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ABSTRACT

the raethodlogy of developing finite life distributional

Goodman diagrams and surfaces is presented in this paper. The

Goodman surface and diagram presents allv..4able combinations of

alternating stress and mean stress to the design engineer.

The combined stress condition presented in these surfaces and

diagrams is that of an alternating bending stress and a constant

shear stress. The finite life Goodman diagrams and surfaces

are created from strength distributions developed at various

ratios of alternating to mean stress at particular cycle life

values.

The conclusions drawn in this report indicate that the

Yon-Mises Hencky ellipse, for cycle life values above 104

cycles, is an adequate model of the finite life Goodman dia-

gram. In addition, suggestions are made which reduce the

number of experimental data points required in a fatigue data

acquisition program.

a
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CHAPTER I

INTRODUCTION

Presently in the United States and abroad fatigue data,

to a large extent, is presented in the form of the conventional

S-N diagram. The S-N diagram's purpose is to graphically pre-

sent strength data as a function of cycle life. This is done

by testing a few specimens to failure at incremented stress .

levels. The data is plotted on a graph of log stress versus.

log cycles, (see Figure 1.1). This method of presenting fatigue

data does not take into account one of the fundamental and most

important fatigue aspects: the variability of the fatigue

mechanism; i.e., even high quality test specimens, subjected

to tightly controlled test conditions will"rarely, if ever,

fail at precisely the same cycle of life at a given stress

level.

Recently the American Society for Testing and Materials

(ASTM) has suggested that a statistically significant number

of specimens at each stress level be tested in order that a

failure distribution be developed for each stress level (1,

p. 9). The cycles-to-failure distributions which are developed

can be used to construct a statistical S-N diagram. This

particular diagram, as pictured in Figure 1.2, has a mean line

as well as plus and minus three sigma lines.

1
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4

It is possible through such statistical techniques as

the use of probability plotting paper, the Chi-Squared and

Kolmogorov-Smirnoff goodness of fit tests, and the computation

of the four statisti:al moments to determine the best failure

distribution probability density function. The probability

density functions usually considered in such an analysis

are the normal, lognormal, and Weibull distributions. The

Weibuill, because it is a three parameter distribution can take

on many different shapes, from the exponential to the lognormal,

by varying the three parameters . The Weibull probability den-

sity function, because of this flexibility is the most flexible

of the three distributions mentioned.

The concept of failure distributions and strength distri-

butions should be discussed briefly in order to avoid confusion

in the later sections of this report. A failure distribution

is derived directly from cycle to failure data. At a given

stress level specimens will fail at particular values of cycle

life. Even under the tightest controlled test conditions there

will be variability in the cycle life of the individual test

specimens. The failure distributions represent this variability

in the test specimen's cycle to failure data. It is possible

to form a histograms of the test specimen's cycle to failure data

from which a.failure distribution can be determined which ade-

quately described the data. An example of such a histogram

and distribution is given in Figjre 1.3. Specifying the type
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6

of distribution, normal, lognormal or Weibull, and the distri-

butit,i parameters, uniquely describes the cycles-to-failure

data.

A strength distribution is similar to a failure distribu-

tion in that it is described by a distributional type and the

corresponding distributional parameters.. Wheii a specimen fails

it means that the stress has exceeded the value of the strength

of the specimen. Cycles-to-failure data"reveals the percentage

of specimens which have a strength less than the applied stress.

It is possible to transform the cycles-to-failure distributions

to strength distributions. A strength distribution describes

the variability of the strength of a specimen at a specific

value of cycle life and may be derived from a cycles to failure

distribution.

The discussion of transforming cycles-to-failure distribu-

tions to strength distributions should be preceded by a discus-

sion of some of the basic assumptions and restrictions which

govern the generation of meaningful failure distribution dava.

Of primary concern is that all test s pecimens be uniform in

geometry and metallurgical properties. This is important since

'subsequent calculations of the strength distributions will as-

sume that specimens tested at various stress levels carne from

a homogeneous population. In addition the number of test

specimens should be dependent upon the variability of the data

generated. The statistical significance of the desired data

is dependent upon the number of test-specimens which are run,
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.j

the more data points generated the more positive tha experi-

menter can be of his theoretical distribution. 	 It has bcen

found that at lower stress levels the variability of the

data increases which indicates that an ir-,rease in test

specimens is warranted at these lower stress levels.

The strength distribution ma; ► be oriented along the stress
S

ratio axis of a di. ributional Goodman diagram. 	 The ordinate

axis of such a diagram presents values of alternating stress

while the abscissa presents mean stress values.	 The strength

distributions which are placed along axes where the ratio of

mean stress to alternating stress is a constant forin distribu-

tional surfaces. 	 These surfaces are formed when the strength

distributions are connected by a mean line and plus and minus

three sigma limit lines. (see Figure 1.4). 	 The Goodman surfaces
t

are of vast importance in reliability engineering where the

r , interference of a stress distribution with the corresponding

strength distribution is used to calculate the designed-in

i
reliability of a mechanical part.

r
The objective of this report is to clearly present the

methodology of generating distributional Goodman diagrams.

The accomplishment of this objective requires that the follow-

ing subject areas be investigated:	 Chapters II and III explain

methods of converting cycles to failure data to strength dis-

tributions;	 Chapters IV and V develop methods of generating

finite life Goo(LnQn diagrams and surfaces; 	 Chapter-VII directs

it's attention to resolving the question of static strength

i
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distributions to be used on the finite life Goodman diagram. In

Chapter VIII empirical mathematical models of the Goodman diagram

are discussed. Chapter IX explains the theoretical strength

theories associated with the combined stress condition of 04ter-

nating bending stress and mean shear stress. 	 Chapter X recom-

mends an empirical mathematical model of the Goodman diagram and

an associated theoretical strength theory. Chapter XII suggests

two methods of reducing the amount of experimental data needed 	 -

to generate finite life Goodman diagrams as well as methods of

obtaining cycles to failure distributions from these Goodman

diagrams with a minimum amount of actual fatigue testing.

The discussion of these subject areas requires that actual

fatigue data be used in support of this effort. This investigator

was extremely fortunate to have access to the complex fatigue

data generated under National Aeronautical and Space Administration

Grant No. 03-002-044 at The University of Arizona under the

direction of Dr. Dimitri. R. Kececiglu. The Combined stress con-

dition under which this data was generated was that of an alternating

bending stress and a constant, mean shear stress. Although the

discussions in this report often apply themselves to this data, the

concepts presented are applicable to the area of combined bending

and-shear stresses and in general to the broader area of any com-

bined stresses in fatigue. i'
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CHAPTER II

NASA METHOD OF GENERATITrx POLYGONS ATtD DISTRIBUTIONS

2.1 Theory

Mr. Richard E. Smith, Aerospace and Mechanical Engineering

Department, The University of Arizona, in his master's report

of August 1965, used data from Dr. H. T. Corten, Department

of Theoretical end Applied Mechanics, University of Illinois,

to present a method of transforming theoretical cycle to

failure distributions to cumulative strength polygons. The

following is a summary of the methodology of that effort

( 2, P. III)..

The theoretical cycle to failure distribution is first

determined. Because goodness of fit tests alloy,• only for the

rejection of a distribution, it is possible that more than one

of the three major fatigue probability density functions, normal,

lognormal, and'ileibull, will be accepted. It then becomes nec-

essary for the investigator to choose which one fits the data

best, at all of the various stress levels. Once this has been

determined, the failure data is uniquely described by the

theoretical failure distribution probability density function

rather than the failure histogram of the sample data. This

probability density function is symbolized by f(x). At each

10'

__
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of the j stress levels pictured in Figure 2.1.1, there is a

theoretical normal, lognormal, or Weibull distribution which

represents the failure data.

The cumulative failure probability, up to the x'th cycle,

for the j stress level is given by

X

F (x) = jf(X) dx
i	 0

Of interest to the designer is the strength distribution for a

specified cycle life. Once this cycle life is specified a

series of cumulative failure distributions can be calculated

for each stress level. In essence, the calculation of F,(x)
7

is equal to calculating the area bound by the theoretical

failure probability density function and the cycle line N

(see Figure 2.1.2). Rote the cumulative area in percent for

eacli failure distribution ^:o the right of the graph. Here it

is important that the failure distributions are knrx-m for the

full strength range in order that a cumulative failure probabi-

lity_nf zero to one hundred percent is obtained (2, p. 23).

The physical significance of the cumulative failure distri-

bution is the percent of specimens in which the stress has ex••

ceeded the streng=th. The percentage of specimens at a given

stress and cycle life with a strength equal to or less than the

stress is nva	 ma kno quantity. A plot, ac shown in Figure

2.1.3 can then be made of the cumulative failures in percent

versus stress level, and is knawn as the cumulative strength

i

M
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histograms. From this cumulative strength histogram it is possible

to calculate the strength frequency histogram. The strength

frequency histogram for the i'th cycle life is given by

fi (s) (Fj+lW-FJW)

Mt.

where F  and Fj+l are given by Equation 2.1.1 and where there

are 2.1 different stress levels to be considered. Since the

above calculation for the strength frequency histogram is based

upon inferences drawn from several stress levels it is impera-

tive that the specimens used in all stri ess levels be from the

sane statistical population and that uniform test conditions

are maintained from stress level to stress level.

Upon the deternination of the strength frequency histoc,,rcaa,

fi(s), the statistical operation for goodness of fit, in this

case the Chi-Squared test, can be conducted to insure that a

theoretical distribution can be fitted to the histogram. For

specific cycle of life values a theoretical strength distribu-

tion is specified by one of the three theoretical distributions,

specifically either the normal, lognormal or Weibull distribu-

tion. It is of major importance to note that this method is

capable of determining the strength distribution in either the fatigue

life or infinite life portion of the S-N curve (refer to Figure 2.1.1)

This ma)ces it unnecessary to conduct a Probit analysis

or staircase test to deterraine the strength distribution (2,

p. 31).

IN 0
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Beyond the endurance limit, area to the right of the knee

where the S-11 curve is horizontal, the failure distributions are

independent of time, previously expressed in cycles. However,

at some stress levels it will be impossible to achieve a cumu-

lative failures or one hundred percent because the test will

be terminated at a pre-determined time before the • specimen has

failed. Fortunately the cumulative failure distribution is

known up until the test termination which allows one to calcu-

late the strengt'ri distribution in an identical manner as

previously discussed (2, p. 31).

The result of the strength distribution calculations allows

the construction of a statistical S-N diagram, as illustrated

in Figure 2.1.4.

An adequate range of stress levels is necessary so that

a complete failure histogram from zero to one hundred percent

can be developed. Within this range a sufficient number of

failure distributions must be known at different stress levels

so that there will be enough class intervals, governed by

Sturges' rule, in the strength histogram. Time and economic

considerations limit the number of stress levels, and conse-

quently the number of failure distributions generated to from
f

five to eight such levels and distributions. The use of this

limited nxi-tuber of distributions would not give enough class

intervals for an accurate strength distribution calculation.

It is necessary to develop a digital computer program which

will interpolate nary stress-to-failure distributions from the
I'
is
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Log Cycles --

I

Fig. 2.1.4 — Strength Distribution Versus Cycles To Failure
-(2, p. 33) .
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liraited nu.*giber available from experimental data (2, p. 27).

It is possible to have this program accomplish these interpola-

tions and perform the nethodolo3Y cliscussed for the transforma•,

tion of cycles to failure distributions to strength distribu-

tions as well as acco plish all required statistical operations.

[	 2.2 Com2uter Method

i

	

	 7t,:o computer programs were developed in order that the

strength distributions could be calculated. The first reduces

the cycles to-failure data to failure distributions at each

stress level. The second

distributions to strength

	

r	 Bocayse of the large

digital cc:,* uter program,

	

i	 reduce the failure data a-

computer program transforms thei failure

distributions.

amount of fatigue data generated, a

in Fortran language, was used to

t various stress levels to failure

distributions. Failure data in terms of stress level and cycle

life is read into the computer. The computer is capable of

j	 calculating the following parameters: mean, standard deviation,

coeffieients of lnirtosis anu s1ce-uness, as well as of performing

a Chi-Squared goodness of fit test. The computer program will

use the normal distribution approximation in calculating the

expected frecziency in the Chi-Squared test when the sample

data points are greater than thirty and will use the Student-t
M

distribution when the scuaple n-,xiber of data points is less than

thirty. A flow chart, variable definitions and computer listing of

the program are given in Appendix A.
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The second computer program is used to determine the

strength distributions from the failure distributions and is

also written in Fortran language. 	 The main steps of vie pro-

gran are listed below.	 A flow chart, cariable definitions and

computer list.of the program are given in Appendix B.

1. For ec:ch of the experimental stress levels read

into the computer the actual cycles to failure

developed.distribution parameters are

2. The compu •terwill then calculate failure distribute on

parameters for interpolated stress levels at 200

increments by straight line i'nternolation.

3. The computer will then calculate the cumulative

I` failure distributions for each stress level

and a given series of log cycle life values.

4. P;ext the computer will cal cola to the strength

l'
frequency histogram for each cycle life.

5. The computer program then calls the computer to cal-

culate theoretical distribution parameters from the

l strength frequency histograms based on a nornal or

lognormal distribution.	 TheseP arameters include

mean, standard devirtian, coefficients of sketmess

and kurtosis.	 A goodness of fit test, using the Chi-

Squared test will then be performed to determine

Which of the normal of lognormal distributions fits

the data west.

1`11
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6. The parameters mentioned in five are then printed out in

addition to the Chi-Squared values for each cycle life.

This print out allows the investigators to determine

i Which of the two distributions is a better fit.

1

2.3	 Results

i! A complete description of Dr. Corten's testing progarm is found

( in Chapter V of Richard Smith's report, togeth6r with the analysis by

Smith (2).	 Results of his analysis are summarized herein.

The Chi-Squared goodness of fit tests indicated that for aluminum

specimens the cycles to failure distributions more closely fit a lognormal

distribution; whereas distributions of steel specimens fit either the

normal and lognormal distributions equally Weil	 (2, p. 76).	 It was

observed.that as the sample size was increased, the lognormal distribution

fit the data better than the normal.

The transformation of cycles to failure distributions to strength

distributions was accomplished by assuming the failure data to be dis-

tributed lognormally. 	 The computer program previously described Was

used to determim the strength polygons for various cycles of life. 	 The

program output included the cumulative strength polygons, the mean,

..	 t standard deviation, coefficient of skewness and kurtosis, and the Chi-

Squared goodness of fit values for the strength distributions.

t
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Analysis of this data indicatez that the normal distribu-

tion fit the strength data better than the lognorno.l distribu-

tion. Coefficient of s1towness is generally negative indicating

a normal distribution. Coefficient of kurtosis values, which

should be 3.0 for the normal distribution, fluctuate about a

value of 3.0. In addition the Chi-Squared values indicated

that for both type specimens the normal distribution represented

the data better than the lognormal distribution (2, p. 85).

2.4 Discussion as to Validity

The transformation of cycles-to-failure distributions to

strength data which was proposed by Richard Smith.,was :Found

to be appropriate and based on well founded principles. John

Snith"s methodology Is identical in transforming cycles-to-

failure data to strength distributions. Richard Smith applied

the techniqua to Corten's data ( 3, P. 111) and John Smith to

the WISA data.

1

i
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I'.	 CHAPTER I i I

GENERATION OF STRENGTH DISTRIBUTIONS

3.1	 Theor r

Smith (3) did extensive work in developing cycles to failure

i	 and strength distributions. These distributions were generated

from fatigue data of specimens which were subjected to an alternating

II
	

bending stress and a constant, r•°an shear stress. Specimens were

subjected to different ratios of alternating to mean stress, known. as

stress ratios, at specified alternating stress levels. The specimens

r
	

were of SAC 4340 steel and were of a grooved geometry. A grooved and

ungrooved test specimen are shown in Figure 3.1.1 and 3.1.2. A com-

[i
	

plete description of the tes, program, which was sponsored by the

National Aeronautics and Space Administration andc:r Grant Number 03-

002-044 at The University of Arizona, and of the procedures and

materials is given in NASA CR-120831 (3).

The methodology used by John Smith in developing the strength

distribution was similar to that used by Richard E. Smith (discussed

in Chapter II of this report) (2). Cycles to failure distributions

were developed at specific alternating stress levels for the stress

ratios of infinity, 3.5, 0.825, and 0.44. 	 The lognormal distribution was

n

I'
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found to best describe the cycles to failure data (3, p. 47).

The decision to accept the loge-ormal distribut?on over the

normal distribution was based of the Y.olmogorov-Smirnov test

(3, p.	 44).

i
Cycles to failure distributions for particular strew

ratios at specified stress levels were plotted on S-N diagrams

of alternating stress versus log cycles. 	 This specified -the
r^

meAn line and +36- (6= standard deviation) envelope.	 After

this was established, it was possible to interpolate many cycles-

to-failure distributions at intermediate stress levels. 	 This

interpolation process made it possible to calculate strength

distributions at specific cycle life values.

A	 the	 in thereview of	 methodology used	 calculation of

strength distributions at specific cycle life values is in ord-

er at this time.	 A histogram can be located along the N

cycle life line in such a way that the midpoints of the cells

are at the interpolated stress levels. 	 (See Figure 3.1.3).

The ordinate of each of the strength histogram cells is the

area bounded by the N cycle line and the cycle to failure dis-

tributions which has been interpolated for that particular

value of alternating stress.	 Thus if f(id/5i} is the cycle to

failure distribution at a particular alternating stress level,
r_

i'!€ the ordinate of the strength histogram cell at that stress

level will be given by:
f

nI

F(?t /Si ) _	 f(N/Si) an

-1- - n



25

U)	 L7	 C7M  Cn	 {fj t

SS:! ^^4^S J,'v I,Lt^ Ii ^^57^

N
f~
O
ri

r^

St
43
N

A

O
St

H
.ri

d
G-,

O
43

f_{

V

U

CC o

}-t

ki U

Fy
H u

k1 O
Fi
U E-N Cd
U St

EJ
O

N
WA
tri

M

r-1

M

Co
YtW i

I -t

H

L•1A

H
t--t

H(

n^ c

PARE
Oc

He
He

►̂-1 E
3 t

U

I
G
I!



26

The ordinate of each of the strength hi stograni cells will

be:

n

F(N/Si)	 j f(Pt/Si ) do	 (3.1.2)

o

The histogram which is developed in this way is'the

cumulative strength histogram of specimens failing by N

cycles. if S is the strength variable along the N cycle life

line, the probability density function can be developed in

the follaraing manner. The value of the i th cell of the

strength probability density histogram •s given by:

i	 f(S.) = F(^I/S.) - F(N/S »1)z	 1	 i
The fact that there are riany interpolated cycles to failure

distributions on the N cycle life line in!:ures an adequate

number oa class intervals in thethe strength histogram. A

normal distribution is then fitted, by statistical methods, to

the strength probability density histogram (3, p. 55).

3:2 Co*muter Methorl

John Snith developed two computer programs which were

used in the stre,icgth distribution calculations. The first of

which, knuan as CYT'Ork, calculated the. cycles to failure dis-

tributior: parameters, Mean and standard deviation as well as

the coefficients of sl-e.rness and kurtosis of the normal and
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lognormal distributions. 	 It also performed the Chi-Squared and

Kolmogorov-Smirnov goodness of fit teststo determine if a normal

or lognormal distribution fits the data best. 	 A flow chart,

variable definition and computer listing of this modified to

include a sort routine is given in Appendix C.

The program STRENG finds the normal strength distributions

6

ft

i4̂

from the lognormal cycles to failu;•e distribution parameters. 	 Smith

= used this method because it has been found by earlier studies that

the normal distribution adequately describes the strength data (2)

(4).	 The input data of this program includes the cycles to failure

data, two extrapolated lognormal distributions on either side of the

r experimental distributions and interpolated lognormal cycles to

€	 ^' failure distributions between the actual experimental failure dis-

tributions.	 The program then calculates the mean, standard deviation,

I and coefficients of skewness and kurtosis for the normal strength
i

distributions.	 In addition a goodness of fit test, the Kolmogorov-

Smirnov test is performed on the normal strength distributions.

A•flow chart, variable definitiions computer listing of program

STRENG given in Appendix D.

0



28

3.3 Results

The statistical S-N diagrams, which presei,t the cycles to

failure distributions for stress ratios of infinity, 3.5, 0.825 and

1.44, are given in Figures 3.3.1 through 3.3.4. 	 The mean, standard

devistions, and three sigma limits of the lognormal cycles to

failure distributions are presented in Table 3.3_.1.

John Smith presented only one S-N diagram which had the cal-

culated strength distribution for a stress ratio of 3.5 and cycle

life values of 10,000, 50,000, and 100,000 cycles. The normal

parameters of the strength distribution which was placed on this

particular S-N diagram are given in Table 3.3.2 while the S -N diagram

appears as Figure 3.3.5.	 The completion of the stress ration tests

of 0.44 allowed the calculation of strength distributions for this

stress level. Table 3.3.3 prc;sents the parameters of the normal

strength distributions at three cycle life values and a stress ratio

of 0.44 while these distributions were added to Figure 3.3.4.

A complete table of the normal strength distribution parameters

at all stress ratios and cycle life values was inavailable and con-

sequently recovered by use of the program STRENG. 	 The results

are presented in Table 3.3.4.
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Table 3.3.2 Strength Distribution Parameters of the Normal Distribution
at Three Cycle Life Values For A Stress Ratio of 3.5.
(3,'-p.57)

Cycles
of

Life N

Parameter Estimate of
Normal	 Distribution

Mean (psi) Standard Dev.
(psi)

10,000 106,639 3,256

50,000 79,021 3,253

100,000 70,972 2,313

i
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Table 3.3.3. Strength Distribution Parameters of the
Normal Distribution at Three Cycle Life
Values for a Stress Ratio of 0.44.

Cycles
of

Life It

Parameter Est dates
of Normal Distribution

Mean Standard Deviation
psi psi

10,000 103,725 31323
50 1 000 77,703 3,154

1,000,0"U 43,686 2,394

L

d
i
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`fable 3.3.4 Para:1cters of IZormal Strength Distribution

At Specific Stress Ratios and Cycles of Life.

R--oo

Mean Standard -3 Sigma +3 Sigma
Cycles Strength Deviation Limits Limits

psi psi psi	 • psi

1,000 1641805 1,629 159,932 169,678
3 1 000 139,241 2,570 131,533 146,950
3 01500* 135,953 2,628 128,070 143,837
5,000 128,356 2,790 119,986 136,726
7 1 000 121,191 2,937 1121378 130,003
9 1 000* 115,926 2,907 107,205 124,647

10 1 000 113,844 2,801 105,441 122,246
20 1 000 101,523 2,772 93,206 109,840
30 1 000 941972 2,559 87,296 102,648
40 1000 90,693 2,665. 82,878 98,507
50 1 000 87,391 2,671 791378 95,405
60 1 000 841707 2,697 76,617 92,798
70 1 000 82,484 2,662 74,498 90,470
80 1 000 80,628 2,594 72,845 88,411
90,000* 790054 2,539 71,437 86,671

150 41000 72,901 2,33 661#502 79,301
200 1 000* 70,172 1,881 64,529 75,815

1,000,000 56,184 2,138 49,771 62,596

*Parameters used in Chapter V Finite Life Goodnan Diagrams.
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Table 3.3.4 Parameters of Normal StrengthDistribution

At Specific Stress R: tios and Cycles of Life.
1.---+; -1 ^z t

R = 3.5

Cycles
Mean Standard -3 Sigma +3 Sigma

Strength Deviation Limits Limits
psi psi psi	 - psi

1,000 158,162 2,144 151,731 164,592
3,000 132,668 3,536 122,061 143,275
3,500- 128,964 3,643 118,035 139,894
5,000 120,436 3,797 109,645 131,826
7,000 113,156 3,325 103,178 1231133
9,000-- 108,523 3,213 98,883 118,163

10,000 77,639 2,502
20 1 0. 00 941273 3,611 83,440 105,106
30,000 87,100 3,701 75,998 98,203
40,000 82,345 3,467 71,942 92,747
50,000 79,021 3,253 69,261 881781
60,000 76,533 3,049 67,385 85,681
70,000 741629 2,792 66,253 83,005
80 1 000 73,152 2,554 65,490 801814
90 1 000* 71,967 2,393 64,787 79,147

100,000
150,000 67,341 2,327 60,360 74,321
200 1 000* 64,792 2,400 57,593 71,991
000,000 50,533 2,812 42,097 58,969

*Parameters used in Chapter. V Finite Life Gcodraan Diagrams,
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at Specific Stress Ratios anc Cycles of Life.
(Continued).

R = 0.444

Mean Standard -3 SigTSa +3 Sigma
Cycles Strength Deviation Limits Lixuts

psi psi psi psi.

1,000 121,500 200 121,439 121,560
3,000 107,185 1,141 103,761 110,605
3,500 105,107 1,260 101,327 108,887
5,000 100,305 1,539 95,689 1041921
7,000 95,774 1,803 90,365 101,183
9,000 92,390 2,002 86,384 931396

10,000 901971 2,085 84,715 971227
20,000 81,638 2,637 73,726 891549
30,000 76,162 3,012 671P126 85,197
40,000* 72,260 3,269 62,452 82,068
50,000 69,103 3,202 59,799 79,008
60,000 67,3$7 2,971 58,474 7x,299
70,000 65,930 2,806 57,511 74,349
80,000 64,788 2,750 561539 73,037
90,000• 63,821 2.75'1 55;562 72,079
150,000 59,657 2,608 511832 67,482
200,000-" 57,521 2,359 501444 64,599
,000,000 47,64£ 2,766 38,751 550,346

*Yorm-aeters used in C'}opter V Finite Life Goodman Dicarcros.

i
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Table 3.3.4 Para:::eters of No nal Strength Distribution
At Specific Stress ratios and Cycles of Life.
(Continued).

R = 0.825

Mean Standard
Cycles Strength r)eviation

psi psi

1,000 154,197 2,056
3,000 130.027 3,651
3,500- 126,369 3,739
5,000 117,923 31893
7 1 000 110,448 3,539
9,000% 105,645 3,308

10 1 000 103,725 3,323
20,000 91,498 31243
30 1 000 85,248 31148
40 1# 000 . 80,953 3,208
50 1 000 77;703 3,154
60 1 000 75,179 3;944
70 1 000 73,0.4E 21974
80,000 71,443 2,947
90,000-k 69,970 2,927

150 1 000 64,263 2,372
200 1 000 61,737 2,133

1,000,000 431606 2,394

-3 Siena +3 Sigma
Limits Limits
psi • psi

148,030 160,364
119,073 140,981
115,151 137,587
106,229 1291618
99,831 121,065
95,7?.2 115,569
93,756 113,694
81,769 101,227
75,805 94,691
71,327 96,578
68,239 87,166
66,045 84,312
64,226 821070
62,602 80,285
61,189 78,750
57,147 711379
55,338 68,135
41,505 55186

*Parn;ietc:rs used in Chanter Y Finite 'Life Goad. r-ui Diagroms.
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3.4	 Discussion as to Validity

The methodology which John Smith presented i,as found to

be well grounded and accurate. 	 Disturbing to the original

investigator was the fact that the vertical strength distri-

butions dial not completely "fill" or span the entire width of

the statistical S-N diagram envelope. 	 That is, the vertical

strength distributions did not span the comp?.ete distance be-

' tween the plus three sigma line and sinus three sigma line of

r ^

(t

the cycles to failure distributions. 	 phis, hoviever, was not

disturbing to this investigator for the folle y;-ri ng reason.

