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SUMMARY

Sources of high-energy electrons are encountered in space (the magnetically trapped Van Allen belt
electrons) and in ground-level high-energy physics laboratories. It is important to be able to predict
the damage resulting to human beings and radiation-sensitive equipment near these sources. 1In this
report, various techniques for the calculation of electron and bremsstrahlung dose deposition are des-
cribed. New energy deposition, transmission, and reflection coefficients for electrons incident on plane
slabs for angles of 0, 30, 60, 75, and 89.9 deg and energies of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and
10.0 MeV are presented, and methods for their use in electron dose calculations are developed. A method
for electron dose calculations using the "straight-ahead" approximation is also developed, and the
various methods are compared and found to be in good agreement. Accurate and approximate methods of
calculating bremsstrahlung dose are derived and compared. The approximation is found to give good order
of magnitude estimate of dose where the electron spectrum falls off exponentially with energy. The pri-
mary weakness of both calculations is the approximation of the bremsstrahlung source angular distribution;
the actual distribution is not easily determined. More work needs to be done in this area,

USE OF BERGER'S MONTE CARLO DATA IN
ELECTRON DOSE CALCULATIONS

Probably the most successful attack on the - electron's energy lost as bremsstrahlung in stop-

electron transport problem has been by Martin ping, is 0.003323 at 0,25 MeV and 0.07721 at 10.0
Bergerl1-3] using Monte Carlo methods and multiple MeV in aluminum[?]. This quantity should set an
scattering techniques. His present set of pro- upper bound on the possible error induced by the
grams will take an incident beam of electromns or limitations imposed at least for the energy factors.

photons and follow both the primdries and any
secondary electrons or photons produced. The out-
put includes almost any quantity of interest de-
pending on the program option used. Because the
simulation is so thorough, the program is very
complex and requires large amounts of computer
time on one of the larger machines available to
complete an accurate calculation. Thus, the pro-
gram's primary usefulness is in generating basic
data for incorporation into other programs using
more simplified approaches to the problem.
Berger's program was made available to
Marshall Space Flight Center (MSFC), and a number
of calculations have been performed here for com—
parison with experimental work[4], As a second
study systematic calculations covering the energy
range of from 0.5 to 10.0 MeV for a number of
angles of incidence by a monodirectional beam on
a plane aluminum slab were made. The geometry is E

shown in Fig. 1. Of particular interest were the

flection and the energy deposition coefficients, = - _ _ _ __ _
because they can be incorporated into an electron

dose or number deposition calculation involving an

arbitrary incident electron energy and angular

distribution., To minimize the computer time used

RECEIVER
POINT

electron energy and number transmission and re- Py
no photons were followed, and only enough electron

histories (2500 through 7000, depending on the

angle of incidence) were sampled to get good sta-

tistics for the reflection, transmission, and

deposition coefficients. (A much higher number of

histories would have been required to get good

statistics on one of the differential quantities

such as exiting energy spectrum.) The fact that

secondary photons were not followed means that

there is a slight underestimate both in the number

of coefficients due to missing tertiary electrons

produced by the photons and in the energy factors )
due to energy transported by secondary photons. FIGURE 1: BASIC GEOMETRY USED FOR (CALCULATIONS
Because over most of the energy range of interest

electrons lose only a small fraction of their

energy as photons, both these effects should be

small. The radiative yield, the fraction of an
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There are several approaches for attacking
a dose deposition calculation using the results
tabulated by Berger's electron transport program.
The most obvious is to use the internal energy
spectrum and instantaneous stopping power. Two
less obvious but more efficient methods - one
reasonably exact and the other approximate - will
be described here.

The exact calculation makes use of a quantity
Berger calls energy deposition (Figs. 2 and 3),
which is the average energy deposited per unit mass
per electron at a given depth irto a plane, in-
finitely thick slab by, in this case, a monodirec-
tional beam of electrons. [This does not follow
the initial model (Fig. 1) because there is
material behind the receiver point.] Berger calcu-
lates the energy deposition by breaking up the slab
into thin layers and keeping an inventory of energy
deposited in each layer and then dividing this
quantity by the incident number of initial electron

histories and layer thickness. Thus,
N.
5 sk
i=1 Y
P(E, 9, xj) = NOA XJ ’ (1)

where p 1is the energy deposition in MeV/g/unit
current, E is the incident energy in MeV, O is

the incident beam angle measured from the normal to
the slab, Xy is the depth to the center of the jth
layer, N4 is the number of electrons penetrating
layer j,  AEq; is the energy in MeV deposited by
the ith penetrating electron in the jth layer, No
is the number of initial electron histories, and
AX; is the thickness of the jth layer in g/cm2. In
Berger's tabulation X4 is measured in fractions of
an electron pathlengtg at the incident energy. The
electron mean pathlength is the average length of
the zig-zag path followed by an electron in
stopping as opposed to the mean range which is the

average straight-line distance traversed. It is
given by:
0 1
dE
ro (E) = f 5. () , (2)
E T

where r (E) is the pathlength at energy E and
S¢(E') is the total instantaneous stopping power.

