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FOREWORD

STEAP II 1s a series of three computer programs developed by
the Martin Marietta Corporation for the mathematical analysis of
interplanetary or lunar navigation and guidance. STEAP 1is an
acronym for Space Trajectory Error Analysig Programs. The first
series of programs under this name was developed under Contract
NAS1-9745 for Langley Research Center and was documented in two
volumes (STEAP Users' Manual, STEAP Analytical Manual) as NASA
Contract Report 66818, Under contracts NAS5-11795 and NAS5-11873,
the STEAP series was extensively modified and expanded for Goddard
Space Flight Center. This second-generation series of programs
is referred to as STEAP II.

STEAP II is composed of three independent yet related programs:
NOMNAL, ERRAN, and SIMUL. All three programs require the inte-
gration on n-body trajectories for both interplanetary and lunar
missions. The virtual-mass technique 1s the scheme used for this
purpose in all three programs.

The first program named NOMNAL is responsible for the generation
of n-body nominal trajectories (either lunar or interplanetary)
performing a number of deterministic guidance events. These events
include initial or injection targeting, midcourse retargeting, orbit
insertion, and miniprobe targeting. A Variety of target parameters
are available for the targeting events. The actual targeting is
done iteratively elther by a modified Newton-Raphson algorithm or
by a steepest-descent/conjugate gradient scheme. Planar and non-
planar strategies are available for the orbit insertion computation.
All maneuvers may be executed either by a simple impulsive model
or by a pulsing sequence model.

ERRAN, the second program of STEAP II, is used to conduct linear
error analysis and generalized covariance analysis studles along
specific targeted trajectories. The targeted trajectory may, how-
ever, be altered during flight by retargeting events (computed
either by linear or nonlinear guidance) and by an orbit insertion
event. -Knowledge and control covariances are propagated along the
trajectory through a series of measurements and guidance events in
a totally integrated fashion. The knowledge covariance is processed
through measurements using a Kalman-Schmidt or equivalent recursive
weighted-least-squares filter with arbitrary solve-for/consider
augmentation. Execution of guidance events may be modeled either
by an impulsive approximation or by a pulsing sequence model. The
resulting knowledge and control covarlances can be analyzed by the
program at various events to determine statistical data, including
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probabilistic midcourse correction sizing and effectiveness, prob-
ability of impact, and biased aimpoint requirements. Probe release
events are also available for studying missions employing multi-
probe spacecraft.

The third and final program in the STEEP II series is the simu-
lation program SIMUL. SIMUL is responsible for the testing of the
mathematical models used in the navigation and guidance process.

An "actual' dynamic model is used to propagate an 'actual' trajec-—
tory. Noisy measurements from this "actual" trajectory are then
sent to the estimation algorithm. Here the actual measurement, the
statistics associated with that measurement, and an "assumed" dynam-
ical model are blended together to generate the filter estimate

of the trajectory state. This process 1s repeated continually
through the measurement schedule. At guidance events, corrections
are computed based on the estimate of the current state. These cor-
rections are then corrupted by execution errors and added to the
"actual" trajectory. The statistics and augmentation of the filter,
the mismatches in the "actual" and "assumed" dynamics, and the ex-
ecution errors and measurement biases may then be varied to determine
the effects of these parameters on the navigation and guidance proc-
ess. All guidance and probe release event options defined for ERRAN
are also availagble in SIMUL.

The documentation for STEAP II consists of three volumes: the
Analytic, Programmers' and User's Manuals. Each of these docu-
ments is self-contained.

The STEAP Analytic Manual consists of two major divisionms.
The first section provides a unified treatment of the mathematical
analysis of the STEAP II programs. The general problem description,
formulation, and solution are given in a tutorial manner. The
second section of this report supplies the detailed analysis of
those subroutines of STEAP II dealing with technical tasks.

The STEAP Programmers' Manual provides the reader with the in-
formation he needs to modify the programs. Both the overall struc-
ture of the programs as well as the computational flow and analysis
of the individual subroutines is described in this manual.

The Users' Manual contains the information necessary to oper-
ate the programs. The input and output quantities of the programs

are described in detail. Example cases are also given and dis-
cussed.
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1. INTRODUCTION

This Analytic Manual is intended to provide the reader with the
mathematical analysis, assumptions and restrictions upon which the
STEAP II programs are¢ based. The volume consists of three major divisions:
an introductory section, an overview of the four basic modes of STEAP II,

and a collection of dztailed analyses of each of the technical subroutines
of STEAP II.

The introductory section includes the Foreword summarizing the
basic modes of STEAP II and the three formal documents describing STEAP II.
This chapter describes the contents of the Analytic Manual. The following
chapter defines the abbreviations and notation used throughout this
document.

The second division of this report including chapters three through
seven provides a convenient overview of the mathematical foundation of
the four basic modes or subprograms of STEAP. Unified discussions of
the virtual mass n-body propagation, the trajectory targeter NOMNAL, and
the measurement processing and guidance modeling of the error analysis
and simulation programs ERRAN and SIMUL are given. Therefore the reader
desiring to know the general assumptions and procedures used by the major
modes of STEAP II will find these chapters very helpful.

The third major division of this manual comprising the bulk of the
volume is Chapter 8 which contains a detailed analysis of the STEAP II
programs at the subroutine level. Each of the technical subroutines is
analyzed individually and in detail. A cross reference of the subroutines
by general categories is supplied. Tnus the analyst who needs to make
modifications or extensions to STEAP II may use this chapter to great
advantage.



2. NOMENCLATURE

A. Arabic symbols

Symhol Definition
a Semi-ma jor axis of conic
BeT Impact plane parameter
B-R Impact plane parameter
Cyx Correlation between position/velocity state and solve-for
d parameters
Ciu Correlation between position/velocity state and dynamic
consider parameters
Cuv Correlation between pesition/velocity state and measure-
ment consider parameters
Cx u Correlation between solve-for parameters and dynamic
consider parameters
Cx v Correlation between solve-for parameters and measurement
s consider parameters
e Eccentricity of conic
E Eccentric anomaly
f True anomaly on conic
G Observation matrix relating observables to dynamic consider
parameter state
H Observation matrix relating observables to position/velocity
state
i Inclination of conic (reference body equatorial)
J Measurement residual covariance matrix
K Kalman gain constant for position/velocity state
L Observation matrix relating observables to measurement
consider parameter state
Mean longitude
M Observation matrix relating observables to solve-for

parameter state
Mean anomaly



Dimension of solve-for parameter state

Dimension of dynamic consider parameter state

Dimension of measurement consider parameter state

Semilatus rectum of conic
Probability density function

Position/velocity covariance matrix
Unit vector to periapsis of conic
Solve-for parameter covariance matrix
Dynamic noise covariaﬁce matrix
Execution error matrix

Unit vector in plane of motion normal to P
Radius

Radius of closest approach

Radius of sphere of influence
Measurement noise covariance matrix
Actual noise covariance matrix

Unit vector normal to T in plane perpendicular to approach
asymptote directed south ( R =S x T )

Target planet capture radius

Kalman gain constant for solve-for parameters

" Velocity correction covariance matrix

Approach or departure asymptote

Time of closest approach to target body

Time of intersection with sphere of influence of target body
Time interval

. . , ; )
Unit vector lying in ecliptic plane normal to S .
n__Bx

(T =
Al
I S x
Dynamic consider parameter covariance matrix

>

A\
‘where K is unit normal to ecliptic plane.)

=>



v Velocity

\Y Measurement consider parameter covariance matrix
o

Wj Target parameter covariance matrix

W Unit normal to orbital plane

X Actual position/velocity state

]

Targeted nominal position/velocity state

54

Most recent nominal position/velocity state

B. Greek Symbols

o Auxiliary parameters

rj Guidance matrix

r Flight path angle

é Declination of vector
Av Velocity increment

€ Measurement residual

Errors in target parameters

n Variation matrix relating position/velocity variations to
J target conditions
gxx State transition matrix partition associated with solve-for
s parameters
gxu State transition matrix partition associated with dynamic

consider parameters

e Longitude or right ascension

A, Projection of target condition covariance matrix W, into the
J impact plane J

u Gravitational constant of body

Hh Biased aimpoint‘

y

Sampled measurement noise
True anomaly



P Magnitude of gaussian approximation for midcourse correction
Correlation coefficient

g Standard deviation

L R '

z Launch azimuth

—

T Target parameters

® Targeting matrix
State transition matrix for position/velocity state
Latitude

X Sensitivity matrix

Matrix relating guidance corrections to target condition

<=

j deviations
Q Longitude of ascending node
w Argument of periapsis
@

Longitude of periapsis

C. Subscripts

C Control variable (PC)
CA Closest approach (rCA)
f Final variable (tf)
i Initial variable (ti)
j Index of current guidance event (Pj)
k Index of current measurement (Pk)
K Knowledge variable (PK)
s Solve-for parameter (xs)
SI Sphere of influence (tél)
D. Superscripts
A Augmented variable (@A)
T Matrix transpose (dJT)

Ly

-1 Matrix inverse (&



- Variable immediately before instant (P; or Vv )
+ * Variable immediately after instant (P;- or v.+)
E. Abbreviations

AU Astronomical unit

CA Closest approach to reference body

ERRAN Error analysis program

FTA Fixed time of arrival guidance policy

GHA Greenwich hour angle

J.D. Julian date (referenced either 0yr or 1900yr)
km Kilometers

M/C Midcourse correction

NOMNAL Nominal tgéjectory generation program

POI Probability of impact

Q-L Quasilinear filter event

s/C Spacecraft

SF/C Solve-~for/consider

SIMUL Simulation program

SO1 Sphere of influence

ST™ State transition matrix

STEAP Space Trajectories Error Analysis Programs
VM Virtual Mass

2VBP Two variable B-plane guidance policy

3VBP Three variable B-plane guidance policy



3. TRAJECTORY PROPAGATION ANALYSIS

The trajectory mode of STEAP computes an n-body trajectory for an
infinitesimal spacecraft through the use of the varicentric or virtual
mass concept. Asg explained in detail by Novak in reference 15, the
esgentlal i1dea of virtual mass n-body trajectory computations is that,
at any instant of time, the gravitational forces exerted by all the
governing bodies can be resolved into one effective vector emanating from
a virtual mass whose position and magnitude are uniquelydetermined. Over
gmall time intervals, therefore, the motion of the spacecraft can be
represented as a two-body conic section arc around the moving and varying
virtual mass. The computational algorithm of the STEAP trajectory mode
uses this concept in determining the n-body spacecraft trajectory.

Novak's original work proved the validity of the virtual mass
approach for the restricted threerbody problem. The trajectory mode of
STEAP extends its applicability to general n-body problems. Modeled in
the trajectory mode are the best available mean conic section orbital
elements of each of the planets in the solar system plus the Earth's moon.
These are available to the trajectory mode through an ephemeris subroutine
and permit the determination of realistic interplanetary trajectories.

The basic concepts of virtual mass n-body trajectory computaticn are
reviewed here for reference. In addition, the computational algorithm at
each interval along the trajectory is presented, step by step, just as it
appears in the trajectory mode of STEAP. For more details concerning the
underlying concepts, see reference 15.

