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SUMMARY

Sources of high-energy electrons are encountered in space (the magnetically trapped Van Allen belt

electrons) and in ground-level high-energy physics laboratories. It is important to be able to predict

the damage resulting to human beings and radiation-sensitive equipment near these sources. In this

report, various techniques for the calculation of electron and bremsstrahlung dose deposition are des-

cribed. New energy deposition, transmission, and reflection coefficients for electrons incident on plane

slabs for angles of O, 30, 60, 75, and 89.9 deg and energies of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and

i0.0 MeV are presented, and methods for their use in electron dose calculations are developed. A method

for electron dose calculations using the "straight-ahead" approximation is also developed, and the

various methods are compared and found to be in good agreement. Accurate and approximate methods of

calculating bremsstrahlung dose are derived and compared. The approximation is found to give good order

of magnitude estimate of dose where the electron spectrum falls off exponentially with energy. The pri-

mary weakness of both calculations is the approximation of the bremsstrahlung source angular distribution;

the actual distribution is not easily determined. More work needs to be done in this area.

USE OF BERGER'S MONTE CARLO DATA IN

ELECTRON DOSE CALCULATIONS

Probably the most successful attack on the

electron transport problem has been by Martin

Berger[ I-3] using Monte Carlo methods and multiple

scattering techniques. His present set of pro-

grams will take an incident beam of electrons or

photons and follow both the primaries and any

secondary electrons or photons produced. The out-

put includes almost any quantity of interest de-

pending on the program option used. Because the

simulation is so thorough, the program is very

complex and requires large amounts of computer

time on one of the larger machines available to

complete an accurate calculation. Thus, the pro-

gram's primary usefulness is in generating basic

data for incorporation into other programs using

more simplified approaches to the problem.

Berger's program was made available to

Marshall Space Flight Center (MSFC), and a number

of calculations have been performed here for com-

parison with experimental work[4]. As a second

study systematic calculations covering the energy

range of from 0.5 to i0.0 MeV for a number of

angles of incidence by a monodirectionai beam on

a plane aluminum slab were made. The geometry is

shown in Fig. i. Of particular interest were the

electron energy and number transmission and re-

flection and the energy deposition coefficients,

because they can be incorporated into an electron

dose or number deposition calculation involving an

arbitrary incident electron energy and angular

distribution. To minimize the computer time used

no photons were followed, and only enough electron

histories (2500 through 7000, depending on the

angle of incidence) were sampled to get good sta-

tistics for the reflection, transmission, and

deposition coefficients. (A much higher number of

histories would have been required to get good

statistics on one of the differential quantities

such as exiting energy spectrum.) The fact that

secondary photons were not followed means that

there is a slight underestimate both in the number

of coefficients due to missing tertiary electrons

produced by the photons and in the energy factors

due to energy transported by secondary photons.

Because over most of the energy range of interest

electrons lose only a small fraction of their

energy as photons, both these effects should be

small. The radiative yield, the fraction of an

electron's energy lost as bremsstrahlung in stop-

ping, is 0.00332_at 0.25 MeV and 0.07721 at i0.0

MeV in aluminum [zj . This quantity should set an

upper bound on the possible error induced by the

limitations imposed at least for the energy factors.
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FIGURE I: BASIC GEOMETRY USED FOR CALCULATIONS
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Thereareseveral approaches for attacking

a dose deposition calculation using the results

tabulated by Berger's electron transport program.

The most obvious is to use the internal energy

spectrum and instantaneous stopping power. Two

less obvious but more efficient methods - one

reasonably exact and the other approximate - will

be described here.

The exact calculation makes use of a quantity

Berger calls energy deposition (Figs. 2 and 3),

which is the average energy deposited per unit mass

per electron at a given depth into a plane, in-

finitely thick slab by, in this cases a monodirec-

tional beam of electrons. [This does not follow

the initial model (Fig. I) because there is

material behind the receiver point.] Berger calcu-

lates the energy deposition by breaking up the slab

into thin layers and keeping an inventory of energy

deposited in each layer and then dividing this

quantity by the incident number of initial electron

histories and layer thickness. Thus,

N

i=1 U

p(E, e, Xj)- No_ X. ' (l)
J

where p is the energy deposition in MeV/g/unit

current, E is the incident energy in MeV, 0 is

the incident beam angle measured from the normal to

the slab, Xj is the depth to the center of the Jth

layer, Nj is the number of electrons penetrating

layer J, AEij is the energy in MeV deposited by

the ith penetrating electron in the Jth layer, No

is the number of initial electron histories, and

AXj is the thickness of the Jth layer in g/cm 2. In

Berger's tabulation Xj is measured in fractions of
an electron pathlength at the incident energy. The

electron mean pathlength is the average length of

the zig-zag path followed by an electron in

stopping as opposed to the mean range which is the

average straight-line distance traversed. It is

given by:

0
dE'

r o (E) = f
E ST (E') ' (2)

where ro(E) is the pathlength at energy E and

St(E') is the total instantaneous stoppinR power.

If there is an m/gular and energy flux distri-

bution given by ¢o[E,_(_ _)] with _o electrons

incident per u_it at E and per unit solid angle in
the direction _, then the incident current as used

by Berger is

j0(_ ) = @0(E,_-') cos (e) , (3)

and the dose at a depth Z in g/cm 2 is given by:

D(z) =K f f pl_,O, Zlro(_.)l ®o(E,_)
•--.. E (4)

cos 8 dE d_ ,

where K is a units conversion constant. Dose is

more often measured in rads than MeV/g, in which

case K = 1.60 x 10 -8 rads/(MeV/g).* In Th e case

where there is a monodirectional beam incident at

an angle G from the slab normal, Equation (4)

becomes:

D(Z,0) = Kcos 0 f p[E,e,Z/r0(E)] (5)

E

@o (E) dE

_5.|

|
_c

!

1tL

i

i

&l n2 K3 n4 K5 n6 0.7 _8 _#

ZIr (E)

Another case of interest is that in which the

distribution is half-space isotropic. In this

case the dose is given as

2

_,,so(Z) = K f f p[E,8, Z/ro(E) ] (6)

E 0

cos{) sin0d0 @0 (E) dE .

Thus, a half-space energy deposition function may

be defined by

2

Piso (E,X)= f P(E,8,X)
0 (7)

cos_ sinOdH

*To convert rads to Sl Units in Joules per

kilogram, multiply rads by 0.01.
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Thisfunctionis tabulatedin Tablei.
(7) is used,Equation(6) becomes:

Diso(Z) =K f Piso [E, Z/r0(E)]
E

*o (E) dE

If Equation

(8)

The approximate method for calculating elec-

tron dose makes use of the energy transmission and

reflection factor of Berger to derive an approxi-

mation to the energy deposition function. The

electron energy current transmission and reflection

and number current transmission and reflection

factor shown in Figs. 4 through ii are defined as

follows:

N T (E,0,X)

T N (E,O,X) = Co(o)

A N (E,0,X)=

T z (E,9,X)=

AE (E,O,X) =

NR (E,e,X)

Je(0)

N T

Z ETi (E,O,X)
i=l

E Jo (0)

N R

Z ERi (E,0,X)
i=i

z Jo (o)

(9)

where TN is the number transmission factor; N T is

the number of electrons passing through a slab X

thick; AN is the number reflection factor where

N R is the number of electrons reflected from a

slab X thick; TE is the energy transmission factor

where ETi is the energy of the ith transmitted

electron; and AE is the energy reflection factor

b--

z

o 0.6

Z
o
(n

0.4
_n
z

i--

>-

where ERI is the energy of the

electron.
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How these factors may be used in energy depo-

sition or dose calculations will now be considered.

From conservation of energy,

E = E [A E (E,0,X) + U E (E,0,X)

+ T E (E,0,X)] (I0)

or

I=A E (E,8,X)+ U z (E,e,X)

+ T E (E,e,X)

(Ii)

are obtained, where UE(E,8,X ) is the fraction of

the energy either deposited in the slab or radiated

as bremsstrahlung. Since in the energy range of

interest the radiated component is small, it will

be assumed negligible. If a quantity f(X',E,O,X)
dX' is defined, which is the fraction of the

incident energy deposited between X' and X' + dX',
then

X

U z (g,O,X> = f f (X',E,0,X) dE' (12)

0

Using Equations (ii) and (12) yields

X

f f(x,.z.o,x) dX' =, -% (Z,o,x)
o (13)

- Tz (E,0,X)

Taking the derivative with respect to X gives
X

f(X,E,8,X) + f df dX'(X',E,e,X) =
0

d

-_ [A E (E,O,X)+ TE(E,0,X ] .

