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This report outlines the theory used in FASTER-III, a Monte Carlo
computer program for the transport of neutrons and gamma rays in com-
plex geometries. The code has the additional capability of calculating
the minimum weight layered unit shield configuration which will meet a
specified dose rate constraint. It includes the treatment of geometric
regions bounded by quadratic and quadric surfaces with multiple radia-
tion sources which have a specified space, angle, and energy dependence.
The program calculates, using importance sampling, the resulting number

and energy fluxes at specified point, surface, and volume detectors.
Results are presented for sample problems involving primary neu-

tron and both primary and secondary photon transport in a spherical

reactor-shield configuration. These results include the optimization of

the shield configuration.

Section 1
INTRODUCTION AND SUMMARY

The original FASTER program (ref. 1) contained
a number of new techniques which provided the capa-
bility of obtaining accurate radiation levels at
specified points in complex geometries. Prior use
of FASTER indicated a need to broaden the overall
program capabilities, automate the importance
sampling, increase the computational efficiency,
and revise the users manual. This revised program
has been designated FASTER-III to distinguish it
from earlier versions.

A specific program capability permitting the
calculation of minimum weight layered unit shield
configurations for mobile nuclear reactor applica-
tions, e.g., nuclear propulsion for aircraft, sur-
face effect vehicles, and spacecraft has recently
been developed. The basic Monte Carlo trahéport
method was extended to include a calculation of
partial derivatives of the radiation fluxes with
respect to specified shield dimensions. These de~
rivatives are then used to define exponential re-
lationships used in the shield optimization pro-
cedure. This optional program feature is described
more completely in Section 2.

Data preparation is simple, with very little
judgment required to set up the importance sampling
for most problems. The code also has a unit shield
weight optimization capability.

Particularly noteworthy features of FASTER-
III are the following:

(1) A calculation of optimal importance sam-
pling parameters based on partial derivatives of
the variance (Section 2.3).

(2) The scceptance of data in either fixed or
variable field formats including the ANISN-DTF for-
mat for neutron cross sections.

(3) The calculation of time-dependent neutron
and photon transport (using time moments and/or
time intervals) including an optional exponential
atmosphere.

(4) The improvement and addition of importance
sampling models with the various importance sam-
pling parameters built into the program.

Various program features are described in
Refs. 2 to 6.

The application of the FASTER-III program to a
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shield optimization problem is discussed in Section
3. The problem involved a spherical reactor-shield
configuration and included primary neutrons and
both primary and secondary photons. Conclusions
and recommendations are presented in Section 4.

Section 2
ANALYSIS

The techniques used in calculating optimum
shield configurations and optimum importance sam-
pling parameters are summarized below. The dis-
cussion is given in three parts: dose rate deriv-
atives with respect to shield layer thicknesses,
optimization procedures, importance parameter op-
timization.

2.1 Dose Rate Derivatives

The dose rate at a point detector y for a
specified reactor shield configuration is written
as:

J
D(y) = Y, Bywyy) (1)

J=1

where J is the total number of energy groups for
both neutrons and photons (including secondaries),
Qj(l) is the particle flux in the jth energy group,
and R; is the response function to convert from
flux to dose rate. The rate of change of the dose
rate with respect to a shield layer thickness is
simply
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where L 1is the total number of shield layers and
t7 is the thickness of the 1th layer. The equa-
tion used by the program for determining the flux
is written as:
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where N 1is the total number of histories tracked
via the Monte Carlo method, k 18 the number of
particle collisions, z is the position of the
kth collision of the nth history, S¥xn(uxn) the
number of particles in the jth energy group
emerging from 2z, in the direction u of the
detector per unit solid angle, and Kj{zxn, y) rep-
resents the material and geometric attenuation
kernel for particles in the Jth energy group
going from 2zy, to the detector.

The partial derivative of the flux with re-
spect to the 1th shield layer thickness is

simply:
N
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The summations are a minor part of the calculation.
Therefore, the notation is simplified by concentra-
ting on the elements in the summation
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where 63kn represents the contribution to the
flux in the jth energy group from the kth col-
lision of the nth history. This equation is re-
written as _
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The second term in brackets involves the attenu-
ation kernel '

(7)
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vhere M is the total number of regions traversed
from 2, to the detector, s 1s the path length
for the mth region traverseg is the total
cross section of this region for particles in the
JEQ energy group, and s 1is the total distance
from 2z, te the detector, i.e.,

M
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A substitution of this kernel gives:
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The partial derivative of the partial path
length sp with respect to the shield layer thick-
ness t; 1is zero unless the mth region tra-
versed is affected by a change in t;. 1In partic-
ular, if t3; is a characteristic dimension of the
region, i.e., its thickness, then
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where my,., is the cosine of the angle measured
from the surface normal ny,m,, with which the par-
ticle crosses the boundary of the region.