Consider the vector differential equations for the motion of an
infinitesimal spacecraft under the influence of n attracting bodies to be
given by:

n

o M, (¥, - )

— i

Tg = Z —_ 1—- 3s A 6.1
=1 17 - Tl :

where ?; is the position vector of the spacecraft in some reference

coordinate system, Uy is the gravitational attraction of the ith

governing body, and r; is the position vector of the ith body in the

same reference system, It is easy to show that an equivalent set of
equations can be written as:

S - Hy (?v 3 ?s)
r =M-r . M =
s s s |z - i’|3 (.2)
v s

where the quantities M, M,, M, and T, are defined by:



n —
. M, T,
vy ——o 3.3

n /—li
M = Z ——— (3.4)
S l-r- _ ;_- ‘3
i=1 i s
r = g— (3.5)
v 5
- - 3
., =| r, - rs| Ms (3.6)

The final form of equation (3.2), which is easily recognized as the
differential equation for two-body motion, suggests the essential idea of
virtual mass computation for n~body trajectories. Over intervals where
u, and ?; can be treated as constants, the motion is two-body with

respect to this magnitude and position of the virtual mass. The computation
of the n-body orbit in the trajectory mode results from piecing together
two-body arcs around varying magnitudes and locations for the virtual mass.
The way in which each two-body arc is calculated is discussed in the com-
putational algorithm to follow.

A close inspection of the above equations demonstrates that the
location and magnitude of the virtual mass has the desired limiting
properties. When the spacecraft is within the influence of one dominant
body, the virtual mass position and magnitude approximate those of the
dominant body. 1In a transition region, two or more bodies may contribute
significantly to the location and magnitude of the virtual mass.

The computational scheme used within the trajectory mode of STEAP is
presented in the following paragraphs. Emphasis 1s placed on the procedure
used for determining each individual two-body arc in the sequence. The
decision concerning the length of the interval is made before entering the
computational algorithm and is based on a fixed true anomaly passage with
respect to the virtual mass. Thus, when the spacecraft is near the virtual
mass (near a planet for interplanetary applications), smaller steps are
taken to ensure the accuracy of the computation., Over the heliocentric
portions of an interplanetary flight, when the spacecraft is far from the
virtual mass location and the trajectory is essentially a heliocentric
ellipse, larger computational intervals are automatically used.

Within each computing interval, the motion of the virtual mass is
assumed to be constant velocity with a constant mass magnitude. Two
approaches to determining this constant velocity and mass magnitude were
analyzed by Novak (ref.15). One is called the iterative method and the
other noniterative. The noniterative computation uses, the values for the



virtual mass velocity and mass magnitude at the beginning of the time step
for the entire computation interval. Then, at the beginning of the new time
step, new values are calculated and assumed consistent with the new position
of the spacecraft. This method results in position discontinuities in the
virtual mass trajectory since the initial values, rather than any computed
mean values, are used over the step. The spacecraft trajectory itself is
still continuous, but it 1s being based on a discontinuous virtual mass
trajectory.

In the iterative method "average' values for the virtual mass velocity
and mass magnitude are used over the computing interval. The values of ?;
and [lv at the end of the interval are initially estimated and then iter-

atively improved to force consistency between the virtual mass and space-
craft trajectories, The iterative method is used in STEAP; its computational
algorithm is presented here, step by step.

1) At the beginning of the nth time interval the acceleration terms
from the previous time interval are calculated as

n-1 _n-1 n-1 n-1
. T - -r (At )
an  _ Vg ! Vs
v n-1_2
av (At )
(3.7)
n-1 n-1 -n-1 -1
) H, u u (At )
l’ln E Vg Vp
v n-1 2
av (At )
At the first time interval % = 0 and ZZ = 0.
Vav Vay

2) Assuming a second order variation with time, an initial guess for
the final position and magnitude of the virtual mass is made by
using the equations,

I, =%, +F, (A0 +E (A’
E B B av ‘
. ) , (3.8)
n, =u, +u, (At) +u  (At)
E B B av

The superscripts n have been dropped for convenience.

All the succeeding equations are for the nth tine interval unless
otherwise specified., The subscripts B and E refer to the
beginning and end of the computational interval.
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3)

4)

5)

Using the assumed position and mass magnitude of the virtual

mass at the end of the time interval, the assumed average velocity
and mass magnitude for the virtual mass over the computational
interval may be calculated as

v
av At (3.9)

uv = Cl ”v + (- Cl)!lv

av E

where C1 linearly interpolates the virtual mass magnitude to

some value between the initial and final values (0 < CI:E 1).

The initial velocity of the spacecraft with respect to the virtual
mass is now based on this assumed average velocity and is given by

=¥ -7% (3.10)

The Keplerian vector (represents twice the areal rate) for the
computing interval is next computed as

=t X ?vs (3.11)
VSg B

Then the eccentricity vector is determined from

T, X x T

g=- B . B (3.12)
r u
VSB Vav

The magnitude of the eccentricity vector, €, represents the
eccentricity of the conic section and the orientation of the
vector is toward the conic section periapsis.

The final position and velocity of the spacecraft with respect

to the virtual mass is calculated next. An intermediate variable
AT is used which must be related to the desired Ot for the
interval. The valueAT determines the time or true anomaly

increment along the conic section arc. Again assuming a second
order variation,

AT= At + KAt2 (3.13)

where K 1is computed from information about the preceding
interval as



JAT- Ot (3.14)

“ 2
(A€
The final position ?vs must lie in the plane of motion defined
E
by T and T ., and hence can be expressed as a linear
vsy Veg
combination of the two,
T =B[?S +AT ¥ | =BT (3.15)
VSE Ve B E
where the quantity B 1is given by,
2
k/pv
B = ay (3.16)
e.o0 +g
Vs, vsp

Then the velocity of the spacecraft with respect to the virtual
mass at the end of the interval is

rvs
k xle+ E
r

vs

rvSI; ) (kz/uvav )

6) The final position and velocity of the spacecraft in- the reference
coordinate system are now computed from

E (3.17)

fr =% +F
S vs v
E E E
. . . (3.18)
f =TT + £
8 vs '
E E av

7) It is necessary to evaluate the conic section time of flight so
that x may be found to use in the next iteration. First, some
preliminary orbit variables must be determined. The in-plane
normal to the major axis 1s

(3.19)

11
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The length of the semimajor axis is given by

2
b = K 5% e # 1
My (1 - e
av
e = 1
b, = 2 . S BE (3.20)

The projection of the radius vector orthogonal to the major axis,
divided by b 1is given by

X, =—————=, 1=B,E (3.21)

M (3.22)

where u%4<: 0 for hyperbolic orbits., The eccentric anomaly is

given by,
sin” ! X., e <1
i
2
k./hv . Xl
Ei = av , e =1 (3.23)
3
sinh Xi s e >1
Then
M, = E, - eX;, 1i=B,E (3.24)

(3.25)



The intermediate variable K , . to be used in the next interval
1s calculated as . . . - .

K = _QEZ;:_Q%E (3.26)
(At)

8) The final positions and velocities of the planets are now
calculated from the ephemeris subroutine and returned to the
virtual mass routine.

9) The final position and mass magnitude of the virtual mass are now
recalculated from the assumed position of the spacecraft at the
end of the interval and the planetary aphemerides by using equation
(2). The velocity and magnitude rate of the virtual mass are com-
puted from

M- T ﬁs
T = E
vE Ms
(3.27)
. Vst M
= =
K, uVE . + 5
VS s
where
n v,
N . is
Lo r iE iE T,
. 1:1 1SE lSE

10) After this last computation, Step 9, one complete iteration has
been obtained. The values of the final position and magnitude of
the virtual mass that was just calculated is compared to the one
assumed in the computation of the spacecraft trajectory. If they

do not agree to within a set tolerance, the new values of Yy s
E

13
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i, and k are returned to Step 3 and another iteration is

v

E
performed. However, it should be pointed out that Step 8 is to be
omitted from future iterations. The final positions of the
planets do not differ from one iteration to the next since the
final time is fixed.

11) After two iterations, the required quantities are stored for the
next time interval and the algorithm returns to Step 1.

More complete details for the above computational algorithm may be
found in Novak's report (ref. 15). One point worth mentioning at this
juncture concerns the use of the words "accuracy level' when referring to
an orbit computed by the trajectory mode. As was mentioned earlier, the
step size used in the virtual mass calculation of n-body trajectories refers
to the true anomaly arc, with respect to the virtual mass, that is kept
fixed throughout the trajectory. Thus, a fixed true anomaly arc of 1 mrad
means that each individual computing interval, using the algorithm defined
above, results in a two-body arc around the effective force center of 1 mrad.
If the fixed true anomaly arc is 10 mrad, then clearly fewer computational
intervals are used and the resulting trajectory, neglecting computer noise,
is less accurate.

An external accuracy level is input to the program, where this value
is subsequently changed into a fixed true anggaly arc for the computing
intervals. An external accuracy of 2.5 x 10 ~, for example, corresponds
to a true_%nomaly arc of 16.57 mrad; similarly, an external accuracy level
of 1 x 10 corresponds to a fixed true anomaly of 3.6 mrad. For the n-body
problem the external accuracy level is a dummy variable; it was initially
set up to represent the accumulated percentage position error for a restricted
three-body problem after one orbit. Thus lower accuracy levels imply lower
amounts of arc for fixed time anomaly used in the computations and, con-
sequently, more accurate trajectories that require more computer time.
Throughout this report, when referring to the computational interval size
used by the trajectory mode or subroutine, the phase accuracy level is
employed.



4. NOMNAL ANALYSIS
4.1 Introduction

The NOMNAL program is respoasible for the generation of a nominal
trajectory from injection through midcourse corrections to orbit insertion.
The program structure of NOMNAL is described in the companion volume
STEAP 1II Programmer's Manual. A detailed analysis of the main program
NOMNAL and each of its supporting subroutines is provided in the last
section of this report. This section provides a unified discussion of
the general analysis, assumptions, and modeling upon which the NOMNAL
program is based.

NOMNAL has been built with a modular computational structure. The
basic cycle of NOMNAL consists of propagatinz an n-body trajectory using
the virtual mass technique described in the previous chapter. Computational
blocks external to this basic cycle are called events, Tne first type
of event is called a zero iterate event in which the desired trajectory
is approximated to yield initial conditions for the n-body trajectory.
This includes both lunmar and interplanetary missions.

The second type of event is a targeting event. At a targeting event
the impulsive velocity correction required to meet specific target con-
ditions is computed. A targeting event may be entered immediately following
a zero iterate event or at any point along the nominal trajectory.

The third type of event is an orbit insertion event. 1In this event
the impulsive velocity correction and time of execution required to insert
into a desired orbit are computed.

The targeting and orbit insertion maneuvers may be specified as
executable or nonexecutable. At a nonexecutable event the velocity correction
is simply computed and recorded; at an executable event the velocity cor-
rection is actually added to the nominal trajectory. An execution event
controls the execution of such maneuvers. The maneuvers are executed
either by a simple impulsive model or by a more involved thrusting arc
model.

