71-720273

AIRFOILS

Unsteady pressure gradient reduction effect on airfoil dynamic stall delay
A71-42841

AIRLINE OPERATIONS

Sick and injured transportation aboard regular airliners, considering pathological and psychological contraindications
A71-41572

Commercial ATC, considering VFR, flight control and inertial navigation
A71-42070

Unaided, integrated and differential OMEGA radio navigation, considering accuracy and suitability for airways system operations
A71-42082

Analytical model for air navigation and ATC system design, demonstrating system parameters effects on lateral separation standards for parallel flight lanes
A71-42083

AIRPORT PLANNING

Monograph on satellite airport system modeling for large metropolitan areas covering systems analysis methodology and computer algorithms for optimization
[50-TF-71-1] N71-40799

Airport design for passenger and baggage handling efficiency, considering choice between continuous and batch type intra-airport transit systems
A71-42072

Airports innovations for improved operational efficiency, covering high temperature test trolleys for supersonic flight, underground jet start compressors and air conditioning plant units
A71-42235

Economic aspects and regional planning for international airport facility at Ontario, California
[PB-199695] N71-35391

Development of analysis techniques for determining causes for airport congestion and interaction of various causes
[FAA-EO-71-55] N71-35393

AIRPORES

Airport noise control regulations enforcement feasibility, noting financial burden
A71-41796

Airports innovations for improved operational efficiency, covering high temperature test trolleys for supersonic flight, underground jet start compressors and air conditioning plant units
A71-42235

Legal aspects of compulsory soundproofing for structures next to John F. Kennedy International airport
[PB-199725] N71-34033

Reduction of jet exhaust noise at airports
N71-36388

AIRSPEED

Minimal time climb velocity optimization for stratospheric and tropospheric jet aircraft flights
A71-41972
ATMOSPHERIC TURBULENCE
Laser system for atmospheric wind velocity and turbulence, using Doppler frequency shift
undergo by radiation beam scattered by particles suspended in flows
A71-40486
Atmospheric and wake turbulence effects on aircraft from discrete gust and spectral interpretations,
discussing load production and uncontrollable rolling moments
A71-40507

ATS 1
Navigational accuracy resulting from sidetone signals relayed by two synchronous ATS-1 and ATS-3
satellites and application to aircraft navigation
[NASA-CR-121977] N71-35770
ATS 3
Navigational accuracy resulting from sidetone signals relayed by two synchronous ATS-1 and ATS-3
satellites and application to aircraft navigation
[NASA-CR-121977] N71-35770

AUDIO EQUIPMENT
Airborne audio-video recording system designs and requirements
AD-727025 N71-35280

AUDITORY PERCEPTION
Prediction methods for human aircraft noise perception, assessing weighted sound pressure level
or complex loudness-noisiness computation scales
A71-40866

AUTOGYROS
Jet flaps application to autogyro rotor, using pressure jump for air centrifugation
A71-41399

AUTOKINESIS
Canadian Forces experiments on aircraft flashing lights covering warning signals, navigation and
tactical display application and autokinetic displays
A71-41491

AUTOMATIC CONTROL
Flight test experiment to evaluate mechanized automatic control system to minimize wake
turbulence effects on aircraft
A71-40509
Mathematical model for computerized ATC automatic flight tracking logics without tracks
smoothing
A71-42396

Evaluation of automatic guidance modes and software for V/STOL aircraft flight control
[NASA-CR-121768] N71-34016

AUTOMATIC PILOTS
German VAK 191B combat VTOL aircraft development program, describing prototype ground tests,
apopilot preoptimization and hover flight tests
A71-41517

AUTOMATIC TEST EQUIPMENT
Abbreviated text language for avionic systems, discussing program organization, statement
forms, vocabulary and syntax diagrams
A71-40812

Computer controlled modular automatic test equipment for KC-10 aircraft maintenance, discussing system
block diagram
A71-41516

AUTOMOBILES
VTOL air system for automobile travel replacement noting noise, cost, pollution and traffic
congestion reduction
A71-42527

AVALANCHE DIODES
Performance levels prediction for airborne solid state phased array radar transmission sources,
considering TRAPATT devices
A71-41630

AVIONICS
Avionics combined display system for area navigation, discussing design, color map
projection, overlays, CIN unit and viewability
A71-40137

Abbreviated test language for avionic systems, discussing program organization, statement
formats, vocabulary and syntax diagrams
A71-40812

AXIAL FLOW TURBINES
Noise sources in axial flow fans, considering radiation from turbulent boundary layers,
AXISYMMETRIC BODIES

scattering of incident turbulence and secondary flow influence

AXISYMMETRIC BODIES
Blunt and hemispherical base axisymmetric bodies in Mach 4 free stream, investigating turbulent heat wakes generation

AZIMUTH
Development and testing of VHF omni-range transmitter for aircraft azimuth guidance [FAA-ED-71-65]

BAC AIRCRAFT
Aerial land rover for special needs of developing countries as passenger and freight aircraft, crop spraying and dusting, aerial survey and fire fighting

BAGGAGE
Airport design for passenger and baggage handling efficiency, considering choice between continuous and batch type intra-airport transit systems

BALLOON SOUNDING
Alcyon project P# 1, considering balloon stabilization efficiency during night-day transition and system reliability

BELL AIRCRAFT
Correlation studies based on wind tunnel test data and flight tests to determine performance, stability and control of X-70-1 aircraft [NASA-CR-111335]

BIBLIOGRAPHIES
Air piracy /hijacking/ bibliography, considering national and international law, extradition, punishment, prevention and safety assurance for passengers and crews

Annotated bibliography on noise pollution-sonic booms [AD-722910]

BLADES
Two dimensional supersonic flow pattern, velocity and loss in shock waves in front of blade cascade

BLIND LANDING
Military pilot handling characteristics, discussing combat operations, accident prevention and blind landing

BLOWING
Theoretical analysis of trailing edge blowing effects on circulation around airfoils based on iterative solutions with lift coefficients [AD-726438]

BLUNT BODIES
Blunt and hemispherical base axisymmetric bodies in Mach 4 free stream, investigating turbulent heat wakes generation

BODIES OF REVOLUTION
Slender body of revolution in supersonic and subsonic air flow, calculating boundary conditions with Lagrange formulation

BODY-WING AND TAIL CONFIGURATIONS
Comparisons of theoretical and experimental pressure distribution over wing-body model at high supersonic speeds [NASA-TN-D-6480]

BOEING 747 AIRCRAFT
Boeing 747, Lockheed C-5A and other aircraft vortex wake characteristics by tower flyby technique

On-condition monitoring of aircraft hydraulic systems for component deterioration, applying to Boeing 747, L-1011 and DC 10 aircraft

BORON
Design, fabrication and tests of boron/epoxy reinforced stringers for CH-54B tail cone [NASA-CR-111929]

Structural analysis of tail cone of CH-54B helicopter reinforced with boron/epoxy stringers [NASA-CR-111930]

SUBJECT INDEX

BOUNDARY LAYER FLOW
Vortex flow over helicopter rotor square tips, using visualization technique with ammonia vapor boundary layer flow over diatomaceous salt solution

BOUNDARY LAYER SEPARATION
Flap span length effects on boundary layer separation, giving streamwise pressure distributions

BOUNDARY LAYERS
Supersonic and hypersonic viscous gas flows with boundary layer induced pressure gradients, investigating disturbance upstream propagation by asymptotic theory

Boundary layer disturbances influence on three dimensional hypersonic flow about infinite triangular flat plate, investigating pressure effects on heat transfer and friction coefficients

Helicopter wake and boundary layer effects on rotor aerodynamic performance in hovering, low and high speed forward flight [AIAA PAPERS 71-581]

BOUNDARY VALUE PROBLEMS
Slender body of revolution in supersonic and subsonic air flow, calculating boundary conditions with Lagrange formulation

BRAKES (FOR ARRESTING MOTION)
Adhesive and coating material formulations and manufacturing processes for lightweight low-permeability brakes for use in high altitude deaccelerators [NASA-CR-111964]

BRAKING
Elastic response and characteristics of bias ply aircraft tires subjected to braking forces and simple static flexure [NASA-TH-D-6426]

BRAZING
Brazing filler metals as cost effective replacement for Au-Ni in aircraft gas turbine engine component

C-135 AIRCRAFT
EC-135 aircraft climb trajectories for optimum constant lift coefficient, range and fuel amount

C-5 AIRCRAFT
Boeing 747, Lockheed C-5A and other aircraft vortex wake characteristics by tower flyby technique

C-54 AIRCRAFT
Aircraft accident report for Ecuadorian C-54 at Miami International Airport 14 April 1970 [PB-199330]

CABLES (ROPES)
Performance tests and evaluation of wire cable materials for use with aircraft arresting gear [AD-724284]

CIRCUITRY
Fixed wing aircraft employing free fall and circling-line techniques in rescue of personnel and retrieval of equipment [AD-727007]

CALIFORNIA
Economic aspects and regional planning for international airport facility at Ontario, California [PB-195695]

CANOPTICS
NASA/RM computer program differential stiffness and static load analysis methods compared for aircraft tandem side opening canopies

CARBON
Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines

CARBON FIBRES
Carbon fiber reinforced plastics, considering aerospace and medical applications

A-8
CASCADe FLOW
Incompressible potential cascade flow interaction, presenting approximate method based on blade profile flow expression by power series with distance between cascades as parameter
A71-40685

Two dimensional supersonic flow pattern, velocity and loss in shock waves in front of blade cascade
A71-41062

CATALOGS (PUBLICATIONS)
Computer based cataloguing and subject indexing system [SEPT-22] N71-36381

CATOGRY EAT TUBES
Display devices in aircraft cockpit providing pilots with information from various sources, considering head-up display and CRT
A71-40113

Contrast level reading tests of CRT and self luminous display devices with optical filters at high ambient light for cockpit applications
A71-40127

Avionics combined display system for area navigation, discussing design, color map projection, overlays, CRT unit and viewability
A71-40137

CENTER OF GRAVITY
Phugoid motion at constant angle of attack without thrust line displacement from aircraft center of gravity, noting longitudinal stability
A71-40168

CENTRIFUGAL COMPRESSORS
Inlet conditions for centrifugal compressor impeller covering pressure, temperature and velocity measurements on quasi-three dimensional model
A71-42035

CENTRIFUGAL FORCE
Jet flap application to aero pressor, using pressure jump for air centrifugation
A71-41399

CEREBRAL VASCULAR ACCIDENTS
Simulated aircrew pilot cerebral incapacitation etiology, incidence and detection, noting unimpaired crew members conduct and reaction times during approach for landing
A71-41824

CH-54 HELICOPTER

CHEMICAL ANALYSIS
Chemical and structural analysis techniques for materials suitable for aircraft structures [AP-72071] N71-36323

CHEMICAL WARFARE
Flight tests of airborne disinfection devices for chemical warfare [AB-720350] N71-35218

CHLORATES
Oxygen supply to air transported patients by chemical compounds, suggesting use of persulfates and chlorates
A71-41571

CIRCULAR CYLINDERS
Fluctuating aerodynamic force measurement on stationary circular cylinder spanning wind tunnel, using direct method without support interference
A71-40393

CIVIL AVIATION
UK military and civil ATC coordination, discussing Mediator plan for modernization of navigation and communication equipment and techniques
A71-41519

Federal Aviation Act amendment prohibiting controlling interest in air carrier without Civil Aeronautics Board approval
A71-42070

CLEAR AIR TURBULENCE
Aircraft wake turbulence relation to CAT, discussing flight control loss, jumbo jets trailing vortex wakes breakup and detection and safe aircraft spacing
A71-40704

CLIMBING FLIGHT
Minimal time climb velocity optimization for stratospheric and tropospheric jet aircraft
A71-40704

KC-135 aircraft climb trajectories for optimum constant lift coefficient, range and fuel amount
A71-41972

CLOUDS (METEOROLOGY)
Static electrification of aircraft when flying through clouds and precipitation [AD-726581] N71-35225

COCKPITS
Display devices in aircraft cockpit providing pilots with information from various sources, considering head-up display and CRT
A71-40113

COLLISION AVOIDANCE
Canadian Forces experiments on aircraft flashing lights covering warning signals, navigation and anticollision displays and autokinetic phenomena [FAA-RD-71-59] N71-35216

Strobe lighting for aircraft midair collision hazard reduction, comparing Collision Avoidance System and Pilot Warning Indicator effectiveness
A71-41493

Anticollision flashing lights, discussing current practices within national and international air traffic regulations regarding flash frequency, color and light sources
A71-41499

Functional analysis of pilot warning instruments and pilot relationships during collision situations [FAA-RD-70-48] N71-35735

COLLISIONS
Computer simulation of aircraft collision-hazard warning radar techniques in terminal area
A71-34170

COMBUSTION PRODUCTS
Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines
A71-40871

COMMERCIAL AIRCRAFT
Commercial ATC, considering VFR, flight control and inertial navigation
A71-42078

Takeoff and landing performance evaluation for commercial STOL aircraft, noting high bypass ratio turbofans and high lift systems use
A71-42286

COMMUNICATION EQUIPMENT
Air traffic control integrated communication, navigation and identification system, discussing design, economics, technology and flexibility [AD-72097] N71-62086

Development of analysis techniques for determining causes for airport congestion and interaction of various causes [FAA-RD-71-55] N71-35393

COMMUNITIES
Relations between aircraft and road traffic noise and noise tolerance in communities [ST-7102] N71-34019

COMPARISON
Comparing and integrating NASTRAN with other finite element computer programs
A71-36284

COMPOSITE MATERIALS

COMPRESSIBLE FLOW
Compressible viscous gas supersonic flow, observing near wake region behind perpendicular trailing face of rectangular plate with motion, state, energy and continuity equations
A71-40081

COMPUTER GRAPHICS
Vortex wake development and aircraft dynamics, using computer graphics and flow visualization techniques
A71-40097

COMPUTER PROGRAMMING
Abbreviated text language for avionic systems, discussing program organization, statement formats, vocabulary and syntax diagrams
A71-40097
COMPUTER PROGRAMS

Evaluation of automatic guidance modes and software for V/STOL aircraft flight control [NASA-CR-121760] N71-34016
NASTRAN computer program differential stiffness and static load analysis methods compared for aircraft tandem side opening canopies N71-36260
Use of NASTRAN as analysis tool in structural design optimization process applied to aircraft fuselage type structure N71-36269
Evaluation of NASTRAN system based on large complex airframe analysis N71-36282
Comparing and integrating NASTRAN with other finite element computer programs N71-36284
Evaluating current NASTRAN discrete element models for monocoque and semi-monocoque structures N71-36290
Comparison of finite element computer programs for application to static load analysis methods compared for aircraft tandem side opening canopies N71-36260
NASTRAN static, modal, and transient analyses plotting techniques with delta wing examples N71-36299
Computer based cataloging and subject indexing system [SEP-2-2] N71-36381

COMPUTER TECHNIQUES

Fast time digital computer simulation model for engineering of man-machine interface /display/ problems of ATC system including personnel and equipment N71-40112
Computerized touch display for ATC tasks compared to conventional keyboard tabular display performance N71-40114
ATC display devices with computer-derived alphanumeric labels on radar screens, examining feasibility and effectiveness N71-40118
Computer controlled modular automatic test equipment for DC-10 aircraft maintenance, discussing system block diagram N71-41518
Aeronautics future, discussing aircraft noise reduction, computer techniques and aircraft design N71-42237
Mathematical models for computerized ATC automatic flight tracking logics without tracks smoothing N71-42396

COMPUTERIZED SIMULATION

Nonlinear flight dynamic simulation using wind tunnel and aircraft model as analog function generator and computer for motion equation processing and command orientation N71-40392
Monograph on satellite airport system modeling for large metropolitas areas covering systems analysis methodology and computer algorithms for optimization [SU-TR-71-1] N71-40799
Computer simulation of aircraft collision-hazard warning radar techniques in terminal area N71-36170

CONCORDE AIRCRAFT

Atmospheric wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation and radioactivity effects on commercial SST Concorde flight N71-40829
International cooperation in aerospace projects, discussing Concorde prograss organization N71-42011

CONFERENCES

Aircraft wake turbulence and detection - Conference, Seattle, September 1970 A71-40482

SUBJECT INDEX

Navigation role in airways systems development - Conference, Saddle Brook, New Jersey, April 1971 A71-42077
Actions and recommendations of Ninth Meeting of Airworthiness Committee [DOC-6925] N71-34020
CONICAL WAVEFORMS

Conical diffusers outlet flow profile and perforance, investigating swirling inlet flow effects on pressure recovery N71-40950

CONICAL SCANNING

Scanning microwave landing guidance system coordinates choice, discussing signal format, antennas planar or conical beams and V/STOL application N71-42090

CONTROL EQUIPMENT

Device for controlling terminal shock waves in supersonic inlets [NASA-CASE-LEW-11188-1] N71-34017

COOLING SYSTEMS

COORDINATES

Scanning microwave landing guidance system coordinates choice, discussing signal format, antennas planar or conical beams and V/STOL application N71-42090
Automatic computation of navigation coordinates using analog and digital computers [AD-726603] N71-35782

CORE FLOW

Self induction function and stability for vortex with finite core at aircraft wing, confirming Crow theory N71-40502

CORROSION PREVENTION

Corrosive delamination occurrence, reduction and prevention in metal-metal adhesive bonded aircraft structures N71-42594

COST ANALYSIS

Airport noise control regulations enforcement feasibility, noting financial burden N71-61796

COST EFFECTIVENESS

Brazing filler metals as cost effective replacement for Au-Ni in aircraft gas turbine engine component N71-40621
U.S. Army ATC cost-effective system developments for high density low altitude helicopter tactical operations to avoid enemy radar under near-all weather conditions N71-42084

COST ESTIMATES

Preliminary research requirements analysis and design and cost synthesis of ground research facilities for hypersonic aircraft [NASA-CR-114333] N71-34236