In the strict sense, the change of the thick-
ness of one shield region can affect other shield
regions. In particular, for a spherically symmet-
ric reactor-shield configuration, an increase in
the thickness of a shield region forces a movement
of all shield regions having a larger radius. The
inclusion of these effects in the above equation
unnecessarily complicates the analysis and the cal-
culations. The primary effect of changing a shield
region dimension is to change the number of mean
free paths which particles have to traverse in
reaching the detector. Therefore, in calculating
the derivatives, only the effect of the material
attenuation is treated.

The derivatives at a specific boundary cross-

ing m' then simplify to:
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vhere m' 1is the index of a region having t, as

s dimension. The partial derivatives of the par-
ticle weight with respect to the shield dimensions -
the first term in brackets in Eq. (8) - are zero

at the point of origin of all primary particles.
For subsequent particle collisions, the deriva-
tives are calculated using the relationship be-
tween particle weights on subsequent collisions:



*
Sjk_n(‘-lkn)

Z ST k-1, n{Ten K (21 0o 200n) T3 5 (B Vi~ )

P Ziep)

zZ
T = Rk (12)
|—kn Z%k-1,n

vhere S¥ ,_ 1, o{¥ien) is the number of particles
coming ou{: of the previous collision point in the
direction vy, and in the 1ith energy group,
K;(zp_q 0o Zyp) is the attenuation kernel between
partlcle collision points, TlJ(_,kIl: Ykn * Ekn) is
the scattering kernel for transfer of particles from
group i to group j, and pPhn(2zxn) is the probability
density function used in selecting the collision
point.

A straightforward substitution gives
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where qf (vi,) is a probability density function
used to select the particle direction, s = {z -
_k-l n| is the distance of the selected collision
point from the previous collision point, A(s) is an
importance factor for each region which changes
discontinuously at region boundaries, and a(s) is
an effective cross section which changes discontin-
uously at region boundaries and which may change
continuously within a region.

The derivative of the logarithm of py (z,,)

=
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After some manipulation, this reduces to
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The first term in brackets in Eq. (14) is the
same partial derivative for collision k-1 as the
partial derivative now being calculated for colli-
sion k. Therefore, it is known, either identi-
cally zero for k=0, or as determined from Eq. (14)
for k > 0. The second term in brackets in Eq. (14)
is similar to the second term in brackets in Eq. (6)
and is therefore determined by Eq. (11). The last
term in brackets involves the definition of the
probability density function used to select the
collision point 23,

The probability density function for a colli-
sion point has the form
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involves only those terms which change when a
shield dimension changes, i.e.,
)
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Let s; denote the distance to a boundery in-
volving the 1th shield dimension. If the first
term on the left side of Eq. (17) is affected by a
change in this shield dimension, i.e. if s > s,,
then )

d s 08y
= |- [T a(s)as'| = -a(s;) —=
> [ ‘é‘ s s] a(sy >,

= -a(s;) —— (18)
H1kn

where a(sl) is the effective cross section at the
boundary of the shield and pyxy, 1s the cosine the
particle path makes with the outer shield normal.
If there is any crossing involving the 1th shield
dimension, the second term in Eq. (18) will always
have a non-zero derivative, i.e.,
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Curved shield surfaces may be crossed more than once
along the path between two particle collision
points. Therefore, a summation of Egs. (18) and
(19) over every intersection involving the 1th
shield dimension is required to completely evaluate
Eq. (17).

2.2 Optimization Procedures

The shield optimization calculation yields the
set of shield layer thicknesses t' (£, to, «vvy
td, ... ti) such that the dose rate, D(u ), meets
the dose constraint. The Monte Carlo calculation is
performed for an initial set of shield layer thick-
nesses t = (%3, tp, ... ty, ..., t1) and yields a
set of fluxes, 93(t), 3 =1, 7, ..., J and deriva-
tlves,ago t)/atl,J_l 2, veay J3 1 =1, 2, ...,
L. The assumptlon is made that the fluxes vary
exponentially with respect to shield dimensiocn
changes in the form

95(8') = 95(8) expfay - (&' - &)] (20)
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In particular
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The weight is also expressed as a function of
the shield layer thicknesses. The weight is de-
noted by W(t') and for spherically symmetric

shields:
pl[(ro + ti)3 - rg]

+ DZBIE + ti + t'z)3 - (ro + ti)s] + ..

w(t') = 22
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where o is the density of the 1th shield re-

gion and ry is the minimum shield radius.