The histogrcm of the vertical strength distributions

was developed from the c=ulative failure probabilities of a

large number of cycles to failure probability density functions.

Along a particular cycle life line on the statistical S-11

diagram, S^e Figure 3.4.1, the vertical distance from the

intercepted plus and minus three sigma lines is of no particu-

lay significance.

The fact that the vertical strength distribution does

not span the distance between point A and B can be explained

` in the following menaer: 	 The cycles-to-failure distributions

( are lognormal while the strength distributions are nornal. It

I iaust be noted that in actuality only distributions to the left

of-the cycle life line contribute percentile areas tr, the

cuulative strength distribution. 	 The two points, A and B,

I are then completely unrelated. 	 'lrne plus aid nines thr ee signor

limits, which are not necessarily points A and B, of the
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vertical strength dis'tr-'butions are derived fro-m the curiulat ve

failure probabilities of the individual cycle to failure proba-

bility density functions. The plus and Minus three sigma

limits of the vertical strength distribution are relatzd to

the variability of the individual probability density functions

of the cycles to failure data at particular stress levels

intercepted by the vertical cycle life line.
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CHAPTER IV

GENERATION OF FINITE LIFE GOOD111111 DIAG:21 MS (IL°.TIIOD 1)

11	 4.1 Theory

RTo date most of the work done with the modified Goodman

Diagram an6 Goodman surfaces has been conce):ned with the

objective of presenting the relationship of alternating and

mean stress for infinite periods of life.	 For the biaxial

stress condition, where the specimen is subjected to both

bending and shear stress, the Goodman diagrara represents

combinations of these two stresses, in the cartesian plane,

where the specific combinations will not cause fracture to

occur over a period of infinite life. 	 Tyne need for a surface

to describe this relation occurs where probabilistic methods

j are used in reliability calculations by.the interference

method.

It is the purpose of the method under discussion in

this Chapter to break a •.oay from the traditional concepts of

using a Goodman surface to graphically represent the relation

between bending and shear stresses for a period of infinite

life, and present, in the cartesian plane, the relation of

alternating stress to mean stress where the alternating

stress is a bending stress while the mean stress is a shear

stress for finite periods of life.	 Vie advantage of such an

44
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f	 approach is that it will graphically illustrote to a dosIgner

that it is possible to have higher combinations,  of bending and

shear stresses for a finite life design. Hence, if a part

need only fuction for a specified fini te number of hours or
i

cycles. after which its failure is not detrimental to the

success of the nission, it can be subjected to combinations

of bending and shear considerably higher than if it had

to function in excess of 10 cycles.

The data which was used for this ne thod was generated by the

Reliability Research Laboratory of the Aerospace and HeOicini.cal

Engineering Denar* trient under Itn1SA Grant 03-002-044 at The

University of Arizona. G^rcles to failure data was genera-teet

for rotating specimens which were subjected to an alternating

bending and constant shear stress at specific stress ratios.

Stress ratio is defined as the ratio ox alternating bending

stress, to mean normal stress from torque.

The cycles to failure data was generated fronx 1967 to

1970 for stress ratio.;, of infinity, (pure bendinj), 3.5,

0. 8, and 0.44. The specimens which were subjected to a

bending and shear stress had a grooved geometry. ine

material whic;i the spec raenu were made of was SAE 4340 steel.

A comprehensivc explanation of the test progran, riochines;,

procedures and materials used can be found in NASA CR-72839

(3) .	 The data generated . by this e>,perimcntal effort, which was

used to construct finite life Goodman surfaces displayed in this

!r:

is

i

'1
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Chapter, included the bending and shear stress in each of the over

308 test specimens which were run to failure. The value of the

cycles life at which the specimen failed was also recorded.

In the original test program twelve to eighteen test specimens

were run at each stress level for each stress ratio. The lower

number of specimens, twelve, occurred at higher stress levels, where

variability in the cycle life data was small. The larger sample

size was used at lower stress levels where variability in the data

suggested a larger-number of specimens be used. Referring to
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Table 4.1.1. Screening of Cycles-to-failure Dq t a to Ascertain
Appropriate Cycle Life Ranges.

/0
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1 20 ,000
Y.'
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H = 1: 1.000 - 3,500 cycles to failure

N	 2: 20,000 - 40,000 cycles to failure

N = 3: 60,000 - 90,000 cycles to failure

N = 4: 90,000 -_ 200,000 cycles to failure

N = 5: 6 0 000 - 9,000 cycles to ,a.ilure

It can be seen that these groups span the cycle life

spectrum from.low to relatively large ;cycle li:fes. However,

all five groupings are in the cycle life range to the left

of the "knee" of the S-N diagrrin. it would have been desirable

to keep the cycle life groups as small as possible, however

the restriction of having enough data points within each

group to form a distribution was the governing restriction

in this case. The alternating stress distribution, where the

shear stress or mean stress is zero, was obtained directly

from the cycle to failure data of pure bending, r = oo,

specimens. After the cycle life Groups were determined the

distribution placed on the alternating stress axis for each group

was specified by the bending stress recorded in each of the

specimens which failed within the cycle life range of that

particular group.

The distribution which was used on the mean stress axis

in all cases was the ultimate strength distribution of an un-

grooved tensile test specimen which had the same cross-sectional

areas as the actual groovecl fatigue test specimens (grooved
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specimen results are used in Chapter V ► 	 see Figures3.1.1 acid

3.1.2 . The mean normal strength distribution was obtained

directly from static tensile str2nc,th tests. In the case of

such tensile tests, it is found that the grooved specimens

have a higher ultimate strength. This is caused by a radial

stress which is introduced into the specimen at the root of

the groove. However, a grooved specimen which is subjected

to static torque load would not experience such a radial

stress. At this time in the investigation, it would,therefore,

not have been correct to use the grooved specimens to determine

the strength distribution for the mean stress axis (see

Chapters V and VII).

After obtaining the cycle life groups the next step

was to relate the shear stress in each of the specimens to the

proper mean stress. This was done by using two predominant

strength theories. These two theories are the Von-Mises

Hencky theory and the maximum shear stress theory. A

complete discussion of these two theories appears in

Chapter VIII of this report.

Tne resultc.'it stress vector, S., for each of the data

points has a mean-stress of Sm = 10"N 't ('t = shear stress),

(3, p. 3). The resultant stress vector is a combination of

mean and alternating stresses. The magnitude of the resultant

vector is:
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S- = (Sa }2
 + (Sm)2

1/2

S-- _	 (Sa )2 + ` ^8'C )2^	 • (4.1.2)

In the case where the Von Mises Hencly criterion is used

to relate the shear stress to the mean stress the resultant

stress vector is called stress vector I.

If the maximum shear stress theory is used to relate the

mean stress to the torsional stress, the governing relation

will be (13, p: 2):

S = 2t
m

The maximum shear stress theory predicts that yielding

will occur when the maximum shear stress is equal to the shear

stress corresponding to the shear stress produced in a simple

tension test for yield strength (15, p. 152). The Mohr circle

predicts that yielding will begin when (15, p. 152):

max = Sy /2	 (4.1.3)

Hence, the mean stress is given by Sm = 2',

Although both these failure theories are based on yielding

as the failure criterion much experimental data indicates that

they apply'as well when fracture is the failure . criterion as

represented by the static ultimate strength. i	 I
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For the maximum shear stress theory the resultant stress

vector magnitude will be given by;

r2 = (S CL+ (Sm )2 	(4.1.4)

21/2

S_ _ ^(Sa)2 + (2'C )2^
	

-(4.1.5)

if the maximum shear stress theory is used to relate the shear

stress to the m ,_an stress the resultant stress vector is referred

to as stress vector II.

The resultant stress vector must be described by both a

(	 magnitude and a direction. A stress ratio was previously

defined as the ratio of alternating stress to mean stress.

It can ba seen that the stress ratio will vary with the

strength theory which relates the shear stress to mean stress.

Hence, for the stress vector where the Von Mises Henc}:y theory

was used the stress ratio becomes:

rl = Sal T3 T	 (4.1.6 )

For the second stress vector in which the maximum shear strews

theory is used to relate shear stress to mean stress:

r2 = SO/2 t 	(4.1.7)
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For both stress ratio cases the data had variability,

described by the standard deviation of x (Ct'r), which was

quite small. The mean values of r and the corresponding

standard deviation of each of the cycle life groups is given

in Table 4.1.2. Because the variability of r was small in

each case the resultant stress vector was assumed to lie on

+he stress ratio axis, defined by the average value of r.

Referring to Figure 4.1.1 it can be seen that the angle O ,

along which the resultant stress vector is oriented is

given by:

-1
O = tan (S /S 	 (4.1.8)

The orientc,tion of the stress .vector is thus specified

by the mean stress ratio, Sr , for each cycle life group.

Pot each date point in a cycle life group, it was possible to

use the PDp-8 Computer to perform the calculation to obtain

Values for Sr . Af ter the Sr values specif ied by Equations

(4.1.2) and (4.1.5) were obtained for each of the data points,

it was possible to compute a mean Sr and a standard deviation

(0*S ) which then specified a strength distribution. These
r

were then plotted along the mean r-axis. After the values of S
r

and 0 S were obtained the Itolmogorov-Smirnov test was used
.	 r

to determine if the normal or the lognormal frequency functions

could be accepted as representing the strength distributions.

}

H



S4

Table 4.1.2 Mean and Standard Deviation of Stress Ratios.

[3i

Cycle Life Range Mean Standard Deviation
Cr --

r

N .-000-- 1,	 3,504
Stress Vector I 3.514 0.1200

Stress Vector II 3.043 0.1306

II = 6,000-9,000
Stress Vector I 3.498 0.1490

1 0.875 0.0290
Stress Vector 11 3.029 0.1296

0.757 0.0254

N = 20;000-40,000
! Stress Vector I 3.508 0.1430

0.729 0.0890
Stress Vector II 3.043 0.1239

0.631 0.0188

N = 601000-90,000
Stress Vector I 3.422 0.1720

0.872 0.0910
Stress Vector II 2.963 0.1492

0.755 0.0171

11 = 90,000-200,000
Stress Vector I 0.804 0.0556

0.439 0.0710
Stress Vector XI 0.696 0.0482

0.362 0.0110

E

a -
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n .

4•:2	 Corinuter Method

Three computer programs of varying complexity were used

to determine the strength distributions discussed in this

chapter.	 Thr first of these, a PDP•8 contPt&r program referred

to as BAR I, used an input of bending stress and shear stress

to obtain a value of-S. when the Von Miser Hencky strength

theory was used.	 For a shear stress (and alternating stress)

it perforras the following calculations.	 It first calculates

a mean stress from a shear stress:

S	 =	 43	 (4.2.1)m

and then performs the operations required by Equation

4.1.2:

1/2 -

Sr 	^(Sa)2 + ( f3'^) 2^	 (4.2.2)

The second computer program referred to as BAR II which

is also a PDP-8 program, performs the calculations required

by the maximum shear theory ' to relate the shear stress to mean
i

stress:
1

S	 = 2'C	 (4.2.3)m

BAR 11 then performs the calculations required by Equation

I (S. )	
+ (2y.)2^	 (4.2,4)

"
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A flow chart, variable definitions and committer listing of the

PDP-8 programs BAR I and BAR II is given in A ppendix E.

After the individual values for the resultant stress
1

vector magnitudes for each specimen were computed the data

was then submitted to the CDC-6400 program ASI4ERG which

made the follo,aing calculations. 	 The mean and standard devia-

tion of Sr fot each cycle life group' and stress ratio was

calculated.	 These values are denoted by Sr and	 o	 In
SSr

addition the Kolmogorov-,Smirnov goodness of fait test, for

a norr nl and l.ognorrtal distribution, was conductor: on each of

the strength distributions. 	 The coefficients of skewness and

kurtosis w=e dcternined for eagh strength .distrlbtit+on. 	 A

flow chart, variable definitions and computer listing of program CYTOFR

is given in Appendix C.

4.3	 Results	 .

For the two strength theories considered,'von Hises

Hencky an,1 maxim a shear stress,the results of the calcula-

tions to determine the resultant stress vector magnitudes are

given in Table 4.3.1. In addition these tables present the

stress ratio neon for each cycle life group as well as the

calculated value for the mean stress for each strength theory
i

considered. Tables 1.3.2 and 4.3.3 present the mean and

r	 standard deviation of the resultant stress vector magnitudc

for each stress ratio b + cle life group. Table 4.3.4cy	 g ^
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presents the ultimate strength distribution of an ungrooved

test specimen. Table 4.3.5 presents the Kolmogorov-Saitnov

ID/ 
mCL% 

values for each cycle lire group for both the Von

Mises-Hencl:y strength theory as -well as the raaxinun shear

stress theory.

Based on the Kolnogorov-S.airnov test, in .no case can the

proposed distributions, nornal or lognormal, for the result-

ant stress vector be rejected at the ninety percent confidence

level. In ten out of fifteen resultant stress vector distri-

butions the 1ocanornal distribution had smaller /D/m.', values.

For the normal and lognormal the /D/max difference was quite small,

the cliffereace occuring usually in the thirddl ceeinal place.

Because-of this slight difference, it cannot be said that

either the normal or lognornal distributions fit the data bet-

ter, rather that both the normal and lognormal distributions

fit the strength data equally well.

The third and fourth statistical noments, coefficients

of sIzei tress and kurtosis, give little insight into the nature

of the unaerlyinj distribution. The "knaaledge of the third

no.nent gives alrzost no clue as to the shape of the distribu-

tion" (5, D. 109).
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Table 4.3.2	 Mean, Standard Deviations and + 3	 Limits of
Resultant Stress Vector for tl^e von Nises-
Hencl:y Z'ie.,ry.

Stondai:d +3a -3arLife Range - Cycles Mean
Deviation

- - psi osi psi -- -- psi

11=1, 000..3, 500
r = co 144,327 1,53 ^0 140,934 139,710
r = 3.514 156,651 3,683 167,700 145,602
r = 0.441 150,404 3,261 170,007 1501801

N=61000-9,000
T = 00 1131862 •954 116,697 111,027
r = 3.498 119,228 1 1 999 ' 125,225 113,231
r = 0.875 • 168,302 3,170' 177,892 158,872

N--20,000-40,000
r = oD 98,247 2,683 1060300 90,196
r = 3.507 86,301 1,062 89,487 83,115
r = 0.729 146,952 3,883 158,701 135,203

N40,000-901000
r = co 811282 993 84,821- 78,303
r = 3.422 78,211 2,550 85,861 70,561
r = 0.872 1171097 3,900 128,797 105,397

N=901000-200,000
r = 00 74,336 3,556 85,004 '63,66E
r = 0.804 104,074 8 1 517 112,591 95,557
r = 0.439 148,137 2,325 155,112 141,162
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The Good;ian surfaces and die jrams generated by this method

are presented in Figure 4.3.1 through Figure4.3.10 for the various

cycle life groi!ps and strength theories.

4.4 Discussion as to Va1.S.cAty

7ne Goodman suxfaces generated illu^trate that for

cycle life ranges which are well belcra :infinite life the

allaaable co tbinations of benuinV and shear stress are ranch

larger in magnitude than combinations of the same bia::xal

stress which could be sustained by a specimen for an infinite

life range (Figure 4.4.1 is a Good;xan Surface for a period

of infinite life). As the cycle life groups mean value in-

creases the corresponding co;:,2)ina t ton of bending a yd . shear

stress continues to decrease toward the value which is presented

in the infinite life diagram. A comparison os° this surface to

the surf aces generated for finite life p xCods, see Figure 4. 3.9

illustrates the above conclusion.

The variability in the standard deviations of the resultant

stress vector for stress ratios other than infinity and zero

should be e:;arined closely.	 This variability

is larVor in runt' cases than the variability of the bending

stress and ultincite strength distributions used for the alter»

natin2 and mean stress aris. In reviewing the methodology

%rhich t.-as discussed ..one finds that data usaa for the alternating

saxeso diutribution and the ultimate strength distribution

N
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were taken from one series of tests. However, the data which was

used to generate the strength distributions for ratios of 3.5,

0.825, and 0.44 were taken from a series of tests, each with their

own variability. From the algebra of normal functions we see that

when two standards deviations are added the resultant standard

deviation becomes (16, p. 111):

aX+y = 
aX2 

+ oy2 + 2p oX y '	 (4.4.1)

where p is the correlating coefficient. If p = 0, assuming

independence (16, p. 111):

6	 = 62+v2
X+y	 X	 y
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`table 4.3.3 I-loon, Standard Devio.:ion and + 3 Limits of
Resultant Stress Vector for the Nlcuninum Shear
Stress Equat3.on.

Life Range - Cycles Man Standard +3cr -3cr
Deviation

psi Asa
-

psi psi

N=1 1 000•-3,500
r.= 3.043 158,600 3,641 169,523 147,677
r = 0.381 181,411 3,704 192,523 170,299

N=61000-9,000
r = 3.029 120.787 2 1 007 126,808 114,766
r = 0.757 183,578 3,812 195,014 172,142

14=201000-40;000
r = 3.043 87,375 1,077 901606 84,144
r = 0.01 162,152 4,178 174,686 149,513

N-60,000-90,000
r = 2.960 79,236 2,536 89,994 71,478
r = 0.755 127,704 4,405 140,916 114,492

N=90,000-200,000
r = 0.696 114,126 2,896 122,814 105,438
r = 0.332 167,554 2,742 1751760 159,328

Table 4.3.4 Ultimate Strength Distribution, Mean, Standard
Deviation, and + 3. Limits for Mean Stress Axis
for Ungrooved Specimens.

	

Mean	 Standard	 +3e	 -3a
Deviation

	

psi	 psi	 _psi	 psi

r = 0	 178,000	 2,500	 185,500	 170,500

i



81

Table 4.3.4 Ultinate Strength Distribution, mean, Standard
Deviation, and +3 Limits for 24'ean Stress
Axis for Ungroc}7ve3 Spcci:.,cns.

Mean Stan3ard	 +30'	 -3d
Deviation

psi	 DS-4 	 usi	 psi

z = 0	 178,000	 21500	 185,500 170,500
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CRAPTER V

GSITERATION 0'1F FINITE LIFE GGODIVNIi DIAG' ^1I1 (111:-tM IOD TI )

5.1 t'heoY

it is possible to place strength distributions which

have been developed from cycles to failure-distributions on

statistical Goodman diagrams, as well as S-il diagxams. In

Chapter .III, the completed results of strength distributions

developed by Joan Smith for the statistical S-14 diagram

Caere peesented. .

It is possible to place the strength distributions

developed by the technique discussed in Chapter I i on finite

life.Gooclman cliagrmns. It is first noted that the vertic:i

strength distributions developed in Chapter .iii are for a

specific cycle life. This finite life Goo&ian c'liaorar.t is then

for this cycle life.

Figure 5.1.1 co tpcares a strength di s'tribiition placed on

a finite life Goocuaan diagram to that of the same strength dis-

tribution placed on ci statistical S-I1 diagrara. ine ordinate

axis of both the Gooannn dicgron and the statistical S-Ii air--

saran is the alternating stress level. Because of this the

venue o` the mean of the alternatin g strength distribution

when transformed fro;: an S -N `?iagrcua to a finite Gooc'Irarn dia-

gram will not change. The stress ratio and alternating stress

84
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level., which are specified by the statistical S-21 d-5agrCrm,

de:cine the location of the mean of the strength distribution

which is transfoz-ried to the finite: lire Goodman diagrcim.

-jhe three sigma limits of t}:e trans`oxiicci strength dis-

tribution are not the sane as that of the vertical strength

distribution. Figure 5.1.2 depicts a strength distribution

placed on the familiar coordinate axis of the Goodman diagram.

'acne three : igl-ia limits of the strength distribution placed on

the stress ratio a:%is can easily be derive-a froiit the three

sic,,ci limits of the vertical strength distribution in the

f olla7ing manner.

Equate the upper and lager three sigma limits of the

vertical strength distribution to S. The stress ratio, r, is

equal to the alternating stress divided by the raean stress

Which ref erring to Figure 5.1.2 is equal to tan F

r = S IS = tan8 -	 (5.1.1,
a m

-1
8-- tan (r)	 (5.1.2)

The upper and lacer three sigma limits of the transformed

strength di.stribut 4,66 are equal to S'. Fro;a Figure 5.1.2 it

can bo seen that:

sin 6 - S 
a 
/S'
	

(5.1..3)
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Sm

Fig. 5.1.2 Transformation of Vertical Strength Distribution's
Upper and-Lower Three Sigma Limits to the Stress Ratio Axis.
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Solving ec1uation 5.1.3 for S' and si bstituti ng ecracntion 5.1.2

yields:

S!	 a/sin C	 (5.1.4)

S' = Sa/sin { tan-1 (r) }	 (5.1.5)

If, the value o., r is hncran raid the original value of the

upper and lower three sigma limits are specified by the

vertical. strength distribution then_ the upper anti lower

three sigma limits of the transformed strength distribution

can be placed alone the stress ratio axis and are specified

by ecluation 5.1.5.

Five finnto life Goodman diagrams were developed by the

trans:ormation of vertical strength distribution to the

stress ratio axis of the Goodman diagram. llie finite life

GooInan diagraias were developed for cycle li fes of 03 1 500, 9,000,

40,000, 90,000 and 200,00O.cycles. Strength distributions

placed on these finite life Goodman diagra.ns were at stress

ratios of infinity, 3.50, 0.£325, and 0.Vr. As discussed in

Chapter VXI of this re port the strength distribution placed

on the mean stress a:tiis was takean 'Co be that of the ultiriate

strength distribution of the 'groov=d test specimen.

A PDP-8 computer program, ROTO, was developed to perform the

calculations required by the transformation of the upper and lower

three sigma limits as discissed in section 5.1.	 A flow chart,

r
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variable definitions and computer listing of the Ron program is given

in Appendix E.

5.2	 Results

The finite life Goodman diagrams developed by this method showing

the strength surfaces for discrete cycles to failure are given in

Figures 5.3.1 through 5.3.5. 	 In Table 5.3.1 the alternating stress level

of the mean of the strength distributions for'each stress ratio as well

as the transformed upper and lower three sigma limits of the strength

distributions are given. The original parameters of the vertical strength

distributions appear in Table 3.1.3 as starred-quantities, as they were

developed by this investigator to correspond with the cycle life values

of Chapter IV. The ultimate strength distribution of the grooved and

ungrooved test specimen are compaxed'in Table 5.3.2.

5.3 Discussion as to Validity

The principle of transforming vertical strength distributions to

the Goodman diagram as explained in Section 5.1 is a Straight forward

procedure. The transformation is simply projection of a knolm distri-

bution to a different plane which in this particular case is the stress

ratio axis of the finite life Goodman diagram.

The vertical strength distributions have associated with them a

cycle life value. It is possible because of this fact to develop finite

life Goodman diagrams and surfaces from . the valid vertical strength dis-

tributions. This method is consistent, in that the vertical strength

distributions are all developed in-the same manner, and hence, there is



	

90	 =

no problem of differing variabilities caused by inconsistencies in the

^f	 procedure of developing strength distributions at various stress levels.

The elimination of the inconsistencies in procedure in developing

strength distributions at various stress ratios is the principle ad-

vantage of rotating vertical strength distributions to the finite life

Goodman diagram.
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Table 5.3.1 Alternating Stress Level of the Mean ana Stun&cird
Deviation, and + 711-iree Sigma Lin-its of Strength
Distributions Placc ,' on Stress patio Axes of the
Finite Life Goodman Divgram.

S Cr
S

-3cr +3a-
a

3,500

00 135,953 2,628 128,070 143,837
3.5 128.1964 3,643 118,035 139,894
0.825 126,369 3..739 1151151 137..587
0.44 105,107 1,,260 -101,327 108,887

14 = 91000
Co 115,926 2,1907 107,205 124,647
3.5 103,523 3,213 98,883 118 163
0.825 105,645 3,308 95,722 115..569
0.44 92*390 2,002 86,384 98,396

N	 40,000 
CO 90,693 2,605 82,878 98,507
3.5 87,,345 3,457 71,942 92,747 10.8255 801953 3.,208 11 327 90, 578
0.44 72,260 3,269 62,452 82,068

N	 90,000
00 79,054 2..,539 71,437 86,671
3.5 71,967 2,393 641#787 79,147
0.825 69,970 2,927 61.,18-a 78,750

N	 200,000
CO 70,172 1,,881 64,529 75,815
3.5 64,792 2,400 57.,593 71,991
0.825 61,737 2,133 55,338 68..135
0.44 57,521

Table 5.3.2 Comparison of Grooved and Ungrooved Specimen's Ultimate
Strength Distribution.

Mean Standard Deviation

Grooved 255,300 Fri 2,720 psi

Ungrooved 178,500 psi 2,500 psi
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Table 5.3.2 Comparison of Grooved rind Uncgrooved Specimanis
Ultimate Strength Distribution.

1-lean	 Standard Deviation

Grooved	 2551300 psi	 21720 psi

Ungrooved	 178,500 psi	 21500 psi.
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EVALUATIOid Or Grit I-O TOi i OF PINI T i,
LIFE, GObMM DIAGR - -IS

i 6.1	 Evaluation of Previous Techniques in Developing Cone) an
DiacrcLns and Surfaces

The methodology which	 was	 presented in Chapters IV

'and V for the trans{orna ► aon of cycles-to-failure data to

strength distributions and the resulting Goodman surfac e=s and

diagrams	 will now . 	evaluated.	 It appears that the method of

rotating vertical strength distrinutions and placing them on the

stress ratio axis	 of a Goodman diagram is the most uniform method

Of creating the Goodman surface. 	 As discussed in Section S.4 all

distributions are crea'-.ed in the same manner which eliminates the

variability discussedproblems of	 in Section 4.4.

In viewing the general shape of both the finite life Good-

Tian ciiorra .,; developed in Chanter IV and V the following con-

clusion can be drawn.	 By design each of the cycle life groups

in both	 lar.Cnaoters aV and V are si,-	 This was done for

pt:rnoses of comparison. 	 The curves shirt progressiv ly lo:.•er

as cycle life value increase.	 ine curves developed in both

chapters are c( ns-'atent in this respect.	 As cycle life design

values decrease large): co=inati.o.ns' o- bending and • 'shear stress

are passible.

F's•

3'
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The two sets of finite life Goodman diagrams do have

some inconsistencies. 	 The ultimate strength distribution of

the ungrooved test specimen wus used as the static strength

distribution in Chapter IV while the ultimate strength dis-

tribution of the grooved specimen was used in Chaptex V. Both

distributions were placed along the mean stress axis o-^ the

Goodman diagram. An explanation of these facts is in order

at this time.

The method used in Chapter IV to generate the finite life

Goodman diagrams and surfaces was completed in early February

of 1971. At that time, there was doubt as to the geometry of

the specimen to be used, consequently the conservative ulti-

mate strength distribution of th ungrooved specimen was

chosen. Although this doubt did exist the diagrams developed

in Chapter IV did not seem to support the use of the higher

ultimate strength of the grooved geometry specimens.

The finite life Goodman diagrams which were developed

in Chapter V, in late March and early April of 1971, illustrated

the critical importance of the geometry of specimen from

which the static ultimate strength distribution was derived.

All but the finite life Goodman diagram developed at 200,000

cycles sho:aed the riean stress values at a stress ratio of 0.44

close to or above the ultimate strength distribution of the

ungrooved test specimen. 71his foci; although quite alarming at

first, nude an investigation of the correct geometry of paramount

importance and considerable effort, as exhibited in Chapter VII,

i
1
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was made to resolve the question concerning the proper ultimate

strength distribution to be placed along the mean stress axis.

