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STABILIZING A SPINNING SKYLAB

S. M. Seltzer

Sr. Research Scientist, Astrionics Laboratory
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

Jayant S. Patel

Principal Engineer

Teledyne-Brown Engineering Company
Huntsville, Alabama

SUMMARY

This paper presents the results of a study of the dynam-
ics of a spinning Skylab space station. The stability of
motion of several simplified models with flexible ap-
pendages was investigated. A digital simulation model
that more accurately portrays the complex Skylab ve-
hicle is described, and simulation results are com-
pared with analytically derived results.

INTRODUCTION

In 1970 NASA's Marshall Space Flight Center initiated a
study to determine the possibility of spinning the Skylab
(the first U. S. manned orbiting space station). The
purpose of the spin would be to provide an artificial
gravity environment to assess and compare the physio-
logical and mental ramifications of prolonged zero-
gravity and artificial-gravity environments. Several
study teams were formed at the Marshall Space Flight
Center. The coauthors of this paper comprise one of
the study teams that have been designated to conduct
this study until conclusive results have been obtained.
It is anticipated that the results of the study will be
appropriate not only for Skylab but also for analysis of
future spacecraft, particularly those that are composed
of several connected bodies with attached flexible ap~
pendages.

In spinning the Skylab, it will be necessary to spin the
vehicle about the principal axis of intermediate moment
of inertia (in the original nonspinning Skylab configura-
tion) to keep the solar panels pointed nominally toward
the sun. Since it was hoped that passive stability could
be achieved, it became necessary to consider deploying
masses either on cables or extendable booms so that the
principal axis of maximum moment of inertia could point
in the same direction as the.solar panels.

The approach followed was to attack the problem from
two extremes. The first extreme was to study the sta-
‘bility of motion of a simplified model composed of a
single rigid core mass with two attached rigid append-
ages lying in the same plane of rotation. The approach

D. W, Justice

-Aerospace Engineer, Systems Division

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

Gerhard Schweitzer

NASA Postdoctoral Research Associate

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

involved adding complexity to the simple model, one
step at a time, in an attempt to achieve a more realis-
tic model and still obtain results that would be amen-~
able to interpretation in terms of physical parameters.
The second model studied consisted of the same model
but with flexible, rather than rigid, appendages in an
attempt to obtain a closed-form solution indicating the
effect of appendage flexibility on the motion of the sys-
tem.

Geometric asymmetries of the original Skylab require
that the extendable booms be attached out of the original
plane of rotation to make the desired rotation axis an
axis of principal inertia. However, the out-of-plane

-distance of the booms is small compared with their

lengths, so it is neglected in the first two models. Sub-
sequently, its influence is investigated. A third model
reported in this paper consisted of a core mass with two
tip masses connected to it by flexible massless beams
lying in two different planes. The stability study in-
volved the use of the linearized equations of motion of
the system under consideration. :

The fourth and final model consists of a detailed simu-
lation model for the complex Skylab vehicle (Fig. 1).
The simulation is being developed at the Marshall Space
Flight Center with the assistance and advice of Profes-
sor Peter Likins of the University of California, Los
Angeles. The stability of the motion and transient re-
sponse of the spinning Skylab is being investigated by
numerical integration of the equations of motion. The
hybrid coordinate method developed by Likins® is used
in analyzing structural characteristics. The appropri-
ate matrices characterizing the flexible appendages and
the general equations of motion of the entire Skylab have
been developed and programed for in-house use. Ap-
plicability of the analysis is not restricted to a spinning
vehicle since the development of matrix equations is
adaptable to the nonspin case.