The purpose of the optimization procedure is
to minimize the weight W(t') subject to the dose
rate constraint D(t') = Dy where D, is a speci-
fied dose rate. At this optimum, a small weight
perturbation in any layer causes the same dose rate
change. The rate at which dose rate changes with
respect to a shield weight change in the 1th layer
is given by -
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The necessary derivatives are:
J
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and for spherically symmetric shield:
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In arriving at the optimum shield, the total
shield weight is built up in increments of weight
M. Each increment in shield weight is always
associated with a particular shield layer thickness.
At each iteration, the particular shield dimension
is selected by examining the values of the shield
weight quality factors, Each factor Q; rep-
resents the approx1mate cﬁange in dose rate per
unit change in weight corresponding to a change in
the 1th shield dimension. Negative @Q,'s are the
most usual and correspond to shields for which an
increase in weight - and shield dimensions - gives
a decrease in dose rate. Positive Ql's can occur,
however, and correspond to shields for which an in-
crease in weight also increases the dose rate.

If, at a particular iteration, the dose rate
is above the dose rate constraint, the minimum
shield weight increment would correspond to the
least positive value of those Qz's for which
Q; > 0 and for which tj > t;(min), where tz(min)
is the minimum value of the 1th shield layer
thickness. If such a g exists, the dose rate
can be decreased while so decreasing the shield
weight the maximum amount. If there isn't such a
QZ’ the next best procedure is to find the most
negative of the Q;'s for which Q < 0 and for
which t] < tl(maxg, where t (max) is the maximum
value of the 1th shield layer thickness. A
change in that Ql would give the maximum decrease
in dose rate per unit increase in weight.

If the dose rate i1s below the specified dose
rate at a particular iteration, the minimum shield
welght increment would correspond to the least
negative of those @;'s for which g, <0 and for
which t; > t;(min). If such a Q; éxists, the
dose rate can be increased while decrea51ng the
shield weight the maximum amount. If there isn't
such a Ql: the next best procedure is to find the
most positive of those Q;'s for which Q; >0
and for which tj < t7(max). A change in that Q
would give the maximum increase in dose rate per
unit increase in weight.



Assuming a particular value of the Qz's
is selected through the above arguments, the cor-
responding shield dimension t.! 1s changed by a
maximum amount Atm where Amm is calculated as

At = N (
m aw(-t_i)
ot!
m

If this change would put 1t outside one of
its specified limits, the value of +t; would be
set to that limit, i.e., ty(min) < ty < tp(max).
The shield weight increment AW 1is calculated as

N = 92_:_E£§Ll (29)
G

subject to the constraint that |AW| < AW, where
M, 1is a specified maximum shield weight incre-

ment per iteration. Note that AW, and therefore
Ao, may be positive or negative depending on the
value of Q and whether the dose rate is above

or below the dose rate constraint.

Once a shield layer thickness is changed, the
dose, weight, and their derivatives are re-
evaluated and the entire process is repeated. The
optimization would be discontinued in several
ways. If the dose rate equals the dose rate con-
straint within the relative error of the original
Monte Carlo dose rate calculation, the program will
proceed to the next problem - which may be identi-
cal except with more histories to tighten the con-
vergence of Monte Carlo calculations. Similarly,
if all shield layer thicknesses have reached their
minimum or maximum values, and if the optimum
shield cannot be determined with these constraints,
the program would again proceed tc the next prob-
lem. Finally, if the dose rate and dose rate con-
straint are decades apart in value, the program
would reevaluate the fluxes and their derivatives
by Monte Carlc every time the dose rate changed by
more than a specified factor during the optimiza-
tion procedure.