CRACKING (FRACTURING)

Metal embrittlement by gaseous hydrogen, discussing countermeasures against hydrogen metal interaction and cracking N71-41959

CRASH LANDING

Aircraft accident investigation of fatal DC-8 crash at Kennedy Airport, New York during ferry flight on September 6, 1970 [NTSB-AAR-71-12] N71-34030

CRITICAL VELOCITY

Shock wave diffraction at symmetric lenticular wing profile with free stream critical Mach number of 0.87, using Godunov difference scheme N71-40679

CRUIISING FLIGHT

Rotor performance and design for hover and cruise V/STOL flights N71-42238

CRYOGENIC FLUID STORAGE

Evaluation of liquid methane storage and transfer problems for future supersonic aircraft cryogenic fuel requirements N71-40682
DATA LINKS
Carrier aircraft inertial navigation system /CAINS/ design, noting thermal modeling, statistically filtered alignment modes and digital data links...
A71-42081

DATA PROCESSING
Evaluation of NASTRAN system based on large complex airframe analysis...
M71-36282
Comparing and integrating NASTRAN with other finite element computer programs...
M71-36286

DATA SYSTEMS
VOI/DBS air navigation equipment using Kelman-hucy filter and airborne air data system /ADS/...
A71-42289

DC 10 AIRCRAFT
Computer controlled modular automatic test equipment for DC-10 aircraft maintenance, discussing system block diagram...
A71-41518
On-condition monitoring of aircraft hydraulic systems for component deterioration, applying to Boeing 747, L-1011 and DC 10 aircraft...
A71-42075

DC 8 AIRCRAFT
Accident investigation of fatal DC-8 crash at Kennedy Airport, New York during ferry flight on September 8, 1970...
M70-D-ANR-71-12

DECCELERATION
Elastic response and characteristics of bias ply aircraft tires subjected to braking forces and simple static flexure...
M71-6426

DECOMPOSING
Corrosive delamination occurrence, reduction and prevention in metal-metal adhesive bonded aircraft structures...
A71-42594

DELTA WINGS
Delta wing shock envelope visualization at hypersonic speed, obtaining flow field photographs by vapor screen technique...
A71-40973
Low speed wind tunnel measurement of induced drag characteristics of three 60 degree delta wings with different leading edge spanwise distributions...
A71-40891
Comparison of finite element computer programs for analysis of clamped flat plate and built-up wing vibration frequencies...
M71-36293

NASTRAN static, modal, and transient analyses plotting techniques with delta wing examples...
M71-36299

DENSITY MEASUREMENT
Gas density measurement and flow visualization in hypersonic wind tunnel by electron beam probe, noting isobaric boundary layer application...
A71-40395

DEPLOYMENT
High altitude flight test of reeled 12.2-meter-diameter disk-gap-band parachute with deployment at 2.50 Mach number...
[NAS-TH-D-36469]

DEPOSITS
Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines...
A71-40871

DIFFUSERS
Conical diffusers outlet flow profile and performance, investigating swirling inlet flow effects on pressure recovery...
A71-40950

DIGITAL COMPUTERS
Automatic computation of navigation coordinates using analog and digital computers...
[AD-726603]

DIHEDRAL ANGLE
Wind tunnel stability tests of variable dihedral delta wing spacecraft configuration at hypersonic speed...
[NAS-TH-X-2391]

DIRECTIONAL STABILITY
Variable stability aircraft lateral directional flying qualities, investigating turbulence effects...
A71-82033

DISCRETE FUNCTIONS
Evaluating current NASTRAN discrete element models for monocoque and semimonocoque structures...
M71-36290

DISORIENTATION
Epidemiology statistics of USAF spatial disorientation aircraft accidents, noting pilot training, flight environment and indoctrination remedy programs...
A71-40359

DISPERSE
Global stratospheric dispersion of supersonic transport exhaust...
[DIS-10981-1]

DISPLAY DEVICES
Fast time digital computer simulation model for evaluation of man-machine interface /display/ problem of ATC system including personnel and equipment...
A71-60112
Display devices in aircraft cockpit providing pilots with information from various sources, considering head-up display and CRT...
A71-40113
Computerized touch display for ATC tasks compared to conventional keyboard tabular display performance...
A71-40114
ATC display devices with computer-derived alphanumeric labels on radar screen, examining feasibility and effectiveness...
A71-40118
ATC display device man-computer interaction faults and delays effects on operator performance...
A71-40119
Contrast level reading tests of CRT and self luminous display devices with optical filters at high ambient light for cockpit applications...
A71-40127
Air traffic controller height and plan position indicator composite picture display system design and operation, combining functions of primary and secondary surveillance radars...
A71-40128
Aircraft head-up display systems for providing pilot information focused at infinity within pilot normal field of view...
A71-60131
Avionics combined display system for area navigation, discussing design, color map projection, overlays, CRT unit and viewability...
A71-60137
Canadian Forces experiments on aircraft flashing lights covering warning signals, navigation and anti-collision displays and aerodynamic phenomenon...
A71-41941
Strobe lighting for aircraft midair collision hazard reduction, comparing Collision Avoidance System and Pilot Warning Indicator effectiveness...
A71-41943
National Aviation System stage A ATC displaying digitized radar data positions together with automatic track positions...
A71-60136
DISTANCE MEASURING EQUIPMENT

Tests to determine effectiveness of two linear rate-field displays for use as flight instruments [AD-726643] A71-35229

DISTANCE MEASURING EQUIPMENT

Combined inertial navigation and VOR/DME systems contribution to area navigation accuracy and efficiency A71-42080

VOR/DME air navigation equipment using Kalman-Bucy filter and airborne air data system /ADS/ A71-42289

DOPPLER EFFECT

Dual scatter laser Doppler velocimeters for transonic wind tunnel measurements and calibration applied to simulated helicopter downwash, high lift wing and jet crossflow A71-40399

Laser system for atmospheric wind velocity and turbulence, using Doppler frequency shift undergone by radiation beam scattered by particles suspended in flows A71-40409

DOPPLER NAVIGATION

Doppler scanning landing microwave system for air-derived azimuth and elevation angle aircraft guidance by frequency coding and reference carrier transmission A71-40409

DOPPLER RADAR

Aircraft wing tip vortex air motion measurements, utilizing Doppler radar techniques A71-40409

DOWNWASH

Two dimensional flow over two dimensional finite wing without correction for downwash, assuming known pressure distribution A71-40173

DRAG

Aerodynamic aspect ratio effects on drag and aircraft performance, noting span loading as major force on wing lifting function A71-41726

DUCTED FLOW

Symmetrical and unilateral sticking flow modes of nozzle air jets expelled into plane-parallel and parabolic ducts A71-42681

DYNAMIC CONTROL

Free vortices from slender wings, controlling strength, position, core stability and thickness on basis of one dimensional flow model A71-40992

DYNAMIC LOADS

DYNAMIC MODELS

Nonlinear flight dynamic simulation using wind tunnel and aircraft model as analog function generator and computer for motion equation processing and command orientation A71-40392

Fog formation and dispersal by velocity field induced by helicopter trailing vortices representing dynamic model with droplet depletion, evaporation and condensation A71-40510

DYNAMIC RESPONSE

Assessment of nonlinear response of aeronautical structures with nonideal characteristics under vibration conditions [ARL-79355] A71-35134

DYNAMIC STRUCTURAL ANALYSIS

Use of NASTRAN as analysis tool in structural design optimization process applied to aircraft fuselage type structure A71-36280

Evaluation of NASTRAN system based on large complex airframe analysis A71-36282

Evaluating current NASTRAN discrete element models for monocoque and semimonocoque structures A71-36290

ECONOMIC ANALYSIS

Satellite navigation system for aviation and marine use, examining operational requirements, economic viability and technical solutions A71-41509

Air freight economics and growth forecast, discussing rates, cost and technological aspects A71-41940

ECONOMICS

Economic aspects and regional planning for international airport facility at Ontario, California [PB-199695] A71-35391

ELASTIC BUCKLING

Buckling for thin stress walled open sections on elastic foundation with constrained direction reinforcement A71-41693

ELECTRIC WIRE

Automated electrical wire harness manufacturing for Boeing 747 aircraft; discussing development of numerical control program A71-40441

ELECTRICATION

Static electrification of aircraft when flying through clouds and precipitation [AD-726681] A71-35225

ELECTRON PROBES

Gas density measurement and flow visualization in hypersonic wind tunnel by electron beam probe, noting isobaric boundary layer application A71-40395

ELECTRONIC EQUIPMENT TESTS

Development and testing of VHF omnirange transmitter for aircraft azimuth guidance [FAR-RR-71-65] A71-35779

ELLIPITICITY

Lifting line equation inversion for twisted wings of elliptic planform with arbitrary spanwise upwash A71-42838

EMBELLISHMENT

Metal embelishment by gaseous hydrogen, discussing countermeasures against hydrogen metal interaction and cracking A71-41999

ENGINE TESTS

Mixed and unmixed turbofan engines transient and steady state off-design characteristics, investigating effects of fuel flow rate, nozzle bleed area, inlet pressure, ambient temperature and air bleed A71-42836

ENGINEERING DRAWINGS

Draft design of vertical takeoff and landing aircraft [AD-726572] A71-35219

ENVIRONMENTAL POLLUTION

Annotated bibliography on noise pollution-sonic booms [AD-722930] A71-34023

ENVIRONMENTAL CONTROL

Subscale modeling of aircraft trailing vortices in controllable laboratory environment A71-40480

EPOXY RESINS

EQUILIBRIUM FLOW

Trailing vortex pair behind aircraft, presenting equilibrium characteristics and effects on safety A71-40504

EQUIPMENT SPECIFICATIONS

Tip-turbine lift fan design and specifications [NASA-CR-72974] A71-34945

Fabrication and field testing of lightweight, recoverable, air-transportable hangar [AD-727051] A71-35396

Fabrication and field testing of aircraft maintenance hangars and general purpose shelters [AD-727047] A71-35397

ERROR ANALYSIS

Inertial navigation impact on aircraft safety, discussing error sources and midair collision risks A71-40279

Combined inertial navigation and VOR/DME systems contribution to area navigation accuracy and efficiency A71-40279
FLUIDICS

Two-axis pneumatic rate gyroscope with externally pressurized gas bearing for airborne vehicle fluidic autostabilizer sensor

A71-41666

FLUTTER ANALYSIS

Numerical analysis of derivatives of flutter velocity of aircraft structures to determine optimization of complex structures

[NASA-CR-119946] N71-35126

Comparison of finite element computer program for analysis of clamped flat plate and built-up wing vibration frequencies

N71-36293

FLYING PERSONNEL

Heartventilation syndrome in flying personnel, discussing symptoms of parenthesia and extremities contraction, psychosomatic causes and control mechanism

A71-41569

FOG

Fog formation and dispersal by velocity field induced by helicopter trailing vortices, presenting dynamic model with droplet depletion, evaporation and condensation

A71-40510

FORCE DISTRIBUTION

Fluctuating aerodynamic force measurement on stationery circular cylinder spanning wind tunnel, using direct method without support interference

A71-40393

Spanwise lift distribution over wings and wake formation in thin airfoils of finite aspect ratio in linear subsonic potential flow

A71-40495

FRANCE

Conclusions of studies by French Committee for Air Transport to prepare proposals and recommended directions in air transport field for next five years

[NASA-TT-F-13947] N71-34015

FREE FALL

Fixed wing aircraft employing free fall and circling line techniques in rescue of personnel and retrieval of equipment

[AB-727007] N71-35228

FREE FLIGHT

Free flight hypersonic wind tunnel model testing in Ludwig tube, discussing launching device and recording setup

A71-40381

FREE FLOW

Free vortices from slender wings, controlling strength, position, core stability and thickness on basis of one dimensional flow model

A71-40492

Shock wave diffraction at asymmetric lenticular wing profile with free stream critical Mach number of 0.87, using Godunov difference scheme

A71-40679

Blunt and hemispherical base axisymmetric bodies in Mach 4 free stream, investigating turbulent near wake generation

A71-40999

Numerical analysis of plane steady transonic flows past lifting airfoils with freestream Mach numbers less than unity

[1960-12958-1] N71-34275

FRIEHT COSTS

Air freight economics and growth forecast, discussing rates, cost and technological aspects

A71-41840

FREQUENCY SCANNING

Doppler scanning landing microwave system for air-derived azimuth and elevation angle aircraft guidance by frequency coding and reference carrier transmission

A71-42089

FREQUENCY SHIFT

Laser system for atmospheric wind velocity and turbulence, using Doppler frequency shift undergone by radiation beam scattered by particles suspended in flows

A71-40490

FRICTION DRAG

Turbulent skin friction drag for tapered wings as function of root chord Reynolds number

A71-42839

FUEL COHESION

Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines

A71-40871

FUEL TANKS

Thermally resistant polymers for fuel tank sealants of advanced high speed aircraft

A71-35546

FUNCTIONAL ANALYSIS

Functional analysis of pilot warning instruments and pilot relationships during collision situations

[FAA-ED-71-59] N71-35216

FUSELAGES

Agusta helicopter design and testing criteria, discussing four-blade rotor, fuselage and radio navigation equipment

A71-42224

GAS BEARINGS

Two-axis pneumatic rate gyroscope with externally pressurized gas bearing for airborne vehicle fluidic autostabilizer sensor

A71-41666

GAS DENSITY

Gas density measurement and flow visualization in hypersonic wind tunnel by electron beam probe, noting isobaric boundary layer application

A71-40395

GAS FLOW

Compressible viscous gas supersonic flow, observing near wake region behind perpendicular trailing face of rectangular plate with motion, state, energy and continuity equations

A71-40881

Supersonic and hypersonic viscous gas flows with boundary layer induced pressure gradients, investigating disturbance upstream propagation by asymptotic theory

A71-40660

Pilot tube interaction with subsonic rarefied gas flow, considering impact pressure

A71-40695

Unsteady viscous gas flow between stationary solid wall and free solid wall vibrating at high frequency

A71-34276

GAS INJECTION

Windward injection into supersonic stream at angle of attack, minimizing vortex disruption

A71-42767

Mixing of hydrogen downstream from multiple injectors normal to supersonic jet flow, for supersonic combustion ramjet engines

[NASA-TM-8-D640] N71-34274

GAS JETS

Turbulence measurement in subsonic wind tunnel gas jet flows containing dust particles, using Doppler difference laser velocimeter

A71-40397

GAS TURBINE ENGINES

Higher pressure ratio trend in aircraft gas turbines leading to higher exit temperatures from compressor, noting real gas effects

A71-40870

Brazing filler metals as cost effective replacement for Au-Ni in aircraft gas turbine engine component

A71-40621

Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines

A71-40871

Book on aircraft propulsion covering design, dynamics, control, installation, gas turbine, ramjet, rocket and piston engines, compressors, combustion and energy cycles, etc

A71-42247

Air pollution by gas turbine aircraft engines

A71-36387

GAS TURBINES

Flow and heat transfer technology resulting from NASA turbine cooling program

[NASA-TM-X-2384] N71-36120

GAS METAL INTERACTIONS

Metal embrittlement by gaseous hydrogen, discussing
countermeasures against hydrogen metal interaction and cracking

GENERAL AVIATION AIRCRAFT

Aerial land rover for special needs of developing countries as passenger and freight aircraft, crop spraying and dusting, aerial survey and fire fighting

Potential impact of advanced technology in 1985 on four types of general aviation aircraft including STOL V/STOL, and helicopters [NASA-CR-114339] N71-35210

Potential impact of advanced technology in 1985 on four types of general aviation aircraft including STOL V/STOL, and helicopters [NASA-CR-114339] N71-35210

Influence of advanced technology and design philosophies on general aviation aircraft for 1985 [NASA-CR-114336] N71-35217

GLIDING

World championship gliding team medicophysiological problems during competition at Marfa, Texas, discussing climatic adaptation, nutrition, hypoxia and pilots general physical and psychomotor conditions

GOALS

Low speed aerodynamics, detailing relevance tree technological forecasting method of Canadian sciences council national goals list

GOLD ALLOYS

Brazing filler metals as cost effective replacement for Au–Bi in aircraft gas turbine engine component

GRAPHs (CHARTS)

GROUND EFFECT

Wall interference for static stability tests in closed rectangular test sections and in ground effect [NASA-TR-H-364] N71-35386

GROUND EFFECT MACHINES

Performance characteristics of air cushioned landing and takeoff system during aircraft stiff-operation mode [AD-72606] N71-35223

GROUND SUPPORT EQUIPMENT

Development of procedures for conducting service tests of aircraft refueling and defueling systems [AD-726872] N71-35227

GROUND TESTS

German VAK 191B combat VTOL aircraft development program, describing prototype ground tests, autopilot preoptimization and hover flight tests

GUIDE VANES

Normal shock existence in blade spacings of rotor and guide vanes of axial flow supersonic compressor as function of pressure nonuniformity

GUSTS

Atmospheric and wake turbulence effects on aircraft from discrete gust and spectral interpretations, discussing load production and uncontrollable rolling moments

HANGARS

Fabrication and field testing of lightweight, recoverable, air-transportable hangar [AD-727051] N71-35396

Fabrication and field testing of aircraft maintenance hangars and general purpose shelters [AD-727047] N71-35397

HARNESSES

Automated electrical wire harness manufacturing for Boeing 747 aircraft, discussing development of numerical control program

HEAD-UP DISPLAYS

Aircraft head-up display systems for providing pilot information focused at infinity within pilot normal field of view

VTOL and fan lift STOL aircraft, discussing simulation and head-up displays for roll demand, vertical speed and ILS beam

HEARING

Aircraft noise effects on hearing acuity and perceptual and intellectual judgment tasks

HELICOPTER CONTROL

U.S. Army VTOL cost-effective system developments for high density low altitude helicopter tactical operations to avoid enemy radar under near-all weather conditions

