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ABSTRACT

The methodlogy of developing finite life distributional

[

Goodman diagrams and surfaces is presented in this paper. The
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Goodnman surface and diagram presents allowable combinations of

alternating stress and mean stress to the design engineer.

The combined stress condition presented in these surfaces and
diagrams is that of an alternating bending stress and a constant
shear stress. jhe finite life Goodman diagrans and surfaces
are created from strength distributions developed at various

ratios of alternating to mean stress at particular cycie life

~~
9

values.
The conclusions drawn in this report indicate that the

Von-Mises Hencky ellipse, for cycle life values above 104

—}

cycles, is an adequate model of the finite life Goodman dia-

gram. In addition, suggestions are made which reduce the

i

number of experimental data points required in a fatigue data

[ acquisition program.

(. o




v TN 1 AR A T A
o S wvee S - S ~——— B BN R

7w S |

ABSTRACT

CHAPTER
1

I1

111

1V

TABLE OF CONTENTS

INTRODUCTION . , . « . .+ « . « . .

NASA METHOD OF GENERATING POLYGONS
AND DISTRIBUTIONS . . . . . . . . . .

2.1 TREOTY + v v v e e e e e

2.2 Computer Method . . . . . . . . .

2,3 Results . . . ¢« ¢ ¢ v & o o &

2.4 Discussion as to Validity .

GENERATION OF STRENGTH DISTRIBUTIONS .

3 . 1 Theory . . . . . . . . . L] . . . . . . . . - .
3.2 Conputer Method . . . . . e e e e e e e e e e
3.3 Results . . . . . . . « .. e e e e e e e

3.4 Discussion as to Validity . . . . . .

GENERATION OF FINITE LIFE GOODMAN
DIAGRAMS (METHOD I) . . . + v & « . .

4.1 Theory . . . . . cee e e e
4.2 Computer Method . . . . . . . .
4,3 Results . . . . . . ¢« « .« .

4.4 Discussion as to Validity . . .

iii

Page

ii

10
10
17
19
20
21
21
26
28
41




) 1

[ |

e

PRS- | em——

RS

T [—

I

TABLE OF CONTENTS (Continued).

CHAPTER

VI

VII

GENERATION OF FINITE LIFE GOODMAN

DIAGRAM (METHOD II) . . . . . . v o v o . .

5.1 Theory . . . . . ¢« .« .« . . o s s e s 4 e e s
$§.2 Results . . . . . . ... .. R
5.3 Discussion as to Validity . . . . . . . . ..

EVALUATION OF GENERATION OF FINITE
LIFE GOODMAN DIAGRAMS . . . . . . . . . . . . ..

6.1 Evaluation of Previous Techniques
in Developing Goodman Diagrams
and Surfaces . . . . . . . 4 v e e 0w .. .

6.2 Recommendations . . . . . « . . v 4 e 4 4 . W

THE STATIC STRENGTH DISTRIBUTION TO BE
PLACED ON THE MEAN STRESS AXIS OF
FINITE LIFE GOODMAN DIAGRAMS . . . . . . . . . .

7.1 Introduction to Static Strength
Distribution . . . . . . . . . C e e e s e

7.2 Calculation of Yield, Ultimate and
Breaking Strengths . . . . . e e e e e e

7.3 Theoretical Strength Distributions of
the Strength Parameters . . . . . . . . ..

7.4 Mean Stress Axis Strength Parameter . . . .

7.5 Least Squares Estimate of the
Ultimate Tensile Strength . . . . . o .

Page

. 84
. 84

89
89

98

98
100

. 101

101

102

105

109

110




. —

et

o—

h m———
[

r
 Iy—1 Lo

—— |

TABLE OF CONTENTS (Contirued).
Page
CHAPTER

VIII EMPIRICAL MATH MODELING OF FINITE
LIFE GOODMAN DIAGRAM . . . . . . . . . . ... . 121

8.1 Mathematical Models of the
Goodman Diagram . . . . .. . . . . .. .. 121

8.2 Modified Goodman Line . . . . ... . + . . . 121
8.3 Gerber Parabola . . . . . . . ¢« ¢+ v o« « « & 123
8.4 von Mises-Hencky Ellipse . . . . . . . . . 125

8.5 Sodering Line . . . . . . . . . . . .. S . 125

8.6 Sil’les Line ¢ e e “« o @ o & o e o o o « s e 0 126 "
8.7 Langer Modification to the ;
Modified Goodman Line . . . . . . . « . . . . 127 :
IX THEORETICAL STRENGTH THEORIES . . . . . . . . . . 128

9.1 Introduction to Strength Theories . ... . . 128

9.2 Engery of Distortion (von Mises-
Hencky) Theory . . . . « ¢« « . « & ¢« « « . . 129

9.3 Maximum Shear Stress Theory . . . . . . . . . 134
9.4 Comparison of the Maximum Shear

Stress and Engery of Distortion

Theories s ¢ & s 8 e ¢+ e e e s s @ « * e e e n134

9.5 Modified Theories of Fatigue
Failure Under Combined Stresses c e e e e 139

9.5.1 Correction Factors . . .« « « « « + & 140

9.5.2 Comparison to Faﬁigue Data . . . . . . 143

X RECOMMENDED EMPIRICAL MATHEMATICAL MODELS
OF THE FINITE LIFE GOODMAN DIAGRAMS . . . . . . . 150 !

oA o oo



R

vi

TABLE OF CONTENTS (Continued)

Page
% CHAPTER
XI TWO RECOMMENDED METHODS OF REDUCING THE
QUANTITY OF EXPERIMENTAL DATA NEED FOR
A FATIGUE DATA ACQUISTION PROGRAM . . . . . . . 157
XII OVERALL CONCLUSIONS . ., . . . ¢« ¢« «-v v v « « . 163
XiII OVERALL RECOMMENDATIONS . . . . . « + ¢« ¢ &« + & 165
APPENDIX A FORTRAN Computer Program To Reduce Cycles
' To Failure Data . . . . « « « & « & « 0o 168
E ~ .
§ APPENDIX B FORTRAN Computer Program To Determine
Time Dependent Strength Distribution
: Parameters . . . . « « v v ¢ v v 0w e e ... 177

APPENDIX C  FORTRAN Computer Program -CYTOFR To
Determine Cycles To Failure Distribution . . . 188

- APPENDIX D  FORTRAN Computer Program STRENG . . . . . . . . 213

APPENDIX E  PFP-8 Program Listings . . . . . . . . . . . . 236
LIST OF REFERENCES . . v v v 4 o o ¢ o o o o o o o o o o+ . 244

DISTRIBUTION LIST . . . . . 2 1)




LIST OF TABLES

TABLE Page

3.3.1 Cycles To Failure Lognormal Distribution
Parameters and Max D Values . . . . . . . . . . . 33

3.3.2 Strength Distribution Parameters of the Normal ]
Distribution at Three Cycle Life Values fer a
Stress Raticof 3.5 . . . . . . . .. .. ... 34

3.3.3 Strength Distribution Parameters of the
Normal Distribution at Three Cycle Life
Values for A Stress Ratioof 0.44 . . . . . . .. 36

3.3.4 Parameters of Normal Strength Distribution
At Specific Stress Ratio$ and Cycles of Life . . . 37

4.1.1 Screening of Cycles to Failuré Data to —
Ascertain Appropriate Cycle Life Ranges . . ... . 48

4.1.2 Mean and Standard Deviation of Stress Ratio . . . 54

‘ 4.3.1 Cycles to Failure Data, Bending and Shear

{ Stress Data and the Resultant Stress Vector
Magnitudes S_(I) and S_(II) for the von
Mises-Henckyrand Maximim Shear Stress Theory . . . 58

{ 4.3.2 Mean, Standard Deviation and + 3 Sigma Limits
of Resultant Stress Vector for the von Mises-
Hencky Theory . . . . . . . . . . e e e e e e .. 67

4.3.3 Mean, Standard Deviation and + 3 Sigma Limits
of Resultant Stress Vector for the Maximum
Shear Stress Theory . . . . . . . . e s e s . . . 80

4.3.4 Ultimate Strength Distribution, Mean, Standard
: Deviation and +_ 3 Sigma Limits for the Mean
Stress Axis for Ungrooved Specimens . . . . . . . 81

4.,3.5 Kolmogorov-Smirnov /D/ ax Values for Stress %
Vectors I and IT . . ™% . . . ... .. ... 82 i

5.3.1 Alternating Stress Level of the Mean and ¢ -
Standard Deviation, and + 3 Sigma Limits of N
Strength Distributions Placed on Stress Ratio
Axis of the Finite Life Goodman Diagram . . . . . 96

5§.3.2 Comparison of Grooved and Ungrouoved Specimen's
Ultimate Strength Distribution . . . . . .. . . 97




LIST OF TABLES (Continued).

TABLE Page

7.3.1 Kolmogorov-Smirnov and Chi-Squared Test
Results for Grooved and Ungrooved Test
SpeCimens e e ¢ ® o o o 8 ® s & & 8 "6 & s e ¢ o 107

7.3.2 Mean Values and Standard Deviations of
Tensile Strength Distributions . . . . . .- . .. 108

7.5.1 Chapter IV Goodman Diagram Data Used for a
Least Squares Estimate of the Ultimate
Strength . . . . . . . . . ¢ v oo . 118

7.5.2 Chapter V Goodman Diagram Data Used for a
Least Squares Estimate of the Ultimate
Strength . . . . . . . ... .00, . 118

9.5.1 Values of the Ratio b/t Predicted by each v
Strength Theory . . . . . +« v v ¢« &« « v + o« « o 149

10.1 Alternating and Mean Stress Values
Predicted by the von Mises-Hencky Ellipse . . . . 152

10.2 Values of the Exponent a and Correlation
’ Coefficient . . . . L . . - . L] L] L) - - Ll . . - . 154




v

lnwn-mmv,

(e P PR W

r—— V————
—— Meeprmeng

FIGURE

1.1

1.2

1.3

1.4

2.1.1

2.1.2

2.1.3

2.1.4

3.1.1

3.1.2

3.1.3

3.3.1

"3.3.2

3.3.3

3.3.4

LIST OF ILLUSTRATIONS

Conventional Alternating Stress Cycles to
Failure Diagram . . . + « « ¢« ¢« « v ¢ o s ¢« o o v . 2

Statistical S-N Diagram . . . . . . + + . .« ¢« o . 3

An Example of a Cycle to Failure Histogram
and Distribution . . . . . ¢ . . o000 00 5

Goodman Surface Formed by Strength
Distributions . . . . . . « . v 4 v 4 e e e e ... 8

Theoretical Cycles to Failure Distributions . . . . 12

Cumulative Failure Technique for Strength
Distribution Determination . . . . .. . . . . . . . 13

Strengti: Histogram . . . « . « ¢« v v ¢« v ¢ o . . . . 13

Strength Distribution Versus Cycles to
Failure . . . . s o . . e . L] . . . . . . . . . . . ]6

Grooved Fatigue Test Specimen of 4340
SAE Steel . . . . . . . . (] . . . . . . . - . . - . 22 e

Ungrooved Tensile Test Specimen of 4340
SAE Steel . . . . . . .. .. ... B X

Histogram Obtained from Cycles to Failure’
Distributions . . . . . . . . . . . .. e e e s 0. 25

Cycles to Failure Distributicns and
Endurance Strength Distribution for Stress
Ratio of @ . . . & v v v 4 v v 4t s e v e e s e .. 29

Cycles to Failure Distribution and Endurance
Strength Distribution for Stress Ratio of 3.5 . . . 30

Cycles to Failure Distribution and Endurance
Strength Distribution for Strecss Ratio of 0.825 . . 31

Cycles to Failure Distribution and Endurance
Strength Distribution for Stress Ratio of 0.44 , , 32



[REe———i Mo

LIST OF ILLUSTRATIONS (Continued).

FIGURE

3.3.5

3.4.1

4.1.1
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

4.3.6

4.3.8

4.3.$

4.3.10

Page

Plot of Estimate Strength Distributions at

Various Cycles of Life and Estimated Cycles

to Failure Distributions at Various Stress

Levels for Stress Ratio of 3.5 . . . . . . . .« « . « 35

A Vertical Strength Distribution Placed on
the + 3 Sigma Envelope of a Statistical
S-NDiagram . . + « v v v v 4 4 v e e e ... 42

Finite Life Goodman Diagram Illustrating
the Need of Two Additional Strength Distributions . 47

Finite Life Goodman Diagram and Surfaces for
Cycle Life, 1,000-3,500 CTF, Stress Vector I . . . . 70

Finite. Life Goodman and Surface for Cycle
Life, 1,000-3,500 CTF, Stress Vector 11 . . ... . .. 71

Finite Life Goodman Diagram and Surface for
Cycle Life, 6,000-9,000 CTF, Stress'Vector I . . . . 72

Finite Life Goodman Diagram and Surface for
Cycle Life, 6,009-9,000 CTF, Stress Vector II . . . 73

Finite Lire Goodman Diagram and Surface for
Cycle Life, 20,000-40,000 CTF, Stress Vector I . . . 74

Finite Life Goodman Diagram and Surface for
Cycle Life 20,000-40,000 CTF, Stress Vector IT . . . 75

Finite Life Goodian Diagram and Surface for
Cycle Life, 60,000-90,000 CTF, Stress Vector I . . . 76

Finite Life Goodman Diagram and Surface for
Cycle Life, 60,000-90,000 CTF, Stress Vector II . . 77

Finite Life Goodman Diagram and Surface
for Cycle Life, 90,000-200,000 CTF, Stress .
Vector I .. ... .. .. e e e e s .« . . 78

Finite Life Goodman Diagram and Surface for
Cycle Life. 90,000-200,000 CTF, Stress Vector II . . 79

2%
H




LIST OF ILLUSTRATIONS (Continued).

FIGURE | Page
|
4.4.1 Infinite Life Goodman Diagram 10° Cycles . . . . . . 83 |
5.1.1 Comparison of Vertical Strength Distribution |

Transformed to the Finite Life Goodman Diagram . . . 85

5.1.2 Transformation of Vertical Strength Distribution's 2 f
. Upper and Lower Three Sigma Limits to the Stress :
Ratio Axis . . . . + ¢ . v ¢ v v v v v v v v o ... 87

5.3.1 Finite Life Goodman Diagram and Surface
N=3,500Cycles . . . ¢ v v ¢ v e v oo o o9
5.3.2 Finite Life Goodman Diagram and Surface

N=9,000Cycles . . . « « v v v e ¢« o o s o« o« o+ .92

5.3.3 Finite Life Goodman Diagram and Surface
N=40,000Cycles . . « ¢« ¢« « ¢ o o ¢« o o o o0 o + 93 -
5.3.4 Finite Life Goodman Diagram and Surface ;
N=900,000Cycles . . . « ¢« v v ¢ ¢ e« o« o o « o « .+ 94 )
5.3.5 Finite Life Goodman Diagram and Surface : "

N =200,000 CycleS . . « + « = « ¢ « v o o « o + « + 95 ] .o

7.2.1 Stress Strain Diagrams . . . . . . . . . .. .. . .103
7.5.1 Goodman Diagram Illustrating Mean of Strength
Distributions Used and Least Squares Estimate i
of Ultimate Strength . . . . . . . . S § B !
8.1 Diagram Picturing the Six Mathematical Models
of the Goodman Diagram . . . . . . . . . . . . . . .122
9.2.1 Cubic Strength Elements . . P K1
9.3.1 Mohr's Circle Showing Relation of Maximum

Shearing Stress to Tensile Yield Strength . . . . . 135



LIST OF ILLUSTRATIONS (Continued).

FIGURE

9.4.1

9.5.1

9.5.2

9.5.3.

9.5.4

Page

Presentation of Engery of Distortion and

Maximum Shear Stress Theories in the Plane
Perpendlcular to the Unit Vector (1/ 3, 1/

3,1/ 3) . e e e e s e e e e e . « e . . o« 136

Comparison of Modified Stress Theories with
Fatigue Data Generated under Combined Bending
and Torsional Stress . . . v v v v v ¢ ¢ o o .« . . 144

Comparison of the Modified Principle Stress
and Modified Principle Strain Theories to
Fatigue Data of Iron and Iron Alloys . . . . . . . . 145

Comparison of Design Expression to Fatigue

Data Generated Under Bending and Torsional

Stress for Notched Steels Having a b/t Ratio

Greater than 1.3 . . . . . . . .+ . . . . ... 146

Position of Modified Strength Theories as
Specified by b/t Ratio . . . . . . . + .+ ¢ « . . . . 147




e BT —

CHAPTER I

INTRODUCTION

Presently in the United States and abroad fatigue data,
to a lurge extent, is presented in the form of the conventional
S-N diagram. The S-N diagram's purpose is to graphically pre-
sent strength data as a function of cycle life. This is done
by testing a few specimens to fgilure at incremented stress
levels. The data is plotted on a graph of log stress versus.
log cycles; (see Figure l1l.1). This method of presenting fatigue
data does not t;ke into account one of the fundamental and most
important fatigue aspects: the variability of the fatigue
mechanism; i.e., even high quality test specimens, subjected
to tigﬁtly controlled test conditions will rarely, if ever,
fail at precisely the some cycle of life at a given stress

level.

Recently the American Society for Testing and Materials
(ASTM) has suggested that a statistically significant number
of specimens at each stress level be tested in order that a
failure distribution be developed for each stress level (1,
p. 9). The cycle&-to-failure.distributions which are develop=d
can be used to construct a statistical S-N diagrom. This
particular diagram, as pictured in Figure 1.2, has a mean line
as well as plus and minus three'sigmqllines. |

1

e



Brstrmstiod

-

it

-

® LejAlternating Stress (psi.)

b

e - o - . - B e e > W ®

5 % ) L

»®
X
*
®

Log Cycles—to-Failure

Fig. 1.1 Conventional Alternating Stress Cycles To Failure Diagram.




L

arteme—{

[R———

srerammi el

¥ xmmwwl
.

benieompeosd

Log Alternating Stress (psi.)

Fig.

Cycles To Failure
r Distribution

Strength Distribution

i /~+Three Sigre

Line

Mean
Line

i
R -Three Signe

Line

Log Cycles
1.2 Statistical S-N Diagram

o




i,

It is possible through such statistical techniques as
the use of probability plotting paper, the Chi-Squcred and
Kolmogorov-Smirnoff goodness of fit tests, and the computation
of the four statisti:al moments to determine the best failure
distribution probability density function. Tﬁe probability
density functions usually consicdered in such an analysis
are the normal, lognormal, and Weibull distributions. The
Weibull, because it is a three parameter distribution can take
on many different shapes, from the exponential to the lognormal,
by varying the three parameters. The Weibull probability den-
sity function, because of this flexibility is.the nost flexible
of the three distributions nentioned;

The coﬁcept of failure distributions and strenéth distri-
butions should be discussed briefly in order to avoid confusion
in the later sections of this report. A failure distribution
is derived directly from cycle to failure data. At a given
stress level specimens will fail at purticulur values of cycle
life. Even under the tightest controlled test conditions there
will be voriability.in the cycle life of the individual test
specimens. The failure distributions represent this variability
in the test specimen's cycle to failure data. It is possible
to form c'histogrgm of the test specimen's cycle to failure data
from which a failure distribution can be determined which ade-
quately described the data. An example of such a histogram

and distribution is given in Figure 1.3. Specifying the type
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Fig. 1.3 An example of a Cycle to Failure Histogram and Distribution.
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of distribution, normal, lognormal or Weibull, and the distri-
butica parameters, uniquely describes the cycles-to-failure
data.

A strength distribution is similar to a failure distribu-
tion in that it is described by a distributional type and the
corresponding distributionallparometers._ When a specimen fails
it mecans that the stress has exceeded the value of the strength
of the specimen. Cycles~to-failure dgtu'feveals the percentage
of specinens which have a strength less than the applied stress.
It is possible to transform the cycles-to-failure distributions
to strength distributions. A strength distribution describes
the variability‘of.the strength of a specinen at a specific
value of cycle life and may be derived from a cyéles.to failure
distribution.

The discussion of transforming cycles-to-failure distribu-
tions to strengtﬁ distrxibutions should be preceded by a discus-
sion of some of the basic assumptions and restrictions which
govern the generation of meaningful failure distribution dava.
Of primary concern is that all test specimens be uniform in

geometry and metallurgical properties. This is important since

" subsequent calculations of the strength distributions will as-

sune that specimens tested at various stress levels came fron
a homogeneous population. In addition-the number of test
specinens should be dependent upon the variability of the data
generated. The statistical signifiéance of the desired data

is dependent upon the number of test specimens which are run,
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the more data points generated the more positive th2 experi-
menter can be of his theoretical distribution. It has been
found that at lower stress levels the variability of the
data increases which indicates that an irncrease in test
specimens is warranted at these loger stress.levels.

The strength distribution ma be oriented along the stress
ratio axis of a éi:;ributional Goodman diagram. The ordinate
axis of such a diagram presents values of alternating stress
while the abscissa presents mean stress values. The strength
distributions which are placed along axes whexre the ratio of
nean stress to alternating streés is d constant form distribu-
tional surfaces. These surfaces are.formed when the strength

distributions are connected by a mean line and plus and minus

three signma limit lines. (see Figure 1,4). The Goodnan surfaces

are of vast importance in reliqﬁility engineering where the
interference of a stress distribution with the corresponding
strength distribution is uscd to calculate the designed-in
reliobility of a mechaﬁical part. |

The objective of this report'is to clearly present the
methodology of generating distributional Goodman diagrams.
The accomplishment of this obfective requires that the follow-
ing subject areas be investigated: Chapters II and III explain
methods ¢f converting cyclés to failure data to strength dis-
tributions} Chapters IV and V develop nethods of generating
finite life Goodman diagrams and surfuces; ChaptexiVII directs

it's attention to resolving the qusstion of static strength
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distributions to be used on the finite life Goodman diagram. In
Chapter VIII empirical mathematical models of the Goodman diagram
are discussed. Chapter IX explains the theoret%cal strength
theories associated with the combined stress condition of alter-
nating bending stress and mean shear stress. Chapter X recom-
ménds an empirical mathematical model of the Goodmen diagram and
an associated theoretical strength theory. Chapter XII suggests
two methods of reducing the amount of experimental data needed
to generate finite life Goodman diagrams as well as methods of
obtaining cycles to failure distributions from these Goodman
diagrams with a minimum amount of actual fatigue testing.

The discussion of these subject areas reqﬁires that actual
fatigue data be used in support of this effort. This investigator
was extremely fortunate to have access to the complex fatigue
data generated under National Aeronautical and Space Administration
Grant No. 03-002-044 at The University of Arizona under the
direction of Dr. Dimitri B, Kececiglu. The Combined stress con-
dition under which this data was generated was that of an alternating
bending stress and a constant, mean shear stress. Although the
discussions in this report often apply themselves to this data, the
concepts presented are applicable to the area of comhined bending
and ‘shear stresses and in general to the broader area of any com-

bined stresses in fatigue.
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CHAPTER 1II

NASA METHOD OF GENERATING POLYGONS AND DISTRIBUTIONS

2.1 Theory

Mr. Richard E. Smith, Aerospace and Mcchanical Engineefing
Department, The University of Arizonu, in his master's report
of August 1965, used data from Dr. H. T. Corten, Department
of Theoretical ond Applied Mechanics, University of Illinois,
to present a method of transforming theoretical cycle to
fajilure distribﬁtiéﬁs to cumulative strength polygons. The
follcowing is a summary of the methodology of that effort
(2, p. III)..

The theoretica®! cycle to failure distribution is first
deternined. Because goodness of fit tests allow only for the
rejection of a distribution, it is possible that more than one
of the three major fatigue probability density functions, normal,
lognormcl, and Weibull, will be accepted. It then becomes nzc-

essary for the investigator to choose which one fits the data

‘best, at all of the various stress levels. Once this has been

determined, the failure data is uniquely described by the
theoretical failure distribution probability density function
rather than the failure histogram of the sample data. This
probdbility density function is symbolized by f(x). At each

10
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of the j étress levels pictured in Figure 2.1.1, there is a
theorctical normal, lognormal, or Weibull distribution which
represents the tailure data.
"The cunulative failure probability, up to the x'th cycle,

for the j stress level is given by

x .
F (x) = jf(x) ax (2.1.1)
3 0

Of intereést to the designer is the strength distribution for a

specified cycle life. Once this cycle life is specified a

series of cumulative failure disfributions can be calculated :
for each stress level. In ¢ssence, the cclculutioq'of Pj(x)

is equal to calculating the area bound by the theoretical

failure probability density function and the cycle line N

(see Figure 2.1.2). NKote the cumulutive area in percent for N
each failure distribution (o the right of the graph. Here it
is important that the failure distributions are known for the
full strength range in order that a cumulative failure probabi-

lity.of zero to one hundred percent is obtained (2, p. 23).

The physical significance of the cumulative failure distrie-
bution is the percent of specimens in which the stress has ex.-
ceeded the strength. The percentage of specimens at a given
stress and cycle life with.u strength equal to or less than the
stress is nos a knom quantity. A plot, ac shom in Pigure
2.1.3 can then be mads of the cumulative failures in percent

versus stress level, and is known as the cumulative strength
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Cycles To Failure Distribution at j

Stress Levels

j=2

Alternating Stress

Log Cycles

Fig. 2.1.1 Theoretical Cycles to Failure Distribuiions
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Fig. 2.1.3 - Strength Histogram (2, p. 25).
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histogramn. Froa this cunulative sirength histogram it is possible
to calculate the strength frequency histogram. The strength

frequency histogran for the i'th cycle life is given by

£,() = (Fy, ) ()-F ()

where Pj and F_+ are given by Equation 2.1.1 and where there

g+l

are M different stress levels to be considexed. Since the
above calculation for the strength frequency histogwam is based
upon inferences drawn from several stress levels it is impera-
tive tﬁat the specimens used in all stress levels be from the
sane statisticél population and that uniform test conditions
are maintained from stress level to stress level. |

Upon the determination of the strength frequency histogran,
fi(s), the statistical operation for goodness of fit, in this
case the Chi-Squared test, can he conductéd to insure that a
theoretical distribution can be fitted to the histogram. For
specific cycle of life values a theoretical strength distribu-
tion is specified by one of the three thecreticdl distriﬁgtions,

specifically either the normal, lognormal or Weilkull distribu-

tion. It is of major importance to note that this method is

capable of determining the strength distribution in either the fatigue

life or infinite 1life portion.of the S-N curve (refer to Figure 2.1.1).
This makes it unnecessary to conduct a Probit analysis
or staircase test to deternine the strength distribution (2,

p. 31).

et e e
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Beyond the endurance limit, area to the right of the knee
where the S-N curve is horizontal, the failure distributions are
independent of time, previously expressed in cycles. However,
at some stress levels it will be impossible to achieve a cumu-
lative failures of one hundred percent because th¢ test will
be terminated at a pre-deterﬁined time before the specimen has
failed. Fortunately the cumulative failure distribution is
known up until the test termination which allows one to calcu-
late the strength distribution in an identical manner as
previously discussed (2, p. 31).

The result of the strength distribution calculations allows

‘the construction of a statistical S-N diagram, as illustrated

in Figure 2.1.4.

An adequate range of stress levels is necessary so that
a comélete failure histogram from zero to one hundred pezcent
can be developed. Within this range a sufficient number of
failure distributions must be known at different stress levels
so that there will be enough class intervals, governed by
Sturges' rule, in the strength histogram. Time and economic
considerations linit the number of stress levels, and conse-
quently the numbzr of failure distributions generated to from
five to eight such levels and distributions. The use of this
limited number of distributions would not give enough class
intervals for an accurate strength distribution calculation.
It is necessary to develop a digital computer progfum vhich

will interpolate many stress-to-failure distributions from the
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Fig. 2.1.4 - Strength Distribution Versus Cycles To Failure
(2, p. 33). '
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linited number availaeble frowm experimental data (2, p. 27).

