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SUMMARy

The total dose in rads-tissue from solar protons was tabulated for weekly time intervals, and the

number of weeks which gave a dose above 25 rads behind i0 g/cm 2 of aluminum for the active 6 years of the

19th cycle were called dangerous or large event weeks. The number of such event weeks was found to be

only 3 weeks for the past 20 years. Even though the chance for smaller events is examined, it was found

that for any reasonable high confidence level (95%), the smaller events could be ignored. Consequently,

the total particle flux for the 19th cycle was divided by a factor of 3 and determined a single large

event week. Using this spectrum, the tissue dose in rads is calculated at the center of an aluminum

spherical shell. To correct for geometric effects and self shielding, this dose may be reduced by a

factor of about 3. To predict the probability of an event occurring, the Poisson distribution was the

most logical choice. The confidence one can use in employing the Poisson process and arriving at confi-

dence levels for the experimental value of the mean is investigated. Several examples are given for dif-

ferent mission lengths, and comparisons are made to other authors' results. An extension of the Poisson

process is made to incorporate the concept of small sample theory and arrive at the expected distribution

function which answers the following question. If x o events are observed in time to, what is the proba-

bility of seeing x events in any observation time t?

INTRODUCTION

This study is concerned with the practical

treatment of hazards from solar proton events out-

side the magnetosphere of the earth. It is not con-

cerned with prediction of flares as such nor the

long-range solar cycle indicators such as sun

spots. The study of all solar proton events as

such is only casually related to the problem of

large dose rates inside realistic spacecraft. For

example, in reference i, there are 76 events listed

from 1942 through 1963. Since 1963, there are pro-

bably an additional 24 more yielding a statistical

sample of some I00 events. However, the corre-

lation of this large sample with the events which

are of real danger to space flight is very poor.

For example, only 6 large events from 1950 to 1969

would have given about 85% of the total 20-year

proton dose behind a thin wall of only 2 cm of alu-

minum. In addition, these 6 flares occurred in 3

weekly periods. Thus, 3 of these 6 large events

occurred from July 10-16, 1959, 2 occurred from

November 12-18, 1960, and on February 23, 1956, 1

large event was observed. The duration of an event

is from 1 to 3 days. Even with this small sample,

it seems that if conditions are sultable for a

large event, the odds are very good that it will be

followed within hours by another large event. Per-

haps a time span of at least 1 week should be used

to depict a total solar event, and it would be des-

ignated as the solar proton flux or dose per week.

Under this definition, there are only 3 sample

weeks of large solar events from about 1950 through

1969 (i,000 weeks). We are not dealing with an

ordinary problem of statistical analysis, but with

rare large events.

The reason that the writer has undertaken the

awesome task of predicting the improbable is not by

virtue of his background in solar physics or sta-

tistical analysis but because of his concern with

protection of man and his radlation-sensltive

equipment from space radiations for realistic

spacecraft and missions. However, the reader should

ask, why not leave this field of statistical astro-

nomy to the experts. The answer is that the en-

vironmental scientists do not have to design or

evaluate realistic shields for sensitive film or

radiation-consclous astronauts.

The consequence of having several solar pro-

ton prediction models (which I do not wish to

evaluate) has led to a wide disparity in results,

especially when a reasonably high level of statis-

tical certainty is desired. For example, at the

99% probability (percentile) level, the predicted

dose behind 20 g/cm 2 of aluminum for a 1-year

mission may vary by a factor of i0 or more between

different writers[2]. Now this may not sound too

bad considering the nature of the problem, but if

a mission is planned with the requirement that the

astronauts should not receive doses exceeding i00

rads skin dose with a 99% probability, and if one

solar proton dose prediction model requires a

shield of only 15 g/cm 2 and another model 50 g/cm 2,

the radiation analyst has to make a vital decision,

possibly affecting the life of an astronaut. Since

no one wishes to be responsible for making a de-

cision which could lead to dire consequences, the

most pessimistic model is often chosen. This

writer would not question this approach except

that the desire to be on the safe side may readily

get out of hand with the subsequent loss in mission

capability.

A PRIMITIVE DOSE MODEL IS PROPOSED

The most direct measure of the hazard of a

given solar proton event is the rads (.01 J/Kg) -

tissue absorbed dose that would be measured behind

various thicknesses of a typical spacecraft mater-

ial such as aluminum. The simplest method is to

find the point tissue dose at the center of a

spherical shell of aluminum. However, due to self

shielding by the astronaut (approximately a factor

of 2) and spacecraft geometry as well as on-board

equipment, the actual skin dose may be less by a

factor of 3 or more than the point dose at the

center of a spherical shell. This factor varies

depending on the solar proton spectrum, the space-

craft geometry, and the location of the astronaut

in the craft. This writer suggests using a factor

of about 3 reduction for the solar proton point

dose at the center of a spherical shell in order to

estimate the likely skin dose to an astronaut in a

real spacecraft of a given average thlekness._(It
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should be noted that this factor of 3 may be too

large for a very "hard" spectrum such as seen in

the trapped radiation belts, when a factor of 2.5

may be more in order.) To correct for depth dose

(bone-marrow depth), a thickness of 5 cm of tissue

is often employed. This is approximately equal to

6.5 g/cm 2 of aluminum in equivalent shielding

effectiveness.

In order to clarify the exact assumptions

which are to be employed, the following infor-

mation is pertinent. The only adequate data avail-

able at this writing for solar proton predictions

are from the 19th cycle (1954-64). However, there

have been observations of sun spots (indicator of

solar activity) for about 200 years. Based on 200+

years of observations, where the first cycle would

date back to the middle of the 18th century

(average cycle length is about ii years), the 19th

cycle had the highest maximum sun spot count yet

recorded. In fact the average maximum sun spot

count is more than a factor of 2 lower. The 20th

cycle, which we are now well into (past the peak

activity), has a sun spot count somewhat above this

average. There has not been a large solar proton

event comparable to the eight largest events of

the 19th cycle (dose behind i0 g/cm2). At this

point, one may be,led to believe that the 19th

cycle is a fairly'rare type cycle. With the pre-

sent low occurrence of large solar proton events

and the rather extensive sun spot counting dating

back over 200 years, one might conclude that the

probability of getting a solar cycle as active as

the 19th is on the order of 1/20 or 0.05. This,

of course, cannot be objectively demonstrated, and

will not be, unless considerably more knowledge is

obtained about the physics of the sun. One valid

objection to the above is that the sun spot number

is a poor indicator of large solar proton events.

Also, the sun spot indicator may have changed

during the last 50 years due to better observa-

tions, so that possibly the first 15 of the 20

observed cycles should not be used. The purpose

of this paper is not to attempt to evaluate the

above but to present the information for the

reader's consideration. At any rate the reader

may not find it difficult to believe that the use

of the 19th cycle solar proton flux data may yield

a pessimistic estimate of the solar proton hazard.

With the above background, we can at least study

the proton events characterized by the 19th cycle

and infer proton events for future cycles similar

to the 19th cycle.