HELICOPTER DESIGN

Agusta helicopter design and testing criteria, discussing four-blade rotor, fence and radio navigation equipment

HELICOPTER PERFORMANCE

Helicopter wake and boundary layer effects on rotor aerodynamic performance in hovering, low and high speed forward flight

HELICOPTER WAKES

Fog formation and dispersal by velocity field induced by helicopter trailing vortices, presenting dynamic model with droplet depletion, evaporation and condensation

HELICOTERS

Potential impact of advanced technology in 1985 on four types of general aviation aircraft including STOL V/STOL, and helicopters [NASA-CR-114339] N71-35210

Calculations of helicopter airloads using lifting surface theory compared with experimental data [AD-726717] N71-35226

HERMAPHRODITES

Blunt and hemispherical base axisymmetric bodies in Mach 4 free stream, investigating turbulent near wakes generation

HIGH ALTITUDE

High altitude flight test of reedeed 12.2-meter-diameter disk-jet-band parachute with deployment at 2.58 Mach number [NASA-TR-D-6469] N71-36026

HIGH ALTITUDE BALLOONS

Alcyon project PEA II, considering balloon stabilization efficiency during night-day transition and system reliability

HIGH TEMPERATURE

Velocity pulsations of high temperature hypersonic flow based on interrelation of total stagnation pressure pulsations and longitudinal velocity pulsations [AD-726605] N71-35423

Thermally resistant polymers for fuel tank sealants of advanced high speed aircraft [NASA-CR-119946] N71-35546

HOVERING

German VAK 191B combat VTOL aircraft development program, describing prototype ground tests, autopilot preoptimization and hover flight tests

HUMAN PATHOLOGY

Sick and injured transportation aboard regular airliners, considering pathological and psychological contraindications

HUMAN TOLERANCES

Relations between aircraft and road traffic noise and noise tolerance in communities [TT-7102] N71-36019

HYDRAULIC EQUIPMENT

Analytical procedures for predicting coupled fluid structural responses of aircraft hydraulic systems

HYDROCARBON FUELS

Thermal stability of naphthenes up to 1000 °F, considering hypersonic aircraft fuel applications

A-16
Aircraft ILS landing approaches, discussing approach area and surface and obstruction clearance surface and limit A71-40887

Doppler scanning landing microwave system for air-derived azimuth and elevation angle aircraft guidance by frequency coding and reference carrier transmission A71-42089

Scanning microwave landing guidance system coordinates choice, discussing signal format, antenna planar or conical beams and V/STOL application A71-42090

All weather landing system design, development, and field and flight testing A71-35777

Integral Equations
Lifting line theory extension to low aspect ratio wings, proposing formulation for Prandtl integral equation A71-42288

Intelligibility
Time varying aircraft noise effect on speech intelligibility, discussing test for relation to articulation index A71-40709

Integral Combustion Engines
Book on aircraft propulsion covering design, dynamics, control, installation, gas turbine, ramjet, rocket and piston engines, compressors, combustion and energy cycles, etc A71-42627

International Cooperation
International cooperation in aerospace projects, discussing Concorde program organization A71-42011

International Law
Air piracy /hijacking/ bibliography, considering national and international law, extradition, punishment, prevention and safety assurance for passengers and crews A71-41617

Inviscid Flow
Turbulent motions in fluids of small viscosity as inviscid flows with vortex sheets and rolled-up cores A71-40010

J
Jet Aircraft
Peak velocity vectors in transverse plane of jet transport aircraft wake, measuring tip vortices core size A71-40491

Flight tests for hazard evaluation to other aircraft from wake turbulence generated by large jet transport airplanes A71-40506

Mineral oil jet fuel velocity optimization for stratospheric and tropospheric jet aircraft flights A71-41497

Technology of thrust reversers with particular application to STOL aircraft [NASA-CR-121736] A71-34254

Jet Aircraft Noise
Reduction of jet exhaust noise at airports A71-36388

Jet Engine Fuels
Soviet monograph on carbon deposits in jet engines covering distribution, formation, fuel properties, reduction and removal and harmful effects in gas turbines A71-40671

Jet Engines
Jet engines with afterburners, describing exhaust nozzle control, takeoff and landing advantages and thrust variations A71-40858

Jet Flaps
Two dimensional jet flapped symettric wing in subsonic flow, assuming irrotational flow inside jet boundary by vortex sheets A71-40172

Jet Flaps Application to Autogyro Rotor, using Pressure Jump for Air Centrifugation A71-41399

Jet Flow
Symmetrical and unilateral sticking flow nodes of nozzle jet air expelled into plane-parallel and parabolic ducts A71-42681

Jet Mixing Flow
Mixing of hydrogen downstream from multiple injectors normal to supersonic jet flow, for supersonic combustion ramjet engines [NASA-TN-D-6476] A71-36274

K
Karaman Vortex Street
Aircraft wake turbulence, reviewing aerodynamic vortex research as exemplified by Karaman vortex street and edgetone phenomenon A71-40483

L
L-1011 Aircraft
On-condition monitoring of aircraft hydraulic systems for component deterioration, applying to Boeing 747, L-1011 and DC 10 aircraft A71-42075

Lagrange Coordinates
Slender body of revolution in supersonic and subsonic air flow, calculating boundary conditions with Lagrange formulation A71-40963

Laminar Flow
Numerical analysis of laminar, incompressible flow along corner formed by intersection of two thin airfoils [AD-726546] A71-35201

Laminates
Analysis of low cycle thermal fatigue in laminated porous wall turbine vanes [NASA-CR-72954] A71-34944

Landing Aid
Short haul air transportation, discussing performance requirements, community acceptance and navigation and landing aids A71-42073

Modular step scan microwave aircraft landing system /TALAS/ design and operation, noting short takeoff and landing A71-42088

Microwave scanning beam guidance receiver design for aircraft landing aid, discussing time sharing and flight control A71-42091

Landing Gear
Analysis of aircraft ground flotation characteristics based on aircraft type and airfield construction [AD-72077] A71-34024

Performance characteristics of air cushioned landing and takeoff systems during aircraft stiff-operation node [AD-726506] A71-35223

Landing Sites
Performance and environmental tests of membranes for airfield surfacing [AD-726891] A71-35398

Laser Outputs
Laser system for atmospheric wind velocity and turbulence, using Doppler frequency shift undergone by radiation beam scattered by particles suspended in flows A71-40940

Laser Tracker
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Document Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Systems</td>
<td></td>
</tr>
<tr>
<td>past lifting airfoils with freestream Mach numbers less than unity</td>
<td>A71-34275</td>
</tr>
<tr>
<td>Calculations of helicopter airloads using lifting surface theory with</td>
<td></td>
</tr>
<tr>
<td>experimental data</td>
<td>[AD-726717]</td>
</tr>
<tr>
<td>Lifting Motors</td>
<td></td>
</tr>
<tr>
<td>Helicopter wake and boundary layer effects on rotor aerodynamic</td>
<td></td>
</tr>
<tr>
<td>performance in hovering, low and high speed forward flight</td>
<td>A71-41500</td>
</tr>
<tr>
<td>Aquisita helicopter design and testing criteria, discussing four-blade</td>
<td></td>
</tr>
<tr>
<td>rotor, fuselage and radio navigation equipment</td>
<td></td>
</tr>
<tr>
<td>Linear Filters</td>
<td></td>
</tr>
<tr>
<td>VOR/DME air navigation equipment using Kalaen-Bucy filter and airborne</td>
<td></td>
</tr>
<tr>
<td>air data system /ADS/</td>
<td>A71-42269</td>
</tr>
<tr>
<td>Liquid Flow</td>
<td></td>
</tr>
<tr>
<td>Evaluation of liquid methane storage and transfer problems for</td>
<td></td>
</tr>
<tr>
<td>future supersonic aircraft cryogenic fuel requirements</td>
<td>[NASA-CR-72952]</td>
</tr>
<tr>
<td>Load Distribution (Forces)</td>
<td></td>
</tr>
<tr>
<td>Drooped wing tip effects on trailing vortex sheet structure and</td>
<td></td>
</tr>
<tr>
<td>position from spanwise load distribution determination by vortex</td>
<td></td>
</tr>
<tr>
<td>lattice theory</td>
<td>A71-40943</td>
</tr>
<tr>
<td>Longitudinal Stability</td>
<td></td>
</tr>
<tr>
<td>Phugoid motion at constant angle of attack without thrust line</td>
<td></td>
</tr>
<tr>
<td>displacement from aircraft center of gravity, noting longitudinal</td>
<td></td>
</tr>
<tr>
<td>stability</td>
<td></td>
</tr>
<tr>
<td>Loudness</td>
<td></td>
</tr>
<tr>
<td>Sonic booms loudness as function of peak overpressures and rise rates,</td>
<td></td>
</tr>
<tr>
<td>using semicircular formulae</td>
<td>A71-40530</td>
</tr>
<tr>
<td>Prediction methods for human aircraft noise perception, assessing</td>
<td></td>
</tr>
<tr>
<td>weighted sound pressure level or complex loudness-noisiness</td>
<td></td>
</tr>
<tr>
<td>computation scales</td>
<td></td>
</tr>
<tr>
<td>Low Aspect Ratio Wings</td>
<td></td>
</tr>
<tr>
<td>Lifting line theory extension to low aspect ratio wings, proposing</td>
<td></td>
</tr>
<tr>
<td>formulation for Prandtl integral equation</td>
<td></td>
</tr>
<tr>
<td>Second order slender wing theory for calculating</td>
<td></td>
</tr>
<tr>
<td>supersonic flow over low aspect ratio wings with subsonic leading</td>
<td></td>
</tr>
<tr>
<td>edges and leading edge separation</td>
<td></td>
</tr>
<tr>
<td>Low Speed</td>
<td></td>
</tr>
<tr>
<td>Low speed aerodynamics, detailing relevance tree technological</td>
<td></td>
</tr>
<tr>
<td>forecasting method or Canadian science council national goals list</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
</tr>
<tr>
<td>Aircraft parts lubrication friction and wear problems, discussing</td>
<td></td>
</tr>
<tr>
<td>failure modes, solid and liquid lubricants, component damage and</td>
<td></td>
</tr>
<tr>
<td>lubrication systems</td>
<td></td>
</tr>
<tr>
<td>Mach Number</td>
<td></td>
</tr>
<tr>
<td>Numerical analysis of planar steady transonic flows past lifting</td>
<td></td>
</tr>
<tr>
<td>airfoils with freestream Mach numbers less than unity</td>
<td>[D180-12958-1]</td>
</tr>
<tr>
<td>Machine Oriented Languages</td>
<td></td>
</tr>
<tr>
<td>Abbreviated test language for avionic systems, discussing process</td>
<td></td>
</tr>
<tr>
<td>organization, statement formats, vocabulary and syntax diagrams</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Performance test and evaluation of hand tools used in support of</td>
<td></td>
</tr>
<tr>
<td>military aircraft maintenance</td>
<td>[AD-726893]</td>
</tr>
<tr>
<td>RAM Machine Systems</td>
<td></td>
</tr>
<tr>
<td>Fast time digital computer simulation model for evaluation of man-mach</td>
<td></td>
</tr>
<tr>
<td>ine interface /display/ problem of ATC system including personnel and</td>
<td></td>
</tr>
<tr>
<td>equipment</td>
<td></td>
</tr>
</tbody>
</table>

MAN MACHINE SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Document Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lases</td>
<td></td>
</tr>
<tr>
<td>Dual scatter laser Doppler velocimeters for transonic wind tunnel</td>
<td></td>
</tr>
<tr>
<td>measurements and calibration applied to simulated downwash, high lift</td>
<td></td>
</tr>
<tr>
<td>wing and jet crossflow</td>
<td></td>
</tr>
<tr>
<td>Lateral Stability</td>
<td></td>
</tr>
<tr>
<td>Variable stability aircraft lateral directional flying qualities,</td>
<td></td>
</tr>
<tr>
<td>investigating turbulence effects</td>
<td></td>
</tr>
<tr>
<td>Launchers</td>
<td></td>
</tr>
<tr>
<td>Free flight hypersonic wind tunnel model turbulence in Ludwig tube,</td>
<td></td>
</tr>
<tr>
<td>discussing launching device and recording setup</td>
<td></td>
</tr>
<tr>
<td>Law (Jurisprudence)</td>
<td></td>
</tr>
<tr>
<td>Air piracy /hijacking /bibliography, considering national and</td>
<td></td>
</tr>
<tr>
<td>international law, extradition, punishment, prevention and safety</td>
<td></td>
</tr>
<tr>
<td>assurance for passengers and crews</td>
<td></td>
</tr>
<tr>
<td>Wrongful death liability in aviation and admiralty, considering U.S.</td>
<td></td>
</tr>
<tr>
<td>Congress refusal to enact legislation</td>
<td></td>
</tr>
<tr>
<td>Judicial Panel on Multidistrict Litigation of federal district and</td>
<td></td>
</tr>
<tr>
<td>court of appeals judges with power to transfer cases to single district</td>
<td></td>
</tr>
<tr>
<td>Federal Aviation Act amendment prohibiting controlling interest in air</td>
<td></td>
</tr>
<tr>
<td>carrier without Civil Aeronautics Board approval</td>
<td></td>
</tr>
<tr>
<td>Leading Edges</td>
<td></td>
</tr>
<tr>
<td>Second order slender wing theory for calculating supersonic flow over</td>
<td></td>
</tr>
<tr>
<td>low aspect ratio wings with subsonic leading edges and leading edge</td>
<td></td>
</tr>
<tr>
<td>separation</td>
<td></td>
</tr>
<tr>
<td>Leading edge shock impingement and interaction heating on scale model</td>
<td></td>
</tr>
<tr>
<td>straight wing orbiter</td>
<td></td>
</tr>
<tr>
<td>Finite difference method for two dimensional and three dimensional</td>
<td></td>
</tr>
<tr>
<td>viscous flow problem with applications to hypersonic leading edge</td>
<td></td>
</tr>
<tr>
<td>equation</td>
<td></td>
</tr>
<tr>
<td>Legal Liability</td>
<td></td>
</tr>
<tr>
<td>Wrongful death liability in aviation and admiralty, considering U.S.</td>
<td></td>
</tr>
<tr>
<td>Congress refusal to enact legislation</td>
<td></td>
</tr>
<tr>
<td>Lift</td>
<td></td>
</tr>
<tr>
<td>Spanwise lift distribution over wings and wake formation in thin</td>
<td></td>
</tr>
<tr>
<td>airfoils of finite aspect ratio in linear subsonic potential flow</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic aspect ratio effects on drag and aircraft performance,</td>
<td></td>
</tr>
<tr>
<td>noting span loading as major force on wing lifting function</td>
<td></td>
</tr>
<tr>
<td>KC-135 aircraft cissus trajectories for optimum constant lift</td>
<td></td>
</tr>
<tr>
<td>coefficient, range and fuel amount</td>
<td></td>
</tr>
<tr>
<td>Lifting line equation inversion for twisted wings of elliptic planform</td>
<td></td>
</tr>
<tr>
<td>with arbitrary spanwise upwash</td>
<td></td>
</tr>
<tr>
<td>Theoretical analysis of trailing edge blowing effects on circulation</td>
<td></td>
</tr>
<tr>
<td>around airfoils based on iterative solutions with lift coefficients</td>
<td></td>
</tr>
<tr>
<td>Lifting Devices</td>
<td></td>
</tr>
<tr>
<td>Lifting configurations unsteady air loads</td>
<td></td>
</tr>
<tr>
<td>prediction, investigational loading singularities in linearized</td>
<td></td>
</tr>
<tr>
<td>potential theory</td>
<td></td>
</tr>
<tr>
<td>Lift Fans</td>
<td></td>
</tr>
<tr>
<td>VTOL and fan lift STOL aircraft, discussing simulation and head-up</td>
<td></td>
</tr>
<tr>
<td>displays for roll demand, vertical speed and ILS beam</td>
<td></td>
</tr>
<tr>
<td>Tip-turbine lift fan design and specifications</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic characteristics of lift fan installation for direct lift</td>
<td></td>
</tr>
<tr>
<td>VTOL aircraft</td>
<td></td>
</tr>
<tr>
<td>Evaluation of air generator-remote lift fan propulsion system for</td>
<td></td>
</tr>
<tr>
<td>VTOL transports</td>
<td></td>
</tr>
<tr>
<td>Lifting Bodies</td>
<td></td>
</tr>
<tr>
<td>Numerical analysis of plane steady transonic flows past lifting</td>
<td></td>
</tr>
<tr>
<td>airfoils with freestream Mach numbers less than unity</td>
<td></td>
</tr>
</tbody>
</table>
Display devices in aircraft cockpit providing pilots with information from various sources, considering head-up display and CFD

ATC display device man-computer interaction faults and delays effects on operator performance

Assessing research and development in hypersonic aircraft for determining requirements for hypersonic research facilities

Development of analysis techniques for determining causes for airport congestion and interaction of various causes

Automated high-voltage wire harness manufacturing for Boeing 747 aircraft, discussing development of numerical control program

Manufacture and dynamic testing of external store models for transonic wind tunnels

Fabrication and field testing of lightweight, recoverable, air-transportable hangar

Avionics combined guidance system for area navigation, discussing design, color map projections, overlays, CPI unit and viewability

Application of aerial reconnaissance and remote sensor techniques to development of master engineering soil plans

Aerial surveys for determining plutonium concentration using array of Nal detectors

Performance tests and evaluation of wire cable materials for use with aircraft arresting gear

Chemical and structural analysis techniques for materials suitable for aircraft structures

Analytical model for air navigation and ATC system design, demonstrating system parameters effects on lateral separation standards for parallel flight lanes

Mathematical models for computerized ATC automatic aircraft flight tracking logics without tracks smoothing

Semiempirical formula representing sonic boom loudness as function of overpressure and time compared with experimental and theoretical calculations