(14)

LO
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"IGURE 5: ENERGY TRANSHISSION COEFFICIENT FOR 2.0 MeV

ELECTRONS INCIDENT AT VARIOUS ANGLES
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The approximation in this method involves ignoring

the integral term on the left in this equation.

Since f(X',E,O,X) increases with increasing X (due

to reflected electrons), the derivative is always

greater than or equal to zero. Thus the integral

is positive, and ignoring it gives a conservative

estimate of f(X,E,@,X). It is difficult to Justify

this approximation except to observe that in

practice it yields results comparable with those

of the previously described method. It was deve-

loped because Berger's older publication presented

only the transmission and reflection factors, the

energy deposition factor having become available

only recently.

The energy deposition function (in units of

MeV/g) is given by:

p(X,E,O,X)= Ef{Xt E_ O'X)

ro (E) (15)

or

-E d

p(X,E,O,X) _ r0(E)dX" [AE(E'0'X)

+ T E (E,0,X)] (16)

It is interesting to note that f(X',E,@,X) for

X' < X always has a contribution caused by re-

flection from portions of the shield beyond X' but

that f(X,E,@,X) does not. Thus it approximates the

quantity needed for an energy deposition cal-

culation in our original geometry.

Because of the definition of 0 in the deriva-

tions the material of the receiver must be the

same as that of the shield. An approximate

correction for estimating the dose for a different

receiver can be made by multiplying the single

material calculation by the ratio of the collision

stopping power in the shield material at some

typical energy for the exiting electron spectrum.

Fortunately, the energy selected is not particul-

arly important since the ratio of two electron

stopping powers IR not a sensitive function of

energy except at very low energies ( > 0.01 MeV).

Some estimate of the accuracy of the approximation

can be found by observing the variation of the

ratio with energy. A particularly interesting

case is that of an aluminum shield and a tissue

receiver. This case, using Berger's stopping

power data[3] is given in Table 2.

Taking the simple average of ratios between

energies of 0.1 to 10.0 MeV yields a correction

(1.30) that will be within about 3% of an exact

calculation under most conceivable conditions.

(For typical incident energy spectra encountered,

it would be unusual for the average energy of the

exiting spectrum to be less than 0.04 MeV).

Thus, for an aluminum shield and a tissue receiver

Equations (5) and (6) become, respectively:

D(Z,0) = X.3Kcos0 fp[E,0,Z/r 0 (E)]
(17)

E

_o(E) dE

and

Diso(Z)= 1.3 K f Piso [E'Z/r° (E)] (18)

E

4, 0 (E) dE



806 



TABLE 2: RATIO OF TISSUE COLLISION STOPPING POWER TO ALUMINUM

COLLISION STOPPING POWER AS A FUNCTION OF ENERGY

Energy

(_V)

0.01

0.02

0.04

0.06

0.08

0.i

0.2

0.4

0.6

0.8

1.0

2.0

4.0

6.0

8.0

i0.0

R _
dE/dX tissue

dE/dX aluminum

i. 383

1.350

1.325

1.313

1.305

1.300

1.285

1.276

1.272

1.271

1.272

1.281

1.301

1.317

1.329

1.340

R-I.3
X

R

6.0

3.7

1.9

1.0

0.4

0.0

-1.2

-1.9

-2.2

-2.3

-2.2

-1.5

0.i

1.3

2.2

3.0

i00

Curve fits of or= n vX have been found to be

very useful for computational purposes. Fit over

X of the form N

Z A. X i-1

P(E,O,X) e i=l *= (19)

has been found to give satisfactory results for

normal incidence and half-space isotropic inci-

dence, two cases of special interest. Fits of

the above form were made and then the coefficients

were fit as a function of energy. For normal

incidence the coefficients are given by:

0.963E
A! = 0.913 e + 0.021E + 0.215

A2 = 5.0-0.491E

A3 = 57.573 (E - 5.0)/(E + 29.98)

_4 = -_-46E 0.837

(20)

and for half-space isotropic the coefficients are

given by:

807
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A i = 0.52+ 0.09854E

A2 = e-0"821E 1 "0

A, = -2.5 (e-l'022E+ 1.01

A 4 = 3. 253 e -0"323E + 5.8

(21)

A 5 = -15. 4375 + 1._55421_ - O. 0786077E 2

Because the shape of the energy deposition

function for angles near 90 deg is different from

that near 0 deg, a good fit by a single functional

form is difficult to achieve over the whole range

of directions. Best results will probably be

obtained by interpolation from the actual data or a

smoothed set derived from it. The function f(E,@,

X) derived using the reflection and transmission

factors was also fit but by a different form. The

fit was to the form

i-T E (E,0,X) -A E (E,0,X) =

AIr -e(BX+ CX2+ DE3)]

(22)



where A, B, C, and D are functions of E and @.

Then, taking the derivative with respect to X and

using Equation (14) yields

f(E,0,X) =

-A (B+ 2CX+ 3DX 2) e(BX+ CX2+ DX3)

(23)

Fits have been derived for the two cases of special

interest. For a normally incldent beam (@ = 0 deg)

in the energy range 0.5 to i0.0 MeV,

0.893 + 1.682E
A =

1.0 + 1.665E

_ 0E

B - II.0E+ 6.0 (24)

and

C = 4.2 exp(-0.47E)

D = 5.16

Berger has published a transmission and reflection

coefficient for a cosine law source (half-space

isotroplc flux)[ 3]. In this case flso (E,X) is a

relatively insensitive function of E, and satis-

factory results are obtained by taking an average

curve for all energies. For energy deposition,

A = 0.439

B = -2.08

C = -3.54 (25)

D = -6.08

The electron _athlength ro(E) in aluminum taken

from Berger[ 2J has also been fit by the following

form:

r o (E) =
(26)

(1.33 - 0.019E) (_0.2713E'+ 0.0121 -0.11) ,

which is within 2% of actual curves for energies

greater than _.3 MeV and within 5% between 0.2 and

0.3 MeV.

ELECTRON TRANSPORT USING THE STRAIGHT-ABEAD

AND CONTINUOUS SLOWING DOWN APPROXIMATIONS

A method commonly used for describing the

transport of protons is to assume that the

particle travels through the shield along its

incident direction losing energy continuously

according to some stopping power law. Thus,

according to the approximations, the energy and

direction of the particle at any point in the

shield is completely predictable. This method

has the advantage of providing an energy spectrum

at the internal point of interest that may be

used to determine such things as secondary pro-

duction sources as well as to calculate dose

deposition. Its dlsadvantages for application

to electron transport are twofold: First,

electrons are more likely to be scattered from

their original direction than protons, and

*This mean range is not Berger's mean pathlength.

second, electrons can suffer large energy losses

in a single interaction. Thus the stralght-ahead

approximations should not be expected to be es-

pecially applicable. The approximations have been

applied with some success, however.

Since the validity of the approximations in

applications to electron transport are somewhat

questionable, one would prefer to be on the con-

servative side in any estimate of particle energy

or number. By using the extrapolated electron

range rather than the mean range* for definition

of other required quantities this can be accom-

plished. The extrapolated range is defined as

shown in Fig. 12, where it can he seen that few

electrons penetrate beyond this distance. A very

good fit to the extrapolated range in aluminum is

given by:

rex= R(E) = _+ b2 -b (27)

i

over the energy range from 0.0 to 16.0 MeV. For

R(E) in g/cm 2, E is in MeV, a is 1.92, and b is

0.1115].

FIGURE 12:

1.0

0.5

rmla n rex rm8 x

SHIELD THICKNESS

DEFINITIONS OF ELECTRON MEAN RANGE rMEAN,

EXTRAPOLATED RANGE rex, AND MAXIMUM RANGE rma x

Given the electron range, one can determine

the relationship between the initial energy and the

energy after passing through thickness Z of

material as follows:

Since

R (E) = R (E') + Z , (28)

where E is the initial energy and E' is the energy

at depth Z,

808



E=g(E',Z)=R-! [R(E') +Z)]; (29)

R-I denotestheinverseof the functionR. Thus,
using Equations (27) and (29) gives

E=g(E',Z) y

(30)

z], 2 -b2a + b 2 +

The relationship between the external differential

flux _o(E) and the flux at depth Z, _z(E'), is

given by:

*z (E') =*0 [g(E',Z)] dE' (31)

The derivative enters the equation because of

change oh energy E to E' units; or as one can see,

lower energy electrons lose energy faster, thus

changing particle densities. Using Equation (30)

gives

E' b 2+ +

(32)

The electron dose deposited at depth Z is

given by :

D(Z) = K f • (E)S(E') dE' (33)
z

E

where S(E') is the instantaneous collision stopping

power in the receiver. One can derive an approxi-

mation for the stopping power by using the deriva-

tive of the range

I

S(E') =-
dE' (34)

S(E') = -_ + b 2 (35)

By a fortunate accident the approximate stopping

power derived from aluminum extrapolated range

data is a good flt to tissue collision stopping

power. (Tissue is the receiver most commonly

used.) The fit is within 5% of Berger's tabulated

data[ 2] in the interval 0.15 to 4.5 MeV and with-

in 13% from 0.08 to i0.0 MeV.

Combining the results of Equations (31), (32),

(33), and (35) and simplifying the tissue dose

behind an aluminum shield Z thick yields

D(Z) =

==/+o[=,=,,zla ,' g(E', Z) dE'.

Equation (36) is derived for normal incidence. For

a beam incident at angle @ to the normal, Z is

replaced in the equation by the slant distance to

the dose point, Z/cos 0, and for half-space iso-

tropic flux the dose is given by:

Diso(Z ) =K f E_ ¢0 [g(Z',Z/cosS)]0 '

a + b 2 + Z/cos

dE' sin0 d8
g(E', Z/pos O)

COMPARISON OF THE THREE METHODS FOR

DOSE CALCULATION

Typical electron spectra encountered in

practical applications are exponential in nature.

Figures 13 through 18 show comparisons of the

three methods for spectra of the form

_0(E) = Pi pE (38)

where P varies from 0.25 to 6.0. The energy inte-

gration limits are 0.0 to 20.0 MeV. The agree-

ment among the three methods is fairly good con-

sidering the magnitude of the attenuation that

occurs. The two methods using Berger's data have

significant disagreement only for high shield

thicknesses and isotroplc spectra. The disagree-

ment here is probably because a significant frac-

tion of the dose is from electrons with energies

above i0 MeV where both methods are using extra-

polation on the data. The disagreement between

the methods using Berger's data and the straight-

ahead method are somewhat larger, but the errors

still are not so large as to cause question about

the validity of any one of the three approaches.
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BREMSSTRAHLUNG DOSE CALCULATIONS

Previously, consideration has been confined

to the dose deposited by electrons; this is satis-

factory for thin shields. However, when the

shields are thick enough to remove a large fraction

of the primary electrons, dose deposition by

bremsstrahlung must be taken into account. (The

point where this occurs is usually less than 3.0

g/cm2.) To do a hremsstrahlung dose calculation

one must generate a bremsstrahlung source distri-

bution and then trans_o{t the bremsstrahlung from

this source to the dose point. To generate the

bremsstrahlung source distribution, one needs the

electron energy and angular distribution at the

source point and the bremsstrahlung production

cross section.

Because the interior electron angular distri-

bution is not easily determined and since the

bremsstrahlung production cross section differen-

tials in angle are not particularly accurate, a

simplification commonly made is to use cross

section differential in photon energy only and to

make some assumption about the bremsstrahlung

source angular distribution. (This assumption

will be examined later.) In this case, the

bremsstrahlung differential energy flux source or

depth Z' and photon energy _ is given by:

S(E ,Z') =
7

/ / E _,, (ET, E ) @Z' (E,a-') dEd_"
E -- (39)

n

in units of MeV/(MeV-g), where Z (_,E) is the

macroscopic bremsstrahlung production cross

section differential in photon energy in units

of photons/g-MeV-(e/cm2) and _z'(E,_) is the

electron energy an d angular distribution at depth

Z in units of e/cm z-MeV-sr-

The macroscopic cross section is given by:

_(E, E)= NOA_dE ' (40)
7

1023
where N o is Avagadro's number 6.02 x atom/

mole, A is the atomic weight of the material at

the source point in g/mole, and do/dE is the

microscopic bremsstrahlung production cross

section differential in photon energy in units of

photons/atom . (e/cm2) . MeV. The microscopic

cross section presently used for the MSFC cal-

culatlon is given by:

: FE(_..ZQ c(z)
dE7 137 ETP o

" -2HoH z",, e' + _ ÷
-'{" Po

ISH. H Kzt H_ H2 + p_p2_

- E-'_AP0P ÷ L /3P0-----_ + p_ p_

"\ P, I

+ P P0 J

(41)

where

L = 2In( H°H+P°P-1)K

C 0 = _n \H 0- P0/

/H+P
C =In \'_'_-_)

The terms H o and H are the initial and final total

electron energies in mc 2 units given by

E

H 0 = _ + 1

E - E

H = _ + i

Po and P are the initial and final elecCron

momenta'glven by

p0 = _]'-_- 1

p = _ ;

and K is the photon energy or momentum in mc 2 or

mc units, respectively,

E
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FE(E, %) =

The term Z o is the atomic number of the source

material, rn is the classical electron radius

2.82 x 10 -13 cm, mc 2 is the rest mass energy of

an electron, and FE(E,BY) and C(E) are two cor-

rection factors. Except for the correction

factors this is formula 3BN from Koch and Motz [6] ,

who give a complete description of the cross

section. The correction factor FE(E,E Y) given by

z<2.o ov
Poi A/o137p0.for

e187 p /] --_ > 0.01 (42)- E

where

1.0 otherwise ,

J / mc2y,co= 1 -\E+-----/-_-rmc} (4s)

and

-.' yP = - E -E + mc _ '
7

(44)

is the Elwert nonrelativistlc coulomb correction,

and the correction C(E) is an empirical screening

correction as shown by Koch and Motz[6]. Koch and

Motz further discuss both these correctlons[6].

The prime advantage of the straight-ahead

approximation is that it does provide an electron

spectrum at a given depth. Thus, using the result

derived, for a normally incident electron beam,

the bremsstrahlung source is given as

SN (Ey, Z') =

(45)

zf _ _'(zv'r)*o [g(z,z')]d_(Z,Z')dEdE ,

and for a half-space isotropic incident electron

distribution the bremsstrahlung source is

2

0 E

(46)

@o[g(Z, Z'/eos0)] dg(Z, Z'/eos O}
dE dE sin8 de ,

where _o, g, and dg/dE are as defined in the third

section.

The bremsstrahlung transport and dose cal-

culation is relatively straightforward for a

plane slab geometry given the source energy dis-

tribution and some source angular distribution.

Using point kernel attenuation with dose build-

up factors, the dose is given by:

Z

D(Z)= K f f % (v.v) s(z,z') B(Ey, Z,Z' )
E 0

7

G_m(ET)IZ-Z'I] dE dE'?

(47)

where BE(By) is the gamma ray energy absorption
coefficient [7] for the receiver material; Z is

the shield thickness; B(E,Z,Z') is a dose buildup

factor, depending on the source angular distribu-

tion chosen; and G[Bm(_)IZ-Z'I] is the attenuation

kernel, also depending on the source angular dis-

tribution chosen where Pm(Ey) is the gamma ray mass

absorption coefficient.

Much .o@ thewldedlsagreement among various

bremsstrahlung calculations can be traced to

assumptions made about either the incident electron

angular distribution expected in the problem or

the angular distribution of the bremsstrahlung

source. Perhaps the least conservative assumption

about the source distribution that can logically be

made for deep penetrations is that it is isotropic,

and the most conservative assumption is that all

the photons are emitted normally into the slab. In

the first case the attenuation kernel is given by:

E_ _m(Ey) JZ-Z'l] (48)
G_m(Ey). [Z-Z' ]] = 2 '

where E1 is the first exponential integral and

plane isotropic buildup factors are used[ 8] . In

the second case the attenuation kernel is

G_m(E7) Iz-z'l] = e-_m(E?) Iz-z'l
' (49)

and plane monodirectional buildup factors are
used. Goldstein[ 7] tabulates these for infinite

media, which should give a conservative estimate

of the dose. These should he used cautiously,

however, because they do not extend low enough in

energy and extrapolation is dangerous. Figure 20

gives a comparison of these two cases for a half-

space isotropic electron spectrum of exponential

form incident on an aluminum shield with a water

receiver (simulating tissue). Plane isotropic

buildup factors were used in both calculations so

that the difference observed is caused by the

attenuation kernel. Actually, if correct buildup

factors were used, the normal incident source

case would be slightly lower.