Next we consider the observation that during

the 19th cycle, the large solar proton events did

occur on the whole around the most active years of

the ll-year cycle, however not necessarily in

proportion to sun spot count. It is generally

assumed that there were only about 6 years of

observed large solar proton events. Thus the

following analysis is based on the so-called

active 6 years (300 weeks) of the cycle. The

second assumption is that it is fair and logical

to lump the actual dose rates over an active week

into units of total dose per week (see Introduc-

tion). This may include up to 3 proton events in

a given week. Thus, instead of dealing with fun-

damental units of proton events, we propose to

deal with observed weekly dose rates behind

various aluminum thicknesses. The data available

from various sources gave a total of 24 proton

events worth considering. (The 30 or more events

discarded gave less than 3 rads total behind 5 g/

cm 2 of aluminum). The results of grouping this

data into weekly time periods gave a total of 18

weeks with the frequencies of 13 weeks having i

event, 4 weeks having 2 events, and i week having

3 events. Most of this data is recorded in NASA

TND 4404 [3] on pages 16-23. The only major

revision in reference 3 is in the use of the

spectrum of A. J. Masley[ 4] for the November 12,

1960, flare.

One note of explanation should be made re-

garding the dose rates which are used in this

study. They include a correction for secondary

particles and thus are the sum of the primary

proton dose and the secondary particles (neutrons

and protons). This total dose at 20 g/cm 2 is

about 20% and at i0 g/cm 2 about 10% above the

primary proton dose rates.

Now we come to a very treacherous part of the

analysis. How do we choose a rational and suffi-

cient model for an event dose-week for solar

protons? Table i is presented as a summary of

the weekly solar proton doses of the 19th solar

cycle which the writer will consider. The absorbed

doses in rads-tissue were calculated at the center

point of a spherical shell of aluminum with the

shell thickness being designated as the shield.

TABLE l: WEEKLY DOSES OY Tile 19TH SOLAR CYCLE

Number Shield (6-Year Dose) I

Number Week Year FLares _906j a I0_251_ Remarks

1 _ov _2 _ I_ 1960 2 456 S3_4 17 0 Category 1 _ Large Weekly Doses

2 J_iy I0 - I_ 19_9 3 21G 75_0 21 2 _l 0_I

3 Feb_ 23 _ _ _ 50_ 0 _ 8

_4 2_ _ _ _ _ro×_m_ely _ P_r_ent of _Y_a_ T_a_S_ed D_e

_er_e_t _ T_

_ _y_r Do_

_y _ _9_91 _ _ _ _ 1 _ C_ry _ - _d_ _ek_y D_e_

_u_y _ - 2_ _ _ 22_0 _2 _ _ _'_

_h _ _5_ _ _0_ _ 2 _ o_ 4

J_y_ _9_ _ _0_ _ _

tD
Summed Dose I t5. I 34.9 8. _ Approximately 13 Percent of fi-Year Total

Percent of To*

tal _-Year Dose 12.7 13.9 11.8

Au K, 22 - 26 1958 2 5. 9 t. I) 0.2 Category 3 - Small X_eekty Doses

Aug. 29 1957 1 4. 2 o. 8 0, t _3 0, ,_

Nov. 20 _960 1 3.6 1.5 o.o_

Aug. 3 195_ 1 2. Z 1.o [
0,4

sept. _3 1960 1 2.9 1,2 0.5

,.4 0.1
Aug. I_; 195S 1 1._ '"" I

July 3 1957 1 1. 2 _). 43 0.03

JuLy I Z 1 _;t l 1.4 ,J, 30 0. ,)4

Apri[ 2_ - 29 1_o 2 0.77 0.27 0

ta[ _-Year Dose (11)

_;. 9, 1.42 Approximate[y 2 Peree.t of ,-Year Total_ummed Dose 23.97

Pe reent of To-

The lira, number _s me shield thickness m g, cmC;du,,,iaom

the ,umber _n parenthesis is the (_-year dose behind the shield.
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The data of Table i have been grouped into

three categories: (i) large weekly doses, (2)

medium weekly doses, and (3) small weekly doses.

Category (i), consisting of only 3 weeks,

gave mory than 84% of the total 6-year dose.

Category (2), with 6 samples, gave about 13%, and

Category (3), with 9 samples, gave less than 3%

of the total dose.

The grouping which is shown is certainly not

unique, and the last 2 weeks of Category (2) per-

haps should be in Category (3), or perhaps the

largest dose week of Category (2) should be in

Category (1). The following work has attempted

to provide for various combinations which the

reader may wish to investigate by making the

methods of approach more important than the choice

of a precise set of data.

Since over 84% of the total solar proton

dose is grouped into the 3 weeks of the first

category, it would seem that one feasible solar

proton dose model for an active week could be

depicted by dividing the total 6-year dose behind

the various shields by 3. Since the most active

phase of the 19th cycle is about 6 years, it seems

sufficient to use 300 weeks as the basic period

of major solar activity. With this assumption,

which will be used throughout this study, it

follows that the estimated weekly expectation of

a dangerous large solar proton dose would be %o =

.O1 (event/week).

In any case, the chance for an event of

Category (2) or Category (3) is more likely to

occur than one of Category (i) for a short ex-

posure time. For this reason, a model will also

be developed to reflect medium and small flare

doses as well as large events. Thus, two solar

proton dose models will be constructed and results

compared in the following work.

The next part of our approach is to choose

the best composite 19th cycle solar proton flare

data which is available and arrive at total tissue

dose in rads from primary and secondary particles

at the center of spherical shellsov_th varying

thicknesses. T.T. White, et. al [0] have develop-

ed a composite model (MSC model) for the total

proton flux during the 19th cycle. This model

gives a larger dose for energies less than about

115 MeV than a model based on Webber's work[5].

Above i15 MeV, a composite flare model based on

Webber's work (to be designated as the MSFC model)

gives a larger dose. The 19th cycle composite

6-year proton spectrum which will be used in this

work is the following:

(MSC) I. J(>p) = 5.28 x 10 ll e -p/73

(30 < E < 115 MeV) (i)

(MSFC) II. J(>p) = 1.14 x i0 II e -p/_O0

(E > i15 MeV),

where p is the rigidity units of MV and J(>p) is

the integral spectra (proton/cm 2) with energies

above p. For protons, the relationship between

p(MV) and E(MeV) is given by p =_/E 2 + 1876E

(ref. 3, page 15).

Using the spectrum above, the best estimate

of the 6-year (300 weeks) total dose (primaries

and secondaries) is given in Fig. i. From Fig. i

and Table i, the solar proton one-week-dose event

models are constructed (Fig. i gives the magnitude,

and Table i gives the fractions). Model I will be

the dangerous solar event model which is represen-

ted by 3 large events over a period of 300 weeks.

ii(

< i
= !

lo

_ABOVE DATA

The expected number of events in i week is given

by %o = .01 (event/week). Model II will depict

the possibility of a large, medium, or small dose

in a week where the percentages of the total dose

in Table 2 are used to determine the relative

size of a dose week in the three groups. For the

three categories of Table i, the values _i = .01,

_2 = .02, and _3 = .03 are the mutually independent

weekly expectations of large, medium, and small

doses, respectively. Table 2 sumarizes the dose

models. It should be clear that the writer has

presented in Table 2 only the primitive elements

of a probability model. Thus the table gives the

small sample estimates of the weekly expectations

(_) and the consequences (fads/week) if an event

occurs according to Model I or II. It should also

be made clear that the values of % are valid only

for the 300 most active weeks of a solar cycle

similar to the 19th. The major unknown factor is

an estimate of the chance of obtaining a solar

cycle that would give total proton doses as large

or larger than the 19th cycle.