Carbon fiber reinforced plastics, considering aerospace and medical applications

Medico-legal examination of aircraft parts to determine cause of crash

Performance and environmental tests of membranes for airfield surfacing

Corrosive delamination occurrence, reduction and prevention in metal-metal adhesive bonded aircraft structures

Adhesive and coating material formulations and manufacturing processes for lightweight low-permeability braces for use in high altitude decelerators

Research Flight Facility participation in DOMEX program and aircraft data inventory
panels

-permanagates and chlorates - A71-41571

panels

-modal analysis of response and fatigue of aluminum aircraft panels modal response - N71-36273

parachutes

-high altitude flight test of reefed 12.2-meter-diameter disk-gap-band parachute with deployment at 2.58 Mach number [NASA TN D-5469] - N71-34026

parking

-unassisted aircraft parking system (Accu-Pack), discussing equipment design safety and accuracy - A71-41247

passengers

-airport design for passenger and baggage handling efficiency, considering choice between continuous and batching type intra-airport transit system - A71-42072

patients

-oxygen supply to air transported patients by chemical compounds, suggesting use of permanagates and chlorates - A71-41571

-sick and injured transportation aboard regular airliners, considering pathological and psychological contraindications - A71-41572

performance prediction

-fast time digital computer simulation model for evaluation of man-machine interface/display problem of ATC system including personnel and equipment - A71-40112

-performance levels prediction for airborne solid state phased array radar transmission sources, considering TRAPATT devices - A71-41630

performance tests

-computerized touch display for ATC tasks compared to conventional keyboard tabular display performance - A71-40114

-agusta helicopter design and testing criteria, discussing four-blade rotor, fuselage and radio navigation equipment - A71-42224

-takeoff and landing performance evaluation for commercial STOL aircraft, noting high bypass ratio turbofans and high lift systems used - A71-42286

-tests to determine effectiveness of two linear rate-field displays for use as flight instruments [AD-726681] - N71-35229

-performance and environmental tests of membranes for airfield surfacing [AD-726891] - N71-35398

-performance test and evaluation of hand tools used in support of military aircraft maintenance [AD-725893] - N71-35558

permanagates

-oxygen supply to air transported patients by chemical compounds, suggesting use of permanagates and chlorates - A71-41571

-personnel management

-military pilot handling characteristics, discussing combat operations, accident prevention and blind landing - A71-42239

-phased arrays

-infrared and thermal evaluation of tactical aircraft phased array radar antenna design with cooling air distribution for steady state operating temperature maintenance - A71-40434

-performance levels prediction for airborne solid state phased array radar transmission sources, considering TRAPATT devices - A71-41630

-photographic equipment

-aerial photographic equipment survey, describing topographic cameras, aerial photograph orientation equipment, onboard navigation instruments and mapping survey system - A71-40875

subject index

photographic recording

-delta wing shock envelope visualization at hypersonic speed, obtaining flow field photographs by vapor screen technique - A71-40973

physiological effects

-aircraft noise effects on hearing acuity and perceptual and intellectual judgment tasks - A71-40351

-world championship gliding team medico-physiological problems during competition at Marble Falls, Texas, discussing climatic adaptation, nutrition, hypoxia and pilots general physical and psychoonotor conditions - A71-41576

physiological factors

-physiological effects in fatal aircraft accidents, discussing pilot incapacitation and transient functional disturbances - A71-41834

-pilot error

-epidemiology statistics of USAF spatial disorientation aircraft accidents, noting pilot training, flight environment and indoctrination remedy programs - A71-40359

-physiological factors in fatal aircraft accidents, discussing pilot incapacitation and transient functional disturbances - A71-41834

-pilot performance

-sleep related fatigue in pilot performance and flight safety, considering sleep lack and disruption and irregular duty patterns - A71-40590

-simulated airline pilot cerebral incapacitation etiology, incidence and detection, noting unsupervised crew members conduct and reaction times during approach for landing - A71-41824

-in-flight study of work/rest cycle effects on double crew performance and fatigue in flying transport missions - A71-41829

-military pilot handling characteristics, discussing combat operations, accident prevention and blind landing - A71-42239

-functional analysis of pilot warning instruments and pilot relationships during collision situations [FAA-RR-71-59] - N71-35216

-development and evaluation of experimental test plan for solutions of motion drive problem in formation flying task with flight simulators [NASA CR-174345] - N71-35385

-pilot selection

-medical rejection statistics of applicants for USA/BOAC pilot training, considering ophthalmic, ear, nose, throat and general health condition - A71-41823

-pilot training

-medical rejection statistics of applicants for USA/BOAC pilot training, considering ophthalmic, ear, nose, throat and general health condition - A71-41823

-pilots (personnel)

-world championship gliding team medico-physiological problems during competition at Marble Falls, Texas, discussing climatic adaptation, nutrition, hypoxia and pilots general physical and psychoonotor conditions - A71-41576

-military pilot handling characteristics, discussing combat operations, accident prevention and blind landing - A71-42239

-piston engines

-torsional natural frequencies in coupled turbine and reciprocating engine system driving common propeller, using matrix techniques [ASME PAPER 71-VIBR-83] - A71-40319

-pitch (inclination)

-phugoid motion at constant angle of attack without thrust line displacement from aircraft center of gravity, noting longitudinal stability - A71-40168

-pitot tubes

-pitot tube interaction with subsonic rarefied gas flow, considering impact pressure - A71-40168
PLAN POSITION INDICATORS
Air traffic controller height and plan position indicator composite picture display system design and operation, combining functions of primary and secondary surveillance radars

PLANE WAVES
Numerical analysis of pressure distribution in flow field due to diffraction of plane shock wave by thin wings

PLASTIC COATINGS
Adhesive and coating material formulations and manufacturing processes for lightweight low-permeability braces for use in high altitude decelerators

PLATING
NASTRAN static, modal, and transient analyses plotting techniques with delta wing examples

PLUTONIUM
Aerial surveys for determining plutonium concentration using array of NaI detectors

PNEUMATICS
Transfer function system relating cornering force and aligning torque of rolling pneumatic aircraft tire to yaw angle and lateral displacement

POLYMERS
Thermally resistant polymers for fuel tank sealants of advanced high speed aircraft

POROUS MATERIALS
Analysis of low cycle thermal fatigue in laminated porous wall turbine vanes
Analysis of low cycle thermal fatigue in laminated porous wall turbine vanes

POROUS WALLS
Potential Flow

Potential Theory
Lifting configurations unsteady air loads prediction, investigating loading singularities in linearized potential theory

PRECIPITATION (METEOROLOGY)
Static electriﬁcation of aircraft when flying through clouds and precipitation

PRESSURE DISTRIBUTION
Two dimensional flow over two dimensional ﬁnite wing without correction for downwash, assuming known pressure distribution

PRESSURE EFFECTS
Sonic booms loudness as function of peak overpressures and rise times, using semiempirical formulae

PRESSURE GRADIENTS
Higher pressure ratio trend in aircraft gas turbines leading to higher exit temperatures from compressor, noting real gas effects

PRESSURE RECOVERY
Conical diffusers outlet ﬂow proﬁle and performance, investigating swirling inlet ﬂow effects on pressure recovery

PRESSURE REDUCTION
Unsteady pressure gradient reduction effect on airfoil dynamic stall delay

PRODUCT DEVELOPMENT
Aircraft tracking and guidance facility using FPS-16 radar supplemented by laser tracker permanently mounted on antenna

PROJECT MANAGEMENT
International cooperation in aerospace projects, discussing Concord program organization

PROPELLERS
Propeller vortex noise analysis by on-line 1/3 octave band resolution, discussing characteristic results from noise measurements on various propeller conﬁgurations

Sensitivity analysis of advance propeller conﬁgurations designed for general aviation aircraft of 1980 time period

PROPELLER SYSTEM CONFIGURATIONS
Book on aircraft propulsion covering design, dynamics, control, installation, gas turbine, ramjet, rocket and piston engines, compressors, combustion and energy cycles, etc

Evaluation of air generator-remote lift fan propulsion system for VTOL transports

PSYCHOLOGICAL FACTORS
Sick and injured transportation aboard regular airliners, considering pathological and psychological contraindications

PULSE RATE
Velocity pulsations of high temperature hypersonic flow based on interrelation of total stagnation pressure pulsations and longitudinal velocity pulsations

QUANTUM EFFECTS
Aircraft flash light designs, discussing tandem oscillating lights, ﬁxed lamp rotating reﬂectors and lamps, xenon flash tube, quartz-iodine lamp and flash frequencies

QUANTUM LAMPS
Pressure distribution analysis of sound inside duct of ducted propellers
Comparisons of theoretical and experimental pressure distribution over wing-body model at high supersonic speeds
Numerical analysis of pressure distribution in flow field due to diffraction of plane shock wave by thin wings

SUBJECT INDEX
Quartz lamps

A-23
SUHJECT INDEX

Radar Antennas

Infrared and thermal evaluation of tactical aircraft phased array radar antenna design with cooling air distribution for steady state operating temperature maintenance N71-40434

Radar Data

National Aviation System stage A ATC displaying digitized radar data positions together with automatic track positions N71-34170

Radar Equipment

Computer simulation of aircraft collision-barezard warning radar techniques in terminal area N71-41634

Radar Imaging

All-weather landing system design, development, and field and flight testing N71-35777

Radar Imagery

Application of aerial reconnaissance and remote sensor techniques to development of laser engineering soil plans [PB-199422] N71-35447

Radar Tracking

Air craft tracking and guidance facility using FF2-16 radar supplemented by laser tracker permanently mounted on antenna [NASA-CR-111931] N71-34200

Radar Transmission

Performance levels predictions for airborne solid state phased array radar transmission sources, considering TAPATT devices N71-41630

Radar Scopes

ATC display devices with computer-derived alphanumeric labels on radar screen, examining feasibility and effectiveness N71-40118

Radar Detectors

Aerial surveys for determining plutonium concentration using array of NaI detectors [EGG-1183-1517] N71-35980

Radar Effects

Atmospheric wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation and radio activity effects on commercial SST Concorde flight N71-40829

Radio Navigation

Unaided, integrated and differential OMEGA radio navigation configurations, comparing accuracy and suitability for airways system operation N71-42082

Agusta helicopter design and testing criteria, discussing four-blade rotor, fuselage and radio navigation equipment N71-42224

Radio Receivers

Microwave scanning beam guidance receiver designs for aircraft landing aid, discussing time sharing and flight control N71-42091

Radioactive Wastes

Aerial surveys for determining plutonium concentration using array of NaI detectors [EGG-1183-1517] N71-35980

Radar Engines

Book on aircraft propulsion covering design, dynamics, control, installation, gas turbine, ramjet, rocket and piston engines, compressors, combustion and energy cycles, etc A71-41494

Random Loads

Random loading parameters adjustment in fatigue tests of welded aircraft structures N71-41692

 Rarefied Gas Dynamics

Pitot tube interaction with subsonic rarefied gas flow, considering impact pressure N71-40695

Real Gases

Higher pressure ratios trend in aircraft gas turbines leading to higher exit temperatures from compressor, noting real gas effects N71-40107

Recommendations

Actions and recommendations of Ninth Meeting of Airworthiness Committee [DO-6925] N71-34020

Recording Instruments

Airborne audio-video recording system designs and requirements [AD-726072] N71-35227

Rectangular Plates

Compressible viscous gas supersonic flow, observing near wake region behind perpendicular trailing face of rectangular plate with motion, state, energy and continuity equations A71-40081

Rectangular Wind Tunnels

Wall interference for static stability tests in closed rectangular test sections and in ground effect [NASA-TR-B-364] N71-35386

Reflectors

Air craft flash light designs, discussing tandem oscillating lights, fixed lamp rotating reflectors and lamps, xenon flash tube, quartz-iodine lamp and flash frequencies A71-41494

Refueling

Development of procedures for conducting service tests of aircraft refueling and defueling systems [AD-726072] N71-35386

Regulations

Air craft anticollision flashing lights, discussing current practices within national and international air traffic regulations regarding flash frequency, color and light sources N71-41499

Airport noise control regulations enforcement feasibility, noting financial burden A71-41796

Reinforced Plastics

Carbon fiber reinforced plastics, considering aerospace and medical applications N71-40702

Reinforcement (Structures)

Buckling of thin-walled open sections on elastic foundation with constrained direction reinforcement A71-41693

Reinforcing Fibers

Carbon fiber reinforced plastics, considering aerospace and medical applications A71-40702

Reliability Analysis

Alcyon project PTA 1, considering balloon stabilization efficiency during night-day transition and system reliability N71-42400

Reliability Engineering

Development of procedures for conducting service tests of aircraft refueling and defueling systems [AD-726072] N71-35227

Remote Sensors

Aircraft heat viewer for underlying surfaces radiation properties, suggesting qualitative survey type thermal aerial photo combination with simultaneous radiometric measurements A71-41300

Application of aerial reconnaissance and remote sensor techniques to development of laser engineering soil plans [PB-199422] N71-35447

Rescue Operations

Fixed wing aircraft employing free fall and circling-line techniques in rescue of personnel and retrieval of equipment [AD-727007] N71-35228

Research Facilities

Preliminary research requirements analysis and design and cost synthesis of ground research facilities for hypersonic aircraft [NASA-CR-114323] N71-34236

Parametric research requirements analysis and synthesis of ground research facilities for hypersonic aircraft [NASA-CR-114325] N71-34237

Analysis of ground research facilities for hypersonic aircraft
simulation and head-up displays for roll demand, vertical speed and ILS beam

A71-00134

modular step scan microwave aircraft landing system [ZTRH/ design and operation, noting short takeoff and landing

A71-01408

Takeoff and landing performance evaluation for commercial STOL aircraft, noting high bypass ratio turbfans and high lift systems use

A71-02286

FA-200Is experimental aircraft for investigating operational problems of STOL type aircraft

[NAI-TR-279] 771-034005

Wind tunnel investigation of external-flow jet-flap transport configuration having full-span triple-slotted flaps - graphs

Technology of thrust reversers with particular application to STOL aircraft

[NASA-CH-121736] 771-034259

Potential impact of advanced technology in 1985 on four types of general aviation aircraft including STOL /VSTOL, and helicopters

[NASA-CH-114339] 771-035210

SHROUDED PROPELLERS

Pressure distribution analysis of sound inside duct ofducted propellers

SIGNAL TRANSMISSION

Techniques for minimizing snow and ice effects on TACAN antenna signals

[AA-RT-71-56] 771-035773

SINGULARITY (MATHEMATICS)

Lifting configurations unsteady air loads prediction, investigating loading singularities in linearized potential theory

A71-042832

SLEEP DEPRIVATION

Sleep related fatigue in pilot performance and figh safety, considering sleep lack and disruption and irregular duty patterns

A71-04590

SLENDER BODIES

Slender body of revolution in supersonic and subsonic airflow, calculating boundary conditions with Lagrange formulations

A71-04963

SLENDER WINGS

Free vortices from slender wings, controlling strength, position, core stability and thickness on basis of one dimensional flow model

A71-04992

Second order slender wing theory for calculating supersonic flow over low aspect ratio wings with subsonic leading edges and leading edge separation

[NASA-CH-1860] 771-034006

Correction for straight trailing edges for subsonic slender wing theory using asymptotic expansions

A71-034012

SLIDING FRICTION

Aircraft parts lubrication friction and wear problems, discussing failure modes, solid and liquid lubricants, component damage and lubrication systems

A71-04902

SLIPSTREAMS

Viscous slipstream flow downstream of triple shock wave intersection in supersonic diffuser airflow, using Pitot and static pressure probe measurements

A71-04981

SNOW

Techniques for minimizing snow and ice effects on TACAN antenna signals

[AA-RT-71-56] 771-035773

SODIUM IODIDES

Aerial surveys for determining plutonium concentration using array of Ge detectors

[EGY-1103-1517] 771-035980

SOLAR STATE DEVICES

Performance levels prediction for airborne solid state phased array radar transmission sources, considering TRAPAS devices

A71-04130

SOLID SURFACES

Performance and environmental tests of membranes for airfield surfacing

[AD-726891] 771-035398

SONIC BOOMS

Sonic boom loudness as function of peak overpressures and rise times, using semiempirical formulae

A71-040530

SST sonic boom generation, discussing aircraft design and atmospheric conditions: effects and property damage

A71-040705

Sonic boom minimization including front and rear shocks, exemplifying by SST aircraft

A71-049972

Annotated bibliography on noise pollution-sonic booms

[AD-722910] 771-034023

Semiempirical formulae representing sonic boom loudness as function of overpressure and time compared with experimental and theoretical calculations

[JSRV-TR-46] 771-035214

SOUND PRESSURE

Prediction methods for human aircraft noise perception, assessing weighted sound pressure level or complex loudness-noisiness computation scales

A71-040866

Pressure distribution analysis of sound inside duct ofducted propellers

SPACE COMMUNICATION

Navigational accuracy resulting from sidetone signals relayed by two synchronous ATS-1 and ATS-3 satellites and application to aircraft navigation

[NASA-CH-121977] 771-035770

SPACE ORIENTATION

Epidemiology statistics of USAF spatial disorientation aircraft accidents, noting pilot training, flight environment and indoctrination remedy programs

A71-04359

SPACE SHUTTLES

Leading edge shock impingement and interaction heating on scale model straight wing orbiter

A71-035196

SPACE SURVEILLANCE (GROUND BASED)

Navigation and surveillance interdependence in ATO

A71-042095

SPACECRAFT CONFIGURATIONS

Wind tunnel stability tests of variable dihedral delta wing spacecraft configuration at hypersonic speed

SPACECRAFT CONSTRUCTION MATERIALS

Metal embrittlement by gaseous hydrogen, discussing countermeasures against hydrogen-metal interaction and cracking

A71-041999

SPACECRAFT GUIDANCE

Aerospace guidance technology evolution at NIT with emphasis on inertial systems

A71-041953

SPACECRAFT TRAJECTORIES

Aerodynamic and flight characteristics of supersonic aircraft and spacecraft motion in planetary gravitational fields