2.3 Importance Parameter Optimization

The optimization of the importance sampling
must be performed for some function, e.g., dose
rate, of the energy-dependent fluxes since there
is a different optimum for every initial particle

energy. Therefore, assume that a minimum variance
calculation of the dose rate is required where
N
= 1
Dy = = Dy (30)
N
n=1

where N is the total number of histories and D
is the dose rate from the nth history and Dy
is the average value of the dose rate after N

histories. The relative error of this dose rate is
given by
1 1 X —
R S 2 _ 2
Ey = by | =2 E D. - NDg (31)
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Taking the logarithm of this equation and
then performing a formal calculation of the partial
derivative with respect to an unspecified param-
eter a yields
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Thus the partial derivative of the relative
error with respect to the parsmeter a 1is:
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The dose rate from the nth history is given by
J
D IND
J=1 k
where J 1is the total number of energy groups, k

is the number of particle collisions, R: 1is the
flux to dose rate conversion factor for the Jth
energy group, and @i, 1s the flux in the Jjth

group from the kth “collision of the nth his-
tory. Since
D, D 3D
N 1 n
SR (35)
a N a

the calculations required to evaluate Eq. (33) all
involve the summation of terms which involve

D23 (5T o =§:R.2 Npn (56
da da ] J m Jkn J da
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The remainder of the analysis, therefore, can
be concentrated on the partial derivatives of the
fluxes. All other operations which must be per-
formed are given above.

The fluxes typically depend on the detector
position y, so the equation for the particle flux
is written as

wjkn(lg = Sgkn(gkn)Kj(an’ ¥ (37)

The transport kernel Kj(EknJ y) does not in-
volve any importance sampling parameters so that
*
95D 3en (i K (21005 ¥)
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This equation can also be written as
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Without going into great detail, it turns out
that the particle weight 8% kn(_kn) is composed of
a purely analytical numerator, sun(Wen) and a de-
nominator which is the product o% all the probabil-
ity density functions used to select the collision
points, i.e.,
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any importance parameters, it follows that
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Therefore, Eg. (39) can be re-written as
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Moreover, the partial derivatives are energy-
independent so that Eq. (36) becomes

Dy = 3 *
- - 44
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The evaluation of the partial derivatives of
the probability density functions can be written

" % gl (2, ) (45)

At the kth collision, the first term on the
left side of Eq. (45) is known, identically zero
if k = 0. Therefore, the analysis is complezed
after examining the calculation of the second
term.

At this point it is necessary to identify the
particular importance parameter a. Since most of
the importance sampling parameters have fairly
involved roles, the technique will be applied here
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to a set of parameters which can have a reasonsably
simple role. These parameters consist of the rel-
ative importance I, of each region. Normally
these parameters are all equal. However, in asym-
metric problems, it turns out that some regions are
much more important in terms of their scattering
contributions to a detector. Therefore, these im-
portant regions have a larger value of I_.

The region importance enters into tﬁe selec-
tion of a collisicn point through the following
probability density function:

Tpy(s)

o (g,) = S (46)
i TPy

h=1

where r 1is the region in which the collision
occurs (selected at random), pi(s) is the piecewise
continuous probability density function in this re-
gion at the selected collision point (a distance s
from the previous collision point), H is the total
number of regions in which the collision could have
occurred, and P¥ is the integral of pﬁ(s') over
the partial path length in region h.

Calculating the logarithm of each side of the
equation ylelds:

H
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The partial derivative of Eq. (47) with re-

spect to the specific importance parameter I_ -
the relative importance of region g - yields

H
*
2 Fen
d * _ 1 _ h=1
O _in pkn(gkn) = 6gr 5 (48)
oI, Iy

%
2,

h=1

where 5gh =0
Sgg = 1.

Thus Eq. (48) is evaluated during the random
selection of the kth collision point and the
final term necessary to evaluate Eq. (45) and all
preceding eguations has been determined.

The above analysis is used to calculate the
partial derivatives of the relative error of the
dose rate with respect to the relative importance
I, of each geometric region, and a similar analy-
sis is performed for the other importance sampling
parameters. The result of the complete Monte Carlo
calculation is a set of partial derivatives which,
for the region importance, are given by

if region h 1is not region g and

N N N
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N N n N7 " n ~
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N N el n= n=1
(49)
dhere oD /BI is obtained from Ey. (44) using

(45) and (48)
After the calculation is completed, optimal
values of the importance sampling parameters are



calculated by requiring that the relative error be
zero - not actually achieved of course.
By a first order expansion

o
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where R 1is the total number of regions. A simple
gradient analysis says that I; - I, should be
proportional to OEy/dI, so that =
aEN
I, =1, +C — 51)
z e dL, (

where, by substitution into Ea. (50},

- E
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The program prints the optimum values of I
and other importance parameters after completing™
the Monte Carlo flux calculation. This analysis
is performed for every response function. After
more experience is obtained with the technique, the
program could be modified to change these param-
eters internally corresponding to a specified re-
sponse function.