The values of % should be smaller for the so-

called quiet sun (260 weeks) or else the magnitude

of an event reduced to one of Category (3). Per-

haps one might assume that _ = .02 (one event per

year) during the 260 weeks of the quiet sun, but an

event should be depicted by the D 3 column (small

event) of Model II.

As a final conclusion to this section, it is

of interest to recall that Fig. i represents the

total dose versus spherical shell thickness for the

19th cycle. If for the data of Fig. I as described

above, an effort is made to correct for the self

shielding of an astronaut and the complex geometry

of a spacecraft which has aluminum walls of 13.5

g/cm 2 (assume that a 5 cm depth dose corresponds

to an additional aluminum thickness of 6.5 g/cm 2)

then the 5 cm depth dose is estimated by dividing

the dose at 20 g/cm 2 by a factor of 3. Thus one

finds that the total dose from the 19th cycle was

25 rads at 5 cm tissue depth. Of course, this

value is for the solar proton dose and does not

account for the galactic cosmic ray dose which may

range from 5 to 12 rads per year behind 20 g/cm 2

depending on how much dose is contributed by the
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heavycosmicrayparticles (Z > 2). Theimpli-
cationsof all theabovearesimplythat sincethe
19thsolar cyclewasanexampleof a veryactive
sun,andif onebelievesthat thehighenergypro-
ton fluxesreceivedduringthis cycleareassocia-
tedwith this activity, hemustbecautiousin
drawingcertainconclusions.Forexample,the
sameastronautabovemayhavereceivedfrom30to
70radsfromgalacticcosmicraysduringa 6-year
trip whereasthe abovedosefromsolar protonsat
bonemarrowdepthwas25rads(13.5g/cm2- al.
walls). Hereoneassumesthat thegalacticcosmic
ray spectrumis soenergeticthat geometryfactors
arenegligible for dosereduction. Thusthe
cosmicraydosecomponentmaydeterminethelimi-
ting dosefactor for longdurationspacetravel.
Thepurposeof the foregoingis not to minimizethe
importanceof solar protoneventsbut to point out
that it maybequite feasibleto shieldagainst
solarprotonsbut probablyimpracticalto consi-
der shieldingagainstgalacticcosmicrays,and
this very fact maybemoreimportantin determining
man'sexposuretimeto spaceoutsidethe earth's
magneticfield thanthesolarprotons.

APROBABILITYMODELISDERIVED

In this section,weshall addressourselves
to theproblemof choosingandusinga probability
densityfunctionin orderto arrive at theproba-
bility of getting "x" eventsin "t" weeksandthe
associatedproblemof probabilityor percentile
levels. Theimportantquestionof establishing
confidenceintervals for thebasicstatistical
parameterswhichareobtainedfroma smallsample
will beundertakenin thenextsection. In this
section,wewill bemakingthenaiveassumption
that thebasicstatistics or populationparameters
(meanandvariance)arewell known,either by
experienceor apriori knowledge.

In orderto derivetheprobabilitymodel,
whichseemsto be themostnaturaloutgrowthof
the solar protondoseweek,the processwill be
describedin termsof probabilitiesPn(t) that
exactlyn eventsoccurduringa timeinterval t
(weeksin ourcase). Thus,Po(t) is theprobabi-
lity of noeventin the interval t andi - Po(t)
is theprobabilityof oneor moreevents.Nextwe
defineXto be themeanor expectationof an
eventfor a unit timeinterval. Thatis,

= no. of eventstotal weeksof observation (2)

is a statistical estimateof E. Moreprecisely,
%is a constantwhichdeterminesthedensityof
pointson thet axis. Thusfor a smallinterval
of timeAt the probabilityof oneor moreevents
is givenby:

i - P (At) = EAt+ e(At), (3)
O

where e(A t) is an infinitesimal and small compared

to EAt such that

lim e (At) 0 (3a)
at->o At

Now we make the following postulate:

Whatever the number of events during (o,t) the

probability during (t, t + At) that one event

occurs is given by PI(At) = EAt + go(At), and the

probability that more than one event occurs is

given by Pn>l(At) = el(At).

These conditions are the basic assumptions of

the Poisson process (Feller[7], pages 400-402). It

should be clear that we are stating that for a

small time interval At, the chance for one event

is approximately EAt, and the chance for more than

one event is very small compared to EAt. Since t

is for a relative time scale, it is not contradic-

tory that At of I week can be small on our time

scale. The above conditions lead to _ system of

differential equations for Pn(t). They are:

dPn(t)/dt = -lPn(t ) + lPn_l, n > i , (4)

and

dPo(t)/dt = -lPo(t), n = 0
(5)

From Equation (5) and Po(0) = i, we get:

P (t) = e-lt (6)
O

Using Equation (6) and PI(0) = 0, Equation (4) can

be solved for Pl(t) = Ete -lt. Using the fact that

Pn(0) = 0, (n>O), Equation (4) becomes a recursion

equation and successive values of Pn(t) can be

found. The resulting solutions give the terms of

the Poisson distribution:

-lt (_t) n (7)
Pn(t) = e n!

If the reader accepts the postulate following

Equation (3), the Poisson distribution is the

natural outcome. The foregoing arguments have

been presented in order to minimize the illusion

that the author has pulled a distribution function

out of the sky. For a more rigorous treatment,

reference 7 is recommended.

There are many interesting uses of the

Poisson distribution in addition to the occurrence

of rare events in a continuum of time. The

distribution is used to approximate the binomial

distribution for the case of rare events (p < .05).

The word rare means individually rare. In a large

population, several such events may occur, but the

probability of occurrence of each individual event

is small. For example, the number ?f people

killed by horses in 1969. An important feature

of the Poisson distribution is that for large

values of the mean (It >> 20), the distribution

approaches the normal (or Gaussian) distribution.

There are many applications of the Poisson distri-

bution given in any standard text on probability

and statistics. The most common include such

studies as the number born blind in a large city,

radioactive disintegration, bacteria on plates,

telephone traffic, etc. The remainder of this

section will be devoted to a discussion of the

Poisson distribution and how to apply it to our

class of problems.

If a discrete variable x has a Poisson dis-

tribution, then the probability that [X = x] is

given by the expression:

--m X
m

P[X = x] e x! , x = O, l, 2 ...... (8)

and P[X = O] = e-m, since 0! = i.
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Themean(or expectedvalueof thevariableX) is
givenby_ = m, thevariance02is givenby02= m,

and the standard deviation is simply given by o =

%r_-. The summation equation,

l e -m mX/xt = 1 , (8a)

x=O

is satisfied. Since we are primarily interested

in the time-dependent form of the Poisson, m = At

becomes the mean. Even though the Poisson is dis-

crete in the variable x, it is continuous in t.