A71-035224

SPECTRUM ANALYSIS

Atmospheric and wake turbulence effects on aircraft from discrete gust and spectral interpretations, discussing load production and uncontrollable rolling moments

A71-040557

SPEECH RECOGNITION

Time varying aircraft noise effect on speech intelligibility, discussing test for relation to articulation index

A71-04709

STABILIZATION

Alcyon project FTA 1, considering balloon stabilization efficiency during night-day transition and system reliability

A71-042400

STABILIZERS

Two-axis pneumatic rate gyrocope with externally pressurized gas bearing for airborne vehicle fluidic autocatalyster sensor

A71-041664

STABILIZERS (FLUID DYNAMICS)

NASTRAN application to static stress and dynamic
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>SUPERSONIC FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Modal problems of horizontal stabilizer of F-14A aircraft</td>
<td>N71-36269</td>
</tr>
<tr>
<td>Static Electricity</td>
<td></td>
</tr>
<tr>
<td>Static electrification of aircraft when flying through clouds and precipitation</td>
<td>N71-35225</td>
</tr>
<tr>
<td>Static Loads</td>
<td></td>
</tr>
<tr>
<td>Survey of NASTRAN applications in static and dynamic structural analysis problems</td>
<td>N71-36253</td>
</tr>
<tr>
<td>NASTRAN computer program differential stiffness and static load analysis methods compared for aircraft tandem side opening canopies</td>
<td>N71-36260</td>
</tr>
<tr>
<td>NASTRAN application to static stress and dynamic modal problems of horizontal stabilizer of F-14A aircraft</td>
<td>N71-36269</td>
</tr>
<tr>
<td>Static Stability</td>
<td></td>
</tr>
<tr>
<td>Wall interference for static stability tests in closed rectangular test sections and in ground effect</td>
<td>N71-35386</td>
</tr>
<tr>
<td>Static Tests</td>
<td></td>
</tr>
<tr>
<td>Design, fabrication, and static testing of wind tunnel models of first-stage Attached Inflatable Decelerator canopies for supersonic vehicles</td>
<td>N71-35205</td>
</tr>
<tr>
<td>Steady State</td>
<td></td>
</tr>
<tr>
<td>Transient and steady state flexible rotor dynamics analysis</td>
<td>A71-40325</td>
</tr>
<tr>
<td>Mixed and unmixed turbofan engines transient and steady state off-design characteristics, investigating effects of fuel flow rate, nozzle area, inlet pressure, ambient temperature and air bleed</td>
<td>A71-42036</td>
</tr>
<tr>
<td>Stiffness</td>
<td></td>
</tr>
<tr>
<td>NASTRAN computer program differential stiffness and static load analysis methods compared for aircraft tandem side opening canopies</td>
<td>N71-36260</td>
</tr>
<tr>
<td>Stratosphere</td>
<td></td>
</tr>
<tr>
<td>Global stratospheric dispersion of supersonic transport exhaust</td>
<td>D180-1298-1</td>
</tr>
<tr>
<td>Stress Analysis</td>
<td></td>
</tr>
<tr>
<td>Buckling for thin stress walled open sections on elastic foundation with constrained direction reinforcement</td>
<td>A71-41693</td>
</tr>
<tr>
<td>Stress Concentration</td>
<td></td>
</tr>
<tr>
<td>Straight line vortices in uniform two dimensional straining field, detailing rotational strain and simple shear</td>
<td>A71-40501</td>
</tr>
<tr>
<td>Stroboscopes</td>
<td></td>
</tr>
<tr>
<td>Strobe lighting for aircraft midair collision hazard reduction, comparing Collision Avoidance System and Pilot Warning Indicator effectiveness</td>
<td>A71-41403</td>
</tr>
<tr>
<td>Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>Experimental aeroelastic analysis to determine airworthiness of T-tail configuration of Y-28 aircraft</td>
<td>N71-34002</td>
</tr>
<tr>
<td>Structural analysis of tail cone of CH-54B helicopter reinforced with boros/epoxy stringers</td>
<td>N71-34013</td>
</tr>
<tr>
<td>Analysis of feasibility of designing transport aircraft to carry up to 1,000 passengers and methods for predicting aircraft performance</td>
<td>D180-1298-3</td>
</tr>
<tr>
<td>Numerical analysis of derivatives of flutter velocity of aircraft structures to determine optimization of complex structures</td>
<td>N71-35126</td>
</tr>
<tr>
<td>Assessment of nonlinear response of aeronautical structures with nonideal characteristics under vibration conditions</td>
<td>N71-35134</td>
</tr>
<tr>
<td>Survey of NASTRAN applications in static and dynamic structural analysis problems</td>
<td>N71-36253</td>
</tr>
<tr>
<td>NASTRAN application to static stress and dynamic modal problems of horizontal stabilizer of F-14A aircraft</td>
<td>N71-36269</td>
</tr>
<tr>
<td>Comparing and integrating NASTRAN with other finite element computer programs</td>
<td>N71-36264</td>
</tr>
<tr>
<td>NASTRAN static, modal, and transient analyses</td>
<td>N71-36299</td>
</tr>
<tr>
<td>Chemical and structural analysis techniques for materials suitable for aircraft structures</td>
<td>N71-36323</td>
</tr>
<tr>
<td>Structural Design</td>
<td></td>
</tr>
<tr>
<td>Use of NASTRAN as analysis tool in structural design optimization process applied to aircraft fuselage type structure</td>
<td>N71-36260</td>
</tr>
<tr>
<td>Structural Members</td>
<td></td>
</tr>
<tr>
<td>Reference text on design of aviation structural elements</td>
<td>N71-35220</td>
</tr>
<tr>
<td>Structural Reliability</td>
<td></td>
</tr>
<tr>
<td>Analytical procedures for predicting coupled fluid structural responses of aircraft hydraulic systems</td>
<td>N71-36276</td>
</tr>
<tr>
<td>Structural Vibration</td>
<td></td>
</tr>
<tr>
<td>Parametric and autoparametric instability of aircraft structures</td>
<td>A71-42240</td>
</tr>
<tr>
<td>Subsonic Flow</td>
<td></td>
</tr>
<tr>
<td>Two dimensional jet flapped symetric wing in subsonic flow, assuming irrotational flow inside jet bounded by vortex sheets</td>
<td>A71-40172</td>
</tr>
<tr>
<td>Spawise lift distribution over wings and wake formation in thin airfoils of finite aspect ratio in linear subsonic potential flow</td>
<td>A71-40945</td>
</tr>
<tr>
<td>Pitot tube interaction with subsonic rarefied gas flow, considering impact pressure</td>
<td>A71-40965</td>
</tr>
<tr>
<td>Subsonic Speed</td>
<td></td>
</tr>
<tr>
<td>Correction for straight trailing edges for subsonic slender wing theory using asymptotic expansions</td>
<td>N71-36012</td>
</tr>
<tr>
<td>Subsonic Wind Tunnels</td>
<td></td>
</tr>
<tr>
<td>Turbulence measurement in subsonic wind tunnel gas jet flows containing dust particles, using Doppler difference laser velocimeter</td>
<td>N71-40397</td>
</tr>
<tr>
<td>Supersonic Aircraft</td>
<td></td>
</tr>
<tr>
<td>Evaluation of liquid methane storage and transfer problems for future supersonic aircraft cryogenic fuel requirements</td>
<td>N71-36688</td>
</tr>
<tr>
<td>Aerodynamic and flight characteristics of supersonic aircraft and spacecraft motion in planetary gravitational fields</td>
<td>A71-35224</td>
</tr>
<tr>
<td>Supersonic Combustion Ramjet Engines</td>
<td></td>
</tr>
<tr>
<td>Mixing of hydrogen downstream from multiple injectors normal to supersonic jet flow, for supersonic combustion ramjet engines</td>
<td>N71-36274</td>
</tr>
<tr>
<td>Supersonic Compressors</td>
<td></td>
</tr>
<tr>
<td>Normal shock existence in blade spacings of rotor and guide vanes of axial flow supersonic compressor as function of pressure nonuniformity</td>
<td>A71-41843</td>
</tr>
<tr>
<td>Supersonic Diffusers</td>
<td></td>
</tr>
<tr>
<td>Viscous slipstream flow downstream of triple shock wave intersection in supersonic diffuser air flow, using Pitot and static pressure probe measurements</td>
<td>A71-40981</td>
</tr>
<tr>
<td>Supersonic Flow</td>
<td></td>
</tr>
<tr>
<td>Supersonic and hypersonic viscous gas flows with boundary layer induced pressure gradients, investigating disturbance upstream propagation by asymptotic theory</td>
<td>A71-40680</td>
</tr>
<tr>
<td>Slender body of revolution in supersonic and subsonic air flow, calculating boundary conditions with Lagrange formulation</td>
<td>A71-40963</td>
</tr>
<tr>
<td>Two dimensional supersonic flow pattern, velocity and loss in shock waves in front of blade cascade</td>
<td>A71-41842</td>
</tr>
<tr>
<td>Windward injection into supersonic stream at angle of attack, minimizing vortex disruption</td>
<td>A71-42787</td>
</tr>
</tbody>
</table>
Second order slender wing theory for calculating supersonic flow over low aspect ratio wings with subsonic leading edges and leading edge separation

Supersonic Inlets
Device for controlling terminal shock waves in supersonic inlets

Supersonic Inlets
High altitude flight test of reeled 12,2-meter-diameter disk-gap-band parachute with deployment at 2.58 mach number

Supersonic Speeds
Comparisons of theoretical and experimental pressure distributions over wing-body model at high supersonic speeds

Supersonic Transports
SST sonic boom generation, discussing aircraft design and atmospheric conditions effects and property damage

Atmospheric wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation and radio activity effects on commercial SST Concorde flight

Sonic boom minimization including front and rear shocks, exemplifying by SST aircraft

Global stratospheric dispersion of supersonic transport exhaust

Supersonic Wakes
Compressible viscous gas supersonic flow, observing near wake region behind perpendicular trailing face of rectangular plate with motion, state, energy and continuity equations

Blunt and hemispherical base axisymmetric bodies in Mach 4 free stream, investigating turbulent near wakes generation

Surface Navigation
Satellite navigation system for aviation and marine use, examining operational requirements, economic viability and technical solutions

Wrongful death liability in aviation and admiralty, considering U.S. Congress refusal to enact legislation

Surface Temperature
Airborne infrared radiometer measurement of ocean water surface temperatures

Surveillance Radar
Air traffic controller height and plan position indicator composite picture display system design and operation, combining functions of primary and secondary surveillance radars

Swept Wings
Vortex wakes behind straight and swept wings, noting formation of loops and trails close to ground

Swirling
Conical diffusers outlet flow profile and performance, investigating swirling inlet flow effects on pressure recovery

Symptomology
Hyperventilation syndrome in flying personnel, discussing symptoms of parenthesia and earliness contraction, psychosensational causes and control mechanism

System Failures
ATC display device man-computer interaction faults and delays effects on operator performance

Systems Analysis
Monograph on satellite airport system modelling for large metropolitan areas covering systems analysis methodology and computer algorithms for optimization

Preliminary research requirements analysis and design and cost synthesis of ground research facilities for hypersonic aircraft
SUBJECT INDEX

Potential impact of advanced technology in 1985 on four types of general aviation aircraft including STOL V/SSTOL, and helicopters

[NASA-CR-114339] N71-35210

Influence of advanced technology and design philosophies on general aviation aircraft for 1985

[NASA-CR-114338] N71-35217

TEMPERATURE CONTROL

Infrared and thermal evaluation of tactical aircraft phased array radar antenna design with cooling air distribution for steady state operating temperature maintenance

A71-40434

TEMPERATURE MEASUREMENT

Airborne infrared radiometer measurement of ocean water surface temperatures

[AD-726512] N71-35484

TERRESTIAL FACILITIES

Airport design for passenger and baggage handling efficiency, considering choice between continuous and batching type intra-airport transit system

A71-42072

Computer simulation of aircraft collision-hazard warning radar techniques in terminal area

N71-34170

Economic aspects and regional planning for international airport facility at Ontario, California

[FB-199695] N71-35391

TEST EQUIPMENT

Abbreviated test language for avionic systems, discussing program organization, statement formats, vocabulary and syntax diagrams

A71-40812

TEST FACILITIES

High speed aerodynamic test facilities development over past 25 years, discussing deficiencies and improvements

A71-41984

TEXTBOOKS

Reference text on design of aviation structural elements

[AD-726566] N71-35220

THERMAL FATIGUE

Analysis of low cycle thermal fatigue in laminated porous wall turbine vanes

[NASA-CR-72954] N71-34944

THERMAL RADIATION

Aircraft heat viewer for underlying surfaces radiation properties, suggesting qualitative survey type thermal aerial photo combination with simultaneous radiometric measurements

A71-41300

THERMAL STABILITY

Thermal stability of naphthenes up to 1000 F, considering hypersonic aircraft fuel applications

A71-42237

Thermally resistant polymers for fuel tank sealants of advanced high speed aircraft

[NASA-CR-119940] N71-35546

TIBBERNO}S

Spanwise lift distribution over wings and wake formation in this airfoils of finite aspect ratio in linear subsonic potential flow

A71-40495

THIN WALLS

Buckling for thin stress walled open sections on elassic foundation with constrained direction reinforcement

A71-41693

THIN WINGS

Calculated values of air forces on oscillating thin wings obtained by linearized potential flow

[AG&RD-583-71] N71-35159

Numerical analysis of pressure distribution in flow field due to deflection of plane shock wave by thin wings

N71-35203

THREE DIMENSIONAL FLOW

Boundary layer disturbances influence on three dimensional hypersonic flow about infinite triangular flat plate, investigating pressure effects on heat transfer and friction coefficients

A71-40681

Inlet conditions for centrifugal compressor impeller covering pressure, temperature and velocity measurements on quasi-three dimensional model

A71-42035

Finite difference method for two dimensional and three dimensional viscous flow problems with applications to hypersonic leading edge equation

[AD-726597] N71-35420

THRUST CONTROL

Jet engines with afterburners, describing exhaust nozzle control, takeoff and landing advantages and thrust variations

A71-40858

THRUST REVERSAL

Technology of thrust reversers with particular application to STOL aircraft

[NASA-CR-121736] N71-34259

THRUST-WEIGHT RATIO

Dynamic stability of jet transport configuration with high thrust-weight ratio and externally blown jet flap

A71-35213

TIME DEPENDENCE

Airloads and moments changes of aircraft flying over trailing vortices, investigating time dependent aerodynamic forces

A71-40508

Sonic booms loudness as function of peak overpressures and rise times, using semiempirical formulae

A71-40530

Time varying aircraft noise effect on speech intelligibility, discussing test for relation to articulation index

A71-40709

TIME FUNCTIONS

Semiempirical formulae representing sonic boom loudness as function of overpressure and time compared with experimental and theoretical calculations

[ISFR-TR-46] N71-35214

TIME LAG

ATC display device man-computer interaction faults and delays effects on operator performance

A71-40119

Aircraft response to pilot or autopilot command during altitude control maneuver, calculating lag magnitudes

A71-41691

Unsteady pressure gradient reduction effect on airfoil dynamic stall delay

A71-42841

TIME OPTIMAL CONTROL

Minimal time club velocity optimization for stratospheric and tropospheric jet aircraft flights

A71-41972

TIME SHARING

Microwave scanning beam guidance receiver design for aircraft landing aid, discussing time sharing and flight control

A71-42061

TIP DRIVEN MOTORS

Tip-turbine lift fan design and specifications

[NASA-CR-72976] N71-34945

TIP SPEED

Peak velocity vectors in transverse plane of jet transport aircraft wake, measuring tip vortices core size

A71-40491

TOOLS

Performance test and evaluation of hand tools used in support of military aircraft maintenance

[AD-726593] N71-35558

TORSIONAL VIBRATION

Transfer function system relating cornering force and aligning torque of rolling pneumatic aircraft tire to yaw angle and lateral displacement

A71-40167

TORESSONAL VIBRATION

Vorsional natural frequencies in coupled turbine and reciprocating engine system driving common propeller, using matrix techniques

[ASME PAPER 71-VIBR-83] A71-40319

TOUCH

Computerized touch display for ATC tasks compared to conventional keyboard tabular display performance

A71-40114

TRACKING (POSITION)

Mathematical models for computerized ATC automatic aircraft flight tracking logic without tracks smoothing

A71-42396
Flight test experiment to evaluate mechanized automatic control system to minimize wake turbulence effects on aircraft

A71-40509

Aircraft wake turbulence relation to CAT, discussing flight control loss, jumbo jets trailing vortex wakes breakup and detection and safe aircraft spacing

A71-40704

TWISTED WINGS

Lifting line equation inversion for twisted wings of elliptic planform with arbitrary spanwise upwash

A71-42838

TWO DIMENSIONAL BODIES

Two dimensional jet flat topped symmetric wing in subsonic flow, assuming irrotational flow inside jet bounded by vortex sheets

A71-40172

Two dimensional flow over two dimensional finite wing without corrections for downwash, assuming known pressure distribution

A71-40173

TWO DIMENSIONAL FLOW

Two dimensional flow over two dimensional finite wing without correction for downwash, assuming known pressure distribution

A71-40173

Straight line vortices in uniform two dimensional straining field, detailing irrotational strain and simple shear

A71-40507

Two dimensional supersonic flow pattern, velocity and loss in shock waves in front of blade cascade

A71-41682

Finite difference method for two dimensional and three dimensional viscous flow problems with applications to hypersonic leading edge equation [AD-726547]

A71-35420

United States of America

Judicial Panel on Multidistrict Litigation of federal district and court of appeals judges with power to transfer cases to single district

A71-42069

Federal Aviation Act amendment prohibiting controlling interest in air carrier without Civil Aeronautics Board approval