-
o

i

5‘.9 0.5 MoV

E // <

g =N

g ///// ,,,—/::><§

E”Ln/m/ \

i NN

3 AN

a1 [ X 03 o4 [ 1] 0.6 0.7 o8 09 L0

Zity (E)
FINML 2. DIERCY DEPOSITION CORPPICIENT (ev/g) AT 0.3, 2.0, AYD 10.0 et TOK A MORMALLY TACIDENT ELECTAOK BEA

5.0

T
ji%e
K

&1 8z o

N

>
I

e

N

S
] %5 06 0.7 0.8 0.9
Zrgle)

FIGURE 3: ENERCY DEPOSITION COEFFICIENT (MeV/g) FOR 2.0 Mav ELECTRONS INCIDENT AT VARIOUS ANGLES

ELECTRON ENERGY DEPOS ITION COEFFICIENT (MaVig}

2=
~2L |

If there is an apgular and energy flux distri-
bution given by ¢°[E£,’%(®, $)] with ¢, electrons
incident per ugit at E and per unit solid angle in
the direction §i, then the incident current as used
by Berger is

Jo(R) = &y(E, ) cos () , 3)

and the dose at a depth Z in g/cm2 is given by:

D(Z) =K [ [ p(E,0,2/r0(E)] & (E,&)
T E 4)

cos 0 dEdQ ,

where K is a units conversion constant. Dose is
more often measured in rads than MeV/g, in which
case K = 1,60 x 10-8 rads/(MeV/g).* In the case
where there is a monodirectional beam incident at
an angle O from the slab normal, Equation (4)
becomes:

D(Z,0) =K cos 8 [ p[E,6,Z/r(E)] (5)
E

@ (E) dE .

Another case of interest is that in which the

distribution is half-space isotropic., 1In this
case the dose is givenﬂes
2
”lso‘z)”‘é{ PIE, 0, Z/(E)] 6)

cos § sin 6do &, (E) dE .

Thus, a half-space energy deposition function may

be defined by T

2

0(E,X):{ P(E,8,X) @

cos 9 sing do .

*To convert rads to SI Units in joules per
kilogram, multiply rads by 0.01.
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This function is tabulated in Table 1,

if Equation
(7) is used, Equation (6) becomes:

D,,(Z) =K £ Pigo [Er Z/Tq(E)] 8

% (E) dE

The approximate method for calculating elec-
tron dose makes use of the energy transmission and
reflection factor of Berger to derive an approxi-
mation to the energy deposition function. The
electron energy current transmission and reflection
and number current transmission and reflection
factor shown in Figs, 4 through 11 are defined as
follows:

NT (E,0,X)

TN (E,8,X) = Ta (@)

R
Jy (6)

N_ (E,0,X)
AN (E,8,X)= ———r

' ETi(E,o,X)

1

Lo 2

()]

Tg (B.0.X) = =555

Z
o]

Z Eg, (E,0,X)

_i=1
Ap (E,0,X)= == O] S,

where Ty is the number transmission factor; Ny is
the number of electrons passing through a slab X
thick; Ay is the number reflection factor where

NR is the number
slab X thick; Tg
where ETi 1is the
electron; and Ag
where Egy is the

of electrons reflected from a

is the energy transmission factor
energy of the 1th transmitted

i1s the energy reflection factor
energy of the 1th reflected

electron,
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How these factors may be used in energy depo-
sition or dose calculations will now be considered.
From conservation of energy,

E=E [AE (E,9,X) + UE (E,8,X)

+ Ty (E,0,X)] (10)

or
1=A_ (E,0,X)+ U (E,8,X)

(11)
+ Ty (E,0,%)

are obtained, where Ug(E,0,X) is the fraction of
the energy either deposited in the slab or radiated
as bremsstrahlung. Since in the energy range of
interest the radiated component is small, it will
be assumed negligible. If a quantity f(X',E,0,X)
dX' is defined, which is the fraction of the

incident energy deposited between X' and X' + dX',
then

X
Ug (E,0,X) = of f(x',E,8,X) dx' (12)
Using Equations (11) and (12) yields
X
J fxXE,0,%) ax' =1 - Ag (E,0,X)
0 (13)
'TE (Erolx)
Taking the derivative with respect to X gives
X
df
f(X,E,8,X - ' ‘=
( )+0f = (XE,0,X) dX'=
(14)

d
"X [AE (E,0,X)+ TE(E,O,X] .
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The approximation in this method involves ignoring
the integral term on the left in this equation.
Since f(X',E,0,X) increases with increasing X (due
to reflected electrons), the derivative is always
greater than or equal to zero. Thus the integral
is positive, and ignoring it gives a conservative
estimate of f(X,E,0,X). It is difficult to justify
this approximation except to observe that in
practice it yields results comparable with those
of the previously described method. It was deve-
loped because Berger's older publication presented
only the transmission and reflection factors, the
energy deposition factor having become available
only recently.