For our purpose, we shall write the Poisson dis-

tribution as:

-It

P[X = x] = e (It) x
x! , x = 0, i, 2, ..., (9)

where t = number of weeks, x = number of events

in t weeks, % = mean number of events per week

with (At) becoming the expected or mean number of

events in t weeks, and P[X = x] is the probability

of exactly x events in t weeks.

If one wished to find a value of x which

would not be exceeded say at least 99% of the

time (1% chance at most of exceeding x) for a

given At, the accumulative distribution function

P[X < x*] is utilized. The value of x which we

seek is the smallest x* which satisfies

x* -At
Pr[X < x*] = _ e (%t) x (i0)

-- x! -->P '
_=0

where P = .99 for the case in question.

Since we are dealing with a discrete distri-

bution function, the inequality is necessary, and

one usually obtains a value of x* which corresponds

to a value slightly above P (.99). This discre-

pancy is usually circumvented by the proper use

of the words "at least" and "at most."

Next, we will examine how to apply the above

information to our problem of predicting the solar

proton dose that would be seen on a space mission

at various percentile levels. For simplicity, let

us assume that if an event occurs, it is depicted

_--u__,= so-called "large" event model or Model i

of Table 2. Using this model, the sample statis-

tical estimate of %o = .01 event/week, and for

convenience, assume the duration of exposure to

large solar events is i00 weeks, then the value of

%t = 1.0 for the Poisson distribution. Now assume

that we wish to find the dose levels that would be

exceeded 27%, 2%, and 0.1% of the time. Applying

Equation (i0) with P taking on the values 0.73,

0.98, and 0.999, we see that the values of x are

i, 3, and 5 events. So to find the dose at the

respective levels, we multiply the doses behind

the various shield thicknesses of Model I by the

values of x above. The results are plotted in

Fig. 2. Note that the 73.6% level corresponds in

our model to the mean or expected value of the

Poisson distribution function. The percentile

level at the expected value is found only when %t

is an integer. It becomes smaller approaching 50%

as %t increases to large values. For example,

when At = 20, the percentile at x* = 20 is 55.9%.

A similar computation can be carried out

using event Model II. The values of the Poisson

mean become respectively _it = 1.0, _2 t = 2.0, and

_3 t = 3.0 where t = i00 weeks4 Tables are con-

structed, and the following results are found at

the expected value, 98% and 99.9% level. For the

TABLE 2: MODELS OF A ONE-WEEK DOSE EVENT FOR THE ACTIVE 300 WEEKS OF THE 19TH

SOLAR CYCLE

MODEL I

N - 3*

100%**

ko - .01%

D Radsx(g/_2>o(_,) x('/_2)

2 1420 2

5 340 5

i0 93 I0

15 43 15

20 25 20

30 II 30

40 6 40

60 2 60

MODEL II

N(Large)=3 N(Med.)=6 N(Small)=9 3

84% 13% 3% l NIDI
kI - .01 kI - .02 k3 - .03 I-I

1195 95 15 4290

286 24 3.4 1032.6

78 7.5 0,9 281.1

36 3.5 0,43 132.87

21 2.0 0.25 77.25

9.3 0.80 0.11 33.69

5.03 0.45 0.06 18.33

1.70 0.15 0.02 6.18

* The N indicates the n_ber of weeks used in dose category.

** The % gives the percent of total dose in the category.

# The "_" gives the expectations (probability) of category for one week.
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large events, x = l, 3, and 5; for the medium

events, x = 2, 5, and 8; and for the small events,

x = 3, 7, and i0. The percentile values at the

expected or mean value levels (x* = At) are 73.6%,

67.7%, and 64.7%, respectively. In order to reduce

the necessity of repetition, this set of levels

could be denoted as approximately 70% level. The

comparison of results from these totals to Fig.

2[ 8] indicate very good agreement. A useful rule

would be: Empirical Rule - If at a given probabi-

lity level there is at least one large event, then

Model I is sufficient to describe the radiation

hazard. If no large event is found at the given

probability level, then Model II should be used.

At this point, it might be useful to depict

several curves similar to Fig. 2 for various

mission times t, with A = .01 eventiweek, at

given probability or percentile levels. In order

to do this, arrays could be constructed for

various values of At, and the number of events,

x, necessary to satisfy the inequality of Equa-

tion (i0) could be found for various values of

P<I.

Rather than provide a multitude of similar

graphs, Table 3 will allow the reader to find the

number of events for a range of anticipated

values of At at 9 different percentile levels

from 50 to 99.9%. Table 3 was constructed by

choosing a probability level, P, the number of

events, N, and then finding the value of m(-At)

that satisfied the following equation:

N-mx

Pr(x < N) = E e m-- xl P, (m = At) . (ii)
x=O

e. P i ._

b. ][ It lies be_een two entries, use N correspondin K to the largest entry. _8. if

_,_ry. u_eN 0. T,_. if xt 0.021 N 0aLOe 9?._-pere_tlevel. b_tN : _I

the _9. o-p_r_ent Level.

The values of m = At, found in this manner, is

the expected value or mean of the Poisson distri-

bution which has a percentile level of exactly

P x 100% for N or less events.

The top of Table 3 is headed with a row of

values labeled _ which denotes the probability

of more than N events or simple _ = 1 - P. The

probability statements using a will be made as

follows: the probability is no greater than

that more than N events will be observed in t

weeks. The use of a probabilities will be de-

rived in the next section. The range of values

in Table 3 should provide for the refinements

needed in the following work.

CONFIDENCE INTERVALS ARE ESTABLISHED

The results of the previous section depended

strongly on the choice of the parameter % or the

probability of having a large event week. In

this section, we will establish the confidence

we can place on the value of A as calculated

from observed sample data. One of the virtues of

the Polsson distribution is that the value of the

mean (m = _t) completely determines the distri-

bution function; i.e., _2 = m, whereas the mean

and variance (02 ) is needed for most distribution

functions, and they are not simply related. Thus

in dealing with small sampling statistics from a

normal distribution, one needs toestablish con-

fidence intervals for both the mean and the

variance.

In order to more clearly explain the intent

of this section, an example will be given. The

Poisson law arises very often in certain biologi-

cal problems such as organisms distributed at

random over the bottom of a lake. The number

of such organisms found in a series of trial

dredgings from separate small areas of the same

size will follow this law. Statisticians cal-

culate boundaries of possible outcomes from a

given small sample, and these values are called

confidence limSts at a certain probability level

for the assumed distribution function. Now, if a

biologist counted 21 organisms from one of his

dredglngs, he could assert that he is 95% confi-

dent that the mean or expected value lies between

13 and 32 organisms per unit area assuming a

Polsson distribution. Thus with only one sample

and assumption of a Poisson process, it is possible

to set upper and lower bounds on possible outcomes

at a given probability level. From the above

example, we can assert that if many dredglngs are

made, we expect only 5% will contain a number of

organisms outside the predicted range.

Returning to the basic problem, we wish to

establish the confidence interval on m, hence to

find the probability

Pr(m" < m < m') > (l - 2_) 100% , (12)

where i - P = _.

Now if P = .99 and _ = .01, then

Pr(m" < m < m') _ 98%, (12a)
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and we are at least 98% sure that m lies between

m' and m", where m has only a 1% chance of being

greater than m'. We can now write the general

set of equations which will determine the value

of m' and m":

x o -m '
e (m') x

E x! I - P ffi8 , (13)
x=0

and

m" x

Z e- (m")
x!