SIMPLIFIED MODELS

The third simplified model (referred to previously)
chosen to represent the spinning Skylab vehicle is



portrayed in Figure 2. The angular velocity vector of
the vehicle may be written in body-fixed coordinates 1,
2, 3as8w=[wy, wy, wg + ], where Iwil«l (i=1, 2,3)

represent small perturbations about the steady state ve-
locity . Two tip masses m are attached to the core

body by flexible massless booms. The variables uk

1 .
(i=1, 2, 3; k=1, 2) represent small displacements of
the tip masses from the steady state. In the steady
state, the principal axes of inertia of the total vehicle
coincide with the 1, 2, 3 axes and the principal moments
of inertia are I, I,, I;, respectively, withI; <I, <.
The stiffness of the booms is characterized by the stiff-
ness coefficients ki of the nonrotating booms and the con-

tribution of the geometric stiffness terms m¢? introduced

by spin. Hence, the overall boom stiffness in the 1, 2,
3 directions is represented by k, + mQ? ky, and kg + mQ?,
respectively. Structural damping is proportional to
elastic deformation velocities in the 1, 2, 3 directions
and is denoted by coefficients di (i=1, 2, 3,). The

coordinates of the two tip masses in the equilibrium
state are described by distances [I‘i] and [—I‘l], re-

spectively. The rotational dynamics of the vehicle may
be represented by a set of nine differential equations
written in the variables u:(, w,- The set may be reduced

to six equations by making either of the substitutions,

u = u; - orv = ul + uzi - Physically, the u's

represent the skew symmetric mode of the elastic de-

formations and hence cause angular disturbances about
the vehicle's steady state. The vi's represent the sym-

metric mode and only cause the vehicle to translate.
Since stability of rotational motion is of interest, only
the skew symmetric mode is considered. The corre-
sponding linearized equations of motion are

I;wy+ Iy ~ ) Qw, + mT, (g + 92 w)
-mTy (204, + § - 0 w) = T,
(I; - &) QW + 1, v, + mTy (ii; - 9 u, - 2Qiy) =T,
2mT, (Wy+ Qw,) + miy + dy Uy + (kg +mO2) yy =0
and (1)
Iywy - mTy (i, - 2Qu,) = Ty
2mTy (Qwy+ W,) - 2mTyy + mii
+dy 0y + kg uy - 2mQu, = 0
2mTy (-W; + Qw,) - 4mT,Qwy + 2mQi; + mil,
+ dy Uy + (ky ~ m0?)uy, = 0, (2)

where Ti's represent applied torques about the body-

fixed axes. When T5 is set equal to zero, equations (1)

2

become uncoupled from equations (2) with the former
governing wobble motion and the latter describing varia-
tions in spin velocity.

Passive Stabili

The motion of the vehicle can be described by a nutation
about the axis of angular momentum which is inertially
fixed when no external torques act on the vehicle. . The
motion is called passively stable if the nutation damps
out and the vehicle rotates only about the axis of angular
momentum. Any change of attitude of the axis of angu-~
lar momentum can occur only by the application of exter-
nal torques. Therefore, to achieve attitude stabilization
of the vehicle, an active control system providing sta-
bilizing torques must be added. Because the 3-axis

is the axis of intermediate principal moment of inertia
of the original vehicle (represented by the core body of
the simplified model), the vehicle cannot be stably spun
about that axis. It is of interest to determine if the
spinning vehicle can be passively stabilized by adding
extendable booms with tip masses so that the condition .
Iy < I3 < Iy is met for the entire vehicle.

An analysis of the stability of wobble motion may be made
by obtaining the characteristic equation associated with
equations (1),

(1-79) M+ A% - (KiKy + yiKp +7, - 0§ - DA
- ASKIKZA - [(0§ + 1) K1K2 +')’1K2] =0. (3)

where A = 8/Q, c;’l = ki/mQ’, Y= 2ml"§/li, Ai = di/mﬂ,

K;= (I, - I4)/1,, Ky = (I3 - 1;)/1,, and s is the Laplace
operator. For physical reasons, [K,l<1, IK;| <1,
0<ys<1, and d,>0. When D-decomposition? or other sta-

bility determination techniques are applied, regions of
stability can be obtained analytically and shown on the
Kj, KKy parameter plane. The stability region (Fig. 3)
is bounded by straight lires,

Kz = - [(0§+ 1)/'}”11(11(1, (4)
K; = KK, (s)
KKs =- 1. (6)

As shown in Figure 3, the effect of the flexibility of the
booms is to alter the region of stability from that of a rigid
vehicle, but for sufficient boom stiffness it'is possible to
stabilize the wobble motion of the vehicle. These results
corroborate those found and reported by Frank Barbera®.
Although not included in this paper (for the sake of brev-
ity), the transient response may be determined by map-
ping contours of constant damping ratio, plotted as func-
tions of natural frequency, on the Ky, KK, plane, using
the parameter plane technique‘.