The energy deposition function (in units of
MeV/g) is given by:

p(X,E,0,X) = M)

ry (E) (15)

or

“Ed
,E,8, ———

PIX.E,0,X) » =S (AL (E,0,X)

+TL (E,0,X] (6

It is interesting to note that f(X',E,0,X) for
X' < X always has a contribution caused by re-
flection from portions of the shield beyond X' but
that f(X,E,0,X) does not., Thus it approximates the
quantity needed for an energy deposition cal~
culation in our original geometry.

Because of the definition of p in the deriva-

tions the material of the receiver must be the
same as that of the shield. An approximate
correction for estimating the dose for a different
receiver can be made by multiplying the single
material calculation by the ratio of the collision
stopping power in the shield material at some
typical energy for the exiting electron spectrum,
Fortunately, the energy selected is not particul-
arly important since the ratio of two electron
stopping powers is not a sensitive function of
energy except at very low energies ( > 0.01 MeV),
Some estimate of the accuracy of the approximation
can be found by observing the variation of the
ratio with energy. A particularly interesting
case is that of an aluminum shield and a tissue
receiver. This case, using Berger's stopping

power datal3] is given in Table 2.

Taking the simple average of ratios between
energies of 0.1 to 10.0 MeV yields a correction
(1.30) that will be within about 3% of an exact
calculation under most conceivable conditions.
(For typical incident energy spectra encountered,
it would be unusual for the average energy of the
exiting spectrum to be less than 0.04 MeV).

Thus, for an aluminum shield and a tissue receiver
Equations (5) and (6) become, respectively:

D(Z,6) = 1.3Kcos 8 [ p[E,0,2/r, (E)] an
E

% (E) dE

and
D, (%) =1.3K éf Pigo 1E+Z/1g (E)] (18)

¢, (E) dE
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TABLE 2: RATIO OF TISSUE COLLISION STOPPING POWER TO ALUMINUM
COLLISION STOPPING POWER AS A FUNCTION OF ENERGY

Energy . JE/dX tissue R-1.3 100
(MeV) R dE/dX aluminum R x
(%)
0.01 1.383 6.0
0.02 1.350 3.7
0.04 1.325 1.9
0.06 1.313 1.0
0.08 1.305 0.4
0.1 1.300 0.0
0.2 1.285 -1.2
0.4 1.276 -1.9
0.6 1.272 -2.2
0.8 1.271 -2.3
1.0 1.272 -2.2
2.0 1,281 ~1.5
4,0 1.301 0.1
6.0 1.317 1.3
8.0 - 1.329 2,2
10.0 1.340 3.0
Curve fits of P(E,9,X) have been found to be A{ = 0.52+ 0.09854 E‘1.468
very useful for computational purposes. Fit over
-0.821E
X of the form N it A, = e -1.0
) A X' (21)
i _ . ~1.022E )
P(E,0,X)=¢ 1 (19) A = 2.5 (e + 1.0
-0.323E
has been found to give satisfactory results for Ag = 3.253e +5.8
normal incidence and half-space isotropic inci-
dence, two cases of special interest, Fits of Ag = -15.4375+ 1..5542E - 0. 0786077E?
the above form were made and then the coefficients
were fit as a function of energy. For normal Because the shape of the energy deposition
incidence the coefficients are given by: function for angles near 90 deg is different from
0 that near 0 deg, a good fit by a single functional
A = 0.913e - 963E + 0.021E + 0. 215 form is difficult to achieve over the whole range
: of directions. Best results will probably be
Ay = 5.0 -0.491F obtained by interpolation from the actual data or a
’ (20) smoothed set derived from it. The function f(E,0,
A, = 57 X) derived using the reflection and transmission
3 = 57.573 (E - 5.0)/(E + 29.98) factors was also fit but by a different form. The
fit was to the form
A, = -1.6E0'837

1-T E,O,X) -A (E’G,X) =
and for half-space isotropic the coefficients are E ( E
given by: (22)