X=X
O

S , (14)

or

-m" x
Xo-i e (m")
Z

x.'
xffiO

i - 8 , (15)

where x o is observed number of events. The form

of the above equation is an outgrowth of using a

discrete distribution function and follows the

common practice in textbooks on statistics.

Solving Equations (13) and (15) for m' and m"

by use of Newton's method, the upper and lower

bounds on m are found for "Xo" observed events.

Table 4 summarizes these results for 8 different

values of B or P. Fig. 3 depicts a typical result
taken from Table 4.

T^m.e ,: UPPER ANDLOWmmBC_N_ FOR THE MZ*h
AT pROBABILITYOF P = (i _ _) Ioo%

c_m_ 99.S _. o 9s.o SS. 0
m_r,m p,,_t Per_* Per_.t _r_t

o.001 0.oo5 0.olo I 0.o_

I
..... 0 .......... "®_i

0 0 _._x 0 s.so 0 4._11 0 . 3._
1 o.oo, 9.23 o.o05 7.43 o.ox 6._4 0.0_ _.57
2 0.0,*s n.23 o. Lo _._ o....... 0.241 7.2_

s

,c _._ _4.1_ _._ 21.40 4._3 _o._ _.so I ,_.s_
1

;7 7. 3 33.99 _].Z5 27,33
i

J9 8.31 36.70 9.64F33.38 10.._5 31,85 11.44 29,6?
20 9.96 38.04 10.35 34.67 11.0_ 33.10 12,22 3O,89

21 9.62 39.37 11.07 35.95 11.83 34._ 13.00 32.10
22 _0.29 _.70 11.79 37.22 1_57 35._ 13.79 3_31
23 _0.9*_ 4Z02 _s,_s S_.4_ 13._a 3_,_ 14,5S S_I
S4 n.6_ _S.3_ la,_e 39.74 _4.0S _S. Oe _.3e s_.?l_5 1Z34 _64 14.00 41.00 l_.e_ ss.3_ le._s 3_._0

_e L_er _od I, _lo_,ted ,o m_t _ i, lesa m_ t_e ta_tc_ted
v*t_.

TABLE • ( C_cLudedI

C,_tde_¢ _o.o pSO o 70.o so. oInterwd per_a| e_n_ Pe_ent Per_nt

o. 0_0 0. _00 0. _5 0. 2_

EYeut_, XG I_wer (Ip,per Lo_er Upper L_er Uppez Lo_er Upper

o,o,_ 4,7_ O.lOS 3,e9 o,_ 3.3_ 0.29 ze9
2 0,36 6.30 0.53 5,32 0.68 4.72 0.96 &92

4 1,37 9,15 1,74 7,99 _04 7.27 _54 6,27

9 _.70 1_._1 5._3 14.2t S, 97 13.25_ _.84 _.9_

le _0.04 _4.30 1L_4 22.4_ Xl,_ _1._e _1_ 19._7

2_ _.TZ _._9i1_._I _0._ IS.09 2S,07 19.6, 27,t0
_4 _,_._,__3.7S{t7.97 3_.S_ 1_.9S 30._7 _0.5_ _._
25 17. SS 3,t. 92! 1_.S4 32.71 19. SS 3,.2S _.47 2_._
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Even though we have obtained confidence

bounds on the estimate of m = %t, the major

interest is concerned with the upper bounds that

an investigator should use when only x o events
have been observed over a "t" week time interval.

Following this concept and the simple model of

a large dose-event-week, we recall that only

3 such event weeks occurred over the 300 active

weeks of the 19th solar cycle. Now if one wishes

to find the upper hounds on this observation, he

may use Table 4 in conjunction with Table 3 and

arrive at the 100P% confidence level Chat the pro-

bability is no greater than some small value _
that N ' events will occur. Thus Table 5 is

4O
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7

6

5 -

4

3

2_

2

1

t5 2 2.5 3 4 8 _ 7 S 9_0 _5 _ 25_ _ _ _ _

_EVENTS

FIGURE 3: 90% C0NFID_CE LIMITS _R POISSON

TABLE 5: THE NUMBER OF EVENTS N_ THAT WILL BE EXCEEDED

AT A PROBABILITY NO GREATER THAN _ FOR THE 100-PERCENT

UPPER BOUND VALUE OF THE P_ON MEAN, m',

WHEN X 3 OBSERVED EVENTS

m'

13, 06

10.98

10.05

8.77

7.75

6.69

6.01

5.11

3.67

Percent 0. 001

99.9 25

99.5 22

99.0 21

97.5 19

95.0 18

90.0 16

85.0 15

75.0 13

50.0 1t

0.005

23

2O

19

17

16

14

13

12

9

0.010 0.025 0.050 ).I00

22 20 19 18

19 18 17 15

18 17 15 14

16 15 14 13

15 14 13 _ 11

13 12 11 10

12 11 10 9

11 I0 9 8

9, 8 7 6

0.150 0,250

17 15

14 13

13 12

12 II

11 9

9 8

8 7

7 6

6 5

0.500

13

11

i0

9

8

7

6

5

3

m' Percent O. O01 0.005 0.010 0.025 0.050

6.91 99.9 16 15 14 121 ii

5,30 99.5 14 12 ii I0 9

4.61 99.0 12 Ii I0 9 8

3.69 97.5 11 9 9 8 7

3.00 95.0 10 8 8 7 0

2.30 90. O 8 7 6 6 5

1.90 85.0 7 6 6 5 4

1.39 75.0 6 5 5 4 4

0.69 50.0 4 4 3 3 2

0.100

1O

8

7

6

5

4

4

3

21

0.150

10

8

7

6

5

4

3

3

2

0.250

9

7

6

5

4

3

3

2

1

_0

0.500

7

5

4

4

3

2

2

1

0

BOUND VALUE OF THE POISSON MEAN, m', WHEN X 0
OBSERVED EVENTS

a. Example: One is 95 percent confident that the true mean does not exceed

7.75 (X0=3) , and using this value of the mean, one is certain that the

probability of seeing more than 13 events during a 300 week active period

is no greater than 0. 050.

TABLE 6: THE NUMBER OF EVENTS N'c_ THAT WILL BE EXCEEDED AT A

PROBABIMTY NO GREATER THAN _ FOR THE 100P-PERCENT UPPER



constructed.

Since the 20th solar cycle has produced no

large events, it is of interest to ask if zero

large events occur for a period of 300 active

weeks, what are the possible upper bounds of m'

and the number of events N_' that could be expected

at some small probability. (This may be a nonsense

question and will be discussed in the next

section.) Table 6 is constructed with this in

mind. The methods used are the same as for Table

5. It is of interest to note that even though

x o = 0 events are observed that the 95% upper

bound for the Poisson mean is m' = 3 which was the

actual observed number of large events during the

19th cycle. Thus it seems that for a reasonable

level of confidence (95%), the analyst would be

Justified if he used m' = 3 (% = O.Ol event/week)

for large events even though the solar activity

for a given cycle was considerably different than

the 19th cycle. Perhaps after all is said, the

only conclusion that can be drawn is that the ob-

served 19th cycle dose events could be used for

any near average solar cycle, and if a cycle is

predicted to be similar to the 19th cycle, then

the results of Table 5 (x o = 3) should be seriously

considered as a possible model.