The major analytic problems solved in NOMNAL may be conveniently
divided into the following categories:

Interplanetary zero iterate
Lunar zero iterate
Targeting

Orbit Insertion

Thrusting Arc Modeling

U Wb

These topics will be discussed in this order in this chapter.
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4.2 Interplanctary Zero Iterate

Iterative rcefinement procedures used In Largeting trajectorices
require a4 zero fterate value for the initfal trajectory state. In the
interplanetary case this zero fterate state fs computed from a two stage
procedure in which the flrst stage approximates the heliocentric phase
by a massless planet trajectory and the second stage approximates the
launch phasce by a simple conic ley,.,

4.2.1 Heliocentric Phase

For interplanetary missions the initial and final position vectors
and the time required to traversc them determines the general character-
istics of the transfer trajectory (see HELIO). Four options are available
in specifying the two terminals:

Planet to planet

. Planet to specific point
Specific point to planet
Specific point to second point

SN
o .

°

When one of the terminals is a planet, its location at the relevant time
(either initial time or target time) is computed to determine the position
vector.

Now suppose that the initial and final points ?i and ?f

been determined either by being read in or computed internally and that
the transit time At is available. Lambert's theorem states that the
transit time between any two points on an ellipse is a function of the
sun of the distances of each point from the focus, the distances between
the points, and the semimajor axis of the ellipse, or

have

At = f(ri + e |ri - rf' , a ) 4.1)

Since the only unknown in this equation is the semimajor axis a ,
it may be solved for iteratively (see FLITE). Battin [ 2 i has shown
that the eccentricity e is actually a function of the semimajor axis
and so it may be determined simultaneously.

The orientation of the transfer plane is indicated in figure 4.1
below. The uait normal to the transfer plane is

a = T (4.2)



The

The

The

Figure 4.1. Transfer Trajectory Geometry

inclination to that plane i is given by

» A
cos i = W, (4.3)
ascending node of the plane {} may be computed from
N
W
tan @ = X (4.6)
Ny
central angle of the transfer ¥ 1is
T,7,
cos ¥V = L. 2 (4.5)
r.r
i f

true anomaly at the initial and final points may be computed from

p = a(l - &)
p-rx
cos ff = £
2
cos £ cos_ -cos £
P~ ,
cos f, = 1 sin £ = 1 ¥
1 er; . i sin\I,
ff = fi + ¥ (4.6)
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Finally the argument of periapsis is given by

:, o
Ty

Ty

cos (w+ fi) = “.7)

where T = (cos®, sinf, 0) is the unit vector directed toward the
ascending node,

Therefore, the elements defining the heliocentric conic (a, e, 1, Q, w)
and the true anomaly at the initial and final times may all be computed
from a knowledge of the initial and final radii vectors and the transfer
time, Having these elements the position and velocity vectors and
assocliated data at both the initial and final points.may be determined,

4.2.2 The Launch Phase

The analysis to this point is called a massless planet solution,
that is, the gravitational effects of the launch and target bodies have
been ignored., In this section the effects of the launch body will be
considered.

When the initial terminal is & planet, the transfer trajectory is
automatically backed up to a realistie launch and injection phase (see
EAUNCH). The heliocentric analysis has generated the velocity vector
v, on the transfer ellipse at the initial point,  The hyperbolic excess

velocity at the initial point is then given by

N

Vur = Yy " Vip (4.8)

where ;LP is the heliocentric velocity: of the launch planet at the

initial time. Up to this point it has been tacitly assumed that all
computatione have been done in ecliptic coordinates, From this point
on launch planet equatorial coordinates will be used,

The model used for the launch phase is based on a simple one body
point mass model, The spacecraft is to be launched from the launch body
into a circular parking orbit from which it is injected into the escape
hyperbola consistent with the desired hyperbolic excess velocity, The
parking orbit and transfer plane are to be coplanar,

Let the $HE vector be rotated into launch body equatorial coordinates,

o
Then let S denote the unit vector in this directiong % is then the departure



asymptote, If the launch site latitude d)L and the launch azimuth ZL

are specified there are at most two planes satisfying the latitude and
azimuth constraints and containing € as indicated in Figure 4,2,

3]

Figure 4,2 Launch Plane Determination

The determination of the transfer -plane may be accomplished in

the following way, The normal to the plane is given by
A:
W=7

A_A - - A A
xv=rx v +v)=rXxvVv 4.9
@, +5) . @.9)

where ¥, v are the launch radius and velocity vectors in equatorial
coordinates, Since ¥ x % = 0 only the component of velocity normal to
need be considered in W. Suppose that launch occurs at a latitude of &,
longitude of O and azimuth 2. Then the position and velocity terms
may be written

cosBcosP -sin@sin X - sinPcosBcos
£ = | sinGcos® <r\p = | cos0sin¥ - sinPsinOcosf
sind

cosfPcos¥
A
The z-component of W may then be written

W, = rxvy - ryvx = cospsiny (4.10)
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A A
To compute the remaining two components of 6 the conditions W - § = 0,
%m= 1 may be applied to yleld

_WSS +5 41-(32+w2)
zZ — X Z Z

zy
W o= (4.11)
y s? +s?
x y
WS +WS
W = J Yy _z2z 4.12)
X Sx

The y-component equation illustrates the necessity of a constraint
on the launch azimuth : ‘

29
2 cos” P
gin" 2. £ —— (4.13)
L <:os?'<3>
L

vhere <®S is the declination of the departure asymptote,

The ambiquity in sign in the y-component distinguishes between the
long and short coast time orbits, The positive sign designatés the long
coast solution; the negative sign, the short coast, The user specifies
which of the two solutions he wants by input,

Having determined the plane of motion the in-plane characteristics
must be computed, The energy C, and eccentricity of the departure

hyperbola are given by 3
C. = v> L (4.14)
3 HE *
T C3
e =1 +_R|T (4.15)

where rp is the input desired parking orbit radius and p is the launch

planet gravitational constant, The orlentation within the plane is
specified by the argument of periapsis w which 2ay be determined from
the true anomaly fS of the departure asymptote S and the eccentricity

of the hyperbola (4.15), The true anomaly at injection fI is input

by the user., Thus, the injection state may easily be computed from the
standard conic formula,



To determine the required time of injection a realistic launch pro-
file 18 now imposed, The size, shape, and orientation of the hyperbola
within the launch plane has been determined above, The launch to in-
jection phase 18 divided into three sections: a first burn arc from
launch to parking orbit specified by a central angle‘!/1 and a time interval

Atl, a coasting arc In the parking orbit specified by kp (the inverse

parking rate), and a second burn arc from parking orbit to injection spec-
ified by the central angle‘lf2 and time interval Atz. The geometry is

illustrated in Figure 4,3 below,

{
o

Figure 4,3 Launch Profile

The right ascension at launch ‘DL is determined from the fact that

the launch plane satisfies the latitude, azimuth, and § constraints

4+
wxsin¢isin EL Wycos EL

cos O_ =
L w2 .1
Z
W sing sinX - W cos X
stn O =YL L x L (4.16)
Wz -1
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and the unit vector toward the launch site ?L i8 given by

/r\L = (cosd)Lcos G L’ cosd>Lsin @L’ sinch)T “.17)

Since r. is also known the computations necessary to compute the time

1

interval AtL from launch to injection are straightforward and may be

1
found in detail in LAUNCH, The time at which launch must occur coincides
with the time that the launch site passes through the launch plane which
is equivalent to the time at which the launch site latitude and launch
right ascenslon are consistent, This may be computed from

(@L - QL - GHA) mod 2w
L= ” : (4.18)

t

where w is the ﬁotation rate of the planet and where GHA is the Greenwich

hour angle at 0" U,T, on the launch date, The time of injection tI is

then given by

tp = tL A+ AtLI 4.19)

4,3 Lunar Zero Iterate

The generation of a lunar zero iterate proceeds in two steps, The
first step involves the targeting of a patched conic trajectory; the
second then targets a multi-conic trajectory to the desired conditions,
The controlling subroutine for the lunar targeting is LUNA,

4,3,1 Patched Conic Targeting

The lunar patched conic phase (see LUNCON, LUNTAR) generates a patched
conlc trajectory which satisfies both launch conditions at earth and target
conditions at closest approach to the moon, The launch conditions include
launch from a site specified by latitude @L and longitude QL at an azimuth

EL into an intermediate parking orbit of radius rP untll injection, The
target conditions include time at closest approach taps radius at closest

approach Taps inclination to the lunar equator iCA’ and semimajor axis at

the lunar hyperbola.aCA,



For the patched conic model, the moon's position is fixed at its
location at the time the sphere of influence is pierced. The eccentricity
of the lunar phase hyperbola is

Y
eep = 1 - aCA (4. 20)
CA

where a., < 0, The hyperbolic time At to go from R I (the radius of the

S
lunar sphere of influence) to periapsis is computed from

At = £Qu, acss eops Rgyp) (4.21)

where p, is the lunar gravitational constant. Thus, the time at which
the probe should intersect the SOI is ‘

Now any point on the lunar SOIL can be described by giving two
angular componeats: declination 6 and right ascension @ for example,
Denote the vector from the center of the earth to such a point on the
SO0I by KI' Then by setting

—

R
=L - (4. 23)

Ry

the plane including the vector g and satisfying the launch site latitude
and azimuth conditions may be determined as it was in the previous section
for the interplanetary case, The normal W to the transfer plane (identical
to the parking orbit plane) is thus given by

WZ = cos@Lsin EL
- WSS *S ‘Jl - (s:’ +w§)
wy = —i 3 3 4. 24)
S +s
x y
WS +WS_
= . Yy _z=z
wx S
X
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Now let the injection point on the parking orbit of radius rp
be located an angle a from the vector - RI. Denote the radius vector

to that injection point by T Then the situation is illustrated in

I°
Figure 4.4 below,

EQ

4
(6,6)
RI
L , _
P4
— -7 4
-RI < "y rI
XEQ

Figure 4.4 Lunar Patched Conic Targeting

The three controls e, §, @ determine a unique patched conic tra-
jectory (see LUNCON), The elements of the geocentric phase may be
computed from the simultaneous solution of the equations



_a(l - e?
I 1+ecos (r-a)

R
(4. 25)

r, = a(l - e)

to yield the semimajor axis and eccentricity of the geocentric conic

R -r

I S
e_'-_rl.-RI cos (mr-a) (4.26)
r
_ I
a =37 “.27)

-

The position and velocity EI’ VI on the geocentric conic may then

be evaluated at the lunar SOI, The state relative to the moon at this
patching point is given by

Tor = RI - RM . 28)
Vor = V1 = Vy 4. 29)

where ﬁﬁ, Vﬁ are the position and velocity vectors of the moon with respect

to the earth,.

Given the state relative to the moon the target parameters Toa? iCA’

and a,, may be evaluated from the usual conic formulae, However, for

CA
linearity purposes, the impact plane parameters B*T and B°R are sub-
stituted for the parameters rCAvand iCA'

The actual targeting procedure (see LUNTAR) may now be described.
Suppose that on the k-th iterate the best values of the controls are

denoted by @1k, 6k’ Ok). Suppose that the resulting target values are
given by (ak, BT, B'Rk). The Newton-Raphson scheme is then used to

generate the k+l st values for the controls,

The first control o, is first perturbed by the amount A« while hold-

ing the other controls at the k iterate values and the resulting trajectory

25



determined, Suppose that the resulting target values differ from the k-th
iterate values by the amounts (@a,, AB:Tq, AB-Ry). Then the § and 6 con-

trols are each perturbed in the same manner and the resulting perturbations

in the target parameters denoted by @aa, AB.Tg, AB’Ra) and (Aag, AB:TQ, AB'RQ)

respectively, The "sensitivity" matrix 1is then defined to be

- n
S A2 0%
Aa Ad A8
AB-T, AB-T6 AB-T

*=\23a TBs TE¢ 4.30)

OB R, AB+R AB-R
. Aa Ad A®

8

.