2 3
AI:i_e(Bx+ cxX +DX)]
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where A, B, C, and D are functions of E and O,
Then, taking the derivative with respect to X and
using Equation (14) yields

f(E,8,X) = (23)

BX + CX? + DX%)
-A (B+ 2CX + 3DX?%) e

Fits have been derived for the two cases of special
interest. For a normally incident beam (0 = 0 deg)
in the energy range 0.5 to 10.0 MeV,

0.893 + 1.682E

1.0+ 1.665E
B i1.0E
B =11 oE+6 [ (24)
C = 4.2 exp(-0.47E)
and
D = 5.16

Berger has published a transmission and reflection
coefficient for a_cosine law source (half-space
isotropic flux)[3]. In this case fig, (E,X) 1s a
relatively insensitive function of E, and satis-
factory results are obtained by taking an average
curve for all energies., For energy deposition,

A = 0.439
B = -2.08
C = -3.54 (25)
D = -6.08

The electron
from Berger[2
form:

?athlength ro(E) in aluminum taken
has also been fit by the following

ry (E) = 26)
2

(1.33 - 0.019E) (N 0.2713E%+ 0.0121 -0.11) ,

which is within 2% of actual curves for energies
greater than 0.3 MeV and within 5% between 0.2 and
0.3 MeV,

ELECTRON TRANSPORT USING THE STRAIGHT-AHEAD
AND CONTINUOUS SLOWING DOWN APPROXIMATIONS

A method commonly used for describing the
transport of protons is to assume that the
particle travels through the shield along its
incident direction losing energy continuously
according to some stopping power law. Thus,
according to the approximations, the energy and
direction of the particle at any point in the
shield is completely predictable., This method
has the advantage of providing an energy spectrum
at the internal point of interest that may be
used to determine such things as secondary pro-
duction sources as well as to calculate dose
deposition. Its disadvantages for application
to electron transport are twofold: First,
electrons are more likely to be scattered from
their original direction than protons, and

*This mean range is not Berger's mean pathlength.
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second, electrons can suffer large energy losses
in a single interaction, Thus the straight-ahead
approximations should not be expected to be es-
pecially applicable. The approximations have been
applied with some success, however.

Since the validity of the approximations in
applications to electron transport are gsomewhat
questionable, one would prefer to be on the con-
servative side in any estimate of particle energy
or number. By using the extrapolated electron
range rather than the mean range* for definition
of other required quantities this can be accom-
plished. The extrapolated range is defined as

shown in Fig. 12, where it can be seen that few
electrons penetrate beyond this distance. A very
good fit to the extrapolated range in aluminum is
given by:

- _ | E
Tox = R(E) = a TP b 27
over the energy range from 0.0 to 16.0 MeV. For

R(E) in g/cm2,

E is in MeV, a is 1,92, and b is
0.11[51,

1.0

05— — — — — —

ELECTRON NUMBER TRANSMISSION

| \

"mean

SHIELD THICKNESS

FIGURE 12: DEFINITIONS OF ELECTRON MEAN RANGE rMEAN’.

EXTRAPOLATED RANGE r__, AND MAXIMUM RANGE r
ex max

Given the electron range, one can determine
the relationship between the initial energy and the
energy after passing through thickness Z of
material as follows:

Since
R(E)=R(E")+Z , (28)

where E is the initial energy and E' is the energy
at depth Z,



-1
E=g(E,2) =R [R(E") +2)]; (29)
R-l denotes the inverse of the function R. Thus,
using Equations (27) and (29) gives
E=g(E',Z) =
(30)

[T o

The relationship between the external differential
flux 9,(E) and the flux at depth Z, ¢(E'), is
glven by:

. , dg(E', Z
@ (E') = & (g(E',2)) ELELD) (31

The derivative enters the equation because of
change ofs energy E to E' units; or as one can see,
lower energy electrons lose energy faster, thus
changing particle densities, Using Equation (30)

EarIcER
aj(%')zwz /ﬂ%7+b2+z]z -bz.

dE’
The electron dose deposited at depth Z is
given by:

(32)

D(z) =K [ @ (E") S(E) dE' (33
E

where S(E') is the instantaneous collision stopping
power in the receiver. One can derive an approxi-
mation for the stopping power by using the deriva-
tive of the range

S(E) = - “R(E)
dE' (34)
2 "2
S(E") = _;—. <£a> + b? (35)

By a fortunate accident the approximate stopping
power derived from aluminum extrapolated range
data is a good fit to tissue collision stopping
power. (Tissue is the receiver most commonly
used.) The fit is within 5% of Berger's tabulated
datal2] in the interval 0.15 to 4.5 MeV and with-
in 13% from 0.08 to 10.0 MeV.