It ié possible to have this program acconplish these intexrpola-

tions and perfornm the methodology discussed for the transforma-

tion of cycles to failure distributions to strength distribu-

tiors az well as accomplish all required statistical operations.

2.2 Computer Method

Two computer programs were developed in order that the
strength distributions could be CQIcﬁlatéd. The first reduces
the cycles to failure data to failure distributions at ecach
stress level. The second compu{¢r prégram transforms tha failure
distributions to strength distributi;ns.

Becavse of the large amount of fatigue data generated, a
digital coemputer program, in Fortran language, was used to
reduce the failure data at various stress levels to failure
distributions. PFailure data in terms of stress level and cycle
life is read into the computer. The coﬁputer is capable of
calculating the following parameters: mean, standard dgviation,
cbeffieients of kurtosis Qnd skewness, as well as of performing
a Chi-Squared goodness of fit test. The computexr program will
use the ﬁormal distfibution.aéproximation in calculating the
expected frequency in the Chi-Squared test when the sample
data points are greaier than thirty and will use the Student-t
distribution when the sanple nuabar of data points is less than
thirty. A flow chart, variable definitions and computer listing of

the program are given in Appendix A.
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The sccond computexr program is used to deternine the

strength distributions from the failure distributions and is

also written in Fortran language. The main steps of the pro-

gram are listed below. A flow chart, cariable definitions and

computer list .of the program are given in Appendix B.

1.

For cach of the experimental stress levels read
into the computer the actual cycleé to failure
distribution parameters are developed.

The computerwill then calculate failure distribution
poraneters for interpolated stress levels at 200
increments by straight line internolation.

The computer will then calculate the cunmulative
failuxe distributions for each stress level

and a given series of log cycle life values.

Next the computer will cal culate the strength
frequency histogram for each cycle life,

The computer program then calls the coﬁputer to cal-
culate theoretical distribution parameters from the
strength frequency histograms based on a nornal or
lognorgal distribution. Thgée paraneters include
nean, standard deviction, coefficients of skewness
and kurtosis. A goodness of fit test, using the Chi-
Squared test will then be performed to determine

which of the normal of lognormal distributions fits

the data best.

18
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6. The paramcters mentioned in five are then printed out in
addition to the Chi-Squarcd values for each cycle life.
This print out allows the investigators to determine

which of the two distributions is a better fit.

2.3 Results

A complete description of Dr, Corten's testing progarm is found
in Chapter V of Richard Smith's report, together with the analysis by
Smith (2). Results of his analysis are summarized herein.

The Chi-Squared goodness of fit tests indicated that for aluminum
specimens the cycles to failure distributionsvmore closely fit a lognormal
distribution; whereas.distributions of steel specimens fit either the
notmal and lognormal distributions equally weil (2, p. 76). It was
observed that as the sample size was increased, the lognormal distribution
fit the data better than the normal.

The transformation of cycles to failure distributions to strength
distributions was accomplished by assuming the failure data to be dis-
tributed lognormally. The computer program previously described was
used to determim the strength polygons for various cycles of life. The
program output included the cumulative strength polygons, the mcan,
standard deviation, coecfficient of skewness and kurtosis, and the Chi-

Squared goodness of fit values for the strength distributions.
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Analysis of this data indicates that the noxmal distribu-
tion fit the strength data better than the lognormel distribu-
tion., Coeofficient of skeuness is generally negative indicating
a normal distribution. Coefficient of kurtosis values, which
should be 3.0 for the normal distribution, fluctuate about a
value of 3.0. In addition the Chi-Squared values indicated
that for koth type specimens the noxmal distribution represented

the data better than the lognornmul djstribution Zz, p. 85).

2.4 Discussion as to Validity

The transforgation of cycles»to-failurc distributions 1o
strength data which was proposed by Richard Smith was found
to be appropriate and based on well founded principles. John
Snith's methodology is identical in transforning cycles-to-
failvre data to strength distributions. Richard Smith opplied
the technique to Corten's data (3, p. ITD) and John Smith to

the KASA data.
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CHAPTER 111

GENERATION OF STRENGTH DISTRIBUTIONS

3.1 Theory

Smith (3) did extensive work in developing cycles to failure

and strength distributions. These distributions were generated
from fatigue data of specimens which were subjected to an alternating
bending stress and a constant, mean shear stress. Specimens were
subjected to different ratios of altefnating>to mean stress, known as
stress ratios, at specified alternating stréss levels. The specimens
were of SAL 4340 steel and were of a grooved geometry. A grooved and
ungrooved tecst specimen are shown in Figure 3.1.1 and 3.1.2. A com-
plete description of the tes. program, which was sponsored by the
National Aeronautics and Space Administration undcr Grant Number 03-
002-044 at The University of Arizona, and of the proceéures and
materials is given in NASA CR-120831 (3).

" The methodology used by John Smith in developing the strength
distribution was similar to that used by Richard E. Smith (discussed
in Chapter II of this report) (2). Cycles to failure distributions

were developed at specific alternating stress levels for thc stress

ratios of infinity, 3.5, 0.825, and 0.44. The lognormal distribution was

21
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found to best describe the cycles to failure data (3, p. 47).
The decision to accept the lognormal distribution over the
normal distribution was based on the Kolmogorov-Smirnov test
(3 p. 44).

Cycles to failure distributions for particular stress
ratios at specified stress levels were plotted on S-N diagrams
of alternating stress versus log cycles. This specified the
mean Jiae and +3c (O= standard deviation) envelope, After
this was established, it was possible to interpolate many cycles-
to-failure distributions at intermediate stress levels. This
interpolation process made it possible to calculate strength
distributions at specific cycle life values,

A review of the methodology used in the calculation of
strength distributions at specific cycle life values is in ord-
er at this time. A histogram can be located along the N v
cycle life line in such a way that the midpoints of the cells
are at the interpolated stress levels. (See Pigure 3.1.3).

The ordinate of each of the strength histogram cells is the
area bounded by the N cycle liane and the cycle to failure dis-
tributions which has been interpolated for that particular
value of alternating stress. Thus if f(N/Si) is the cycle to
failure distribution at a particular alternating stress level,

the ordinate of the strength histogram cell at that stress

level will be given by: RO

n
F(N/Si) = j £(N/S;) dn (3.1.1)
oo
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" The ordinate of each of the strength histogram cells will

be:
n

F(N/S,) = gf £(1/s;) dn | (3.1.2)

«00

The pistogram which is developed in this way is-the
cumulative strength histogran of specimeﬁs failing by N
cycles. ifVS is the strength variable along the N cycle life
line, the probﬁbility density functiog can be developed in

th

the following manner. The value of the i cell of the

strength probability density histogram is given by:

£(s,) = F(N/S,) - F(N/5;-1) ’ (3.1.3)

ihq fact that éherc are many intérpolated c&clcs to failure
distributions on the N cycle life line insures an adequate
number of class intervals in the strengith histogram. A
normal distribution is then fitted, by statistical methods, to

the strength probability density histogram (3, p. 55).

3.2 Conputer Hethod

John Smith developed two computer programs which wexe
used in the strength distribﬁtion calculations. The first of
which, knuwn as CYTOFR, calculated the -cycles to failure dis-
tribution parameters, mean and standard deviation as well as

the coefficients of skewness and kurtosis of the normal and
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lognermal distributions. It also performed the Chi-Squared and
Kolmogorov-Smirnov goodness of fit teststo determine if a normal
or lognormal distribution fits the data best. A flow chart,
variable definition and computer listing of this modified to
include a sért routine is given in Appendix C.

The program STRENG finds the normal strength distributions
from the lognormal cycles to failure distribution parameters. Smith
used this method because it has been found by earlier studies that
the normal distribution adequately describes the strength data (2)
(4). The input data of this program includes the cycles to failure
data, two extraﬁolated lognormal distributions on either side of the
experimental distributions and interpolated lognormal cycles to
failure distributions between thé actual experimental failure dis-
tributions. The program then calculates the mean, standard deviation,
and coefficients of skewness and kurtosis for the normal strength
distributions. In addition a goodness of fit test, the Kolmogorov-
Smirnov test is performed on the normal strength distributions.
A -flow chart, variable definitiions computer listing of program

STRENG given in Appendix D.

SR
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3.3 Results

The statistical S-N diagrams, which preseut the cycles to
failure distributions for stress ratios of infinity, 3.5, 0.825 and
C.44; are given in Figures 3.3.1 through 3.3.4. " The mean, standard
devistions, and three sigma limits of the lognormal cycles to

failure distributions are presented in Table 3.3.1.

John Smith presented only one S-N diagram which had the cal-
culated strength distribution for a stress ratio of 3.5 and cycle
life values of 10,000, 50,000, and 100,000 cycles. The normal
parameters of the strength distribution which was placed on this
particular S-N diagram are given in Table 3.3.2 while the S-N diagram
appears as Figure 3.3.5. The completion of the stress ration tests
of 0.44 allowed the calculation of strength distributions for this
stress level. Table 3,3.3 prcsents the parameters of the normal
strength distributions at threc cycle life values and a stress ratio

of 0.44 vhile these distributions were added to Figure 3.3.4.

A complete table of the normal strength distribution paramcters
at all stress ratios and cycle life values was inavailable and con-
sequently recovered by use of the program STRENG. The results

are presented in Table 3.3.4.
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Table 3.3.2 Strength Distribution Parameters of the Normal Distribution
at Three Cycle Life Values For A Stress Ratio of 3.5.

(3,°p.57)
Parzmeter Estimate of
Nermal Distribution
Cycles i
ine . Mean (psi) Stand?rd Dev. ' -
(psi)
10,000 106,639 3,256 -7
50,000 79,021 3,253
100,000 70,972 2,313 i




reanpul

PEREES

o«

-

-t

: . ) i L
. . v e AT

(g5 +d ‘g) §°€ JO ofawy S5ox3g J0J STOADT SSIOILG

CO0TJIUA 30 SUOTANQIIISIA 2INTTVI~03~33T04L) PY3VWTYSIT PUT 2ITT
JO SOTO4LD SNOTITA 94¥ SUOTHNQTIFSTC UIBURILS POJVWIASH JO L0Tg G'€°€ *97d .
2ANTTVI-04~S9(04AD

N\
o
!

£ 2 ,.,\o.ﬁn 961 € 2

epsdy ‘u

aiati i e Atmziitm§;£i§t11+1++ﬁ ot
m_u_mm _ T
| .
| M 1
- . - .m 0§ -
I o ,
! N mOijcw.pmMm T =
N _ - Y3guaas g (peaeur sy + B |
OO... m ] 1// /._/1 | ml.. “l . _ r”.. 00 bt
2 1 N i< | X =
O“..wc _ ll/l R /vm”d/sw /._ar\_ q. ON m...
i Y S T Y ”M
i IS N ~
i S~ SNVEZHh NG | z 5
_ /&l-»ﬁ s AN _.1 I — = 0g <
owﬂ | TR /xml L bdotonus bg-  F 5
| N ] LOAL [Fa T &
| /ﬁ\ g et ARNN ¥ 06 % o
. A %V‘ N W o
. . | ‘ A * 00T ¢
*VIJ 006° . N A “
‘VIQ S€4° ’ -
Qv Snt” |d T T e
| _ T vt 5
. AL . a
2/ ARVALE .
_ |

/

e e . e ‘ ol
)]
. \ . .
N

. * %q o9-S€
=0 °GNOD 1IIILS OHEw AVS

[R DUGEL SENDIN SUNS, JENNIVE PRpI

-
-—

s
-e

-~
—_—
-2




36

Table 3.3.3. Strength Distribution Parameters of the
Normal Distribution at Three Cycle Life
Values for a Stress Ratio of 0.44.

Parameter Estinates
Cycles . of Normal Distribution
of o
Life X Mean Standard Deviation
psi psi
10,000 103,725 3,323
50,000 77,703 3,154
1,000,000 43,686 2,394




Table 3.3.4

Parancters of Normal Strength Distribution
At Specific Stress Ratios and Cycles of Life.

R = o0

Mean Standard -3 Signa +3 Signa

Cycles Strength Daviation Linits Linits

psi psi psi - psi

1,000 164,805 1,629 159,932 169,676
3,000 139,241 2,570 131,533 146,950
3,500% 135,953 2,628 128,070 143,837
5,000 128,356 2,790 112,986 136,726
7,000 121,191 2,937 112,378 130,003
9,000% 115,926 2,907 107,205 124,647
10,000 113,844 2,801 105,441 122,246
20,000 101,523 2,772 93,206 109,840
30,000 94,972 2,559 87,296 102,648
40,000% 90,693 2,665. 82,878 98,507
50,000 87,391 2,671 79,378 95,405
60,000 84,707 2,697 76,617 92,798
70,000 82,484 2,662 74,498 90,470
80,000 80,628 2,594 72,845 - 88,412
90,000% 79,054 2,539 71,437 86,671
150,000 72,901 2,133 66,502 79,301
200, 000% 70,172 1,881 64,529 75,815
1,000,000 56,184 2,138 49,771 62,596

37

*Paraneters used in Chapter V Finite Life Goodman Diagroms.
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Table 3.3.4 Paraneters of Normal Strength Distribution
At Specific Stress Rotios and Cycles of Life.,
(Continuag).
R = 3.5
Mean Standard -3 Sigma +3 Sigma
Cycles Strength Deviation Limits Linits
psi psi psi psi
1,000 158,162 2,144 151,731 164,592
3,000 132,668 3,536 122,061 143,275
3,500% 128,964 3,643 118,035 139,894
5,000 120,436 3,797 109,645 131,826
7,000 113,156 3,325 103,178 123,133
9,000% 108,523 3,213 98,883 118,163
10,000 77,639 2,502
20,G00 94,273 3,611 83,440 105,106
30,000 87,100 3,70l 75,998 98,203
40,000%* 82,345 3,467 - 71,942 92,747
50,000 79,021 3,253 69,261 88,781
60,000 76,533 3,049 - 67,385 - 85,681
70,000 74,629 2,792 66,253 83,005
80,000 73,152 2,554 65,490 80,814
90,000% 71,967 2,393 64,787 79,147
100,000
150,000 67,341 2,327 60,360 74,321
200,000% 64,792 2,400 57,593 71,991
1,000,000 50,533 2,812 42,097 58,969

*Parameters used in Chapter V Finite Life Goodman Diagrams.
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Table 3.3.4 Paramzters of Normal Strength Distribution
: ?t Spccifi; Stress Ratios and Cycles of Life,
Continued),
R = 0.444
Mean Standaxrd -3 Signa +3 Sigma 1
Cycles Streggth Deviation Linits Linits
psi psi psi psi

1,000 121,500 . 200 121,439 121,560
3,000 107,185 1,141 103,761 110,605
3,500% 105,107 1,260 101,327 108,887
5,000 100,305 1,539 95,689 104,921
7,000 95,774 1,803 90,365 101,183
9,000%* 92,390 2,002 86,384 93,396
10,000 90,971 2,085 84,715 97,227
20,000 81,638 2,637 73,726 89,549
30,000 76,162 3,012 67,126 85,197
40,000+ 72,260 3,269 62,452 82,068
50,000 69,403 3,202 59,799 79,008
60,000 67,387 2,971 58,474 76,299
70,000 65,930 2,806 57,511 74,349
S0,000‘ 64,788 2,750 56,5239 73,037
90,000% 63,821 2,783 55,562 72,079
150,000 59,657 2,608 51,832 67,482
200,000%* 57,521 2,359 50,444 64,599

| ,000,000 47 ,648 2,766 38,752 55,348

*Porometers used in Chopter V Finite Life Goodman Diagrons.
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Table 3.3.4 Parameters of Normal Strength Distribution
At Specific Stress Ratios and Cycles of Life,

R = 0.825

(Continued).

: Mean Standard -3 Signma +3 Signa
Cycles Strength Deviation Linits Linits
psi psi psi - psi
1,000 154,197 " 2,056 148,030 160,364
3,000 130.027 3,651 119,073 140,981
3,500% 126,369 3,739 115,151 137,587
5,000 117,923 3,898 106,229 129,618
7,000 110,448 3,539 99,831 121,065
9,000% 105,645 3,308 95,722 115,569
10,000 103,725 3,323 93,756 113,694
20,000 -9),498 3,243 81,769 101,227
30,000 85,248 3,148 75,805 94,691
40,000 80,953 3,208 71,327 96,578
50,000 77 .703 3,154 68,239 87,166
60,000 75,179 3,044 66,045 84,312
70,000 73,148 2,974 64,226 82,070
80,000 71,443 2,947 62,602 80,285
90,000% 69,970 2,927 61,189 78,750
150,000 64,263 2,372 57,147 71,379
200,000* 61,737 2,133 55,338 68,135
1,000,000 48,686 2,394 41,505 55,868

*Parameters used in Chanter V Pinite Life Goodman Diagroms,

40

-




————

s ey

L o T——

41

3.4 Discussion as to Validity

The methodology which John Saith presented was found to
be well grounded and accurate. Disturbing to the original
investigator was the fact that the vertical sivength distri-
butions did not completely 'fill" oxr span the entire width of
the statistical S-N diagram envelope. That is, the vertical
strength distributions did not span the complete distancé be-
tween the plus three sigma line and minug threec sigma line of
the c¢ycles to failure distributions. This, however, was not
disturbing to this investigatoxr fox the follewing reason.

The histog;am of the vertical strength distributions
was developed from the cunmulative failure probabilities of a
large number of cycles to failure probability density functions.
Along a particular cycle life line on the statistical S-I
diagran, Sre Figure 3.4.1, the vertical distance from the
intercepted pius and minus three sigma lines is of no particu-
lar significance.

The fact that the vertical strength distribution does
not span the distunce between point A and B can be explained
in the following mcnner: The cycles-to-failure distributions
are lognornal while the strength distributions are normal. It
must be noted that in actuality only distributions to the left
of- the cycle life line contribute pexcentile areas to the
cunulative streagth distribution. The two points, A and B,
arc then completely unrelated. Thé plus and ninus three signa

linits, vhich are not necessarily points A and B, of the

I
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Log Alternating Stress

Log Cycles To Failure

Fig. 3.4.1 A Vertical Strength Distribution Placed On The + Three
Sigma Envelope of A Statistical S-Y Diagram.
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vertical strength distributions are derived from the cumulative
failure probabilities of the individual cycle to failure proba-
bility density functions. The plus and minus thxce sigma
limits of the vcrtical:strength distribution are welatad to

the varicbhility of the findividual probability density functions
of the cycles to failure data at particular stress levels

intercepted by the vertical cycle life line.
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CHAPTER IV

GENERATION OF FINITE LIFE GOODMAN DIAGRAMS (METIOD I)

4.1 Theory

To date most of the work done with the modified Goodman
Diagram and Goodman surfaces has been concerned with the
objective of presenting the relationship of alternating and
mean stress for infinite periods of life. For the biaxial
stress condition, where the specimen is subjected to both
bending and shear stress, the CGoodman diagram represents
conbinations of these two stresses, in the cartesian plane,
where the specific coubinations will not cause fracture to
occur over a period of infinite life. The need for a surface
to describe this relation occurs where probabilistic methods
are used in reliability calculations by the interference
method, ,

It is the purpose of the method under discussion in
this Chaptexr to break away from the traditional concepts of
using a Goodnan surface to graphically represent the relation
between bending and shear stresses for a period of infinite
life, and presen%, in the cartesian plane, the relation of
alternating stress to mean stress where the alternating
stress is a bending stress while the mecan stress is a shear

stress for finite periods of life., The advantage of such an

44




!Z approach is that it will draphically fllustrate to a designex
1 that it is possible to have higher combinations of beading and

shear stresses for a finite life design. Hence, if a part

v

need only fuction for a specified finite number of hours or

P

cycles, after which its failure is not detrimental to the

[ ——

success of the mission, it can be subjected to combinations

of bending and shcaxr considerably higher than if it had

e

to function in excess of lO6 cycles.

The data which was used for this nethod was generated by the
Reliability Research Laboratory of the Aerospace and Méchnnical
E V' Engincexing Departnent under NASA Grant 03-002-044 at The
2 University of Arizona. Cycles to failure data wasvgeneroted
for rotating specimens which weare subjected to an alternating

bending and constant shear stiress at specific stress ratios.

Stress ratio is defined as the ratio of alternating bending

stress, to mean normal stress from torque.

The cycles to failure data was generated from 1967 to
1970 for stress ratios, of infinity, (pure bending), 3.5,
0.8, and 0.44. The specinens vhich were subjected to a

| bending and shear stress had a grooved geometry. The

naterial which the specinens were made of was SAE 4340 stecl.
A coaprchensive explanation of the test progrem, mochines,
procedures and naterials used can be found in NASA CR-72839

(3). The data gencrated by this experimental effort, which was

used to construct finite life Goodman surfaces displayed in this -
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Chapter, included the bending and shear stress in each of the over

300 test specimens which were run to failure. The value of the

cycles life at which the specimen failed was also recorded.

In the original test program twelve to eighteen test specimens

Rk
AR LI LN

.

were run at each stress level for each stress ratio. The lower 1

number of specimens, twelve, occurred at higher stress levels, where o

variability in the cycle life data was small. The larger sample

size was used at lower stress levels where variability in the data

oo RN s

suggested a larger number of specimens be used.  Referring to
Figure 4.1.1, it can be seen that if the infinity stress ratio, lo-

cated along the alterrating stress axis, is to be bridged to a mean

/
A

{.

-

L

for the finite periods of life, there will have to be at least two

g

other stress ratios which contain enough data points to form two

NG T

strength distributions between the alternating stress distribution

and the mean stress distribution and the mean stress distribution.

stress distribition at a stress ratio of zero by a Goodman surface, ‘,
{

Because of this restriction, it was necessary to screen the cycles

e

to fai;ure data to determine appropriate cycle life ranges. This r{?

was accomplished with the aid of Table 4.1.1. This table records

.

the cycles to failure data for specimens at particular stress ratios.

The cycle life ranges which were determined by tﬁis method-are as

fbl]bws:

o
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4.1.1.,‘Screeniﬁg of Cycles-to-Failure Data to Ascertain

120,000 .

N=4

N=5

6,000

r=e r=3.5 r=.825 r= .44

Strese Ratios

g
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N=1l: 1,000 - 3,500 cycles to failure
N‘= 2: 20,000 ~ 40,000 cycles to failure
N = 3: 60,000 - 90,000 cycles to failure
N = 4:‘50,000 - 200,000 cycles to failure
N = 5: 6,000 - 9,000 cycles to failure

~ It can be seen that theselgfoups span the cycle life
spectrum frOm,Ibw to relatively large cycle lifes. However,
all five groupings are in the cycle life range to thé left
of the "knee" of the S-N Qiagrem. It would have been desirable
to keep the cycleniife groups as small as possible, however
.the restriction of having enough data points within each
groué.to form a distribution was the governing xéstriction
in this case. The alternating stress distribution, where the | ’
lshear stress or mean siress is zero, was obtained directly
fron the cycle to failure data of pure bending, r = oo,
specimens. After the cycle life qroups were deternined the
distribution placed on the alternating stréss axis for each group
was specified by the bending stress recorded in each of the
specinens which failed within the cycle life range of that
particulax group.

The distribution which was used on the nean stress axis

in all cases was the ultimate strength distribution of an un-
grooved tensile test specimen which had the sane cross-sectional ol

areas as the actual grooved fatigue test specimens (grooved
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specimen results are used in Chapter Vi see Figures3.1.1 and
3.1.2 ., The mean normal strength distribution was obtained
directly from static tensile strongth tests. In the case of
such tensile tests, it is found that the grooved specinens
have a higher ultimate strength. This is causcd by a radial
stress which is intzodﬁced into fhe epecimen at the root of
the groove. However, a grooved specimen which is subjected
to static torque load would not expexienée such a radial
stress. At this time in the investigation, it would;therefore,
not have been correct to use the_grooved specinens to determine
the strength distribution for the meqﬁ stress axis (see
Chapters V and VII).

After obtaining the cycle life groups the next step
was to relate the shear stress in each of the specinmens to the
proper mean stress. This was done by using two predominant
strength theories. These two theories are the Von-Mises
Hencky theoxy and the maximum shear stre;s theory. A

complete discussion of these two theories appears in

Chapter VIII of this report,

The resultcent strecos vector, Sf, for each of the data
points has a mean-stress of S = V3T (X = shear stress),

(3, p. 3). The resultant stress vector is a combination of

mean and alternating stresses. The magnitude of the resultant

vector is:

. gy
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2 .
s- = _(s°)2»+ (sm)2 (4.1.1)
- g 1/2
5o = i(sq) + (V3% )2} | -(4.1.2)

In the case where the Von Mises Hencky criterion is used
~ to relate the shear stress to the mean stress the resultant
stress vector is called stress vector I..
If the maximum shear stress theory is used to relate the
mean stress to the torsional sta.:'ess, the governing relation

will be (13, p. 2):

s =27
m

The maximum shear stress theory predicts that yield.\;.ng
will occur when the maximum shear stress is equal to the shear
stress corresponding to the shear stress produced in a simple
tension test for yiéld strength (15, p. 152). The Mohr circle

predicts that yielding will begin when (15, p. 152):

Unax = 5,72  (4.1.3)

Hence, the mean ss:tress is given by S = 2 Thnx‘

Although both these fa;'s‘.lure theories are based on yielding
as the failure critr;r:‘.on much experimental data indicates that
they gpply ‘as well when fracture is the failure criterion as

xepresented by the static ultinate strength.

'-muhw
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For the maximum shear stress theory the resultant stress

vector mcgnitude will be giv:n by;

s” = (s e (sp)® (4.1.4)
2 , 1/2
2
s = {(sa) f(z't:)} (4.1.5)

If the maxinum shear stress theory is used to relate the sheax
stress to the mzan stress ‘the resultant stress vector is referred
to as stress vector II. .

The :esuitqnt stress vector must be described by botﬁ a
magnitude and a direction. A stress ratio ﬁas previously
defined as the ratio of alternating stress to mean stress.
It can b2 seen that the stress ratio will vary with the
strength theory which relates the sheax stress to mean stress.
Hence, for the stress vector where theJVon Mises Hencky theory

was used the stress ratio becomes:

r, =5/ V3% (4.1.6)

For the second stress vector in which the maximum shear stress

theory is used to relate shear stress to mean stress:

¥, = §,/2T (4.1.7)
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For both stress ratio cases the data hod variability,
described by the standard deviation of x (Cr;), which was
quite small. The nean values of r and the corresponding
standard deviation of.eqch of the cycle life groups is given
in Table 4.1.2. Because the variability of r was small in
each case the resultant stress vector was assumed to lie on
the stress ratio axis, defined by the average value of r.
Referring to Pigure 4.1,1 it can be.seen that the angle © ,

along vhich the resultant stress vector is oriented is

given by:

| .
© = tan (Sq/Sm) . (4.1.8)
‘The orientgtién of the stress vector is thus specified
by the mean stress ratié, T , for each cycle life group.
For each da?a poin? in a cycle life groug‘it was possible to
use the PDP-8 Compﬁter to perform the calculation to obtain
VQluéS for S.. After the §r'values specified by Equations
(4.1.2) and (4.1.5) were obtained for each of the data points,
it wds possiblertolc0mpute a mean §: and a standard deviation
(crs;) which then specified a strengfh distribution. These
were then plotted along the mean r-axis. After the values of §;
and cfsr were obtained the Kolmogor6v~Smirnov test was used

to determine if the normal or the lognormal frequency functions

could be accepted as representing the strength distributions.