6.2 Rero-miendations

The weaknesses and advantages of the two methods of

generating Goodman surfaces and diagrams have been discussed.

It'is the opinion of this investigator that the method devel-

oped in Chapter V, that of forming vertical strength distribu-

tions from cycles to failure data and then transforming these

to the stress ratio axis of a Goodman diagram, be considered

as the appropxlate method to be used when finite life Goodman

diagrams are to be created from a large scale cycle io failure

fatigue test program. Subsequently the results of Chapter V

were weighted to a greater degree than those of Chapter IV

in discussions deQL.ng with the choice of geometry of test

specimen used for the ultimate strengta distribution in Chapter

VII. 7'his was also true ir. Chapters X and X7 where the best

empirical and theoretical math model of the Goodman diagram

were sought.

In conclusion, the transformation of vertical strength

distributions to the Goodman diagram is considered as the ap-

propriate methodology to be used when large amounts of cycles-

to-failure data are available. Chapter XIII considers a morn:

efficient plan where it may be possible to generate Gooclman

surfaces with a minilnuri amount of actual fatigue testing.



CHAPTER VII

THE STATIC STRENGTH DISTRIBUTIO14 TO BE PLACED ON THE MBAN
STRESS AXIS OF FINITE LIFE GOODMAN DIAGRAMS

f

7.1 Introduction to Static Strerngth__Distribution

In the previous chapters of this report, we discussed and

developed several experimental methods of presenting fatigue

data generated by relatively expensive and time consuming

fatigue test programs. If however, this same information could

be extracted from uniaxial static tests of materials the sav-

ings in time and effort would be tremendous. Chapters VIII and IX

present several empirical and theoretical models of the Goodman

diagram.

The development of relations, which take advantage of

information obtained from static tests, to model fatigue data

require that the following	 be investigated. For both

the grooved and ungrooved go-,: :ry specimens which have been

investigated, ghat are the equations which are used to

determine the tensile yield, ultimate and breaking strengths?

Secondly, is it possible to specify a theoretical strength

distribution,, such as the Gaussian normal or lognormal distri-

bution, to each of these quantities? Of major Concern i-i the

development of the Goo,-Iman diagram for the grooved geometry

specimen, subjected to the combined stress condition of alter-

nating bending and constant shear stresses, is the determination

101
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of the strength distribution to be used along the rrean stress

axis. It must be determined what strength parometer should be

iised along the axis and if the diagram is to model the behavior

of grooved specimens, on which geometry specimen, grooved or

ungrooved, should this rtrength parameter be based.

7:2 -Calculation of Yield Ultimate and Brcak3ny Streit the

The calculation of static tensile strengths, is well

documented throughout the literature. The yield strength is

calculated by dividing the force initiating the yield by the

cross-sectional•area of the specimen.' This cross-sectional

area is based on the original diameter of the test specimen

(6 1 p. 4). In the soft, ductile steels the yield ^°trength is

clearly narlted by a yield point as shcnan in Figure 7.2.1a.

In other materials where the yield point is l.es.q obvious, see

Figure 7.2.1b, common paractice defines the yield load as the force .

which is required to ppive a 0.2 percent plastic offset (6,, p. 45).

The ultimate tensile strength is defined as the naximti-ra

load sustained try a tensile test specimen divided by the

"original" cross-sectional area. However, this calculation

yields a parozieter which is inaccurate and artificial. The

load and area on which this parameter 'is based do not occur

_	 simulta*Ieously. For most ductile materials the raoximum load

occurs after appreciable elongation which is obviously accorap-

onied by a xeduct4on in area. The ultimate tensile. strength,

S
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Figure 7.2,1 a) Ductile Material With Clearly Defined Yield

Point. b) Ductile Material Without Marked Yield
Point and Comparison of True Stress- Strain Curve
versus Engineering Stress--strain Curve. (6, p. S)
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as calculated rhove, is,however, the most commonly sited

parameter of material strength (7, p. 152).

By definition, both the ultimate and breaking strengths

are based on the original cross-sectional area of the test

specimen. Hence, the breaking strength is calculated by divid-

ing the load at fracture by the original cross-sectional area.

Figure 7.2.1a indicates that the breaking strength of a du,i-

tile material may be less than the ultimate ter-ile strength

of the material. As necking and elongation occur in the test

specimen the stress in the specimen continuously decreases.

A more realistic neasure of material strength is the tensile

fracture stress. The fracture stress is detexinined by dividing

the load just prior to fracture by the area measured just cif•rex

fracture. Although the load decreases after the ultimate ten-

silo stress is reached, the cross-sectional area decreases more

rapl.dly which results in an increasing "true strL-ss." Because

of this the fracture stress is equal to or Brea+er than the

Ultimate tensile stress (7, p. 154).

Based on the above discussion, it can be concluded that

for the grooved and ungrooved specimens the ultimate and yield

strength calculations should be based on the original cross-

sectional area. The calculation of the breaking strength shoal.d

be based on the reduced diameter measured otter fracture.
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7.3 Theoretical Strength Distributions of the Strength Parameters

The calculations of the stxergth parameters yield,

' ultimate and breaking strengths have been specified, 	 The next

point to be investigated.is to determine if these strength

parameters exhibit a known theorefiical distribution. 	 An
t_.

[., effort to deters-ine if the normal or lognormal distribution

t - eras favored for the three strength parcuueters previously

discussed was initiatecl. 	 This included gathering tensile test

data from the research effort carried out.-under NASA Grant

Iio. 03-002-044 at The University of Arizona.'Tensile test data

fro:- Phase I and Phase II of the program was gathered for

tensile yield, -:Inmate and fracture strength of both the

grooved and ungrooved test specimens.	 This data was statis-

tically reduced by the computer program CYTOFR, which has the

ability of performing the follow-ring statistical operations;

mean, standard deviation, coefficients of skerrness and kurtosis,

the /D/mom, value for the Kolnogorov-Smirnov Goodness of fit

test and the total Chi-Scrucired value, Vn for ih° Chi--1 ,

Squared goodness of fit test.	 The ASNTRG program performs theseram^	 P k	 P

statistical calculations for both the normal and the lognormal dis-

tributions.

Efforts to specify either the normal or * lognormal distribution

as favoring the yield, ultimate and breakine strengths of both the

grooved and ungrooved specimens were not totally successful. 	 The
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Kolmogorov-Smirnov and Chi-Squared goodness of fit tests have the

ability of only rejecting the normal and lognormal distributions as

Properly representing the data in question. Table 7.3.1 presents

the results of the Kolmogorov-Smirnov and Chi-Squared goodness of

fit test results. The mean and standard deviations of the strength

parameters are given in Table 7.3.2. The breaking strength data

in all but the Phase I specimens was found to be rejected as being

either normally or lognormally distributed.

Previously the Kolmogorov-Smirnov test has been used as a basis

in determining whether a normal or a lognormal distribution fits

the data best based on which of these distributions had the smaller

/D/ 
max 

value (3, p. 47). Hoi%never, because of the small difference

in the maximum v luc of /D/ for both the normal and the lognormal

distributions, the difference occuring in the second decimal place,

it can not be concluded whether the normal or the lognormal dis-

tribution gives a better fit to the experimental data. It can,

however, be said that neither the normal or the lognormal dis-

tribution can be rejected as distributions representing the yield,

and ultimate strength of both the grooved and ungrooved specimens.
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Table 7.3.1 Kolmogorov-Smirnov and Chi-Squared ^^_st Results
for Grooved and Ungrooved Test Sp-.cinens

Parameter	 Normal LoogIror Normal Log ox
11 Dcrit Vrcri j	 D	

D	 X2	 X2n-r-

UrtG ROOV,n
Yield

Phase I 10 .3686, - .2135 .2104 « «
1970 35 .2018 1 42.3 .1093 .1040
1971 .35 .2018, 42.3 .1173 ..1187

Ultitate
Phase 1 10 .3586 1 - .2006 .1979 « »
1970 34.;.2047.4 41.4 .1151 .1097 8.099 5.316
1971 35 .2018, 42.3 171239 .1255 10.172 10.146

Breaking
Phase I 10 .3686 1 - .1493 .1461 - »
1970 33 .2077, 40.3 .2632 .2710 5.919 9.139
1971 33 .2077 1 40.3 .2377 .2277 62.579 48.233

GROOVED
Ultimate

.Phase I 10 .3686 1 - .1439 .1420 - »
1970 33 .2077, 40.3 .0867 .0851 .788 1809
1971 32 .2108 1 39.1 .0907 .0921. 2.222 2.833

Breaking
Phase I 10 .3686 1 - .1229 .1238 - «
1970 * « « «.
1971 * « « «

- X2 test could not be -applied due to insuff4cent data points.

* Breaking load not measured with sufficient accuracy to calculate

strength distribution.
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Table 7.3.2 Mean Values and Standard Deviations of Tensile
Strength Distributions (psi)

3

Mean Standard Deviation

UNGROOVED
Yield

Phase I 171,150 2,779
1970 158,285 51840
1971 155,505 1,765

Ultimate x

Phase I 177,850 2,582
1970 1671044 51273
1971 165,108 1,521

Brea]cing
Phase I 254,800 41391
1970 255,904 121964
1971 2601921 8,247

GROOVED
Ultimate

Phase I 255,300 2,720
1970 254,380 21260
1971 269,137 2,832

BrPhase I 303,950 3,122
1970 -
1971 .. ..
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A survey of the literature clearly indicated that strength data

is usually assumed tc be distributed normally. The NERVA Project

Report states that, "Usually the data (strength data) will be assumed

to be normally distributed, however, lognormal and Weibull distri-

butions are acceptable and can be used much the same as normal data."

(8, p. 9). Hence, it can be concluded that the normal distribution is

acceptable as the theoretical distribution considering the limited ex-

perimental evidence available and the fact that there is an adequate

amount of documentation in the literature to support this conclusion.

7 .4. Mean Stress Axis Strength Parameter

The determination of the strength parameter, and consequently, the

strength distribution to be used in any fatigue data modal is dependent

upon the model used and the definition of the failure mode. If it has

been determined that yielding is detrimental to the proper functioning

of the specimen then the distribution of yield strength should be used.

If only the fracture is of concern then the ultimate strength dis-

tribution should be used (10, p. 4). 	 Chapter X describes the Goodman

line in detail. The Goodman line connects the endurance strength to the

ultimate tensile strength. *;he failure criterion of the cycles to

failure data presented in this report has been fracture. The ultimate,

strength distribution is concluded to be the proper distribution to be

placed along the mean stress axis if the failure criterion is fracture

and the fatigue model is the Goodman diagram.

I U
I I

I,

f

e
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7.5.	 Least Squares Estimate of the Ultimate Tensile Strength

The final topic which remains to be discussed concerns the

geometry of the tensile test specimen whose ultimate strength dis-

tribution will be placed on the mean stress axis of the Goodman diagram.

There exists the possibility of using the grooved or the ungrooved

ultimate strength distribution of a tensile test specimen of equal

cross-sectional area.

Initially one might conclude that if the Goodman diagram is to

model the behavior of a grooved specimen then the grooved ultimate

strength distribution should be chosen. 	 Mr. Carl S. Osgood, author of

Fatigue Design,, in response to a letter which solicated his opinion

on this subject stated, "I believe it would be rather meaningless to

try for a distribution on the S m axis for both types of specimens."

Robert C. Juvinall, author of Stress Strain and Strength, in a reply

to the same question suggests that the static ultimate strength dis-
-

tribution" ... should pertain to the same notched (grooved) specimens

f	 as the Sa-Sm curve itself."	 Juvinal: concludes that the proper static

strength distribution to use is that of the ultimate strength di.stri-

butioi, aling the S 	 axis as discussed in Section 7.4 of this report.

There are, however, logical and well presented arguments

supporting the use of the ungrooved specimen's ultimate strength dis-

tribution.	 The mean stress axis is really at a stress ratio of zero,

as the stress ratio of Sa/Sm is zero at this point.	 Consequently, the

alternating stress, S	 must be zero.	 In the case of combined bending ^
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and shear this means that the mean stress axis is the a.is of pure shear.

From tensile tests, it has been found that the grooved geometry test

specimen has a much higher ultimate tensile strength. Reviewing the dis-

cussion found in Chapter IV * of this report, this higher strength is

caused by a radial stress which is introduced into the specimen at the

root of the groove. However, a grooved specimen which is subjected to

a static torque load would not experience such a radial stress and would

fail at a torsional load equal to the load which causes an ungrooved

specimen to fail. The mean stress axis in the particular case investi-

gated can be thought of as representing the failure mode where pur:

shear is the cause of failure. Based on the above argument, it has

been suggested that the ungrooved ultimate strength distribution be

used on the mean stress axis of Goodman diagrams (3, p. 71).

In attempting to resolve these two differing opinions this in-^ g	 g P

vestigator turned to an analytic evaluation of the problem. There are

available two sets of Goodman diagrams, presented in Chapter IV and V

}	 of this report, on which to base such an analytic solution. Such an

analytic solution was desired, as smooth curves can be drawn connecting

the Goodman diagram data to both the grooved and ungrooved distribution

of ultimate strength.

The technique used was based on the method of least squares. The

conventional method of least squares, however, was not considered as

being appropriate or even workable for the problem under consideration.

A conventional least squares analysis requires that the equation of the

expected line be completely specified. Using this knowledge the method

of least squares will fit the "best" polynomial to the data.
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Before proceeding further, let us pause and review the problem

and the available information. We have developed Goodman diagrams for

varying cycle lives includirg that of infinite life, which have mean

values of the strength distributions spec.fied at stress ratios of

infinity, 3.5, 0.825, and 0,44. In addition, there are also several

theoretical equations which are know to model the curve which should

be drawn between the mean of these strength distributions. The

equations include the von Mises-Hencky equation.

i
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(7.5.1)(Sa/Se ) 2 + (Sm/Su )2 = l

and the Gerber parabola equation

(S /S 	 + ( Son/Su)2 = 1 (7.5.2)

More, % = alternating stress

S = mean stress
tit

S.e = endurance strength

Su = ultimate tensile strength.

xn both of these: equations the information available from

the Coc-4nan fatigue diargrmis presented in Chapters IV and

V specify all oa the quantities except the ultimate stre: uVh.

A method wets then sought which would dive cn estimate

for the ultin to strength. it teas assumed that t',te von

1•Iises-1-Iencl.-y equation was a valid mathematical mouel for the

fatigue data. Graybill (9, p. 111) presents a raethod

which can be used io calculate the least squares estimator of

the ultimate strength assuming that the von Mises-Hencky

Equation adequately models the fatigue clata. The only

other assumption which needs to be made ir: that the fatigue

data to be used is not in the Iva cycle fatigue range, the

low cycle fatigue ranee being below 104 cycles. It was	 .

expected that the ulti.rante strength which would. be predicted

in this range would be quite large..•This is quite a valid
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assurnption as low cycle life rec, tire, a completely different

tnathenatical mo(;el thcai the von 1 .1ises-Ilancky equation (See

Chapter XI).

The first step of the estimation process for the ultimate

strength using the von lfises-Hencky equation is to transform

that equation into the following form

1) (SaISe)2+(Sm 
IS,

t ) 2=1	 (7.5.3)

2) Set x=Sty, y=Sa, and subtract (Sa/S n) 2

from both sides yielding (y/S.)I=l - (x/Su)2 	 (7.5.4)

3) setting yt=Se
2

-y2 	(7.5.5)

B=S et/Su2	(7.5.6)

4) Substitution yields y'=11'(x 2 )	 (7.5.7)

The least .:;.tares estimate of B is given as

T	 -1T
1XJ	

E]	 (7.5.7)
sPhere the brac',cets in6icate vector cquctntities. Unfortunately,

as FiTare 7.5.1 indicates there are only four values to be

placed in the x vector. lliese values of the mean stress

are derived iron the y, or alternating stress values, in the

following canner. Each of the near stress values are related

to the alternating stress value 1)v the stress: ratio r; where r
t

equals
j
f

F

1



S
a

115

N

(xi of
S
m

Figare 7.5.1 Goodman Diagram Illustrating Mean of Strength
Distributions Used in Least Squares Estimate
of Ultimate Strength. (von-Mixes Hencky Equation)
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r = Sa/S
m	

(7.5.6)

It was possible to solve for the three values of wean stress

by dividing the alternating stresses by r for each Goodman

diagram investigated.

Thus, the x vector was specified by three values of

mean stress finile the	 y vector was specified by	 the

corresponding values of alternating stress. The value of

B' is the least squares estimator of the X axis intercept

which can then be related to the ultimate strength by

Equation 7.5.6.

Rewriting equation 7.5.7 in terms of the von Hises-Henc;cy

transforz:ied varlebles yields;

^	 2	
_l

B	 EXO xl 
2 
x2-s2 2 

xQ 
2	 2 2

IX0 -,'1l ,x2 
2 
x 

2
3 
j y

0	 (7.5.5)

	

2	 2

	

xl	
-	 yl

	

2	 2

	

x^	
y2

	

2	 2

	

x3	
y3

It can readily be seen that xo is zero which will cause

the vect-or equation directly above to be reduced to;
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-1

	

B^ = 
C12x?2x 

21 x12	
IXl 

2 
x2

2 
r.3

2- 
yY .1

2
	(7.5.%')

3 

	

2	 2
	x 2	y2

	

2	 2
	3 	 y3

'T
The first two vector multiplications fix ) M. yield a scalar.

The inverse of this scalar is simply the numerical inverse.

Vie remaining vector multiplications are straight fon4ard.

The vector operations, after being transformed to algebra --'c

relationships can be progrcLnned (LSEFD) on the PDP-8 computer for

the Goodman diagram data developed in Chapters IV and V of this report.

A flo g, chart, variable definitions and computer listing of LSEFD pro-

gram is given in Appendix E.

ire resul •, ow the least sc+uares estimate is given in

Tcbles 7.5.1 for Chapter IV Goo&acui diagrams and Table 7.5.2

for daze extracted from the GoocLman diagrcn:ts of Chapter V.

Cycles to failxire data tined the corresponcling sttrength distribu-

tions w1hich ti -iis data would yield above the cycle life of

200,000 cycle, is unavailable at this tine. It appears from

Tables 7.5.1 and 7.5.2 that as cycle Iii e increases the

least squares estimate of the ultinate strength distribution

decreases. Had the .least squares estimate preclicteca consistently

a value or 255,300 psi. for the measured ultimate strength of the

Phase I grooved specimens, it could have been concluded t'nat

1

0

f f

F
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Table 7.5.1 Chapter N GooO pan Dirgrcua Data Used so;: a
Least Srniares Es'c .ry6te ow the Ultimate
Strength.

Least Squares Estimate
of Ultimate Strength

20 1 000 - 401000:

60 1 000 - 901000

901 000 - 2001000

Table 7.5.2 Chapter V Goodman Diagram Data Used for a Least
Squares Estimate of the Ultimate Strength.

Cycle Life	 Least Squares Estimate
of Ultimate Strength

	

40,000	 262,533

	

90,000	 234,972

	

200,000	 216,190

Cycle Life

233,385

264,662

2221661
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.1
the grooved geometry specimen's ultimate strerg'rh distribution

was the propar distribution to use along the mean stress a.;:is.

Tile decrease in the least squares estimate of the ultimate

strength as the cycle life increases se pningly sha}ces the pos-

sibility that it is ind6ed the grooved specimens' distributions

that should be used along the mean stress axis until the lim
i
t-

ing rase is investigated. 	 This limiting case being an infinite

life Gooclman diagro4i.	 When the least squares estimate tech-

nique is applied to the infinite life diagrari (3 1 p. 75), pre-

sented in Figure 4.4.1 which was developed by John Smith for

the grooved specimens under discussions, the estimate of the

ultimate strength i s 222,66:1 psi.	 This is well above the value!

of the ungrooved ultimate strenq th of 178,000 psi. an:l is 87%
f '

'ofof the ultimate strength of the grooved specimens ultimate

255 1 300 psi.
_t

It is also important to note that there is no data avail-

able for strength distributions below a stress ratio o •̀  0."'.

i
Because of this the least scILtares estimate was bassed on four

points with a stress ratio greater than or e ,,tax to 0.44.

It is noted that even in the Goodnan diagrams of Chapter V for

''	 200Cycle life YaIU •̂ S Oa	 1000 GyC1CS, the lamest investigated
F •

alternating stress level at a stress ratio of 0.44 has only
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squares estimate would have been cons-derably pore accurate

if data below a stress ratio of 0. 14 was available. It is in

this reglon that the curve must trauzsition to either. the groove'.

or the unorooved ulti:ant e tensile strength. Perhaps ir' this

data were available the estimates would not have fallen off

to the values below the grooved ultimate strang •th. The analytic

results, w',iic11 suffered froja a lacl:. of data below a stress

ratio of 0.44, show that they reach a liniting case value mach

greater •than that of the ungrooved ultimcrL e strencith, and con-

firm the ooinions which were solicited from noted authors on

the subject of fatigue. It is the considered opiiaion o:F thas

investigator t',Zat the ultimate strength distribution of the

grooved geo:.Va try test specimen should be used for Gooenan

diavrans whic;i represent the behavior of grooved fc tig ue test

spocinens.
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EIVIRICAL t• AM MOIJMING OF FINZITE LIFE GOODMA11 MAGRA2•11

8.1 Pat)ic-natical Xode? s of the C.00clnan DiaMIA
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A mathematical model of the Goodrian diagram relates this

alternating stress; SA, to the mean strews Sm, by merns of an

algebraic equation. In most cases this equation relates a

static strength raranetor to the endurance strength, So , of

the material in ntestion. The safe design region of a Goo&,un

diagrai:i is conventionally defined as the area bounded by the

ora^na-te and abscissa m:es and the line of the na'they?atical

fatigue i:iodel, Or equation, under consideration. 'Ahere are

several mathematical riodels of the Gooamctn diagram. I"nese

include the rw-Zif i.ed Goodtian lane, the Gerber r>axabola, the

von Mises «2:enc)w ellipse, the Soderberg , line, the Sines line,

and the Langer ntodifi.cat on to the modified Goodman line. The

obir_o Live of this chapter is to ur esert there ma'+:hemn.ti.cal

rnc0els, hcr•.-ever the presentation of such models would be in-

complete if not accompanied by a discussion of the strengths

and vhortcomings of each nodel. Figure 8.1 co.mrares the six

nathenati.cnl models discussed in this Chaste:..

E.2 Yloclified Gooano-n Line

The most widely accepted theory of combined stresses is the

modified Goodman line.	 The modified

121
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Goodman line conaiec ts the endurance strength, Se , on the ordinate

axis by a straight line to the ultimate tensile strength, Su,

v.0nich is plotted on the abscissa "-is, (10, p. 6).

It is im;ortant to note that the endurance strength rust be

defined in relation to a given number of cycles, beyond which

the material is assumed to have an infinite life. A comion

cycle lit'e value for the endurance ctrength of ductile steels is

106 cycles.	 The equation of the modified Goodman line is:

Sa/Se Sm/su = 1

A. cor;non cri.ticisia of the Goodman line is that it tends

to be conservative where the stress 	 Sratios r. ::
'	 n /S 7.1 	 is

well above one or in the range 1 < r < - .	 .

Even thouali it is conservative in this range, for 1o:aex stress

ratios in the range of r = 1/10 and less, the nodified Goo:-tan

d.i agrari xlny predict safe combinations of al •tc:cna ting and mean

stress when in actuality they could cause yielding (10, p. 7).

1

8.3 Gerber Parabola

The Gerber Pnrdbola vas first proposed by Gerber in 1874.

At this tine Gerber was attpin 'eing to fit a curve to the results
	

4 - -^

of 1•lohler's exnti rinents llith cor.Wnod stresses. 7'h° parabola

which Gerber prop oseci, known today ns . .the Gerber lrarabola, joined
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the ultimate tonsils strength on the abscissa to the endurcuice

strength on the ordinate axis. These two physical properties

uniquely describe the shape of the Gerber parabola. The Gerber

pnrabola reTUres that a parabola be dream so as to have a

vertex on the vertical axis at the value of the endurance

limit and to pass through the ultimate strength which is plotted

on the horizontal mis (10, p. S). The equation of the Gerber

parabola is given by

Sa/Se + (Sn/SLR )2 = l

Critics of the nodified Goodman line have stated that it

is too conservative. The Gerber perobola was prorobed to coin-

p=sata for the conservatism of the moai:r ied Gooclnr.in line. In
i

f !

	 addition, it has been fowid that in rlciny cases the Gerber para-
E j	

bola fits the exuerimental data far better, in the stress r:ati.o
f	

xa:jge s of 1 4 r /• 07 , than the riodif ied GoocTnan line. Unfortunate

 the Gerber parabola does not give a proper representat-i.on

of the fatim_ ie data 1•rhere stress ratios of one tenth and less

"re encountered. At these stress ratios the Gerber parabola

permits en even greater amount of yielding than the modified

Gooclnnn' line.

3
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8.4 von I•1_3es-Henc% Ellipse

Thin equation, associated with the energy of distortion

theory discussed in the following c=hapter, has been proposed

for the case of cor'ined stresses. Vie von Sines-Hencky equa-

tion or ellipse io given by

(Sa/sc )2 + (SM/Su)2 1

This equation forms an ellipse in the first quadrant of the

cartesian plane. Although this equation was originally pro-

posed for static loads, it is commonly used .as a moelal of corl-

bined stresses in fatigue (10, p. 10), and (it is not theoretically

valid above the yield point of the material).

8.5 Soclnrberg Lino.

In 1930 Soderberg proposed his theory in the United States

which was to eliminate the problem discussed previously concern-

ing yielding in the sct e design region. The Soderberg lame

eliminates the problem of the yield point of the naterial being

exceeded at my combination of stress. If yielding does occur,

the dimensions of the specimen are changed. Obviously, this

charge as of a pvrrannent nature and the performance of the

material is affccted. liven though fai lure of the Bacterial tray

be considcxed as fracture, the nctxinum allo:aable stress level

beconas the yield atr.ength. TAe actual Soderberg line takes

1
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these facts into accou:it by specifying a straight line botwcen

the encumcuice strength on the ordinate axis and Ole yield

strength 8y on the abscissa axis (11, 0.15). The ecivation of

the Soderberg line is given by

Sa = Se (l Sm/Sy)

Criticism of the Soderberg line arises because it does

indeed lie below the Goo&man line. Because• of this fact it

will be even riore conservative than the modia ed Goodman line

for stress ratios in the range of I  r-^ co, the Goodman line

has been shoim to be conservative in this region (11, p. 15, 16,

P. 13).

8.6 Sines ?amine

the Sines line is an empiriecil relationship given by

Sa=Se"Cm

where the constant c rust be dote mined for the material. under

investiaati.on. Because it is an empirical relation it can

through the aparopriate value of c, be adjusted to fit the

data for a particular naterxal. The Since line accounts for

raaximin stresses up to the yield r.Dint. Consec.T gently, the Sinos

line is dtfined only to the vertical tine a=here the nean stress

is egnaal to the yield strength as s) sown in Figure 8.1 (10, p. 9) .
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8.7	 Langer No6ificcition to the ldodified Gooclnan 'Lino

T'ne Langer modification to the nodiri.ed Gooclzann line at-

tempts to solve the prolo..' em of yielding for a different case

than diccussed in the Soderberg Line presentation,	 It will be

recalled that the Soclerbercg -line attannted to solve the problem

of yield at low st y:e:c ration.	 The Lnnyer modification atte:apts

to.solve the aroblen of yield caused by high stress levels.	 At

high stress levels tine na:cimun value of the alternating and

neon stress, Sa + Sn, which are encountered may exceed the
t

yield strength (11, p. 16).	 As discussed in the Soderberg

line presentation this yielding will have an adverse effect
i

` upon the faticgue characteristics of the specimen. 	 The Langger

nodification excludes the gran of the safe design region %.there

the alternating stress plus the neon stres:;,is greater than the

yield strength.	 Hence, the safe de&;L gn region beco:;ies the area

4

bouncled by the ordinate and abscissa axes, the GootIman line and

` the regicn Finich satisfies the inequality S	 + S	 S .S. n	 y

Criticion is again directed at the Langer nod;fication

because it is considered too conservative at stress ratios

grec;ter than one.	 The Langer nodification does eliminate the

(i
criticisn of the nodi;=ied Gooclnun line where the yi ald stren;,rth

i	 E

is exceeded and at the sarae tine does not demand the conserva-
S

i tiryt•of the Soderberg line (11, p. 16).

lJ
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THEORETICAL STRENGTH 1-r01-11ES

9.1 Introduction to Strength Theories

The three Principal stresses completely describe the

stress stare of any point in a s truc tore: The need for a

strength theory to descYibc the n.aterial behavior at a point

arises when two or more of the principal stresses have a non-

zero value. When one of the three principle stresses is non-

zero the behavior of the material is described by the convan-

tional tensile test. There are hot-tever, even in this rela4ve-

ly simple state of str^ss , differences be lhieen the true state

of stress vi-id the "enginecri.n3" stress-strain proper tics, w rich

have been yreviously discussed in Chapter. V11 of this report.