Combining the results of Equations (31), (32),
(33), and (35) and simplifying the tissue dose
behind an aluminum shield Z thick yields

D(Z) =

f E'V, .2 J
K f' éo[g(E',Z)] a[ (a ) +b* + 2 '(36)
E

g(E2) dE .
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Equation (36) is derived for normal incidence. For
a beam incident at angle © to the normal, Z is
replaced in the equation by the slant distance to
the dose point, Z/cos O, and for half-space iso-
tropic flux the dose is given by:

T

2
Disot?) = Kof E[.' &g [g(E',Z/cos 0)]

¥ 37
al | Q_.: )Z+b2+ Z/cos

|
g(E',Z/gos ) dE singdeg

COMPARISON OF THE THREE METHODS FOR
DOSE CALCULATION

Typical electron spectra encountered in
practical applications are exponential in nature.
Figures 13 through 18 show comparisons of the
three methods for spectra of the form

PE (38)

$, (E) = Pe
where P varies from 0.25 to 6.0. The energy inte-
gration limits are 0.0 to 20.0 MeV. The agree-
ment among the three methods is fairly good con-
sidering the magnitude of the attenuation that
occurs. The two methods using Berger's data have
significant disagreement only for high shield
thicknesses and isotropic spectra. The disagree-
ment here is probably because a significant frac-
tion of the dose is from electrons with energies
above 10 MeV where both methods are using extra-
polation on the data. The disagreement between
the methods using Berger's'data and the straight-
ahead method are somewhat larger, but the errors
still are not so large as to cause question about
the validity of any one of the three approaches.

~—— BERQER ENERGY
DEPOSITION DATA

BERGER TRANSMISSION-
~ REFLECTION DATA *

' .
\\Qttittg\\\
~

BT RN

™ =4

\

N ‘\\ N

\

\\\

L1 —

TISSUE DOSE {rads)

103

\

10

SHIELD THICKNESS ||lwz - ALUMINUM)

FIGURE 13: COMPARISON OF ELECTRON TISSUE DOSES CALCULATED
USING BERGER'S ENERGY DEPOSITION DATA AND
TRANSMISSION - REFLECTION DATA FOR A NORMALLY
INCIDENY g?:cnwx OF THE FORM $_(E) = p exp
(~PE)efcmé - MeV M




w07
108

i
|
| 109
|

BERGER ENERGY
DEPOSITION DATA
== —— = BERGER TRANSMISSION-

REFLECTION DATA (3]

10°10

TISSUE DOSE (rads)

10N

1012

w3

3.0
6.0 4.0

1014

FIGURE 14:

3 4 5

SHIELD THICKNESS (u/t:m2 - ALUMINUM)

COMPARISON OF ELECTRON TISSUE DOSES CALCULATED
USING BERGER'S ENERGY DEPOSITION DATA AND
TRANSMISSION - REFLECTION DATA FOR A HALF-SPACE
ISOTROPIC INCIDENT SPECTRUM OF THE FORM & (E) =
P exp(-PE)e/cm? - MeV

<
S

BERGER ENERGY
DEPOSITION DATA

e — “STRAIGHT AHEAD" MODEL

TISSUE DOSE (rads;

3

1012

013

10 4

CIGURE 153

3 4 s 6

SHIELD THICKNESS (n/cm2 - ALUMINUM}
COMPARISUN OF ELECTRON TISSUE DUSLS CALCULATED

USING BL
STRALGHT~AHEAD MODEL

SPECTRUM OF THE FORM :c

JER'S ENERGY DEPOSITION DATA AND THE

FOR A NORMALLY INCIDENT
(E) = P exp(-PE)e/em? = Mot

810

107
' T T I
BERGER ENERGY
DEPOSITION DATA
— ~—m ——— “STRAIGHT AHEAD"
MODEL
108
109
2010
a4
-4
W
g
w
,z_w""- :
X
i
!
1012
\3.0 .
: |
| 4.0\
,
073 + \. "
8.0\ \
:
i \
‘-0'“ l \ \ AN
0 1 2 3 4 5 6
SHIELD THICKNESS (g/cm? - ALUMINUM)
FIGURE 16: COMPARISON UF ELECTRON TISSUE DOSES CALCULATED
LSING BERGER'S ENERGY DEPOSITION DATA AND THE
STRAIGHT-AHEAD MODEL FOR A HALF-SPACE [SOTROPTIC
INCIDENT ELECTRON SPECTRUM OF THE FORM [o(E) =
P exp(-PE)E/Cm - MeV
107 1 T T
‘ ] BERGER TR N
! REFLECTION DATA
! — —— —"STRAIGHT AHEAD" MODEL
e
1w
109
10
50
Q
<
L3
:
] R
3w
S
10712
1013
.
14
10
[
FIGURE 17: SALCULATED