A71-42070

UNSTEADY FLOW

Unsteady viscous gas flow between stationary solid wall and free solid wall vibrating at high frequency

A71-34276

UNSWEPT WINGS

Vortex wakes behind straight and swept wings, noting formation of loops and trails close to ground

A71-40494

UPWASH

Lifting line equation inversion for twisted wings of elliptic planform with arbitrary spanwise upwash

A71-42838

URBAN TRANSPORTATION

Monograph on satellite airport system modeling for large metropolitan areas covering systems analysis methodology and computer algorithms for optimization [SU-TR-71-1]

A71-40799

V/STOL Aircraft

Aerodynamic characteristics of lift fan installation for direct lift V/STOL aircraft [NASA-TM-X-62086]

A71-35204

VAMES

Analysis of low cycle thermal fatigue in laminated porous wall turbine vanes [NASA-CR-72954]

A71-34944

VELOCITY DISTRIBUTION

Peak velocity vectors in transverse plane of jet transport aircraft wake, measuring tip vortices core size

A71-40491

Fog formation and dispersal by velocity field induced by helicopter trailing vortices, presenting dynamic model with droplet depletion, evaporation and condensation

A71-40491

A71-40510

Miniature wind tunnel velocity field calibration for testing anemometers, using null method with spherical probe

A71-41380

VELOCITY MEASUREMENT

Dual scatter laser Doppler velocimeters for transonic wind tunnel measurements and calibration applied to simulated helicopter downwash, high lift wing and jet crossflow

A71-40399

VERTICAL LANDING

Transition, approach, and vertical landing tests for VTOL transport in terminal area [NASA-TM-X-62683]

A71-35209

VERTICAL MOTION

Atmospheric stratification effects on downward motion of aircraft vortex wakes, developing appropriate model

A71-40486

VERTICAL TAKEOFF AIRCRAFT

VTOL and fan lift STOL aircraft, discussing simulation and head-up displays for roll demand, vertical speed and ILS bear

A71-40134

Germant VAK 191B combat VTOL aircraft development program, describing prototype ground tests, autopilot preoptisization and hover flight tests

A71-41517

Rotor performance and design for hover and cruise VTOL flights

A71-42238

VTOL air system for automobile travel replacement noting noise, cont. pollution and traffic congestion reduction

A71-42527

Evaluation of automatic guidance modes and software for V/STOL aircraft flight control [NASA-CR-121766]

A71-34016

Evaluation of air generator-remote lift fan propulsion system for VTOL transports [NASA-TM-X-67916]

A71-35207

Transition, approach, and vertical landing tests for VTOL transport in terminal area [NASA-TM-X-62083]

A71-35209

Draft designing of vertical takeoff and landing aircraft [AD-726572]

A71-35219

VHF OMEGARANGE NAVIGATION

Combined inertial navigation and VOR/DME systems contribute to area navigation accuracy and efficiency

A71-42800

VOR/DME air navigation equipment using Kalam-Bucy filter and airborne air data system [AD-72825]

A71-42289

Development and testing of VHF omni range transmitter for aircraft azimuth guidance [FRA-8D-71-65]

A71-35774

VIBRATION TESTS

Assessment of nonlinear response of aeronautical structures with nonideal characteristics under vibration conditions [ARL/SM-356]

A71-35134

VIBRATIONAL SPECTRA

Unsteady viscous gas flow between stationary solid wall and free solid wall vibrating at high frequency

A71-34276

VIDEO EQUIPMENT

Airborne audio-video recording system designs and requirements [AD-727025]

A71-35280

VISCOS FLOW

Compressible viscous gas supersonic flow, observing near wake region behind perpendicular trailing face of rectangular plate with motion, state, energy and continuity equations

A71-40081

Supersonic and hypersonic viscous gas flows with boundary layer induced pressure gradients, investigating disturbance upstream propagation by asymptotic theory

A71-40680

Viscous slipstream flow downstream of triple shock wave intersection in supersonic diffuser air flow, using Pitot and static pressure probe measurements

A71-40981
Finite difference method for two dimensional and three dimensional viscous flow problem with applications to hypersonic leading edge equation [AB-72-547] A71-35420

VISIBILITY
Development of numerical rating for correlating safety-of-flight factors with aircraft speed and visibility restrictions [FAA-RD-70-48] A71-35735

VISUAL FIELDS
Aircraft head-up display systems for providing pilot information focused at infinity within pilot normal field of view A71-40131

VISUAL FLIGHT RULES
Commercial ATC, considering VVS, flight control and inertial navigation A71-42078

VORTEX BREAKDOWN
Vortex wake transport and decay for various aircraft types, flight modes and meteorological conditions A71-40099
Windward injection into supersonic stream at angle of attack, minimizing vortex disruption A71-42787

VORTEX INJECTORS
Windward injection into supersonic stream at angle of attack, minimizing vortex disruption A71-42787

VORTEX SHEETS
Turbulent motions in fluids of small viscosity as inviscid flows with vortex sheets and rolled-up cores A71-40010
Two dimensional jet flapped symmetric wing in subsonic flow, assuming irrotational flow inside jet bounded by vortex sheets A71-40172
Subscale modeling of aircraft trailing vortices in controllable laboratory environment A71-40488

Aircraft wing tip vortex air motion measurements, utilizing Doppler radar techniques A71-40469

Drooped wing tip effects on trailing vortex sheet structure and position free spanwise load distribution determination by vortex lattice theory A71-40493

Trailing vortices behind wing tip with vortex dissipator, using wind tunnel flow visualization and flight tests A71-40496

Airloads and moments changes of aircraft flying over trailing vortices, investigating time dependent aerodynamic forces A71-40508

VORTEX STREETS
Aircraft trailing vortex pair linear stability, obtaining flow field near curved vortex filament with swirl and axial velocities A71-40500

Trailing vortex pair behind aircraft, presenting equilibrum characteristics and effects on safety A71-40504

Aircraft wake turbulence relation to CAT, discussing flight control slots, jet braking and aircraft wake suppression and detection and safe aircraft spacing A71-40704

VORTICITIES
Turbulent motions in fluids of small viscosity as inviscid flows with vortex sheets and rolled-up cores A71-40010

Vortex flow over helicopter rotor square tips, using visualization techniques with ammonia vapor boundary layer flow over diaminon salt solution A71-40169

Atmospheric stratification effects on downward motion of aircraft vortex wakes, developing approximate model A71-40486

Peak velocity vectors in transverse plane of jet transport aircraft wake, measuring tip vortices core size A71-40491

Free vortices from slender wings, controlling strength, position, core stability and thickness on basis of one dimensional flow model A71-40592

Vortex wakes behind straight and swept wings, noting formation of loops and trails close to ground A71-40594

Vortex wake development and aircraft dynamics, using computer graphics and flow visualization techniques A71-40597

Boeing 747, Lockheed C-5A and other aircraft vortex wake characteristics by tunnel flow technique A71-40598

Vortex wake transport and decay for various aircraft types, flight modes and meteorological conditions A71-40599

Straight line vortices in uniform two dimensional straining field, detailing irrotational strain and simple shear A71-40501

Self induction function and stability for vortex with finite core at aircraft wing, confirming Crow theory A71-40502

Turbulent shear effect on isolated trailing single vortex decay behind aircraft A71-40503

Flow visualization of aircraft trailing vortex wakes in towing tank with electrochemically activated dye, noting flow instability A71-40505

Fog formation and dispersal by velocity field induced by helicopter trailing vortices, presenting dynamic model with droplet depletion, evaporation and condensation A71-40510

Propeller vortex noise analysis by on-line 1/3 octave band resolution, discussing characteristic results from noise measurements on various propeller configurations A71-40688

VORTICITY EQUATIONS
Convergence proof for chordwise vorticity equation for discrete panel wing loading A71-42800

WALLS
Unsteady viscous gas flow between stationary solid wall and free solid wall vibrating at high frequency A71-34276

WARNING SYSTEMS
Canadian Forces experiments on aircraft flashing lights covering warning signals, navigation and anticollision displays and autokinetic phenomenon A71-40491

Strobe lighting for aircraft midair collision hazard reduction, comparing Collision Avoidance System and Pilot Warning Indicator effectiveness A71-40493

Computer simulation of aircraft collision-hazard warning radar techniques in terminal area A71-34170

Functional analysis of pilot warning instruments and pilot relationships during collision situations [FAA-RD-71-59] A71-35216

WAVE DIFFRACTION
Shock wave diffraction at symmetric lenticular wing profile with free stream critical Mach number of 0.67, using Golosov difference scheme A71-40679

Numerical analysis of pressure distribution in flow field due to diffraction of plane shock wave by thin wings A71-35203

WEAR
Aircraft parts lubrication friction and wear problems, discussing failure modes, solid and liquid lubricants, component damage and lubrication systems A71-40902

WELDED STRUCTURES
Random loading parameters adjustment in fatigue tests of welded aircraft structures A71-41692
WEST INDIES
Research Flight Facility participation in BOMEX program and aircraft data inventory [NAA-TR-68L-198-BFP-4] N71-35453

WIND EFFECTS
Atmospheric wind, temperature, turbulence, hydrometeors, ozone, cosmic radiation and radioactivity effects on commercial SST Concorde flight A71-40829

Analysis of influence of wind shear on longitudinal motion of aircraft during approach and landing [NASA-TN-D-6430] N71-34022

WIND SHEAR
Analysis of influence of wind shear on longitudinal motion of aircraft during approach and landing [NASA-TN-D-6391] N71-34022

WIND TUNNEL CALIBRATION
Dual scatter laser Doppler velocimeters for transonic wind tunnel measurements and calibration applied to simulated helicopter downwash, high lift wing and jet crossflow A71-40399

Miniature wind tunnel velocity field calibration for testing anemometers, using null method with spherical probe A71-41380

WIND TUNNEL MODELS
Free flight hypersonic wind tunnel model testing in Ludwig tube, discussing launching device and recording setup A71-60381

Nonlinear flight dynamic simulation using wind tunnel and aircraft model as analog function generator and computer for motion equation processing and command orientation A71-60392

Correlation studies based on wind tunnel test data and flight tests to determine performance, stability and control of XB-70A aircraft [NASA-CE-713435] N71-34001

Design, fabrication, and static testing of wind tunnel models of first-stage Attached Inflatable Decelerator canopies [NASA-CE-111934] N71-35205

Manufacture and dynamic testing of external store models for transonic wind tunnels [NRP-23] N71-35212

WIND TUNNEL STABILITY TESTS
Low speed wind tunnel measurement of induced drag characteristics of three 60 degree delta wings with different leading edge spanwise distributions [TH-4880-TR-57] N71-34003

Wind tunnel stability tests of variable dihedral delta wing spacecraft configuration at hypersonic speed [NASA-TR-D-2391] N71-34008

Wall interference for static stability tests in closed rectangular test sections and in ground effect [NASA-TR-R-464] N71-35366

WIND TUNNEL WALLS
Wall interference for static stability tests in closed rectangular test sections and in ground effect [NASA-TR-P-364] N71-35366

WIND TUNNELS
Fluctuating aerodynamic force measurements on stationary circular cylinder spanning wind tunnel, using direct method without support interference A71-40393

Trailing vortices behind wing tip with vortex dissipator, using wind tunnel flow visualization and flight tests A71-40496

WIND VELOCITY MEASUREMENT
Laser system for atmospheric wind velocity and turbulence, using Doppler frequency shift undergone by radiation beam scattered by particles suspended in flows A71-40490

WIND LOADING
Self induction function and stability for vortex with finite core at aircraft wing, confirming Crow theory A71-40502

Aerodynamic aspect ratio effects on drag and aircraft performance, noting span loading as major force on wing lifting function A71-41246

Convergence proof for chordwise vorticity equation for discrete panel wing loading A71-42840

WING OSCILLATIONS
Calculated values of air forces on oscillating thin wings obtained by linearized potential flow [AGARD-R-583-71] N71-35198

WING PANELS
Convergence proof for chordwise vorticity equation for discrete panel wing loading A71-42840

WING PLANFORMS
Turbulent skin friction drag for tapered wings as function of root chord Reynolds number A71-42839

WING PROFILES
Two dimensional jet flapped symmetric wing in subsonic flow, assuming irrotational flow inside jet bounded by vortex sheets A71-40172

Shock wave diffraction at symmetric lenticular wing profile with free stream critical Mach number of 0.87, using Godunov difference scheme A71-40679

WING SPAN
Spanwise lift distribution over wings and wake formation in this airfoils of finite aspect ratio in linear subsonic potential flow A71-40495

WING TIPS
Aircraft wing tip vortex air motion measurements, utilizing Doppler radar techniques A71-40889

Drooped wing tip effects on trailing vortex sheet structure and position from spanwise load distribution determination by vortex lattice theory A71-40493

Trailing vortices behind wing tip with vortex dissipator, using wind tunnel flow visualization and flight tests A71-40496

WINGS
Two dimensional flow over two dimensional finite wing without correction for downwash, assuming known pressure distribution A71-40173

WORK-BEST CYCLE
In-flight study of work/rest cycle effects on double crew performance and fatigue in flying transport missions A71-41829

XENON LAMPS
Aircraft flash light designs, discussing tandem oscillating lights, fixed lamp rotating reflectors and lamps, xenon flash tube, quartz-iodine lamp and flash frequencies A71-41484

YAW
Transfer function system relating cornering force and aligning torque of rolling pneumatic aircraft tire to yaw angle and lateral displacement A71-40167
PERSONAL AUTHOR INDEX

AERONAUTICAL ENGINEERING / A Special Bibliography (Suppl. 12) DECEMBER 1971

Typical Personal Author Index Listing

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS, J. D.</td>
<td>Capability of a projected 1975 airborne solid-state phased-array radar</td>
<td></td>
<td>A71-42096</td>
</tr>
<tr>
<td>ALEXANDER, J. H.</td>
<td>Research, design, fabrication, and field testing of a ninety foot span, two arch evaluation segment, aircraft maintenance hangar, volume 2</td>
<td>[AD-727051] N71-35396</td>
<td></td>
</tr>
<tr>
<td>ALEXANDER, L. G.</td>
<td>Wrongful death in aviation and the admiralty - Problems of federalism, tempests and teapots</td>
<td></td>
<td>A71-42832</td>
</tr>
<tr>
<td>ALLEN, J. E.</td>
<td>The future of aeronautics - Dreams and realities</td>
<td></td>
<td>A71-42237</td>
</tr>
<tr>
<td>AMBROSIO, J. P.</td>
<td>Analysis of a circulation controlled elliptical airfoil</td>
<td>[AD-726338] N71-35202</td>
<td></td>
</tr>
<tr>
<td>ANDERSON, R. D.</td>
<td>Experimental evaluation of low cycle thermal fatigue in a turbine vane fabricated from laminated porous material</td>
<td>[NASA-CR-72954] N71-34944</td>
<td></td>
</tr>
<tr>
<td>ASHBY, E. L.</td>
<td>Design considerations for an integrated communication, navigation, identification system</td>
<td></td>
<td>A71-42286</td>
</tr>
<tr>
<td>ASHLEY, R.</td>
<td>Some considerations relative to the prediction of unsteady air loads on lifting configurations</td>
<td></td>
<td>A71-42832</td>
</tr>
<tr>
<td>BACK, L. H.</td>
<td>Viscous slipstream flow downstream of a centerline Mach reflection</td>
<td></td>
<td>A71-40981</td>
</tr>
<tr>
<td>BAHN, R. H.</td>
<td>A status report on the Army's developments associated with air traffic management</td>
<td></td>
<td>A71-42084</td>
</tr>
<tr>
<td>BAHRAMIAN, B.</td>
<td>Research, design, fabrication, and field testing of a ninety foot span, two arch evaluation segment, aircraft maintenance hangar, volume 2</td>
<td>[AD-727051] N71-35396</td>
<td></td>
</tr>
<tr>
<td>BAHRAIIIAN, B.</td>
<td>Research, design, fabrication, and field testing of a ninety foot span, two arch evaluation segment, aircraft maintenance hangar, volume 2</td>
<td>[AD-727051] N71-35396</td>
<td></td>
</tr>
<tr>
<td>BAKER, H. H.</td>
<td>A status report on the Army's developments associated with air traffic management</td>
<td></td>
<td>A71-42084</td>
</tr>
<tr>
<td>BATTEN, S. A.</td>
<td>The problem of adjusting random-loading parameters in fatigue tests of structural elements</td>
<td></td>
<td>A71-41652</td>
</tr>
<tr>
<td>BEHIND, A.</td>
<td>Long-line loiter: Personnel retrieval system</td>
<td>[AD-727007] N71-35228</td>
<td></td>
</tr>
<tr>
<td>BENJAMIN, J.</td>
<td>A survey of microwave guidance problems related to the operational requirements</td>
<td></td>
<td>A71-42092</td>
</tr>
<tr>
<td>BENNETT, C. C.</td>
<td>Reports cataloging at the Aircraft Research Association</td>
<td>[REPT-22] N71-36381</td>
<td></td>
</tr>
<tr>
<td>BENNETT, P.</td>
<td>Fuel formation and dispersal by trailing vortices</td>
<td></td>
<td>A71-40510</td>
</tr>
<tr>
<td>BIRCH, R. D.</td>
<td>MASTERN differential stiffness analysis of an aircraft canopy</td>
<td></td>
<td>A71-36260</td>
</tr>
<tr>
<td>BREIT, K. N.</td>
<td>Debating AB</td>
<td></td>
<td>A71-41246</td>
</tr>
<tr>
<td>BERNHARD, C.</td>
<td>Global dispersion of supersonic transport exhaust in the stratosphere</td>
<td>[NMSOT-123988-1] N71-34021</td>
<td></td>
</tr>
<tr>
<td>BISSGOOD, P. L.</td>
<td>Some work at the Royal Aircraft Establishment on the behaviour of vortex wakes</td>
<td></td>
<td>A71-40981</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g., NASA report, translation, NASA contractor report). The accession number is located beneath and to the right of the title. e.g., N71-11019. Under any one author’s name the accession numbers are arranged in sequence with the NASA accession numbers appearing first.
BIUSHKIN, V. A.
Evaluation of man/machine interface problems in ATC
A71-40359