Finally, Table 7 is presented as a summary

of values to use for % (events/week) at various

confidence levels. For large events, it seems

that the x o = 0 column is probably reasonable to

use if the solar cycle is not very active. If a

cycle similar to the 19th is forecast, then the

column under x o = 3 is perferred.

TABLE 7: VALUES FOR _' = m'/300 (EVENTS/WEEK) FOR X °

OBSERVED EVENTS AT 100P% UPPERBOUND CONFIDENCE LEVEL

_X°XI00P%__ 0 3 6 9

99.9 .0230 .0435 .0602 .0755

99.5 .0177 .0366 .0522 .0667

99.0 .0154 .0335 .0486 .0626

97.5 .0123 .0292 .0569

95.0 .0100 .0258

90.0 .0070 .0223

85.0 .0063 .0200

75.0 .0046 .0170

50.0 .0023 .0122

.0435

.0393

.0351

.0323

.0285

.0222

.0524

.0474

.0442

.0392

.0322

OBS* .0000 .0100 .0200 .0300

*OBS denotes the value of Xo/300

The value of % and the dose event model to

use during the remaining 270 less active weeks of

a solar cycle are not obtainable from the present

analysis. However, until more data is available,

the best one can do is use some essentially arbi-

trary criteria. For example, if we believe that

the chance of a large dose event week is definite-

ly dependent on some minimal level of solar

activity and this level is not approached during

the quiet periods of the cycle, then it would be

unreasonable to use the large event dose week even

at a very low probability level such as the values

shown under the x o = 0 column of Table 7. Even if

is only .002 event/week for the Poisson distri-

bution, one sees that the chance of getting two or

more large events is approximately 6% for t =

200 weeks. However, we cannot preclude the possi-

bility of some smaller dose event occurring for the

quiet period of a solar cycle. The present writer

suggests using % = .02 event/week for the quiet

period but recommends that the dose model for the

small dose event (D 3) of Model II (Table 2) be

used. This is equivalent to expecting about one

such event per year which is reasonably close to

the actual observed number of events from October

1961 through July 1966.

In order to illustrate applications of the

foregoing work, eight trip lengths will be con-

sidered ranging from 13 to 260 weeks (5 years),

during the most active 6 years of a solar cycle

which is like the 19th cycle (x o = 3). In order

to simplify the possible combinations, four

different probability levels for the upper bound

mean (%t) are used at four probability levels for

the Poisson distribution. A mean (.01 t) corres-

ponding to the actual observed (OBS) large event

weeks of the 19th cycle is also given. This

corresponds to the 95% level of the mean for x o =

0 events, and this value is recommended for the

average type cycle. The results of these com-

binations are shown in Table 8. The entries in

this table give the number of large events that

will be expected at a probability equal to or less

than _ corresponding to the Poisson mean (%t)

which we are 100P% sure will not be exceeded

(see footnote on Table 5). These tables are con-

structed in a manner similar to Table 5, however,

we start with Table 7 for values of _ at various

levels of percent confidence (100P).

Figures 4, 5, and 6 have been presented for

values of _ at .001, .01, and 0.1 for different

upper bound values of the mean showing a range

from the observed (approximately 50%) to the 99.9%

confidence level of the mean (%t) for a 78-week

mission during the active weeks of a very active

cycle. Comparisons are also shown in these

figures to the work of other authors[2,9,10] who

have made similar computations but have used diff-

erent models for prediction of the solar proton

dose. An interesting aspect of the above compari-

son is that at the 0.1% (i00 xs) level, the

present work is considerably lower even for the

99.9% upper bound value of %t. However, at the

10% level, the reverse situation seems to be the

case. The major difference in the methods of most

of the other authors and the present work is that

the size of our large event is fixed, but the

number of events may bequite large, whereas in the

other methods, the size of a single event may be

extremely large (several times larger than the

large event used in this work). These differences

will be discussed in the last section.
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TABLE 9: NUMBER OF EVENTS AT COMPOD'ND PROB_ILITIE5 P AND

_, t = 19Weeke

m=Xt P×I0 0.001 0.01 O. O5 0.10

O. 57 99.9 4 3 2 2

0, 44 99.0 3 2 2 1

O. 34 95. O 2 2 t t

0. 29 9O. 0 2 2 1 t

0.13 1 1 1 1

b. t = 26 Weeka

m=Xt P× O. 00! 0,01 O. O5 0.10

1.13 99.9 5 4 3 3

0.87 99.0 5 4 3 2

O. 67 95. O 4 3 2 2

0.56 9O.O 4 3 2 2

O. 26 OBS 3 2 1 1

c. t = 52 Weeke

m=Xt px ]0.001 0,01 O. O5 0,10

2. 26 99.9 8 6 fi 4

1.74 99. 0 7 5 4 3

1.34 95, O 6 5 3 3

1.15 9O. 0 6 4 3 9

0. 52 OBS 4 3 2 1 i

d. t = 78Weeke

•_=_t P× 0.001 0.01 0.09]0. t0

3. 99 99.9 10 8 7 6

2.6! 99. o 9 7 5 5

2.01 95. O 9 6 5 4

1.74 9O.O 7 5 4 3

0. 79 OB5 8 3 2 2

e. t - 104 Weeks

m = Xt P × 100 O. 001 9.01 O. 05 5. 10

4.52 99.9 12 lO 8 7

3.48 99.0 I0 9 7 6

2.68 95,0 9 7 9 5

2.32 90.0 9 6 5 4

1.04 5 4 3 9

f. t = 156 WeekJ

m=_t px O. OOl 0.01 0.05 0.10

6.79 99.9 16 16 II IO

5.23 99.0 14 II 9 8

4.02 95.0 11 9 : 8 7

3.48 90.0 IO 9 7 6

1.56 OBS 7 5 4 3

g, t = 208 Weeks

m=M P× O. OOl O. Ol 0.05 0.10

9. OS 99.9 2O 17 14 18

6.97 99.0 16 14 12 10

5.37 95,0 14 il 9 8

74.64 90.0 13 iO 8

2, 08 OBS 6 6 5 4

h. t = 26O Week8

m=Xt p× O. OOi O. Ol 0.05 O. 10

11.31 99.9 23 20 17 16

8.71 99.0 19 16 14 13

6,71 95.0 16 13 II I0

12 IO 95.80 9O, O 14

2. 60 OBS 9 7 5 5

I

_ 0=0.01(P = 1.0_)

78WEEKS

5OOO

40OO

35O_

,ooo
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A NEW PROBABILITY MODEL IS FOUND

The foregoing section seems to provide some

rationale for choosing a probability function for

a given set of conditions: (a) the active 300

weeks of a very active cycle such as the 19th,

(b) the active 300 weeks of an average cycle, and

(c) the quiet 270 weeks of any solar cycle. How-

ever, if we examine Tables 5 through 8, a question

presents itself. If we choose a very high confi-

dence level for the Poisson mean and then deter-

mine the number of events that would give a low

probability a of getting a worse situation, then

it seems that we are discussing a very improbable

situation. That is, what is the chance of the

mean being as high as the 99.9% confidence level,

and if we use this mean the joint probability of

seeing more than N_ _ events at a probability no

greater than 0.001? For example, in Table 5, wc

see that N_' = 25 events when P = .999 and _ =

.001. At first blush, one might suspect that the

chance of both conditions occurring is on the

order of 10 -6 . But care must be taken since we

are dealing with cumulative distribution functions.