The stability of the spin velocity motion is determined
from the characteristic equation obtained from equations
(2). Analysis shows that stability exists as long as the



booms have a finite stiffness in the 1-direction and
are sufficiently stiff to withstand the centrifugal force
in the 2-direction, i.e., 0,>0 and 0§>.1—4’y,.

To model the vehicle more accurately, the influence of
the asymmetrical arrangement of the booms is investi-
gated. With I'y#0, equations (1) and (2) are coupled.

If numerical values are chosen to represent Skylab
characteristics (Table 1), the effect of varying oy (char-
acterizing boom stiffness) may be determined. This is
done by solving equations (1) and (2) for their eigen-
values and plotting a root locus (Fig. 4), using oy as the
variable parameter. The asyrimetry I'y has a negligible
effect on the locations of the roots for all physically pos-
sible values of I'y, and, therefore, on the stability of the
vehicle motion. However, there is a constraint on the
minimum magnitude of azl A necessary stability condi-
tion for the limit case consisting of a high value of stiff-
ness in the 2- dlrectlon (03— =) results in the con-
straints

o’>(2mr’/1,)/xa,
- ‘gd>-(2mT}/1,) /K,. (7)

Active Attitude Control

The mission of a spinning Skylab makes it necessary

to point the 3-axis at the sun rather than to passively
stabilize the steady state rotation of the vehicle about
its 3-axis. This will place the solar panels (lying

in the 1-2 plane of the vehicle) normal to the imping-
ing rays of the sun, making maximum use of solar
energy. To maintain the 3-axis inertially fixed
{(moving it slightly at discrete intervals to realign it
toward the sun), attitude control torques must be applied
to the vehicle to compensate for the effect of disturbance

torques.

The control torques must in some manner depend on er-
ror signals that are proportional to the angle between
the 3-axis and the solar vector. Additionally, it may be
desirable to add a damping term that depends on the time
rate of change of the error signals. Because of existing
hardware on the present Skylabconfiguration®, these
signals are readily available from sun sensors and rate
gyros. The sun sensors resolve the small angle between
the solar vector and the 3-axis into rotations about
the 1 and 2 axes, ¢y and ¢, (Fig. 5). Angular veloc-
ities wy, w; of the vehicle are measured by the rate
gyros. The variables ¢; and w; are shown in Figure 5.
The control torques may be provided by three control
moment gyros (CMG's) that also exist on the present
Skylab. It is technically feasible to use a mass expulsion
system to provide these torques, and such a system does

exist on the Skylab. However, in an attempt to prevent im-

pairing optical experiments and minimize contamination
of the Skylab environment, it is desired to use the CMG's
to the greatest extent possible to provide control torques.

If the CMG's are used to provide control torques T, and
T,, a linear control postulate may be formulated as

'I‘u a goj +8 jw It n=
If first the value Ty is neglected, wobble motion can
again be treated separately from spin velocity motion.
The spin velocity Q and its perturbation wy are controlled
separately and are not considered in this paper. Using
equations (1) and (8) and the kinematic relationships,

1,2, j=1, 2. (8)

Wy=- ‘;’] + n¢1v
(9)
Wy = - @y - Qgy, :

one obtains the attitude control equations in matrix form,

AX+Bx+Cx=0 (10)

where
T
X= [‘pl' ¢21 ll3] ’

-t I '_I;X:?'ﬁz .0

[, 0 -mr; Bu

A= 0 L, 0 | B=j+L-L)0-By By 0
-mr, 0 m/2 0 _ 0. a2
(1, - L) -Bp+ayy B +a 2 -mI", &