The targeting matrix is then defined to be @nl, The values of the
controls to be used on the next iteration are then given by

- o Foﬂ 8ca T % T
& =18 +8pT - BT, (4. 31)
|

Lng+1 L.g._k | B°R - B°P\k_

where B°T and B-R are the values of the impact parameters corresponding
to the desired values iCA and L (IMPACT)

When the values of the target payameters are within given tolerances
of the desired values, the patched conic phase of the targeting is ter-
minated and the multiconic stage begun, The time of injection of the
final targeted patched conic is computed from conic formula to use in
that second stage,

4,3,2 Multiconic Targeting

The second phase of the generation of a lunar zero iterate involves
the targeting of a multi-conic trajectory (see MULTAR, MULCON),



Multi-Conic Tra jectory Propagation

The multi-conic propagation scheme has recently been introduced as
an effective intermediate betwen patched conic and precision integrated
trajectories (Ref, 4).

A detailed analysis of the propagation of a trajectory by the multi-
conic technique is provided in the analysis of subroutine MULCON, A
heuristic description of this scheme will be discussed in this section,

The equations defining the motion of a spacecraft traveling under
the influence of the earth and moon may be written

2 Fe'e P’ Plem

e ~ 3 7 3 7 3

T ™M Re

where ;E’ ;M’ and iﬁM are the position vectors of the spacecraft relative

to Earth, the spacecraft relative to the moon, and the moon relative to
the Earth and Fg and Py are the gravitational constants of the Earth and

moon respectively,

(4.32)

A graphic description of the multi-conic scheme is provided in Figure
4,5 below,

M
oon at tk+1

B Moon at t
Earth

K
c ,
D E
A

Figure 4.5 Schematic Representation of Multi-conic Propagation
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The state‘of the spacecraft at the beginning of the n-th iterative
step is indicated by the point A, The trajectory AB is a simple conic
about the earth determined by the initial state at the time £ and pro-

pagated over the time interval At = tor” Ep This corresponds to
ignoring the last two terms in equation (4, 32) above,

The second leg of the trajectory BC accounts for the "third term" or
indirect force, Here the third term is evaluated at the beginning and
at the end of the interval [tn’ tnﬁil’ The net effect of the force is

approximated by assuming that a constant force equal to the average of
the two values of the indirect force acted over the interval, That
perturbation is represented by the arc BC,

Finally, the effect of the direct lunar force is considered. The
state of the spacecraft relative to the moon at the point C (correspond-
ing to the time tn+1) is first computed, This state 1s then propagated

linearly backwards in time over the time interval At arriving at the
point D, Then a simple forward conic propagation relative to the moon
over the interval At generates the path DE, This may then be converted
to geocentric coordinates to begin the next multi-conic step.

The multi-conic technique has been shown to efficlently approximate
n-body trajectories to a very reasonable degree of accuracy, Therefore,

an intermediate stage of targeting using this model was built into STEAP,

Multi-Conic Targeting

The actual targeting of the multi-conic trajectory is controlled
by the subroutine MULTAR, The targeting scheme uses Newton-Raphson iltera-
tion to do the targeting. Let the k-th iterate values of the injection
state in earth ecliptic coordinates and time be denoted T Vo tk

respectively, The problem then becomes the generation of an improved
injection state and time LT Vi1’ tk+1'

The k-th value of injection state (;k’ ;k’ tk) is propagated forward

using the multi-conic propagator to determine a final state near the moon,

The resulting values of BeTk, B Rk’ a,, and tCA, X achieved on the tra-

jectory as well as the target values B*T and B* R (consistent with the
desired values of Toa and iCA) are computed, The errors in the four

target conditions are then computed



.
a2 1 o -2

*
AB-T| = B-Tk - B-T

= 4. 34)
Are 1 ABeR BR_ - BIR

| Atead  Lea, k™ tea

If the error in each parameter 1s less than the allowable tolerance,
the process is terminated, If convergence has not been achieved a Newton-
Raphson iteration is made, The control variables are now

Vx, V, VZ’ t

and the target parameters are

2oy 5-T, B*R, t

CA
A complicating factor is introduced because of the time variable

tinj’ The result of the patched conic targeting is a state Tos Vg in

earth ecliptic coordinates at the time to. However, since the earth

18 rotating about the earth-moon barycenter, when the injection time is
varied the injection state (both position and velocity) must be rotated
to insure that an otherwise equivalent state is being used,

Thus, a sensitivity matrix ¢ is computed by numerical differencing

[ Bacy Aaq, ’
X D A
AV av,
AB.T .
X
AV » . . . '
AB-R_
d = : ? - (4, 35)
Av, !
!
Aty :
X |
L Avx L

)
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The k+1 st iterate is then corrected by

r-AVx T
\Y
Y L @. 36)
AV A'rk :
VA
| At, . ‘
iy

The Newton-Raphson process is continued until the errors‘ATk.are

all within the desired tolerances,
4,4 N-Body Targeting
4.4.1 Parameters

N-Body targeting events may be required at the start of a trajectory
or at some Interior point along a trajectory, In either case the current
position vector and time (perhaps generated as a zero iterate). are held
at thelr original values while the velocity components are varied to meet
three target conditions, The target parameters may be chosen from the
list supplied in table 4,1 below.

Table 4,1 Target Parameters and Codes

1. (available) 5, BeT 9, ag
2, tSI 6., Be¢R 10, xf
3. teg 7. Toa 11, Ve
4, toa 8, i 12, Zg

The parameter toy prescribes the time at which the target body SOI

is intersected. The parameters teg and oA refer to time at closest

approach to the target body: tes indicates that the integration is stopped

at the SOI and the time at closest approach extrapolated from conic formula



while tCA indicates that the time at closest approach is determined by

actually integrating to closest approach., In lunar targeting a time
variable may be replaced by the semimajor axis agy at the lunar SOI,

In this case the n-body integration is stopped at the SOI for the evalu-
ation of the target parameters, These four parameters thus specify
the stopping conditions of the integration then, If one of the para-

meters tSI’ tCS’ or aSI is triggered, the integration 1s stopped at the

target body SOI and all target parameters are evaluated at that point

using conic formulae if necessary, If tCA is a target parameter, the

integration is stopped at closest approach to the target body for the
computation of parameters, If none of these four parameters are triggered,
the integration stops at the target time,

The other seven parameters are automatically evaluated at the
appropriate stopping condition, B.T and B-R are the impact plane para-
meters (see IMPACT), Toa is the radius at closest approach to the target

body, 1 is the inclination with respect to the target body equatorial
system (see IMPACT) and Xes Yoo Zg are the inertial ecliptic coordinates

at the stopping conditions,
4.4,2 General Iargeting Procedure

For efficiency it 1s sometimes necessary to introduce auxiliary
parameters in place of the selected target parameters within the actual
targeting procedure. Thus, if Yo and 1 are specified as target para-

meters, auxlliary parameters of B-T and B-R are substituted for them,
The reason for this is that the impact plane parameters are more linear
functions of the velocity components than are Toa and i, Therefore, the

terms target parameters and auxiliary parameters are used, The target
parameters T are those parameters for whisp the user has actually requested
desired values; the auxiliary parameters a are those parameters which

the program uses to perform the targeting, Thus 7 = & unless i and Top

are target parameters, In that case a, = BT if Ti = Ty and o, = B*R
if 7, = 1,
J

The general targeting program TARGET controls the refinement of the
velocity components to meet the desired conditions, TARGET uses either
of two iterative processes to perform the targeting: either the Newton-
Raphson scheme or a steepest descent/conjugate gradient algorithm,
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In either case suppose that on the k-th iteration the values of
the velocity components are denoted Vier Denote the resulting values
of the target and auxiliary parameters by T and ak respectively, If

ke
the target values 7, agree with the desired values 7 to within the input

k .
tolerances the process is terminated, Otherwise the differ nce between
the current auxiliary parameters and their desired values ak'are computed

o - =%

ba= @, - a “. 37)

TARGET then calls on TARMAX or DESENT to compute the velocity
correction AV to be added to obtain the k+l st iterate values by either
the Newton-Raphson or steepest descent/conjugate gradient techniques
discussed in the next two sections, In either case assume the correction
is generated

Av = Vel " Vi T f (Aa) 4. 38)

Two checks are available to guard against divergence in the target-
ing procedure: the maximum step check and the bad step check, 1In the
maximum step scheme a maximum allowable velocity correction magnitude
AvM i8 read in as input, If the correction determined by (4, 38) has a

magnitude larger than AVM9 all components are scaled down to yield a

correction within the maximum size, Therefore, if one wants to play safe
he can read in a AVM that is perhaps one hundred times larger than the

perturbation size dv used is predicting the step, The program will then
insure that no steps larger than a hundred times the perturbation size
will be allowed, Thus, the correction may be forced to stay within a
region where the linear assumptions are hopefully valid,

The second scheme might be called an "a posteriori™ method in com-
parison with the "a priori" method listed above, In the bad step check
a scalar error or loss function ¢ is assigned to each iterate as

¢. =W +Aa © (4, 39)

where W is a vector of weights. Whenever a step leads to a scalar error
larger than the previous step, the current correction is reduced by one
quarter recursively until a step with a smaller error is determined,
Thus large steps that reduce the error will be allowed; only when they
increase the error will they be decreased,



| =<

4.4.3 Newton-Raphson Iteration

In the Newton-Raphson technique, the errors in the auxiliary
parameters are iteratively driven to zero by varying a set of three
velocity controls, Cl’ C2’ and C3. Two different sets of these

controls are available. In the first option, Ci is simply the in-

crement to the ith Cartesian component of heliocentric ecliptic in-
ertial velocity provided by the targeting impulse. The dependence
of the targeting velocity increment Av on these controls is then
clearly

Av=C 1+CJ+Cik (4.40)

1 3

where i, j, and k are the respective unit vectors along the ecliptic
inertial coordinate axes. The second control option is somewhat
more complicated. It deals with the velocity relative to the launch
planet in a rotating spherical coordinate system referenced to the
trajectory. The current velocity vector determines the zero-lati-
tude zero-longitude direction and the current angular momentum vec-
tor of the trajectory relative to the launch planet defines the +z
or polar direction. The three controls then are respectively the
increase in length, the latitude, and the longitude of the new ve-
locity relative to the launch planet after addition of the targeting
impulse. Figure 4.5a defines the controls pictorially for the

case of the earth as launch planet.