TTON DATA \\I)

TK‘\l\nIH AHEAD MODEL FOR :\ NORMALLY INCIDEN

SPECTRUM OF THE FORM : (l) a P oexp(-Pl)e femd = Mev



107 T T

JERGER TRANSMISSION -~
REFLECTION DATA [3]
~ STRAIGHT AHEAD" MODEL

1010

1w

TISSUE DOSE (RADS)

1012

w3

104
0

SHIELD THICKNESS l'/anz - ALUMINUM)

FIGURE 18:  COMPARISON OF ELECTRON TLSSUL DOSLS CALCULATID
USING BE 3

ACE 1SOTROE TG
S R R )

BREMSSTRAHLUNG DOSE CALCULATIONS

Previously, consideration has been confined
to the dose deposited by electrons; this is satig-
factory for thin shields. However, when the
shields are thick enough to remove a large fraction
of the primary electrons, dose deposition by
bremsstrahlung must be taken into account. (The
point where this occurs 1s usually less than 3.0
g/em2,) To do a bremsstrahlung dose calculation
one must generate a bremsstrahlung source distri-
bution and then transport the bremsstrahlung from
this source to the dose point. To generate the
bremsstrahlung source distribution, one needs the
electron energy and angular distribution at the
source point and the bremsstrahlung production
cross section.

Because the interior electron angular distri-
bution is not easily determined and since the
bremsstrahlung production cross section differen-
tials in angle are not particularly accurate, a
simplification commonly made is to use cross
section differential in photon energy only and to
make some assumption about the bremsstrahlung
source angular distribution. (This assumption
will be examined later.) In this case, the
bremsstrahlung differential energy flux source or
depth Z' and photon energy E, is given by:

S(E ,2") =

Ef:_f‘Ey Z(EY.E) 1 (E,Q) dEdQ 39)

in units of MeV/(MeV-g), where I (EY,E) is the
macroscopic bremsstrahlung production cross
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section differential in photon energy in units
of photons/g-MeV-(e/cm2) and $z'(E,§) is the
electron energy and angular distribution at depth
Z in units of e/cm*-MeV-sr.

The macroscopic cross section is given by:

= Ny do 40

Y

23

where N, 1s Avagadro's number 6,02 x 10”7~ atom/
mole, A 1s the atomic weight of the material at
the source point in g/mole, and do/dE is the
microscopic bremsstrahlung production cross
section differential in photon energy in units of
photons/atom . (e/cm2) . MeV. The microscopic
cross section presently used for the MSFC cal-
culation is given by:

do

Z2lel B
Ey= FE(E'E‘Y) C(E) _Lﬂ_

137E_P,
%

1, p? € H eH
£ -2H0H(g—;—2°—) ol it v

3 P°Py

2 p2y
£9 , L {SHAH K’(H{H® + P§P%)

" PP 3P, P Pg P
K [(HOH+ E(zL)
+ 3 €
2P(P Pg (41)
(HnH+ P’)
Py

where

P,P-1
L = 21!1(&“}{;}(1_)

’ (Hy + Py
n(Ho"Po

€ =m(&2)

€0
H-P
The terms Hy and H are the initial and final total

electron energies in mc? units given by

E
Hy= ;;ET +1

E-E
H= ";EZTJL +1 ;

Py and P are the initial and final electron
momenta'given by

Po= NHE -1
P=nWNH-1 ;

and K is the photon energy or momentum in mc2 or
mc units, respectively,

E
K= o




The term Z, is the atomic number of the source
material, r, is the_classical electron radius
2.82 x 10‘13 cm, mc* is the rest mass energy of
an electron, and FE(E,EY) and C(E) are two cor-—
rection factors., Except for the correction
factors this is formula 3BN from Koch and Motz[G],
who give a complete description of the cross
section. The correction factor FE(E,EY) given by

27w Zg
(1 ’ 1373(,) E < 2.0 MeV
e21r 7 for
s L9
L o0.01 (42)
F (E,E) - 3(1 - 1378 ) E
h%
1.0 otherwise ,
where \
2 \2
me
Bo= J1 <E+—m"r) (43)
and

[ (——me N
g=J1 E-Ey+mc ! (44)

is the Elwert nonrelativistic coulomb correction,
and the correction C(E) is an empirical screening
correction as shown by Koch and Motz[6]. Koch and
Motz further discuss both these corrections[6],

The prime advantage of the straight-ahead
approximation is that it does provide an electron
spectrum at a given depth. Thus, using the result
derived, for a normally incident electron beam,
the bremsstrahlung source is given as

Sy (E.,2) =

dg(E,2") “
E ' _.g__’__

Ef ., L(EE) & [g(E,2)] “Sgg= dE ,

and for a half-space isotropic incident electron
distribution the bremsstrahlung source is

(46)
@o[8(E, 2'/cos6)] ﬁﬂE—'d%M dE sin ¢ do

»

where &,, g, and dg/dE are as defined in the third
section.