C=l Bnf+ay -(Ix-fg)ﬂhﬁzﬁ*ﬂ'zz B
| -ml? 0 (s, +m0?)/2

A simplification is obtained by retaining only the torque
coefficients ay, and f;;. This may be justified by apply-
ing general stability criteria® which require that the
damping forces of a linear system such as equation (10)
be greater than the destabilizing forces. This condition
is sufficiently met if the symmetric part of the matrix B
is positive definite, which leads to the consideration of
only the more essential diagonal terms B8,;, B3, in the'
matrix B. Furthermore. the matrix C must be positive
definite to avoid instability. A physical explanation for
retaining ap and oy, is that a control torque must be
applied about the 1-axis to correct for an attitude error
angle about the 2-axis of the spinning vehicle and vice
versa. A further simplification is achieved if the con-
trol torques are applied about a single body axis. If the
1-axis is chosen, a4, and By, are retained. Then the
stability boundary associated with the imaginary axis in
the complex plane may be obtained by setting A equal to
its imaginary part, iv, in the characteristic equation ob-
tained from equation (10). Setting the real and imaglmiry
parts of the resulting equation equal to zero separately,
one obtains two simultaneous equations,

(1-#) 8+ (1-K,) e
=e (1= -y (1-) (Kp- )+ (- -1)

(¥ + KKp) 1 /A0 (112)



and

(1- D)o+ (1-K)e = AKKy + )

(1-N/tP-d-1), - (11b)
respectively, where § =8,,/1,Q and € = ap/I,&. From
the structure of equations (11}, it is observed that the
right-hand sides must be set equal to each other for a
common solution to exist. The result of this equality is
a cubic equation in uz, which may be solved for its three
roots.

Only positive real roots for v? have any physical signifi-
cance. An approximate solution of the cubic equatibn
may be obtained if the stiffness of the boom is sufficient-
ly high so that one of the roots can be approximately
associated with the natural frequency of the boom, i.e.,
made equal to +? = ¢ + 1. For the very flexible booms
of the Skylab, the numerical values of the approximate

~ roots differ by less than 5 percent from the exact values.
- Substitution of these roots into either of equations (11)
yields three straight lines in the parameter plane for con-
trol coefficients € and 6, one of which is a stability
boundary. Other stability constraints are € > 0 and

K, (yy + 2K)<0. These results are portrayed on the €,

6 parameter plane (Fig. 6), using the numerical param-
eters representative of the actual Skylab. The stability
boundary line € = - {(1+ K;K,)/(1 - K,}]6 indicates the
.limit case where the total vehicle is considered to be
rigid. In general, flexibility influences the stability
region in terms of admissible control torque; for the
Skylab example (Fig. 6), the €, & stability region is in-
creased. Contrary to the rigid body case, small values
of destabilizing damping torques (6>0) can be tolerated
withdut destabilizing the system because of the passive
stability of the wobble motion, which depends on the
structural damping of the elastic boom.

The transient response may be determined on the €, &
plane by applying the parameter plane technique. It
shows that a considerably improved response can be ob-
tained by a proper choice of the control terms. The
stability of the spin velocity motion is determined from
equations (2) and therefore yields the same stability
requirements as the passive case.

As with the passive case, the influence cof the asym-
metrical arrangement of the booms is investigated. The
effect of boom asymmetry (T'g # 0) on attitude stability
is found to be negligibly small for Skylab parameters.

Control system efficiency, in terms of vehicle dynamic
response and ease of implementing a CMG control law
should be improved by providing control torgues about
two body-fixed axes. This case is presently béing in-
vestigated. Also under investigation is the characteri-
zation of suitable performance criteria for the selection
of control parameters and the development of other
candidate control laws. Other areas to be explored in-
clude the modeling and analysis of significant hardware
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nonlinearities, control of the spin motion, and an analy-
sis of the nonstationary equations of motion associated
with changes in spin rate, either deliberate or unex-
pected.