Thus the product (i - P)_ does not correspond to a

unique value of N_'. This can be ascertained by

examining in Table 5 the values of (i - P)_ corres-

ponding to Na' = 13. Now, we would like to ask

the question;

"If xo events are observed in a given time, to,

what is the probability of seeing more than N

events in any observation time t?"

With this knowledge a unique value of the proba-

bility of seeing N events can be made for any

period t < T o . This question is also important

because we propose to use the values of % calcu-

lated for the total period of T o = 300 weeks and

might be suspect of the true probability when one

applies the value of % to a time period say of

only 50 weeks. However, the reader surely agrees

that the best estimate of the % corresponds to the

total sample space of the 300 most active weeks

during the 19th solar cycle.

In order to provide an answer to the above,

we must first ask what is the distribution of

possible Poisson means if in a time to there are

only x o events observed. If we examine Equation

(13), which gives the cumulative distribution of

B as a function of the upper bound values of m for

a given Xo, one sees that the derivative (-dB/dm)

yields the desired upper bound probability density

function for m;

e-m mXo
-d_/dm = f(m) (16)

x !
0

This function is continuous in m and is the so-

called gamma distribution in the variate m. The

expected value of m, E(m) = xo + i; the variance,

_2(m) = xo + i, and

=° e-m mx° dm i (17)
x !

O O

To summarize the meaning of Equation (16),

we can state that for a given observation of xo

events, the probability of the m being in the

interval m to m + dm is given by the probability

equation;

-m

f(m)dm e m x° dm
x ! (18)
0

See Fig. 7 for illustration of Equation (18) with

xo = 3. 319

o._

o.z2--

0.2o

0.18

0.15

0.14

o12

o.io

o.ol

o.oe

o.o4 /

I

3 4 5 6 7 e 9 10 11 12
m

However, we wish to investigate the more

subtle relationship that reflects the distribution

of %'s for a given observation of x o events over

a period of to weeks. Therefore, we make the

change of variables denoted by m = %to; dm = tod% ,

and our probability density function in the

variate % becomes:

t x°+l x -t %

f(%)d% = o % o ox ! e d% (19)
O

For a given value of %, the probability of seeing

exactly x events in time "t" is given by the

discrete Poisson distribution function;

P(x) = Pr(x;%t) = (%t)x e-%t
x! , x=0,i,2,...(20)

where the probability of having a value of % in

the interval % + d% is given by the density

fuction of Equation (19) and t < to (actually

the case t > to is equally valid).

Using the above definitions, the relation-

ship we seek is given by the following:

Pr(x,tlXo,to) = f Pr(x;lt) . f(%) d% . (21)

O

Thus we are stating that for Equation (20) of the

Poisson distribution, the probability of each

possible % (a spectrum of possible means) be

folded into the equation and the results inte-

grated over all possible values of % from zero to

infinity. The result is a probability density

function which is the expected value of the

Poisson distribution over all possible means %.

Thus,
x +i

o tx oo Xo+X _(to+t) %

to J _ e d%. (22)Pr(x'tlXo'to)= x !x.!
O O

After integration, we obtain;

x +i

t o tx[ (xo+x), ]
Pr(x'tlx°'t°)= :o!X! [(to+t)Xo+X+l "

(23)

Now if we make the substitution @ = t/t and sim-

plify, the results are the discrete distribution

function in the variate x:

(X+Xo)! 0x

, (24)
er(xlXo'O) X!Xo. (l+8)X+Xo +I



It canbeshownthat for thediscretedistribution
functionabove;

(X+Xo)! ex

x!x ! (l+@)X+Xo+ 1 1 , (25)x=O o"

and the mean or expected value of x is given by:

= E(x) = (Xo+l)@ (26)

The proof of Equation (25) can be shown by resor-

ting to hypergeometric functions, and the results

of Equation (26) can be found by multiplying the

summand of Equation (25) by x and after simplify-

ing, the value (xo+l)e can be factored out leaving

a sum that is the equivalent to that shown in

Equation (25). An illustration of the density

function [Equation (24)] is shown in Fig. 8 for

8 = i and 8 = .52.
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This report is not intended to be a study of

probability theory, and the ramifications of the

above distribution function and its possible para-

llels in other statistical work will not be pur-
sued.

Because of the format of Tables 5 and 8 and

the manner in which we have previously made proba-

bility statements, we wish to find the probability

that more than N events are seen, given xo and 8;
or

Pr(x>NrXo,8) = i - Pr(x<_Nlxo,e) , (27)

where e = t/to, xo = number of events observed in

time to (300 weeks), and t is the observation time

during which N events are seen.

Thus, the ultimate relation which we wish to

answer our probability questions is given by

Equation (27) or the obvious variations associated

with it. In fact, if the foregoing is valid, we

may dispense with the difficulties of choosing an

upper bound value of the Poisson mean at a given

level and then determining the probability that

N events will be exceeded at some probability e as

shown in Tables 5 and 8, where the true probability

is actually not known.

Using Equation (27), the number of combina-

tions of 8, Xo, and N can readily get out of hand.

For this reason, only the values of x o observed

events from 0 through 9 were used with different

values of e from 13 weeks to 300 weeks (8 = i).

The values of N were extended to the point where

Pr(x>NlXo,8 ) < 10 -6 . These tabulations are given

in reference 8.

It is very interesting to note that when

Xo = 0, 8 = i, that the chance of seeing more than

3 events is as high as .0625. This infers that

even though no events were observed during a given

300 week active cycle, we cannot be more than

93.75% confident that 3 or less events could

occur in a similar cycle. Also, we see from the

same above assumption that we are 50% sure that we

will see more than zero events. This seems to in-

fer a dilemma bordering on the naive statement

that if you know nothing about the probability of

an event, you can only be 50% sure that it can't

happen; e.g. probability of life on Mars. This

last statement seems to cast doubt on the useful-

ness of the case when x o = O.

However, it is of academic interest to inves-

tigate further the case when Xo = O. For example,

Equation (24) becomes:

Pr(xlo,8 ) = 8x/(i+8) x+l (28)

and for 8 > O, we see that when x = 0,

Pr(x = 01o,e) = i/(i + 8) , (29)

and

Pr(x > olo,8) = 8/(1 + 8) (30)

The probability of seeing an event as 8 approaches

zero becomes very small as one would suspect for a

very rare event. Now as 9 increases to large

values (e >> i), the value of the probability

approaches i. This infers that if an event can

happen at a given small probability, then it is

almost certain that the event will occur after a

sufficiently long period. Thus Equations (29) and

(30) do not defy intuition in an ordinary sense

but leave us with a rather insecure feeling since

the number of actual observed events in time to is

zero. However, if we examine the density function

of possible values of I [Equation (19] when x o =

O, a plausible probability density function is

found;

f(1) dl = t e-t°l dl (31)
0

Table 9 is presented as a survey of Equation

(27) for Pr(x > N13,8) < e at several values of

and 8.
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A point of interest concerns the values of

the results in Table 8 as compared to those in

Table 9. It should be clear that the results of

Table 9 do not provide the same type of probabili-

ty statements as Table 8. In general, this

writer feels that the results of Table 9 are more

useful and to the point but others may disagree.