""'”‘“lumé
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Table 4.1.2 Mean and Standard DeviutionAof Stress Ratios.,
Cycle Life Range Mean Standard Deviation
¥ O -
T
- N =1,000-3,500 .
Stress Vector I 3,514 ) 0.1200
Stress Vector II 3.043 0.1306
N = 6,000-9,000
Stress Vector I 3.498 0.1490
1l 0.875 0.0290
Stress Vector II 3.029 0.1296
. 0.757 0.0254 ;
N = 20,000-40,000 - -
Stress Vector I 3,508 . 0.1430
0.729 0.08%0 )
Stress Vector II 3.043 0.1239
. 0.631 0.0188 -
N = 60,000-90,000 -
Stress Vector I 3.422 0.1720
. . 0.872 ’ . 0.0910
Stress Vector II 2.963 0.1492
0.758 0.0171
N = 90,000-200,000
Stress Vector I 0.804 0.0555
0.439 0.0710
Stress Vector XX 0.696 0.0482

0.382 0.0110
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4.2 Conmputer Method

Three computer programs of varying complexity wererused
to determine the strength distributions discussed in this
chapter. The first of these, a PDP-B‘compuier program referxed
to as BAR I, used an input of bending stress and shear stress
to obtain a value 6f-s; whén the Von Mises Hencky strength
%heory was used. For a shear stress (dnd altexnating stiess)
it perforns the following calculations, It first calculates

o mean stress from « shear stress:

s = {3z (4.2.1)

and then performs the operations required by Equation
4.1.2: o
1/2

s_ = §(s )2+ ( 151 )% (4.2.2)
r a . o £2

The sccond computer program referred to as BAR II which
is also a PDP-8 program, performs the calculations required
by the naximun shear theory to relate the shear stress to mean
stress:

Sm =27 : (4.2.3)

BAR II then performs the calculations required by Equction
4.1.5:

1/2
2} (4.2.4)

sz = {(s)” + (2%)

.mHllHil“"'
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A flow chart, variable definitions and computer listing of the

PLP-8 programs BAR I and BAR II is given in Appendix E.

After the individual values for the resultant stress
vector magnitudes for each specimen were computed the data
was then subnitted to the CDC-6400 program ASHMERG which
made the following calculations. The mean and standard devia-
tion of S, for each cycle life group and stress ratio was

calculated. These values are denoted by 3; and og - In
» .

addition the Kolmogorov-Smirnov goodness of fit test, for
a nornal and lognormal distribution, was conducted on each of
the strength distributions. The cocificients of skewness and

kurtosis ware dcternined for each strength distribution. A

56

flow chart, variable definitions and computer listing of program CYTOFR

is given in Appendix C,
4.3 Results

Por the two stiength theories considered, von Mises
Hencky and maxinmum shear stress,the results of the calcula-

tions to deternine the resultant stress vector magnitudes arc

given in Table 4.3.1. In addition these tables present the

stress ratio mean for cach eycle life group as well as the
calculated value for the mean stress for each strength theory
considered. Tables 4.3.2 and 4.3.3 present the mean and
standard deviation of the resultang stress vector magnitudc

for ecach stress ratio by cycle life group. Table 4.3.4

R TR H { EO T TSP PR TTL S L]
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presents the ultimate strength distribution of an ungrooved
test specimen. Table 4.3.5 presents the Kolmogorov-Smirnov
ID/mux values for each cycle life group for both the Von

Mises-Hencky strength theory as well as the maxirun shear

stress theory.

Based on the Kolmogorov-Snirnov test, in.no case can the
proposed distributions, normal or lognormal, for the result-
ant stress vector be rejected at the ninety percent confidence
level. In ten out of fifteen resultant stress vector distri-
butions the ld#normcl cistribution had smaller /D/ oy Values .
For the normal and lognornal the /D/max‘difference was quite small,
the difference occuring usually in the third decimal place.
Because of this slight difference, it canmot be said that
eithex the normal or lognoxmal distributions fit the data bet-
tex, rather that both the normal and lqgnormal distributions
£it the strength data equally well.
X The third and fourth statistical monments, coefficients

of skownass and kurtosis, give little insight into the nature

of the underlying distribution. The "knowledge of the third

nonent gives alnost no clue as to the shape of the distribu-

tioa" (5, p. 109).

2 e
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Table 4.3.2 Mean, Standard Deviations and + 3  Limits of
Resultant S.ress Vector for the von lMiseg-
Hencky The.ry.
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Life Range . Cycles Mzan  Standaxd +3o -3
‘ ’ Deviation
- psi psi psi psi.
N=1,000-3,500
r=ow 144,327 1,538 148,934 139,710
r = 3,514 156,651 3,683 167,700 145,602
r = 0.44) 150,404 3,261 170,007 150,801
N=6,000-9,000
r = o0 113,862 “954 116,697 111,027
r = 3,498 119,228 1,999 ° - 125,225 113,231
r = 0.875 168,322 3,170 177,892 158,872
N=20,000-40,000
r = o 98,247 2,683 106,300 90,196
r = 3,507 86,301 1,062 . 89,487 83,115
r = 0,729 146,952 3,883 158,701 135,203
N=60,000-90,000

= 81,282 993 84,821 78,303
= 3.422 78,211 2,550 85,861 70,561
= 0.872 117,097 3,900 128,797 105,397

o .
= oo 74,336 3,556 85,004 763,668
= 0.804 104,074 8,517 112,591 95,557
= 0.439 148,137 2,325 155,112 141,162
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The Goodman surfaces and dicgrems generated by this method

are presented in Figure 4.3,1 through Figure 4.3.10 for the various

cycle life grovps and strength theories.

4.4 Discussion as to Validity

The Goodnman suxfaces generated illustrate that for
cycle life ranges which are well below infinite life the
allowcble combinations of bending aﬁd'sheaf stressvore mich
laxger in magnitude than combinations of the same bicial
stress wvhich could be sustained by a specimen for an infinite
life range (Figure 4.4.1 is a Goodman Surface for a period
of infinite life). As the cycle life groups nean value in-
cxeases the corresponding cﬁmbination~of bending -and: shear
stress continues to decrease toward the value which is presented

LY

in t

¢ infinite life diagran. A comparison of this surface to

the surfaces generated for finite life pario?s, see Figure 4.3.9
illustrates the above conclusion.

The variability in thé standard deviations of the resuliant
stress vector for stress Yatios other than infinity and zexo
should be examined closely., This variability
is larger in nuhy cases than %he variability of the bending
gtress and ultinate strength distributions used for the alter-
nating and nean stress axis. In reviewing the nethodology
vhich was discussed one findc that data used for the alternating

stress distzibution and the ultimate strength distribution

é
3
F
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were taken from one series of tests. However, the data which was
used to generate the strength distributions for ratios of 3.5,
0.825, and 0.44 were taken from a series of tests, each with their
own variability. From the algebra of normal functions we sec that
when two standards deviations are added the resultant standard

deviation becomes (16, p. 111}: 4

2 2 .
°x+y = \/Ux + oy + 2 o y (4.4.1)

where p is the correlating cocfficient. If p = 0, assuming

independence (16, p. 111):

6. =\ +0 (4.2.2)
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Table 4.3.3 Mean, Standard Deviotion and + 3 Limits of
Resultant Stress Vector for the Moxdinum Sheax
Stress Equation.

80

Life Range ~ Cycles Mcan  Standard +3a -3c

: . Deviation

psi psi ' pei. psi

N=1,000-3,500

r.= 3.043 158,600 3,641 169,523 147,677

r = 0.381 181,411 3,704 192,523 170,299
N=6,000-9,C00 :

r = 3,029 120.787 2,007 126,808 114,766

r = 0.757 183,578 3,812 195,014 172,142
R=20,000-40,000 '

r = 3.043 87,375 1,077 90,606 84,144

r = 0,631 162,152 4,178 174,686 149,518
N=60,000-920,000 )

r = 2.960 79,236 2,586 . 89,994 71,478

r =0,755 - . 127,704 4,405 140,916 114,492
N=$0,000-200,000 -

r = 0.696 - 114,126 2,896 122,814 105,438

r = 0.332 167,554 2,742 175,780 159,326

Tablc 4.3.4 Ultimate Strength Distribution, Mean, Standard
Deviation, and + 3. Limits for Mean Stress Axis
for Ungrooved Specimens.

Mean Standard +30 -30
Deviation
psi psi psi psi

r=0 178,000 2,500 185,500 170,500

oy
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Table 4.3.4 Ultinate Strength Distribution, Mean, Standard
Deviation, and #3 Linits for MNean Stress
Axis for Ungroovad Specimens.
Mean  Standard +3¢ =30
Deviation
psi psi psi psi
178,000 2,500 185,50C 170,500

g
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CHAPTZR V

‘GERSRATION OF PiNITE LIFE GOODHAI DIAGRAN (M2THOD IT)

5.1 Theory

It is possible to'pluce strength distributions which
h;ve been developed from cycles ‘to failure ‘distributions on
statistical Goodman diagrams, as well as S-N diagrams. In
Chapter III, the completed xesults of sitrength distributions
developed by John Smith for the statistical SN diagram
were presented.

It is possible to place the strength distributions -
developed by the technique discussed in éhqpter.IKI on finite )
lifec Gocdman dingrams., It is first noted that the vertical
streﬁgth distributions deveioped in Chapter III axe for a et
épecific cycle life. This finite life Goodnan diagran is then

for this cycle life,

Figure 5.1.1 compares a strength distribation placed on

a finite life Goodman diagram to that of the same strength dis-

-

1o

ribution placed on a statistical S-N diagram. The ordinate
w:is of both the Goodnan dicgron and the statistical S-} dic-

gran iz the alternating stress level.  Because of this the

.
3

value of the nmean of the alternating strength distribution
wvhen transforned from an S-N diagran to a finite Goodnen dia-

gram will not change. The stress ratio and alternating stress

84
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CUNULATIVE FRORABILITY DENSITY
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\\VZ7 A\ VERTICAI
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X . DISTRIBUTION
.

| AN -

N1=1000 cycles

N=1000 cycles

TRANSFORMED STRENGTH
DISTRIBUTION

Fig 5.1.1

=

MEAN STRESS

Comparison of Vertical Strength Distribution to A Strength Distribution
Transformed to the Finite Life Goodman Diagram. '
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level, which are specified by the statistical S-N diagram,
define the location of the'mCAn of the strength dis?ribution
which is transforned to the finite life Goodman diagram.

| The three signa limits of the transformed strength dis-
tribution arc not the same as that of the vertical strength
distribution. Figure 5.1.2 depicts a strength dist%ibution
placed on the familiar coordinate axis of the Goodman diagram.
The three signa linits of the strength distribution placed on
the stress ratio axis can ecsily.be derived from the three
signa linits of the vertical strength distribution in the

ollowing manner.

N

Equate the upper and lower three sigma linits of the
vertical strength distribution to S. The stress ratio, r, is
equal to the alternating stress divided by the mean stress

which referring to Figure 5.1.2 is equal to tan® .

L
1

o
w

The upper end lower three sigma limits of the transforned
strength distribution are equal to 8'. From Figure 5.1.2 it

can be scen that:

sin©® = § /st (5.1.3)

Sq/Sm = tan®- ] (5.1.1)

-1 .
tan (x) (5.1.2)

M‘"“"HE
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Fig. 5.1.2 Transformation of Vertical Strength Distribution's
- Upper and Lower Three Sigma Limits to the Stress Ratio Axis.
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Solving equation 5.1.3 for §' and substituting equation 35.1.2
yields:
St = Sa/sin- € (5.1.4)
P . "'l } 5 5
§! = Sa/51n { tan ~(x) (5.1.5)
If the value of r is known and the original VQluc_of the
upper and lower three sigma limits are specified by the
vertical strength distribution then the upper and lover
three signa limits of the transformed strength distribution
can be placed along the stress ratio axis and are specified
by equation 5.1.5. -

Five finite life Goodman diagrams were developed by the
transformation of vertical strxength distribution to the
stress ratio axis of the Goodmon diagram. The finite life
Goodnan diugramsAwére develdped for cycle lifes éf 3,500, 9,000,
40,000, 90,000 and 200,000 .eycles. Strength @istributions
placzd on these finite life Goodnan diagrams were at siress
ratios of infinity, 3.50, 0.825, and 0.44. As discussed in
Chapter Vil of this report the strength distribution placed

.on the mean stress axis was taksn to be that of the ultimate
strength distribution of the grooved test specimen.
A PDP-8 computer program, ROTO, was developed to perform the
calculations required by the transformation of tﬁe upper and lower

. three sigma limits as discissed in section 5.1, A flow chart,




1

variable definitions and computer listing of the ROTO program is given

in Appendix E.
5.2 Results

The finite life Goodman diagrams developed by this method showing
the strength surfaces for éiscrete cycles to failure are given in
Figures 5.3.1 through 5.3.5. In Table 5.3.1 the alternating stress level
of the mean cf the strength distributions.for'each stress ratio as well
as the transformed upper and lower three sigma limits of the strength
distributions are given. The original parameters of the vertical strength
distributions appear in Table 3.1.3 as starréd'quantities, as they were
developed by this in&éstigator to correspond with the cycle life values
of Chapter IV. The ultimate strength distribution of the grooved and

ungrooved test specimen are compared in Table 5.3.2.

5.3 Discussion as to Validity

-

The principle of transforming vertical strength distributions to
the Goodman diagram as explained in Section 5.1 is a Straight forward
procedure. The transformation is simply projection of a known distri-
bution to a different plane which in this particular case is the stress

ratio axis of the finite life Goodman diagram.

The vertical strength distributions have associated with them a
cycle life value. It is possible because of this fact to develop finite
life Goodman diagrams and surfaces from the valid vertical strergth dis-

tributions, This method is consistent, in that the vertical strength

distributions are all developed in.the same manner, and hence, there is

"“"lxli,“g




g

90

no problem of differing variabilities caused by inconsistencies in the
procedure of developing strength distributions at various stress levels.
The elimination of the inconsistencies in procedure in developing
strength distributions at various stress ratios is the principle ad-
vantage of rotating vertical strength distributions to the finite life

Goodman diagram.

TS WM W Pm e
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Table 5.3.1

Alternating Stress Level of the Mean and Stundard
Deviation, and + Three Sigma Limits of Strxenath

Distributions Placed on Stress Ratio Axes of the
Finite Life CGoodmun Dicgram.
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Sa Og 30 +30”
“a
N = 3,500 '

oo 135,953 2,628 . 128,070 143,837
3.5 128,964 3,643 118,035 139,894
0.825 126,369 2,739 115,151 137,587
0.44 105,107 1,260 101,327 108,887

N = 9,000 -

o 115,926 2,907 107,205 124,647
3.5 103,523 3,213 98,883 118,163
0.825 105,645 3,308 95,722 115,569
0.44 92,390 2,002 86,384 98,396

N = 40,000 :

o 80,693 2,605 82,878 °8,507
3.5 82,345 3,457 71,942 92,747
0.825 80,953 3,208 1,327 90,578
0.44 72,260 3,269 62,452 82,058

N = 90,000

oo 79,054 2,539 71,437 - 86,671
3.5 71,967 2,393 64,787 - 79,147
0.825 69,970 2,927 61,182 78,750

N = 200,000 ' o :

oo 70,172 1,881 64,529 75,815
3.5 64,792 2,400 57,593 71,991
0.825 61,737 2,133 55,338 68,135
0.44 57,521

Table 5.3.2 Comparison of Grooved and Ungrooved Specimen's Ultimate

Strength Distribution.

Mean " Standard Deviation
Grooved 255,300 psi 2,720 psi
Ungrooved 178,500 psi 2,500 psi

iy
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Table 5,3.2 Comparison of Grooved and Ungrooved Specimen's
Ultinate Strength Distribution.

Mean Standard Deviation

i Grooved 255,300 psi 2,720 psi

Ungrooved 178,500 psi 2,500 psi

¥

Lot




CHAPTER VI
EVALUATIOH OF GENERATION OF PINITE
LIFE GOODMAN DIAGRAMS

6.1 Evaluation of Previous Technicues in Developing Goodman
Diagrans and Surfaces '

The methodology which  was presented in Chapterxs IV
‘and V for the transformation of cycles~-to-failure data to
strength distributions and the resulting Goodnan surfac:s and
diagrans will now  evaluated, It appears that the method of
rotating vertical sfrength distrinutions and placing them on the

Stress ratio axis of a Goodman diagram is the most uniform method

of creating the Goodman surface. As discussed in Section 5.4 all

distributions are crea*ed in thec same manner which eliminates the

problems of variability discussed in Section 4.4.

-

In viewing the genexal shap2 of both the finite life Goode

-

nan diogramns developed in Chanter XV and V the following con-

clusion can be drawn. By design each of the cycle life groups

in both Chapters IV and V ard similar. This was done for
purposes of comparison. Tﬁe curves shift progressivaly lower
as cycle life value increase. The curves developed in both
chapters are consistent in this respect. As cycle life design
values decrease larcer: combinationsfof bending and ‘'shear stress

are possible,

98
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The two sets of finite life qudmcn diagrams do have
some inconsistencies. _The ultinate strength distribution o%
the ungrooved tést specﬁmen was used as the static strength
distribution in Chapter IV while the ultimate strength dis-
tribution of the grooved specimen was used in Chaptex V. Both
distributions were placed along the meaﬂ stress axis of the

Goodnan diagram. An explanation of these facts is in oxder

The method used in Chaptex IV to generate the finite lifev
Goodnan diagrams and surfaces was completed in early February
of 1971. At that time, there was doubt us%o the geometry of
the spezcinen to be used, consequently the conserva%ive ulti-
nate strength distribution of the ungrooved specimen was
chosen. Although this doubt did exist the diagrams developed.
in Chap&er IV aid not scem to support the use of the ﬁighmr

ultimate strength of the grooved geometry specimens.

The finite life Goodman diagrams which wefg developed
in Chapter V, in late March énd ea:ly Apri) of 1971, illustrated
the critical importance of the geometry of specimen from
. which the static ultimate strength distribufion vas derived.
All but the finite lifc Goodnan diogram developed at 200,000
cycles showed the mean str;ss values at a stress vatio of 0,44

close to or obove the ultimate strength distribution of the

ungrooved test specimen. This fact, although quite alarming at
£irst, mude an investigation of the correct geometry of paramount

importance and considerable effort, as exhibited in Chapter VII,




100
was nade to resolve the question concerning the proper ultinate
strength distribution to be placed along the mean stress axis,

6.2 Recommendations

The weaknesses and advantages of the two methods gf
genercting,sooqun surfaces and diagrams have been discussed.
It is the opinion of this investigator that the method devel-
oped in Chuptér V, that of forming ve;%ical strength distribu-
tions from cycles to failure data and then transfc“mlné these
to the stress ratio atis of a Goodman diagram, be considered
as the appropriqte'method to be used when finite life Goodman

diagrams are to be créated from a large scale cyclé'%o failure
fatigue test progran.

Subsequently the results of Chapter V
were weighted to a greater degree than those of Chaptex v

in discussions deal.ng with the choice of geonetry of test
specimen used for the ultimate strength distribution in Chapter
VII. This was also true in Chapters X and XI wﬁere the best

empirical and theoretical math model of the Goodnan diagram
were sought.

i
In conclusion, the transfcrmation of vertical strength

distributions to the Goodman diagram is considered as the ap-

propriate nethodology to be used vhen lorge amounts of cycles-

s

to-failure data are available. Chapter XIII considers a moxr
efficient plan vhere it nay be possible to generate Goodman

surfaces with a ninimm anount of actual fatigue testing.




CHAPTER VII

THE STATIC STRENGTH DISTRIBUTION TO BE PLACED ON THE MEAN
STRESS AXIS OF FINITE LIFE GOODMAN DIAGRAMS

7.1 Introduction to Static Strength Distribution

In the Previous chapters of this report, we discussed and
developed several experimental methods of presenting fatigue
data generated by relatively expensive and time consuning
fatigue test progrqms; If bowever, this same information could
be extracted from unioxial static tests of materials the save
ings in tine and effort would be tremendous. Chapters VIII and IX
present several empirical and theoretical medels of the Goodman
diagram.

The development of rclations, which take advantage of
information obtained frem static tests, to model fatigue data
require that the following top;ics be investigated. FPoxr both
the grooved and ungrooved ge~.’:ry specimens which have been
investigated, vhat are the equations which are used to
determine the tensile yield, ultimate-and breaking strxengths?
Secondly, is it possible to sbecify‘a theoretical strength
distribution, such qs'the Gaussian normal or lognormal distri-
buiion, to each of these quantities? Of najor céncern in the
development of the Geolman diagram for the grooved geomeiry

specinen, subjected to the combined stress condition of alter-

nating bending and constant shear stresses, is the determination
101 '
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of the strength distribution to be used along the nmean stress
axis. It must be determined what strength parameter should be
used along the axis and if the diagram is to model the behavior
of grooved specinens, on which geometry specimen, grooved ox

ungrooved, should this etrength parameter be based,

7:2 ‘Calculation of Yield, Ultimate and Breaoking Strengths

The calculation of static tensile strengths, is well
docunented throughout the literature. The yield strength is
calculated by dividing the force initiating the yield by the

cross-sectional  area of the specimen. This cross-sectional

‘area is based on the original diameter of the test spacimen

(6, p. 4). In the soft, ductile steels the yield strength is
clearly morkéa‘by a yield point as shoun in Figure 7.2.la.

In other materials where the yicld ﬁoinf is less obvious, sce
Figure 7.2.1b, common paractice defines the yield load as the force

which is required to pive a 0.2 percent plastic offset (6,Vp. 45).

The uvltimate tensiie strength is defined as the naximunm
load sustained by a tensile test specimen divided by the
Woxiginal! cross~scctional cxea. Howevex, this calculation
yiclds a parameter which is inaccurate and artificial, The
load and area on which this parametex 'is based do not occur
sinultancously. For nost ductile materials the maximum load

occurs after appreciable elongation which is obviously acconp-

‘anied by a reduction in area. The ultimate tensile strength,

g
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as calculated above, is,howeven‘thc most commonly sited
paraneter of matexial strength (7, p. 152).

By definition, both the ultimate and breaking strengths
are based on the original cross-sectional 6rea of the test

specimen, Hence, the breaking strength is calculated by divid-

ing the load at fractqre'by the original cross~sectional area,
Pigure'7.2.la indicates that the breaking strength of a dun=-
tile material nay be less than the ultinate ter~ile strength
of the material., As necking and elongation occur in thé test
specimen the stress in the specinen continuously decreases. ) %
A nmore xealistic measure of material strength is the tensile

fracture stress. The fracture stress is detexmined by dividing

the load just prior to fracture by the area measured just after

IR e |

i fracture, Although the load decreases after the ultimate ten-
sile sfress is reached, the cross-sectional area decreases more T

frapidly which results in an increasing '"irue stress." Because
of this the fractuxe stress is equal to ox g;eufer than the
ultinate tensile stress (7, p. 154).

Bared on the above discussion, it can be concluded that

_for the grooved and ungrooved specimens the ultimate and yield
strength calculations should be basged on the original crosse-

sectional areca. The calculation of the breaking strength should

be'kased on the reduced dicneter measured after fracture,
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7.3 Theoretical Strength Distributions of the Strength Parameters -

The calculations of'fhe strength parameters yield,
ultim&te and breaking strengths have been specified:. The next
point to be investigated is to detexrmine if these strength
poramefers exhibit a known theoretical distribution.. An
effort to deternine if the normal or lognormal distribution

vas favored for the three strength parumeters previously

“discussed was initiated. This included gathering tensile test

~—
~

data from the research effort gu;;i§§_pgtsunder HASA Grant

Ho. 03-002-044 at The University of Arizona. Tensile test data
frqn Fhase I.and.Phasa I of the program was gatherxed forx
tensile yield, ultinmate and fracture strength of-both the
grooveé and gﬁgrooved fest specinens., This data vas statis-
tically reduced by the computer progrom CYTOFR, which has the
ability éf performing the following staiistical opexations;
nmean, standard deviation, coefficients of-skewness and kurtosis,
the /D/'mClx value for the Kolmogorov-Smirnov goodness of fit

test and the total Chi-Scquared value, foxr the Chi-

Vne1
Squared goodness of fit test. The ASVERG program performs tbese
;iatigtical calculations for both the normal and the lognormal dis-
tributions.

Efforts to specify either the normal or lognormal distribution

as favoring the yield, ultimate and breaking strengths of both the

grooved and ungrooved specimens were not totally successful. The

H
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Kolmogorov-Smirnov-and Chi-Squared goodness of fit tests have the
ability of only rejecting the normal and lognormal distributions as
rroperly representing the data in question. Table 7.3.1 presents
the results of the Kolmogorov-Smirnov and Chi-Squared goodness of
fit test results. The mean and standard deviations of the strength
parameters are given in Table 7.3.2. The breaking strength data
in all but the Phase I specimens was found to be rejected as being
either normally or lognormally distributed. .

Previously the Kolmogorov-Smirnov test has been used as a basis
in determining whether a normal or a lognormal distribﬁtion fits
the data best based on which of these distributions had the smaller
/D/max value (3, p. 47). However, because of the small difference
in the maximum v:lue of /D/ for both the normal and the lognormal
distributions, the difference occuri;g in the seéond decimal place,
it can ﬁot be concluded whether the normal or the lognormal dis-
tribution gives a better fit io the experimental data. It can,
however, be said that neither the normal or the lognormal dis-
tribution can be recjected as distributions representing the yield,

and ultimate strength of both the grooved and ungrooved specimens.
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Table 7.3.1 Kolmogorov-Snmirnov and Chi-Squared T2st Resulis
for Grooved and Ungrooved Test Spzcimens
Paraneter Normal Loglor  Normal Légﬁbx
ND_  ss V.2
ot EE D D x2 x?
URGROOVED
Yield :
Phase I 10 ,3686, - 2135 ,2104 - -
1970 35 .2018, 42.3 ,1093 ,1040
1971 35 .2018, 42.3 .1173 _.l187
Ultingte _
Fhase I 10 .3586, = «2006  .,1979 - -
1970 34,.2047, 41.4 ,1151 ,1097 8.099 8.316
1971 35 .2018, 42.3 31239 ,1255 10.172 10,146
Breaking ' - .
Phase I 10 .3686, = 21493 1461 - -
1970 33 .2077, 40,3 .2632 ,2710 - 5,919 9.139
1971 - 33 .2077, 40.3 ,2377  .2277 62,579 48,233
GROOVED
Ultimate '
Phase I 10 .3686, - 1439 L1420 ‘- -
1970 33 .2077, 40.3 .0867 .0851 788 +809
- 1971 32 .2108, 3%9.1 ,0907 ,0921 . 2,222 2,833
Brecking ’
Phase I 10 .3686, - «1229  ,1238 - -
1970 * - - - -

- x? test could not be applied due to insufficent data points.

*

Breaking load not measured with sufficient accuracy to calculate

strength distribution.

i
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Table 7.3.2 Mean Vglues and Standard Deviations of Tensile
Strength Distributions (psi)
Mean . Standard Leviation
UKGROOVED .
Yicld .
Fhase I 171,150 2,779
1970 158,285 5,840
1971 155,505 - 1,765
Ultinate
Fhase I 177,850 2,582
1970 167,044 5,273
1971 165,108 1,521
Breaking
Phase I 254,800 4,391
1970 - 255,904 - 12,964
1971 260,921 8,247
GROOVED '
Ultinate
Phase I 255,300 2,720
1970 254,380 2,260
1971 269,137 2,832
B (]
r;hciélen% 303,950 3,122
1970 - : -

108
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A survey of the literature clearly indicated that strength data
is usually assumed tc be distributed normally. The NERVA Project
Report states that, "Usually the data (strength data) will be assumed
to be normally distributed, however, lognormal and Weibull distri-
butions are acceptable and can be used much the same as ncrmal data."
(8, p. 9). Hence, it can be concluded that the normal distribution is
acceptable as the thecoretical distribution considering the limited ex-
perimental evidence available and the fact that there is an adequate

amount of documentation in the literature to support this conclusion.