DETAILED SIMULATION MODEL

Modern space vehicles can be described as a combination |
of essentially rigid bodies and relatively flexible bodies.
The analytical modeling of extremely flexible appendages
requires that they be considered to consist of small rigid
bodies interconnected by elastic massless bodies. At
present there appear to be two different methods of
writing the equations of motion for spinning vehicles

with appendages: the discrete parameter approach and
the hybrid coordinate method. In the discrete parameter
approach, equations of motion of various subsets of
bodies or individual bodies are obtained by the direct

use of Newton-Euler equations of translation and rota-
tion. To develop an effective digital simulation, it is
necessary to model the flexible appendage as many small
rigid bodies which will yield a large number of first- and
second-order differential equations of motion. Since
there is no way of reducing the number of variables, it
is difficult to numerically integrate these equations.
However, the hybrid coordinate method removes this
difficulty by transforming a set of discrete coordinates
into a smaller set of distributed coordinates, each of
which is associated with the normal mode of a spinning
or nonspinning appendage. In the hybrid coordinate ap-
proach, first the equations of motion of the flexible ap- -
pendages are written in discrete coordinates, separately
from those of the entire vehicle. Then the discrete
motion of idealized bodies of the appendage is trans-
formed into a fewer number of modal coordinates, there-
by reducing the total number of equations of motion to be
numerically integrated.

The effect of spin is induced in the development of equa-
tions of motion despite the great added complexity in-
troduced. This is necessary because the results of
several cases studied here indicated the noticeable and
possibly severe effect of spin on the modes of vibration.

Flexible Appendage Equations

The linearized set of equations of motion of one or more
flexible appendages attached to a single body, after re-
moving the rigid-body degrees-of-freedom, can be
written as

M i+ G'd+K'u=F, where K'=K + Ke+Kg (12)

and u is the vector of the discrete generalized displace-
ments of the masses of the appendages with respect to
the central rigid body. M' is the symmetric nondiagonal
mass matrix, G' is the skew symmetric matrix of the
coriolis accelerations, K is the symmetric matrix of the
centripetal accelerations, K_ is the elastic stiffness
matrix of the appendages; and is the geometric (or
differential) stiffness matrix showing the effect of
stretching caused by spin.



The vector F represents a function of the angular veloci-
ties of the central rigid body and their time derivatives
and couples the motion of the flexible appendages to the
motion of the rigid body. Structural damping is added
after truncation has taken place. The relations y = Du,
M' =MD, G' = GD, K = K''D may be used to rewrite
equations (12) in the form

My +Gy + K"+ (K + K)) D! y=F, (13)
where y is the vector representing the displacement of
the masses, with respect to the center of mass of the
system. M is a diagonal mass matrix, G is the tridiago-
nal skew symmetric matrix, and K" is a tridiagonal
symmetric matrix. Matrices D and D™ can be written
explicitly. '

Truncation

The set of equation (13) is being used because it has the
advantage of requiring less computer storage core than
the set of equations (12). However, this approach has
the disadvantage that the matrix [Ke + Kg] {D) ™! is non-

symmetric. The eigenvectors of equation (13) are ob-
tained and transformed to yield the eigenvectors of equa-~
tion (12). :

Since it is not possible to uncouple either the set of
equations (12) or (13), they are reduced to the state
space formulation in several steps. This leads to the
uncoupled set of equation (15), which is amenable to

truncation. The first step is to write the state space
equation,
P4d+Qq=1L, (14)
where
M' 0 G' K' F
P= , Q= , L= )
0 K' ~K' 0 (]

@-{y} -

The eigenvectors of equation (14) are constructed from
those of equation (13).

Let ‘bj be the jth eigenvector of equation (14) and @J! be

the jth eigenvector of the adjoint of equation (14). Eigen-

vector d>)! is the complex conjugate of eigenvector ‘bj’

since P is symmetric and Q is skew symmetric, AUsing
the transformation q = ¢z and premultiplying equation

(14) by the matrix Q'T, one finally obtains a set of un-
coupled equations

PPs+ Q% = o TL | " (15)

where P° and QD are diagonal matrices defined by

PP 8 Tps, QP - ¢'TQe, 6=, 14l ... 18,

&' = (61 (4] ...| &,], where n denotes the number of
eigenvectors retained after truncation, using the criterion
described below. , ‘

Truncation Criterion

Normally for structural dynamical analysis, the first

few lower frequency modes and the modes whose fre-
quencies are near the frequencies of applied loads are
selected for simulation. However, for stability analysis,
only those modes which might cause instability are re-
tained. A criterion for such a selection described by
Likins! is obtained by constructing a square matrix of

the order three for each mode shape. This matrix has
the dimensions of the moment of inertia. If the matrix
contains relatively large terms, it indicates that the
corresponding modes may contribute to rotational motion
instability, and only such modes are retained. This may
eliminate the consideration of some low-frequency modes

_ that otherwise would have been retained.