. (r g X LY .
T T * ey

S/C
Trajectory

Trajectory.
Targeting
Point

55z ]

Figure 4.5a Pictorial Definition of Launch-

Planetocentric Targeting Controls
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The dependence of the targeting velocity increment on these
controls is

av = [(Hyl| + ¢ eos €, cos €y = []¥[]T ¥+ (J]yl] +cp

sin C, cos Cy U + dlv|] + €,) sin c3'y_ (4.41)

where V is a unit vector in the direction of the launch-planetocentric
velocity just prior to the targeting impulse, W is a unit vector

in the direction of the angular momentum vector of the launch-
planetocentric trajectory and U =W x V,

Using the dependence of Av on the particular set of controls
at hand, a sensitivity (Jacobian) matrix ® of the auxiliary param-
eters with respect to the controls is approximated by numerical
differencing. The ijth element of ¢ is by definition

Q
=]
[N
[
(]
’_I
-
[\S]
-
w

| 13 = 36 (4.423)

Now partitioning & into columns as follows

& = (¢l . @2 : ¢3) (4.42b)
the jth column is given by
_ lim Aa

= (4.42¢)
j Cj 0 Cj

Thus the columns of the sensitivity matrix can be approximated by
successively perturbing the three velocity controls. The control

correction for the kth iteration is then given by the standard
Newton-Raphson formula

!
ac, = -0 As (4.43)
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where Aa is the error vector of the auxiliary parameters on the
previous iterate from thelr desired values.

The Newton-Raphson scheme may be slightly modified to yield a
more efficient targeting algorithm. The modification 1s based on
a premise that the characteristics of a low-integration-accuracy
trajectory mirror those of a higher accuracy trajectory targeted
to identical mission constraints. Thus, a targeting matrix com-
puted about a given trajectory at a low-accuracy level should re-
main valid for similar trajectories at higher accuracy levels.
This assumption has been verified by experimentation.

The modified targeting scheme then proceeds as follows. A
trajectory is targeted to the desired target conditions at a low
accuracy level, constructing the targeting matrix at each iteration.
The targeting matrix ¢L evaluated about the targeted trajectory at
this low accuracy level 1s stored. The corresponding targeted
velocity at this low level ;L is then used as the first iterate
at a slightly higher accuracy. Because of the change in the inte-
gration step size the desired target conditions will not be real-
ized. However, the matrix OL may be used to predict an improved
velocity 31 for that intermediate level. This process i1s contin-
ued until the desired accuracy level is reached. The the targeting

matrix @L is used repeatedly until a velocity is determined which

yields a trajectory satisfying the desired target conditionms.
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4.4,4 Steepest Descent/Conjugate Gradient Iteration

An alternate scheme is provided for the generation of the next
iterate by use of steepest descent/conjugate gradient method (DESENT),
The current gradient 8¢ is computed by numerical differencing. For the
x-component of éc the corresponding component of velocity 1s perturbed

by dv

v, =¥ +[dv, o, o]T (4. 44)

The initial state (r, ;x) is then propagated to the final stopping

conditions, Let the auxiliary parameters of that trajectory be denoted
o, The error (or loss function) associated with the perturbed state is

then

- -
e, =W (Ex- a ) (4.45)

- >
where W represents the weighting factors and & are the desired target
conditions, The x-component of the current gradient is then

- ¢
éx

gc = dv (4.46)
X

The y~ and z-components of the gradient are computed similarly'by

perturbing the y- and z-components respectively, The corrected gradient
is then given by



5 =g » Steepest descent step

’2 Ep + éc , conjugate gradient step 4.47)

where the subscript ¢ refers to a current parameter, p refers to a previous
step, The unit vector in the direction of the next step is then given by

(4.48)

vl o}
[¢]

c
The step size is now determined as the correction leading to the

minimization of the loss function in the direction predicted by £4,48).
The directional derivative of the scalar error in the direction 9 is

(4.49)

(1)

d = 9. - &

The nominal optimal step size h is computed from a linear approxi-
mation to null the error

€
h=— 4.50)

The initial state corresponding to this correction is then propagated
to the final stopping conditions and the resulting error ¢ computed, The
three conditions

y() = ¢
yG) = € (4,51)
y* (@) =4d

may now be applied to the formula of a parabola

* % 9
y - € =a(x -h) 4.52)

*
to predict the optimal step size h yielding the minimum error e*
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_2

% dh
= = g 4,53
2(dh + €~ € ) ( )

h

The correction for the current step is then given by

- % -
Av=h q_ (4.54)

4.4,.5 Outer Targeting

All of the targeting problems that involve stopping conditions at
the SOI or at closest approach to the target body require a trajectory
that at least intersects the target beody SOI,

Since the massless planet initial conditions will not always satisfy
this requirement some provision must be made to refine those conditions

to obtain acceptable ones, An effective algorithm has been constructed
to accomplish this,

When any trajectory has not encountered the target body SOI within

a prescribed tlme, the closest approach conditions Tepas Vop 2T noted

(see Figure 4,6), An "artificial" sphere of influence is then constructed
about the target body having a radius 1,2 times the valge rCA‘just noted,

The trajectory will then intersect this artificial SOI even with small
perturbations in the initial velocity., The normal targeting procedure
is now used with target values

B'TA,= BoRA =0

tSI = tSI - v 4.55)

vhere the subscript A indicates "artificial" target conditions and RSI
indicates the actual SOI radius, The initial conditions consistent with

these "artificial" conditions will then yield a trajectory headed straight
for the center of the target body when the artificial SOI is intersected
which should result in a trajectory hitting the actual SOI,
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Figure 4,6  Outer Targeting Scheme

4,5 Orbit Insertion
4,5.,1 Orbit Insertion Structure

The second type of guidance maneuver 1s an orbit insertion event,
The orbit insertion event is divided into two distinct subevents; an
orbit insertion decision event and an orbit insertion execution event.
occurring at a later time, There are two possible strategies available
for the orbit insertion decision event: one specifying that the desired
orbit is automatically coplanar with the incoming hyperbola and one
specifying the orientation of the desired final orbit,

The orbit insertion decision event occurs at a time specified by the
user (generally when the spacecraft is well within the target body SOL,)
The general procedure begins after exiting from the trajectory propagation
cycle, The state of the spacecraft with respect to the target body 1is
"computed and the conic extension of the trajectory is computed, The
possible intersection point of this trajectory with the desired orbit are
then investigated, If there are no points of intersection, a series of
modifications are checked to determine an optimal modification which leads
to a tangential or intersecting solution for the coplanar or nonplanar
strategies respectively, The impulsive velocity correction corresponding
to this solution is then computed along with the time interval (from
conic formulae) from the time of the decision to the required time of
execution,
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After making these computations the trajectory propagation program
18 re-entered, If the insertion event 18 to be executed, an execution

event is set up for the appropriate time before re-entering the trajectory

mode, At that time the trajectory program is exited and the impulsive
correction added on,

4.5.2 Coplanar Strategy

The details of the coplanar orbit insertion decision are available
in COPINS, A heuristic description of this option will be given here,
In the coplanar option the desired orbit is selected within the orbital
plane of the approach hyperbola, The target parameter specified by
the user include the elliptical semimajor axis a, eccentricity e, and
periapsis shift Aw . The periapsis shift is defined as the angle from

the periapsis of the approach hyperbola to the periapsis of the desired
orbit measured positive in the direction of motion (see Figure 4,7),

Q
{

rp = a(l-e)
r, = a(l+e)

Aw

v

%4

N/

Figure 4,7 Definition of Coplanar Insertion Parameters



There are three possible situations which may arise in the deter-
mination of the points of intersectlon: there may be one, two, or no
solutions, If there is one solution, that solution is analyzed to com-
pute the impulsive Av and time interval At before execution., If there
are two solutions, the minimum velocity correction magnitude solution
i8 computed for execution,

If there are no solutions the desired orbit is modified to obtain
a tangential solution. Three modifications (see Figure 4,8) are investi-

gated:
1) Vary rp while holding r at desired value
2) Vary r, while holding rp at desired value
3) Vary a while holding e at desired value
Q Q
4 1
/
\ // \ ,/
/ /
/
fﬂ\‘ —p> P f\ + P
1 o/
ay \/ r//
/ e
/
i '
Vary rp Vary r,

Figure 4,8 Coplanar Orbit Modifications

39



40

The detalls of the computations of these modifications may be found
in the analysis of COPINS, ©Now for the unweighted errors evaluate the
differences

¢ = JArpI + |ar, | (4.56)

where Arp, Ara denote the discrepancies in the desired and modified values
of rP and r, respectively, The unweighted errors are then multiplied by

a welghting factor W, chosen to rate the preference for the given modifi-

i
cation, The first option requires one subsequent orbit trim at apoapsis
to trim to the desired orbit; it therefore is given a weight factor W = 1,

The second option requires a subsequent trim at periapsis which is a

less satisfactory maneuver: therefore it has a weighting factor of W = 2,
The third option requires two subsequent maneuvers at both periapsis and
apoapsis: it therefore is assigned a weighting factor of W'= 3,

After évaluating the weighted errors of ¢ach of the maneuvers, the
minimum one is selected for the actual insertion execution,

4.5.3 Nonplanar Strategy

The analytic details of the nonplanar orbit insertion strategy are
given in the analysis of gubroutine NONINS, The overview of this
strategy will be discussed here,

The target parameters prescribed under this option are the angles
specifying the desired plane in target body equatorial coordinates:
the inclination i and the right ascension ., The orientation of the
ellipse within the plane 1s fixed by the specification of the argument
of perlapsis w, Nominal values for the sgemimajor axis a and eccentricity
e are also read in; however these are altered during the course of the
insertion decision to obtain an impulsive solution. These parameters
are illustrated in Figure 4,9,



Figure 4,9 Orientation of Desired Orbit

Now suppose that the approach hyperbola intersects. the desired plane
at two points A and B, The probability is that neither A nor B lie on
the desired ellipse, Thus, the desired ellipse must be varied to allow
the intersection of those points,

The geometry within the plane of the desired ellipse is indicated
in Figure 4,10, For each of the points A and B three modifications of
the desired orbit are made:

1) Vary T, holding rp fixed
2) Vary rp holding r fixed

3) Vary a holding e fixed
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o>

Figure 4,10 Nonplanar Orbit Insertion Modifications

Then loss functions are assigned to each of the solutions according
to

€ =wM (|ar,| +|Arp|) 4.57)

where Ara and Arp are the differences in periapsis and apoapsis radii
from their desired values, wM is a weighting function equal to the index

of the modifications listed above indicating the preferences for the
modifications, WR is a welighting factor to encourage the choice of a

solution on the incoming ray (wR = 1) over the outgoing ray (WR = 2),
The solution with the minimum ¢ is then selected for the execution of
the ingertion maneuver,

The states on the hyperbola (?h’ $‘h) and the modified ellipse
(?e, Se) at the selected intersection polnt are then computed and used

—m
to,determine the insertion Av
—> - - >
v

Av = e ~ V4 (4. 58)

and time before excution At,



4,6 Thrusting Arc Modeling

4,6.,1 Introduction

The result of the midcourse correction targeting event is the velocity

increment Av which must be added impulsively to the current nominal state
(r, v) in order to yield a trajectory satisfying given target conditions,

If the midcourse correction is to be executed impulsively on the
nominal, the state immediately following the maneuver is given by

-t - -

r =71

-4 D e

v =v +Av (4.59)

The midcourse may also be executed by an alternative technique known at
the thrusting arc model,

The thrusting arc is intended to add to STEAP the capability to
model pulsing type radial engines, The radial engine is mounted on a
spin-stabilized spacecraft; thrusts are added periodically as the space-
craft rotates into the proper direction, Thus, the velocity corrections
are added as a series of pulses over an extended time interval.