7.4, Mean Stress Axis Strength Parameter

The determination of the strength paraméter, and consequently, the
strength distribution to be used in any fatigue data modcl is dependent
upon the model used and the definition of’the failure mode. If it has
been determined that yielding is detrimental to the proper functioning
of the sbecimen then the distribution of yield strength should be used.
If only the fracture is of concern then the ultimate strength dis-
tribution should be used (10, p. 4). Chapter X describes the Goodman
line in detail. The Goodman line connects the endurance strength to the
ultimate tensile strength. +he failure criterion of the cycles to
failure data presented in this rcport has been fracture. The ultimate
strength distribution is concluded to be the proper distribution to be
placed along the mean stress axisAif the failure criterion is fracture

and the fatigue model is the Goodman diagram.
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7.5. Least Squares Estimate of the Ultimate Tensile Strength

The final topic which remains to be discussed concerns the
geometry of the tensile test specimen whose ultimate strength dis-
tribution will be placed on the mean stress axis of the Goodman diagram.
There exists the possibility of using the grooved or the ungrooved
ultimate strength distribution of a tensile test specimen of equal
cross-sectional area.

Initially one might conclude that if the Goodman diagram is to
model the behavior of a grooved specimen.then the grooved ultimate
strength distribution should be chosen. Mr. Carl S. Osgood, author of

Fatigue Design, in response to a letter which solicated his opinion

on this subject stated, "I believe it would be rather meaningless to
try for a distribution on the S,, axis for both types of specimens."

Robert C. Juvinall, author of Stress Strain and Strength, in a reply

to the same question suggests that the static ultimate strength dis-
tribution" ... should pertain to the same notched (grooved) specimens
as the Sa-Sm curve itself." Juvinall concludes that the proper static
strength distribution to use is that of the ultimate strength distri-
bution aling the S axis as discussed in Section 7.4 of this report.
There are, however, logical and well presented arguments

supporting the use of the ungrooved specimen's ultimate strength dis-
tribution. The méan stress axis is really at a stress ratio of zero,
as the stress ratio Af Sa/Sm is zero a§ this point. Consequently, the

alternating stress, Sq, must be zero. In the case of combined bending

110
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and shear this means that the mean stress axis is the aiis of pure shear.

From tensile tests, it has been found that the grooved geometry test

specimen has a much higher ultimate tensile strength., Reviewing the dis-

cussion found in Chapter IV of this report, this higher strength is
caused by a radial stress which is introduced into the specimen at the

root of the groove. However, a grooved specimen which is subjected to

a static torque load would not experience such a radial stress and would

fail at a torsional load equal to the load which causes an ungrooved
specimen to fail., The mean stress axis in the particular case investi-
gated can be thought of as representing the failure mode where pure
shear is the cause of failure. Based on the above argument, it has
been suggested that the ungrooved ultimate strengfh distribution be
used ¢n the mean stress axis of Goodman diagrams (3, p. 7i).

In'attempting to resolve these two differing opinions this in-
vestigator turned to an analytic evaluation of the problem. There are
available two sets of Goodman diagrams, presented in Chapter IV and V
of this report, on which to base such an analytic solution. Such an
analytic solution was desired, as smooth curves can be drawn connecting
the Goodman diagram data to both the greoved and ungrooved distribution
of ultimate strength.

The technique used was based on the method of least squares. The
conventional method of least squares, however, was not considered as
being appropriate or even workable for the problem under consideration.
A coﬁventional least squares analysis requifes that the equation of the
expected line be completely specified. Using this knowledge the method

of least squares will fit the "best" polynomial to the data.
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Beforc proceeding further, let us pause and review the problem
and the available information. We have developed Goodman diagrams for
varying cycle lives includirg that of infinite life, which have mean
values of the strcngth distributions specified at stress ratios of
infinity, 3.5, 0.825, and 0,44, In addition, there arc also several
theoretical equations which are know to model the curve which should
be drawn between the mean of these strength distributions. The

equations include the von Mises-Hencky equation.
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2 iy = 7.5.1
| (sq/se) * (sm/bu) = 1 (7.5.1)
- and the Gerber parabola equation
| s._/S 2 — 1 ~ (7.5.2)
.(Sq/se) + (-)m u) Lol ‘ ede by
Where S, = alternating stress
S = ﬁcén stress
4
S ¥ endurance strength

5, = wltimate tensile strength.

In both of thesc¢ equations the information available from

LT ] Lo, I L L  snonp

the CGoodnian fatigue diagroms presented in Chapters IV and

H

V specify all of the quantities except the'ultimaﬁe strengih.,

»

: A method was then sought which would give an estinate

v

for the ultinate strength, It was assumed that the von

Mises-Hencky equation was a valid nathematical model fox the

%
i
o
é

futigue data. Graybill (9, p. 111) presents a method

which can be used to calculate the least squares estimator of
the ultinmate strength assuming that the von Mises~Hencky
equqtiﬁn adequately models the fatigue data, The only

other assunption which necds to be made is that the fatique
data to be used is not in the Jow cycle fatigue xange, the
Jow cycle fetigue range being below 10% cycles, It was

expected that the ultinate strengtﬁ which vould be predictéd

- in this range would be cquite large. - This is quite a valiad




|

1
PRS-

bk FEATR  Weeww. JENS IS IR TR R

114

assunption as low cycle life requires a completely diffewent
mathenatical model than the von Mises«lencky equation (Sce
Chapter XI). |

The fixrst step of the estimation process for the ultimate
strength using the von Mises-Hencky equation is to transform

that equation into the following form
i | S,/ 2 / 2"1 7.5.3
) ( Q Se) +(Sm S‘l) = . ( oo )

2) Set x=Sy, y=S,, and subtract (Sa/Sn)2
from both sides ylelding (y/S,)%1 - (x/S,)2  (7.5.4)

o 2 . '
3) setting y'=§, --y2 (7.5.5)
e 270 2
B=S, /Su (7.5.6)
4) Substitution yields y'=8'(x2) (7.5.7)

The least squares estimate of B is givenas

TR P B P Bl P 1 IR 2D

vhere the breckets indicate vector quantities. Unfortunately,
as Figare 7.5.1 indicates, there are only four values to be
placed in the g vector., These values of the nean stress

are derived from the y, or alternating stress voiues, in the
following nanner. Each of the mean stress values are related
to the alternating stress value hv.the strxess ratio x; where r

cquals

B
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Figure 7.5.1

S
m

Goodman Diegrem Illustreting Meen of S8trength
Distributions Used in Least Squeres Estimetie
of Ultimate Strength. (von-Mises Hencky Eguation)
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=8 /s | (7.5.8)
a m

It was pessible to solve for the +hree values of nean stress
by dividing the alternating stresses by r for each Goodman
diagran investigated.

Thus, the x vector was specified by three values of
mean stress wnile the y vector was specified by the
corresponding values of alternating stress. The value of
B! is the least squares estimator of the X axis intercept
which can then be related to the ultimate strength by
Equation 7.5.6.

Rewriting equation 7.5.7 in terms of the von Mises-Hencky

transfomed variables yields;

E‘O ey, 32] ;02- =1 [xoz'lezixzzxg’z‘] ry:, 7559
"12 |
"zz yzz
."32d _y_%

It can readily be seen that xo is zexro which will cause

the vector ecuaticn directly above to be reduced to;
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- 2 2
- 27 2 2 .~ 2
2 2
Xz yz
2
. 2
73 Y3

‘T
The first two vector multiplications [x] [x] yicld a scalar.,
The inverse of this scalar is simply the numerical inverse.
The renmaining vector multiplications ave straight forxward.

The vector operations, after being transformed %o algebraic
relutionships can be programmed (LSEFD) on the PDP-8 computer for
the Goodman diagram data developed in Chapters IV and V _of this report.
A flow chart, variable definitions and computer listing of LSEFD pro-
gram is given in Appendix E.

The results of the least sguares estimate is given in
Tables 7.5.1 for Chapter IV Goodman diagrams and Table 7.5.2
for data extracted frxom the Goodmun diqérqms of Chapter V.
Cycles to failure data and the corresponding strength distribu-
tions which this data would yield above the cycle life of
200,000 cycles is unavailable at this time, It appears fron
Tables 7.5.1 and 7.5.2 that as cycle life increases the
least squares estimate of the ultinate strength distribution
decreases. Had the least squares estimate prediéted consistently
a value of 255,300 psi, for the measured ultimate strength of the

Phase I grooved specimens, it could have been concluded that

A 000 0
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Table 7.5.1 Chapter IV Goodman Dicgram Data Used fow a
Least Squares Estimate of the Ultimate

Strength.
"Cycle Life Least Squares Estimate
' of Ultimate Strength
20,000 - 40,000 238,385
60,000 - 90,000 . 264,662
90,000 -~ 200,000 222,661

Table 7.5.2 Chapter V Goodman Diagram Data Used for avLeast
Squares Estimate of the Ultimate Strength.

Cycle Life Least Squares Estimate
of Ultimate Strength
40,000 262,533
90,000 234,972
200,000 ‘ 216,190
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the grooved geonetry specimen's ultimate strength distwibution
was the proper distribution to use along the meuan stress axis,
The decrease in the least squures estimate of the ultimate
streﬁgth as the cyclé life increases seﬂmingiy shakes the pos-
sibility that it is indéed the grooved specimens! distributions
that should be used along the mean streés axis until the limité
ing case is ipvestigated. This limiting case being an infinite

life Goodman diagram,., VWhen the least squares estinate tech-

nique is applied to the infinite life diagram (3, p. 75), pre-
sented in Figure §.4.1 which wus‘develoﬁed by John Smith fox
the grooved speciﬁéns under discussions, the estinate of the
uliinate strength is 222,661 psi. This is well obove the value
of the ungrooved ultinate strength of 178,000 psi. and is 87%
f the ultimate strength of the grooved specimens ultinmate of
255,300 psi.,
It is also important to note that theré is no data avail-
able for strength distributions below a stress ratio of 0.44,
Because of this the least squares estinmate was bassed on four
points with a stress ratio greater than oxr ecqual to 0,44,
It is noted that even in the Goodman diagramns of Chapter V for
cycle life values of 200,000 cycles, the largest investigated
altcrnating stress le#el at a stxess ratio of 0.44 has only
fallen 173 from the value at the stress ratio of infinity,.

while the nmean stress value is already 7655 of the ungrooved

~ultimate tensile strength at that quticulur point. ‘The least

B
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\ares estimate would have been considerably more accurate
if data below a stress ratio of 0.44 was available. It is in

this region that the curve must transition to cither the grooved,

o

10

B or the ungrooved ultincte tensile strength., Perhaps if this
data were available the estinates would not have fallen off

i to the values below the grooved ultinate strength., The analytic
re;ults, which suffered fxron a lack.of data below a stress

ratio of 0.44, show that they reaéh a liniting case value much

reater than that of the ungrooved ultinate stxength, and con-
g g,

# firn the oninions which were solicited from noted authors on

the subject of fatigue; It is the considered opinion of this

investigator that the ultinate strength distribution of the

pel

oodnan

o]

grooved geomsiry test specimen should be used for
diagrans which wepresent the behavior of grooved fatigue test .

specinans,
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CHAPTER VIII

EMPIRICAL, MATH MODILIKG OF FINITE LIFE GOODMAN DIAGRAHN

8.1 Hathenatical lodels of the Coodmun Diagranm

A nathenatical model of the Goodmaﬁ diagram.relqtes this
alternating stress; 5,, to the meun-stress Sys by meons of an
algebraic eqguation. In most cases this equation xelates a
static strength parameter to the endurance strength, 5,, of
the naterial in question. The safe design region of a Goodiiun
diagran is conventionally defined as the arca bounded by the
ordinate and abscissa aves and the line of the mathewmatical
fatigue nmodel, ox equation, ﬁnder considexation, There are.
several nathematical nodels of the Goodnan diagrawm. These
include the nodified Goodman line, the Gexber parchola, the
von Mises=llencky ellipse, the Soderberg'liné, the Sines line,
and the Langer modificaticn to the modified Goodman line, The
obijective of this chapter is to vresent thece mathemaficﬁl
nelelds, hewever the presentction of such models would be in-
conplete if not accompanied b§ a discussion of the strengths
and shortconings of each nodel. Figuxe 8.1 compares the six

rathenatical models discussed in this Chaptes.

.2 Modified Goodisan Line

The most widely accepted theory of combined stresses is the
modified Goodman line.  The modified

121
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Goodman line connects the endurance strength, Ser ON the ordinate
axis by a straight line to the ultimate tensile strength, §,,
vhich is plotied on'the abscissa wxis, (10, p. 6).
It is important to note that the endurance strength nust be
defined in relation to a giveﬁ nunber of cydies, beyond which
the material is assumed to have an infinite life., A cormmon
endurance strength of ductile steels is

cycle life value foxr the
106 cycles, The equation of the modified Goodman line is:

sm/se 4 sm/su =1
is

A common cxiticism of the Goodmun line is that it tends

ied Coodnan

to be consexvative where the sivess ratios, » = Sa/sn'
well above one or in the range 1< r < o, .
Even though it is consexvative in this xange, for lowexr siress

1/10 and less, the modif

ratios

5 in the rangs of »
diagran nay predict safe combinations of alternating and mean
strcss vhen in actuality they could cause yielding (10, p. 7).

8.3 Gerber Parabola
" The Gexber Parabola was first proposed by Gerbex in 1874,

At this time Gerber was attenpting to fit a curve to the results

]
SeQ

of Vohler's cxuperinents with conbined stresses, The parabola
which Gerxbex proposed, knovm today as.the Gexber pavabola, joined
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the ultinate tensile strength on the abscissa to the endurance
strength on the ordinate awis., These two physical propexties
uniquely describe the shape of the Gerber parabola. The Gexber
parabola requires that a parabola be drawn so as to have a
vertex on the vertical axis at the value of the endurance

linit and to pass through the ultimate strength which is plotted
on the horizontal axis (10, p. S)f The equation of the éerber

parabola is given by
s_/s +(*/s)2=1
a’ Ve "’ Pu _

Critics of.the nodified Goodman line have stated that it
is too conservative. The Gezrbexr porahola was proposed to con-
pensate for the conscrvatism of the nodified Goodnan line. In
addition, it has been found that in many casces the Gerber para-
bola fits the exverimental data far better, in the stress rxatio
canges of 14 ¥ £0o, than the ﬁodified Goodnan line., Unfortunate-
iy, the Gerber parabola does not give a proper representation
of the fatigue data whexe-stress ratios of one tenth and less
u%e encountered., At these stress ratios the Gerbzr parabola
periits an even greatex cnount of yieiding than the modified

Goodaan” line,
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8.4 Von Mises.lenchky Ellinse

This equation, associated with the energy of distortion
‘theory discussed in the following chaptex, hus been proposed
for the casc of cor' ined stresses, The von Mises-lencky equa-

tion or ellipse is giveﬂ by
‘2 - 2 .
(Sa/Se) + (Sm/ou) =1

This equation forms an ellipse in the first cuadrant of the
cartesian plane. Although this equation was originally pro-
posed for static loads, it is comnonly u;ed,as a model of con-
bined stresses in fatigue (10, p. 10), and (it is not theoretically

valid above the yield point of the material).

8.5 Soderberg Line

In 1930 Soderberg proposed his theoxy in the United States

which was to elininate the problem discussed previously concerne

ing yiclding in the safe design region., The Soderberg line
elininates the problem of the yield point of the matexial being

exceeded at cny combination of stxess, If ylelding does occur,

" the dimensions of the specimen are changed. Obviously, this

change is of a permanent nature and the performance of the
naterial is affected. Even though failure of the material nmay
be considered as fracture, the maxinuwa allowable stress level

becones the yield strength. The actual Soderberg line takes

o
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these facts into account by specifying a straight linc between
the enduvance strength on the oxdinate wils and +he yield

strxength on the dbscissa axis (11, 0,15). The equation of

S
Y
the Soderberg line is given by

Sq = 5o (1~ 8,/5,)

Crxiticism of the Sodexrbexg line arises because 3t does
indeed lie below the Goodnan line, Becau§é~of this fact it
will be cven nmore consexvative than the modified Goodman line
for stress ratilos in the range of l<r< o, the Gooduan line

has been shown to be consexvative in this regioen (11, p. 15, 16,

pt 18).
8.6 Sines Line

The Sines line is an empixical relationship given by

where the constant ¢ nmust be determined for the naterial undex
investigation., Beoeouse it is an enpirical relation it can

through the appropriate value of ¢, b2 adjusied to fit the

data for a particular natexrial. The Siner line accountis fox

naximn stresses up to the yield point. Consequently, the Sines
line is defined only to the vertical line vhexe the nean stress

3s equal to the yield strength as shown in Figure 8.1 (10, p. 9).

i)
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8.7 Langer Modification to the Modified Goodnan Line

The Langer Modificaticn to the modified Goodnan line ate

|

|

E~ tempts to solve the probhlem of yielding for a differcent case
than discussed in the Soderberg Line presentation. It will be

E recalled that the Soderberg line aticnpted 'l:'o solve the problen
of yleld at low siress ratios. The Langer nodification attenpis

[ to.sélve the problenm of yield caused by high stress levels., At

i high stress levels the naximun value of the alternating and

nean stress, S+ S, which are encountered may excecd the

yield strength (1), p. 16). As discussed in the Sodexbexg
line presentation this yielding will have an adverse effect
’: ( ' upon the fatigue characteristics of the specimen, The langer
\ nodification excludes the araa of the safe design region where

the alternating stress plus the mean stress is greater than *he

e
esnmeili e

yield strength. Hence, the safe design region becoues the area
bounded by the ordinate and obscissa wies, t}.xe Goodnan line and
the regicn which scﬁ:flsfies the inecquality S, + Sm4 S .
Criticisn is again directed at the Langer modification
because it is considerxed too conscrxvative at stress ratios
greater than one. The Longer nodification does elininate the
criticisn of the modified Goodman line where the yield strength

is exceeded and at the sane time does not denand the conserva-

tism of the Sodexberg line (11, p. 16).
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CHAPTER IX

THEORETICAL STRENGTH THEORIES

9,1 Introduction to Strength Theories

The three principal stresses completely describe the
stress state qf any point in a structures The need for a
strength theory to @escribe the material behavioxr at a point
arises when two or nore of the principal stresses have a non=-
zero value. Vhen one of the three pr?ncﬁplp stresses is non-
zexo the behavior éf the material is desceibed by the conven-
tional tensile test. Thexe are however, even in this relative-
ly simple state of str~ss , differences beiween the irue state
of stress and the 'enginecring! sitress-strain propertics waich

have been previously discussed in Chaptexr VI of this xepoxt.

” -

The objective of a '"theory of sirength'! is to relate a conplex
state of siress, i.,e., when two or moxe of the principal
stresses are non-zero, to the uniaxial properties which are
obtained in a tensile test (13, p. 1).

The elastic portion of the total stxain is related to
stress by Hookels: Laur, In_thé case of combined stresses ini;
tial yéelding must be related to yielding in a ténsile test by
neans of a flow theory. A flow theory relates the increments
of plastic strain in ench @irection to the state of stress at
the point under consideration. In the past there have been
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several yield criteria, or strength theories, proposed but
because of later experiments in hydrostatic stresses, which

have conflicted with these thcories,fhey seen now to be only

of historical importance (13, p. 1). However, there are two

such thcories which do not have this particulax fault. These

two are the maxinum shear stress criterion, and the energy of
distortion or von Mises-Henclky criterion. The following chaptexr
will discuss these two theoxies, and will present threc addi.
tional modified strength theories proposed by Findley and

Mathur (14). These discussions will be accoméanied by compari-
son of these tﬁgories to the fqtigue_probleﬁ of conbined

stresses of bending and torque.

istortion Theory

\le]
N
3]
3
D
~
S0
i
o
Hy
)

3

ctahedral shear stress, the enecrgy of distrotion, ox

2

P
=
o
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the Von Mises«Hencky theory, as this theoxry is often referred
to, predicts yielding to occur when the elastic encrgy of dise
toxtion reaches a critical value, The encrgy of distortion is
defined as the total encrgy minus the enexgy associated with a
volunetric dilation. It can be shown that the energy of dis-
torsion is prororticnal to the shzar stress on the octahedral
plane. The octahgdral plane is the plane which nakes equal
angles with the three principle directions (13, p. 3).
Consider a cubic elenent of naterial acted upon in the
three principle directions by the s?résses 5y, Sy, and s3

whexe sy 5,7 s3+ For the unit cube;fpictured in Figure 9.2.1,
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Fig. 9.2.1 (a) Element with triaxial stresses; this element undergoes
both volume change and angular distortion. (b) Element under hydrostatic
tension undergoes only volume change. (c) Element has angular distortion
without volume change.
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the wox)k done in any principle direction is given by
Un ='Sn€n/2 . (9.2.1)
where En are the three principle strains. Considexring
€ 1 = Sl/E -ASZ/E -MS3/E (»QQZOzG)
L3 - S - 3 B (R
€, QZ/E M l/E.‘}LSB/ (9.2.2b)
€4 = s3/E - Rsy/E -Alsz/B (9.2.2c)
whexre L = FPoissons ratio and E = Modulus bf glqsticity.
The total strain enéfgy;is
U = /2 s, ws trs, e 2 , }
= UptU +Uy = 1/2E {s1 +s, 5.0 - )L(slsz b By5, + sssl)
(9.2.3)

Defining average stress as

= + 5, + 2.
savg 8y + 8, t 5 {(9.2.4)

vhich is applied to cach of the principle directions of the

unit cuvbe, the rennin{ng stresses 8y -~ 8 , &, = § and
: avg’ "2 avg

Sy = scvg' showm in Pigure 9.2, 1c will only produce angular

- "

is substituted for s

distortion, If s
avg

17 52 and 54 in Equa-~
tion 9.2.3 the anount of strain enexgy vhich produces only change

in volwae is

ity
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2 -
U = { By = 2M(382,4) ) ={352V9/2n XL-2a1) (9.2.5)

v
) 2E )
Savg = L85y 8y 53 )}
: 3 :
. . ? ° ] . 3 X 9.2.5
If the expression for Savg 18 substituted in Equation (9.2.5)

it becones

.— . 2.'2 2 . ) ‘
lb-{l:ZAk/éz}(sl ¥8, +54 1258, + 25555 + 25354)

(9.2.6)
The enexrgy of distortion is then equcl to the total energy,
given by Equation 9.2.3 minus the enexgy of the volume change
given by Equation 9.2.6. The cnexgy of distortion is thus

given by

- - . 2 2,2
Uy =U =1, = (1 A/ 38y {(sl-sz)z+(szus3) ”'(33"51) }
' ‘ 2
When a state of pure shear exists, the shearing stress

at poi.n't,'te, is equal in magnitude 1to each of the principle

stresses at the same point., If sy = T and s, -85y the enecxgy

" of distortion becomes

A 2
U, =(1+ ~/68) {(s-(j-s))

vhen s =l:3, then -

' 2
U, =1+ AR

which is the enexgy of distortion in a toxsional test specimen.,

o, _
+ (s) + (-s)z} = {1+ Asz/E}S.z

il
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If the sanme unit cube is subjected to a normal stress, S1s

in one direcction only, the other two principal stresses being

zero as in a tensile test specimen subjected to an axial locd,

; the enexgy of distortion, Uy, becones

2 2. 2
Uy =Q+#/6EKs) +8)) ={1+/&/SE By

- Equating the energy of distoxtion for the case of pure

shear to that of the unaxial tension condition, when yielding

first occurs;

LT

un

LB T,

(1+ A/B)fr,ez (1+ 4/3E) sez

[pe——"}

ﬁ:e se/ V3~

[I—E

g R

The conelusion which can be reached is that yielding and
eventually a ductile fracture stoxts when the energy of dis~
tortion reaches a critical value. The méximumvshear stress,
1:0, at a point wvhen yielding starts is 1/ YV 3 times the

. raxinum tensile stress, s,, at the same point. Thus the

von Mises~Hencky ellipse for combined bending and shear stress

is given by

(Sn/se)2 + (sm/su)2 =1

(s./5.)" + (V/ \/.;'ﬁ/s“)z =1

- il
Crp—

vhere Q:in the obove equation is the constont shear stress

recorded in each test specinen studied,

o )
[P T
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9.3 Mavirun Shear Stress Theory

Tresca proposed in his maximun shear stress theory that
yielding occurs when the maximum shear stxess reaches a critis

cal value (13, p. 2). Yielding begins when the maxinun shear

stress equals the shear stress corresponding to the yield strength

in the simple tension test. According to Figure 9.3.1 yielding
occurs vhen T:max = sy/z where Sy ig the yield strength of the
material, For a trioxial stress state three maximum shear

stress may be found and are given by
- - \ =
T -(sl - sz\/?, 'L-—(sz - sz,/Z 't—-(sl - 53)/2

Yielding will begin when the lorgest of these shearing stresses
becomes equal to one-~half the tensile yield strength of a simple
tension test specimen (15, p. 152).

In cssence ihe theoxy predicts that the shearing yield
strength is equal to one~half of the tensile &ield streng?h.‘
The advantages of the theory is that it is easy to use, is
useful fox ductile matcfials and is conservdtive in describing

the behavior of brittle naterials (15, p. 152).

9.4 Connarison of the Mauimun Shear Stress and Enexay

of Distoxrtion Theories

The nmazimun sheor stress and enargy of distoxtion theories

can be conveniently represented in Figure 9.4.1 in the twow

dinensional princiml stress space,

g

y bl A RSN oA
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A

Theory

A

Maximun Shear Stress
Theory

A

: 1 k)

Fig. 9.4) Representation of Energy of Distortion end
Maximum Shear Stress Theories in the Plane
Perpendiculer to the Unit Vector (IN3I, 1/A3, 1/73 ).

(13, p. 8)

Ehergy of Distortion

ety

ok M

S




SO R TGS

™

AT R IR AR A et
el PR wm e

| me—- |

—_—

s B —

137

Experimentnl evidence indicates that the von Mises.Hencky
or enexrgy of distortion, criterion is moxe accurate than the
Tresca theory for predicting the yield sirength of most material
wndex bianial stress. In addition strain hardening and creed
behavior correlate much'better for most materials using the

on Mises<Hencky theory. The difference beiween the two theories
is small, the naximmm difference in the two theories in any
state of stress being about 16 percent. In view of this fact the Tresca
theory, which is more consexvative is considexed satisfactoxy
even though the von Mises-Hencky theoxy is moxe accurate
(13, p. 6).
It has been stated that stress-~strain propertics axe best

correlated using the von Mises-Hencky theoxy. This, however,is

not grounds enouch to stoate that fatigue fallures are best
described by the same criterion, The energy of distortion
has no directional properties and is always considered a posi-
tive quantity. This causes some serious deficiencies as a
means of predicting fotique failure., In fatique experinents
it has been found that the naxinun shéar stress theory will
correlate xesults as well as the VOﬁ Mises-Hencky criterion.
The problen of determining which of the’ theoriec is best is
adifficult hecause of the naturael scatter of fatigue data spanning
the various criteric.