The bremsstrahlung transport and dose cal-
culation is relatively straightforward for a
plane slab geometry given the source energy dis~
tribution and some source angular distribution.
Using point kernel attenuation with dose build-
up factors, the dose is given by:
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Z
D(Z)=K ¢ (E ) S(E,Z') B(E ,Z,2'
_L[ { g (E) S(E,2") B(E ,2,2)
Y (47)
G E )lz-z' !
e ( y)I Z1] dE_Y dz’ ,

where uE(EY) is the gamma ray energy absorption
coefficient 7] for the receiver material; Z is

the shield thickness; B(E,Z,Z') is a dose buildup
factor, depending on the source angular distribu-
tion chosenj and G[um(EY)IZ—Z'Il is the attenuation
kernel, also depending on the source angular dis-
tribution chosen where Hp(Ey) is the gamma ray mass
absorption caefficient.

Much of the wide disagreement among various
bremsstranlung calculations can be traced to
assumptions made about either the incident electron
angular distribution expected in the problem or
the angular distribution of the bremsstrahlung
source. Perhaps the least conservative assumption
about the source distribution that can logically be
made for deep penetrations is that it is isotropic,
and the most conservative assumption is that all
the photons are emitted normally into the slab. In
the first case the attenuation kernel is given by:

E - 1]
1l#m(Ey)lz Z'1]
2 ’
where E1 is the first exponential integral and

plane isotropic buildup factors are used . In
the second case the attenuation kernel 1is

(48)

Gl (E ) 12-2']] =

. e (E)z-2'|
Glu, (E ) 1Z-Z'l) = e Y v w9)

and plane monodirectional buildup factors are
used. Goldsteinl7] tabulates these for infinite
media, which should give a conservative estimate
of the dose. These should be used cautiously,
however, because they do not extend low enough in
energy and extrapolation is dangerous., Figure 20
glves a comparison of these two cases for a half-
space isotropic electron spectrum of exponential
form incident on an aluminum shield with a water,
receiver (simulating tissue). Plane isotropic
buildup factors were used in both calculations so
that the difference observed is caused by the
attenuation kernel, Actually, if correct buildup
factors were used, the normal incident source
case would be slightly lower.

Because of the built-in bias of using the
extrapolated range in the straight-ahead approxi-
mation for calculating the source distribution, it
is felt that there is no need to use the most con~
servative source angular distribution. Instead it
is assumed that the bremsstrahlung source is half-
space isotropic toward the receiver by the atten-
uation function given in Equation (48) multiplied
by a factor of two. Still, the plane isotropic
buildup factors[8] are used, making the calculation
slightly more conservative., Figure 20 shows the
results of an MSFC bremsstrahlung calculation for
a half-space isotropic electron spectrum of expon-
ential form incident on an aluminum shield with a
water receiver (simulating tissue). Comparing
Figs. 19 and 20 reveals that the MSFC calculation



(Fig. 20) is the most conservative of the three up
to 4 or 5 g/cmz. Above that depth, the mono-
directional source calculation is more conservative
by as much as a factor of three compared to the
MSFC results,

S B e E

S0 UNG SOURCE
= e o MONODIRECTIONAL BREMSSTRAHLUNG SOURCE
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Since the bremsstrahlung dose calculational
method described so far involved triple or quad-
ruple numerical integration and since the functions
integrated are exceptionally difficult to inte-
grate, the calculation can be performed convenien—
tly only on a relatively large computer. In many
cases, all that is needed is a rough order of
magnitude estimate useful only in determining if
a problem exists. For space applications, where
most of the electron spectra encountered fall off
exponentially with increasing energy, a conserva-
tive estimate of bremsstrahlung dose can be cal-
culated as follows:

-First,-assume-that all the electrons-penetrate
to the source plane and that at that plane their
energy is the average energy of an external

electron. That is,
J [ E'e,(E', Q) dE' a0
1
E - — — (5Q)
J | 2 (E'. @) aE' a8
._. E'

Q
According to Evans[9], the total source in MeV/g
is approximated by

S=HZE* [ [ &, (E', @)dE'dg |,
1

51
i (51)

—

Q

where H is a constant and Zo 1s the shield material
atomic number. Berger and Seltzer[3] tabulate H
for a cosine law electron source as a function of
incident electron energy and shield thickness.
Because the variation in the table is not great,
a typical value 4 x 10-4 can be used for this
approximation.