up to a thousand pulses over a ten day interval,

The general scheme for the transformation of the impulsive velocity

increment into an equivalent series of pulses is indicated in Figure 4,11,

The impulsive correction Av is divided into a number of equal pulses Avi

all in the same direction as Av and with the sum of their magnitudes equal

to the magnitude of the single impulse Av,

av

av,
1

Figure 4,11 Thrusting Arc Modeling
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4,6,2 Computation of Sequence

Suppose that the targeting event has generated the required impulsive
velocity correction Av. The problem then becomes to determine a sequence
of bounded pulses AV such that the net effect of adding these pulses
sequentially over a time interval 1s equivalent to adding the single
increment Av impulsively,

The procedure used in STEAP proceeds as follows., Introduce the
engine parameters

T Thrust magnitude of single pulse
m Nominal mass of spacecraft
At Duration of single pulse

§ N
Time interval between successive pulses

Aty

The velocity increment imparted by a single pulse is

av, =8 - (4. 60)

m

The number of pulses required then is

Av .
N =|&¥ 4.61)
4 [Avi] +1

where E] denotes the greatest integer function, The magnitude of the
final pulse must be adjusted to insure that the sum of magnitudes is
correct, Thus, the final pulse Avf is set to

Avf = Av - (Np -1 Av.l (4.62)

—y
The nominal pulse of the sequence Avi and the final pulse in the
sequence Z?k are forced o have the same direction as tie original impul-

sive increment



oy Av

Avy = 48vy Ay

. v | |
Qv = Qv Av (4.63)

The time interval of the pulsing arc L8 then given by

AT = (Np - 1) At:1 4.64)

4.6,3 Perturbed Heliocentric Propagation

Because of the large number of pulses possible in a single maneuver,
it 1s expedient to determine an efficient means of propagating the
ballistic trajectory between pulses, A perturbed heliocentric propagator
(PERHEL) including the effects of the sun and the launch and target
bodies was developed,

The equations of motion of a body moving under the influence of
the sun and a perturbing body may he written

Po; P(; - ;m) p ;m

r = 3 - l-' " l3— 3 (4.65)
r r-r r
m m
where
T 18 the vector radius from the sun to the spacecraft

is the vector radius from the sun to the perturbative mass

"

Pos P are the gravitational constants of the sun and mass respectively

The last term in (4,65) representing the indirect force is discarded
as being insignificant at this point, Conic formulae are used to determine
the state Toer Vg at the end of the interval At ignoring the second term,

This 18 simply heliocentric conic propagation then, Perturbations result-
ing from the second term of the right hand side of (4,65) are then brought
in, The assumption 18 made that the vector r - ro i8 linear in time over

the interval At

T-T =At +3B (4.66)
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With this assumption the perturbation equations may be solved in

closed form for the direct term perturbations ér, §v,

end of the interval 1s then given by

The state at the

r, =t _ +ér
Af Aof _ 4. 67)
Ve = Vg + év

The detailed derivation of these equations are given in PERHEL, In

the actual program the direct term perturbations for both the launch
and target bodies are added to the final solution,

Investigating of equation (4,66) indicates that some way of pro-
pagating the launch and target bodies over the given interval must be
available. To do this the f and g series (see PREPUL) for both the
launch and target planets are evaluated at the nominal time of correction,

The position of the target planet at some point At relative to that time
is then given by

rp @e) = £, @t) T, 0) +g. Br) v, (0
6

fp © =2 £e" (4. 68)
k=0
6 K

gy (t) =§;0 gt

with similar equations for the launch body,

4.6.4 Execution of Sequence

The actual propagation of the spacecraft through the series of pulses
may now be explained. The state of the spacecraft, the launch planet
and the target are all recorded at the nominal time of the correction to.

The thrusting arc parameters given by (4,60) to (4.64) are computed for
the required Av, The positions of the launch and target bodies are com-
puted at the beginning of the thrusting arc tB

(4.69)



The spacecraft is then propagated backwards to t_, using the perturbed

B
heliocentric propagator PERHEL, The nominal pulse of the arc is then
added impulsively

(s v3) = Gy, V5 +8V) (4.70)

The positions of the launch and target bodies an interval Ati

later are computed and the spacecraft is propagated over that interval
by PERHEL, This process 1s repeated until the final pulse Avf is added,

The final spacecraft state relative to the sun and the updated time
T
t 4-95 are then sent to the trajectory mode to continue the n-body pro-
pagation from the end of the thrusting arc,
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5. ERRAN ANALYSIS
5.1 General Description of ERRAN

The error analysis program ERRAN is a preflight mission analysis tool
and 1s concerned primarily with the propagation of covariance matrices
along selected interplanetary or lunar trajectories, All random variables
are assumed to have gaussian distributions, and linear theory 1s assumed
for the propagation of all covariance matrices,

There are three maln quantitative results that come from the error
analysis program, all of which are very important for trajectory design
during preflight mission analysis, The first output is the orbit deter-
mination or navigation uncertainty at selected trajectory times, The
processed (knowledge) covariance matrix of orbit determination uncertainty
gives a probabilistic answer, for a specific reference trajectory, to the
question "how well will the actual trajectory be known after optimal
processing of the tracking information?'" The error analysis program can
be used to study the effects of dynamic model errors, sensor errors, and
measurement schedules and types on the orbit determination process,

A second result obtained from the error analysis program is equally
important, Orbit determination uncertainties, although they are signifi-
cant, do not by themselves answer all the pertinent questions related to
mission success, Another question that must be answered is, "how close
will the actual trajectory come to meeting the speclfied target conditions?"
Because of injectlon errors and dynamic model errors the actual trajectory
will depart from the original targeted nominal trajectory., The statistical
measure of such dispersion is represented by the control covariance matrix
which, unlike the knowledge covariance discussed above, is unaffected by
the processing of tracking information, The propagation of this control
covariance forward to the target will provide us with probabilistic infor-
mation relating to target miss in the absence of midcourse guidance
corrections, However, a midcourse guidance correction can be performed
to reduce the actual trajectory dispersion about the target, Propagation
of the sum of the knowledge covariance and the guidance execution error
covarlance forward from the midcourse correction time to the target will
provide us with probabillistic information relating to target miss follow-
ing a midcourse guidance correction,

The third main result from the error amalysis program is concerned
with the probabilistic determination of likely fuel budgets required for
interplanetary or lunar missions, Without performing any estimation, the
most likely magnitudes of the midcourse correction magnitudes can be computed
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along with thelr variances, This computation permits the mission analyst
to calculate reasonable fuel loading requirements that are critical in
the design of an actual system,

Two matrix quantities are carried throughout the error analysis
program, One 1s the nominal or reference state vector, which is needed
for many computations, and the second is the covariance matrix of navi-
gation uncertainties associated with the state vector, The state vector
is comprised of spacecraft position and velocity plus any augmentation
parameters included in the analysis, The covariance matrix is a square,
symmetric, positive definite matrix of associated uncertainties whose
dimension corresponds to that of the state vector,

The computational operation of the error analysis program may be
separated into two distinct calculation procedures, The first of
these is called the basic cycle and refers to the process of propagating
uncertainties from one measurement to the next, A Kalman recursive fil-
tering algorithm with a consider option is used to process the measurement
and compute the state vector assoclated covariance matrix that begins the
next step in the baslic cycle, Events refer to computations in the error
analysis program that are not simply propagations of the navigation un-
certainty covariance matrix from one measurement to the next and subse-
quent optimal filtering of the new measurement. In the error analysis
program, three kinds of events are permitted,

The three events allowed in the error analysis program are eigen-
vector events, prediction events, and guidance events, At an eigenvector
event, the position and velocity covariance matrix partitions are
diagonalized to reveal geometric information about the size and orienta-
tion of the position and velocity navigation uncertainties, At a pre-
diction event, the most recent covariance matrix 1s propagated forward
to some critical trajectory time, usually a guidance correction time, to
determine predicted orbit determination uncertainties in the absence of
further measurements. When a guidance event occurs, a rather lengthy
computational process determines the likely magnitude of the guidance
correction together with execution error statistics based on an underlying
physical model for the correction process, An option 1s also available
for computing bias aimpoints and blas velocity corrections to satisfy
planetary quarantine constraints at each midcourse guidance event, = Orbital
insertion guidance events are also available,

The next section of this chapter details the Kalman recursive esti-
mation algorithm that is assumed to be the underlying orbit determination
procedure, Section 5,3 discusses dynamic and measurement noise covariance
matrices, Section 5.4 treats the methods used in the error analysis
program for computing state transition matrices, Section 5.5 presents
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the equations required for the computation of observation matrices for
each type of measurement, Finally, section 5.6 discusses eigenvector
and prediction events, The guidance event is not covered in chapter 5,
See chapter 7 for a comprehensive treatment of the guidance event.

5.2 Recursive Estimation Algorithm

The recursive estimation algorithm refers to the computational
procedure which combines dynamic model and measurement information to
generate estimates of spacecraft position and velocity deviations from
the nominal trajectory, estimates of certain dynamic and measurement
parameters, and the knowledge covarlances assoclated with these estimates,
The error analysis program treats the estimation process in an ensemble
sense, Only the knowledge covariances are generated in ERRAN, and not the
estimates themselves, The Kalman recursive estimation algorithm with a
consider option 18 modeled in the STEAP programs, But before presenting
this estimation algorithm, the linear dynamic and observation models will
be described,

The linearized system 1s assumed to be described by the augmented
state vector

r-x "
A
X = | % (5.1)
u
-v -

where

x = spacecraft position/velocity state (dimension 6)

x, = solve-for parameter state (dimension nl)
u = dynamic consider parameter state (dimension n2)
v = meagurement consider parameter state (dimension n3)

All the above state vectors represent deviations from nominal state vectors
and all parameters are assumed to be constant, The distinction between
solve-for and consider parameters will be clarified subsequently,



The linearized dynamic model 1s assumed to have form

Koy = P BIX T gxxs CWEY tk>xsk +

O Crarr B Y T 9 .2)

where d)(tk+1, tk), Oxxs (tk+1’ tk)’ and qu (tk+1’ tk)
are state transition matrices over the time interval [tk, tk+1] relating

changes in x, X» and u, respectively, at time t  to changes in x at

k

time tk+1‘ The variable qk represents the effect of dynamic noise over

the interval,

The linearized observation model is assumed to have form

Vi Hkxk + kask Gkuk + Lkvk + M (5. 3)

where observation matrices Hk’ Mk’ Gk’ and Lk relate changes in x, X

u, and v, respectively, to changes in the observable y, All observation
matrices are evaluated at the nominal condition, The variable n, repre-

sents measurement noise,

Under the usual assumption of white noise, the dynamic and measurement
noise statistics are described by

E [qk] = E [nk] =0

E [qkqg] =Q '6jk "
T
E ["k"j] = R O

The equations constituting the recursive estimation algorithm are
of two types: state estimation equations and knowledge covariance equa-
tions, Only the latter will be presented below, The state estimation
equations will be presented in chapter 6,
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An estimation algorithm with no consider option treats all assumed
dynamic and measurement parameters as "solve-for" parameters, i.e., the
estimation algorithm generates estimates of the parameters as well as
estimates of the spacecraft pogition and velocity. Continued processing
of measurements will often reduce knowledge covariances to unrealistically
low values, a situation which can induce divergence in the estimation
algorithm, Divergence is said to occur when the actual estimation error
grows without bound, One method used to prevent divergence is to incor-
porate a consider option into the algorithm and divide all assumed para-
meter into either solve-for or consider parameters, Consider parameters
are not estimated by the algorithm, nor can their knowledge covariances
be reduced by measurement processing, In essence, by not solving for all
parameters in the assumed parameter set the algorithm acknowledges the
fact that its assumed set of dynamic and measurement parameters do not
fully describe the real world, and that it is impossible to reduce para-
meter uncertainties indefinitely,