In any case, one may ascertain which probability
level of the parameter % is more credible when

using the methods of the previous section and con-

structing tables similar to Table 8. For example,

one sees that the value of % at the 90% level

seems to yield event numbers (N) at probabilities

in Table 8 which seem to be comparable to the
probabilities e in Table 9.

Finally Table i0 is presented for th_ case

when x o = 0 even though we have cast doubt on the

validity of the meaning of this rather extreme case.

However, it does signify a sort of boundary con-

dition for those periods when the probability of a

large event is very small as perhaps exists for

the active years of an average type solar cycle.

REVIEW AND COMMENTS

In the foregoing sections, the writer has

attempted to convey a method of thinking about the

radiation hazards associated with solar proton

events. The method of approach is felt to be more

important than the actual results presented. The

methods and models as developed utilize very little

solar physics as such and consequently will be very

unsatisfying to many physicists who have examined

various aspects of the problem. There is no

attempt to model or predict a solar proton spectrum,

the time dependence of particle arrival, or angular

distributions of the flux.

As a brief summary, the total dose in fads-

tissue from solar protons was tabulated for weekly

time intervals, and the number of weeks which gave

a dose above 25 rads behind i0 g/em 2 of aluminum

for the active 6 years of the 19th cycle were

called dangerous or large event weeks. The number

of such event weeks was found to be only 3 weeks

for the past 20 years.

Even though the chance for smaller events is

examined, it was found that for any reasonable high

confidence level (95%), the smaller events could be

ignored. Consequently, we took the total particle

flux for the 19th cycle and divided this spectrum

by a factor of 3 and arrived at a single large

event week.

Using this spectrum, one can calculate the

tissue dose in rads at the center of an aluminum

spherical shell (Table 2). To correct for geo-

metric effects and self shielding, this dose should

be reduced by a factor of about 3. If the space

mission is planned during the quiet period of a

cycle, then the small event dose curve (D 3) of

Model II (Table 2) may be used with _ = .02 _ = 1

event/year).

To predict the probability of an event

occurring, the Polsson distribution seemed to be

the most logical choice. The third section was

devoted to examining this conclusion and the

methods of using this probability model. The

fourth section was written as an effort to define

the confidence one could use in employing the

Poisson process and specifically arriving at con-

fidence levels for the experimental or observed

value of the mean of the Polsson distribution

function. Several examples were given for dif-

ferent mission lengths, and comparisons were made

to other authors' results.

Finally, the previous section was an extension

of the Poisson process to incorporate the concept

of small sample theory and arrive at the expected

distribution function which answers the following

question. If x o events are observed in time to,

what is the probability of seeing x events in any

observation time t? The results were represented

by the discrete probability density function in

the varlate x: Pr(xlxo,@). Using the above

function, extensive tables were tabulated in

reference 8.

In the beginning of this work, the author in-

tended to avoid commenting on the methods used by

other investigators, but in order to explain the

radical differences shown in Figs. 4, 5, 6, the

following comments are pertinent. One of the more

common procedures used is to obtain the logarithms

to the base ten of the solar proton flux above 30

MeV for each of the events of the 19th cycle. This

data is then plotted on normal probability graph

paper, obtaining a distribution called the log

normal dlstribution, in the variable x - logl0 _.

This is a true normal distribution in the

variate x, and there is no virtue in examining the

transformed distribution in the variable _ which

has a more complex representation. Also the values

of the mean and standard deviation between the two

distributions are not simply antilog related. For

more details, see reference 8.

The present writer has assumed that the users

of this distribution keep their statistics in the

variable x which is certainly the simplest process.

From reference 10, 60 events were takenthat

had fluxes measured above 30 MeV.

The logarithm of these 60 entries were ordered

from the smallest to the largest and the normalized

cumulative sums plotted on log normal paper as

shown in Fig. 9. The ungrouped data had a mean of

7.39, and the standard deviation was 0.97 as shown

at bottom of the figure. The straight line in

Fig. 9 depicts the cumulative normal distribution
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TABLE 9: NUMBER OF EVENTS N THAT SATISFY Pr(X>NI3,_ ) _ e

WEEKS _ .i0 .01 .001 .0001 .00001

13 .0433 i 2 3 3 4

26 .0866 i 2 4 5 6

52 .1733 2 4 5 7 8

78 .2600 3 5 7 8 I0

104 .3467 3 6 8 i0 12

156 .5200 4 8 i0 13 16

208 .6933 6 9 13 16 19

260 .8667 7 ii 15 19 22

300 1.000 9 13 17 21 25

with mean of 7.39 and variance of 0.97. From

examination of this fit, one might conclude that

the log normal gives a reasonable representation

of the data. Note that the flux for the November

12, 1960, event is plotted as a square which falls

exactly on our llne of best fit. This is done

since actually when one obtains the cumulative

distribution from a discrete set of data, the last

point has the cumulative probability of 1.00, but

since this cannot theoretically occur, the best

choice is to place this point on the best fit llne.

This point which is logl0 _ = 9.9562 corresponds

to the cumulative probability of 99.6% or in terms

of the standard deviation, the November 12, 1960,

event is at 2.63 standard deviations above the

mean. If we wished to go to the 99.9% level,

then it would be necessary to take 3.09 standard

deviations above the mean or a log flux of 10.4016.

Now if we find the antilog of this value, we see

that the flux at the 99.9% level in the log normal

distribution is 2.52 x i010 proton/cm 2 (E > 30 MeV)

which is a factor of about 2.8 times larger than

the November 12, 1960, event. Hence, it would

seem that a flux above 30 MeV which is 3 times

larger than the November 12, 1960, event would

have a probability ofoccurring which is less than

0.001.

From the above analysis, one may be convinced

that a reasonable upper bound value for a single

event is at most a factor of 3 larger than the

November 12, 1960, event. For the above reason

this writer feels that the results obtained by

some investigators for the extreme probability

tails must depict a smaller probability than the

estimates given. They have possibly used Joint

probabilities of flux and rigidity parameters which

may be a factor of i0 or more smaller than those

indicated by the 0.1% probability tail shown in

the various reports at my disposal.

If the reader wishes to use the 99.9% pro-

bability event in the present work, he may ignore

self shielding and geometry factors, a factor of 3.

TABLE i0: NUMBER OF EVENTS N THAT SATISFY Pr(X> NI0,8) < E

WEEKS _._ .i .01 .001 .0001 .00001

13 .0433 0 1 2 2 3

26 .0866 0 1 2 3 4

52 .1733 i 2 3 4 6

78 .2600 1 2 4 5 7

104 .3467 i 3 5 6 8

156 .5200 2 4 6 8 i0

208 .6933 2 5 7 i0 12

260 .8667 2 5 8 ii 14

300 I. 0000 3 6 9 13 16
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