BLACKBURN, J. R.
Analysis and characterization of materials suitable for aircraft structure
[NASA-CR-72952] N71-34014

BLISS, D.
Theoretical and experimental study of the stability of a vortex pair
A71-40500

BLOSSER, E. R.
Analysis and characterization of materials suitable for aircraft structure
[AD-727017] N71-36323

BoaRDman, J. T.
Evaluation of man/machine interface problems in ATC systems
A71-40112

BONNER, R. H.
Epidemiology of USAF spatial disorientation aircraft accidents, 1 Jan 1958-31 Dec 1968
A71-40081

BOTT, C. G.
A social survey into annoyance caused by the interaction of aircraft noise and traffic noise
[TT-7102] N71-34019

Boulding, W. N.
The world gliding championships of Marfa, Texas - Survey of the medicophysiological supervision of the French team
A71-41576

Bouzech, W. F.
An evaluation of current NASTRAN discrete element models for monocoque and semimonocoque structures
N71-36290

Brad, R. F.
Evaluation of liquid methane storage and transfer problem in supersonic aircraft
[NASA-CR-72952] N71-39648

Bradovskii, I. Iu.
Flow in the near wake
A71-40081

Bray, G. S.
Tank 1, test and evaluation of solid state 100 watt VOR transmitting equipment
[FAA-RD-71-65] N71-35779

Breuer, W. C.
Aircraft flashing lights - A summary of Canadian Forces investigations
A71-41491

Brewer, H. E.
Synthesis of tire equations for use in shizzy and other dynamic studies
A71-40167

Britt, C. L., Jr.
An evaluation of aircraft collision-hazard warning radar techniques in the terminal area
A71-34170

Britting, R. H.
The impact of inertial navigation on air safety
A71-42079

Brow, D.
Analysis of propeller vortex noise
A71-40868

Bukirk, D. L.
Evaluation of liquid methane storage and transfer problem in supersonic aircraft
[NASA-CR-72952] N71-38648

Byers, R. B.
Improving the efficiency of airports
A71-42072

C

Cahen-Salvador, J.
Report of the Committee for Air Transport on plan 6
[NASA-TT-F-13947] N71-34015

Caiger, B.
An analysis of flight measurements in the wake of a jet transport aircraft
A71-40491

Calcara, B.
Evaluation of the takeoff and landing performance of commercial STOL aircraft
A71-42286

Carter, A. S., Jr.
Aircraft wake turbulence
A71-40704

Carter, C. E.
Wind-tunnel investigation of an external flow jet-strap transport configuration having full-span triple-slotted flaps
[NASA-TM-D-6391] N71-34028

Chadwick, J. W.
For a better, short-haul flight
A71-42073

Chandiveet, M. G.
Considerations relevant to the vibration testing of aeronautical structures having nonideal characteristics
[NASA-CR-72952] N71-35134

Chappelew, J. W.
Display of information in the aircraft cockpit
A71-41300

Cherehno, A. F.
Certain results of the use of an aircraft heat viewer for studying the radiation of underlying surfaces
A71-42680

Chevalier, B.
International cooperation - The Concordo experiment
A71-42011

Chigier, W.
An experimental investigation of trailing vortices behind a wing with a vortex dissipator
A71-40496

Ciabullul, S.
Jet-bank/borep/eyrno reinforced tail cone detailed structural substantiation
[NASA-CR-119330] N71-34014

Cittadino, J. C.
A status report on the Army's developments associated with air traffic management
A71-42084

Civinskas, K. C.
Preliminary study of an air generator-remote lift fan propulsion system for VTOL transports
[NASA-TM-6-67916] N71-35207

Clark, D. E.
Wake and boundary layer effects in helicopter rotor aerodynamics
[AIAA PAPER 71-581] N71-41500

Clark, R. L.
VHF navigation experiment
[NASA-CR-121977] N71-35770

Clark, W.
Investigations and test of wire rope core materials for aircraft arresting engine purchase cable
[AD-726284] N71-35211

Coates, J. L.
VHF navigation experiment
[NASA-CR-121977] N71-35770

Condit, F. S.
Results of the Boeing Company wake turbulence test program
A71-40506

Conrad, B.
A study of techniques for calculating motion-drive signals for flight simulators
[NASA-CR-119345] N71-35385

Cook, G.
Comparison of constant lift-coefficient climbs with flight-manual climbs for a jet transport
A71-42834

Corziglia, V. N.
An experimental investigation of trailing vortices behind a wing with a vortex dissipator
A71-40496

Craig, J. E.
Wrongful death in aviation and the admiralty - Problems of federalism, tempests and tempests
A71-42068

Chance, J. P.
The world gliding championships of Marfa, Texas - Survey of the medicophysiological supervision of the French team
A71-41576

Cheek, D. K.
Aircraft ground flotation analysis procedures: Paved airfields
A71-42286
Hershce, H. Injection into a supersonic stream from the windward side of sweptback injectors at angle of attack [AD-727017] N71-36323

Hershovitz, E. N. The impact of inertial navigation on air safety A71-42787

Hethran, L. D. Flashing lights on aircraft A71-42079

Hixson, H. H. General theory of well interference for static stability tests in closed rectangular test sections and its ground effect [NASA-TB-R-364] N71-35386

Hill, H. S. The direct measurement of fluctuating aerodynamic forces experienced by an effectively stationary body spanning a wind tunnel A71-40393

Hirsch, C. Aerodynamic properties of a flexible blade grid [NT-21] N71-34006

Hitt, R. F. For a better, short-haul flight A71-42073

Hlavacek, J. Reinforcement of thin-walled open sections with constrained buckling A71-41693

Rohrnelou, H. Mathematical models for automatic flight-tracking procedures A71-42396

Hoffman, J. D. Vortex flow over helicopter rotor tips A71-40169

Hollhauecr, C. A. A flight evaluation of a VTOL jet transport under visual and simulated instrument conditions [NASA-TM-X-62083] N71-35209

Hopper, V. D. The evaluation of touch displays for air traffic control tasks A71-40114

Bradley, J. C. Computer-derived alphanumeric information on air traffic control displays A71-40118

Boudolt, J. C. Aircraft response to turbulence including wakes A71-40507

Hove, D. The prediction of empty weight ratio and cruise performance of very large subsonic jet transport aircraft [CHAPFIELD-AERO-3] N71-34018

Howlett, J. T. Applications of FASTRAN to coupled structural and hydrodynamic responses in aircraft hydraulic systems N71-36276

Huangs, S. L. Static and dynamic analysis, F-14A boxon horizontal stabilizer N71-36269

Humphree, H. N. Application of laser Doppler systems to vortex measurement and detection A71-40490

Huppord, S. A. Experimental evaluation of low cycle thermal fatigue in a turbine vane fabricated from laminated porous material [NASA-CR-72954] N71-34094

Hunt, D. L. Research, design, fabrication, and field testing of a ninety foot span, two arch evaluation segment, aircraft maintenance hangar, volume 2 [AD-727051] N71-35396

Huskey, C. H. Technology assessment of advanced general aviation aircraft N71-35217

[NASA-CB-1111934] Aircraft wake turbulence controllability experiment A71-40509

Johnson, C. L. Lubrication, friction, and wear in aircraft A71-40902

Johnson, W. Comparison between experimental data and helicopter airloads calculated using a lifting surface theory [AD-726717] N71-35226

Jones, W. P. Airloads and moments on an aircraft flying over a pair of inclined trailing vortices A71-40508

Jobe, P. P. Span loading and formation of wake A71-40495

Josse, W. W. The utility of Doppler radar in the study of aircraft wing-tip vortices A71-40489

Kalb, H. T. Application of dual scatter, laser, Doppler velocimeters for wind tunnel measurements A71-40399

Rehrig, C. A. An experimental investigation of two linear rate field displays [AD-726643] N71-35229

Irwin, R. C. A flight evaluation of a VTOL jet transport under visual and simulated instrument conditions [NASA-TM-X-62083] N71-35209

Iurbi, P. G. Carbon deposits in jet engines A71-40071

Jacobsen, R. A. An experimental investigation of trailing vortices behind a wing with a vortex dissipator A71-40496

Jellalian, A. V. Application of laser Doppler systems to vortex measurement and detection A71-40490

Jellen, T. W. Interaction of navigation and surveillance in air traffic control A71-42085

Jennell, L. S. Comparisons of theoretical and experimental pressure distributions over a wing-body model at high supersonic speeds [NASA-TB-D-6480] N71-35197

Jochim, R. J. Infrared and thermal evaluation of a phased array antenna A71-40494

Johnnes, R. P. Aircraft wake turbulence controllability experiment A71-40509

Johnson, B. L. Lubrication, friction, and wear in aircraft A71-40902

Johnson, W. Comparison between experimental data and helicopter airloads calculated using a lifting surface theory [AD-726717] N71-35226

Jones, W. P. Airloads and moments on an aircraft flying over a pair of inclined trailing vortices A71-40508

Jobe, P. P. Span loading and formation of wake A71-40495

Joss, W. W. The utility of Doppler radar in the study of aircraft wing-tip vortices A71-40489

Kalb, H. T. Application of dual scatter, laser, Doppler velocimeters for wind tunnel measurements A71-40399

Kalb, H. T.
KASPER, J. F., JR.
EVALUATION OF OMEGA CONFIGURATIONS FOR AIRWAYS SYSTEM OPERATIONS A71-42082

KATS, A.
POSITION OF THE THRUST LINE AND LONGITUDINAL STABILITY A71-40169

KAUFMAN, A.

KEEB, R. P.
APPLICATION OF LASER DOPPLER SYSTEMS TO VORTEX MEASUREMENT AND DETECTION A71-40460

KIDD, R. L.
SUB-SCALE MODELING OF AIRCRAFT TRAILING VORTICES A71-40488

KIDDLE, G. J.
STUDY OF SIMULATED AIRLINE PILOT INCAPACITATION. PHASE II - SUBTLE OR PARTIAL LOSS OF FUNCTION A71-41824

KINGSTON, E. S.
AN INFRA-RED AERIAL SURVEY EQUIPMENT OPERATING IN THE 3.0 TO 5.5 MICROMETRE BAND A71-42151

KREB, J. V.

KREBS, E. V.
ONBOARD AERIAL PHOTOGRAPHY EQUIPMENT A71-40875

KUOOPER, B. O.
ANALYTIC TOOLS FOR THE STUDY OF AIRPORT CONGESTION [FAA-80-110] N71-35933

KOSSAKOV, I. A.
INTERACTION OF A PITOT TUBE WITH A SUBSONIC FLOW OF RAREFIED GAS A71-40695

KOSLOFF, I. G.
INFLUENCE OF BOUNDARY LAYER DISTURBANCES ON HYPERSONIC FLOWS WITH VICIOUS INTERACTION A71-40681

KREBS, R. P.
PRELIMINARY STUDY OF AN AIR GENERATOR-REMOTE LIFT FAN PROPULSION SYSTEM FOR V/STOL TRANSPORTS [NASA-TR-X-67916] N71-35207

KREFF, J. A.
The numerical calculation of plane steady transonic flows past lifting airfoils [O180-12958-1] N71-34275

KUCHERBAHL, D.
'TURBULENCE' AND VORTEX MOTIONS A71-40010

KUEDRITZ, P. F.
PRINCIPLES OF DESIGN OF VERTICAL TAKEOFF AND LANDING AIRCRAFT [AD-726572] N71-35219

LAPOYNE, J. G.
The transport of sick and injured aboard regular airliners A71-45172

LARSON, K. T.
VORTEX CONTROL A71-40452

LANDREB, A. J.
WAKE AND BOUNDARY LAYER EFFECTS IN HELICOPTER ROTOR AERODYNAMICS [AIAA PAPER 71-581] A71-41500

LANDSB, R. H.
EXPERIENCE AT ADA ON FREE DROPPING STORES [REPT-23] N71-35212

LANDSTINE, E. K.
ANALYSIS AND CHARACTERIZATION OF MATERIALS SUITABLE FOR AIRCRAFT STRUCTURE [AD-727017] N71-36233

LANTLIT, E.
CARBON FIBRES - THE FIRST FIVE YEARS A71-40702

LAVENDER, J.
The transport of sick and injured aboard regular airliners A71-41572

LAWRENCE, R. E.
Estimated performance and stability and control data for correlation with XB-70-1 flight test data A71-41572

[NASA-CR-114335] N71-34001

LEEDSG, H. L.
EVALUATION OF LIQUID METHANE STORAGE AND TRANSFER PROBLEMS IN SUPersonic AIRCRAFT [NASA-CR-72952] N71-34648

LEGATY, R.
HYPERVENTILATION IN FLYING PERSONNEL /REPORT OF 13 CASES/ A71-41569

LEWIS, A. E.
APPLICATION OF DUAL SCATTER, LASER, DOPPLER VELOCIMETERS FOR WIND TUNNEL MEASUREMENTS A71-40399

LETO, S.
ZIP-TURBINE LIFT PACKAGE DESIGN [NASA-CR-72578] N71-34945

LEWIT, S.
DENSITY MEASUREMENT IN AERODYNAMIC FLOWS BY AN ELECTRON BEAM PROBE A71-40395

LIEW, T. C.
NUMERICAL METHODS FOR TWO- AND THREE-DIMENSIONAL VISCOUS FLOW PROBLEMS: APPLICATION TO HYPERSONIC LEADING EDGE EQUATIONS [AD-726547] N71-35420

LITCHFORD, G. B.
RADIO GUIDANCE USING MICROWAVE SCANNING BEAMS AERONAUTICS AND AIR TRAFFIC CONTROL [NASA-CR-1033] N71-34025

LIVINGGOOD, J. N. B.

LOCKE, D. A.
AERIAL LAND ROVER A71-40701

LOENBERG, D. D.
VOR/DME AS ANALYSIS TOOL IN A STRUCTURAL DESIGN OPTIMIZATION PROCESS N71-36280

LOSITO, V.
EXTENSION OF THE LIFTING LINE THEORY TO LOW ASPECT RATIO WINGS A71-42288

LOWE, B. L.
VHF NAVIGATION EXPERIMENT [NASA-CR-121977] N71-35770

LOWITZ, D. R.

LUCIPEDE, A.
Kalman-Bucy filter for air navigation by means of VOR/DME and air data system A71-42289

LUDWIG, L. P.
LUBRICATION, FRICTION, AND WEAR IN AIRCRAFT A71-40902

LUKASH, A. A.
MEDICO-LEGAL EXAMINATION OF AIRPLANE REMNANTS: ITS ROLE IN CAUSAL EVIDENCE [AD-726559] N71-35222

LUKASIEWICZ, J.
A CRITICAL REVIEW OF DEVELOPMENT OF EXPERIMENTAL METHODS IN HIGH SPEED AERODYNAMICS A71-41984

M

MACCRADY, P. B., JR.
AN ASSESSMENT OF DOMINANT MECHANISMS IN VORTEX- WAKE DECAY A71-40949

MALDFY, R. L.
SOME WORK AT THE ROYAL AIRCRAFT Establishment on the behaviour of vortex wakes A71-40944

MARGOT, S.
CONSiderations regarding the approach surface and the obstruction clearance surface in approaches with ILS A71-40891

MASAK, R. J.
DOPPLER SCANNING LANDING GUIDANCE SYSTEM DEVELOPMENT A71-42089

MAYHALL, D. J.
ANALYTICAL MODEL FOR NAVIGATION AND AIR TRAFFIC CONTROL A71-42083
MAY, D. W.
The loudness of sonic booms heard outdoors as simple functions of overpressure and rise time
A71-40530

The loudness of sonic booms heard outdoors as simple functions of overpressure and rise time
[ISVD-78-46] N71-35214

MAYO, A. G.
Advanced general aviation propeller study
[NASA-CR-114269] N71-35206

MAYS, A. L.
Plane air jets expelled into a blind alley
A71-42681

MCARTER, J. L.
The elastic response of bias-ply airplane tires to braking forces
[NASA-TR-C-6426] N71-34027

MCCORMIC, B. M.
The effect of a drooped wing tip on its trailing vortex system
A71-40493

MCDONALD, A. T.
Effects of swirling inlet flow on pressure recovery in conical diffusers
A71-40950

MCDONNELL, J. E.
WASTAN plotting capabilities
N71-36299

MCLEARY, E. H.
A plea for the preservation of the "worm's eye view" in multidistrict aviation litigation
A71-42069

MCFADDEN, J. D.
The NASA flight research facility's airborne data collection program in support of the Barbados oceanographic and meteorological experiment

MCNEIL, J. L.
Evaluation of liquid methane storage and transfer problems in supersonic aircraft
[NASA-CR-72952] N71-34648

MCWIGHT, J. R.
Research, design, fabrication, and field testing of 50 by 80 feet aircraft maintenance hangars and 30 by 45 feet general purpose shelters, volume 1
[AD-727047] N71-35397

MCWRIGHT, P. J.
Aircraft propulsion
A71-42427

MENDIK, P. W.
Automated electrical harness manufacturing
A71-40441

MENDEL, K. R.
Research, design, fabrication, and field testing of 50 by 80 feet aircraft maintenance hangars and 30 by 45 feet general purpose shelters, volume 1
[AD-727047] N71-35397

MICHIE, J. D.
The NASA research flight facility's airborne data collection program in support of the Barbados oceanographic and meteorological experiment

MICHALIY, V. V.
Influence of boundary layer disturbances on hypersonic flows with viscous interaction
A71-40681

MILES, R. D.
Remote sensing and development of annotated aerial photographs as master soil plans for proposed highways
[RR-196422] N71-35447

MILLER, R. H.
Breaking the automobile barrier in ultra-short-haul transportation
A71-42527