The objective of a "theory of strength" is to relate a conplax

state of stress, i.e., when tzao or more of the principal

stresses are non-zero, to the uniaxzial prop Gr-ties w'nich are

obtained in a tensile test (13, p. 1).

ine elastic portion of the total strain is related to

stress by Hooke i s - Lahr. In the case of co;:tbined stresses ini.

tial yielding must be related to yielding in_a tensile test by

Means of a flc:i theory. A flora theory relates the increments

of plastic strain in each direction to - the state of stress at

the point u;i ler considerations In the past there have been

128
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several yield criteria, or strength theories, proposed but

because of later ezperin nts in hydrostatic stresses, which

have conflicted with these theories, they seem nova to be only

of historical imnortonce (13, p. 1). However, there are two

such theories which do not have this particular fault. These

tiro are the no:;irnui shear stress criterion, and the energy of

distortion or von Yises-HencJcyr criterion. The following cha.-pter

will discuss these tcao theories, and will present th::ee addi-

tional r: edified strength theorl s pro,, used by Findley rnd

Hathur (14). These discussions will be acconpanied by compari-

son of these theories to the fatigue problem of combined

stresses of bending and torcnie.

9.2 En-	 of Distortion- Theory

he Oc tol-learal Shear stress, file energy of distro— lon, or

the Von Slises-I:enc3y theoz-y, as this theory is often re:^erred

to, predicts yielding to occur whin the elastic energy of dis-

tortion reaches a critical value. 	 The energy of distortion is

defined as the total energy raintis the energy associated with a
E

voltuietric dilation.	 It can be shcrm that the energy of dis-I
°	 (

l

torsion is prorort..onal to the shear stress on the octahedral

=
plane.	 The octahedral plane is the plane which ma)-,es equal

angles with the three principle directions (13, p. 3).)

Consider a cubic element of material acted upon in the

I	 l
I

three principle directions by the stresses s l , s2, and 53

f
f

where sl> s2 -/ 	 For the unit cube, pictured in Figure 9.2.3.,

. ,

r
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(a)	 (b)	 (c)

Fig. 9.2.1 (a) Element with triaxial stresses; this element undergoes
both volume change and angular distortion. (b) Element under hydrostatic
tension undergoes only volume change. (c) Element has angular distortion
without volume change.
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'i

the wor): done :.n any principle direction is given by

U  = sn sn/2

Where En are the three principle strains. Considering

C 1 = sl/E -,4 s2/F- -AS 3 /E

e 2	 y2/E - li sl/E .. 1ZS3/E

E 3 = s3/E - ^t sl/E -,us 
2 
A:

where	 Folssons ratio and E = Nodulus o.' Elasticity.

The total strain energy is

(9.2.1)

2 2 2

U = UI+U2•LU3	
1/2E {s

.1
	 +s3 ' •. 2 A(sls2 + s2 r,3 + s3s1 ) }

(9.2.3)

Defining average stress as

s
avg	

sl + s2 + s3	 (9.2.4)

3

which is applied to each of the principle directions of the

unit cvbe, the re*i-c,ining stressi<: s - s 	 , s - s	 and1	 avg 2	 avg

s, sho,m in Figure9.2. 1c will only produce angular.
avg

distortion. If suvg is Substituted for s I , s2 and s3 in Equa-

tion 9.2.3 the amount of strain energy which produces only change

In volu;ae is i
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„ 2
Uv . = {	 osav^ _ 

21` ^(3snti,^ ) }	
-
 (32	 /2E
	 1-2 j-),)	 (9. 2.5)

Save}	
-	

{(s1 +S2 +S3	 )}	
2

3
?f the expression for avg is sull)ztituted in Equation	 (9.2.5)

it becones

2	 2	 2
}( sl -i s2 +s3 +?.s^s2 +2s2 a3 + 2s3sl)

(9.2..6)

'Me	 distortion is then	 to the totalenergy of	 equal	 energy,

given by Equation 9.2.3 minus the energy of the volume change

given by Ecuation 9.2.6.	 The energy of distortion is thus A

given by

-_
2

Ud - U	 Uv =(1• ►-AA-/3L) {(s.`-s2)2+(s,Ns3)2+(s3-sl)2 }
.

l:rhen a state of pore shear exists, the shearing stress

at point, ' , is equal in magnituc°e to each of the principle
e

f
stresses at the sane point. 	 Xf sl	 and s2 =-sl the energy

Of distortion bPcomes

2	 2	 2	 2	 2
Ud -(1+AI-16?,)	 {(s-(-s))	 + (s)	 + (..$)	 }	 {l+its /E- } S

When s = x, then
e

2

^E d	 ^

which is the energy of distortion in a torsional test specSmen.

F 7

i J^i
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If the same unit cube is subjected to a normal stress, s11

in one direction only, the other -h-.,o princi;nl stresses being

zero as in a tensile test specimen subjected to an a;%ial load,

the energy of distortion, Ud, beco::ies

2	 ^ 	 2

Ua = {1+ -'-/GE , }( s1 + s^) = {l+ /̂ /3E ^Sl

Equating the energy of distortion for the case of pure

shear to that of the unmUal tension condition, t,then yielding

first occurs

s.

V
e

The conclusion which can be reached is that yieleli.ng and

eventually a ductile fracture starts when the energy of dis-

tortion reaches a critical value. The max.ixaum shear stress,

e , at a point when yielding starts is 1/ V3 times the

r..w.inim tensile stress, s e , at the score Point. Thus the

von Nises-Hencky ellipse for co-Obincd bending and shear stress

is given by

(Sa/Se)2 + (Sm/S )^ = 1
U

(S /S' )2 + (1/\131/S U )2 = 1

where Z in fine above equation is the constant shear stress

recorcled in each test specimen studied*.

a

a

E



134

9.3 I`Ŝ ct-.-i gum Shear F;t•resR Tlxeo.Ly_

'Iresca proposed in his maximum shear stress theory that

yielding occurs when the ma%inwa shear stress reaches a criti-

cal value (13, p. 2). Yielding begins when 'the naximurs shear

stress equals the shear stress corresponaing to the yield strength

in the simple tension test. According to Figure 9.3.1 yielding

occurs when T max = Sy/2 where Sy is the yield strength of the

material. For a tria>.i.al stress state three nctnint= shear

fi	 stress may be mound and are given by

(	 T = (s1 r W2	 'C =(S2 s^ )/2	 '^ : (s1 s3 )/2

Yielding will begin when the lv.xyes` of these shearing stresses

becomes equal to one-half the tensile yield strength of a sim-ple

`	 tension test speciruen (15, p. 152).
k ,.

In essence the theory predicts that the shearing yield

4	
strength is equal to one-half of the tensile yield strength.

Tile advantages of the theory is that it is easy to . use, is

useful for ductile materials and is conservdtive in describing

the behavior of brittle materials (15, p. 152).

9.4 Con-arison of th ►: Jlc*xii=m Shear Stress and Enerav

of Distortion Theories

The nce-Untum shear stress a;nd energy of distortion theories

can be conveniently represented in Figure 9.4.1 in the two«

dimensional princi al stress s xtce.

fi

i
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1

Figure 9. 3 .1 1•.ohr's Circle Showing Relation of Maximim
Shearing Stress to Tensile,Yield Strength

(15, p. 151)
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Energy of Distortion
Theory

Maximum Shear Stress
Theory 1

f3

i

Fig. 9.41 Representation, of Energy of Distortion and
Maximum Shear Stress Theories in the Plane
Perpendicular to the Unit Vector (Ila -, 1 /t(3, 1 /r3 ).
(13, p. 81

1
0
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Exprrinental evidence indicates that the von Hiscs.-Hendry

or energy of distortion, critcriaal is more accurate than the

'l'resca theory for prcclicting the yield s •L'rength of most material

un(lor b axial stress. 	 In addition strain hardening and creep

behavior correlate much ' better for most tnateriald using the

on Mises-Henc},y theory.	 The difference between the two theories
S

is srtalt, the maximun di:faexence in the ttao t}leoxic y in o21y

state of stress being about 16 percent. 	 In view of this fact the Tresca

theory, vhich is more conservative is considered sativfactory

j even though the von N --.s-Nenc}rf theory i , noxe accurate

(13,	 p•	 6)•
s

It has been stated that c^i,:ers^stxcain p>:opert.ics are best

correlvtted using the von ?lives-Henc)W theory. 	 This, ho;aover, is

not cgrounes enourfh to state that fcatiguc failures are best

^j
described by the scone criterion.	 The energy of clistortion

has no alrectional pro+>arties ana is always considered a posi-

tive	 This	 somequantity.	 causes	 serious clefictiencies as a

means of preclictinu frtigue failure.	 In fati . ue experin. ents

it has bcten found that the na::ia:awa shear stress theory Mill

correlate results as well as the von Mi ses - lie nc}:y criterion.

^Ili q problen of deternining which of the ' theories IS best is

eU4""^CiCUlt because of the natural scatter of fatigue data spanning

the various criteria.

Referring again to clirectional properties of the two

criteria it is noted that the ncocir.-ita.m shear stress changes sign
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14310;1 the stresses are rcverSed, as ciuring a rotating beam

fati f►ie test, whereas, it has been previously noted that the

energy of distortion is always a positive Tiantity. Yn re-

vers--6 bending tests these directional properties are of crit-

ical i.nr,ortance. As the stresses at a point are reversed the

en^_rgy of distortion goes fron a , ositive qw-inti •ty to zero and

then bacl, to a positive quantity. Phis means that the clit-tor-

tion en-^rny theory is not realec-Ling a roversul in loading.

Reversed loading cases are very har;xful to the fatigue of any

structure. xt is important to recognS- ze load reversals as

acicling to tl:e range of stress and strain. Yt would ba possible

to devise nethods to account for loucl reversals ii: the uniuxial

Case, 'ho rover, in the case of coi.lbincd St raus the problam would

be quite complex (13, p. E).

The von Ljiscs-llencly theory is not free of the directional

property problem in fatigue. As an exam- ple one • can consider

the s eci.al case where the magnitudes of the nrincirxIl sires:^es

are constant lout the directions are changing with time. The

energy of distortion renai.ns constant indicating that there is

no fatigue loading. However, this is not the case as the shear

stress theory must also be moth Pied for the cc±re where the direc-

tions of the principal stresses vary with tint^. Hcmever, in

this case one would nerely use the history of max inun shear

stress on a f i xvd plane of the material to predict the fatiguue

life (13, P. 9)0

0	 LI
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9 5	 Iior3i^ied '11cories of Patio Fa_lluze 1116-ter co:b5.ned St:re^;R;es

Findley and I-;aUlun: (14) have developod several theories bf

fatigue failti e un?er combinecl stresses.	 The follotving s=cti.on

will present the t}zree theories which were developad by theta.1 n!ay stave that tlic class-ical theories for the initiation of

1 yiel&ing under co;-tbincd stresses are conflicting. 	 The investi-

ya`.:i.o.i of Gough and Polla •d (14, p. 2) concluded that talc

classi cal thoozi.es vvh ic)i have been p7'oposecl are inoccurate

since 10ic ratio of fcn:igue strength in vending; b a SS	 , to
e

that in torsion fatigue strength, t = Su, in not the same for

ail nr.tals as reruixed by the classical tueories o:c yielcling.

Findley cinu Unthur pro. )s(, that the influence of the plop-

erty of ani.--o trout, that of hnving different pro •; ^riles in

different d rectionv, and the :state of co;::binecl stress are the

cavise of	 betiaeen propo sect theories of failure

F ; and re ,ults obtained fro:a co.nbined stress fatigue tests (h, p. 3).

"	 TnP ratio of b/t varies over a considerable range for all

engine c•rin;r r..ater:ials a Consideringng only metals thin ratio vr..ries

f rosy a value of 0.9 to 2.6. %f, hvoever, the petals are group d,

within each grottp the ratio of b/t has a much si-n ler range.

Cast iron:, and its alloys have a b/t ratio which varies from 1.3

to 2.5 %-ri.th n majority of t)t^.se valums lying bet-green 1.5 and

2.0. 'Iis Intter range is consi.der6d to 1,9 the dust; l.e range.

't'!ie. b/t ratio va11:1 cl notched steels was found to be cons;der-

vbly lass than that of Wnnotched steils wl,tb a majority f.-Ming
M- 1-ween 1.0 encl 1.5.

i
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it is felt that anisotropy o- •che material is a contribu-

ting cease to the variation of the b/t ratio. 1t has been

suggestec, that fatiVn failure is caused primarily by an alter-

nating shearing stress producing repeated clip, however, the

xesistcunce of a naterial to this fatigue nechan? T rtay be

influenced by the magnitude ar_d sign of the normal stress oc-

-curing on plai.es of ncxinu.*z shearing stress. This effect

-riay vary taith the natcrial. Differences in the el ect which

the normal stress ray have in fatigue in a given material will

cause differences in the b/t ratio (14, p. 6).

9.5.1 Correction Factors

In Oucti•le netr_ls the cyclic principle shear stress

is the . quantity )cost closely associated with the i(Iti. TUe damage.

The pra_nciple shear stress theory predicts that the bending

strength should be twice the shear strenctth (14, p. 8). Hot-

ever, b^cause of the exaect o:L' anisotropy and conbined stress,

Findley and ?i:-zt}cur suggest that the principle sheer?- stress
theory be m--)a fed to the forn

-r	 b/2K t or K = b/2•t
^ Il:t:i
	 (9.5.1..1)

where 1: is the correction factor for anisotropy and the combined

stress condition. The e 1press5.on for nodizied princi pal. shear

stress theory becomes
2

sat/SS [Srj ?Is
 .0

4
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S•111ere Sa and S  represew.- respective:!y ihs cT?,!.*A->Cies of alter-

nating bending stress and alternating torsional stress com-

r,*nents of combined stress (14, p. 9).

It is important to note that when correction factors are

applied to the octahedral shear stress, princi,al shear :train,

energy of distortion, total energy of distortion, total energy

of deformation and riaanitude of state of stress vector

theories the result is the same in all cases, that of k'rluation

9.5.1.2.

If correction factors are applied tc the principle stress

theory the governing equation for corabinecl bending and torsional

stress beconos

Sa/SS, + Sn2/Su2 = 1	 (9.5.1.3)

Vrn^n the principle strain theory is r:iodifi .ed the fa .-lgue

strength ratio b/t predicted is

S IS = b/t = 1 + )J^
SS u

where A is Poisson's ratio.

ine expression for the modified p-ri.nci, :al strain theory

as reported previously (17) is

N
1 = ^.+'1i'2r.S2 +t{1 ^.tti)^Z+^1- ru /l+,u^ S	 (9.5.1.5)

For pare bending
-- 0, S = b, thus 1 -- b jE



f.

1-1

i

142

S1113stitatting :,'-or e l in equation 9.5.1.5 1 and

sin,lilying the expression, the nodified princi.,xil strain

theory becomes

A s2A2 + (1 - /A) s/b + b 2/t2 = l

0
r
s
i
I
1

The fatigue strength ratio b/t predicted by the principal

strain theory (17) is

b/t = 1 +-A
	

(9.5.1.7)

St'J,)st tuting equation 9.5.1.7 in equation 9.5.1.6

(b/t l) s2/A2 + (2 » b/t) s/b + 'G/t 2 = i

This equation models the combined stress state of bending and

torsion for the raoC.ified principle strain theory.

A design expression has been proposed by Findley and }'a thur

(14) to r.:oacl the fatigue failure of notched ductile ne tals and

irons. These materials have a behavior which is intermediate

bei ween the perfectly brittle irons which have lift t7 a or no

slip and ductile netats which have considerable slip. The

stress systen tinich is associat^d wit;z these materials may

change fro::i the principle stress theory, b/t = 1, for na terials

such as the brittle irons to the principle shear stress theory

where b/t = 2.0 as in the ductile netals (14, p. 11).

i
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i

'tile  design expression t-thick is suggested to nodel these

Metals under co:;ibined bending and shear is given by

b/t	 2

(Sa
/ss

tt.)
	 + (s /sU) ^ y

`J

(9.5.1.9)

It is noted that the exponent b/t varies with-the class of material.

I-1hen b/t = 1 Equation 9.5.1.9 is that of the rtoililfiecl pri.ncipxil

stress theory. Mhen b/t = 2, uh:ich is the Case in cluc•til.e

materials the equation reduces to that of the modified shear

stress theory (14, i . 11).

9.5.2 Con-1-arlson to Fatigue Data

Fin lley and Hohur cor.1.:tre their tnoclif'i p:cl stress

theories to actual combined bending and torsional fatigue test

results. it is found that the nodified shear stress theory,

Ecntation 9.5.2.1 served as a good r»de1 for ductile metals with

a b/t ratio ranging from 1.46 to 2.0. A comparison oA this

equation to actual fatigue tests is given in Figure 9.5:1

(14, p. 15).

The nocliiied principles stress theory is compared to actual

fatigue dnta or iron and iron alloys in Figure 9.5.2 and to thct

of notched cIvictile s tecls in the brittle range, b/t = 1.3 in

Figure 9.5.3. 't'he moclifted principle strain theory prec'licts

strengths which are hiether c}ian the actual data as can be seen
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Figure 9.5.1	 Comparison of !Modified Stress Theories lith Fati gue Data
Generated Under Combined Bending and Torsional Stress (14, p. 24)
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and Modified Principal Strain Theories(dashed line) To Fatigue
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Curve C: Total Strain Energy Theory
Curve•D: Distortion Energy Theory
Curve E: Principle Shear Stress Theory
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in Figure 9.5.2 (14, p. 15).

it is found that the design expression, Equation 9.5.1.9

is in very good agreement with data of notched tactile steels,

b/t 6 1.3, and in good acraemotnt with both brittle and ductile

range of metals as shoran in Figure 9.5.3 (9 1 p. 15).

Assigning the raetals to regions by b/t ratio values, as

discussed previously, yields the following regions:

Region Y (brittle)

Region Ir (interraeaiate)

Region III (ductile)

she position of'each modified strength theory within the regions

described in Fissure 9.5.4 is specified by the value predicted

by the b/t ratio of each strength theory. Table 9.5.7. presents

the value predicted by each strength theory for the ratio of

bloc. The mdified strength theories may be azsisgned to each

of the regions described previously in the following descending

order (9, p. 17).

Region I	 Modified principal stress
Desi,m expression
Modified pzInciple strain

Region II	 Design expression (notched ductile steels)
(equation 9.5.1.9)

23ndified princi; al strain
Hodified principle stress
Modified principle shear stress

Region XII	 Modified principle shear stress
Design expression (equation 9.5.1.9)
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Table 9.5.1 Values of the Ratio b/t 1 1'reclictocl by each Strength
Theory (14, p. 17).

Principle stress theory	 b/t 1

Principle strain theory 	 b/t 1--+
-A

Total strain energy theory	 b/t	 + 2 A

Distortion energy and 	
'7octahedral shear stress theory 	 b/t = A

Principle shear stress theory.	 b/t = 2.0

	

I	 t.

I	 J

0
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CHAPTER X

FECO!*,—z.HD;",D E14PIRICAL 1iA9rIE1-.AT1CA1, MODELS UP THE
FINITE LIM GOODMAN DIAGIM

In vivJrg each of the five finite life Goodman diagrams
^l4

developed in Chapter V it can be seen that the egtiation of

the nean tine is generally of a quadratic nature. It is

E	 of interest to investigate if the mean line of the finite life

Goodman diagrams can be described by one or more of the empirical
E

mathematical models of the Goodman diagram discussed in Chapter

VIII.

The Von 115.ves-1 .4'encicy ell ?psse Was con 'xared to the en eri.-

mental finite life Goed;aan diagrams presented. in Figure 5.3.1.

through 5.3.5. The ellipse is given by

^f	 (S /S e)2
a	

+ (Sm
/Su )2

 = 1	 (10.1)

R'.

'Me endurance strength and ulti.ma.e strength mean values speei.-

fy the neon line of the von 1•;ises»Hencicy e"_ l ipse . The enclurancn

strengths for each of the five von J-P ses•Neneky ellipses were

ta).en from Toble 5.3.1. These ellipses, sup :.xim, used upon the

originrl expeziiiontcl neap line, appear as overlays with the
I!	 exl-,^rimontcnl finite lime Gooclann clienrom in Chapter V as

over lays on Figtires 5.3.1 through 5.3.5 As in Chapter V the

l '	 ulti-mate strength distribution is taken to be that of the

grooved sj ecinan. A Fes, P..8 progrcon, described in Appendix E, was

ISO

E	

F.F

i
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used to crlciz?ate the neon stress points as specifioa by the

ellipse for several theoretical alternating stress levels.

These values are lasted in 'fable 10.1. for each of the five

finite life Goo6man diagrams.

The finite life GoocIman diagrams for 40,000, 90,000, and

200,000 cycles are in very close agreement with the von Ifases-

Henc7,y ellipse. The loser cycle life diagrams of 3,500 and 9,000

cycles are in very poor agreement with the von Mises-Ilencky

ellipse, a fact which will be investicgated later in this

Chapter.

Although the higher cycle life fatigue diagrams seemed to

be close-ly a; roximnted by the von Nises-l:cncky el i.ip it wos-

decidecl to detertaine the expowni i, a, whe.xe in general the

quadratic equation of interest is given by

(S
a 
/S

e
}a (Sm/Su}^ 1	 (10.2)

This was aeco:aplished in the fal.lo:aing Manner. Equation .10.2

can be trannforned to

i
	

ya +x2 =l
	

(10.3)

Where

f

	 Y=Sa/„e

x _ Sn/au
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1

Table 10.1 Alternating and Mean Stress Values Predicted by the Von
Mises-Ilencky Ellipse.

S  - psi	 Sm - psi

N=3,500 cycles; 134,000 43,118
128,000 86,038

Se-135,953 psi; 120,000 119,995
100,000 172,959

Su=255,300 psi bu,vuu it9,u92
20,000 252,522

N-9,000 cycles; 112,000 65,878
168,000 92,779

Se=115,926 100,000 129,145
80,000 184,145
60,000 218,445
20,000 251,472

N=40,000 cycles; 88,000 61,751
84,000 96,000

Se=90,693 80,000 120,264
60,000 191,445
40,000 229,128
20,000 249,015

N=90,000 cycles; 68,000 130,204
64,000 149,866

Se=79,054 60,000 166,231
40,000 220,207
20,000 246,995

N=200,000 cycles; 68,000 63,027
64,000 104,696

Se= 70,172 60,000 132,388
40,On0 209,761
20,000 244,711

i
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N

is

^s

Solving for y  yields

ay = i - x 
2

If the natural logarithms of both sides are taken, the result is

a In y = In (1-x2)

(10.4)

(10.5)

l

l
In y = 1/a In (1-x2)	 (10.S)

If this equation is plotted on In - In graph paper the result will be a

straight line. A least squares PDP-8 program SBFE, is available which

will give the slope of the best fit equation through the data as well

as the c3rrelation coefficient. The slope of this line is equal to the

value of the unverse of the exponent a in Equation 10.2. A description

of this program is given in Appendix E. The values derived by this

method for the exponent a and p are given in Table 10.2

The finite life Goodman diagrams of 3,500 and 9,000 cycles as

mentioned previously of not seem to be modeled by a quadratic equation.

The various empirical models were reviewed and it was deterimed that

the Sines Line had the greatest potential of modeling the finite life

range below 104 cycles. The Sines Line is given by

S  = Se
 - CS 
	 (10.6)
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Table 10 .2 Values of the Exponent a and Correlation Coefficient.

(P)

Cycle I,ife-N Coeff.	 a Correlation Coeff.(P)

40,000 2.3821 .9137

90,000 2.3042 .8948

200,000 1.9107 •8915
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Ilie coefficient c for the fin. ce Life Goo(l.ian diammias of 3,500

and 9,000 cycles vas fou.nA, by trial. and Error, to be 0.03.

The Sines Line srie.cified by c = 0.03 was placed on overlay= of

Figures 5.3.1 and'5.3.?.The Sine -, Line is valid only to the yi.eld

strength of the material. Becruse the yield strength of the

grooved geometry specinen tras not available, a dashed line was

dra;an beyond the yield strength cf the ungrooved specinen.

this is meant to signify tlxit the yield strength of the: grooved

specimen is some value greater than) that of the ungroovec! speci•-

Men.

In CUl)Clusi02),1 i Can be Sa? d ti)tt 'C the von 1'11iaC'a-}:eric:c)T

ellipse cPTite clo:.-ely ap.;"roxiraates the Wean line o" the finite

	

'	 life Goo&,Mn utagran, t•ilic a the cycle life value is c_'==Jove 10e

cycles. If the von :vises-Y.encky ellipse is modified to

	

R	 i
2	 2

	

€	 (Sa/Se + S ) -t- (sm/s 2 •t- 3^ S ) = 1	 (10.7)
	+	 e	 u

the Gooclian surface is adequately described. This surface is

shorn in Fi.pure S. 	 •	 For life values below l (^^

cycles the Sines Line adec,uately describes the mean line oz
I

the finite life G,aoe?-aan diagrams. If the Sines Line is modified

as shown in overlays of Figures 5.3.1 and S 3.2 to the folni

4	
S. _ (Se + 3 S )	 cSr
a

	

	
^ ,	 (10.8)

e

then the Goc) ra^n surface is co .pletelr-odeled.