Referring again to directional properties of the two

criterio it is noted that the naximum shear stress changes sign

E
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when the stresses ave reversed, as during a rotating bean
fatigue test, whexcas, it has been previously noted that the
energy of distoxrtion is always a positive quantity. In re-
verscd bending tests these directional properties are of critw
ical impoxtance. As the stresses at a point are xeversed the
encxgy of distorxtion goes from a positive quantity to zero and
then back to a positive quantity. This neans that the distor.
tion enargy theoxy is not reflecting a reversal in loading.
Reversed loading cases are very harmful to the fatigue of any
structure., It is important to recognize load reversals as
adding to the range of stress and strain., It would be possible
to devise nefhéds to account for louad reversals in the uniaxial
case, however, in the case of comﬁincd stress the problen would
be quitc conplex (13, p. 8).

The von liises«lencky ftheory is not'free_of the directional
propexty problem in fatigue., As an example one can consider
the speciui case where the nagnitudes of the principal stresses

axre constant but the directions arxe changing with tine., The

encrgy of distortion remains constant indicating that there is

no fatigue loading. However, this is not the case as the sheoar

stress theory nmust also be modificd for the case where the direc-
tions of the principal stresses vary with tine, However, in

this case one would merely use the history of nmiimum shear
stress on a fixed planc of the mate¥iél to predict the fatique

life (13, p. 9). .
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9.5 Modified Theoxies of Fatique FPailure Under Cowbined Stresses

Pindley and Hathwr (14) have developed severxal theories of
fatigus Failure under combined stresses, The following scction

will present the three theories which were developzd by thenm,

They state that the elassical theories foxr the initiation of
yielding wnder conbined stresses are conflicting. The investi-
gation of Gough and Pollawrd (14, p. 2) concluded that the

classical theories which have been proposed are inaccurate

since the ratio of fatigue strength in bending, b = Sg , to
. (<]

that in torsion fatigue strength, ¢ = Su’ is not the saae for

-
g gl

all netals as requived by the classical theories of ylelding.
Findley and Nathux propose that the influence of the prop- :

erty of anisotropy, that of having diffcrent proprrties in

= R W NS SR BN m wm

‘different directions, and the state of combined stress are the

i

cause of discrepencies between proposed theories of fasluve

b, i ond results obtainad from conbined siress fatigue tests (4, p. 3).
’ The ratio of b/t varies over & conziderable range for all

engineexing moterials, Considering only metals this ratio varies
from a value of 0,9 to 2,6, If, however, the netals are grouned,
vithin cach group the ratio of b/t has a much spaller range,

s Cast irons and its alloys have a b/t ratio which varies from 1.3

to 2.5 with a najority of these values lying between 1,5 and

!5 2.0, This Jatter range is consideréd to bs the duétilc range.
The b/t ratio valua ¢f notched cteelé wos found to be considexw

’i obly loss than that of wnnotched steals with a majority £a)ling

bziveen 1.0 end 1.5,

gy,
i
I
!
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)

It is felt that anisotropy of the material is a contribu.
ting cause to the variation of the b/t ratio. It has been
suggested that fatigue failure is caused primarily by an alterw

nating shcaring stress producing repeated slip, howevexr, the

ommuns B - N

resistonce of a matexial to this fatigue mechanisr nay be

N
U

influenced by the megnitude and sign of the nommal stress oc-

curing on planes of meximun shearing stress. This cffect

may vary with the material, Differences in the effect which
the normal stress may have in fatigue in a given naterial will

cause differences in the b/t xatio (14, p. 6).

9.5.1 Correction Factors

L e A b i

B

In ductile netals the cyclic principle shear stress

s P

is the quantity most closely associated with the fatigue danage.

The principle shear stress theory predicts that the bending
strength should be twice the shear strength (14, p. 8). How-

ever, because of the effeet ¢f anisotropy and combined stress,

— [ g

Findley and MHathur suggest that the principle shear stress

theoxy be modified to the form
T i = b/2K = © or K = b/2t (9.5.3.1) .

vhere K is the correction factor for anisotropy and the combined

stress condition. The expression for modified vrincipal shear

stress theory bhecones

z

2, . 2 ; |
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Where S, ond Sn represend respectively the enplitudes of aliex-

nating bending stress and alternating torsional stress come
ponents of combined stress (14, p. 9). |

It is iﬁportont to note that when correction factors are
applied to the octahedral shear stress, principal shear strain,
enexgy of distortion, total energy of diétortion, total enexgy
of defornation and nagnitude of state of stress vector

theories the résult is the same in all cases, that of Bquation

9.5.1.2.

If corxection factors are applied to the principle stress

theory the governing equation for combined bending and torsional

stress becones

2,52 '
a S-a + Sm /&)u - 1 (9.5.103)

Wnen the principle strain theory is modified the fatigue

strength ratio b/t predicted is

S /S =b/t =14+ M (9.5.2.4)
SE u

1

where M is Poisson's ratio,

The expression for the nodificd principal stirain theoxy

as reported previously (17) is

£, = 2+ *“7’23{‘#2 +(2b/t(1-m»))2'z’v+.(1- N/l-!-M)S (9.5.1.5)

For pure bending

T=0, s=b, thus £, = b/E

{ENT




m oo SR b |
- .
. N

— Wy g

e
PR

142
Substituting for 81 in equation 9.5.1.5, and
sinplifying the expression, the nodified principal strain
theory beconmes
MZ/E (L=t s/b b P =1 (9.5.1.6)
The fotigue strength ratio b/t predicted by the principal
strain theoxy (17) is .
b/t =1 + MK o - (9.5.1.7)
Substituting equation 9.5.1.7 in equation 9,5.1.6
(b/%c = 1) s2/b” + (2 - b/t) s/b + PLe? =1
| ' | (9.5.1.8)

This equation models the conbined stress state of bending and

torsion fox the nodified principle strain theory,
A design expression has been proposed by Findley and Mathux

(14) to nocel the fatigue failure of notched ductile metals and

irons. These ucterials have a behavior which is intermediate
beiween the perfectly brittle irons which have little or no
slip and ductile netals which have considerable élip. The
stress system which is associated with these materials nay
change frona the principle stress the&ry, b/t = 1, for matericls
such ‘as the brittle irons to the princiflc shear stress theory

where b/t = 2.0 as in the ductile netals (14, », 11).
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%‘ The design expression which is suggested to model these
metals undex combined bending and shear is given by
S + (S =) 9.5.1.9
(/55 )  + (5./5) | ( )

It is noted that the exponent b/t varies with. the class of material.

|

Vhen b/t = 1 Equation 9.5.1.9 is that of the modified princigkﬂ!
stress theory. When b/t = 2, which is the c¢ase in ductile
natexials the cquation reduces to that of the modified shear

stress theory ()4, p. 11).

9.5.2 Connarison to Patigue Data

¥

N

et O A ARG B Tt i

Findiey and Hchur compare their modified stress

theories to actual combined bending and torsional fatigue test.

= R PN R e

results., It is fornd that the nodified shear stress theory,

Ecuation 9.5.2,1 served as a good nodel for ductile metals with

4

a b/t xatio ranging from 1.46 %o 2.0, A comparison of this

4,\

equation to actual fotigue tests is given in Figure 9.5.1
(14, p. 15).

The nodified principles stress theory is conpared to actual
fatigue data of ir;n and irxon alloys in FPigure 9.5.2 and to thdt
of notched ductils stecls in the brittie range, b/t = 1.3 in

Figure 9.5.3. The modified principle strain thcoxry predicts

strengths vhich are higher than the actual data as can be secn

[P
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Under Bending and Torsional Stress For Notched Steels Having a b/t
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. in Pigu".’e 90502 (14, po ls)o

It is found that the design expression, Equation 9.5.J.9

i is in vexy good agreemcnt with data of notched cuctile steels,
b/t € 1.3, and in good agrecenment with both brittle and ductile
range of metals as shown in Figure 9.5.3 (9, p. 15).

Assigning the metals to regions by b/t ratio values, as

discussed previously, yields the following regions:

Region I  ({brittle) : ‘
Region II (intexmediate)

Region III (ductile)

The position of each modified strength theory within the regions

describad in FPigure 9.5.4 is specified by the value predicted

by the b/t ratio of each stxength theory. Table 9.5,) presents ‘ i

the value predicted by each strength theory for the xatio of

b/t. The nodified strength theories may be assigned to each
of the regions described previously in the following descending
ordex (9, p. 17).

Region I Modified princincl stress
Desiym expression
Modified principle strain

Region II Design expression (notched ductile steels)
(equation 9.5.1.9)
Hodified principal strain
Modified principle stress
Modified principle shear stress

Re

o]

ion YIX Modified principle slhicar stress
Design expression (equation 9.5.1.9)
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Table 9.5.1 Values of the Ratio b/t Predicted by each Strength

Theory (14, p. 17).

Principle stress theoxy ‘ b/t =1
Principle strain theory b/ =l e M
b/t =V2 + 24

Total strain enexgy theorxy

Distortion encrgy and
octahedral shear stress theory . b/t =V3

Principle shecr stress theory, b/t = 2.0
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CHAPTER X
RECOIMEHDED EMPIRICAL MATHEMATICAL MODELS OV THE
PINITE LIFE GOODHAN DIAGRAM

In viewing each of'the five finite lifc Goodnan diagrams
developed in Chapter V it can be seen that the equation of
the mecn line is generally of a quadratic nature, It Vis
of interest to investigate if the mean line of the finite life
Goodman diagrams can be described by one or more of the empirical
mathematical models of the Goodman diagram discussed in Chapter
VIII.

The von Mises-Hencky ellipse was comﬁared to the experi-
nental finite life Goodaman diagrawms presented in Figure 5,3,

through 5.3.5, The ellipse is given by
(s /s )2+(s/s )2=1 (10.1)
a e n Ty *

The endurance strength and ultimate strength mean values spzci-
fy'the nean line of the von Mises~Hencky eilipse, The endurance
strengths for cach of the five von Mises«Hencky ellipses were
taken from Toble 5,3.1, Thesa ellipses, supeximposed upon the
original experinentel mean line, appear as ovexlays with the
experinental finite life Goodnan diagram in Chapter V as
overlays on Figures 5,3,) through 5,3.5 As in Chqpyet V the
ultinate strength distribution is ta#en to be that of the

grooved specinmen, A FDP-B program, described in Appendix E, was
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used to calenlate the mean stress points as specified by the

| ellipse for several theoretical alternating stress levels,
These values are listed in Table 10,1 for each of the five

finite life Goouwnun diagrams,

The finite life Goodnan diagrams for 40,000, 90,000, and

—————
Seaverman 4

200,000 cyzles are in very close ngreemént with the von lises- T

Hencky ellipse. The lower cycle life diagrams of 3,500 and 9,000

!

cycles are in very poor agreement with the von Mises-lencky
ellipse, a fact which will be investigated latexr in this
Chapter,

Although the higher cycle life fatigue diagrans secemed to

be closely approxinated by the von Miseseliencky ellipse, it was

decided to detexrnine the exponant, a, whexe in general the

quadratic equation of interest is given by h

(s./5,)" + (sm/su)2 =1 (10.2)

L, This vas acconplished in the following manner., Equation 10,2

can be tronsforied to

y* o+ x" =1 (20,3)

vhere

«
1t
0

»®
i
[72]
o)
~
2]
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Table 10.1 Alternating and Mean Stress Values Predicted by the von
Mises-lencky Ellipse.

— TR e

{ ]

T—— [rem—"

Sa - psi Sm - psi

N=3,500 cycles; 134,000 43,118
128,000 86,038

Se-135,953 psi; 120,000 119,995
100,000 172,959

S ,,=255,300 psi 60,000 229,092
20,000 252,522

N-9,000 cycles; 112,000 65,878
168,000 92,779

Se=115,926 100,000 129,145
80,000 184,145

60,000 218,445

20,000 251,472

N=40,000 cycles; 88,000 61,751
84,60C 96,000

Se=90,693 80,000 126,264
60,000 191,445

40,000 229,128

20,000 249,015

N=90,000 cycles; 68,000 130,204
64,000 149,866

Se=79,054 60,000 166,231
40,000 220,207

20,000 246,995

N=200,000 cycles; 68,000 63,027
64,000 104,696

S =70,172 60,000 132,388
€ 40,000 209,761
20,000 244,711

AN, A

-
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Solving for ya yields

)r =1 - X (10.4)

If the natural logarithms of both sides are taken, the result is

In (1-x) (10.5)

alny

Iny = 1/a In (l—xz) (10.5)

If this equation is plotted on In - 1In graph paper the result will be a
straight line. A least squares PDP-8 program SBFE, is available which
will give the slope of the best fit equation through the data as well
as the correlation coefficient. The slope of this line is equal to the
value of the unver;e of the exponent a in Equation 10.2. A description
of this program is given in Appendix E. The values derived by this
method for the exponent a and p are given in Table 10.2

The finite life Goodiman diagrams of 3,500 and 9,000 cycles as
mentioned previously of not seem to be modeled by a quadratic equation.
The various empirical models were reviewed ané it was deterimed that
the §ines Liné had the greatest potential of modeling the finite life

range below ]04 cycles. The Sines Line is given by

S =S - ¢S : (10.6)

TG kit i e
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Table 10.2 Values of the Exponent a and Correlation Coefficient.

(p)

Cycle Life-N| Coeff. a Correlation Coeff (o) E
40,000 . 2.382) .9137 |
90,000 2.30k2 .89L48

200,000 1.9107 8915
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The coefficient ¢ for the finlte life Goodnan diagraus of 3,500
and 9,000 cycles was found, by trial and error, to be 0,08,

The Sines Line sPecifiea by ¢ = 0,08 was placed on overlays of
Figures 5,3.1 ond '5,2.2. The Sines Line is valid only to the yield

strength of the material. Because the yield strength of the

grooved geomctry specimen uas not available, a dashed line was

drawn beyond the yield strength cf the ungrooved spacimen.
E 'f‘nis i5 meant to signify that the yie]:.d strength of the grooved
[ épeca’.men is sone value greater than that of the ungrooved speci-

nen.,
l In conclusionyit can be said that the von Hises~Hencky i

ellipse quite clogely approxinates the mean line of the finite .
E‘- life Coodman diagram, where the cycle life volue is chove 104 ‘ f ’
r cycles, JXf the Von Mises-Hencky ellipse is modified to

‘ (s/s_ + %o ?)2 + (8 /s, + 3F )2 =1 (10.7)

‘: o' Te — Se L

. the Goodman surface is odequately described, This surface is
shown in Fipure 5.3.5. For life values below ]G4
cycles the Sines Linz odeqguately describes the mean line of

the finite life Gooduan diagrams, If the Sines Line is modified

as shown in overlays of Figures 5.3.1and 53.2 %o the form

S = (Se * 3cse) - cS, (2.0,8)

then the Goodnaon surface is completely rmodeled,
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The comparison of the von Mises-Hencky ellipse with the experi-
mental finite life diagrams, and the discussion of Section 9.3 leave

little doubt that the von Mises-Hencky strength theory closely pre-

dicts the fatigue failure in steel. The discussion of Section 9.3

gives adequate documentation that the von Mises-Hencky strength
theory is widely considercd as a strength theory_for combined stress
copditions. Although the von Mises-Hencky strength theory is not
free of all criticisms when considered as the criterion governing
fatigue failures the very close behavior of the larger cycle finite
life Goodman diagrams indicate that this criterion can be continued
to be accepted as governing the fatigue data generated under National
Aeronautics and Space Administration Contract NGR 03-002-044 at The

University of Arizona. The material which is .used in this research

program is SAE 4340 steel, Rockwell C 35/40.
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CHAPTRR XT
TWO RECOMHEIDZD METHODS OF REDUCIHG THE QUANTITY OF
EXPERIMEITAL DATA IEEDED FOR A FATIGUE
DATA ACQUISITION PROGRAM

The problen of reducing tﬁe number of data points in a
fatigue test pr ogran is cquite complex, The nature of thé
faticue nechanisn xequires that distributions be developad to
describe the cycles to failure and strength paraneters of
the test specimen., To date the complex fatigue test program
at The Uaiversit .of Arizona hw pexrformed fatigue tests on well
over 650 specinens. This has been expensive bhut the experience
gainzd by this pioneering program has laid the foundation to

) .

develop theorxetical conc»hi. which may possibly reduce the nced
fof upensive fatique acquisition programs in the future. An
exanination of the Goodman diagrams and surfaces developed
in this paper and the application of the theories nroposed by
Ve He Findley (14, pp. 26) scen to offer great hope for reducing
the number of test specimens required in the fatigue data acquisition
program.

In reviewigg the finite life Goodnan diagrans developed
hcre, it becones evident that the distributions placed along
the nean and alternating stress axes are of critical importance

in  deternining the shape and locotion of the Finite life

Goudran dlagram and surface, Currently the ultinate tensile

157
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strength distributioﬁ which is placed along the mean siress
axis is developed from the xesults of +tensile tests, These
tests include the pulling of thirty five grooved test specimens
to‘dcterminc the ultinate strength,distributﬁon; this method is
‘satisfactor; and should be continued. ' .

The distribution which is plnced along -the alternating

stress axis can be determined as it is currently being done

from the stress cycles to failure data at a stress ratio of

14 This requires the generation of cycles to failure

-~

distributions at five alternating stress levels. Currxently,

-~

b3 : 4

this would recuire thirty five test specimens in cach of the -

E

I

!, five g*rcss levels tested, The methods presented in Chapters
III end V could then be used to place the derived stvength

E d“%trlbuulcﬂs on the finite life Coodnan dlagrans. Considezing P

E the conclusions rxcached in Chapter X the development of the

finite life Coodmun diagrams would he possible with tvo

—

hundred test spzcimens, To review, the endurance strength for

each cycle life would be specified by the transformation of the

cycleg to failure distributions at a stress ratio of infinity

- to the vertical strength distgibutioﬁs on the CGoodnan diagran,

‘his procedure is outlined in Chapter V. The ultinate strength ’

distribuiion is specificd by th. tensile test of the thirty-five K

grooved specimens. The entire finite life Goodnan

b . 4" '
! . diagram could be nodeled, ebove 107 cvcles, by the Von Hisese

Hencky ellipse as specified by!
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The necessury data would amount to a maximun of two hundred

test spocinens which would include a staircase analysis of the

endurance strength at 106 cycles, at a stress ratio of infinity.

The required number of test specimens can be reduced
significantly if the cycle life values for the finite life
Goodrian dicgr&ns are determined prior'%o the start of the test
program. If for instance, three £inite life Goodman diagrams
are required then the recuired endurance strengths can be
determined by ihe staircase method forx edch cycle life,

This method would reduce the nuwiber of specinens to one

s

hun&reﬁ tiventy five to one hundred Fifty depending upon the
nuiber of required diagraas. EBach stalwcase method should have
a sanple size of thirty five while the ultimate strength dis-
tribution of the grooved specimen should also be specified by
thirty five sovecinens,

By dxaring a desired stress xatio lines on the finite life

Gooduan diagrinm, s specified by the cbhove equation, at would

be possible to develop the vertical strength distributions

vhich would he placeh on the statistical S-N diagram by follow.
ing the reverse of the procedure Qeveloped in Chapter V. That
is-by drawing the stress ratio line on the finlte life Goodnon
diagrems, the alternating stress level and standard deviation,

in actuality the three signa lini<s, of the rotated vertical
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strength distributions would be obtained. It would, by the
revexse of the method discussed in Chapter V, be possible to
create the vertical strength distributions which would be
placed on the statistical £-ll diagram. This at least suggests
that it may be possible to continue one step further back to de-

termine the cycles to failure distributions. This

R

method eliminates the need of generating cycles to failure dise-

ofdinie

gributions at the intermediate stress ratios between zero and
infinity. Currently such investigations xequire slightly nore
than four hundred specimens, This number considers thirty five
specinens to a #ycles to failure distribution,

In an attenpt to reduce the nced for cxperimental data

beyond that discussed above it appears that the theories proposed 38
by Pindley (14) in Chaptexr X offer an alternative to the expensive
fatigue data acquisition progrom, Considering that the mean

line of the finite life Goodnan diagram follows the equation

a 2
(sa/se) + (sin‘/su) = ) Q1.2)

”n

The exponent a, which has previously been discussed in Chapter
X also eppeared in the design expression of Equation 9,5.1.9
proposed by Findley for notched ductile steels,

b/t 2, 2
(sn/sc) + S /su

<8y
Ui
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Although the equations 9.5.1.9 and 12.2 are not exactly

- identical, differing in the denoninators of the teims on the

left hand side of the equations, they do attempt to relate
quantities of bending and torsional stress, -éompqring the two
equations, it can be seen that b is actually S, and t is Sy,
The exponent a is the ratio of bending stréngth t; toxsional
stééngtb, and éouid be determined experimenéally. I+ would have
to b; deternined if this ratio should be found from static
¥ests ox ﬁynaﬁic fatigue tests. In either event, facilities
at The University of Arizona, including the NASA complex fatigue
machines, would_be adecuate to deternine fhim ratio, Findley
Colemnn, and Hanley site the value of b/t = 1,78 for an SAR
4340 stcel, Rockwell € 35 (13, p.: 153); however, the dimensions
of the test specinen are not the same as that undergoing
tests at The University of Arizona. In addition the spacinen
thch Findley, et., al., used in their studies is of the un-
grooved geonetry., It seens that the exponent a is in dctuality
Findley's expenent b/t. It would be possible to experinéntaily
detemine this value with no more thrn the nunber of specimens
required by the'stutic uliimate strenéth tests, or thirty five
specinens,

Once the mcnﬁ line is Specified.the standard deviation

along this line could cquite possibly be approximated by dividing

" the standard deviation of the endurance strength which is placed

along the alternating stress axis by sin©, vhere ® is specilied
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by.the ratio of alternating stress to mean stress (3, pe. 73).
Hence, the standard deviation clong the stress ratlo axis, Bg ¢

r
is given by

o-é =G§ /sin © . (11'.3)
T e :

This then would give nn'hpproximation of the standard deviation
of "the Goodman surface.

 The two nethods presented in this chapter, to reduce to
a ninimwm the required number of test specimené, are not meant
to be finalized proposals for a fatigue test program. They do
seen to this investigator to be valid me;ns,of reducing the need
of laxge quantities.of experimental data., The later method
discussed would require only the nuwber of specinnns necded
to experimentally deteimine the ratic of b/%, quite possibly
no> moxe than 35 ~ 40 specimens. The method formerly discussed
would require approxinately 200 test specimens. Further ine

vestigation of these two methods seens prudent..

SR ! " o ’ T
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CHAPTER XIT

OVERALL, COHCLUSIONS |

Methodologies for developing finite life Goodmun diagrams
and surfaces have beer presented in this repbrt. The finite
life Goodman diagram presents aliowabie combinutions of altere
nating and mean stress for the combined stress condition of
alternating bending and constant torsional stresses for specific
pexiods of design life. The actual Goodman surface, which is
developed using two to five gtrength distributions a% specifiad
stress xratlos, can be used to construct strength distributions
at any desired stress ratio. The strength distributions are
distributed normolly. The tecﬁnique of constructing a strength
distribution at any specified stress ratio is initiated by
construction of the desired étress ratio line on the Goodman
diagrens, The intercept of this line with the Goodnan surface
specifies the mean and the standard deviation, in terms of
the three signa linits, of the strength distribution at that
stress ratio., The alternating stress level of the mean of
the strength digtribution can be read directly from the finite
life Goodman diagram. This procedure is pnrticulariy valuable
where the strength @istribution at a specific stress xatio
is required by the interferance tecﬁnique used in proubabilistic

design,

163
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In conclusion the finite life Goodnan diagrans and surfaces
developed in this paper indicate that as the cycle life decreases
the allowable corbinations of bending and shear stress magnitudes
increase. The strength distributiqn to be piaced on the nean
stress ciis of the finite life Goodman diagran is concluded to

Le tlat of.thc sane geonctry test specimen as undexnii2nt fatigue
1e grooved geonetry test specinmen is concluded to be

the test specimen which specifies the ultinate strength distri-

=

bution which is placed on the mean siress axis of the finite

th theoxy and

life Goodnan diagram. The von lMiseseliencky streng

cllipse have been shown to adequately model the behavior of
i ) >z ~ 4

SAE 4340 steel, above the cycle life of )10° cyclez, under

conbined clternating bending and constant torsioncsl stresses.,
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CHAPTER XIII

OVERALL RECOMHéNDATION

The following recommendations are offered by this inves-

tigator:

1.

As additional cycles to failure data becomes availcble

0

fron Phase II of the Hational Aéronautics.nnd Space
Adninistration Grant Ho., 03-002.044 at The University
of Arizoaa the nethods proposéa in Chop{ef XITI to
reduce'thé.requirca mumbar of test specimens'should

be further investicdated., The recovery of cycles to
failure data from the finite life Goodnan diagram,
should be investigated as proposed in Chapter XIX ,
using both Phase I dnd Phase II data, .

A conmprehensive literature search should be undertaken

to obtain the conpliete set of

papefs authoxed by
Professoxr VW, N, Findley of Brown University. Tﬁese
works would be a valuable aid to the research progron
being condqcfcd at The University of Arizona for the
ilational Aeronautics and Space Adninistration.
Additionul fntigué and static strength data, beyond
that supplied by Phase II of the Niational Acronautics

and Space Adninistration rescarch effori, should be

acquired through computer scarch facilities. These

-
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facilities utilize high speed computers to selectively

retrieve and display requested information., This

would be particularly helpful in determining the

best theoretical distribution to be.assigned to the
static sirength parameters., The additional data sup-
plied by these search facilities woﬁld cémpliment
data acquired through the experimenéal test prograﬁs;
These search facilities include the Hechanical
Properties Data Center in Traverse City, Michigan

and the Defense lMetals Information in Columbus, Ohio.

.

e
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APPENDIX A

FORTRAN Computer Program To Reduce Cycles To Failure Data

A-1. Flow Chart

A-2. Definition of Variables

A-3. Program Listing

167
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MAIN PROGRAM

e N

Read CONE, T (J),
AREA, CHIL (J),

168

CHIU (J)
o N
. 3
Read S, N, }
L XN (D)

XNLOG (1) =LOGF(§§(I))‘J :
L

Calculate XM2, XM3,
XM4, XSIGL,
XSIG, XK3, XK4

s

= N - 30

-

. - SUPU R ———

Calculate XNSUM, ‘)
: XMLOG 1 a,

Calculate XML, XMU By |
student + distribution{ ~

l

BT —

Calculate XML, XMU
By normal dist. approx.

B R T st s e L SR
R s LT T e ._J

Calculate XSRDL,XSTDU \

==Y

Print N, S,
XSIGL, XK3,
XSIG, CONF,
XMU, XSTDL,

. XMLOG,
XK4,
XML
XSTDU

o

Figure A-1. Flow Chart for Failure Data Distribution Determination Computer

Progran.




Figure A-1

Call subroutine for

Chi-Square distribution

At @

I

LA s eyl

< Print CHISQ, MCL

)

SUBROUTINE PROGRAM

At 4 e

Subroutine KIFIT(N,)
XN, XMEAN, XSIG
CHISQ, MCL

e s - g

- i ot e g s

Calculate MCL, XMAX,
XMIN, WIDTH, X(I)
XMIN(I), OFREQ(I),
EFROQ (I)

Print XN (3),
_ EFREQ(I), OFREQ(T)

)

l

(Cont'd) .
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Figure A-1

[no I =1, MCL/2

|

Y.