Section 3
SAMPLE PROBLEM RESULTS

Two problems were investigated using the
shield optimization capabilities of the FASTER-III
program. Both problems involved a spherical
reactor-shield configuration and included primary
neutrons and both primary and secondary photons.

The two problems were similar except for the
power level, 375 MW and 600 MW respectively. Both
problems used a flat radial distribution for the
primary neutron and photon source distribution.

The primary photon source included an infinite
operation equilibrium fission product term.

The core radii for the two problems were 82.38
and 96.38 cm respectively, corresponding to a power
density of 4.53 MW/ftS. Following the core was a
7.62 cm Be reflector; a 5 cm depleted uranium
shield; three depleted uranium-borated water shield
layers of 57, 15, and 15 cm thickness and 6.4,

4.6, and 2.8 gm/cm3 density respectively; and a

117 em borated water shield. This base line shield
configuration was based on parameters obtained from
SANE-SAGE calculations and subsegquent calculations
using the UNAMIT program, Ref. 7. The reactor-
shield compositions are given in Table 1.

The primary neutron transport calculation
utilized multigroup cross sections for 26 energy
groups. Fifteen energy groups were utilized for
both primary and secondary photons. The secondary
production cross sections included both inelastic
and capture gammas.

These initial configurations were each analy-
zed for a point detector 30 ft from the core cen-
ter by following approximately 500 energy-
dependent packets of primary neutrons and photons
and approximately 7000 packets of secondary pho-
tons. The dose rates obtained from these calcu~
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lations are tabulated in Teble 2 including a break-
down by secondary source region. Each of these
problems required about 28 minutes on the UNIVAC
1108 computer.

The basic calculated dose rates and dose rate
derivatives were also used by the FASTER-III pro-
gram to calculate the minimum weight shield con-
tiguration which would give a dose rate of 0.25 mr/
hr at the specified detector point. The final
shield configurations following the optimization
are given in Table 3.

In both cases, the optimum shield configura-
tion is significantly different from the base line
configuration. Since the base line configuration
was not generated by the FASTER-III program it is
difficult to discuss many factors entering into
that calculation which would account for the dif-
ferent optimal configuration. It is noted, how-
ever, that the base line configuration was gener-
ated using parameters corresponding to a calculated
dose rate an order of magnitude below the specified
dose rate constraint, Ref. 8. As such, the base
line configuration used in the FASTER-III program
was determined from an extrapolation of a different
base line configuration.

A more critical critique can be made of the
FASTER-III results independently. First it is
noted that neither problem saw a significant con-
tribution, less than a few percent, from photon
sources in the core region. In fact, the 600 MW
reactor dose rate from this source was about a fac-
tor of two less than it was for the 375 MW reactor.
This difference is ascribed to the problem statis-
tics since core photon sources see approximately
30 mean free paths of shield material. Therefore,
it is doubtlful 1f this dose rate component is con-
verged within a factor of two after only 500 pack-
ets but this does not introduce a significant error
since the original contribution was only two per-
cent of the total dose rate.

The small contribution from core photon
sources decreases the amount of high Z shields
required around the core. Therefore, both problems
gave a significant change in the first two shield
dimensicns during the optimization. In the 375 MW
problem, the first mixture of depleted uranium-
borated water (o = 6.4 gm/em®) was eliminated en-
tirely. In the 600 MW problem, the depleted ura-
nium and most of the first mixture were eliminated.

The main difference between the two FASTER-III
calculations was the shift in the placement of
lighter shield mixes towards the core for the
600 MW problem. An examination of the secondary
photon dose components indicates that the contri-
bution from the outer two shields was about 25 per-
cent for the 375 MW reactor and almost 50 percent
for the 600 MW reactor. Since these sources de-
pend on the neutron attenuation through the closer
regions and since lower effective Z materials
are better neutron attenuators on a weight basis,
the 600 MW problem tends to replace high effective
Z material with a lower effective Z material.

The differences in the contribution from
secondary sources in the outer shield regions is
greater than expected for the nominal difference
in the core region. Therefore, much of the dif-
ference in these sources must be ascribed to sta-
tistical variations. In fact, both problems had
approximately 25 to 30 percent calculated relative
error in the total photon dose rate. It should be
noted that the FASTER-III program includes a num-
ber of importance sampling techniques which could
be used to decrease this error. However, both




problems were run using the built-in definitions of
importance parameters. Alternatively, more his-
tories could have been used although the computer
time requirements would have become excessive.