MITCHELL, B. A.
Airflow control system for supersonic inlets
[NASA-CASE-LWR-11188-1] N71-34017

MOORE, D. W.
Structure of a line vortex in an imposed strain
A71-40501

MOORELL, S. A.
A flight evaluation of a VTOL jet transport under visual and simulated instrument conditions

MORET, G. L.
Sources of noise in axial flow fans
A71-40710

MORGAN, R.
Keeping the pilot happy - The contribution of research and development /Third Sir Geoffrey de Havilland Memorial Lecture/
A71-42239

MORGAN, T. J.
Thermally resistant polymers for fuel tank sealants
[NASA-CR-119940] N71-35546

MURDOCH, B. D.
Sources of noise in axial flow fans
A71-40710

NEALY, D. A.
Experimental evaluation of low cycle thermal fatigue in a turbine vane fabricated from laminated porous material
[NASA-CR-72954] N71-34944

NEILLAND, V. A.
Contribution to the asymptotic theory of supersonic flow/boundary layer interaction
A71-40680

NELSON, H. G.
Gaseous hydrogen embrittlement of aerospace materials
A71-41999

NEURINGER, A. A.
Avoiding hydraulic-system failure
A71-42075

NEUSTEDT, J. D.
A second order slender wing theory for wings with leading edge separation in supersonic flow
[NASA-CR-1660] N71-34004

NESS, W.
Downwash correction for a two-dimensional finite wing
A71-40173

NIELSEN, J. N.
Decay of a vortex pair behind an aircraft
A71-40504

NIXON, A. C.
Effect of oxygen concentration on the thermal stability of asphaltene
A71-42837

NIKES, J.
Evaluation of man/machine interface problems in ATC systems
A71-40112

NIKRISOV, L. V.
Method of determining the velocity pulsation of the effective flow of a hypersonic wind tunnel
[AD-726605] N71-35421

O’CONNOR, J. L.
Development program Advanced Integrated Landing System (AILS)
A71-35777

OGORODNIKOVA, T. S.
Study of a miniature wind tunnel for testing anemometers
A71-41960

O’LEARY, J. B.
Scaling aircraft noise perception
A71-40866

OLSEN, J. B.
Aircraft wake turbulence and its detection.
A71-40402

OMARU, D.
The impact of inertial navigation on air safety
A71-42079

OSSADNEI, V. I.
Air navigation, chapter 7
[AD-726603] N71-35782

OTTINGER, W. F.
Progress report - NASA Stage A
A71-41634
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boscobia, S. E.</td>
<td>An experimental investigation of two linear rate field displays [AD-726843]</td>
<td>A71-35229</td>
</tr>
<tr>
<td>Brosch, R.</td>
<td>Turbulent skin friction for tapered wings</td>
<td>A71-32893</td>
</tr>
<tr>
<td>Buder, G.</td>
<td>Asundera 'Firando'</td>
<td>A71-42224</td>
</tr>
<tr>
<td>Buder, R.</td>
<td>Report about the Alcyon project - FTA 1</td>
<td>A71-62400</td>
</tr>
<tr>
<td>Howland, G. E.</td>
<td>Functional analysis of pilot warning instrument characteristics [FAA-8D-71-59]</td>
<td>A71-35216</td>
</tr>
<tr>
<td>Howland, G. E.</td>
<td>Analysis of VPF cloud clearance and visibility standards [FAA-8D-70-48]</td>
<td>A71-35735</td>
</tr>
<tr>
<td>Rubin, B.</td>
<td>Static and dynamic analysis, P-14A boron horizontal stabilizer</td>
<td>A71-36269</td>
</tr>
<tr>
<td>Rubin, S. G.</td>
<td>Viscous flow along a corner. Part 3. Effects of axial pressure gradient [AD-726546]</td>
<td>A71-35201</td>
</tr>
<tr>
<td>Rubin, S. G.</td>
<td>Numerical methods for two- and three-dimensional viscous flow problems: Application to hypersonic leading edge equations [AD-726547]</td>
<td>A71-35240</td>
</tr>
<tr>
<td>Ruben, C. E.</td>
<td>Model analysis of a nine-bay skin-stringer panel</td>
<td>A71-36273</td>
</tr>
<tr>
<td>Rubens, C. S.</td>
<td>Optimization of structures to satisfy aerodynamic requirements [NASA-CR-11955]</td>
<td>A71-35126</td>
</tr>
<tr>
<td>Rabin, E.</td>
<td>Practical calculation of maximum rate of climb</td>
<td>A71-41972</td>
</tr>
<tr>
<td>Rapp, R.</td>
<td>Structure of a line vortex in an imposed strain</td>
<td>A71-40501</td>
</tr>
<tr>
<td>Sanders, R. W.</td>
<td>Airflow control system for supersonic inlets [NASA-CR-711180-1]</td>
<td>A71-34017</td>
</tr>
<tr>
<td>Sanders, L. L.</td>
<td>The choice of coordinates for microwave landing system</td>
<td>A71-42090</td>
</tr>
<tr>
<td>Saffris, S. E.</td>
<td>Hydrodynamic interaction of airfoil cascades in potential flow</td>
<td>A71-60685</td>
</tr>
<tr>
<td>Schesher, R.</td>
<td>Tip-turbine lift package design [NASA-CR-72797]</td>
<td>A71-34945</td>
</tr>
<tr>
<td>Schenz, R. F.</td>
<td>Brazing filler metal evaluation for an aircraft gas turbine engine application</td>
<td>A71-40621</td>
</tr>
<tr>
<td>Schutz, S. F.</td>
<td>A study of techniques for calculating motion-drive signals for flight simulators [NASA-CR-114305]</td>
<td>A71-35385</td>
</tr>
<tr>
<td>Schneider, H.</td>
<td>A critical look at an airport noise control ordinance</td>
<td>A71-41796</td>
</tr>
<tr>
<td>Scherer, R.</td>
<td>A study of jet impingement on curved surfaces followed by oblique introduction into a freestream flow [NASA-CR-121736]</td>
<td>A71-34259</td>
</tr>
<tr>
<td>Schewnd, K. G.</td>
<td>Decay of a vortex pair behind an aircraft</td>
<td>A71-40504</td>
</tr>
<tr>
<td>Seebass, R.</td>
<td>Sonic boom minimization including both front and rear shocks</td>
<td>A71-40972</td>
</tr>
<tr>
<td>Shen, F. A.</td>
<td>Transient flexible-rotor dynamics analysis. I [ASME PAPER 71-VIBR-92]</td>
<td>A71-40325</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saffrin, H.</td>
<td>Practical calculation of maximum rate of climb</td>
<td>A71-41972</td>
</tr>
<tr>
<td>Saffman, P. G.</td>
<td>Structure of a line vortex in an imposed strain</td>
<td>A71-40501</td>
</tr>
<tr>
<td>Sanders, R. W.</td>
<td>Airflow control system for supersonic inlets [NASA-CR-711180-1]</td>
<td>A71-34017</td>
</tr>
<tr>
<td>Sanders, L. L.</td>
<td>The choice of coordinates for microwave landing system</td>
<td>A71-42090</td>
</tr>
<tr>
<td>Saffren, S. E.</td>
<td>Hydrodynamic interaction of airfoil cascades in potential flow</td>
<td>A71-60685</td>
</tr>
<tr>
<td>Schesher, R.</td>
<td>Tip-turbine lift package design [NASA-CR-72797]</td>
<td>A71-34945</td>
</tr>
<tr>
<td>Schenz, R. F.</td>
<td>Brazing filler metal evaluation for an aircraft gas turbine engine application</td>
<td>A71-40621</td>
</tr>
<tr>
<td>Schutz, S. F.</td>
<td>A study of techniques for calculating motion-drive signals for flight simulators [NASA-CR-114305]</td>
<td>A71-35385</td>
</tr>
<tr>
<td>Schneider, H.</td>
<td>A critical look at an airport noise control ordinance</td>
<td>A71-41796</td>
</tr>
<tr>
<td>Scherer, R.</td>
<td>A study of jet impingement on curved surfaces followed by oblique introduction into a freestream flow [NASA-CR-121736]</td>
<td>A71-34259</td>
</tr>
<tr>
<td>Schewnd, K. G.</td>
<td>Decay of a vortex pair behind an aircraft</td>
<td>A71-40504</td>
</tr>
<tr>
<td>Seebass, R.</td>
<td>Sonic boom minimization including both front and rear shocks</td>
<td>A71-40972</td>
</tr>
<tr>
<td>Shen, F. A.</td>
<td>Transient flexible-rotor dynamics analysis. I [ASME PAPER 71-VIBR-92]</td>
<td>A71-40325</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shildes, C. B.</td>
<td>Improving the efficiency of airports</td>
<td>A71-40272</td>
</tr>
<tr>
<td>Shildes, W. L.</td>
<td>Aircraft wakes - A new look at a classical problem</td>
<td>A71-40083</td>
</tr>
<tr>
<td>Sieling, W. B.</td>
<td>The turbulent near-wake of infinite axisymmetric bodies at Mach four</td>
<td>A71-40999</td>
</tr>
<tr>
<td>Silvey, N.</td>
<td>Area navigation - A quantitative evaluation of the effectiveness of inertial system aiding</td>
<td>A71-40280</td>
</tr>
<tr>
<td>Simon, L. E., Jr.</td>
<td>Investigation of fatal aircraft accidents - 'Physiological incidents'</td>
<td>A71-41834</td>
</tr>
<tr>
<td>Sletro, G. F.</td>
<td>Air freight - A growth industry with problems</td>
<td>A71-41840</td>
</tr>
<tr>
<td>Shmidoff, R.</td>
<td>International bibliography on the problem of air piracy</td>
<td>A71-41617</td>
</tr>
<tr>
<td>Smith, C. C., Jr.</td>
<td>Dynamic stability derivatives of a jet transport configuration with high thrust-weight ratio and an externally blown jet flap [NASA-TM-8-6440]</td>
<td>A71-35213</td>
</tr>
<tr>
<td>Smith, F. H., Jr.</td>
<td>Application of dual scatter, laser, Doppler velocimeters for wind tunnel measurements</td>
<td>A71-40399</td>
</tr>
<tr>
<td>Sobotsekanski, J. B.</td>
<td>NASTRAN an analysis tool in a structural design optimization process</td>
<td>A71-36270</td>
</tr>
<tr>
<td>Sokoloff, B. P.</td>
<td>Certain results of the use of an aircraft heat viewer for studying the radiation of underlying surfaces</td>
<td>A71-41300</td>
</tr>
<tr>
<td>Somes, J. H.</td>
<td>Head-up display systems in modern aircraft</td>
<td>A71-40131</td>
</tr>
<tr>
<td>Sonnerveschep, C. B.</td>
<td>Application of laser Doppler systems to vortex measurement and detection</td>
<td>A71-40490</td>
</tr>
<tr>
<td>Spencer, R., Jr.</td>
<td>Hypersonic aerodynamic characteristics of a variable-dihedral delta-wing spacecraft configuration [NASA-TM-X-61]</td>
<td>A71-34008</td>
</tr>
<tr>
<td>Sprakelinstie, R. L.</td>
<td>Research, design, fabrication, and field testing of a ninety foot span, two arch evaluation segment, aircraft maintenance hangar, volume 2 [AD-727051]</td>
<td>A71-35936</td>
</tr>
<tr>
<td>Stampion, E. L.</td>
<td>An evaluation of current NASTRAN discrete element models for monocoque and semi-monocoque structures [NASA-CR-7131]</td>
<td>A71-36290</td>
</tr>
<tr>
<td>Starnes, J. H., Jr.</td>
<td>Vibration studies of a flat plate and a built-up wing</td>
<td>A71-36293</td>
</tr>
<tr>
<td>Stein, G.</td>
<td>A design procedure and handling-quality criteria for literal-directional flight control systems [AD-726504]</td>
<td>A71-35221</td>
</tr>
<tr>
<td>Stevenson, D. L.</td>
<td>UK military and civil air traffic control in harmony</td>
<td>A71-41519</td>
</tr>
<tr>
<td>Stuart, T. F.</td>
<td>Use of aerial surveys for determining plutonium concentration [Eg-6183-1517]</td>
<td>A71-35980</td>
</tr>
<tr>
<td>Sud, E. K.</td>
<td>Modeling of a satellite airport system for large metropolitan areas - A systems analysis [SU-TR-71-1]</td>
<td>A71-40799</td>
</tr>
<tr>
<td>Sullivan, R. D.</td>
<td>Decay of an isolated vortex</td>
<td>A71-40503</td>
</tr>
<tr>
<td>Sivenscheiner, S. B.</td>
<td>Interaction of a pitot tube with a subsonic flow of rarefied gas</td>
<td>A71-40325</td>
</tr>
</tbody>
</table>
PERSONAL AUTHOR INDEX

Y

YPF, J.
T-tail aeroelastic analysis for Fokker F-28
N71-34002

Z

ZALAY, A.
Theoretical and experimental study of the stability of a vortex pair
A71-40500

ZIMIN, G. V.
Practical aerodynamics and aircraft [AD-726580]
N71-35224

ZWAAN, R. J.
T-tail aeroelastic analysis for Fokker F-28
N71-34002
Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the IAA or STAR section.

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF 33/615-3242</td>
<td>NAS1-5943</td>
</tr>
<tr>
<td></td>
<td>N71-34004</td>
</tr>
<tr>
<td>AF 33/615-3709</td>
<td>NAS12-2097</td>
</tr>
<tr>
<td></td>
<td>N71-34016</td>
</tr>
<tr>
<td>AF 33/615-67-C-1108</td>
<td>NAS2-5458</td>
</tr>
<tr>
<td></td>
<td>N71-34236</td>
</tr>
<tr>
<td>AF 33/615-68-C-1600</td>
<td>NAS2-5458</td>
</tr>
<tr>
<td></td>
<td>N71-34237</td>
</tr>
<tr>
<td>AF 33/657-11096</td>
<td>NAS2-5816</td>
</tr>
<tr>
<td></td>
<td>N71-35385</td>
</tr>
<tr>
<td>AF 44/620-68-C-0018</td>
<td>NAS2-5865</td>
</tr>
<tr>
<td></td>
<td>N71-35206</td>
</tr>
<tr>
<td>AF 44/620-69-C-0090</td>
<td>NAS2-5972</td>
</tr>
<tr>
<td></td>
<td>N71-35210</td>
</tr>
<tr>
<td>AF 44/620-69-C-0096</td>
<td>NAS3-12411</td>
</tr>
<tr>
<td></td>
<td>N71-35560</td>
</tr>
<tr>
<td>AF 44/620-69-C-0900</td>
<td>NAS3-12429</td>
</tr>
<tr>
<td></td>
<td>N71-35217</td>
</tr>
<tr>
<td>AF 44/620-70-C-0052</td>
<td>NAS3-12437</td>
</tr>
<tr>
<td></td>
<td>N71-35385</td>
</tr>
<tr>
<td>AF 49/638-1622</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35386</td>
</tr>
<tr>
<td>AF-AFOSR-1843-70</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>AF-AFOSR-69-1804</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DAAJ02-0069-C-0039</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DAAJ02-0069-C-0056</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DAAJ02-0070-C-0090</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DARCO4-69-C-0015</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DOT-CG-94331-A</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DOT-PAWA-4616</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DOT-P699A-357</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>DOT-P670VA-2141</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P04701-70-C-0159</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P33615-67-C-1166</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P33615-67-C-1259</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P33615-67-C-1001</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P33615-70-C-1165</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>P33615-70-C-1190</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NASW-1849</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NAS1-10105</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NAS1-10247</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NAS1-10459</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NAS1-8350</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
<tr>
<td>NAS1-8912</td>
<td>NAS3-12445</td>
</tr>
<tr>
<td></td>
<td>N71-35390</td>
</tr>
</tbody>
</table>
PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA deposits its technical documents and bibliographic tools in eleven Federal Regional Technical Report Centers located in the organizations listed below. Each center is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA
University of California, Berkeley

MISSOURI
Linda Hall Library, Kansas City

COLORADO
University of Colorado, Boulder

NEW YORK
Columbia University, New York

DISTRICT OF COLUMBIA
Library of Congress

PENNSYLVANIA
Carnegie Library of Pittsburgh

GEORGIA
Georgia Institute of Technology, Atlanta

TEXAS
Southern Methodist University, Dallas

ILLINOIS
The John Crerar Library, Chicago

WASHINGTON
University of Washington, Seattle

MASSACHUSETTS
Massachusetts Institute of Technology, Cambridge

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries:

CALIFORNIA
Los Angeles Public Library

NEW YORK
Brooklyn Public Library

San Diego Public Library

Buffalo and Erie County Public Library

COLORADO
Denver Public Library

Rochester Public Library

CONNECTICUT
Hartford Public Library

New York Public Library

DELAWARE
Wilmington Institute Free Library, Wilmington

OHIO
Akron Public Library

MARYLAND
Enoch Pratt Free Library, Baltimore

Cincinnati Public Library

MARYLAND
Wilmington Institute Free Library, Wilmington

DELAWARE
Wilmington Institute Free Library, Wilmington

MICHIGAN
Detroit Public Library

Dayton Public Library

MINNESOTA
Minneapolis Public Library

Toledo Public Library

James Jerome Hill Reference Library, St. Paul

OKLAHOMA
Oklahoma County Libraries, Oklahoma City

TEXAS
Dallas Public Library

TENNESSEE
Cosssitt—Goodwin Libraries, Memphis

Fort Worth Public Library

WASHINGTON
Seattle Public Library

WISCONSIN
Milwaukee Public Library

New York Public Library

WASHINGTON
Seattle Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017.

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the National Lending Library for Science and Technology, Boston Spa, Yorkshire, England. By virtue of arrangements other than with NASA, the National Lending Library also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from: ESRO/ ELDQ Space Documentation Service, European Space Research Organization, 114, av de Neuilly, 92-Neuilly-sur-Seine, France.
"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546