1
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The comparison of the von hoses-Iiencky ellipse ►:ith the experi-

mental finite life diagrams, and the discussion of Section 9.3 leave

little doubt that the von roses-Hencky strength theory cL .)sely pre-

dicts the fatigue failure in steel. The discussion of Section 9.3

gives adequate doctnnentation that the von Mises-Hencky strength

theory is widely considered as a strength theory for combined stress

conditions. Although the von Mises-Hencky strength theory is not

free of all criticisms when considered as the criterion governing

fatigue failures the very close behavior of the larger cycle finite

life Goodman diagrams indicate that this criterion can be continued

to be accepted as governing the fatigue data generated under National

Aeronautics and Space Administration Contract NGR 03-002-044 at The

University of Arizona. The material which is.used in this research

program is SAE 4340 steel, Rockwell C 35/40.
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^S^IO P.s.CC1`;•,7•i^l;i^` D I•i^`11i0^S Oi'^'^I)IJG:C ^^i ltl. (?Ur>?'{!l:'i' 0:'
E:^P.R^1i:;iiTt^L A_►TA I;^,^D^:D }'uiZ 1^ 'r'E1i':iGtJS

DAM 11C(2U.iSIT:COiI Yi^CY v?.^li•i

e	 edu 31	 the nurlbex o^	 ,Th., probl ra o£ x	 c ^^	 { d fia ;o'ntis i.n n

?
^. ^

faticnie tes •l• pxoc^rari i.s c,^ti.fie co;np? e	 The ra•^lxe of fihe

icaiafrae raechc{nisra xecnl xis tha •J: cli stri.butaons be deve].onod fio

^	 j_•.	 . cicscxibe fihe cycles to fni7.uxe and s •^xel^^th p:^xaraeterr^ of

• :lie test speriri^n.	 To da •^e t}ze • co::^plex fatir^tle tes •^ nrogra;n
I

^_ i	•• afi Tile U^:i.vexs:: 4y ax` Axi7ona }xu pex£oYr^ed fat:tc^^.e rests on t•re1?.

over 650 sj^ec:t^:lens.	 T;ris has be: G11 e.:pen>>ve bu't tiles e::^^.^xa.enre
i	 1`

gaS.n^•d by t;^a.s pioneeri-ng program has laid the foundation to

j
1 C^:CVC^o^ i(1COYC'^? CCt^ COi^Ce'- ^ ̂ S ^•7}?? C}2 M'-'tS' ?^Ou^^^.•'?.3^ YCCZUCC	 iJ1C	 nCCC1

r+ ^Ox C;:^C115].VL itlt? cal;" QC ^il^ S^. 11.011 UxOJxR:'!s ].n fil1C 	 tl ^ItYC.	 ^n

etcz.^_nntion of the fiooc'L•:^c^n dingxc^.:as nnc^ suxxcxces clevelo ed

F
i

^.n this cxi^er. and fihA a^^plicafiio:l or 'che tlleaz^.es pxopo5ed by
r

1•T. II. Finclley ('!^f^ nn. 26) seerx to o^'z`ex great hope for reducing

the number of test specimens required in the fatigue data acquisition

program.

xn revie;aa.nS the £^.ni •̂ e la:^e GoocZ-tan cla.nncn^as cieveZapaci

here, i. • •̂ becorfes CV:idCnt ''i}la •i: the clistra'AUtaonS nl.aced nlonc,?

the l^e:^n c{nd nl.ernatxn^ stress c^::er, axe of c;-l.tical, al:l;^o-r^:anca

in	 cleternininJ the s}^^»e c{ntl location of f}1e f.^.l^?fie life

Coc•c^..+.nn cair.^rc •̂°t ar,d sttrance.	 Cuxx•enfily fi}^e u?.ta.luate tensile
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^'
u'lY:'•ilJ'ih d istxi.bution t•rhich a.s plceced a:l.ong •the Wean S^:•ress

r_^:ia is de^^eloped fxom the xestzlts of wensilc tests . These

testa include the pul?.3i:g o:^ t};%rty five gxooved test specit:tc:ts

to c'etez-ninc t}ie ulti; ;tu •^e s •tren^t}z . dis'cribution; this method is

i	 satisfactor.' and should he cont^ . nued.	 -	 .

. ^e distribu•ii on taiiic}i is placed alo;zg • the altexn:z•ta.n^
: 

Sti:CSa^ a,;:i s can be de •texrsinec^ as it is cuxrently bcin^ done

fxo;:^ t]?^ stress cyr.?.es to f'aS.lure c1a •r:a ctt a stress ratio of

^:nf ini°cy. i zr_5 recjzzi xes the ^eneru lion of cycles to failure

clistribttt3.on^ a •t iive alternating stress J.evels. Cttz-xsntl.y

this t•101ild xe^, zi i:e rizix •ty :r'ive tesr sp:^c il;tens in each of the

fa.VC J •LxCNJ lev^^l S 1C:`^'CGd.	 7.'^1C^ Ia^•'i}1C^i^S px'C'.ien •teu ?n C!^C[tY^e7::^

1:iI and V could 'chen be used •eo p? ace t}1e derived atxen^y•i:}:

c^i:;tri}^lt •^ ions on the finite life Gooc}r:tnn ci.tarn-r^.ta. Consic?erin^

the conclusions -reac}led in Cncz^^•^e?^ ^ the c7evelol^ent a` the

finite ?.9_e G OOC^i :tCtn ci?.agxcuas wou?cl b^ poss ^.blo t•73.th ttao

hundxecl test sj ^c :rams. to xeviet •t, t'ne enduxance stxencdtn for

Pa C}1 cyc'_^ li %e t•;oulci be sjx^c?.rieC1 by file txctnsforrtation of the

cycles to :cailuz•e d istr3^utions at a Ntxess xntio of in^ini-t~j

to the ver'tacnl stxengt}: c?is •txibuti.c^ils Gn t;ia Cooc?ran ctaac^ra;;t.

•a'his pxocec'lure io otttlined in Cha,^ter V. Z"ne uttinate s•txength

c:istxz'^u-c:^on is sj,ccix i cd by t;z.; •tensile test of the thirty-five

grooved specimens.	 Zize entire finite life C•OOC^u"1an
^	 ••diagra::t could be taaclr.?.eel, ^^bov^ l0' c; Tcles, by the von }^i.,'_sc- s-

}ie;ic?:y e? li sc rss sp. cix icct hy;

1

•^

--___

t
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^_ 2	 2
(Sa/ ^	 -}- 3 aS	)	 -- 1	 (1 l .1 ),-	 (^Sm/Su •1. 3 ^Lt)_ .-.	 ^

^^le	 n^CC5S:.'2 ^ d:t'1:a t •7011_1.d ai^lduIl'i:	 to	 a TICt:CJ1i11Lit	 O^ .̂'	 'LWC^ hLiitC^lCd

test spacii:;cns t^tila.ch taoul.d inr•1ur?e a 	 staircase	 analysa.s of the

e i'I^L1rUriCC' stxen^ -̂ h a t 106 cycJ.es, r.'r a stxctss ruiio of infinity..

-	 ^ Tha required ntL*,wex o^ tes •t sperxl:zens can be reduced

si ^nifican •'r1y i^ t}le CyC 1 C 1ifC val ltes fox the fi il^.te li tC'

^s •^artGaocl.+~^ala ct:ir.gxc;I^ts are detcz-I:tiiled ;^xaor •'co the	 of the	 tes•^

procFrest,	 Ti fox ^.Ils^:ance,	 t}ixee Ci.n3. •^e life Goo^u:lnn di.ac^Ycun^

axe recnxzec? t}len Zhe recntir.ed endurance s'^xCl1^'^}la cctn be

deterninecZ by the staircase rzethod aor each cycle life.

'1^lis rtA •^}loa taould reduce file nwrJ^er. o:^ snecxl-:tens to one

'CJl^htzilclred tt^^cn'^y fa.ve to One hull red f?.:c't}► dej onc1, ncj ttno il

^tui:u'^°r O ^ •rc'.c^uxxec^ diCi^trf^^Il ^. 	 F•CtC}7 S ^C.^ %C:U ^e i;t @'i:hclCi :i;70LI ?.CI }lave

cz sc..-^;^le :ize of thirty f^.v^ w',l^te ache ulfi:imate s•^;•r.•en^•ch dis-•

tri,bution o:c file c^Loot ec1 speca.I:ten s}lottic^ also be s eeifiecl }^y

^'
t}11 Y.'hy ?"a.v('. 	 S^)^C^.f1Cn5.

I' Ey dzattins a desired strew xatio 1a.nes on whe fiazite Iife

r
i Cooul:,uil dia^r ^^r^, as srectfiect by r}le cll^ove a .nzatadn, ti wou?.d

be l^ossib? e to develo; t}:e ver •ci,cai. stren^t}7 distributions

r^hi ch taotz? ci b^ pJ.acctd on the statistica?. S^P•I da.a^xart by w"o1l.ota«

inS the reverse ox the procedure clevelo,^ed in Chanter. V. 	 iha•^

a.s by dxuc•rz.tly t;le s'rress ratio lin^ on fide finite life Gooclrlc:Il

clinr^rcros, the nit•arnu •^in;,t stress level and aiundard deviation,

^. •i nc tLUi'! i.t}• the thxc:e siSrta lar.Ii` y , of the ro'cated vertical

4_' ^	 ^	 .

•

s.

i--
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StYeng ti] dir •L?- ibutions troul c? be obfiained.	 Tt taoulcl^ by the

xeverse oa the method discussec? in Cha, •ter V, be possible to

}1	 becreate the vertical. s •trengfih distributions cubic^•tould

placed on tiie sfiatis'c^.cal. C^11 diagrcu:r. 	 li2is, at least suCgests

t}rat it may be possible to continue one step further back to de-

f
termine the cycles to Failure 	 distributions.	 ;;has

method elirrinates the need of generating cycles to failure dtis-

tributions at fihe in •texmec?iate stxesy .ratios be •tcaeen zero and

infinity.	 Cttxren •rly suc}z investigations xequire sligh •^ly Wore

than four hundxed specir:rens.	 This number considers thirty five

speCinena t0 a C}'CI.C'•^-i ^O iaZ1t1Y.P. d15'iri}^llt:l03^•

In an ai: •^eranfi to xc^cluce •^;ic need for eJ:p^rir:ie:i •^c+.t daia

r - ?	•i;;afibcyonc	 ?iscusseu	 i •^	 t7;afi the fiheoraes	 -ro;^scc2cabove	 nl,pecu: s	 ;

• bS► Findle,̂ ,s (14) an C}ia; fior X or^:er an a1 •cc:xnc!'t ve to the e}:perzsave

. faricJtr^ c?afia ncgtrisi •^ion pxogrrra.	 Corsiderinct ^hu •1 the rrennJ

^
F	 ^	 ._

line o^ the f:.nite lire GC10^:t1C417 ci^.rygxaaa a^ollotts the ctt:rtaon

^

a
(a/So)	 + (Sa/Su}? ^ 1	 (11.2)

i' •

1lrC e;:ml?en ^ C^ MJiliCi^ hCra nreVJ.PUEI^+ I.C'L'n ci^Ctiasie.d in ChCtn"rer

X r.tso a; geared in t}r^ desa.gn ex ress.con of equation 9.5,:! .9

proposed by 1'i;^dley fox note?red c?uctile steels.

.	 (Sa/So )
b/t 

+ Sm2/Sttz

n

.	 _._^	 - _	 -
- _	 _	 ^^.	 -



Alfihough the equations 9.5.1.9 and 12.2 are not exac•^1y

identical, difxexinc^ in the denominators of the teiT►s an t)ie

left. hand side o^ the equations, they do attemrt to relate

ruantfties of bending and tozsianal stress. • Coriparing the two

ec^►ations, it can be seen that b is actually S e and t is Su.

29ie exponent a is the ratio of bending stxengt}i to toxsi.onal

strength, and could be detexrain^d e:cpexinentaa.ly. xt would have

to be cletexmi.ned if this zatxo should be found from static

tests or dynamic fatigue tests. Tn either event, facilitier^

at i7^e University of Arizona, including the PiASA complex fatigue

machines, would • be adec^iate to dete^-Mi.ne thi.^ xatio. Findley

Co1er:.nn, and lianley site the value of bjt = 1.7E fox an 5t1^:

^3^0 steal, Roek4re11 C 35 (13, p: 153); hewevex, the clarions;ons

of the teat spec: non are not the same as thci •^ 4andergoang

tests at 9^e Una.vexsaty or Arizona. xn addition ^:he rspecimen •

which Findley, et, al., used in their studies ^.s of the un•

groovedr^eori°try. Yt seems that the ex^nent a is in actuala ;y

Findley's ex:.;nent bjt. It would be possible to expexinentally

determine this va:tuc tirith no more t)1n.n the number of s.•^ecinens

re ,uirect by the s •iutic ul ►::mate s':zength tests, or thir. ty five

specimens,

Once the mean line is shecifiad the standard deviation

along this line could c;ufte passibly be a; pzax^mated by clividin^

the standard deviation o{ the endurance stxengt >> w•h3ch is placed

along tha alternating stress aria by sin ^, where O is specs: ied
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by the ratio of altPrnat3.ng stress to mean strt^ss (3, p. 73).

}fence, the stancZard deviation aZ.ong the stress ratio axis, sS ,
r

3s given by

^ s B /sin d	 (11.3)
Sr	Se

This then would give nn approximation o^ the standard deviation

oS • tha GoccZ^nan surface .

The two methods presentacl in this c}iapter, to reduce to

a minimu•^ the regu^.red »u•^er of test specimens, are not meant

to be finalized proposals for a ^faticlue test pro^art. They do

seem to this invest^.gator to be valid means, of reducing fi3ie need

o£ ].cxge quanta.ties of experimental data. The Inter method

discussed would requ5.xe only the nur^bcr of speca^ y^n^ Headed

to experi.mPntally determine t;^e vatic of b/t, quite possibly

no Hare than 35 - 40 specimens. The method i'orncrly d^.scztssed

^.oulc2 require appro^:inately 2Q0 test specimens. ^rther in-

vestigation o^ thsse two net)iocls seers prudent..

I
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Aiat}^odologies for clevelopinc^ finite ^.ife Goodr.►an diagra^w

and surfaces have beer presented in this xcport. The finite

life Goodman diagram rxesents allowaUle combinations of alter-

Hating and mean stress for t}ie conbin^d stress condition of.

alternatinJ bending and constant tors ^.onal str^:sses for s;^cific

pexiocls of desi;pn life. Tlie actual Goodman surface, which is

a^ve^o^a using two to five strength . distributions at speeifiAd

stress xafiios, can be used to consfiruct strength clistributi.ons

at any desired stress xatio. The strenJt}z distributions are

d; stribut^d nornally. The technirt:e of const^.ztcting a stren^r t'n

dis tribut^.on at any specified stress ratio is initia^:ed by

Coil"struction of the desired stress ratio lies on the Goodman

diagrrrt. ThA intercept of Chas lin_ wzth the Good;nan surface

snecia'ies the iaean and the sficndard deviation, in tai^MS of

the thrae si;,ma 1ir.^its, of the strength disfiribution at th;t+:

stxess ratio. The alternating stress level of the mean of

the Strength distribution can be :ead directly Eton the finite

life Gooclnan dia^rart. This procedure is particularti.y va:!ttable

where .the strc^ng.h distribution at a s;>ecific stress xatio

is rc.;uired by the intezfexanco technique uFed in ^ z.,babilistic

de sicJn.

1!►s

t

.:^ ^.

i
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1ne follotaing zecoru^end.'ltions ar^^ of:^ered by t}tis inves^

tigator:

1. As additional cycles to :failure •data bccor^es availrble

from Phase '!'Z of the fiat Tonal AAro;Tau tics r_n 1 Slice

Adnini strati on Grant I;o. OS-002^0^^ at The Unit►exsi ^y

oa Arizona th^^ riethocts proposed in Clan. ter. XIr to

xedttc^ • the rec, l^.red ntt^+b. •r. of tsst specar,ens s}loulci

be itii' t}7P_'x• inveatinnt@cl. T^l^°- rC'.COV°Yr/ Oy CyC1.CS t0

fai?ure data £ion the fini •ce 7.i£e Cood:.ian diagral;l^

should be investigated as proposed in Chapter ^{a:<

using both Phase Y and Y;zase TT data.

2. A corli^re}tensive li'cerazu-re search should b^ underta'•:en

to obtain t;z^ conp'.efie set a' pra::ex5 aut-ho-red by

Pro-_•`essor ?•1. Ii. Fin/a1.ey o' ^ro:an Univers ty.	 zese

works taoulcl be a valuanle acct to the researc,i pxoglo.a

•	 being CoriCttlC'i.CCi at 9"rie Uri?Versity O:i rlriZO:1a far t!]°

i^iational T^eronnutics and S ,zce P.ds:^^.nastrcttion.

3. lsctifixonal a'atic^ltc and static strength data, beyond

that ^unpliect by Frnase ZI oa the 1;ntional Aeronautics

anti S cce ^ldnir_isfiration re.s^arc7t e^fort f should be

rcmlired tn::ou,h co.:^puter searci r'ucilities. 1^ 1C.'5C

15S
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facilities utilize' high speed computers to selectively

retrieve and display requested i^^:^'orriation. T}iis

would be particularly helpful a.n detezriiniiic^ the

best theoretical distribution to be. assigned to the

static s^irength parrnetexs. Z';ze additional data sup»

plieu by t;lese search facilities would compliment

data accruixed through the experimental test programs.

These search facilities include the l^fechrnical

I	 Properties Data Centex ^n Txaverse City, I•i_chic^an

and the Detense I•fetals Iniorraation in ColtunLus, Ohio.

1
1
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APPENDIX A

FORTRAN Computer Program To Reduce Cycles To Failure Data

A-1. Flow Chart

A-2. Definition of Variables

A-3. Program Listing
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1•IAIA' PROGRAM

Read •CONF, T (J),

AREA, CHIL (J),

CHI U (J )

Read S, N,

_^XN LIZ

XNLOG(I) =LOGF(XN(I))

Calculate Xir'SUD1,
XbiLOG

Calculate XDi2, X^+3,
XA14, XSIGL,
XSIG, XK3, XK4

0

Calculate XD1L, XbIU By ^ 	 Calculate XAiL,• Xh1U

student '+ distribution ^ ^^	 By normal dist-T•approx.

Calculate XSRDL,XSTDU ^V

w^^ ^

	 111

Print N, S,. XbII.OG,
XSIGL, XK3, XF:4,
XSIG, CONF, X6tL

•	 Xb1U, XSTDL, XSTDU

Figure A-1. Flora Chart for Failure Data Distribution Determination Computer
Program.

_i
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i

i

no 4 l_= 1, } McL/ 2

_	 `-,,.

EFREQ(I)-4.0

Add EFREQ(I) $ PFREQ (I)

to next higher class
interval values__-_

^

_-___.._... ^r______..^
`DO"I ^ .1, -- MCL/ 2 .

--^EFREQ(I-MCL)-Q.0	 +^^

Add EFREQ (I -MCL)

$ OFREQ (I -r4CL) to

next lower class

interval values

Print reduced histogram

EFREQ(I), OFREQ(I),

XC L..-.^._...^.'.^_^^.__._._._. _._.W_

Calculate(x2 ) CHISQ

Figure A-1 (Cont'd).
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CONE = T4l0 SIDKU CGr^F1DEPtCE LEVCL
T = STUDENT 1 FGR DESIf:E'D COr:'iDCNCE t•1 AND DEGREE

OF FREEDOM ^':
AP,EA = ABSISS /. V,',LUE OF NOr^.i;AL. OiSTRIf3UTI0N FOR

SPECIFIE D CONFIDENCE:
C11IU,CN14 = CHI SAVARE FOR CONFIDENCE M AN7 DEGREE

OF FREED.^hi N
5 = STRGSS LEvEI OF TESTED SPECIMENS
h = hUM3Cf^ OF SF'EGIhi(:NS	 ^	 •

XNtli = CYCLES TU FAILURE OF SPECIMENS 	 .
XNLOG(Ii = LOv CYCLES TO FAILURE OF SPECII;E^S
XNSUM = SUMh1AT:0^'^ OF Y,P;LOG(I I
Xl^tLOG = MEAN LOG CYCLES AT STRENG7N, S
XS I GL = ST:+tvD^,fZD DEV i AT 1 CK 1 H LOG • CYCL c 5 AT 5T REF:GTN
XSiG = 502TF Y^ITN r:-1 DEGRCES OF FREEDOM
XM2+XM3,Y,ti;4 = 2\D, 3kD, 4TH MOMENTS OF LOG CYCLES
XK3 = COEFFICIE^^T OF SKEWNESS
XK4 = CO^F^FICIE:r1T OF KURTOSIS
XML,XMU = Ai[:/,t^! LOWER AND UPPER C4^'^F^ iDct•;CE LIh1I75 OF

MEAN LOv V.1LU^
XSTDL,Y,STDU -STANDARD DEV1;IT.IOi^ LGWEk AhD UPPER

CONFIDENCE L1P•tITS OF LOG VALl1E
CFII SC: = VALUE OF Chi SG^Ur1RE FIT OF DATA N I STCGF2/th; TO

NORMAL U15T21i;UTlU?J D/, T.1
MCL = NU1•fEF.fZ OF tiIST^^GRAt•1 CLi+55cS FQR CFi1 SQUARE FlT
^i pb1T 10(dAL ; U8h0UT 1 NE V.1Rl^/+F3LE5
h = t•1U1^3ER OE' D/^•TA POIPl1S
XN(ll = ^`ATA POINT VALUES
XMEAty ^ XS1G = MEAN AND STANDARD DEVIATION OF DATA

Y^:LUES
X^1AY, = MAX I FSUM Fk 1 LURE 1^'ALUE 	 '
X y it: = t^Ii^lIF^IU^•1 FkILURc V/+LUE
'ir.'ICTt' = CLASS INTERVAL idIDTt;
Xti) = CLl-.SS QEGINNIP:G POINT
XMIUt I) = CE.ASS t•'ID°POItdT
OF'REQ (1 S = OE3SERV^O FP.EC;U^tiCY OF OCCURkEt;CE IN CLASS

IhITE:R\S AL 1	 '
fFREQ! i i = EX'rcCT ED FREC?Uct:^Y OF OCCURf:E^^iCE

Figure A-2 - Definition o£ Variables for Failure Data Distribution
Determination Computer Program.
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^^^	 S':: TNt?^'
CC`:^ILc ^C^tT:>,:tr,E'X^CUT^ rQ4;^A+ti 	 •

Sa!?C,;;TI^•:. KIFITt! •:+ X^:+ Y.::c%•'•;t Y.,^Ift C!•i1S'}t!a.l.)
C	 CNI SulJ:F;^:: =i1 C:F t^^.T^+ PC1^^;T5 i:7 ^^ liU^"t^.l iyIST

^+;: F('.F;';AiI2Xt?1t;^Y,P:;f^c;.T - +r5.0 +1::i-! CL:^.^S ^;JUt^ r}li:T = t
1	 FS.^r)

^7 ^C: ^` .^(;T t lti r ': i?::T.^ FL11"iT Vl^LI%ES/t1Y.+F11.3+^^12.3} )
4c: FC•C!^I.t,T tI1Xt:i:ti c.kt^ECTcG tl':tXt1 C1rf OcS::i1,'t^f: +1!:Xe

1	 1t?	 Ct_t•55 /i^^X +2^?'^CL^t^.S F^^(:t1C?:+1C^^:1.^..`;5 F:'=0+
• 2	 P>:t12N;;I:^.•I:•;i:i`:G F'T/t1XtF?.5+r2:^.ltz2(^.P} )

GI':F.t;SIc^;; x7;t_z^},^ xc15}^, x u 1.:t14}t ;^^-^^r;;rtl:}t
•	 1	 cFR^^t15)	 ^	 •

A Fi = ";

L'C GCS J=2t.'^

IFtX.":tl}-Y,'•^ir,^} 5?r54t54	 •
?. r.:' I ^: ..	 Xt^c t)

G^ TO 5^	 _

FC' CC;^:Y 1 ":^ ^r

It'1 = I-1
r.tl} = XtI:1:t^:IJ1::

-^ t'^:t.
"	

!^i	
.^ ^• 1	 -

7 ^j.Ct ^`_ .t i':1 }	 _ Lit2^;;t ! i1 S•!.!`I

t. ?i' -	 t t:: "iL:t i )-X:•;::•.`:)^ t?r '. t C' r ) t-X;•:^''.I*:! }/i^.^rt•X^ IC ;`X IG

Figure A-3 - 7072 Computer Program Listing for Failu*'e Data
•	 Distribution Determination.

1
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Pt^li^T 45+ :.::UfY,'•,1Gt 1 )
G;^ TC' 8s	 .

E!' REt; t I) = i• \^v. 3itj^J4231X^: a"f:Xi^t;F t -E:Y.P) ^'.•: I i>Tfi

F''kla:'.' 47ftXt;tl)fl=I,td)	 '
Prtl':i 4c.f ti. F ^:.L^tl)fC^Ek.4:t1)fXt1)fl^)+"C'L)

'.L/i	 ,,; _ ,	 .
J - ]

;ca l = I +I	 • ^ _
:.rF'^.t1^'lt - :^^fZ:<:t t)^c.F;^`t:tI ►'I)
viPc^. tlr'1) - -''^'^Z^t:ti)f•:.F^^!^^tlE'21

k	 "CL

UC G7 1=:+°f
.u^'1 •• t^Ci.•-1^'1

t^'fiL't.•(^:.^ I t	 - :: r.; E^::lr..;.}I )i:.F;=:E:	 t'^`: '1 •%^l t
GfiZLC:(?':^1 I	 - L'i'KCC:t ^^il ttCtf".'''.FJt`•:::;+^1

a^ cc^1'1 ^.v^
P-'lc.T k9f !:. r' rtE ::tIlfUri<ctlti)fXtl)fl-Jf^)

C i-t 15 ^ - ^ ''..•..

C. f ^l^'4 - ^^: I .•^' + ttl%:r ► vt I) '"L fF4 :iti i t^l(,^ff:^;;: ( I )-^^ F, ,4't I ) .

ga ;^ tt1 1 s'';r:
F'i 1 :t'^_:	 .
E';(^

C	 '^1 .:U ^r^^^: 4 ^' t` f !t. _'I!..	 T..-?4. '̂ ^L:. •;f ^11 ^i.L'..^^V V:.`t lf^T 111^^
C.	 .^,^. ;^^^.i^ i -'.Ci t li^ 1T^ U^ a .i':t:rte" Y;► t^i:^.^t.E` FEit^'%.
C	 _. ^.

:{1::: - c'^.
3 - ^ ^^':^:;1 ! Imo)

1l^ :•.:kv :.l	 r t' // :'. t i SF^^!":^':^+ 7;^•°%.j•.•^E':: iii• 1"CXf
• .:	 t ^	 ,c,i	 E't:L:'t, t ':r:.,	 Y •: I ► t.^'^	 t.) ivE'.'f?Y.•8'+.`"?^f:::'	 SF.f7^.•

Fiour.B A-3. (Gont'd)
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2	 Ptst;:'% i;.•=iS^:XsJ1+x'1:.7±^?^.t:•+1^1^: 	 b;I7:-i ,ti ^,	 '

13 F^i^'41^1 (iX,	 [V::Li).`^f"I 3 ;.rlCc l.ii^ITS C^Fs13,

14 FC=<^:;;i tl:x, i?a^::,;:Fli;^.^:E L.lti'l^:si•.^.t;!•;^:^;; l.Cl•;L"fi,SY.,
i	 lar-:f^^^ ;.^^•-^.^,^x ,13.ar:^ rFV ^c;^lra,^r.,
?	 13!1,,1':: ai.4' tuI'P^/6Xsr'2^.°+F1''^.^^sc1S.F,F:S.u}

15 PG="'^:T t +1Xs iCe;;::Tt1	 ^	 .
]f, f::^t^! l,i tl%;+ 32F: :ti: 5;.'U;Rc. rIi TC :tRt^'.r1 1_ rJIST = s F14.8s

l

	

	 5X,?^ti:?;G'?c; LF Fkc^:itiq^t = s1,3}	 .
[^1^`:?^:^^^^ X^:il^::)sXat.t:Gil2t')+Cttl•Ltl:^q),Cfi:Jil(`O),?tl'1t^)
Rc^•i. : st^;^F

P•ci,C 5,	 Air r^	 •

R ►^:.^ tis	 tC'^J:tI}s;=1s1Gti))
]b i2El) 1:^, S,:l:t;;r:tl),I -1s^1)

h0 ? G I -1 +':
X ^:Lt.^.Ci t I) - LOaF t Y.^^ 1 1 })	 .