The knowledge covariance for the augmented state is defined as

e [@ - @ -7 (5.4)

where ¥ indicates estimated values and x indicates actual values, In-
troducing equation (5.1) into equation (5.4) and expanding the result
permits us to write the covariance matrix in the following partitioned

form:
P C C C
k XX Xu XV
8 k k
k
A T
Pk = Cxx Ps Cx u Cx v G.5)
sk k k k
c'fm cz . U C
k s'k ° YW
Cz Ci CT \Y
Vi sk uvy o
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Covariance matrix partitions P, Ps’ Uo’ and Vo are all symmetric and

represent the covarlances of the spacecraft position/velocity state,

solve-for parameters, dynamic consider parameters, and measurement

consider parameters, respectively., The off-diagonal covariance matrix

partitions represent the correlations between the two variables indicated

by the subscripts, Thus, Cx u represents the correlation between solve-
8

for parameters and dynamic consider parameters,

The assumptions implicit in the consider option entail that co-
variances U0 and Vo remain constant with time, Estimates u and v are

always zero, Although the consider option does not require it, it is
realistic to assume no correlation between dynamic consider parameters
and measurement consider parameters exists, so that Cuv is always ezero,

The covariance equations involved in the estimation algorithm are of
two types: prediction equations and filtering equations, The prediction
equations describe the behavior of the ccvariance matrix partitions as they
are propagated forward in time with no measurement processing. The filtering
equations define the covariance updating procedure whenever a measure-
ment is processed, Details of thelr derivation can be found in reference
10,

The prediction equations are summarized below:

A T T
- ot + + T
1)k-i-l - @Pk + gxx Cxx + 0xu Cxu )@
8 8 k
k
- T - T
+ Cxxs 0xxs +'Cxuk+1 gxu +'Qk (.6)
k+1
+ + 4
cxx = &C + Qxx Psk + qu ‘U (.7)
PR+ ) 8k
- 3+
Ps = PS . (5. 8)
k+1 k
- + +
=¢C_  +0_ C +0 U (5. 9)
xuk+1 xuk XXS xsuk Xu O .
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cx u = stu | (5.10)
B k1 k

- = qpc:v +0 C: v (5.11)

e+l k 8 N

- +

c =C_ . (5.12)
8 k+ %k

A minus superscript on covariance partitions indicates the covariance
partition immediately prior to processing a measurement; a plus super-
script, immediately after processing a measurement,

The filtering equations involve equations for the measurement
residual covariance matrix J, Kalman gain matrices K and S, and covar-
iance updating, The measurement residual covariance matrix is given by

Tt = Bt A T Mg B T Gn Pin T Bt Bt T R O01
where
T - T - T - T
A1 = Pt Hern t G Mt Tl Genn T O e
s K+ -l
k+1
- T T T T T
- - +c G -
Byt Psk " M1 ¥ Cx B "% 1 T % v Men
k+1 S k41 Bk
T T
. - - T T
= + C
Dk+1 : Cxuk+l Hk+1 X u Mk+1 + Uo Gk+1
S k+l
R T R T
Bl %%y, B Tl v Mo TV L
k+1 s k41

The Kalman gain matrices for beth position/velocity state and solve-
for parameters are given by



-1

= . ,r, ].4
Kot = M1 e (5.14)

S = -1

k+1 K+l Tkl (5.15)

The covariance partitions immediately after processing a measurement
are given by

+ - T

P = P m K A (5.16)

+ - T

Cox = Cx " K1 B (.17)
§'So! Tkl

+ T

P =P - B (5.18)

sk+1 K+l k+1l Tk+1

c+ = C - K D;Ii_‘_l (5.19)

M en k+1

+ - T

c:x u = Cx u - Sk+1 Dk+1 (5. 20)
® Kkl ® K+l

+ - T

= C E (5. 21)

XV XV kHLOKHL

+ - T

Cx v Cx v - S1<+1 Ek+1 (5.22)
8 k41 K+l

It should be noted that the covariance matrices themselves are not
printed out in STEAP, Rather, all variances appearing along the diagonal
of the augmented covariance matrix defined by equation (5,5) are con-
verted to standard deviations and all off-diagonal covariances are con-
verted to correlation coefficients, Thus, if covariance a is an element

1]
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of the augmented covariance matrix, then the correlation coefficient is
given by

a

i} P
pij"—"';" s, 17 ]
1%
= gt/ 2 - . 1/2
where standard deviations oy and o, are given by o = aii and o = ajj .

Following these transformations all standard deviations and correlation
matrix partitions are then printed out.

5.3 Dynamic and Measurement Noise Covariance Matrices

The problem of filter divergence has been mentioned in the previous
section in connection with the consider option, The basic cause of
divergence is modeling insufficiency and many separate categories of this
insufficiency can be enumerated, The causes of the divergence problem
and possible solutions to 1t are given in greater depth in the analytical
discussion of the simulation program, The purpose of including a dynamic
noise matrix Q in the error analysis program is to examine the effect of
dynamic model insufficiency on the key outputs of the error analysis program,
Some dynamic or unmodeled noise always corrupts an Interplanetary trajectory;
what 1s interesting, from the point of view of the error analysis program,
is how the primary quantitative outputs are affected by various levels
of dynamic noise,

The dynamic noise model used in the error analysis program is
somewhat arbitrary and 1ts interpretation is difficult, Over any time
interval At between measurements, the dynamic noise matrix Q is computed
from three input constants that remain the same throughout a trajectory

run, These three constant inputs K19 Kz, and K3, whose units are km? 4

/sec”,

roughly correspond to variances of assumed unmodeled accelerations, The
dynamic noise matrix Q added over any interval At is diagonal. Specifically,
if At 1s the interval between measurements, the six nonzero terms of Q are
given by



_1 4
Q11 =7 KlAt
_ 1 4
Q22 = 7 I(2At
1 4
Qg5 = g K40t
Q,, = K. At 2 (5. 23)
44 1 °
2
Q55 = KzAt
2
Qg = K At

Some explanation of this form for the dynamic noise is necessary,
It was decided early in the design of the program that the physical inter-
pretation of arbitrary dynamic noise must be made possible by relating
the Q matrix, in some fashion, to unmodeled accelerations, Similarly, it
appeared that the magnitude of the dynamic noise should be a function of
the specific time interval over which it was added; in other words, the
dynamic noise added when two days were between measurements should be
greater than that added when only two hours separated the two measurements,

The first attempt to satisfy these two constraints resulted in the
agsumption that the unmodeled accelerations could be represented as blases
with zero mean and variances Kl’ Kz, K3. Consider, for example, a vector

random variable (86X, 8Y, 6Z) with variances

Tsx — K %y =K dlzsz = Ky

and correlation coefficients set equal to zero, If these accelerations
represent biases, then over any interval At they are related to position
and velocity uncertainties through

5% = 8% (at); 8K = 5 (6K) (Ae)?

and similarly for the other components, Under this model for the dynamic
noise, the Q matrix would be the same as that given in equation (5,23)
except for the completely correlated off-diagonal terms resulting in

=Ly Al =lK2At3

' 3
Qg =7 %88, Q5 =5

1
» Qg = 3 K34
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Clearly, 1f the unmodeled accelerations are indeed biases, the 6X
and 6% uncertainties due stxictly to the dynamic noise must be completely
correlated,

Thig initilal model for the dynamic noise was unsatisfactory for
two reasons, First, the resulting error analysis was forced to assume
that the unmodeled acceleration was & constant bias throughout the tra-
jectory as well as over each interval, The physics of the problem suggests
that unmodeled accelerations are probably constant blases over short
periods, but over an entire trajectory they probably vary considerably,

Secondly, if the values for Kj are large enough for the dynamic noise to

gsignificantly affect the processed covariance matrices, their total
correlation induces an unrealistically high correlation between the same
terms in the resulting uncertainty matrices,

A more careful modeling of the stochastic process was discarded
due to the arbitrary nature of the Q matrix, The dynamic noise matrix
was chosen as in equation (5,23) because uncoupling the position and
velocity uncertainties due to unmodeled accelerations retained a physical
feel for the meaning of Q and permitied 1ts computation to be viewed as
a combination of random and bias error In the unmodeled accelerations,

The measurement noise covariance matrix R requires lit'tle comment,
We simply assume the measurement noise for each measurement type has
constant statistics, and hence constant covariance matrix R, for a given
mission, :

5.4 State Transition Matrices

State transition matrices describe the dynamic behavior of linear
systems, Before presenting the different techniques that are available
in the STEAP programs for computlng state transition matrices, the
derivation of the general form of the linear system modeled in STEAP
will be summarized,

The nonlinear equations describing the motion of the spacecraft
have form
X= £, W, t) (5. 24)
where X denotes the spacecraft position/velocity state and W is a vector

of dynamic parameters which define the dynamic model, The linearized
version of equation (5,24) is given by



. Of of
3{-—§§x+aww | (5.25)

where x and w represent linear deviations from nominal states X and W,

of

£
respectively, Partial derivative matrices %ﬁ and S are evaluated along

the nominal state,

The discrete solution of equation (5.25) over the time interval
[tk, tk+1] is given by

X = Pl 5 x FOE 4, £ W (5. 26)

i1 b)) and 8t
to define the solution, In STEAP the parameter deviation vector w is
assumed to be constant, By dividing parameters into solve-for and con-
sider parameters, we could expand equation (5.26) into equation (5.2).

where state transition matrices d(t s tk) are required

Three methods are available in STEAP for computing the 6 x 6 state
transition matrix @, The first two methods, which are analytical methods,
are analytical patched conic and analytical virtual mass, The third
method uses numerical differencing to compute ¥, In the analytical tech-
niques it is assumed that the spacecraft trajectory is a two-body conic
section over a small time interval, and that perturbations about the
nominal trajectory can be related by using the basic analytical two-body
matrizant, To increase the accuracy of these analytical techniques over
longer time intervals a state transition matrix cascading option is pro-
vided in STEAP (see subroutine CASCAD analysis for more details),

In the present version of STEAP the state transition matrix 6, re-
lating parameter deviations to position/velocity deviations, is always
computed using the numerical differencing technique,

5.4.1 Analytical Patched Conic

The basic idea in using an analytic patched conic state transition
matrix is that over a small time interval of an Iinterplanetary flight,
the motion of a spacecraft is essentially a two-body conic section,

Based on the foregoing assumption, Danby (ref. 6) has developed a set of
general equations for determining the state transition matrices by the
use of matrizants, The matrizant of two-body motion is used ‘n STEAP
for both analytical methods of computing state transition matrices,

The basic fundamentals and equations of Danby's method will be presented
here, Complete derivations are giyen in reference 5.
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Letting x(t) represent a column vector composed of position and
velocity deviations at time t; x(to) the same for time to, and g the

deviation of a set of six geometrical elements, an equation that relates
small deviations in position and velocity at two different times can be
written as

x(£) = M(t)g = M(E)M T () x () (5.27)