Second, assume that the source plane is
located at half the extrapolated range at E

E. The
bremsstrahlung dose is given by:

D(Z)= Ky SBIE,u_(E)Z*IBslu_(E)Z*] . (52)

For pg, the energy absorption coefficient in the
receiver, 0.033 cm2/g is used, which is an upper
bound on the coefficient for water in the range
above 0.1 MeV. The source-receiver distance is
given by:

Z*=Z - R(E)/2 Z> R(E)/2 .

(53)

Airough fit of the buildup factor in aluminum is
ven by: = =3
g y B(E’“nm(E) Z¥) =

1.0+ 26.47 um(E) z+E 1§ o4 (54)

1.0+ 1.827um(§) zZ* 0.1 =E = 0.2016

1.0+ 12534 (E) 2¢E 2235 9016 .5 < 2.0

1.0+ 1.528 um(E) AT 2.0 ,




Simplifying somewhat for an aluminum shield and a
water receiver yields

D(Z)=2.7x 10 "EB(E, k_, (E) Z*]

- v = Y-
) E

Figure 21 shows the result of a bremsstrahlung dose
calculation using Equation (55); Fig. 22 shows a
similar calculation assuming a monodirectional
source. As can be seen in comparisons with results
of more accurate calculations, the approximation
ylelds reasonable order of magnitude estimates that
are generally conservative.

(55)
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CONCLUSION

Although the results of the different electron
and bremsstrahlung dose calculations developed at
MSFC give results in relatively good agreement with
each other, comparison with independent calculation
is useful in pointing up areas of possible weak-
ness. Wayne Scott of Oak Ridge National Laboratory
has made such calculation using a Boeing program
called Charge and a Douglas program called BEP as
well as an older version of the MSFC program using
Berger's transmission and reflection datall0], The
spectrum used was

-0.575E-0.055E> € ____  (56)

& (E)=3.88e cm“-MeV-sec

which was renormalized to a total flux of unity.
Table 3 gives the calculated electron dose in units
of rad/h behind an aluminum shield on a tissue
receiver for a normally incident beam, The MSFC
results shown are for the new program using
Berger's energy deposition coefficients and for the
straight-ahead approximation. Both the MSFC pro-
gram results are higher than the Charge and BEP
results. The calculation using Berger's data is
believed to be higher because the receiver had
infinite backing behind it, whereas the other pro-
grams assume no backing. The straight-ahead cal-
culation was higher because the extrapolated range
was used in describing the transport.

Scott also did some spectral calculation at
0.5 and 1.0 g/cm? for the same incident spectrum
using Charge, BEP, and Berger's Monte Carlo pro-
gram, ETRAN. Figures 23 and 24 show these results
plus spectra calculated with the MSFC straight-
ahead program; it can be seen why the straight-
ahead program yields higher doses. For the low-

energy end of the spectrum consisting of particles
that have lost the largest fraction of their energy
and have been scattered the most, the straight-
ahead program overestimates the flux by as much as
a factor of three compared to ETRAN. For higher
energles there is relatively good agreement with
ETRAN, The overestimate of the low-energy com-
ponent of the electron flux will be reflected in
the bremsstrahlung calculation as an overestimate
of the low-energy component of the bremsstrahlung
gsource and in turn an overestimate of the brem-
sstrahlung dose, especially behind the thin shield
where the low-energy bremsstrahlung has not been
attenuated greatly.
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In conclusion, the program using Berger's © =3
energy deposition data should be preferred for dose "
calculations, because in most practical problems
the receiver does have effectively infinite backing
and because the program is relatively easy to use.
Where an electron spectrum at an internal peint in

T~ CHARGE: 1.059¢-5) rad/hr

2 N\ 4

B el

3

a shield is needed, the straight-ahead approxi- e -
mation can be used to obtain a conservative esti- s i
k! ]

mate of the differential flux. For first-order
calculations an estimate of bremsstrahlung dose
can be obtained by using Equation (55) where the
incident electron spectrum falls off exponentially,

==

TRANSMITTED ELECTRON SPECTRA (electrons /Mev-cm? - sec)
~
i
Il

Where an accurate calculation is needed, Equation o AR
(47) with a half-space isotropic attenuation kernel & [ — eTRan cooe Y
should be used. More work needs to be done here — A A \'
in determining the actual source angular distri-
bution. : 4
W0 A
o 1 2 3 4 s 6 T
ELECTRON ENERGY (Mev}
Figure 24. Transmitted clectron spectrn behind i sentl-inlinite slab of
aluminum of thickness 1.0 x/cn’.
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