2:' C^i•;il^t;^
X '^S t '^f — C.^1
i.' ^^ 1. 5 1 = I + f.;

7^ CG:^:^ 1:;1^^
T ^^ - 't
:. F: = t•:

x^^[ = l^.o

XS:: = t X^•:L^:, t l) - X'^.c.t.;•i•) ^ (Y•'^L!'G t I) -X.'•;Lf,G 1.

X'? = X e^3 ^ ^.^•f' t^::i^:..^t 1 ) — X^^l,.J^7)

3;• C;:r<T i ::i1c

Y':1i - x"LC.^, 1 t.. 1 1 a X: IC:L//:
C^ 1t.• 3L	 '

Figure A-3	 (Gont'd)
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Figure ^-3	 (Cont'd)

^t^
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1

c7

^s 3b X^i^_	 =	 XSIC:^=S::^•'.7Ftt;^:--).Gi!CN.)Ll::-1))
), X=ii::	 -	 XSIv! ^SG^I: t tE^^ti-1.31/C:tIUt^:--1) )

'^` - r`;:I::I••1?,	 ti,^,X:._^GsX:;?C:., 	 X`:3,XY4
i FP?^;T	 15+	 XS1i;

^ 3S CC``:T- i::^F

j Cl_L	 ^:)F!T(;•:,:tiiLvG,X%'.l-G,X^1:,L,Cb-i?j^,ti1Cl)
` ^41^i	 't^t^

-i	 ^ C ^,	 T ,-^ - 1 ^	 -

- E.:^
--	 _	 -
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APPENDIX B

FaRTRAN Computer Program To Determine Time Dependent

Strength Distribution parameters

B-1, Floe Chart

B-2. Definition of Program Variables

B-3. Camputer Program Listing
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M = 23

Read XJhiIN, XJINT

Read N, SINT, ASTR(J),

	

AAiLOG(J), ASIGL (J) 	 -

L = 1

DOJ = 1, N_1^

Calculate DSTR,

DAiEAN, DSIG

Calculate SLAri (^J), 	 Calculation of failure ,.
SLSIG (J) , i^tX	 distribution parameters

fer interpolated stress
i^»^^^	 levels

DO K = .l , MX ^	 '

LX - L + K `!^^

Calculate XrtLOG (LX),	 '

XSIGL (LX)	 '

L =LX	 ___^

;_ -

Figure B - 1 - Floti Chart for Time Dependent " Strength Distribution Generation
from Failure Distribution Parameters.
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Print STR, XhiLOG (I) ,

XSIGL "I	 I 1 = 1 LX

DO I= 1N

XVAL = XJhiIA'-XJIA'T

^,DO K = 1, ri

XVAL =XVAL + XJIN^

--^
Calculate z^^	 Cummulative lognormal

failure distY•ibution at
• ^(^________.,.__._ 	 N=LK stress levels

Call for Subroutine	 from failure distributio

(z, PROB'	
parameters.

r
Calculate AREA(I,K)-^._,__^	 ------ttt	 .

DO I = 1, N, INT

Print STR, XhiLOG (I) ,

XSIGL (I)

Print K, AREA(I,K),

K = l , bibi

DO J=1, Ai	 I	 .

a

Figure B.1 (Cont'd).
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Figure B - 1 (Cont'd)
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Strength frequency
distributions for
various log cycles
of life.

Parameter calculations
for normal distribution
fit to strength	 '
distributions.

G-_^

t __.:.
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b

Calculate SI`12, SD13^

SD14

Calculate SSIGL(K),

SK3 (K) , SK4 (K)

Print, CYG(K),
Sl•1LOG (K) ,

SSIGL(K), SK3(K),
SK4 (K) , K = 1,A!

f^ K = 1. Ia!

_,,,._	 v'

	

0 J = 1,N	 _L

Calculate EFREQ (J,K) ,

CHISQ(J,K)

Print OFREQ (J,K)

EFREQ (J ,K) ,

CHISQ(J,K),	 J=1,N	 ,

END

Figure B-1 (Cont'd).
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FS	 TOTAL hU!•;BLR OF GEttERATEt% STRE1vGTH DI ST.	 •

^^ Ir27 = N0. OF V%,CUES Ot•;ITTE[: 'ETtlEE:r^ PR1NT•^UT
XJti;IN = DiIJ^Ir:Ui • LOG CYCLE Vi lUE FOR STR^hGTH DIST.

XJ1^VT = i^Tc:R\' :,LS EiETt;:EN LOG CYCLE VALUES FOR
STRE':GTH D15iRIEiUT10N S

N = 1\l!^;^E: CF FAILUkE DiST:I°U7IO"JS 	 •

SIB:T	 t^InIt^v r^ STRESS IVTERV.IL 8ET4.EEN It.TERPULATE_D

F'AiLt,'RF D15TRIc^UTI0N5
AS71t.11 = STRESS LEVEL FOR EXPERIrENTAL FAILURE=

DIS7?IEl!TICr^t	 .-.
• Ah`.LOG(J}^ = EX: cR1Nc"NTAL FA)LURE DISTRIE?UTIOtr MEAN IN

.LOG CYC^E5 AT STRESS F,STP,
ASIGLt^J) = .cXPERI,fErvTAL FAILURE DI.STRIE;UTIC3P: 	 -

-" :S.Tl.^^:D:;RD t:VIATIOtQ 1N LOG CYCLES
DSTR = D I FF;^hEtvCE EiETf:EEN T!•!0 COt:SECUT I.VE

EXPER}P;EnTAL ST?ESS LEVELS
DP7cAN = DIFFEfiEtvCE iiETl•; f_EN T ►•!O CO3'^SECTIVi: EXPERItfEtdTAL

FAILt1RE UISTRIFSUTJOt^ t^,EArdS
DSIG = D. IFFER^:r:CE EsET::'EEN T'r10 CONSECTIVE EXPERIMENTAL

-	 FAI LIJP,E D IST. sTArdDr,RD DEVIATI0^1S
SLI.•'•i (J 1 = SLOP`: ^ETYtEkN T`r1G •CO,^tSECUT I VE EXPERI t•iEr:T^;L

_	 ^ FAILUkE DI:.•Tt:IEi:.1T10N i•;^At:S
SLS1GtJ1 ^= SLOPE t3ETrtE^EN TS•1C COtvSF'CUT IVE EXPc"RI^^'Er.fiI^L

FAILURE U i 51 R 1 Es^JT I Ot^ ST.^,t•:Ui1Ru DE V I AT I Or;S
L = CUI;':1 - E.R FC`< 1^'tiTERPOLATED F.11L1!Rc OISTnIE3UT 10^'^5
F'•Y. = DS 1•R/SIr`^'i
LX = SE^UE^\T I j^L NUS ^i3EK I r,G OF SAt;PLE FAILURE

P!:?:{'!cTc.RS ArdD INTERPOLATED i^ARAt•iFTERS
STR = STRESS LEVEL FOR I T!`I FAILU E DI ST. PARAtiiETE:RS
XtlLOGt I } = FAILURE t•!EA\ Irs LOG CYCLES FOfl

EXP RI^SE-. ^tiTAL A^"i^J Ir;TERPCLATEC Vr.LUE-S
XSIGL ( I) f FAILU,: E STA?1^AR^ DcVI.^T 10 td IN LOG CYCLES

FOR S/`+^SPLE .GNU 1rJ1^cRPOLAT._D VALUES	 --
t^ = LX = kUt•^^ R OF GEr; E!2l,TED FAILIiRE DISTRIBUTIONS

X\'l^.L = LOG CYCLE t':+LU45 FnO^; XJb;Itt TO XJ^;i^'^ { (^i^Y.Jlt•,T
F'GR '^: STr2Et ; GTH DJS 'CklBilTIUi^15

2 = STr1"i:^.1Ri) ILCJ DIST^^r; CE FOR LOG CYCLt_ f"AI[_URE
:^1STfiIi3J11 rJ?; AT 1 TFi STRESS LEVEL FOR K TH LOG CYCLES

P:: C:3 = NOR ;•; l+LIZca PRO?:;BIIIT'Y DEtvSI1Y UtvDER LOGr•; ORt•`.hL
DISTRI:SI!.1I.,V ^"R^Jt•: -2 TO 1_

A+:E%l t I ^l' 1 = CUi!1•i'Ji - r',1 t ^'^^ r: 'JRt^,1L I ZEC 1tQEA OF LOGttiOR!•;;,L
FAILURE' UtSTP.if•JTtc^N FRCS " ZERO 10 2

• T:,1?tlr:1)=SiCt^GTH LEVELS PRI':TFC` OUT
hif•:T t 1',,^) = IA1 ct:G^h kE?;ESE:t:TAT IOT: OF TSTR(Ir:0)
C1'Ct:<1	 LC%v - CY:Li: VI^LU^ CORrZE:^rOt•;[;ji^'v TO. Y. S

i ....

Figure B-2.	 Definition of Program vatiablcs.
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FREQ ( 1 K) = FAI LURE PROuAB I L I TY FROt•1 CU,%1?'ULAT I VE LOG-
NORMAL FAILURE DISTRI BUTION AT LOG CYCLES CYC
BE1;•;EIN STRENGTHS I (A) AND I M)

UI = ABSCISSA V+. L •J- OF STRENGTH HISTOGRAM; CLASS
INTERVAL	 I

FI _ FREQUENCY OF OCCURRENCE I^ti STRENGTH HISTOGRAM
CLASS INTERVAL

FIU1 = FI TlIM-ES U1
StSLCG (K l = M A"^ STRENGTH AT SET LOG CYCLES
SMt2,SM3,5^;4 = 2ND,3RDs AND 47ti	 OF

STRENGTH DISTRIBUTION
SS,IGL(.K) = STAND4RD DEVIATION FOR'STRENGTH AT SET

LOG CYCLES
S::_'(K)=COEFFICIENT OF SKEt;^\E55 FOR 57nENGT)i AT SET

LOG CYCLES
SK4(K) = COE.FFICIENT OF KURTOSIS FOR STRENGTH AT SET

LOG CYCLES
TOTAL tQllMBER, CF INO S = NMINT WH ERE N = LX MAX.
107AL NUMBER OF J S = N SAIMPLE FAILURE DIST.
TOTAL NUMBER OF 1 S . = N WHEPE N = LX MAX*
TOTAL. tiU !1BER OF K 5 = IM

Figure B-2. (Cont'd).
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^-
;`	 C C)'-Y I L F F C.." T .R ^; f X E U T

	

V. Ca`	 i11`^

•	 03 = THE •,r:cA t P;Jtr, ,:1,?'•);',L ZISTRIE.U7 i01 •; Z; 1 , 1, Er:
E	 PLUS`:i. !	 US Z STf^';t:',F^ L::V.Ii,TIGtiS

if t2-1.%) i.^l >10C. -3 1010

	

P -C? = ^.75:'F^d^.:^rZ (a. 4999 g 77	 5	 `	 31

	

	 `25 k"10	 C31C, - 7.	 3>74667) } )
G1 TC ? ^~n

Ic. i: IFS2-2.n}	 1G6C;f3:C0
1^•2G 2y4	 Z;2

G r•.r, =
	 tJ

FACT	 i .0

31 	.. 

F' C3	 c,a`:^ f TE 2^,
IF	 EF':,1 - Ci. E:0007) 1 	 1040 104C)1 ^^ •; :' -- ;-CT =	 a : T + 1 . G

{,C: T0- 10^^

CC TO 1070

►"(+',^,r[^ - 1."•.~.._r'77,^,Gr^iJ)CY:'Gf (--Zr'212.0)17
R 	 ;=(.. - RcC+ t 15 . -9EC x 105.))) )10 C: C^',::T

Tl:='^
Er:D

= 23

I:ii = j_
erI!'F!•:C1i.:.	 10)f A-'I-0;:	 A51GL(IC	 Sl.rl!^t o]	 Y.: L 	 (:,1 t. X:,i ^i_(25; if , •,PF (251,2:;, FT, EV 2

3	 U. ( -')+i^`.i`FX(1::) , '.,'Fn;:.( 1^,'3I GFR	
(2.)f

:)1^::(1:s<<)fSTt:J) ..Lj1Ci(9)s CFRt.i:^('C'.!3)

1	 (Y':	 (AREA (50CI),EFRC)),2	 (AREA, CHISQ) f (AREA{25;;) f^^rF? -^ ►
5 REl+p20,X.tra1^l,y:JI':1	

-

1 r, FORMAT( ?'r 1 :.:: }
C	 FAILURE DISTRJOU110N VALL%C5 ARE READ Iki FROM
C	 LOWEST 10 HIGHEST STRESS AND STRESSES AREC

	

	 INIE5ER VALVF5 OF SINT
REA D 20

FiPure B-3, 7072 Computer Program Listing for Time Dependent strength
Distribution generation.
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I`

r

is	 -

C

t

i

2

,

3C • ,	 : 	 T,tA5T1^tJi,^1':LC::(JI+ ^SIC;L(J!,.! /1=i, t)3C'	 F	 -
P	 -i:2, U,:1'.:tJ),J=1IN)

32	 F./P	 T	 ((611:)1^^ •;	 _.^	 is-1
L

DSTR	 -	 A5Tr(J+I)-A5TR(J)

SLt.t f tJ)	 =	 D6Ta/.:'•^cA1^
I 	 t; SI	 J,5C,4;;
SLSlC:(J)	 =	 L•,;TK/CSIG
CG': T 1
J'1	 =	 J+1	 •

LX =	 L {	 K
X'^^ :iv {.-.XI	 -	 ?:Ia.i1V{L.X-1 i i ^•1^^T/: L,'• ''(JI -IF( ..- S1C)	 70	 5t:,7

6	 1 C tLX	 -	 Y,-1 )C	 , C 4 `I
7C	 X	 I: + ( LX )	 —	 XSIG(.fLX- 1;+S1' 	 S	 C.L	 ^T/	 t.4	 tJt ..:1	 C t. . *T 1 =^^e

L	 = LX
25 ^^

f' q'1 ?': T	 5'•
SC!	 `C?'•'tl	 ( 'hl ,	 6X, I2-tSTRL::G?:;	 c .	 VLI

1	 11	 ^t:-^"	 ST. ^	 ^:c.J, iXt13^;ItIT^ -- ^ 	 (J t )
X ii:T	 -	 I?,T

`:T	 ST.^,Xi:t.:::it

1 X I	 T:.1=. CC. i
L

ti	 LY

ol

C	
:4L ^..ILt)4`:T1^'..

Figure R - 3 (Cont'd)
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1ao J=1 1M
Y	 ' +XJI !:TX'f'^+t. —	 ^r Na.

7- t XVt,L-1:^••L:^Cf t 1 !) /%:=1 ^L t I}

12	 IF r; +3	 0913L +1 

Af'EA ( l , J) = ( l .0-PRC,3) /2, G
G') T C ISO

14{` 1 F (7.-3.5 1: 5il s 1.50 s 170

A-ZCA( I sJ) s7 PRO /2.0-0o5
GC' Tc. 180

16% ArCA(1sJ) = ^.L
G:"TC.In^

1'C /F., F ,, t ) s?) = 1.0
I 6.,v CC::T I t:U 

INT2 - I. ? *4

DO 22:1 I=1sN.fIV!2
Pi'1,\i ISCs^il:s)::L;^Gtl)•1,;>IuL.ti!

190 F`,R.-A 1tI ,:-+ : xX I H,;R ET:V*7	 s. 13.;r95kf	 M.EL.t: s

S^:CY:: - Es = sFe	 f:X	 ID DEVIATI -;N - sF5•E 1

700	 F0t?.''r: T ( . X s 33 r { :• Tfti I)'HLCo'	 1 S J s AN'Z C l; ►•'!!!:.:,T I VE •
1. '	 I31'D1. S T UP iC .J•

PFRI:';T 210	 iJ, ARCA I sJi sJ'1 s':)
21	 F"IRM,T	 t (:Xs:3s ! 9.6f '3st-9 69 1'• +F9.6s 139{'1.E^•

1	 13, r9.0-s, ss`'^•Cs i 3 F 9 	 2? s-9'• JS I3s^5.o) )
STR = S': R+5IM *X:::Tt-4

2 t-	 CCNi I "A;r

DD 22? J= :,N L 1
i = I`:OxtJl

^•u. 224 ^:- 1 +
 .

224 CC .T I.*.:!
2: 2 C'' •. i I	 t'

C.	 F':^'?:::^•:1' .` t ^1 f^.l̀ i 3 F;^ i:•'`Al C 15T %: l ;iT I.	 P P'. F\	 . T : PS

C C! 2	 2

X_! = J
CYCf.:1 = Y  X.;I-•.T ► XJ•'.N.

t :•Cs Js CYC(J)
2 i^;1 r:: `t':^:s tl = ^ s'=!:J - s13 s:Xs;?ti^Gv CYCL_S - sF(,.3)

250,	 (ls:%^,E:,ti s .^)s!=is *: s I':i)
7D F'C'n::.',i ! ?X• L it l) •Il.s9•^=.'•'	 E^ilYltlX, l +erla^..b•!°.sFi^J.6

i	 •l:,1'Ii.t . sl:s l;.cs1,,.=1;`.5• ISs^ 1 ^ C•)^.. 1:.6s15+x`10.5))

Figure B-3 (Cont'd).
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Ir 7	 =	 14

FE:.2^;i,J)	 -	 ,J)	 -AREA(I,J)
27:' C. r-4 	 1::;:c-

 Nt,,.!;AL	 J I S T 	 I	 U 	 1 0 N 	 P:;Rt;,•:i: l	 n 5 	 ..^•F ti 1 S1 CGft.,;•'

F)	 -	 C, •
F' I	 I	 -	 ^^ •
Ul

Ul

F lUl	 =	 F"iii+F ^:^'(t,J)tVt
2i-C' CC•;;TIkt'`

S`•:2	 =	 0

S ^':4	 =	 0.0
ul
Dc. 1::
;1I	 =	 U1	 51 d1

c: ?	 _	 S^;?	 +	 F'!:s`;.'t1,.t)	 till—SVLOGt,:)1r5:r

<i : 2	 =	 S '2/F I
SM3 -	 SM3 /F I

S K ;(J	 GL(J)SF.2)

I 

''1^ fit:;	 :,^	 t1^'t	 ^:'^:_ ►;	 ,1C');LCr	 .'.YC!cLC .S
] ,,.;;'► :	 i:(•.^,,	 :?^:;;: ►̂ itt,5X.:1:ti	 ;•i i.	 GFVIAT I0.`;•1;1X,

P";•tl	 ?7G+	 (J+	 CYCIJ)	 'l	 ;i(J).	 SSIvLtJl+ S•f.3IJ),	 j^;4lJ

i'=:I`.1	 a2, t:.v •.iJ}, Ia	 Ei:(,;1 •.!=. ,'::1t_ii)
5 ' rC =..: T	 (	 i `. 7.,	 1 `.ri_:	 ^:E.:^J .ii 	 !.^''!G•: ' +	 ^Y.+	 ] l iti;;TE FR	 t 1) t

is = I	 ..

i

Figure B-3 (Cont'd)
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BC 46-0- J^}+"OED ^	`	 .	 •

^.F !«)3X(J!	 '	 2
C- = 5@1x4\;]!>k -S1NT
Z = !ST (J	 <))Z3&I(L
lEtf R >a0,a20,a§0 	 `

330 Z = -2

IF (Z-3.5| 3&O,5&0,360
aka (f Lt p:02|Z, p RSS-)	 .	 '	 .

P p[SA = C.5-pR2&=(.5	 . • 
Ga TO a70	 .

sa( ! R !z-).a! ^^^,als,a65	 ' •	 .
)a5 (aEL p^)e<	 "7	 -,pRa2

rRCSa =. p !-"b &+0.5
(0 TO a70

360 PR aa = e,0	 •
(J TO 7C

a65 Pz%}A: ..o
?7a Gr R?c J,K! = PRO 6^	 .

x§^^ = NUx|J!	 :	 .	 ,

. E[REOtJ,^1 = czR^2tJ,K!»zaQx 
Co

{Hl|J,E).= ^oEREa^J,K^-EroE&|J,z3!#(eE7EC(j,E!
!	 -[E2EQt),K33ZZFREQtJ,K2  

&ae C
P§;\T 49&,K

&s) FCA'T tleQ,aA K=,Ian

-Ri T &t&,|SItJ^,cF2EGli, ,,OFRE`(J,El,[rREQ^J,w^,
!	 (Hl52sJ,Rl,J=I,G a/D)

§9§ F. xalt1§Y,;&h3IRE&G;i L£vEL, eX,!\h&OR2RL FR(Q, 7X,
! 32G362R yE» F 	 C' FRED, 4X,
2 !6§(E8 &ems R : VALUEZ :I X,K f--Z, )!	 -^02 (EaTl^eE	 -	 .	 w 
£e T  5
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APPENDIX C

'Listing of Fortran Computer Program CYTOFR Used To Determine
Cycles To Failure Distributions

C-1. Flow Chart

C-2. Definition of Variables

C-3. Fortran Program Listing

Mi
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Program to Calculate Paravieter Estimates for the
Pdor^al and L•oa-Tlorrial Distributions and Con(luct
Goodness-of-Fit Tests

MAIN PROGRAM (CYTOFR)

^ -	 START

READ
NDATA, DATA, AKURCY, STRLEV, RATIO 3

Ri o	 i	 YESEND OF DATA	 --------3- r,S 1. CP

READ X(I )'s

READ CUMFR^(I)'s

I	 2 .

-PCAREA (I) = CU'!14 I (I
I-,-,DATA

' -YES	 IS	
NO'^^`'' I = I+1I > hDATA

INTTT STBLV. ,	 RATIO, X(I)'s

Calculate  mean and standard deviation of i((I)'s
SUBROUT1NE MEAN

j Do Chi-square goodness-of-fit tes^
SUBROUTINE CHISQA

^.i gig,	 C-1	 1
M`

3

i i



2

Fig. C-1 (continued)

i

i

r
1

Do Kolmogorov--Smirnov Goodness-of-Fit Test
SUBROUTII E DTEST

Calculate Moment Coefficients of
Skewness and Kurtosis

SUBROUTIidE ALPIIA

IE
AKUF.CY = .00001

I = 1	 -

LOG X (?: )
NX(I)	 C (:2© 

	 + LOG e (20)) (10000. )j

X(I) = NX(I)

X(I) = i0000.

190

is
YES	 I> TMATA	 0	 - i= T-t 1

'?rT1O IIt (I^

Calculate mean and standard deviation of X(I)'s
SLiLROUTIP;r. V"-A'J



T -
Do  Chi--square

goodness-of-fit test
SUBROUTII•.E CKISQA

Do Kolriogorov--Smirnov
goodness-cf-fit test

SUBROUTINE DTEST

ci.?late moment coefficients
of skavness and kurtosis

SUBROUTINE ALPHA

3

191

FJ-F,. C--1 (contirue,l)
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1

1

Subroutine to Find Mean and Standard Deviation

Su:Pil0UTll-'E NEAN

SIGMA = 0.

P2 = 0.To,

SIG!,',A	 SIGINIA+X(l)

TOP2	 TOP2q-(X^l)--,',EAll) 
21-f

S	
S	

1,YE	 110
I > EDATA	

10

SIGMA

DATA

D'E' V
A-TA - 176

PRIA1,17T XNEAN, DEV

I	 .	 .

Fiz. C - 1 (continued)
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i

c
c

t

t
r

Subroutine to rincl. Aren Under Standard Normal Curve

FUNCTION PROB(X)

START

IS (X--1.2)	
>0	 --30

< 0

XSQ = (X) 2

PROB = (.797 88 455)( X ) , 99999774--XS(Z[ .16659433-
XSQ (. 02 1i 638310 --XSQ (. 002397486 7)) ]

RETUR14

RECXSQ = • 2
X

PROB = 1 - 0 - ( .79788453)  EXP[

t =-'^2/? ) (i . 0•.nECXSQ (1 . -R CXSQX

(3. - -IECxs Q (15. -RE CX SQ (105^)))) )

RETURN

>
IS X--2.9	 - 

0
0

<0

XSQ = X2

PROB = 1.0

PTE'R -I = 1 .0

FAC!'O11 = 1.0

ODDINIT	 3.0

Fl..-,. C -1 (continued)

ii
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t

R
i

PTERM _	 FITFillItXSQ1
FZCM0i3

TERM PTERNODDINT

PROB = PROB4-TERM -

<0	xs	 >0
(TERM-.00007

FACTOR = FACT011+1.0

ODDxiT :: ODDxNT F? 0

PROB = (.79788455)(X)(PROB)

RETURId

1

Fig. C•-1 (continued)
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Subroutine to Conduct Chi-Square Gooclness--of--Fit '"est

SUBROUTINE CIIISQA

Fig. C-i (continued)

i

i

r

i^
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1

2

RANGE = X14AX•-X i"= IN

DIVIDE = AlUhCX

Kk. = 
CRAI GB'+:!KURCY + (. 5)1 KURCY] (DIVIDE)

REALK

RK1 = MI

,-RKI
DIVIDE,

PRI NT XMAX XI-IIN, W

L'= =1

A - I

B = (. 5 )A;"URCY

CSV(I)	 Xt:''a-(A--I.G)(. ► )
I	 x+1	 CEV (I) = CSV (I) +:•: -^ KU.IIC Y

CLBM = CSV(I)-B

CUB(I) _ CEV(T)+B

NO	 TS	 Y?S
T >K

1

CUB (I) = CE'V (I)+B
C EV(K) = X I  AX
CUB(K) _ C 't'(K)+B

Fib;. •C--1 (continued)
	

3
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Fib. C	 (contitlued)

197
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Fig. C-1 (continued)



C

RiA = .S--A^i;A(It-^^ )

.	 At=1

199

FXFR Q(ti) = DATA*REQAR?,,A(M)

U	 _ ^
	 nF^^ _,	 _w^^ t.

ExFaEQ (: i

CfiISQR = CHISQR +J(M)

is	 INT

1'1 > A

I, CLB(I), CUB(I),
r EX RE.Q(I), FI EQ(I), U(I)

r = 1+1	 No	 Is
I > K

M = M-4-1 1

i

PRINTT CHISQR

R'r',Tumj

Fis. G--1 (continued)
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Subroutine to CondUCt, Kolmogorov-Smirrlov

Goodness-of-Fit Test

SUBROUTINE DTEST

1
1

ii^



^f
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Subroutine to Find the rJomcnf ' Coef:'icf-eats of
Sko ness 1rtc) Kurtosis

SU^3nCUTI-NE AT PHA

	

S`:.'ART1  	 '

I
TOF 3 -

 fl
oTOr4

t, R 

VAR	 VAR ,- (X (I 5 —X MEA?:) 2

TOPS = TOP3+(X(I) -XVlEAN) 3

TOP4 := TOF4+ .(X(j) --XMEAP. )4

YES
ff^q[)AI >	 (A

_ TOP3^—:y Si	 DATA

STD E l" ^DATA

-	 ALFIiA3 ^ ^ 
(STDC 3

TKURT - TODATA

1!LPF A r 1̂ URT

FRIi ^t ALPj A	 A .,PIiA
i

(	 t? ET U sN-j

f	 Fig. C-•1 (continued.)
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List of Definitions for Program to Fit Formal

and Log-Normial Distributions to Cycles--

to--Failure Data (PROGRAM CYTOFR)

Lain Program t

NDATA := DATA = number of observations.