=

0

S
L4

| Add EFREQ(I) & PFREQ (I)

s EFREQ (I-MCL)-4.0
‘—"\\\

(Cont'd).

to next’ higher class
interval values

DO I =1, MCL/2 ‘.

o vt i oo e

S~

0

Y

Add EFREQ(I-MCL)

& OFREQ (T-MCL) to

next lower class
interval values

Print reduced histogram
EFREQ(I), OFREQ(I),
XCL

[Ca_l_c&.'_lezs.(xf)._ CHISQ

RETURN *

.

END
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CONF = TWO SIDED CONF

T = STUDENT 1 FOR GES
OF FREEDOM N

AREA = ABSISSA VALUE OF NORMAL DISTRIBUTION FOR
SPECIFIED CONFIDENCE

CHIU,CHIL = CHI SOUARE FOR CONFIDENCE M AND DEGREE
OF FREEDOM N

$ = STRESS LEVEL OF TESTED SPECIMENS

N = NUMBER OF SPECIMENS

XN(1) = CYCLES TO FAILURE OF SPECIMENS

XNLOG(1) = LOG CYCLES TO FAJLURE OF SPECIMENS

CL
DENCE M AND DEGREE

XNSUM = SUMMATICN OF XNLOG(])
XRLOG = MEAN LOG CYCLES AT STRENGTH, S
XSIGL = STARDARD DEVIATICN IN LOG CYCLES AT STRENGTH

XSIG = SORTF WITH N~1 DEGREES OF FREEDOM

XMZ29XM3 4 XM4 = 2ND,y 3RDs 4TH MOMENTS OF LOG CYCLES

XK3= COEFFICIENT OF SKEWNESS

XK4= COEFFICIENT OF KURTOSIS

XMLy XMU = MEARN LOWER AND UPPER COhFchhCE LIMIYTS OF
MEAN LOG VALUZ

XSTDL#XSTDU = STANDARD DEVIATION LOWER AND UPPER
CONFIDENCE LIMITS OF LOG VALUE

CHISQ = VALUE OF (h! SOUARE FIT OF DATH HISTCGRAM TO
NCRMAL DISTRIBUTION DATA

MCL = NUMBER OF HISTOGRAM [LASSES FOR CHI SQUARE FI1T

ADDITIONAL BSUBROUTINE VARIABLES

N = NUMBER OF DATA PQINIS

XN(1) = DATA POINT VALULS

XMEANs XSI1G = MEAN AND STANDARD DEVIATION OF DATA
VALUES ' a

XMAX = MAXIMUM FAILURE VALUE

XMIN = MINIMUM FAILURE VALUE

WICTH = CLASS INTERVAL ¥WIDTH

X(i) = CLASS BEGINNING POINT ‘ )

XMID(]) = CLASS MID-POINT

OFREQ(]) = OBSLRVED FREQUENCY OF OCCURRENCE IN CLASS
INTERVAL 1 )

EFREQ(I) = EXPECTED FREQUINCY OF CCCURRENCE

Figure A-2 - Definition of Variables for Failure Data Distributibn
Determination Computer Program.
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© E f~,L§ FORTRAN, EXZCUTE FORTRAR

SUSROUTINE KIFIT(H, %N, YHEANs X515, CHISOMCL)
C CHl R”U'R;L FI1 GF DATS POINTS TO A KORMAL DIST

LG8 FORMATIINS2IHLXPCHENT = 9F 95,09 281 CLASS MIDPOINT =
] r)-\’)

€7 FORMAT (18+ DATA POINT VALUES/(1XsF114249F12.3))

G FGRMAT (11X 20 EAPECTEL +10%s)10H OBSERVER 10X,
1 TH CLASS/ZI6Xs 10HTLASS FRIQIZHNYICHILASS FHEQ,

22 BN I2HEUGIRNING PT/ZLIXsF20.83F29.19520.8))
DINMERSION Xi(12C)s X(15)y XvI0(14)y OFREG(1E)
1 EFREC(15) :

n

ANy
52 XMl = Xr\(l
GC 1O 58 S
l”(xf(l)— MAX) DEsE5.56

XMAY = yNU1) e

- C\‘ T,""
cenvinug
RANGE = XMAY~XIVIN -

MIN) 521544554

AR SR AR S
[ W B e W]

= PANGE/XCL
LCL = CLASSH),Q
X)) = ¥MIN
Lo TC¢ J=2sMC0L
I¥} = 1-1
YOIy = X1+ IDTs
ToYNITUINY) = XUIMINAWIOTE 2.0
I ConTINuE
D0 37 1=240¢CL
Y oe 1-3 )
QERESE1T) s .0
OO T JriaM -
TR OCONC2) -XO3Y) ) T6472,72
8 IFIYNUA X)) Th . The T2
T6 CEREL1%Y) = CIRLUWIIMYa1,0
N IAREHI B NI
HEC AN I HE
OFRESEITL) = LFRCGAC1i .0
Lo 2 Jaiy : .
in - GO L) =X s (XD =X AR Y ) 2 (2, 0P XS TCEXSIG)
If (5¥P-120.) B824y52,21 .

Figure A-3 - 7072 Computer Program Listing for Failure Data
Distribution Determination.
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- J
i £1 EFREQUI) = 0
- PRINT a&s EXPXNICLT)
- G0 TC 83
i £2 CANTINLE
S - EFREQUI) = AN®*CV3T89423/XSIGHEXPUF (-EXP ) #WIDTH
1 82 ConYINUE
1 - OPRIRY ~7.cx tidsl=14t0)
o J PRINT 63y (EFREQII)SOFREGUI)I X112 oM CL)
Moo= l‘CL/?
J =

- oY ES R
1F (FYREC(II-6437 77484480
77 IF (1=) TSadseta
79 Jrael
HIUENS ES!

“’ EFRIQUIPY )

~

ral
rn
I»)

: CFRICUIN4DFREQUIPT)
CFREGUIPL) = OEREC(II+LFREQCIPT)

84 COiY L

L

SR K = vCL
-' ’ : HCTR = irCL-ts]
' : DC 67 1=14%

i Mui o= "’L'-lﬂ)
N B CIF LEFREQUIMNII-640) 89987467
l £5 JF (MM]-MCTR) 37,67486
g6 K. x (L] o

Ml o= v -]
[ EFRECIMUT) = SFRESIMMIN4EFEES (M ]4])
! : CEREQUMY ) = GFREC(HAMIIOFREI(MYI4])
87 CONTIMNUE
.{g . FEINT 49y LLFREGUI) 2OFREQUI I sX( ) a12Us%)
Mt = K-

LU 1

vene iR T L TR T O, 0

> G

. (HIS') = \;.c’
o DO 68 15J0K
i ! CHlaQ = CHISUA((UFHESI ) ~LFRIGU IV E(CFRESIII-EFFEIGT)

- ) VIZEFRECLY)
: 8& fﬁ']l'|l
- ’ pryuan

ol £

- C PRICGRAM FOL FINIING THE MLANs STANDARD '.m\’!ATIO“
| C AND CONE L -ENCe LHFITS OF RANUCY VABTASLES FROY
i C AEEUNTU HGRMAL LISTRIBUTIONS
Lonv = 9¢.,
p 3-F0RMAT (18
- 5 FLPMATY (T10D)
C FORSAY ((BFY0,C)) .
- lf .f‘f,;‘:_”_"‘": 'rl'.‘..'s.:w..il'd-fﬂ)
= 12 FORMAY 0100077 1 SFECINENS,, TAAELSYRENGTHY 17Y
H ErLOG MIAILYIOX I I TS ST DE e X BN 8% s 75 o
Pl Fioure A-3  (Cont'd) :
-
Pl
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i
i

Ry &
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Figure A-3 (Cont'd)
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2 8"4}\L'RT\ is/
3 F?\ .P’(F} .
132 FORMA (1X» 2UHIONELoENCE LIMIETS \'r’l.‘is
] 17H PERCENT ARE USED)
14 FORMA (1%Xy 37A4CORFICENCE Ll\l;ﬁvlﬁn'.ti’u l(‘\Lstys
| JOHNMEAN UPPERZEX13HSTY DEV LCUER,S
2 13HSTE DLV UPPCTR/ZEX 2249 Fl‘.’.l-,.r.lﬁ GsFZS-".)
19 FOIMAT (41X, 1CHWITH K=Y =4F20.8) . .
16 FOURMAT (1R 32H Tl SQUARE FIT TO NCORMAL DIST =4 F14.8
] SX2IHDEGRIE OF FREEDOM - y13) h ’
RIEENEICH Xinllsd ,9XALCG(]ZO)lCHl‘(17 Yo CHIVGICO) s T(100Q)

2X3 T1C F1E 2020084100 WITH N =9
)

REAL 2,CONT
RTEAD b, (T'3)91‘19"‘“

REAL 5y  ARcA
RPEAD 69 (CHILIT)I=14100)
READ 6y (CHIULI)1=1»100)
16 RE".I 1:" S\\;( '\(1)’1 1sN) , f

-

XNLC -(Ix = LOGFUXNIT))
22 CORTINUE

XLEUM = 0.0

0O 25 1=1,N

XHSUM = XNSUR 4+ XILOGUT)

-

25 CoNyInie
Th = N
A = N
XHMLOG = XISUM/AN
X¥z = 0,0
X3 = 2,0
ynva = ¢,0
02 30 1=1,N ‘ :
EC = (XNLOQU)=XALCR) 2 (XNLCGIT ) =XMLCG).
X2 = X924X39
X%2 =Xi43 4 XELFE(OONLSOL )Y =X 106)
X4 = ANGEXSIUEX3IU

3¢ CORTINUE
X3IC = SORTFA{XHZ/Z(AR-1.D))

X¥2 = XMZ/AN
X¥3 = X¥2/40

XM = XL SAR

¥51CL = SARIF(ANY)

XK2 = X¥2Z/(R210L¢%N42)

YRG5 YA/UXAZEXN2) : o
A = SORTF (AN ' i

IF (5-30) 3442%430

3L XML = ANLGG - TUN-1)EX3 ~ . :

YU o= XMLCGalti-])exs iC‘/ o : 4
> 10 3 ‘ i
T ST TS N ¢ SRR AMXSIGL A

i
i
S
H
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: YEU = XMLOGIARCARXSICGL/A

Ie (N-109} 37:J.9)5

35 & = 160
AR o= R

37 CONYINUE

36 XOTDL = XSICGLESIRTFL(AN=-]1.CH/CHILIN-1))
XET0U = XSTGU=SGRIFULAN=-Y .V /7CHIUIN--1I)
N = 1N )
PRINT 129 NiSeXMLOGsXSICGLs XM3sXK4
PINT 15s XS

PEINT Y&,
IF i-10C)
36 COuVINUE
CALL ®IFIT(MsXiL GGsXMLGGsXSIGL'Ch'ausMCL) ‘
PRINT 16 THISC L z
L CORTINUE ‘
G0 T2 18

ERE

N
X

PRIMNT 13s C
X ’\ W XoTDRL XS OU
pA

3
L
N

i

l-..‘.. ’
[ S——

“"-'J,

ey
.
4

-

! Figure A-3  (Cont'd)
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APPENDTIX B

FORTRAN Computer Program To Determine Time Dependent
Strength Distribution parameters

B-1. Flow Chart
B-2. Definition of Program Variables

B-3. Computer Program Listing

Ao

il



,.._...__.,

M =23

ANT =10

.[Read XJMIN, XJINT

’

Read N, SINT, ASTR(J),
AMLOG(J), ASIGL (J)

Calculate DSTR,

DMEAN, DSIG

.

Calculate SLAM (J),
SLSIG(J), MX

K=1, MX

Calculate XMLOG (LX),

XSIGL (LX)

pre

Figure B-1

-

L

4
= LX

Flow Chart for Time Dependent Strength Distribution Generation
from Failure Distribution Parameters.

!

p——
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‘Calculation of failure .

distribution parameters
fer interpolated stress
levels




J

?E. ) Print STR, XMLOG (I), ::)
- XSIGL(1I), I, 1 =1,LX

~

7o 1= 1,N
/
XVAL = XJMIN-XJINT

DO K=1, M

/

XVAL = XVAL + XJINT

ey

— Y.

Calculate z

Ve
Call for Subroutine
(z, PROB)

————— Calculate AREA(I,K) 5

4

™7 D0 I=1, N, INT

Print STR, XMLOG (I),
XSIGL (I)

iy

L

(

Print K, AREA(I,K),
K=1, M

.

" p J=1,M

|

Figure B.1 (Cont'd).
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Cummulative lognormal
failure distribution at
N=LK stress levels

from failure distributio
parameters.

=




M N N N ew MTT

o

DO K = 1,M

Calculate OFREQ(J,K)

Calculate CYC(K)

( Print K, CYC(K) 7 Q

s ‘ _ ' Strength f e
Print I, AREA (1,K), b disterbutions for
I =1,N,INT - '

various log cycles

of life.
DO K=1,M
DO I = 1,N-1
FREQ(I,K)= AREA(I+1,K)
- AREA (I,K)
S
j
DO K= 1,M
DO I =1,M
Calculate UI,FI,FIUI ' g Parameter calculations
for normal distribution ;
fit to strength §
Calculate SMLOG (K) distributions. S
e
© o

Figure B-1 (Cont'd)




© 1

Calculate SM2, SM3,
SM4

Calculate SSIGL(K),
SK3(K), SK4(K)

Print, CYC(K),
SMLOG (K) ,
SSIGL(K), SK3(K),
SK4(K), K=1,M

N t
Calculate EFREQ (J,K).
CHISQ(J,K)

y ——lh
Print OFREQ (J,K)

EFREQ (J,K),
CHISQ(J,K), J=1,N

\
END

Figure B-1 (Cont'd).
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M o= TOTAL NUMSER OF GENERATED STRENGTH DIST.
“INT = NO. OF VALUES OMITTED BETWEEN PRINTOUT
XJMIN = MINIMUM LOG CYCLE VALUE FOR STRENGTH DIST.
XJINT = INTERVALS BETWLEN LOG CYCLE VALUES FOR
STRENGTH DISTRIBUTION §
N = NUMRER CF FAILURE DISTRIPUTIONS
SINT = MINIMUN STRESS INTERVAL BETWEEN INTERPOLATED
FAJLURE DISTRIBUTIONS
ASTR(J) = STRESS LEVEL FOR EXPERIVENTAL FAILURE
Di<rolbu.,om
AMLOG(J) = EXPERIMENTAL FAILURE DISTRIBUTION MEAN IN
.Loc'cchEJ AT STRESS ASTR
Eﬂ' " ABIGL(J) = EXPERIMENTAL FAILURE DISTRIBUTION ,
0 STANDARD DEVIATION IN LOG CYCLES .
DSTR = DIFFERENCE BETWEEN Twd CORSECUTIVE
' EXPERIMENTAL STRESS LEVELS
DMEAN = DIFFERENCE BETWEEN TWO CONSECTIVE EXPERIMERTAL
FAILURE DISTRIBUTION MEANS
. DS16 = DIFFERCNCE BETWEEN TWO CONSECTIVE EXPERIMENTAL
- FAILURE PIST. STANDARD DEVIATIONS
C SLAM(J) = SLOPE BETWEEN TWO CONSECUTIVE EXPERIMENTAL
.. 'FAILURE DISTRIBUTION MEANS
SLSIG(J) = SLOPE BETWEEN THC CONSECUTIVE EXPERIMENTAL
FAILURE DISIRIBUTION STARDARD DEVIATIONS
L = COUNTER FCR INTERPOLATED FAILURE DISTRIBUTIONS
MY = DSTR/SINT
LX = SEQUENTIAL NUMBERING OF SAMPLE FAILURE o
PARAMETERS AND INTERPOLATED PARAMETERS '
STR = STRESS LEVEL FOR 1 TH FAILURE DIST. PARAMETERS
CXMLOG(I) = FAILURE MEAN IN LOG CYCLES FOR
EXPERIMENTAL AMD INTERPCLATED VALUES
XSIGL(I) = FAILURE STANDARD DEVIATION IN LOG CYCLES
FOR SAMPLE AND INYERPOLATED VALUES
K = LX = NUMBZR OF GENERATED FAILURE DISTRIBUTIONS
BY INTZRPOLATION
XVEL = LOG CYZLE VALUES FROM XJMIN YO XJUMIN 4 MEXJINT
FOR % STRENGTH DISTRIBUTIONS )
2 = STANDARDIZED DISTANCE FOR LOG CYCLE FAILURE
SISTRIBUTION AT I TH STRESS LEVEL FOR K TH LOG CYCLES
PRC3 = RNOBNMALIZED PROZABILITY DENSITY UNDER LOGNORMAL
DISTRIBUTION FRIM -2 TO 2
APEALL4K) = CUMMULATIVE NORMALIZED AREA OF LOGNORMAL
‘ FAILURE DISTRIEBUGTION FROM ZERO 10 2
ISTRIND ) =STRENGTH LEVELS PRINTEDR OUT
NINT(OIND) = INVERGER REPRESENTATIOM OF YSTRIINO)
CYTIX) = LGCO-CYCLE VALUE CORRESPOLDING TO.K S

"o

Figure B-2. Definition of Program Vatiablcs.
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FREQ(1,X) = FAILURZ PROSABILITY FROM CUMMULATIVE LOG-
NCRMAL FAILURE DISTRIBUTION AT LOG CYCLES CYC
BEIWEEN STRENGTHS I(A) AND 1(8)

Ul = ABSCISSA VALUZ OF STRENGTH HISTOGRAM CLASS
INTERVAL '

Fl = FREQUENCY OF OCCURRENCE IN STRENGTH HISTOGRAM
CLASS INTERVAL . '

FIUI = F] TIMES UI .

SMLCG(X) = MEAN STRENGTH AT SET LOG CYCLES

SM215M3,5M4 = 2KD3RDs ARD 4TH MOMENTS OF

~ STRENGTH DiSTRIBUTION .
SSIGL(K) = STANDARD DEVIATION FOR STRENGTH AT SET
. LOG CYCLES ’ .

SK2(K)=COEFFICIENT OF SKEWNESS FOR STRENGTH AT SET
LGS CYCLES '

SK&4(K) = COEFFICIENT OF KURTOSIS FOR STRENGTH AT SET
LOG CYCLES .

N/NINT WHERE N = LX MAX.,

TOTAL MUMBER CF INO S =
TOTAL NUMBER OF U S = N SAMPLE FAILURE DIST.
TOTAL RUMBER OF 1 S = N WHERE N = LX MAXe

S = M :

TOTAL KUMBER OF K

Figure B-2. (Cont'd).
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N SUHCTI 19
v 00 lz3), 8
BEXCIS) s 2FREL
.';c:):“'l":)):‘
it (AREA,F Kiuy,

'!‘.J -t CY Ty
-~ - \.s«

e Y

b (s ri.sa.,..\.'..)s (XMLCG, O r’«’{.'
i) e

2 {AREASCHISQ), (ANEA'(S
S REI’\DIO.X”‘”NQ)”
¢ FORMAT(’)rl eir)

C FAILURE DISTYRIBUT|ON VALUES ARE REAC IN FROM
C LOWEST 10 MIGHES] STRESS AN

C INTESER vALUES OF SINT
READ 20

Fieure B-3, 7072 Computer Program Listing
Distribution Reneration.
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FORYRAN, EXECUTE FORTRAN o

SISTRIEUTION SETWEEN
DEVIATIONS

—ZSGR(C1AL65894623 ’

T
002 3774857)))

: .

53,1042,1C40

~L%2/2.0)/2%
REC¥(15.-REC*)105.))))

'ICL(I('); StAM(9),
2515230y FREQEZS1422),
3)’ SX3(2%)y SKa(22),
VaGFRIEGE10423),
)

s CFREG(10423)

STRESSES ARS

’or Time Dependent Strength

.
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2

Ok Ll\h

n
(9]
n

FLRIAT (b ,
PEAD 20, NaSINTy(ASTRIU) WA PLGGUI) sASIOL(JY stz on
. 38 FCRMAT (Iﬁafl-,/(arlu-,)) ' '
: READZI2, (NI ) 4 J2] 4 N)
[= 32 FORVAT ((8110))
' KN12) o= -3
- ) L =1
[ IXDEX(Y) = ) :
¢ 0D BH U=l Ml
-~ . 0STR = ASTF(JTI)"<TR(J)
1 OMEAN = AMLGSUJI+I)-ARLGSLY)
L) LSIG = ASICLIG4I)-ASICL(Y)
... 5'-/‘.5'"(-" = DbT(/u'lb'\;\
IFU381G) 6255C,40
40 SLSIGIY) = L3TR/0S16
£C CONTIRUE . .
) JPY = U4}
~[ . MY = DSTRSING
. JRGEXCIPL) = L+kX
= SMIN = ASTR(1)
’ g YULTCGUL) = AMLCG(])
l XSiCL()) = Asl15t(1)
- BC SC ¥=)4%X
o LX = L 4 &

]
el

e I
~F
2 O
el 8]

N
U‘("
(4]
r‘.
r
>
!
L]

6 X5

E ¢ XLIZLILX) = XSIGLUX=1348I0T/780810( )
- ' €3 ConTuue

L ] L.= Lx

§ ’ &5 InnvlNus
.y . FOIMT o7

i_: SO FORUAT (1#ils E¥ 412+ ISTRUNGTH-PS 1,13
1: 1 JINLOG ST BEV, 9%, 1JHINTCOLR [

!, XitT = iy
i ST = Sy .
| OO I=haU Xyt ’ )

PEINTISCSTO AMLOG U] ) 3 XS1GL () 41 .
1 YO0 FOENAT (U3F20.04038)) .

LI = CTLHGINTAXINT

118 Cenvinur

' HOLD = oy
| Nos oLy
< .-CC'-:\":":.IK’.':'. LLGNTR AL fnlLU*' “15T. PA PR B a8 AT N
; C STPESLS LEVILS TU QU¥wuLaTive LOSNIRMAL AT LuRE
i C CISTRIRUTIC
't L orel per,,
i EVAL = ddn e adiid

Figure B-3 (Cont'd)
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fwe SN = Wm0 T

yeespond

a)

Y 18C J=laM
VAL = NVALEXJIENT
(NVAL=YRLUGEI MV ZASIGL])
FE2y 12042424140
122 1F1242,5)16C41204250

L P? DAL Z2yPRTD)
(loU‘PRCB)/ZQO

140 (7-2.5%) :Dﬁs]53v17
153 L PRIECIVPRED)
QﬁA(J.J) & qu /2'L+ 5

16 AREA(T L)
GO TG 1R0
17C Z8EAMLT ) = 1.0
S F AR I BNVIS
INT2 = JNT#4
SIR = 5N
O 229 1=2YalesIRT2

(]
(e
.
«

PEINT 216Cs STRIMLIGITIIWASIGLLT)
19':‘ Y’CR"Al ( -:'J!.l'\l 1"’;““tla\.TH = ’?1
¥ GHOYCLES = sFC LS Xs20lHLED &

pPeliy o2c0C
200 FORMAT

17 13HDEST LR T Ul

PRINT 210 (U ARCACI ) sd=1™)
210 FORMAT

TR E 397 Tl 112,47

c.”‘
STR = STRASINI#*#XikLT¥G.

2¢0 CONTINUE
DD 222 J=1l432UD
P = IXNDIX(J)
Xl = 2Lty
CO 224 =)™
QF REC
226 CONTiNLE
222 COMNPINGE
FREQUENTY D0ST AMD KRIORVAL rls Ri:
) AL B HEE D 8 K\ ~XJI.‘.T
BO 26; J=len
YJ4 = J
CYyQtl) = YJIEXSINTY .‘.»'I..
CTPRIEY 2aCy Dy CYCULU)
SHD FORAY (1=09850 = 313 28X 2HLO
PUINT 290 CFsANTAL T suY sl 4N
220 FORMAT 12432050 o YA 9l RECUENCY
3 .!L.tu.nx,..!..“I‘u?lr'-.'s.!

26HS CORY T

Figure B-3 (Cont'd).
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1D DEVIATION =

(iXs 3340274 BILOW 1S Js AND CUMMUL

((1’.’!3’5 Fe6,13,456, ”H!”

TICH PARAVITLRS
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Xy GHLTS MELE
1fF5.€6)

"-lT l VE s

B 120596

sl'* FSe8))

YCLES £ 3FC.2)

el isF 10,6515,
WIS S PO

£i0.¢

eh4154510,46)




o < “aa.g e raew s Voo b Seomme } [SUPPRW |

“
o

NMY = N-)
oo 270 v

= AREALIP L J) =AREA(TI D)
270 Con

HEAN ARD RORNMAL DISTRIGUTTION PARAM
CC 200 U=,

Fl = (.

Fror = 0.

Ul = SMIN-SINI®C.S

20 280 j=14M

Ul = U]+SinT .
F1 = FIAFREX(] )

FIUD = FICI+FREG(T ) Y?

280 COnTIRUE .
SMLOG(J) = FIUI/F]

S.’.'-Z = Go
Y3 o= 0,
SM6 = 0,0 . )
Ul = SYMIN~SINTXD.S
l

[£39]

o

il
Ui

=]!3‘-
Ul48STNT

"o

L1ER

(4]
Al
-
o
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5 OF HlS'lOGRrw'

ATy SK3(0U)

1) HINTEGES

SG (“’-“L“u('))*(U.'SHUCG(J))

SM2 = 8w 4 SURFRES(L D) .

TEN2 =AM 4 FRIVUT s #(UI=-SMLOGIL) ) S0

SHG = SNLLELEST "I-'.'(-(IQJ) '
290 CaNT 1N

&2 o= _S"."/F,

Si83 = svayrg

XG4 = &Ly F ]

S3IHLIY) = 3LRIT(5M2)

SKA(U) = SMI/(SCIGULIYYESEN2)

SKalJ) = S¥a/(542%30M2)
UGN ol & I SUTR S .

SRINY 2D .
: FRINT 218 .
AIDFORVAT {100 NUMZTK 4 10HLCS CrILES 45X,

] I8 MLAn STRIROTH EX 18 ST 0,

2 Y0 SKEWNEAZ,IUX 10 LURI0sis

PRINT 220y (U, LrCtd)y 3IVLSOGLLYY &

] SKal{Jry J=3,M)

PETRY 220, (U, CYCel)y 2MU260JY, S8
IFD FURMAT ((1csfT5e24252¢4, 1.32720.8) )

PEIN] 3259(3Ut(J!91:?~1(u)1'—.qanU)
IS5 FCEvLY { 15X, 15-5.)5:‘5':\/ VRN LTI R oY

! {12Xs212010)

14 ';':::' )™

Figure B-3 (Cont'é)
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z 4" U0 482 U=1.NOLG
. X = INpIX(d) »
L STHU) = sMin+siNIzX ~SINT _
: 4 2 = IST(J)-SMLDG() ) /381U LK) ;
- 1£02)° 325,228,350
. 320 2 = -2
1f 1T (Z-2.5) 240,345,360
S 360 ALY PRO2U(Z.8R25) .
PECBA = C.5-PROE#(C,5 :
1 G2 TQ 27¢C
J 350 18102-2,35) 345,383,245 . :
: 355 Cati PRDDiZ.PESE)
. ’ PREZA = PRCHXD.540.5 »
qf ¢G 10 370 .
-1 - 360 PRC2A = C.0 :
GITTC 3¢
i 8% PLG3A = ).0
= 272 OFRECQIUWK) = PRUDA .
XMNUM = NUM(J) - .
F . EFRPEQIUSX) = GFREL J,()f.ﬁu“ :
5 CHISDIA ) = (OFREQ(JK)-C FRECIJHX ) IX(CFREC( I, K
} 1 -EF?Calﬂa\))/C?FEQ(au\!
. &ED Cantlnes
t" PR IRT 460,K
B 4C2 FORYAT (1HCs24 X=413) -
FRINT 2933 (ST 3 SFREGIL,K) 0888 ClUsX ) EFRECIINKE ) |
1; I OCHISQUUG, N, U=1,80LD) : I
S H 495 FURMATIIAOX s 1an3TRERGTH LEVEILy Xy 1IHNORMAL FRIQ, TX,
- 1 CI3HOESERVEL FREQY TX: 1301 XPECTID FREQS &Xo
iy 2 18MTH] SQUARE VALUL/ 110X,X120.6)) Coe
$[g 503 CoMyINuE ‘ —_—
GC TG 5
- inp
ﬁi
K :
FIa -
! H

bon
—t
"

A A e i e

,J\ Figuy B-3. {Cont'd).