Because of the built-ln bias of using the

extrapolated range in the stralght-ahead approxi-

mation for calculating the source distribution, it

is felt that there is no need to use the most con-

servative source angular distribution. Instead it

is assumed that the bramsstrahlung source is half-

space Isotropic toward the receiver by the atten-

uation function given in Equation (48) multiplied

by a factor of two. Still, the plane isotropic

buildup factors[ 8] are used, making the calculation

slightly more conservative. Figure 20 shows the

results of an MSFC bremsstrahlung calculation for

a half-space isotropic electron spectrum of expon-

ential form incident on an aluminum shield with a

water receiver (simulating tissue). Comparing

Figs. 19 and 20 reveals that the MSFC calculation
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(Fig. 20)is themost•conservativeof thethreeup
to 4 or 5 g/cm2. Abovethat depth,themono-
directionalsourcecalculationis moreconservative
byasmuchasa factor of threecomparedto the
MSFCresults.

I I I

---- _ I_)TROPIC BREMSSTRAHLUNG SOURCE --" --

_ _ MONODIRECTIONAL BR EM_TRAHLUNG _OU RC[

, \2.. ' '

SHIELD THiCKNE_ tB/¢m 2 . ALUMINUMi

AX ISOT_tOpIt: :_ote([ ",_D A _kYXOI_RKCFIO};AL _;_)t'eC_
DIRELTe:D NOe_t41_ [N_,'AKD _OK A 14ALF-SpA_£E I_;OTR_pIc

I_CJUEN] KL_+CI_,_ Sp:CTeU } THL F _i _,(E) - p cXp(ll'[]
_/_mZ - >k.w

10 1;

10 '_

10.14

.t0-15
5

i I !
: 15 25 3_

SHIELD THICKNE_ (_l/_ 2- ALUMINUM1

PIGLRt 20: _HEMSSTKAHLUNC BOSE CALCULATIONS ASSUMtXG A llAL_*SpACE
tSOrROPIC SOURC_ n_ ,_ Jt,_L_'-_I',_C_: ISU_ROPIC t_ClU_:XT

_L_'_O_ SP_CT_L_ O_̧ rHJ: FO_.'_ ;o(_:) - I' _p(-P_}e/,_: - >l_

Since the bremsstrahlung dose calculational

method described so far involved triple or quad-

ruple numerical integration and since the functions

integrated are exceptionally difficult to inte-

grate, the calculation can be performed convenien-

tly only on a relatively large computer. In many

cases, all that is needed is a rough order of

magnitude estimate useful only in determining if

a problem exists. For space applications,•where

most of the electron spectra encountered fall off

exponentially with increasing energy_ a conserva-

tive estimate of bremsstrahlung dose can be cal-

culated as follows:

First, assume that all the electrons penetrate

to the source plane and that at that plane their

energy is the average energy of an external

electron. That is,

f f, E'_0 (E',_)dE' d_

-- n (50)
E=

• __f Ef, _0 (E',_) dE'd_

According to Evans[ 9] , the total source in MeV/g

is approximated by

S: H Z 0E__f Ef ' _I'0 (E', _) dE' d_ ,

[2

(51)

where H is a constant and Zn is the shield material

atomic number. Berger and Seltzer[ 3] tabulate H

for a cosine law electron source as a function of

incident electron energy and shield thickness.

Because the variation in the table is not great,

a typical value 4 x 10-4 can be used for this

approximatlon.

Second, assume that the source plane is

located at half the extrapolated range at _. The

bremsstrahlung dose is given by:

D(Z)= K_E S B [E,_m (E)Z*]EI_m(E)Z* ] . (52)

For UE, the energy absorption coefficient in the

receiver, 0.033 cm2/g is used, which is an upper

bound on the coefficient for water in the range

above 0.i MeV. The source-receiver distance is

given by:

z*= z -R(_)/2 z >R(E)/2 (53)

A rough fit of the buildup factor in aluminum is

given by: B(_,_rn(E) Z*) =

1.0+ 26.47_m(E) Z*E 1"161 E < 0.1 (54)