STRLV	 stress level in psi..

AKURCY	 -	 accuracy to ehich cycles--to--failure data

are known.

RATIO	 stress ratio

X(I)	 .-	 cycles-to--failure data

Ctj^1FRQ(I)	 cumulative frequency of each X(I) ; ie,
number of X's less than or equal to X(I).

PC UIEA (I)	 CU.`'r,RQ (x) /i;DATA

Subroutine to calculate the mean and standard deviation of

the cycles-to-failure data (SUBROUTINE MEAN) 	 -

SIGMA	 _	 sum ;of the X(I)1s 

^y X1,12A`i	 _	 average of the X (I) ' s

n
TOr2	 --	 E	 (X(I)--XpPEAU)2

' i=I

DLL'	 -	 standard deviation of the X (l:) ' s

Function subroutine to find the area under the normal

curve	 (FUi-;C•TION PROS (X)) .

X	 _	 abscissa value For which corresponding area

is desired.

PROr>	 _	 desired. area.

C-2.	 Definition of Variables
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Subroutine for Chi-square goodness--of--fit test (SUB-

ROUTIYE C IS-,^i) .

K	 number cells.

XPIAX	 - largest value of cycles-to-failure.

XMIN	 - smallest value of cycles-to-failure.

CSV	 - cell starting value.

CEV	 cell end value.

CLB	 - cell lower bound.

CUB	 - cell upper bound.

FREQ(J) = number of observations in J th cell.

REQAREA(J)= expected value of J th cell.

CHISQR	 _. total Chi--square value,

U(I)	 - Chi-square vaiue of I 
th, cell.

Subroutine for Kolmogorov•-Smirnov test (SUBROUTINE DTEST).

Z(I*)	 - abscissa value on standard normal curve for
a given X(I).

ARUNCN	 - area under standard normal curve from

to Z(I).

DSTAT(I) - absolute difference between the data euv.u-

lative frequency .cnd	 hypothesized cumu-
lative frequency.

: X:;EAi:	 - average Of the X(I).'s.

DEV	 -- standard deviation of the X(I)'s

PROB(T)	 - area under trio standard normal curve from

-T to +T.

C- 2 . (Cont d) .
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Subroutine to calculate the moment coefficients of skew-

ness and kurtosis (SUBROUTINE ALPHA).

ALPLiA3 -	 moment coefficient of skewness.

ALPHA4 -	 moment coefficient of skewness.

VAR
n
E (X(I) -X)2
1=i	 .

TOP3
n

_	 E	 (X(i)--X)3

SKEW _	 third moment of the data.

STDEV -.	 biased estimator for standard deviation.

TOP4 =	 E	 (X (I) X) 4-- 

-TXURT =	 fourth moment- ,of the data.

i



PROGRAM CYTOFr, 	 ( INPUT I OUTPUT sTAPEI=INPUT)	 205

C---• P NOGRAM 1 . 0 FIT NORMAL AND LOG.- N OR M-AL, CURVE TO DATA AND CHLCK

-C----- G000^JESS OF	 FIT._
6a0; DINENSION	 X(100) 9CSV(9) sCEV(9) 9CL(;(9) sCUL3(9) sC(J+•1FfIO(100) s

IPCAREA(1Co) spSTAT(100) sFi?E".'(9') sA.R EA ( 9) 9 R E O A R cA(9)+E X F R E o (9) 1U(9) 9

2Z(1CG) 9 t` X(100) tRA"'JK(100)
003 EXTERNAL PROB

^0^?3 710 P'1 0 1
C---• - NDATA=DATA='aUHBEP OF OB SERVATIONS
C ----- STRLV = STRESS LEVEL	 IN PST.

1007 READ 61N1?ATA%DATA9AKL l PCYsSTRLE V 9	 RATIO

C---- - X= NUMBER OF CYCLES TO FAILURE
00025 6 FORT-!AT(I39F5.19F9.4sF10.19FS.5)

655. ?5 - IF	 (EOF9l)	 56955
0030 55 READ	 79(	 X(I)9	 I-19t:DATA)

n,p43 7 FOR^iAT (BF 10.0)
C
C SORT X(I)	 TERMS	 IN ASCENDING ORDER.
C

04043 K=NDATA-1
x045 IF(K.LE.^)	 GO TO	 30
')047 DO 20	 I=19K

G!?os o N=NDATA- I
^!i; 5l IST('1,'=0

0053 Do	 16	 J = 1 s hi
^-60-54 IF (X(J).LE.X(J+1))	 Go	 TO	 i00 7 SAVE=X(J)
X 0 6^ X(J)=X(J+1)

X(J+1)=SINE
0±1063 ISTOP =ISTOP +1

6C65 10 CO-NT INUE
070! IF(I STO P . 0	 :;)	 60 TO 30

t' ,► 0 71 2? CC(Ji:TIt.UE
G
C SET	 C: HFRO (I)	 ARRAY
C

0073 30 UO 4;,	 I=1 ,NDATA

_!?0 7 5 4 0 C U' F Ri^(])	 =	 I
C ----- PC" L"EA = F ( J':)	 OF	 OBSERVATIONS

00]''1 DO 759	 I =19	 NDATA
^61 0?- 759 PCAREA (I)	 = CU`iFR( (I ) /DATA

61rF, PPI'JT	 405
, n112 405 FOW-ihT	 DISTRIBUTION FITTED TO CYCLES- TO-FA ILUPE DST

lq.///)
:	 112 IF	 (RATI O .E O .C.61)	 G O	 T O	 414
0113 PPJNT	 4;•?1	 STPLEVs	 RATIO

04123 4,2 F0Pl",AT( 2 )Xs 1 4H 	 STRESS LEVEL=sFi0.195H PSI.916X
1 s 1 4 HSTRESS	 RA TIO	 ='sF6.3//)

+4123 GC' T O 415
0o]24 414 P?I'JT	 416 1	STRLE V
;14132 416 F. 0WSAT (24X 9 101STRESS LEVEL=sF1a.I-,5H PSI.916X

1 s ? 3HS1 RE:SS	 RA1 IO	 =	 INFINITY//)
U0132 41 55 PRI N T	 404
C	 3G 404 F0P:!AT(55X 9 2?HC)'CLES TO FAILURE	 DATA/)
in136 PRINT	 40?s	 (X(I) s I=1 vNDATA)	 -
`^]rl 4%3 FC'i -YAT	 (6(1CXsF171.3) )

151 PP'INT	 3

C-3. Fortran Progam Listing.



(t? ^11;5 3 FOWIAT	 (1H;1)
'015; CALL	 HEA r !(X9	 DATA,	 14DATA 9 	 XmEm4l	 DEV)

206
'4l6) CALL CHISWX,	 DATA,	 N[)ATA9	 PROB9	 AKURCY,	 XMEANs	 OE'V9	 Z)

666171 CALL	 DTF.ST	 (PCAREAtt,, DATA9X9DEVtDST A T, PRO 13tX i*IEArdt 	/,)

N X201 CALL	 ALPHA (X t	 NDATA t	 DATA ? 	 XMEAN 9	 DEV 9	 ALPfJA3 9	 ALPHA4 )

AKURCY =	 .0000)

r10g212 DO 54	 I=) +NDATA

-	 213 14X(I>	 =(t...LOG(X(I)/20•)+AL0G(2;1.)) 	 10G000.	 +	 .5

,,,226 X(I)	 _	 *lv (:)

^j)0-23C 54 X(I)	 =	 X(I)/1000000
OC 10234 PRIViT	 I

tA240 l FORMAT	 QHj 93HASD/// )

r 6240 PRINT 401
0 1,1401244 401 ORIM	 57M.OG-NOPHAL DISTRIBUTI ON F1TT.D T O CYCLES-10—FAILUREF	 AT	 (3f3Xt^

• I	 DATA.///)

L
10244 IF	 (RATIO.E 0 .0.0)	 GO	 TO 417

;0- 245 PRINT 40?9	 STRLEV9	 RATIO

k3255 GO TO 418
152.56 417 P RI NT 	 416 t 	STRLEV'.
) 0 2 6 4 4 18 PPIr•!T	 2

606270 2 F011HAT	 (49Xt344LOGS OF THE CYCLES TO VAILURE DATA/)

'

PRINT	 4139	 (X(I)tI=IgN'DATA)

1

:)o270
!(i303 413 FORMAT	 (6(8X;F12.5))

Ot^o303 PPINT 3

0307 CALL MEAN; (X t	 DATA t	 NDATA 9	 XMEAN t	 DEV)

6313 CALL CHISQA (Xt	 DATAt	 NDATA,	 PROE39	 AKURCY,	 XMEA 1 49	 DEV,	 Z)

0323 CALL DTEST	 (PCAF;EAtNDATA9X+DE VtDSTAT t P R O8tXMEAN9	 Z)

CC^333 CALL. ALPHA(X,	 NVATAt	 DATA,	 XMEAN9	 DEV9	 ALPHA3 9	ALPHA4)

( 342 GO TU 71c
15343 56 STOP
0('^.345 END

r
E

F

i

F	 C -3.	 (Cont 'd).



I

SUBROUTiNE MEAN (X, DATA, NUATA, XMEtflt DEV)
C-----SL IUR0UTI14E TO CALCULATE THE MEAN AND STANOARO DEVIATI 4 OF DATA.

) p olo DIMLNSION	 X(14DATA)
O U 10 SIG'-IA= 	 0.0

oaooll DO S 1=19	 NDATA 207
p ool ? B SIGMA=SIGMA+	 X(I)
'016 X1•!EAN'	 =	 SIGMA/t7ATA

Vu-1017 TOP2 = C.0
R 002G DO 9	 I=19NDATAQ021

9 TOP2 =	 TOP2	 +	 (X{I)	 - XMEAN)**2
Uo	 026 DEV =SOR T(TOP 2/(DATA -	 1.01)
000036 PRINT 14 9 MEAN

I
';#- 0 4 3 P(1I14T	 1 5 1 	pEV
: , 0054 14 FORMAT(	 lox+	 12HSAMI PLE MEAN=,	 F17.6)

00;054 15 FORMAT(	 10X+	 15 HSTD. DEVIATION a 9 	F14.6)
0054 RETURN
10055

i

END
4

t

C-3. (Cont I d).



P^OOQ3
^QOQS
•'006

?016
,n017

00022
► 0023
=0024

000025
X0026
1;030
vn034

000035
10037

d `6042

n*44
0046

} {1046
O0('OS1

M 053

000075
0076

FUNCTION i'F,,O8(X)

C-----THIS SUBPOUTIhE GIVES A REO LINOER MORIMAL CURVE FROM -2 TO +x
C	 WITH AN ACCURACY OF 0.00005 	 208

C- • ---2 VALUE GI VEN b y CALLING PROGPAM MUST BE A POSITIVE NUM8Ec2.
IF (X-lo2)11t11912

I1.	 XSG=X*X
PROD= 0.79788455*X*(0.99999774-XSO*(6.16659 ► 33-XSO*(0.024b3a3:^•X^
1;00.6023974867))1

RETURN
12	 IF(X-2.9) 13+14+14
13	 XSQ=X*X

PR06=1.0
PTERM=1.0.
FACTOR=1.0
OUD I fjT=3.0

970	 PTERk=-PTE«t4*XS0/(2.0*FACTOR)
TERM=PTEtO/O(io It^T
PROb=PR0B+TcRi1
IF( ABS (TER ►a) - 0. 00007 ) 6000990

90	 FACTOR =FACTOK•1.0
0D0I NT=OD01?gT+2.6	 -
GO TO 970

SJ	 PRO8=O* 79788455*X*PROB
RETUkH

14	 RECXSQ= 1.0 / (X*X)
PROD- 1.0 - 0979788453*EXf3 ( -X*X/2 . 0)/X0(1 . 0-RECXSO* ( 1. -RE:CXSQ*(3.
1 - RECXSO O (159 - RECXSQ*105. 1)))

RETURN
ENO

K
n

C-3. (Cont'd).



SUE ROOTIVE CHISOA	 (Xq DATAt NOATAt PROf;s AKURCY9 XMEAN, 	 DEVO.)

C-----SL ) BRO U TINE	 TO FIT	 A HISTOGRA I.1 TO THE DATA A N +ij F LIWORM	 THE CHI-S(4+•;;+,[

`- C-----TEST FOR THE NOR IAAL OR LUG-NORMAL DISTRIOUTIONS.".

000013 DIMENSION	 X (r+DATA) tZ (IIDATA) tCSV (9) tCEV (9) tCLLi (4) tCUB (9) t 	 209
1REQAFIEA(9) tA f?EA(9) tEXFREQ(9) t 	 FREO(9) t	 U(9)

0''013 CHISQR= .n
C-----TO OETERPINF THE NUMBER OF CLASS INTERVALSt K

OOQ013 K=	 1.5	 +3.322"ALOG10(DATA)
00 ?.4 REALK=K

C-----I M'O R0ER	 TO OETER M I N E THE RA N GE t FI N D Xtf1AX)	 aF1U	 x(F1IN)

000025 X ► )AX =X (1)
0 9027 xt•)Ih,	 X(1 )
.P030 DO 17	 I=11NDATA
06032 IF(	 X(I).GT•X ?4AX	 )	 XMAX	 =	 X(I)

000037 17	 IF (X (I) .t.T.	 XMIN)	 X M IN=X (i )
00 4 6 RANGE=	 Xt4AX- XMIN

C------TO DETEP"11NE THE CLASS INTERVAL WIUTHtW
C-----POUTINE TO ROUND OFF CLASS WIDTH TO SAME NUM8ER OF PLACES AS THE ACC

9050 DIVIDE =	 1.0/AKURCY
005 1 KW =(((RANGE+AKURCY)/REALK)+-5#AKURCY)*DIVIOE

000057 RKl = Kw
O A Q060 W = RKUDIVIDE

06?
M

0
OO

PRINT 62tXMAX
 PRINT 639xmIN

065075 PRINT 659w
C^ 0103 DO 22 I=19K
ClrQ110 A=1

.000111 B = 0.5#AKURCY
0112 CSV(I)=	 X ►• lN4 (A-1-0)*W
0117 CEV (I) = CSV (I) +V.»AKURCY

0_ p_123 CLEI(I)=	 CSV(I)—B
C	 127 22	 CUB(	 I	 )	 = CEV(I)+9

1
.135 CEV(Y.)	 =	 X'1gX
0 13 7 CUB (K)	 = CEV (K)	 #a

QOQ143 DO 23 J=1 tK
0144 23	 FRE(a tJ) =0.0
X150 DO 24 1=19NDATA

000152 DO 24 J=1tK
0153 1F(	 X(I).GE-C1.B(J)9AND.	 X(I)-I.E.CUB(J)	 )	 FREO(J) = FREQ(J)+	 1.0

a	 6172 24.	 CONTINUE
_ C-----CHI-SQUARE TEST

0	 0177 PRINT 41	 .
0202 PRINT 406

, 52r.-6 00 30	 I=1tK
000213 Z(I)=(	 Ct1(3(I)-	 XMEAN)	 /	 DFV
C{" 6220 T=	 ADS(	 7 (l)	 )
0 n224 3;1	 AREA(I)=_PROUtT)/2-0
CGf)243 REOAREA(1)	 =	 0.5	 -	 AREA(1)	 -
00^244 MAOU=K-j
01 DO 32 I =2 0ANU
0',0(, 247 M=I - 1
00 250 IF(	 (Z(I).GE.O.6,AND,7(M).GE.0,0).OR.(	 Z(I).LE.C.0.ANU.Z(!4).l.E.o.

01 5272
1	 )	 )	 GO TO	 31

PEQAREA ( I) =	 AREA t I) +AREA (tip)
001300 GO TO 32
4'" ?30C 31	 REOAREA (1)	 = Aci S (	 ARFA (I) - AREA M . )

1310 32	 CONT I "SUE

C-3. (Cont'd).



PC, 0 3 DO 8 	 M=1 ,h
113;-1 0 EXFPEU (H) =DAI'A *REOAREA (M)

0323 U(N)=(( 	 EXF P EO (-i) — Ff?E(J (M)) aa2) /EXFREO (1•i)
006331 8L► CFiISQI(=CNISQIR+U(1.1)	 210

C-----TO PRINT THE TABLE FOR CHI —SQUARE TEST
(?	 9337 DO 33	 I=1+ti

1341 33' PRI11T	 3 4 j1 g CLH(I)9CUB(I)+	 EXF1RE0(I)+FREQ(I)+U(I)
64 12 PRINIT	 35 9 	CHISOR
9420 62 FORr1AT (	 lox, 	 l0P-IAX I MU,'•1	 VALUE= s F 15.6)
0420 63 FOkr1AT(	 IoXt	 14HMINIMUM	 VALUc.-,	 F15.6)

000420 65 FORMAT(	 10X9	 12HCLASS	 WIi1TH= t	F17.6)
6 0420 41 FOPOAT(IHO)

^.
0420 406 FORMAT	 (6X,5" CELL910X91CHLOV IER CELL911X910HUPPLR CELLt13X98HEXPEC

1
1TE0,13X I E1.iC i35ERVE(1 9 13X,1 1 rtCNI —SQUARED/8X, G)INUI •it1ER, l OX, 8H^40UNDARY,
213X9	 8HBOU,*,IDARY913X99HFHCQUENCY912X,9f(FREOUENCY912X,13^iVALUE OF CE

J	 - 3LL/)
0 0420 34 FORMAT	 (1CX9129SF2I.6)
005420 3 5 FORMAT	 (1H0+81X,2 5 HTOTAL CHI — SQUARED VALUE = tF 10.6)
C	 5420 RETURN!
C	 i421 END

ft-W
C-3. (Cont'd).



SLI UROUTI' ,,E	 DTEST	 (PCAkE A9 N UATA9X 9UEV9 DST AT9P..:',XME:AN9Z)

C ----- SUE;ROUTIc;E TO CALCULATE THE KOLMOGOROV—SMIRNOV O—VALUES.
G X013 DIMENSIO N 	 PCAREA(ti,:)A T A) 9x (I,IDATA)9Z(NOAIA) ,DSTAT (NDATA) 	 211

0 1001 3 DO 70' 6	 1=19	 NDATA
f ^ v14 Z(I)	 =	 WI)	 —	 Xt-tEAN)/DEV
C	 ^0?1 IF	 (Z (I))	 7039	 7049	 705
r	 6024 703 T	 = A BS (Z (I) )

C ----- A L tNCN=A REA UNDER THE NOR*'AL CURVE TO LEFT OF Z FOR NEGATIVE Z,
0 ')027 ARUNCN	 =	 (1 • C —PRO`S (T)) /2, 0
0	 1043 DSTAT (I)	 = ARUNCrt — PCAREA (I )
O00050 GO TO 706
0	 050 7,4 DSTAT(I)	 =	 •5 -	 PCAREA(I)
Cy	 '?054 GO TO 706
0`0054 705 T	 =	 Z(I) 

C----- APU ;tCP=APEA Urtp Ff^ THE NORMAL CURVE TO LEFT OF Z FOR POSITIVE Z.
O	 057 ARUNCP = PROB(T)/2.0 +	 .500
0	 )072. DSTAT(I) _	 (ARUNCP — PCAREA M )
OCCO77 7G6 C0t4Tlt4UE
C -, 102 PRINT 70S
C! '-)105 PkINT	 7079	 (DSTAT(I) 9I=I9NDATA)
06	 13G 707 FORMAT	 (6(10XIF10.5)}
O.^.130 70 FORt-,AT	 V/40X953H D VALUES FOR KOLMOGOROV—SMIRNOV GOODNESS OF FIT
l` 1TEST/41X952H(LISTED IN THE SAME ORDER AS CYCLES — TO—FAILURE DATA)/)

30 ,: 1	 C RETURt:
0001?1 Er.0

E
ri

C-3. (Cont'd).



SUBROUTINE ALPHA (X, MDATA, DATA, X,-:FAN, DEV, ALPHA3 9 ALPrit,4)

	

C( 5012	 DIMENSION X (NDATA)
C ----- SUBROOTItl TO CALCULATE THE COEFFICIENTS OF SKEvl^4ESS A ND NURTOSIS

C-----CALCULATE THE: THIRD MOMENT OF THE DATA (SKEWNESS)

	

C! %a012	 TOP3 = 0.0	 212

	

)012	 VAR = 090

	

, r ` 1014	 DO 710 I =1, NDATA

	

( 0015	 VAR = VAR + MI)- XMEAN)a#2

	

0 X020	 71G	 TOPS = TOP3 (X (I - XNEAN)*03
	0 -?427	 SKEW = TOP3 / DATA

	

006030	 STDEV = SQPI (VAR/DATA)
^-	 C-----ALPHA3 = MO IENT COEFFICIENT OF SKEWNESS.

	

01- 1.037	 ALPHA3 = SKEW/(ST0EV-#3)
C-----CALCULATE THE FOURTH MOMENT OF THE DATA (KURTOSIS).

	

f 0041	 TQP4 = 0,0

	

6')042	 DO 711 I = 1 9 NDATA

	

0vQ044	 711	 TOP4 = TOP4 a MI) - XMEAN)#*4

	

C-C, 0052	 TKURT = T OP 4 / DATA
C-----ALPHA4 = MOMENT COEFF I C I ENT OF KURTOSIS.

	

0. ?053	 ALPHA4 = TKUf;I'/ (STUEV# #4)

	

UOn0 6	 PRINT 712

	

0 3062	 PRI14T 713

	

3 ^G66	 PRIrdT 714, ALPHA3, ALPHA4oo	 c P A3Ot:102	 712	 F On.•^DT (///1SX,39H: •10hIENT COEFFICIENT OF SKE'r,^1ESS ( L H 	 ) q 1 8X , 3 9';
10 t -Et , T COEFFICIENT OF KURTOSIS (ALPHA4) /)

	

!^ X102	 713	 FORMAT	 (21X,34HFOR ^1O gMAL DISTRIBUTI ON AL PHA3 = 0923Xt36HFOR NO
1-5 102 1RMAL DISTRIBUTION ALPHA4 = 3.0/)

	

006102	 714	 FORHAT (26X925HFOR ABOVE OATA- '--ALPHA3 =F6.3,26X925HFOR AE30VE DATA
1---ALF'HA4 =9F6.3)

0	 102	 RETUi-<t.!

	

(~0103	 END

C-3. (Cont'd).
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APPENDIX D

Program STRENG (FORTRAN)

D-1. Flow Chart

D-2. Definition of Variable

D-3. Computer Listing



PROGRAM STRENG

START

214

I

z

t'

INT = 1

AD XJMIN,XJMAX,

INT, I% N, RATIO

READ ASTR, MLOG

ASIGL, NUN

zs

J>N

YES

D-1.	 Flow Chart



6A

r	 215

r
r
	

1

i
CYCLE (I) = EXP (MILOG (-I) )

IS \ NO

I2A' r _ ^.^.

YES

NAIL = N - 1	 INDEX = 1	 L = 1

IS	 >-YES
J2NAi1 	

3

NO

DSTR = ASTR(3+1) - ASTR (J)
DMEAN = MILOG (J+1) - AMLOG (J)
DSIG = ASIGL (J+1) - ASIGL (J)
SLAM (J) = DSTR/D' IEAN

__....	 . I	 -



2)
.1/

JPI = J+l, MX = DSTR/SINT
INDEX (JPl) = L + NIX, SMIN	 ASTR L.Lj

XMLOG (1) = AMLOG (1), XSIGL (1)=ASIGL(1)

YES

1n
LX= L+ X

G(LX) = XMLOG(LX-1) + SINT/SLAMM (J)
-1L0-- --	 I

YES

XSIGL(LX) = XSIGL (LX-1)

XSIGL (LX) = X-JUJIA-1) +

S INT/SLSIG (J)

L = LX

D-1. Flow Chart (Cont1d).
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a

r

	

217

i

3

r

PRINT

(HEADINGS)

DOES

RATIO = 0

YES

F

RINT, STRESS

►RATIO = INFINITY

PRINT

RATIO

RINT (HEADINGS)
_. __	 ...,.... ,.._w. -i

NP - 1

PRINT ASTR(I),
ACYCLE(I),
MILOG (I) ,
ASIGL(I)

DOES

,,2̀- I 
S 

N

PRINT HEADINGS

D-1. Flow Chart (Cont'd)
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1

218

XINT = INT

STR = SMIN

YES	 DOES
LX = INT

NO

CYCLES (I)

(XMLOG M)

PRINT STR, CYCLES (I)

MLOG (I), XSIGL (I), I

STR =

STR + SINT(XINT)t!!!

v

D-1. Flow Chart Cont'd).

1.

i



'r
219

DOES
6	 1 = N

DOES
YES	

3

NO

CYC(J)	 ALOG (XCYCLE (J))

NO	 ISyES	 IS
z - 35 S- 0,-- 	z_>0

^^ 1
NO

GOES TO NORMAL.	
S	

YES

z + 

--^
SUBROUTINE

1 4. 5x_0	 AREA(I,J)=O

NO

6)	 ----:-4—
GOES 70 NORMAL

__.aU"')Lff I NE-.

AREA (I,J)	 I

kREA ^(I !J) (1.0 PROB)/2.0

6\

D-1. Flow Chart(Cont'd),



6

INTZ	 INT (4)	 STR SMIN

PRINT

(HEADINGS)

DOES
YES

N INTZ^.._O

RIXT STR,

xmLOG(I) XSIGL(j'

	

PRINT	 1

(HEADING)

PRINT J,

AREA (I,J)

<4DOES

	

-,, 

'S	

NO

YES

STR = STR + SINT(XINT) 4

220

D-1. Flow Chart (Cont1d).
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XMIN = MMIN 	 XJINT

PR INT
P 

RIN
(HEADING)ING)

xi =J
I	 NO	 DOES

 M

YES	 PRINT 1,
[PRINT J,CYC(J) 	 J	 AREA(I,J)

XCYCLE (J)
NOj XIA,,N

DOES
k<(INT)T=N

D-1. Flow Chart (Cont'd).



	

^	 8

	

'^	 U

^

|

|

YES

2%3

|
!

-

U/»-

LNMl N ' I

,_--^DOES>

INO

DOES	 YES

NO

IPl=%+1

'
= mm1	 >	

^

{	 /	 NN

DOES

J=M	

10

NO

(^	 }	 /

/

!
|	 ^

U'

D-1. Flo* Chart (Cnnt'd).
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i
	

9

i

YES
	

DOES

J=N

UI = UI + SINT	 FI = FI+FREQ (I,J)

FIUI = FIUI + (FREQ (I,J)) UI

SMOG (J) = FIUI/FI	 SM2 = 0
STMEM (J) = ALOG (SMLOG CJ))

SN13 = 0 SM4 = 0

UI = SMIN - SINT/2

DOES

I=N

NO

UI = UI + SINT
SQ = (UI - SAILOG(J)) (UI-SMLOG (J) )
SM'2 = SN12 + SQ (FREQ (1,J))
SO = SM3 + FREQ (I ,J) (UI -SMLOG (J)) SQ
SM4 = SN14 + SQ (SQ) FREQ (I,J)

D-1. Flow Chart (Cont'd).
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1	 •
11

1

SM2 = SM2/FI,	 Sr13 = SM3/FI
Sr14 = Sm4/FI, SSIGL(J) = SQRTF (Sr12)
SIG3P(J) = SriLOG(J) + 3 (SSK-L(J))
SIG3M(J) = SMLOG(J) - 3 (SSK-L(J))
SK3(J) = SM3/((SSIGL(J)) (Sr12)
SK4 (J) = Sr14/ (SM2) (SM2)

__	
13	 =

10

PRINT	 I

HEADINGS

PRINT J, CYC(J), XCYCLE(J), SMLOG(J),
SSIGL(J), SIG3M(J), SIG3P(J)

SK3 (J1, SK4 J.L____^
t'
i

NO	 DOES

^	 J=r1	 }
3

j	 YES

14

D-1. Flow Chart (Cont'd).
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i

KOLAIOGOROV-SNIIR,NOV GOODNESS Of' FIT TEST 	 225

D-1. Flow Chart (Cont'd).
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D-1. Flow Chart (Cont'd).