Vehicle Equations

For the entire vehicle, equations of deplacement and
rotation are written using Newton-Euler relations. Re-
taining the rotational relations and neglecting the effect
of the center of mass motion with respect to the body,
one obtains

. o d .
T=1 - w+wxI- w+I-w+-&? fpxpdm,
(16)

where I is the moment of inertia of the entire vebicle,
and w is the rotation vector. Since the flexible appen-
dages vibrate, I varies with time.. Superscript = indi-
cates differentiation with respect to time in body coordi-
nates. The generic vector p joins a fixed point on the
central rigid body to each of the masses on the flexible

appendage.

The complete set of equations used to describe the Skylab
consists of a set of n equations (15) describing the flex-
ible appendage, a set of three equations (16) describing
the entire vehicle, a set of three equations describing -
the effect of relative rotation of the Command Service
Module (CSM) elastically attached to the core body
composed of the Orbital Workshop (OWS) and Apollo
Telescope Mount (ATM), and a set of three equations
describing the skew symmetric mode of the attached
booms.

Digital Proj

A general-purpose finite element structural analysis
program, called NASTRAN and developed for all the
NASA Centers, is modified to obtain eigenvalues and
eigenvectors of any given spinning structure. The
existing program can generate the elastic and geometric
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stiffness matrices, Ke and Kg, respectively, and either

the diagonal mass matrix M or the nondiagonal consis~
tent mass matrix for any structure. Matrices D, G, XK''
are generated for any arbitrary structure in the empty
modules available in NASTRAN. The complex eigen-
value subroutine available in NASTRAN can solve either
of the sets of equations (12) or (13).

The initial model of the system of solar panels and beam
fairing mounted on each side of the OWS had 2100 degrees-
of-freedom and was reduced to 90 degrees-of-freedom for
dynamic analysis. This 90 degrees-of-freedom model was
further reduced to 27 degrees-of-freedom in such a way
that the first five natural frequencies of both the models
closely matched. Each of the four solar panels on the
ATM was idealized as 40 degrees-of-freedom models

and subsequently reduced to a 12 degrees-of-freedom
system. The final stiffness matrix of the entire system
of solar panels was regarded as one flexible appendage
with 102 degrees-of-freedom.

The detailed Skylab simulation is programed ona Univac
1108 digital computer with a 64, 000 word core storage.
Whereas equations (12) would have required 31, 000
words of storage, the equations of motion expressed as
equation (13) require 11, 000.

CONCLUSION

It has been shown that it is possible to passively and
actively stabilize the motion of a simplified model of a
Skylab spinning about its intermediate axis of inertia.
This is accomplished by deploying flexible booms, thus
changing the inertias, and applying suitable control
torques. Analytical results indicate the required boom
stiffness properties for given vehicle mass distribution
and spinrates to achieve passive stability. Furthermore,
the use of a simplified model leads to results which are
amenable to physical interpretation.

SERVICE
MODULE

ATM RACK

To gain confidence that these results will apply to the
actual Skylab, an additional step is being implemented.
A detailed digital simulation model of the spinning Sky-
1ab vehicle has been developed. Results obtained from
the simulation model compared favorably with those of
the simplified models. L :
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Table 1. Physical Characteristics of Skylab

I, =1.25 x 10° kg m®
1o =690 x 10® kg m®
13 =700 x 10% kg m?
I, =0

I, =233m

Iy =-153m

.m =227kg .

K, =Ky =146 N/m
ky =7.4 x10* N/m
d, =dy =0.04 (k;m)
dy =004 (k,;m)'/2
N =06s"
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Figure 3. Stability Region for Wobble Motion,
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