APPENDIX C

Listing of Fortran Computer Program CYTOFR Used To
Cycles To Failure Distributions

C-1. Flow Chart
C-2. Definition of Variables

C-3. Fortran Prograﬁ Listing

Determine
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Prozram to Calculate Paramcter Estimates for the
¥ormal and Log-Normal Distributions and Conduct
Gocdness~-of =Fit Tests

MAIN PROGRAM (CYTOFR)

<START>-

: READ :
NDATA, DATA, AKURCY, STRLEV, RATIiO "--—{::)
=

END. OF DATA
?

Q\ﬁEAD x(i)'s,/"

\ READ CUHFRQ(I)'s/

Y
[f=1]
s

PCAREA(I) =

CUNFRQ(X)
NDATA

3

IS8
I > KDATA

YES

rO b»_";"flf]

FRINT STRLV, RATIO, X(I)'s/

\

Calculate mean a&nd stendard deviation of X(I)'s
SUBROUTI1E MEAN

1

Do Chi-square goodneésuof-fit test
SUBRCUTINE CHISQA

Fig, (-1 , (f)
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Do Kolmogorov-Siirnov Goodness~of ~-Fit Test
SUBROUTINE DTEST

Y
Calculate Moment Coefficients of

Skewness and Kurtosils
SUBROUTINE ALPHA

P pm—

$rtrseson, g

\

AKURCY . 00001

-
1!
[

. LOG_X(T)
MX(I) = [ (—5F~— + L0G_(20))(10000.)] + .5

. . ST
. . X(I) = NX(I) :
rry L X(1)
X{I) = 15500,

IS -

.\ FRINT STRLEV, RATIO, x(I)'s /
.
s

| Calculate mean and standard deviation of X(I)'s
A : . SUBROUTINE MEAHN

t mnmuma

PR

1 (-; Fig., C-1 (continued)
i A A




£
Do Chi~square
goodness~of~fit test
L SUBROUTIEE CHISQA
b , :
; [é Do Kolmogorov-Smirnov
: poodness-cf-rit test
E SUBROUTINE DTEST
s
: li L ¥ :
3 Calculate moment coefficients
:5 l of sXewness and kurtosils
. 8 - SUBROUTINE ALPHA
L
F

% (: Fig. c-1 (continued)
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Subroutine to Find Mean and Standard Deviation

SUBRCUTINE MEAN

A\

SIGHA = 0,

SIGKA = SIGHMA+X(I)

TOP2 = TOP2+(X{I)-EAN)?

~ras SIGHMA
b= XVEAN = <5
ARBAN = Frrp

- ToFs
WV o [T,
DEV =/ SATA-1.0

\
\| PRIET XMEAN, DEV /

!

(BE&URN}

Fig. C~1 (continued)
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IS BN s ew

R —

A—

193
Subroutine to Find Area Under Standard Normal Curve

FUNCTION PROB(X)

IS (X-1.2)

XsqQ = (x)?

FROB = (.79788455) (X) .99999774-XsQ[ .16659433~
XSQ(.024638310-X5Q(.0023974867)) ]

.‘{

I | (RETURN) | -

IS X-2.9

v
o

Y

<0
RECXSQ =-$§
XSQ = X2 X A

PRO3 = 1.0 Pnog/; 1,0-(.79788453) EXP[
PTERH = 1.0 (<X-2) (1.0-RECXSQ(1 . -RECXSQ z
FACTOR = 1.0 |
(3.-RECXSQ(15.~-RECX30(105) ;
ODDINT = 3.0 - 15 5)))))) :
f f
RETURN

Fig. C -1 (contiqued)
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[,

PTERY

TERM

PROB

- PTERI
ODDINT

!

.. _ FTERM(XSQ)
= = {2Y FACTOR

PROB+TERN -

<0

\

1s
|TERM-.00007]

PROB = (.79788455)(X)(PROB)

\

(RETURN)

Fig. C~1 (continued)
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FACTOR = FACTOR+1.0
ODDINT = ODDINT-+2,0




;

ey

195

Subroutine to Conduct Chi-Square Goodness~of—Fit Test
. SUBROUTINE CHISQA

CHISQR =

K= 1.5+ (3.322)
REALK =

XMAX =

XMIN =

0
G

0 10(DATA)

0
L
K
X(
X(

[SPE
g Ys?

[XHIN = X(1)]<

Is
J > NDATA

YES NO

Fig., C-1 (continued)
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RAIGE = XMAX-XIIN
NN WL
PIVIDE = zu{KeY |
. _ (RAUGE+AKURCY . -
Kv = [ RERTR + (.5)AKURCY] (DIVIDE)
RK1 = XV
v = RK1
= DIVIDE
\ PRINT XMAX, xm;m,vl/
=1l
."t-"
A=1I
B = (.5)AXURCY
CSV(I) = XM ve(A~1,0) (W)
I+1 CEV(I) = CSV(I)+1-AKURCY.
CIB(I) = CSV(I)-B
CUB(I) = CEV(I)+R
NO ,/r”/ji;?\\\\\ YES
CUB(I) = CEV(I)+B

CEV(K)
cuB(K)

Lo |
v
!
hofoN peo—

XHAX
CxV(K)+B

Fig. C~1 (continusd) é
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J = J4+1
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FRzQ(J) = FREQ(J)+1.0

NO

o
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=1

'
L ond

A
: } >y "-: -'
2(1) = CUB(%%VYHBAN

1T = I+1 T= Z(I)

AREA(I) = Eﬁgggtl

REQAREA
MAIU =

)
-1

<~

1S

> 0 AED Z(M)
OR

0 AND Z(})

XS

1 . L
REIQAAEBA(Y) = REQAREA(Y) =

larEa(I) - AREA(H)] (/’,,//” AREA(T) + A5EA ()
G)- 10 Is

I > MAHU

Fig., c-1 (continued) ;
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[

. v
EXFREQ(M) = DATA*REQAREZA(M)

’ ; T ;
TXFREQ (M) -FREa(k
U(:"I) = EXF ..ﬁ(,,_,) § ’( ,I)

AR Rad MY M = M+l
: EXFREQ(3) [:::;:::]

CHISQR = CHISQR+U(M)

=\ FRIKT I, CLB(I), cus(I),
‘»»—-«¢A\EXFREQ(I), FREQ(I), U(IX)

lI =—E:1F:

Y
\ PRINT CHISQR/

RETURN

Fig. ¢~1 (continued)
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;- Sxibroutine to Conduct XKolwogorov-Sunirnov
;‘\/ Goodness~of -Fit Test :
: SUBROUTIXE DTEST
(sTART | -
f r
? [T=1
(1) = X(I)-XkEAN
@‘-'— Z{1) = ="5Ey
‘ _ [DSTAT(I) = .5-PCAREA |
AruncH = L=EES R%?ﬂ-l
l»\\. ' DSTAT = ARUNC-PCAREA({I)
| |
' < ARUNCP = E&Q.E_LT + .5 a
»
' DSTAT(I) ==
. APUIICF- PCAREA(T)
! KO IS Y1s
— I > NDATA i ;
I‘ i _ q
1= 341 | , \ rr15T D37AT(1)'s /
. 3 . - .
@ | ‘ (rETURK)

TR SN SOt Py S o A R N PRI o iy D Tl A -
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v Subroutine to Find the Moment Cocfficlents of
ot Skewness and Kurtosls

SUBRCUTINE ALPHA

- - 3 START)
‘ ( . . N . "
P '

1
TOF3 = 0
{ : _ VAR = 0
TR o I -
i . Sl EEE%JJ -
. . - . '

VAR = VAR (X(IY-XHEAN)?
TOP3 = TOP3+(X(T)-XNEAN)3
TOPL = TOPA+(X(I)-XMEA&)”

YES _- 1s v Y
m_uuxﬂ,<::g:gf;DmTa L (oR— P XX

! Qi TOP3
————— SA{LJ‘. = DATA
DRV VAR _
STDLJ-‘ o DAT}L
ALFIA3 = _§SEE~“§
(STDEV)
e TODY
TKURT = DATA
' ALPHA[}. = —L—-—-ET ulr
(STDRV)

»\ FRIIT ALPRA3, ALPHAL /

1'! .
RETURH

Fig. C~1 (continued)
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List of Definitions for Frogram to Fit Normal
and Log-Normal Distridbutions to Cycles~
to-Failure Date (PROGRAM CYTOFR)

Failn Program!

NDATA == DATA = number of observations.,
STRLV = stress level in psi.,

AKURCY

accuracy to which cycles-to-failure data
are known. )

RkTIO = stress ratio

X(1) = cycles-to-failure data

CUMFRQ(I) = cumulative frgduency of each X(I); le,
number of X's less than or equal to X(I).

PCAREA(I) = CUNFRQ(I)/NDATA

Subroutine to celculate the mean and standard deviation of

the cycles-tonfailure.data (SUBROUTINE HMEAN)

SIGHA = sum of the X(I)'s
XMBAN = average of the X(I)'s

n 2
TOP2 = £ (X(I)-XMEAN)®
3=1
D2V = standard deviation of the X(I)'s

Function subrovtine to find the area under the noramal

curve (FPULCTION PROB(X)).

X = abscissa value fbr vhich corresponding ares
is desired,
= d@desired aredt

PROT

C-2. Definition of Variables

e e SR s B s e e
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: Subroutine for Chi-square goodness-of-fit test (SUB-
T ~ ROUTIXE CRISQA).
L . K . = number cells,
s XMAX = largesﬁ value of cycles—foufailure.
XMiN = smallést value of cycles-to-failure.
cSV = cell starting value, ' .
CEV ‘; cell end value. '
s CLB - cell lower bound.
§. CuB = c¢ell upper bound, _
g FREQ(J) = number of observations in I ce11,
; REQAREA(J)= expected valﬁe of 3% ce11,
- CHISQR = total Chi-square value,
- .U(i) = Chi«squaré valve of 1™ cell,

Subroutiné for Kolmogorov-Smirnov test (SUBROUTINE DTEST).‘

e —

zZ(1} = gabscissa value on standard normal curve for
a given X(I),

— |

ARUNCN = area under standard normal curve from -
[ to z(1),
" DSTAT(I) = absolute difference between the dats cumu-

lative frequency.and the hypothesized cumu-
lative freﬁuency.

XIEBAN average of the X(I)'s.

DEV stendard deviastion of the X(I)'s

PROB(T)

it

area under the &tandard normal curve from
~T to +7, '

C-2, (Cont'd).
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Subroutine to calculate the moment coefficients of skew-
ness and kurtosis (SUBROUTINE ALPHA).

ALPHA3

ALPHAL

VAR

TOP3

SKEW

STDEV

TOPL

‘TXURT

c-2,

(Cont'd).

]

it

il

-
=

—
=

t

noment coefficient of skewness.

moment coefficient of skewness,

(X(I)~£)2

It ™M

i=1
gi(X(I)—?_(_)B

third moment of the data.

biased estimatér for standard deviation.,

(x(I)—g)“

Mz,

i=1

fourth monent.-'of the data,
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PROGRAM CYTOFR (INPUT,OUTPUTTAPEL=1HPUT) 205
ComwmePROGRAM 70 FIT MNORMAL AND LOG.NORMAL CURVE TO DATA AND CHLCK
C=-===GOCLHNESS OF FIT.

‘ DIMENSION X(300)sCSV(9)+CEV(9)4CLBI9)sCUBI9) s CUMFRA(100) s
1pcAREA(1<ox,DSTAT(loO),+P50(9>vAQEntai'RFOARnA(9>oEXFRuQ(9)vU(9)
220160) oy Ny (100) yRAMK(100)

EXTERNAL PROB
710 PRINT 1
Co== ~MDATA=DATA=NUMBER OF OBSERVATIONS
Ce-===STRLV = STRESS LEVEL IN PSI.

READ 6sNDATAJDATAAKURCYSTRLEVy RATIO
Ce===-X= NUMBER OF CYCLES T0 FAILURE
6 FORMAT(I34F5, 11F9 43F10s)4FB.S)

. IF (EOF 1) 564°
55 READ 790 X(I)y I 13MNDATA)
7 FORMAT (BF10.0)
C
C SORT X(I) TERMS IN ASCENDING ORDER.,
c

K=NDATA=)

IF(KOLEO ) GJ TO 30

DO 20 I=l,K -

N=DATA~]

1s70=0Q

DO 1¢ J=1eid )

IFAX(J)eLE.X(J41)) Gu TO 10

SAVE=X (J)

X(J)=X(Je1)

X(J+1)=SAVE

ISTOP=ISTOP+]

16 COMNTINUE
IF(ISTCPLEOCE) GO TO 30
22 CONTINUE

C SET CUMFRQ(1) ARRAY

3¢ DO 45 I=],NDATA
40 CUMFRO(Y) = ]

C=~=-~=PCLKEA = F(N) OF 0OBSERVATIONS

DO 759 1=)y MOATA
159 PCAREA(T) = CUMFRAI(I)/DATA

: PRINT 405

405  FORMAT (43X953HNORMAL DISTRIBUTION FITTED TO CYCLES~TO=FAILURE 0AT

18./77)

IF (RATICO,EQ,r.6) 60 Y0 434

PRINT 402y STRRLEVsY RATIO
422 - FORMAT(22Xs14H STRESS lEVEL—sFlg 115H PS1.y16X

14 14HSTRESS RATIO =4F6,3/7)

6C 70 41¢c
41¢ PRINT 416, STRLEV
616  FORMAT(25X414HSTRESS LEVEL=3F)04)¢5H PS1.416X

13 234STRESS RATIO = INFINITY//) -
415 PRINT 404
404 FOIMAT (55X 22HCYCLES TO FAILURE DATA/)

PRIMNT 402¢ (X(I)sI=14NMDATA)
403 FORMAT (6(10XsF10,3))

PRINT 3

C-3. Fortran Progam Listing,




¢0n155 3 FORMAT (1HD)

‘0185 CALL MEAM(Xs DATAs NDATAs XHEAH, DEV) )
| 18161 CALL CHISAQA(Xs DATAs NDATAs PROBs AKURCYs XMEANs DEVy Z) 206
000171 CALL DTEST (PCAREAsNDATAYX1DEVIDSTATPROU XMEANY Z)
FAN20]) ' CALL ALPHA(X, NDATA, DATA, XMEAN, DEv, ALPHA3, ALPHA4)
15210 AKURCY =  ,0000) : '
hoQ2l2 - DO 54 I=),NDATA )
v 213 NX(I) =(ALOG(X(1)/20¢)+ALOG(204))%10C000. ¢ o5
{226 x(1)y = dxqny
v023Cc 54 X(I) = X(I)/100009.
060234 PRINT 1
{io24c 1 FORMAT (1H193HASD/// )
20240 PRINT 40) '
009244 401 FORMAT (38Xs5711.06=NOPMAL DISTRIBUTION FITTED TO CYCLES-70-FAILURE
T . l [)ATI\.///) . - . v '
{10244 IF (RATI0O.EQ.,040) GO TO 417
L0245 PRINT 402, STRLEV, RATID
009255 GO TO 416
10256 417  PRINT 416y STRLEV'
10264 418  PRIMT 2

bog270 2 FORMAT (49Xs34HLOGS OF THE CYCLES TO FAILURE DATA/)
‘{99276 . PRINT 413 (X(I)yI=19NDATA) '
‘?9303 413  FORMAT (6(8XyF12.5))
000303 PRINT 3
0307 CALL MEAM(Xs DATAy NDATAs XMEAN, DEV)
§§9313 CALL CHISQA(Xs DATAs NDATAs PROBy AKURCYs XMEANy DEV, Z)
10323 CALL DTEST (PCAREAZNDATAsXsDEVIDSTAT,PROByXMEANS Z) '
60333 CALL ALPHA(X, NDATAy DATA, XMEANs DEV, ALPHA3, ALPHA4)
10342 G0 TO 7d¢ - S
$5343 56 STOP
0en345 EHD

C-3. (Cont'd).




SUBROUTINE MEAN (Xy DATAy NDATA, XMEAN, DOEV)
Co-===~SUGROUTINE TO CALCULATE THE MEAN AND STANDARO DEVIATION OF DATA.

ji5010 DIMENSION X (NDATA)
1 0010 SI1GHA= 0,0 -
000011 0O 8 I=ls NDATA 207
{q012 8 SIGMA=SIGMA+ X (1)
{ 06 XMHEAN = SIGMA/DATA
0up017 - TOP2 = (.0
nnoze : D0 9 I=1,MNDATA
3?9021 9 TOP2 = TOP2 ¢ (X:I) =~ XMEaN)u«2
00026 DEV =SQRT(TOP2/(DATA = 1,0))
000036 PRINT 14, XMEAN
3n9043 PRINT 15, DEV
20054 14 FORMAT( 10xs 12HSAMPLE MEAN=y F17.6)
600054 15 FORMAT( 10Xs 15HSTD, DEVIATION=y F14,6)
50054 RETURN
g«ooss eto

l.

€-3. (Cont'd).




FUNCTION PROBIX)

Iv Cm=~==TH1S SURROUTINE GIVES AREA UNDER MNORMAL CURVE FROM =2 T0 +2Z
b c WITH AN ACCUKACY OF 0,00005 208
. Cm~~==Z VALUE GIVEN BY CALLING PROGRAM MUST BE A POSITIVE NUMBER.
£30003 IF (x=1e2)11411412
ﬁwqoos 11, XSQ=Xx#X , -

006 PROB= 0,797884558X%(0,99999774~xS0%(5,16659433-X5Q#(0,024638312

1Q#0+0023974867)))
016 RETURN

Hl

gnol17 12 IF(X=2:9) 135149414
00022 13 XSQ=X#X

10023 PROB=1,0

10024 PTERM=1.0

60025 FACTOR=1,0

np026 0DDIMT=3,0

i

030 g17¢ PTERM=~PTERMSXSQ/ (2, 04FACTOR)

v0034 TERM=PTERM/0DDINT

0003¢ PROB=PROB«TERM ) .

) 037 IF( ABS (TERM) « Q0,00007 ) B0y90450
042 9C FACTOR =FACTOR+1,0

00044 ODOINT=0DDINT+2,0

10046 GO T0 97¢ ,

0046 83 PROB=0« 797884554 X«PROB

¢0051 RETURHM

0 14 RECXSG= 1,0 7/ (X#X)

ovovOlo'ovo«o:oo-cc-:-o'ooco-cnavo-
=
S
w

L R’
ur
[

o N L P e

PROB= 140 =~ 0+797384534EXP (~XaX/240) /X8 (10~RECKSQe (1, =RECXSOs (3,
] = RECXSN# (15, = RECXSQ#]105. ))))

RE TURN

eND

D10
oo
~ -
o'

4

\.. s

[ |

-

e

C-3. (Cont'd).




kY

BT

060013

& doso

| gos!

‘900057

61060

~ 3 0062

00067
009075
(0103
0119

000111

0112
0117
01?1

127
\..'1?";

& 5272

660300

0°336¢

f 1310

SUBROUTINE CHISQA (Xy DATA, NOATAs PROBYy AKURCYs XMEANy DEVyZ)
Co=me=SURROUTINE TO FIT A HISTOGRAM TO THE DATA AND PERFORM THE CHI=SGuUARE
Co===~=TEST FOR THE NOR4AL OR LOG=NORMAL DISTRIBUTIOMNS.

DIMENSTION X(HDATA) 9Z (HDATA) 9CSV(9) 9CEV(9) o CLs () 4 CUB(9) » 209

1REQAREA(G) s AREA(9) sEXFREQ(9) FREQ(9) U(yg)

CHISQR= ¢
Co=~==TO0 DETERMIHE THE NUMBER OF CLASS INTERVALSyK

K= 1.5 ¢3,322%AL0G10(DATA)

REALK=K
Coemmwu=IN ORDER TO DETERMINE THE RANGE,FIND X(MAX) AMD X(HIN)

XMAX= A(l)

XMIls= X (1)

DO 17 I=)1,NDATA

IFC X(I), GT XMAX ) XMaX = X(I)

17 IF(X(D1) LT, xMItiy xMIMN=X(I)
RAMGE= XMAX~ XMIN

C======T0 DETERMINE THE CLASS INTERVAL WIDTH, W

C=====ROUTINE TO ROUND OFF CLASS WIDTH TO %AME NUMGER OF PLACES AS THE AC(
DIVIDE = 1.0/7AKURCY ’

KW =(((RANGEOAKuocY)/RFALK)+-5“AKURCY)#DIVIDE

RKl = Ky .

W = RR1/DIVIDE

PRINT 6249 XMAX

PRINT 63, xXMIN

PRINT 654V

DO 22 1=14K

A=]

B = GeS5%AKURCY

CSVI(I)= XMINe(A=1,0) eV

CEV(I)= CSV(]I)evupaKURCY

CLB(I)= CSv(I)=B
22 CUB( 1 ) = CEV(1)+8

CEV(K) = XMAX

CUB(K) = CEV(K) +B

00 23 U=i4K
23 FREQ(J) =00

00 24 I=1,4hNDATA

[)0 24 J:] ’K

IF( X(I) oGECLB(J) o ANDs X (1) JLE CUB(Y) ) FREQ(J)=FREQ(J)+ 1,0
24 - COMNTINUE
Cr=we=CHI-SQUARE TEST

PRINT 4]

PRINT 406

00 3¢ I=)4K

Z(I)=( cuUg(I)= XMEAN) / DEV

T= ABS( z(I) )

39 AREA(I) = PROB(T) /240

REQAREA(]) = 0,5 = AREA()1) | -
MALU=K=~)
DO 32 I=2,MMAMY
M=]~1 i
IF(¢ (z(1),GE,0,5,AND Z2(M) ,GE,0,0) OR,( 2(1) ,LE,C,0AND,Z (") ,LE,n,
1) .) GO YO 31
REQAREA(I)= AREA(])+APEA (M)
G0 70 32
31 REQAREA(]1) = ABS( AREA(I)=-AREA(M) )
32 CONTINUE

C-3. (Cont'd).
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00 80 HM=].K

[ I R A O A N R A

oD D¢

09317

“0320 EXFREQ (M) 2DATA®REQAREA (M)

0323 UH) =(( EXFPEQ(M)~FREQ(M))##2) /EXFREQ (M)

0e33] 8¢ CHISAKR=CHISQR«U (M) 210
Comee~ TO PRINT THE TABLE FOR CHI~SQUARE TEST

¢ 0337 DO 33 I=14K
ro1341 33 PRINT 344y1+sCLB(I)9CUB(I) s EXFREQ(I)sFREQ(I)2U(I)
Le 0412 PRINT 35, CHISOR
p420 62 FORMAT( 10Xy 14HMAXIMUM VALUE=3F15406)
3A0420 63 FORMAT( 10Xs 14HMINIMUM VALUE=y F15,6)
000420 65 FORMAT( 10Xy 12HCLASS WINTH=y F17.6)
- Qnos420 41 FORMAT (1HQ)
3 0420 406  FORMAT (8Xy5H CELLy10Xy10HLOWER CELLy11X910HUPPER CELL113Xy8HEXPEC
' 1TEDy 13X+ 8HOBSERVED ) 13Xy 1 JHCHI~SQUARED/8X 9 6HNUMBER 3 10X 9 8H3OUNDARY
| §13Xo 8HBOUNDARY 3 13Xy 9HFREQUENCY y IZX’QHFRFOUnNCYi12Av13dVALUF OF CE
. LLs)
0 0420 34  FORMAT (1Cxy12,5F21,6)
003420 35  FORMAT (iH0+81Xs25HTOTAL CHI~SQUARED VALUE -.rxo.e»
€ 0420 RETURN
¢ 0421 EMND

5

— - —

!% C-3. (Cont'd).
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TSUMRQUTINE DTEST (PCAKEAZNDATASXsDEVIDSTATHPr. °, XMEANy2)

Comomm SUBROUTILE TO CALCULATE THE KOLMOGOROV~SMIRNOV [=VALUES. 211
DIMENSIOH PCAREA (NDATA) 9 X (NDATA) sZ (NDATA) yDSTAT (NDATA) :
00 706 I=1y NDATA
Z(I) = (x(1) - xueaN)/DEV
IF (Z(I)) 703y 7C4s 705

763 T =aBS(Z(1))

Ce-===ARNCN=AREA UNDER THE NORMAL CURVE TO LEFT OF 7z FOR NEGATIVE 2z,
ARUHCH = ()+.0=PROBI(T)) /2,0
DSTAT(I) = ARUNCH = PCAREA(I])

GC 1O 706
764  DSTATUI) = 5 « PCAREA(I)
GO TO 706
705 T = Z(I) -
Cmm=wm ARUNCP=AREA UNDER THE NORMAL CURVE TO LEFT OF Z FOR POSITIVE Z.
ARUNCP = PROB(T) /2.0 ¢+ 4500
DSTAT(I) = (ARUNCP =~ PCAREA(I))

766 CONTINUE

PRINT 708

PRINT 7075 (DSTAT(I)s1=1+NDATA)
T07  FORMAT (6(10X9F10.5))

768 FCRMAT {(//60X953H D VALUES FOR KOLMOGOROV~SMIRMOv GOODNESS OF FIT

JTEST/41Xs52H(LISTED IN THE SAME ORDER AS CYCLES=-TO-FAILURE DATA)/)
RETURN .
END

C-3. (Cont'd).




" SUBROUTINE ALPHA (Xs MDATAs DATAy XMEANS

DEVs ALPHA3y ALPHA4)
DIMENSION X(NDATA)

C~e=-=SUBRCUTIME TO CALCULATE THE COEFFICIENTS OF SKEWNESS AND KURTOSIS
C====~CALCULATE THE THIRD MOMENT OF THE DATA (SKEWNESS)
ToP3 = 0 W0 212
VAF\-‘-’OO :

00 71¢ 1 =14 KNDATA ‘
VAR = VAR + (X(]) = XMEAN)#®##2
71¢ TOP3 = TOP3 «(X(I) = XMEAN)®&3
SKEW = TOP3 / DATA
STDEV = SQRT (VAR/DATA)
Cr====ALPHA3 = MOMENT COEFFICIENT OF SKEWHESS.
ALPHA3 = SKEW/(STDEV®#3)

C-====CALCULATE THE FOURTH MOMENT OF THE DATA (KURTOSIS).
T0P4 = 0,0

DO 711 I = 14 NDATA
71) TOP4 = TOP4 + (X(I)

TKURT = TOP4 / DATA .
C~=~==~ALPHA4 = MOMENT COEFFICIENT OF KURTOSIS.