ZSQ = Z x Z	 PROB

PTERM = 1	 FACT

ODDIN = 3

j

AREA UNDER NORDI4L CURVE BETWEEN + $ - STD. Z DEVS.
227

16

NO	 IS
--	 Z 1.2 s

i

YES

ZSQ = Z (Z)

PROB = . 79788455(z)(.99999774 - ZSQ x

(.1ti659433 - ZSQ(.02463831 - ZSQX.0023974867))

19
IS	 YES

z-2.9 2 0_^

REC = 1/(z x z)

PROB = 1 - .79788453 X

NO
	 EXP (-z x z/2/zx

1 - REC(1 - REC(3 - REC(15-REC x 105))

19

D-1. Flow Chart (Cont'd).
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18

PTER,XI = - PTERM XZSQ/(2XFACT)

TERM = PTERM/ODDIN

PROB = PROB + TERM

I IS	 NO	 PROB = .79788455X

ABS(TERM 2	 Z x PROB
\.00007!

YES
	

19

FACT = FACT + 1

ODDIP" = ODDIN + 2

18

D-1. Flow Chart (Cont'd).
1	 .
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XJMIN = log cycles of extrapolated minimum value of M

XJMAX = log cycles of extrapolated maximum value of M

M = ntunber of cycles (XCYCLES) of XJMIN

N = number of distributions to be used at a particular stress ratio

RATIO = stress ratio

ASTR = bending stress level in psi

MLOG = log of bending stress level

NUM = number of cycles to failure inputs (ie. no. of XCYLCE)

XCYLCE = the actual number of cycle to failure

STINT = standard deviation of cycles to failure in log terms.

ACYCLE = number of cycles to failure or mean cycles

Interpolated stress values

STR - ASTR

CYCLE - ACYCLE

XWOG - AMLOG

XSIGL - ASIGL

AREA (I,J) = cumulative are under log normal cycles to failure curve.

Parameters of Normal Stress Distribution at Specified Cycles-To-Failure.

CYC = cycles in log value

XCYCLE = cycles

SMLOG = mean strength

SSIGL = the standard deviation of the mean strength

SIG3M = the minus three sigma limit

SIG3P = the plus three sigma limit

SK3 = the skewness value

SK4 = the value of kurtosis

i

D-2.	 Definitions of Variables.



PROGRA ;4 STRE K G (INPUTsOUTPUT,TA P E) =It;F'(IT)
C-----PRQGR4M FI N D S NORIMAL SIRENGTH DISTRIBUTION' FROt4 LOGNORMAL

230

C-----CICLES — IG—FAILURE. uI5TkI!3UTIOrdS.
j	 (i3	 011.1ENSION AS *IR00), AMLOG(10), ASIGL(10), SLAM(9)1SIG3M(23)1

I	 X14LOG(301)s XSIGL(301) 9 AREA(301s?.3)s FREO(301,23),SIG3P(23),
2	 CYC(23)s S"LOG(23)9 SSIGL(23)9 SK3(23)9 SK4(23)sCYTOFR00,25)9
3 NU•4(10),Ih:DEx(IC-),OFREO(ICis2:;)1GFRE(4()r'l,2.3),h;•1AX(1Us23),AN2(10)
4	 ,CiiISt„(10,Z3)sST(10. )1SLS1G( 9 )9 F:FRED(10923)9I141)1:X2()0),A(4UHtls)
51CYCLE5(30l)9ACYCLE(25)s STRLOG(10), STMEtN(23), XCYCLE:(23)

	

U, 0003	 EQUIVALENCE (AREAsFREO),

1	 (XSIGLsSSIGL) 1 (Xt•: L0G,OFR0) s (AREA(500 1EFREO) s

2	 (AREnsCHISC), (ARF.A(250) sGF'REU)

	

0, 0003	 IN1 = 1	 .
	0 0004	 5 REQUI99XJI-4.IN1XJtiAX,SI ►^1914,NsRAT10

	

V(j&u24	 10 FORMAT (2 F10.E,F10,012I59F10.5)
C	 FAILURE 01STRIUL11'IUty VALUES AR E READ IN FROFi

C	 L0,4EST TO HIGHEST 51RESS AND STRESSES ARE

C	 •INTEGER V A LUES OF SI14T

	

G00024	 IF• (E0 F 11) 510 1 20

	

1
0027	 20 READ 3"1, (AS1R(J) sAt,;LOG(J) sASIGL(J) sN(Jt (J) s J=1,N)

	

( ' 005:1	 iC FOk+iAT (F10.5 %2F 10 . 6 9  15)

	

(?OitU5v	 RE AD 36, (XCYCLE (J) s J=1,hi)

	

i+063	 3t)	 FOHNAT (i?F10.0)
	U063	 DO 34 I=I,N

C+ 	 V65	 34	 AC YCLE. (I) =EXP (AtiLOG (I) )

	

^C07A	 Nt11 = N-1

	

:)075	 L = 1
	67 (> 	 INI)EX (1) = 1

	

00,077	 UO 8S J=19N,,1

	

I
01	 DST?	 tSTR (J+ 1) —ASTf< (J)

	

G103	 D SEAN	 A !A*LOG (J+ 1) -•AtILOG (J)

	

G0005	 DSIG = ASIGL(J+1)-ASIGL(J)

	

I

G107	 SLA” (J) = DSTfi/D^.EAN

	

X 0111	 IF (OSIG) 40-50,40

	

X 0112	 40 SLSIG(J) = r)STK/OSIG

	

( GI

0115	 5u C0r1TINUE

	

i,l )5 	JPl = J +1

	

17	 MX = OSTR/SINT

	

c1Ui.12?_	 INOEXt: ►'1) = L+ "iX

	

! 124	 S-IN = ;%STR(l)

	

26	 XN1LOG(1) = A;•*.LOG(I

	

00o 127	 XSIGL(l)	 ASIGL(1)

	

c ) :31	 GU S;) K=1 , MX

	

V132	 LX = L + K

	

iu613 y 	 Xt•LO5(L4) = X N LOG(L.X- 1)+SI NT /SL A M (J)

	

0UU140	 IF (US 1O 7^5,S017U

	

)i^141	 60 XSIGL(L X ) = XSIGL(LX-1)

	

!i•143	 VO TO hc!

	

OOL•144	 70 X516L(LX) = XS1GL(LX-1)+SINT/SLSIG(J)

	

y V1:i1	 80 C0 TINUF

	

► (,1^•	 L	 U
	0-06155	 85 CCA I LUF

	

0(1 16)	 P RI NT 8 7
	j ,. k63	 67	 FC-i,4AT (1ril///44Xs	 44HNORMAL STR2 NGTH DISIRVIU.TIONS FROM LOGr10WAA

1L/43Ao32#!CYCLE5 TO FAILURE DISTRI!sUTIONS.///)

	

vCs 0163	 IFMATI'),E{:.j.0) GO 10 91
Pk1' T ::t, kA110

D-3. Computer Listing for Program STRENG.



^^ 17
(=i^172
Vvvl73
t 1177
( ',177

'030t	 '03

2J3
t v 2 (15
06226

uz26
. Oc 32

00 232

CO(+236
^tUL4U
0241

243
00u247

G265
G265

00-5270
('273
0274

tt 275
O0t,Z76

77
t^ 3 0 3

u0il3u7
U i% 31 G
G X313
(; G314
i; ► t,^ 16

6324
-x324

f,v0327
C-(:1331
0rti► 336
U0i)337
u -.t-3 4 3
U :343
(;k>u347
UVL35^+
UJ 3Gi►
0. f352
Ol; ^3Ss
0.' X367
G^ C367
('Uu.371
V*V402

i) 	 02
OO..U6

ti

r

88	 FOcl;•^AT (44X+17r)EXPERI f4LNTAL DATA,8X9)4HSTRESS RATIO =,F6.3//)
60 TO 93

91	 PH I NT 92
9?	 FOWIAT(44X,17HEXPERIHIENTAL DATA s8,Ki?3HSTRESS RATIO
93	 PRlwT 94
94	 FOM';-iAT(8Ys13riSTRENGTh PSI.,9X+j2Hf,lEAN-CYCLES

16X,11l,L0G STD DEV/)

NP = N-1
PRINT 95, (ASTR(I), ACYCLE(I), At4L0G(I),AS1GL(I)9

95	 FOWIAT (2F?4.292F?-0.6)
PRINT 96

96	 FOWmAT (///54X,26r1Ir)TERP0LATED STRESS LEVELS//)
PR  T 9

90	 FUR;,;AT (iiX, l 3 rlSTRE N- 5TH PSI . t 9X, 32HMEAN—CYCLES
38X,llf(LOG STJ DEV,14X,l0HINTEGER(I)/)
XINT = INT
STR = SHIN

U0110 I=1,LX+INT
CYCLES(1)-EXP(XML0G(I))
PRINT 1:iO+STR+CYCLE5(I),XMLO ,3(I), XSIG.L(I),I

100	 (2FZ0•?+2F20.f3+120)
STk = STR.SINT*XINI'

I I D C0NTINuE
NC'LD = N
N	 LX

c	 CON ERIING LOGNORMAL FAILURE (NISI. PP.RAMIETtRS AT N

C	 STRESS LEVELS TU CUB HULATIVE LOGNORMAL FAILURE
C	 UISTRInUTION

DO 1H,; I=I,N
DO 18 J=14M
CYC(J) = ALOG(XCYCLE(J))
Z= (CYC (J) — ;-'LOG (1)) /XSI GL (I )
IF(L) 'HC04:'+14U

120 1F (%t4.5) 16C.+13u+13v
130 Z = —/.

CALL NOR MAL (ZIPR03)
AREA (1 , J) = (1 . 0 — PROe) /2. 0	 -
GO TU l9v

140 IF(l.-3.5) 15091509170
150	 CALL Ndi)MAL tZ,PROJ)

AKA (I , J) = PROS /2.0#0.5
GU, TO 1'40

ICi0 ARCO%(IIJ) = 0.0
GO TO lejo

lbo	 cOwTI ► ;try
Pk1NT 2'1.5
1(%, T?	 IN11*4
STk = S;lI(:
PRINT 1b5

165	 FG't^'.kT (///46 X +42HCuc•tULATIVE LOGNORMAL FAILURE DISTRIBUTIONS)
DO 221 I=1+.J+INT2
PRINT I^D,STN,X,`sLOGtI)+XSIGL(I)

190 FOh'"IAT (1H0,Sx, l iHSTF?ENGTH c ,F l0.0,SX, 9HLOG MEAN
1	 9riCYCLES = ,F9.5,5X001 4 LOG STU DEVIATION = 9F9.6)
PkINT 1:0

Z(l O FUR b T Ws 33HOATA Es£104 IS J+ AN() CUMIMIULAT I VE !
l 3 H %- J I ST UP TO J.)

D-3. (Cont'd)
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INFINITY//)

LOG MEAN—CYCLES,

I=2tNP)

LOG MEAN—CYCLES+



m 0^:4G6
^u0424

0 424
D	 3G

+x,33
U P434
V w436
UCu437
C

^

 .441

C  :451
OOU4 54

0^ ► 456
O u460
006464
t! .1464
u. 1476
005470
L ( 1472
{ 47 3

u005ti5

G )505
v 3523

0526523

0 530
531

U	 ,32
LG4y34

0 '542
€' 1'547

GC, i 551

U .,553
V(, 554
v 557
G €:560
0.t" 562
G 0566
0 :::573

57 ^
OCi%577
t03
v

1 . ) 6
 60 4

®Cobl)b
C, tr606

C -1,b  11
Gv-^612
00J614

G ,,617
- 01 ^^,24

U 737
^s 0 :.'642

21G

220

224
222

C

225

230

240

250

260

270

C

26 U

290

t

Pi41147 210, (Jt ARE A(1,J),J=IiM)
FC}12	 T	 ( ( lXtI3,F9.69)39F9.6sl3tF9.6,I3,F9.69

1	 139 F 9.6, I 3 t F9.6, 13, F 9.6, 13, F - 9.6, J 3, F 9.6) )
STR - STR-tSINTnXINT #4.
CW T I NNE
GO 222 J=1,NOL.D
I = 1NUEX(J)
XNUr•1 = NUM, (J)
DO 224 K=I,M
OFkEQ(J,K) = XNU,`1ugkEA(1,K)
CCNT I NUE
CO ► ^T Ihuc
F R EQUENCY DIST AND NORMAL DISTRIBUTION PARAMETERS
XiMIN = XJMIN-XJINT
PRIN T 225
FORMAT (1H1)
PRINT 230
FO R.'-IAT( ///51X933riCUi"1L ► LATIVE STRENGTH VISTPISUTIONS)
00 26v J=19M
XJ = J
Pkl(IT 24e, J+. CYC(J; t XCYCLE(J)
F OP -MAT (IH094HJ = 913 ,5X913HLOG CYCLES = tF9.69
15X,3HCYCLE:S =,F1C.1)
PRINT ?.*)Cis (19AREA(I+J),I =1t«,INT)
FOR-UT (?X13 tl(I) t1X,9 ►iFREUUENCY/(IX1149FJO*69151FIO.6

I	 ,15,FlO.6,15tF10.6,I5tF10.6,I5tF'lC.6tl5,F1C'.6,I5,F.10.6))
CONT I NUE
N)fl _ K-I
00 27 *1 J =I,t•1
00 27,) I=l, V',l
IP1 = 1.1
FREQ(I,J) = AQEA(Ii'1,.)) -AREA(1tJ)
C0NT I 

Nu E.

(A = NM 

MEM-1 AND r10R MAL 0151kISUTION PARAMETERS OF HISTOGRAM
00 30C J =101
F  = G•
FIul
UI = SPIN-SINT*0.5
00 281 I=1,N
UI = UI•SJ:•T
Fl = f I•FRE:Q(I,J)
FIUI = FIUI#F_PEQ(I+J)OUI
CO',;TIN UE
SMLOG(J) = FIUI /r I

ST N EAU(J) = ALOG(S:•1LCG(J))
SM2 = 0.
SM3 = ^.
S"'4 - U•0
UI = SHIN-•SINTGG.S
DO M I=19N
U1 = U14SINT
50 = (U1-S &ILOG (J)) a (UJ-•St•iLOG (.1) )
SM2 = S''? . Sr*F i: E 4: (1 , J)
st.3	 S'•13 . FQEQ (1 , J) * (UI-5MLOv (J) ) *SQ
SM4 s S`S44 S0*SQ 0r-REO (1 , J)
CO:0INUE

SM2 = SM2/Fl

232

11,
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0643 SM3	 —	 S'13/FI

10;
St/,4	 c	 Sr^4	 F I

11 645 %$IGL(J)	 =	 SURTF(S,A2)
•000651 SI63P (J)	 =	 S M LOG (.1)	 +	 3.0 # SSIGL (J)
iJ	 1.'655 S1634(J)	 =	 St-'-LOG(J)	 -	 3.O*SSIGL(.J)	 233
({	 •60 SK3 tJ)	 St•'3/ tSSI(;t. (J) *S'S2)
0:1 v66s Sr.4 (J)	 =	 S(114/ (5^^z	 SML)

0665 30 0 C Q N T I N U E
u67u PkINT 225

ou 673 PRINT	 3:15
0 ,°x677 305 FORt• AT (///3oXi73 ►iPARAr4ETEkS OF NORIMAL STHESS DISTRIBUTIONS AT SPEC

IIFIED CYCLES	 TO FAILURE.//)
6v0677 PkINT 310
000 .103 310 FORMAT	 (,Q 3X t 2nH-3 SIGMA	 +3 SIGMA	 /3X 20HNUMBER	 LOG CYCLES

1	 6 X t6H0'CLES9 10X9 13HN •?EAN STRENGTH q ] 0x,9NSTU.	 DEV.97X95HLI141T	 9

2 7 X 934HLI11IT	 SKEisNESS	 KURTOSIS	 /3
000703 PRli4T	 320 9 • (J.CYC(J) +XCYCLE (J) 9SrILOG(J) t 	 SS1GL(J) t

I	 SIG3',(J),S1G3P(J) tSK3(J) tSK4 (J) t	 J	 =19M)
00735 320 FOWMAT	 (4X9139F16.6tF13.4t2F2O,OtF15.o9F12.0t2F12.4)
00035 PRINT 225

1 0741 PRINT 322
6745 322 F OR.4AT	 t 1 H ^ )

C---- -RUUT I,aE FOR K 0L M0GUKUV- Sr4 l HNOV GUODNESS OF FIT TEST
GGts 745 PRINvT	 325

r
c	 0151 325 FURX-Ai	 t%/41'f 152kiV--V-4 LL l E:S FOR KOLMOGOROV— SMIAWIV GOODNESS OF FIT T

LEST	 0
000751 DO 600	 I=2 9NP

0753 NDATA = NUM( l )
0755

1
kEAG	 6-)5 t (CYTCFR(19J) tJ=I tNUATA)

0	 6 770 605 F0 ►?r•iAT • (BF 10 • o'
F	 n	 70 600 Cti1*•:T I I',UE

C 073 DO	 SD :,.	 J=101

0774 ANU;- (I , )	 _	 0.0	 .
0vC775 TOTAL = 0.0

DU 665 I=20P
t^

0715
G777 NUATA	 =	 NUN, (1  )

`	 001041 AN I	 =	 _^. (	 '
(	 1002 UO 660	 K =	 19NDATA
c N 1003 IF	 (CY l 0FR(It K ).LE.XCYCLE(J)) 	 AN1	 =	 AN1	 •	 1.0
u N` 1012 660 CONT 1r+UE
OU1o15 ANN?.(I)	 =	 AN1
C1 ,1017 AN-0:1(1)	 =	 ANUr< (I — 1)	 •	 AN)
0.1021 TOTAL	 =	 TOTAL	 +	 Aril
uvlo22 665 CONTINUE
v - 1 v24 DO	 4 io	 1. 2 s t;P
11	 IU26 Z	 =tASTP(I)	 - S-mLUG(J)) /SSIGL(J)
U01032 IF M	 330,35013 .̀)G
O( I IU33 333 Z = -Z
0	 IU34 IF ( •L-4.5)	 3400601360
U	 1037 340 Ci%LL	 rNORMIAL	 tZ,PR03)

e	 001041 PROBA = 0.5-PROB*0.5
v	 _I 044 GO	 To	 37;,

1 09`1044 350 1F(2-4.5)3559365,305
0011,47 355 CALL NORMAL	 (Z9PRU,j)z	
G	 1051 PROBA = PR00*0.5+0.5

1 0	 — 54 GO	 TO 37-^
0	 _ ,,54 360 PRO ;14	 =	 0,0

0

055- GO TO 371

D-3.(Cont'd)



\ C1 ;5b 365 PkOB A	 0

0 10 b u 370 GVkEQ(Iij)=PR06A	 234

IF	 GO TO 37501 7 364
0	 65 DARER	 AN';.I!i(l)/TOI,4L

:0'	 67 GO 
TO 

380
375 Dit RE A	 =	 9.0

Ur
,^67

:-070 380 L)"AX(IsJ)	 =	 Af3S(04I4EA-GFR\EQ(Isj))
(0. ,10! 480 CONTINUE

tivIlo3 -PRINT	 490 9	XCYCLE(J)i	 T0TALq(AN2(I)vDMA A' (19 J) 9	 =2, NP)

}

2 125 490 FORM A T	 (6X9F8,0i21ri CYCLES	 TOTAL	 N =qFj.0/,(9(F9.0sF6.3)))
U .125 PRINT	 3C'.*2
001131 500 CONTINUE

^Vf'134 60 TO 5
:0	 -134 510 STOP
(I LI I 136 END

^ ^

/ ^

I

( 
^

/ ^

( ^

i

|^	 O-3. (on t d)	 .	 \	 \

}	
^ .. 	 ^  	 .	 \



SU^:ElUUT I hE NUR ;AL (1 e PR03 )

C	 PP03 = TtiE ArtEA UNDER N'0R;iAL UISTRI:3UTION OFTWEEN
	

235

C	 PLUS ' AND ^ ^I NUS Z ST ANIDARD DEVIATIONS
IF' (Z-1 .2) lU^'0^ 1000: iC1C

1000 ZSQ = Z*Z
PR03 = C.7978P455*Z^(0999999774 — ZSO* (0.16659433

1

	

	 - ZSQ*0.0&23974867)) )
GO TO 1 ;70

1410 IF(Z-2.9) 1021,106091060
1 020 zsQ _ 2aZ

PkO8 - 1.0
PT'R;i = 1 . G

FACT = l.0

ODUI N = 3.0
1030 PTER I = -PTER^**ZSO/ (2.0*FACT )

TER^•1 = PTERki/ODOIN
PkO6 = PRO:i + TER.m

Ir ( A3S(TER M ) - 0.00007) 10009104091040
1040 FACT = FACT + 190

OUDIN = ODDIN + 2.0
GO TO P3G

1050 PK03 = ),79768455*Z*PROt3
GO TO 1.^7 i-

1060 REC = 1./(Z*Z)
PROB = 1.-0.79785453* EXP (—Z_*Z/2, 0) /ZK

1	 (I. — PEC 4 (1. - REC*(3. - REC*(15.—REC*1050)))
1070 CUNT 1NUF

RE f URN

EIN")

D-3. (Cont'd)



APPENDIX E

Listing of Short PDP-8 Programs

E-1. Program BAR I

E-2. Program BAR II

E-3. Program ROTO

E-4. Program for Least Squares Estimator for Chapter IV Data

E-S. Program for Least Square Estimator for Chapter V Data

E-6. Program for Mean Stress Per von Mises-Hencky Ellipse.

E-7. Program for Slope of Best Fit Equation

236

r

u



01.10 A "SH I I S t "SA" SA; S Sri=FSQ T (3) * S

02.10 S C=FSQT(SAA2+SI-1+2); T %8.1, 11C" C, 11SM" SM,
02.20 GT1.1

where: SH = shear stress

SA = alternating stress'

S14 = mean stress

C = resultant stress vector
magnitude Sr

E-1. Listing of PDP- 8 Program BAR I.

237
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e
r	 238

*E A
tV A
C-8Y. HODV 11-219
*01.10 A "SH" S, "SA" SA; S S!1=2*S
*02.10 S C=PSQT(SA^2+SL1^-2); T %8.1, "C" C, ' ISM" Mi, 1

*02.20 GT1.1
*GO

where: SH = shear stress

SA = alternating .stress

SM = mean stress

C = resultant stress vector
magnitude Sr	.

E-2.. Listing of PDP-8 Program Bar H.

is
t
t
i

t
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r
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Ir
i 239

*C-8K KODV 11-2,19

*01.10 a "R" R, "S" S; S SR=S/FSxN FATN(R)

*02.10 T %8.2 "ROTATED THREE SIGM1" SR, !
*02.20 GT 1.10

*
k

Where R = Stress Ratio

S = Vertical Strength Di strihution's
Upper and Lower Three Sigma
LiYnits .

SR = Transrarmed Strength Distri-
bution's Upper. and Looter Three
Sirrma Limits.

E-3. Listing of PDP-8 Prgram ROTO.



i

C-F c,t L,1969

0.10 A "A" At "B" B I ID" D1 '
I
F," E 1 11 14 11 N

0.20 S XA=l/E
01 -11 21 S XB=13M
01.23 S YA=D T 2-A + 2
01.24 S YB=D ? 2-B t 2

02.10 S E=XA t 2*YA+XB 2*YB
02.11 S J=MA T 4+XB 1 4
02.13 S K=E/J

0.10 S SU=FSQT(D f 2/K); T "SU" SU1

^iables

yl

Y2

X1

X2

E-rl

^	 Il = 'x2

.	 E-4.	 PDP-8 Program foror Least Squares Estimator of the.
Ultimate Strength for Fatigue Data of Chapter IV.

F	

•

Definition of Vav

A = Sal

B = Sa2

D = Sn

ya = S,nl

yb Szi2

240
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e

t'
t
F:
f

*C-FOCAL, ].969

*01.10 a "Au A, nIl" B, 11C" C', 	 D
*01.20 S XA=A/3.5
*01.21 S XB=B/.825
*01.22 S XC=C/.44
*01.23 S YA=D f 2-A + 2
*01.24 S IB=D f 2-B t 2
*01.25 S YC=D r 2-C t 2

*02.10 S E=XA 12--"YA+XB t 2* M-XC f 2*YC
*02.11 S J=XA 4+;{B t 4+XC 1 4
*02.13 S K=w/J
*
*03.10 S SU=FSQT(D t 2/K); T "SU" SU

Definition of Variables

A=Sal
=y1

B = Sa2 = Y2

C=Sa3=Y3

xa = Sml = X 
xB = Sr.►2 = x2

xC=Sid3=x3

E-5. PDP-8 Program for Least Squares Estimator of
the Ultimate Strength for Fatigue Data (LSEFD)
of 'Chapter V.
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li

E

*C-81%, MODV 11-2119

*01.10 a "SA" S t . ! ISF," 11; S SI•1-2553OO*F'3QT(I- <SAI)
*01.20 T ,;8.2 "MEAN STRESS" SM. I.
*01.30 GT 1.10
** GO

E- 6 •	 Listing of PDP-8 Program lfhicb Calculated I-lean
Stress Specified by the Von Rises-Ilencky Ellipse

I
I

I
I
I'
F!,
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243
r

C-8K MOON 11-219

01.05 A "NO. OF DATA POINTS " 1 111D, !. , !
02.10 T " X - XCIS	 Y _. AXIS""!
02.20 S XS=O
02.21 S XO=0	 .
02.22 S YS=O
02,23 S YQ=O
02.24 S XY=O
02.40 FOR I=1 1 1,1x; DO 3.0
02.49 S D= (IID*XQ-XS*:(S )
02.50 S AO=(YS*XO:XS*XY /D
02.60 S A1=(TID%^XY-XS*YS^/D
02.70 SDPI='r'aQ't' (D*(I£D%^YQ-XS'^YS))
02.75 S R= ( ND*XY-XS*YS)/D J
02.50 T . i0.05 !,	 "SLOPE " ,Al,"	 Y I11-MERCEPT ",AO, ! , !
02.90 T `/,6.04 "CORRELATION COEFFICIENT ",R, !
02.95 Q

03.10 A "	 ",X(:0111	 ",Y(I)1!
03.15 S XS= S+X(l)
03.18 S XQ=XQ.'-X(I)*X(I)
03.20 S YS=S+Y(I)
03.24 S YQ=Ytl+Y(I)*Y(I)
03.26 S XX=XY•+-X(I)*Y(I)
*GO

E-7. Listing of Pt)?-8 Procgrmm which Calculates
Sloe of Best Fit Equation C10.5).

r
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