1.0 + 1.827 pro(E) Z* 0. I --< E _< 0.2016

1.0+ 1.253Pm(E) Z* _-0" 23540. 2016 <E _< 2.0

l. 0 + 1. 528 Pm(E) Z*E -0" 522 _ > 2.0 .
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Simplifyingsomewhatfor analuminum shield and a

water receiver yields

D(Z)=2. Tx 10-12E 2B[E,_(E) Z_l

EI[_m(E)Z*] f _ ¢o (E',_)dE'd_ (55)

_E
Figure 21 shows the result of a _remsstrahlung dose

calculation using Equation (55);. Fig. 22 shows a

similar calculation assuming a monodirectional

source. As can be seen in comparisons with results

of more accurate calculations, the approximation

yields reasonable order of magnitude estimates that

are generally conservative.

t0*l(

10.11

]
!
_ 10-12

10.1

I _l I ] I
COMPLEX CALDULAT;ON (E_ATION 47 ) WITH

MONOOIAECYIO_IAL 0OURCE
-- _ -- APPROXIMATION FROM |O(JATION 82

BUT WITH EX,ONENTIAL ATTENIJATtON K|RNEL

"_'.,_,=.o _ _-.,....

S 10 lS 2O ZS 3O

SHIELD THICKN Elm (W'm'n2. ALUMINUM)

CONCLUSION

Although the results of the different electron

and bremsstrahlung dose calculations developed at

MSFC give results in relatively good agreement with

each other, comparison with independent calculation

is useful in pointing up areas of possible weak-

ness. Wayne Scott of Oak Ridge National Laboratory

has made such calculation using a Boeing program

called Charge and a Douglas program called BEP as

well as an older version of the MSFC program using

Berger's transmission and reflection data[lO]. The

spectrum used was

_0.5@5E_0.055E 2 e (56)

@0(E) = 3.88 e cmZ_MeV_sec s

which was renormalized to a total flux of unity.

Table 3 gives the calculated electron dose in units

of rad/h behind an aluminum shield on a tissue

receiver for a normally incident beam. The MSFC

results shown are for the new program using

Berger's energy deposition coefficients and for the

stralght-ahead approximation. Both the MSFC pro-

gram results are higher than the Charge and BEP

results. The calculation using Berger's data is

believed to be higher because the receiver had

infinite backing behind it, whereas the other pro-

grams assume no backing. The straight-ahead cal-

culation was higher because the extrapolated range

was used in describing the transport.

Scott also did some spectral calculation at

0.5 and 1.0 g/cm 2 for the same incident spectrum

using Charge, BEP, and Berger's Monte Carlo pro-

gram, ETRAN. Figures 23 and 24 show these results

plus spectra calculated with the MSFC straight-

ahead program; it can be seen why the straight-

ahead program yields hlgher doses. For the low-

energy end of the spectrum consisting of particles

that have lost the largest fraction of their energy

and have been scattered the most, the straight-

ahead program overestimates the flux by as much as

a factor of three compared to ETRAN. For higher

energies there is relatively good agreement with

ETRAN. The overestimate of the low-energy com-

ponent of the electron flux will be reflected in

the bremsstrahlung calculation as an overestimate

of the low-energy component of the bremsstrahlung

source and in turn an overestimate of the brem-

sstrahlung dose, especially behind the thin shield

where the low-energy bremsstrahlung has not been

attenuated greatly.

s , , , ,

"i / "_\ i I _ ! I--
• _ ; • cl.,_(coo( ,
| ,o-,_. ,,(, coo( i-:_:--:

: ______

_,I I|I _'_i
:o,I I i I

z s 4 s
[L(_ [N(RGY [MeV)
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In conclusion, the program using Berger's

energy deposition data should be preferred for dose

calculations, because in most practical problems

the receiver does have effectively infinite backing

and because the program is relatively easy to use.

Where an electron spectrum at an internal point in

a shield is needed, the straight-ahead approxi-

mation can be used to obtain a conservative esti-

mate of the differential flux. For first-order

calculations an estimate of bremsstrahlung dose

can be obtained by using Equation (55) where the

incident electron spectrum falls off exponentially.

Where an accurate calculation is needed, Equation

(47) with a half-space isotropic attenuation kernel

should be used. More work needs to be done here

in determining the actual source angular distri-
bution.

5
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