Section 4
CONCLUSTONS AND RECOMMENDATIONS

The FASTER-IIT program was developed to calcu-
late neutron and photon fluxes at specified points
in complex geometries. Alternatively, it can also
calculate fluxes averaged over specified surfaces
and volumes. The program was designed such that
data preparation is simple and so that very little
judgment is required to set up the importance sam-
pling for most problems. The FASTER-III program
satisfies these requirements very well.

The shield weight optimization capability in-
cluded in the FASTER-III program permits the cal-
culation of both base line radiation levels and op-
timal shield thicknesses all in a single computer
run. However, the very large attenuation factors
involved in the domonstration problems yielded some
questionable results. In particular, the statisti-

cal differences in the relative contribution from
various secondary source regions caused correspond-
ing variations in the relative distributions of
shield materials. Of course the statistical varia-
tions would be less in problems with less overall
attenuation.

The effect of statistical differences on the
shield optimization can be reduced by following
more packets. However, the computer times start to
get excessive if this is the only approach used.

It would be more fruitful in terms of the routine
application of the program to expend some effort
towards altering the importance sampling.

The FASTER-III program has the capability of
calculating optimal importance parameters based on
partial derivatives of the variance. This feature
can be used in determining better importance sam-
pling parameters for shield optimization problems.
In fact, the overall program efficiency could be
improved if this feature was utilized on a wide
variety of problems with the results being used to
improve the built-in importance sampling models and
parameters.
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SPHERICAL REAC'

TABLE 1

‘TOR-SHIELD CONFIGURATION

COMPOSTTIONS (10°" atoms/cm?)

CORE 38
v* MIX 1 MIX 2 MIX 3 0+B
Eloment SHIELD SHIELD SHIELD SHIEWD | shrmwp
H 0.01976 | 0.0 0.0 0.0451 0.0516 0.0580 0.0645
Be? 0.0 0.120 | 0.0 0.0 0.0 oo 0.0337
B 0.0 0.0 0.0 0.00067L| 0.000766 0.000862 0.000958
[+] 0.01184 [ 0.0 0.0 0.0226 0.0258 0.0290 0.0
AL 0.0512 | 0.0 0.0 0.0 0.0 0.0 0.0
2r 0.01748 | 0.0 0.0 0.0 0.0 0.0 0.0
] 0.000974 0.0 0.0 0.0 0.0 0.0 0.0
7238 0.000078 0.0 o.0482{ ©.01446 | 0.00064 | 0.00482 0.0
TABLE 2
RESULTS OF rmi\m—ur BASE LINE CALCUIATIONS OF REACTCR
SHIELD CONFIGURATIONS AT 3G FERT FROM CORE CENTER
DOSE RATE CONTRIBUTIONS AT 30 FFET
‘OM CORE CENTER
375 MW 600 MW
DOSE RATE REACTOR REACTOR
COMPONENT {mr/hr) (me/hr)
Photon Source Region
Core 0.009 6 0.004 s
Ref lector 3.5x10" 6.3x10"
Depleted Uranium 3.2x107 1.3x107°
Mix 1 Shield 0.018 0.026
Mix 2 Shield 0.062 0.075
Mix 3 Shield 0,017 0.063
Borated Water Shield 0.011 0.022
Total Photons 0.12040.034 0.18740.054
Neutrons 0.0204+0.002 0.02740.003
Total 0.140 0.214
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TABLE 3

RESULTS OF FASTFR=IIT SHIELD OPPIMIZATION

(0.25 mr/hr at 30 feet)

Quantity

375 MW
REACTOR

600 MW
REACTOR

Initial Final

Initial; Final

Dose Rate (mr/hr)
Photon
Neutron
Total

Shield Weight (109kg)
Depleted U
Mix 1
Mix 2
Mix 3
Water
Total

Shield Thickness (cm)
Depleted U
Mix 1
Mix 2
Mix 3
Water

0.120 0.126
0.020 0.124
0.140 0.250

0.2 12.6
71.2 0.0
22.1 52.4
6.1 12.2
8.7 80.3

206.3 157.5

5.0 6.1
57.0 0.0
15.0 57.3
15.0 13.5

117.0 120.8

0.187 0.153

0.027 0.097
0.214 0.250

13.8 0.0
89.2 6.6
26.4 52.4
19.0 63.1
9.7 8.3
246. 207.
5.0 0.0
57.0 7.0
15.0 48.u
15.0 51.4
117.0 98.4

NASA-Lewis