ALPHA4 = TRURY/Z (STDEV##4)
PRINT 712

PRINT 713
PRINT 714y ALPHA3y ALPHA4
712  FORMAT (///19Xs39HMOMENT COEFFICIENT OF SKEWNESS (8LPHA3) 418Xy 304
10MEMT COEFFICIENT OF KURTOSIS (ALPHA4)/)

713 FCRHAT (21X934HFOR MORMAL ODISTRIBUTION ALPHA3 = 0523X+36MFOR NO
IRMAL DISTRIBUTION ALPHA4 = 3.0/)

= XMEAN) #%4

714 FORUAT (28X325HFOR ABOVE DATA-~=-ALPHA3 =F 6., 3, 26X125HF0R ABOVE DATA
1===ALPHA4 =3F06, 3)
RETURN
END

C-3. (Cont'd).
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APPENDIX D

Program STRENG (FORTRAN)

Flow Chart
Definition of Variable

Computer Listing
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PROGRAM STRENG 214

S —

g ;
| { START )

INT = 1

|

FEAD XIMIN, XIMAX, |

i
i
1
t

TINT, M,N, RATIO

—Y -
O’ [READ ASTR, AMLOG
17 7] ASIGL, NUN °
J

o NN W e

—— wmmmmmwmumwmlsmmmummtmwmm-..w...m......,.., st

D-1. Flow Chart




m . R

camomt omb ] m

eearirk

O

N

ACYCLE (I) = EXP (AMLOG (I))

|

™~
S

I>N \
2//

J YES

\7

NMl = N-1 INDEX = 1 L=1

T e s, Al A ® D

IS\ YES
JzNMl// 5

NO

\" o (o et e oo ey

DSTR = ASTR(J*1) - ASTR (J)
DMEAN = AMLOG (J+1) - AMLOG (J)
DSIG = ASIGL (J+1) - ASIGL (J)
SLAM (J) = DSTR/DMEAN

——

e e

ES
\DSIG

YES

N < '
[ SLSIG (J) = DSTR/DSIG —-———»—>®

Fow Chart (Cont'd).
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216

2)
JP1 = J+1, MX = DSTR/SINT :
INDEX (JP1) = L + MX, SMIN = ASTR (1)
XMLOG (1) = AMLOG (1), XSIGL (1)=ASIGL(1}
2
LX =1L+ X
XMLOG (LX) = XMLOG(LX-1) + SINT/SLAM (J) -
NO. o D
0
4 XSIGL (LX) = XSIGL (LX-1)
E
- ) - i
XSIGL (LX) = X"IGL (LX-1) +
I SINT/SLSIG (J) :
L ) B e e e e | |
: | |
( i ;
- L = LX ] X
I )

D-1, Flow Chart (Cont'd).
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CYC(J) = ALOG (xcchE )
= @YC(J)-Xl\iLOG(I))_/“)gSIGL(I_')
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Flow Chart (Cont'd).
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| I = INDEX (J)
‘ . | XNUM = NUM(J)
< YES DOES
, NO | L A
OFREQ (J,K) = XNUM(AREA(I,K) )
\XJMIN = XJMIN - XJINT .
PRINT
(HEADING)
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| K=J | J=M
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PRINT J,CYC (J)‘,] 8 ) AREA(I,J)
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UI = UL + SINT FI = FI+FREQ (I,J)
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B

’ SMLOG (J) = FIUI/FI SM2 = 0
STMEAN (J) = ALOG (SMLOG (J))

v

SM3 =0 SM4 =0
UL = SMIN - SINT/2

UI = UI + SINT

SQ = (UT - SMLOG(J)) (UI-SMLOG (J) )
SM2 = SM2 + SQ (FREQ (I,J))

SM3 = SM3 + FREQ(I,J) (UI-SMLOG(J)) SQ
SM4 = SM4 + SQ (SQ) FREQ (I,J)

]

D-1. Flow Chart (Cont'd).
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SM2 = SM2/FI, SM3 = SM3/FI

SM4 = Sm4/FI, SSIGL(J) = SQRTF (SM2)
SIG3P(J) = SMLUG(J) + 3 (SSK-L(J))
SIG3M(J) = SMLOG(J) - 3 (SSK-L(J))
SK3(J) = SM3/((SSIGL(J)) (SM2)

SK4(J) = SM4/(SM2) (SM2)

i - e

PRINT

HEADINGS)

PRINT J, CYC(J), XCYCLE(J), SMLOG(J),

SSIGL(J), SIGIM(J), SIG3P(J)
SK3(J), SK4(J) '
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Flow Chart (Cont'd).
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~—
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N

THEN AN1 = AN1 + 1

IF (CYTOFR(I,K)< XCYCLE(J)

ANUM(1)=0!
TOTAL

:_QJ

DOES
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NDATA = NUM(J)1
ya
ANI = 0
AN2(I) = ANl
YES ANUM (I) = ANUM(I-1) + AN1

Flow Chart (Cont'd).
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e
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T
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78Q = Z(2)
PROB = .79788455(z)(.99999774 - 2SQ x

(.16659433 - 2SQ(.02463831 - ZSQX.0023974867))
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\\\\3:?.9.z 0" . l
N
) o
REC = 1/(z x z)
PROB = 1 - .79788453 X
NO EXP (-z x z/2/zx
1 - REC(1 - REC(3 - REC(15-REC x 105))
_____ 4
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PTERM = FACT = 1
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. 00007

s

Z x PROB
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ODDIN = ODDIN + 2

Flow Chart (Cont'd).
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XJMIN = log cycles of extrapolated minimum value of M
XIMAX = log cycles of extrapolated maximum value of M
M = number of cycles (XCYCLES) of XJMIN

N = number of distributions to be used at a particular stiess ratio
RATIO = stress ratio | .
ASTR = bending stress level in psi

AMLOG = log of bending stress level

NUM = number of cycles to failure inputs (ie. no. of XCYLCE)

XCYLCE = the actual number of cycie to failure

STINT = standard deviation of cycles to failure in log terms.
ACYCLE = number of cycles to failure or mean cycles

Interpolated stress values

STR - ASTR
CYCLE - ACYCLE
XMI.OG - AMLOG
XSIGL - ASIGL
AREA (I,J) = cumulative are under log normal cycles to failure curve.

Parameters of Normal Stress Distribution at Specified Cycles-To-Failure.
CYC = cycles in log value
XCYCLE = cycles
SMLOG = mean strength
SSIGL
SIG3M = the minus three sigma limit

n

the standard deviation of the mean strength

SIG3P = the plus three sigma limit

SK3 = the skewness value
SX4 = the value of kurtosis
D-2. Definitions of Variables.
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0027
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CO¢105
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,qull
Gho112
HU115
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G117

tui122

fBC124
’%9)25
eovlar
rGUIBI
{ ivl3e
tuG134
vulajp
v a0la)
L0143
oLl as
JE15]
Julds
CaGlss
L] 6HY
1163

Lol 63
L0164

E

Cmww=-~PROGRAM FINDS NURMAL SIRENGTH DISTRIBUTION FROM LOGNORMAL

PROGRAM STRENG (INPUTsOUTRPUT,TAPE) =1NPUT) 230

CowmemCYCLES=1G-FAILURE DISTRIBUTIONS.

OO0

36

34

81

<

20
3¢

40
S0

60

70
80

85

D-3.

DIFMENSION ASTR(1Q)s AMLOG(IC) s ASIGL(I0)y SLAM(9) 4SIG3M(23))

1 XMLOG (301) s XSIGL(301)y AREA(301423)y FREQ(3I01423)+SIG3P(23)
2 CYC(23)s SMLOG(23)s SSIGL(23) s SK3(23), SK& (P23)yCYTOFR(10125)
3 Au%(lo),lhotx(l') OFREQ(1023) s GFREQ(10923) 10MAX(10923) 1 ANZ2(10)
4 +CHISW(10+¢23)¢ST(I0)sSLSIG(9)y EFREQCIDZ3) ¢ INDEX2()10) ANUM(1D)
SyCYCLES(301)1ACYCLE(25)y STRLOG(12)y STHMEAN(23)y XCYCLE(23)
EQUIVALENCE (AREALFREQ)

1 (XSIGLsSSIGL) sy (XMLOG,OFREVD) s (AREA(SON) JEFREQ)
2 (AREAyCHISG) s (AREA(250) yGFREQ)

INT = )

READIJ e XJMINSXIMAX s SINTyMyNyRATIO

FORMAT (2F10:€4F10,012159F10,9)

FAILURE DISTRIBUTIUN VALUES ARE READ IN FROM

LOWEST TO KHIGHEST STRESS aAnND STRESSES ARE
JINTEGER VALUES OF SINT

IF (EOFy1) 51Cs 20

READ 30, (AS1R(J)9AMLOG(J) ASIGL(J)gNUH(J): J=)sN)

FORMAT (F10. 012F10 6415)

READ 36 (ACYCLE(J)s J=14M)

FORMAT (BF10+9)

DO 34 1=)14N

ACYCLE (1) =EXP (AMLOG(]))

Nl = N~)

L =1

INDEX(1) = 1

DO 83 JUs] e hNMl

DSTR = ASTR(J+)) ~ASTH(J)

ODMEAN = AMLOG(J+1)-AMLOG (J)

DSIG = ASIGL(J+1)=ASIGL(U)

SLAM(J) = DSTH/D™MEAN

1F (OSIG) 4045044

SLSIG(J) = DSTR/ZODSIG

COnT IiNDE

JP1 = J+)

M) = DSTR/SINT

INDEX(JPY) = LeMX

SHMIN = ASTR(1)

AMLOG(Y) = AMLOG(Y)

XSIGL()) = ASIGL())

CO 30 =] 4MX

Lx = L ¢
MLOG (LK)
<IF(DSYIC) 7
XSIsp (LX)
6GC YO u¢C
XSIoL (LX)
CORLT [HUE
L = LX
CCHT INLE
PRINT 87
FORAAT(IMYI/ /764K, 4GHNORMAL STRENGTH DISTRIAUTIONS FROM LOGNOR%&
1L/~9/q3)HC\CyFS TO FALILURE ODISTRIBUTIONS,//7/7)

lF("UJIJ‘E\-.JcO) GV 10 9)

PRINT &%y KRATTO ) ‘

XMLOG(LX=1)+SINT/ZSLANC(Y)
19047
XSIGL(LX=1)

]

w

n

ASIGL(LX=-1)+SINT/SLSIG(D)

t

Computer Listiné for b:ogram STRENG.
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L
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el
hl7l

(03

26203
w205
00226

0226
V232
eue3z

02

00236

ﬁ

¢

60240

241
UQ243
U247

i626%

q:0265 -

U

06270

g2 73

o‘c 275

U

0L276

al 77
0303

v

ou3u?

(U313

0‘9310
CTG314
CpuL21e
oz
&L 324

¢

cu327

C-F:}BBI
Ofw33s

0

00337

) 0343

U($343

Lv(dé?

0
N

U

0

or

G
¢
U

0033~
v3OU
9362
C0363
367
0367
Li371
nee02

S (-

0, cUb.

88
91
97
93
94

96

" 90

10

OO0

15

1t

16

e

£8R¥g1 ;44X,17HEAPERIMENTAL DATAYBX 4 J4HSTRESS RATIO =4F64377) 23]
Y
PRINT 92
FORMAT (44 Xy ) THENPERIMENTGL DATA8BXy23HSTRESS RATIO = INFINITYZ/)
PRINT 94
FORMAT (BXy13nSTRENGTH PSI1.49Xs32HMHEAN-CYCLES LOG MEAN-CYCLES,
18X311HLOG STU DEVZ)
NP & N=1 .
PRINT 95y (ASTR(I)y ACYCLE(I) s AMLOG(I)sASIGL(I)y I=24NP)
PRINT 96 .
FORMAT (//7/754X426HINTERPOLATED STRESS LEVELSZ/)
PRINT w3
FORMAT(8X ) 3MSTRENGTH PSI.99X932HMEAN-CYCLES LOG MEAN=-CYCLES.
18X911HLOG STV DEVy l4AsJOHINTEGER(I) /) ’
XINT = INT
STR = SHIN
DO110 I=14LXsINT
CYCLES(1) =EXP(XHLOG(1))"
PRINT 1G09STReCYCLESIT) o XMLOG(I)y XSIGL(I) 1]
0 FORMAT (2F20:212F20.8|123) .
STR = STReSINT®#XINT
110 CONTINUE
NOLD = N
N = X
COHVERTING LOGNORMAL FAILURE DISle PARAMETERS AT N
STRESS LEVELS TO CUMHMULATIVE LOGNORWAL FAILURE
DISTRIHUTION )
DO 1837 I=)3sN
DO 130 J=1M
CYC(J) = ALOG(XCYCLE (J))
2= (CYC(Y)=XH4LOG (1)) /XSIBL(])
1F(Z) l?c.la.,lau
12¢ lF(/¢“ob)16hol3u,130
130 2 = =2
CALL NORMAL (Z24PRO3)
AREA(IsJd) = (1,9-PROAY/2.0
GC TO 19
140 1F(2-3.95) 15041534170
¢ CALL NORMAL (Z2,PRO3)
AREA(IsJ) = PROB/2.040.5
GU, TO 1%y
160 AREA(1sJY) = 3,0
GO T0 149
170 AREA(]sJ) = 1,9
] CONT JKLE
PRINT 225
INT2 = JNT®4
STKR = SN
PRINT 1v%
5 FORMAT(//7/746K, azHCUIbLATlvE LOGNORMAL FAJLURE DISTRIBUTJIONS)
00 22) 1=1+MsINT2
PRINT 190¢STHyXMLOG(]1) ¢ XSIGL(])
190 FCORMAT(IHCISX¢JIHSTRENGTH = 4Fl0.0s5Xy 9HLOG MEAN ¢
1 GACYCLES = 4F9.595X920HLO0G STD OEVIATION = ¢F9.6)
PRINT 2.0
200 FORMST ()X 33H0ATA BELOA ]S Js AND CUMMULATIVE ’
) 13n131SY UF YO J,) .

D-3. (Cont'd)




‘GI;QOG

Toulsaze

o

051624
o, 30
' IUEL
vi36

L uCu4a37

Y BT
fcI?ASl
. 00U454
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ol 1as6
00U460
000464
¢ 1466
0. 470
009470
14712
473
000505

0 JSOS

J:ZB

» 2526

06530

J@ 531

;'0 .32
LG0534

SLCLODODCODOYCOoOT T OO

0QPss2
cfioat

ALY
oEgssz
c&'553

CG0S54

5557
G- 560
0;’6\_}562
D(566
573
D575
¢is77
D003
w604
Cobe>
onOﬁ
Je11
L0612
Gvbla
vbl1
YL
(.32
vo37
voaz

<

1523

PRINT 210y (Jy AREALTJ)sd=14HM) 232
21l FOrMA ((1XyI34F9. 6 13+F9.69134F9, 69139F9 6y '

1 139F 94643 139F0.64134FF4691341F9.64134F9.6))
STR = STR4SINTaXINT®a,
220 CGNTINUE
DO 222 J=1+M0LD
I = INDEX(D)
XNUM = KuM(J)
D0 224 K=]M
OFREQ(JsK) = XNUMEQREA(]4K)
224 CONTIKUE
222 CORTINUE
FREQUENCY DIST AND NORMAL DISTRIBUTION PARAMETFRS
KJHIN = XOMIN=XJINT
PRINT 225

225  FORMAT ()1H1)

PRINT 239

239 FORMAT(//7/51 X4 33ACUNMULATIVE STRENGTH DISTPIRUTIONS)

00 267 J=) M
XJ = J
PRINT 2404y Js. CYC(Jis XCYCLE (V) .
240 FORMAT (1MOs4HY = 913 +5X%X4131HLOG CYCLES = 4F9,.6,
15X 8HCYCLES =4F10,1)
PRINT 250y (19sAREA(I0J)sI=1sNINT)
250 FURMAT (2X+3M (1) 31Xy SAFREQUENCY/Z (1 X4169F10e64154,F10.6
1 +154F10,6, lEsFlO 61159F 1046915 F1Ce63]I59F10,69154F10.6))
260 CONTINULE .
NKl = N=})
DO 273 J=) M
DO 27w I=)eN™M])
1Pl = 14}
FREQ(IsJ) = AREA(IP]sJ) <AREA(Is V)
27 CONTINUE
N o= N
ME#N AND NORMAL DISTKIBUTION PARﬁMETFRS OF HISTOGRAM
00 30C J=) M
Fl1 = 0.
FIul = Co
Ul = SHINSINT#(,.5
DO 287 I=1N
Ul UleSINT
fFl FI+FREQ(14J)
FIUI = FIUT+FREQ(T4J) UL
28y CONTINUE
SHMLOG(JU)Y = FlUul/F]
STHEAL{JI) = ALOGISHLGG(U))

SH2 = 2,
SM3 = N
SHMG = (.

Ul = SMINSINTe(,S
DO 23 I=]sN
vl Ul+SINT
SQ (UI=SMLOG (J)) ¢ (UI~SHLOG () )
SMZ = SH2 ¢ SOeFREQ(]+J)
SM3 = SH3 ¢ FREQ(IJ)E(UI- SHLOQ(J)’“SO
SMY = SM4WSAUSQEFREO(T )
290 CONTINULCL
SMZ = S¥2/F1

D-3. (Cont'd)
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10733
0oL?735

10741
:‘9745 _

CLL745
(lg?Sl

000751

;o753
(755,
00677y

0 70
15'773
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oui775
C776
6777
vlod)

Ofal 02
L{zm
vulyle

00luls
¢ 1617

Lol 102)
L olgz2

v lu24
¢ luee
tolo3e
0nlo3s

;0t1034
X

;1037
00104)
0[3044
ullo44
co0luar

oglus)
R 54
E 0D.u54

¢ c-i\css

SM3 $43/F 1
St44 S1G /F ]
SSIGL(J) SGRTF ($M2)
SIC3P (V) SHLOG(J) ¢ 3,08S8SI1GL(J)
$S103%(J) SHLOG(J) = 3,04SSIGL (YD 233
CSK3(J) = SM3/Z(SSIGL{J)#SM2) g
SR4(J) = SH4/ (SHM295M2)

300 CONTJIHUE
PRINT 225

. PRINT 308

305 FORMAT (///730Xy73HPARAMETERS OF NORMAL STRESS DISTRIBUTIONS AT SPEC

1IFIED CYCLES 10 FAILURE,//)
PRINT 3190

0an
n

n e

- 3190 FORMAT (83X420H=3 SIGMA +3 SIGMA /73Xy 20HNUMBER LOG CYCLES ,

1 6X36HCYCLES 10Xy 3HMEAN STREMGTHI I (X9 IHSTU. DEVe s TXeSHLIMIT o
2 TXy34HLIMIT SKEWNESS KURTOSIS /)
PRINT 3254 - (JeCYCUI) s XCYCLE(U) 9 SHLOG(JU) 9 SSIGL(J)
1} SIG3M(J)sSIG3P(J)sSKI(J)ySKE(J) s J =19M)
320 FORMAT (4Xs131F16469F134042F20.09F15.93F12.042F12.4)
PRINT 22%
PRINT 322
322 FORAAT (1HD) - : .
Ce==-=ROUTINE FOR KOLMOGUROV=SHMiKkNOV GOUDNESS OF FIT TEST
PRINT 325 ’
325 FORMAT (/74174520 «VALUES FOR KOLMOGOROV~SMIRNNV GOODNESS OF FIT T
1EST 1) ’
00 606 I=240P
NOATA = NUH(]) .
READ €3Sy (CYTICFR(14J)sJ=14NDATA)
605  FORMAT "(BF10.0)
660 CONT IHUE
DO 502 U=l M
ANUN (1) = 0,2 .
TOTAL = 0.0 '
DO €65 T=24NP
NDATA = NUM(1)
Aff] = O
DO 660 K = 1sNDATA
1F (CY}OFR(IsK)ﬂLE.XCYCLE(J)) AN1 = AN]l ¢ 1,0
660 CONT INUE ) ’
ANZ (1) = AN}
ANUM(T) = ANUM(I=1) + AN)
TOJAL = TOTAL « And
665 CONTIIUE
DO 430 1=24NiP
Z =(ASTR(]) =SHLOG(J)I/SSIGLID)
IF(Z) 33043504350
333 2 = =7 :
IF (Z=445) 3604360,360
340 Call HNORMAL (24PRO3)
PRUBA = ¢.5«PROBZ(.S
- 60 TO 374
350 1F(Z2=4.5)35513654305
355 CALL NORMAL (24P2023)
PROBA = PROB®0,5+0.5
GO TO 37»
360 PROU3A = 9,0
60 TO 37y

D-3. (Cont 'd)
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: (L9506 365 PROBA = ),0 : '
(006U 370 GFREQ(INJ)=PROBA 234
S0yl 06s IF (TOTAL.EQ.0,2) GO Tu 375
NS RN DARCA = ANUMII)/ZTOTAL
00 67 GC TO 380
CGU.e67 375 DAREA = 0,0 )
e IV X 380 DMAX(T9d) = ABS(DAREA-GFREQ(IsJ))
F0&a101 480 ConNTInUC .
fuelle3 PRINT 499y XCYCLE(J)s TOTALy (ANZ2(I)sDMAX(Isd)s I=24NP)
€03~125 490  SORMAT (6XsF8.0s21r CYCLES TOTAL N =3F3,02{9(F9.0:F6.3)))
6t 125 PRINT 322
S001131 5060 CONTIAUC
feed134 60 T0 5
.0l 134 51¢  STOP
0136 END

B i
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QULROUTIKE MORMAL (£ 4PROG)

PPC3 = THE ArREA UNOER NORMAL UI“]R]3U1ION BILTWEEN
PLUD AND MINUS ¢ STANDARD DﬁVIATIONS

IF(Z=1.2) 1900y10CUsl0lQ

258 = 2%2

PRO3 = G.7978R455#4%(0,99999774=25Q0%(0,16659433
~ZS0% (0, 024638319 - £SQ%0.00239748671))

GO TO 1370

IF (2=2.9) 1020,106951060

250 = £L®2

PROB = 1.6

PTERi{ = 1.¢C

FACT = 1.0

oDDIN = 3,0

PTER = <PTERNM®ZSQ/(2.0%FACT)

TERM = PTERM/0DDIN

PRO3 = PROS ¢ TERM

IF ( ASS(TERM) = 0.00007) 105091040451040
FACT = FACT ¢ 1e0

ODDIN = ODDIN + 2,9

GO TO 1:3¢

PROB = 5,7S788455#¢%PROY

G0 70 137¢

ReC = ly/(Z*Z)

PROB = 1,~0.76788453% EXP(~Z%Z2/2.0)/12%

(l' - REC*(li - REC*(B: b REC*(IS.”REC*IOS.))))
CONT INUE :
RETURN
tt,('\

D-3. (Cont'd)
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APPENDIX E

Listing of Short PDP-8 Programs

Program BAR I
Program BAR II

Program ROTO

Program for Least Squares Estimator for Chapter IV Data

Program for Least Square Estimator for Chapter V Data

Program for Mean Stress Per von Mises-Hencky Ellipse.

.Program for Slope of Best Fit Equation




Nﬂmﬂiilwﬁlmmmmmmm

ez s e e
e
I:Pmmm: [

e B

01.10 A “SH" S, “SA" SA; S SM=FSQT(3)*S

02.10 S C=FSQT(SA%#2+SH+2); T %8.1,"C" C, "SM" SM, |

02.20 GT1.1
*

%
*

vwhere: SH =

SA

SH

(o}
!

shear stress
alternating stress’

mean stress

= yresultant stress vector

nagnitude S,

E-1. Listing of PDP- 8 Program BAR 1.
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*E A

M A :

C-8K MODV 11-219

%*01.10 A "SH" S, VSA" SA; S SH=2%S :

#02.10 S C=FSQT(SA®2+8M+2); T %8.1, "C' C, “SM" SH, |
%02.20 GT1.1 - ,

*GO

where: SH = shear stress
SA = alternating stress
SM = mean stress

C = resultant stress vector
magnitude Sr

E-2.. Listing of PDP-8 Program Bar II.
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*

*C-8K MODV 11-219

%

#01,10 a "R" R, Ys" S; S SR=S/FSIN FATN(R)
% .

#02,10 T %8.2 “"ROTATED THREE SIGMA" SR, !
*02,20 GT 1,10

*%/

*

*

*

Vthere R Stress Ratio

1n

S = Vertical Strength Distribution's
Upper and Lower Three Sigma

Linits.

1

T REEET e Sy

SR = Transformed Strength Distriw
bution's Upper and Lower Three
Siema Limits.

it g BT T
hrﬂumm

E-3. Listing of PDP-8 Prgram ROTO.




g R

P RS e peew

C-FOCAL, 1569

0‘10 A IlAll 'Al "B!l B' HD" D’ ||E|| E' HNII N
0.20 S XA=A/E .

01,21 S XB=B/N

01.23 S YA=D 1 2-A* 2

01.24 S YB=D* 2-B 1 2

02.10 S E=XA 2 2%YA+XB ¥ 24YB
02.1) S J=XA T 4+XB1 4
02.13 8 K=£/J

0.10 S SU=FSQT(D* 2/K); T "SU" SU

Definition of Variables

A:SC‘l:yl

B = Saz =Y,
D = Bn
ya = Sml = Xy

N=

PDP:S Program for Least Squares Estimator of the .
Ultimate Strength for Fatigue Data of Chapter 1IV.
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!, ¥*C-FOCAL, 1969
*01‘10 Qa IIAN A, IIBII B' "C“ C, lIDll D
#01,20 S XA=A/3.5
#01.21 S XB=B/.825
%01,22 S Xc=C/.44
*01,23 S YA=D $2-A%2 .
*01.24 S YB=D % 2-B%2
l %01.25 S YC=D $2-C* 2
% _
[ %02,10 S E=XA1 2%YA+XB t 2%YB+XC t 2%YC
*02.11 S J=XA 4+(B*+ 4+XC1 4
‘ *02.13 S K=E/J
; * .
*03.10 S SU=FSQT(D + 2/K); T ''su' sul

|

l(‘x | Definition of Varicbles o

A= Sql = yl

[ . B = qu = yz

F C = Sq3 = y3

: Xa = Smy = X,

E XB = Su, = x,

XC = Sifg = Xq

E-5. PDP-8 Program for Least Squares Estimator of
the Ultimate Strength for Fatigue Data (LSEFD)
of ‘Chapter V.

B, 0 S . U - 5 o o bt €2 520 e P
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*

*C-8K MODV 11-219

* .

*01,10 a "SA" S, MSEM" W; S SM-255300%rSQT(1l- <S/MY T 2)
*01,20 T $:3.2 “"MEAN STR=SS" SH, 1 :

*01,30 GT 1.10 :

E 3] GO

E-6. Listing of PDP-8 Program Which Calculated Haan

Stress Specified by the Von liises-Hencky Ellipse




%
E_.
%
g
%

oo—
Barsansens o

N .-wmnnm'

o~

C-8K MODV 11-219

02.05

02,10 7

02.29
02.21
02.22
02.23

02,24

02.40
02.49
02.50
02.60
02.70
02.75
02.80 T
02.90
02.95

03,10
03,15
03.18
03.20
03.24
03.26
*¥GO

E-7.

A 'O, OF DATA POINTS ",1D,I,1
Y X - MXIS Y __ AXISY,!
S Xs=0
S XQ=0 -
S YS=0
S YQ=0
S XY=0
FOR I=1,1,iD; DO 3,0
5 D=(IID*XQ=XS*AS)
8 A0=(YS#XQ=XS*XY /D
S Al=(ID*XY~XS* Ysg/n
S DH=F3QT(D*(ID*YQ=YS*YS))
S R-(unrxy-xbnys)/nx
T .$8.05 1, V'SLOPE ",Al,"
T $%€,04 "CORRELATION COEFFICIENT " R,I
Q

AN X(T), (T,
s xs- (S+X (1)

S XQ=XQ+X(I)*X(X)

S YS=TS+Y(I)

S YQ=YQ+Y (X )*Y(T)

S XY= XYPX(I)*Y(I)

Listing of PDP-8 Program which Calculates
Slope of Best Fit Equation (10.5).

Y INTERCEPT ",AO,!,
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