Thus, the state transition matrix is given by

B, £ ) = MEM T (c) (5. 28)

The reference coordinate system considered here has the X-axis pointing
toward periapsis for the conlc, the Z-axis along the angular momentum
vector, and Y forming the triad, Danby (ref, 5) calls this the "orbital
reference system',

The geometrical orbital elements defined by g may be set in a column
vector as,

ralo + nér |

n

ade
h

s
B

O
o

(5.29)

L dq

where é; is the mean anomaly at an arbitrary epochj a is the semimajor

axis of the orbit; e is the eccentricity of the orbity ép, 8q, and ér



are infinitesimal rotations about the reference axis; h 1s the angular
momentum per unit mass; and n is the mean motion of the orbit, The

auxiliary parameter 7 is defined by (1 - e )1/2, Avoiding the algebraic

manipulations, the resultant M matrix as given by Danby (ref 5) has the
following form,

(% yx-h 0  2A-3tX Y 0]
Y -xX 0  2-3tY -YX-%h 0
0 0 Y o0 0 X

M) =1 .. .. . .y (5. 30)

X YX+YX 0 -=-X-3tX Y +YY 0
Y -X2.XX. 0 -Y-3tY  -XY-¥X 0
0 0 Y o 0 X

- 4

where X, Y, and Z are the components of position and velocity along the
particular orbit, t is some specified epoch, and the accelerations are
given by

R 18 the magnitude of the position deviation represented by (X + Y2 + 2 )1/2

and p 18 the gravitational constant of the dominant body used in the two-
body approximation,

The inverse of the M matrix at the initial time t0 is given by

o) = and ) (5. 31)

where A is a diagonal matrix of dimension 6 x 6 and has diagonal components
(a/p, a/ph, 1/h, a/p, a/ph, 1/h), 7Y is given as the matrix

0 -1

b

I 0

with I being the identity matrix of appropriate dimension,
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The state transition matrix that relates perturbatlions about some
nominal state vector between two arbitrary times can now be determined

by combining equations (5.30) and (5,3l), The resulting matrix is referenced

to the orbit plane coordinate system and thus, because all computations in
STEAP are performed in the ecliptic frame, a rotation needs to be included
so that

& (t, ) =RF G, t) R' (5. 32)

ecliptic orbit plane

vhere R is the rotation matrix,

In using the foregoing method for analytical patched conic deter-
mination of the state transition matrices, an automatic check is made
in the program to determine what sphere of influence the vehicle is
in at the time of computation, The sphere of influence determines what
gravitational mass and dominant body location will be used to compute
the matrizant, It should be stressed that the particular gravitational
constant being used at the time of computing @ is chosen at the beginning
of the time interval, In other words, if a check is made at ty aad the

sphere of influence is that of the Sun and the trajectory at t2 is inside

the sphere of influence of the target planet, then Msun will be used in

the algorithm, No significant problems have resulted by using this
approximate strategy, primarily because most of the time intervals are

small when state transition matrices are computed near the spheres of
influence,

The method of computing state transition matrices by the analytical
patched conic technique is assumed in the program unless otherwise
specified by the input,

5,4,2 Analytical Virtual Méss

Computation of state transition matrices by the analytical virtual
mass technique is similar to the patched conic methed, The same general
equations developed by Danby (ref. 5) are also used in determining state
transition matrices using the virtual mass concept,

The virtual mass technique requires that the location and magnitude
of the virtual mass, as calculated by the virtual mass subroutine, be
stored for use in the computation of @, Once the computational intervals
and values for the location and magnitude of the virtual mass have been
determined for the nominal trajectory these same quantities are used to



generate the state transition matrix, Hence, after determining the
nominal trajectory, the nominal state vector X(t) is available along
with a set of values r (t) and Py (t) representing the position and

magnitude of the virtual mass,

As mentioned previously, the equations for the two-body matrizant are
also employed in this second method of computing the state transition matrix.
However, now the dominant body is assumed to be the effective force center.
Recall that in the analytic patched conic method, a check was made to deter-
mine what sphere of influence the vehicle was in at the beginning of the time
interval, In using virtual mass concepts to compute the state transition

matrices, a sphere of influence check is avoided, When calling the state
transition matrix module, the gravitational parameter of the virtual mass m

v
is used instead of the p of the domimant body. The location of the

virtual mass is likewise used in the determination of @ under this method,
5.4.3 Numerical Differencing

The method used to compute @ and O using numerical differencing
will be presented in this section, Consider first the computation of
&b Let (tk+1’ t ) represent the j-th column of<b(tk+1, t ) We

assume we have availahle nominal states Xk and Xk+1' To obtain {

we increment the j-th element of Xk by the numerical differencing factor
ij and numerically integrate equation (5,24) over the time interval
[tk, tk+iJ to obtain the new spacecraft state Xk+1 (The j-superscript

indicates Xk+1 was obtained by incrementing the j-th element of i#.) Then

j
- X1 ™ Kt

3y B = Bx (5.33)

3=1,2, .. .6

The computation of @ is quite similar, Let E represent the j-th

column of O(tk+1’ tk).

available, To obtain Ej we increment the j-th element of the parameter

Again we assume nominal states Xk and Xk+l

vector ﬁ'by the numerical differencing factor Aw, and numerically inte-

grate equation (5,24) over the time interval [tk, t to obtain the

k+1

63



64

3
new spacecraft state Xk+1° Then

Xfi 1 7 Tk+l
Ej (tk+1, tk) = —e-i—&-;—l{-—- ' (5. 34)

where n§ is the number of dynamic parameters,

5.5 Observation Matrices

Observation matrices relate deviations in spacecraft position/
velocity state and deviations in dynamic and measurement parameters
from nominal values to deviations in observables from their nominal
values, Before discussing the observation or measurement types avail-
able in STEAP and the technique used to comnstruct observation matrices,
the derivation of the linearized observation equation will be summarized,

The general nonlinear observation equation has form

Y = £(X, W, t) (5, 35)

where Y denotes the observable, X denotes the spacecraft position/
veloclty state, and W 18 a vector of dynamic and measurement parameters,
The linearized version of equation (5.35) is given by

y=%§x+%§-w | (5. 36)

where y, x, and w represent deviations from nominal Y; i, and ﬁ,
respectively, and partial derivative matrices

g% and g%'are evaluated at the nominal condition,

If we partition the parameter vector w into a solve-for parameter
vector X _, a dynamic consider parameter vector u, and a measurement
consider vector v, then equation (5,36) can be written as

y = Hx + Mc_ + Gu + Ly (5.37)



where we have defined H = %%, and partitioned %% into three sub-matrices

M, G, and L, Adding measurement noise to this equation, we would obtain
equation (5, 3).

Two categories of observables or measurements are available in
STEAP: earth-based range and range-rate measurements and onboard optical
measurements, Earth-based range and range-rate measurements can be taken
from 4 tracking stations, one of which is an idealized station located
at the center of the earth, while the remaining three can be positioned
at arbitrary locations on the surface of the earth, The relevant geometry
for such measurements is depicted in Figure 5,1, The X, Y, Z coordinate
system represents the inertial ecliptic coordinate system, which can
be centered at the Sun or the barycenter according to the nature of the

Z Spacecraft
X
p
Y z
€
X
8
Gl
¢
GHA
y
X Earth

Figure 5,1 Earth-based Tracking
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mission, The x, y, z coordinate system represents the geocentric equatorial
coordinate system, Axis x is always aligned with axis X, The rotation

of this coordinate system relative to the X, Y, Z system is defined by

€ , the obliquity of the ecliptic, The states of the spacecraft and the
Earth relative to inertial space are given by X and XE’ regpectively, The

tracking station state relative to the center of the Earth 1s denoted
by XS° The geographical location of the station 1s defined by radius

R = ixsl, latitude 8, and longlitude ¢, Longitude ¢ is measured positive

east from the Greenwich meridian, The hour angle of Greenwich is denoted
by GHA, Finally, the position of the spacecraft relative to the tracking

station 1s given by the vector p, The scalar observables are range, also
denoted by p, and range-rate p,

Onboard optical measurements modeled in STEAP are 3 star-planet angle
measurements and an apparent planet diameter measurement, The relevant
geometry for such measurements is depicted in Figure 5,2, The position

‘ T
Spacecraft P?:izt

Figure 5,2 Onboard Tracking



of the target planet center relative to the spacecraft is denoted by the
vector p, Target planet radius is given by RP. The star-planet angle

a is defined to be the angle between p and the spacecraft/star line of
sight, The locations of three arbitrary stars are modeled in STEAP,
The apparent planet diameter measurement is indicated by the angle f.

The nonlirear observation equations for all the measurement types
discussed above are summarized in the subroutine TRAKS analysis section,
Also presented there are expressions for the partial derivatives required
to construct the observation matrix partitions H, M, G, and L,

5.6 Eigenvector and Prediction Events

At an eigenvector event we simply transform the knowledge or navi-
gation uncertainty covariance matrix P into useful geometrical information,
which includes eigenvalues, eigenvectors, and hyperellipsoids, Define t

gs the time of_the lasi processed measurement before the eigenvector
event and let Xk and Pk be, respectively, the nominal trajectory and the

orbit determination uncertainty covariance matrix after processing the

measurement at tk’ If tj is the time of the eigenvector event, then Xj’

the nominal state vector at tj’ is computed from the virtual mass tra-
jectory subroutine, The navigation uncertainty covariance matrix at tj

defined by P, is given by equation (5.6) with subscript k+l replaced by j.

b
All state transition matrix partitions are understood to be defined over
the time interval [tk’ tj].

The eigenvalues, eigenvectors, and hyperellipsoid could be obtained

for the 6 x 6 PJ matrix, but theilr geometrical interpretation is diffi-

cult, 1If, instead, we operate on the 3 x 3 position and velocity parti-
tions of,Pj we can obtain geometrical information which is both useful

and readily interpreted,

Let PR and Pv denote the position and velocity partitions, respectively,
of covariance Pj‘ Then at an eigenvector event these partitions are

diagonalized to produce position and velocity eigenvalues and eigenvectors,
The principal axis associated with the minimum eigenvalue defines the
direction of minimum uncertainty; the axis associated with the maximum
eigenvalue defines the direction of maximum uncertainty, The method
employed is described in more detail in the subroutine JACPBI analysis
section, Next, lo or 30 (or both) hyperellipsoids of uncertainty, in
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both position and velocity space are computed to show the size and
geometric orientation of the navigation uncertainties. These el-
lipsoids are then projected onto each of the two-dimensional planes
to show additional geometric information. The analytical details
of this procedure are presented in the subroutine HYELS analysis
section.

At a prediction event at time tj, the nominal trajectory §5
and associated knowledge covariance Pj are first computed just as
at an eigenvector event. Now define tp as the time to which the
prediction is being made. Then the knowledge covariance at tp’
assuming no measurements over the time interval [tj, t 1, can be

P
computed using equation (5.6) with tk = tj and tk+l = tp.

Within the prediction event algorithm of the error analysis
program, the resulting covariance matrix Pp at the prediction time

is also diagonalized to produce eigenvector, eigenvalue, and hyper-
ellipsoid information. Thus, by superimposing this geometrical
information about Pp for different prediction event times tj, one

can observe the effect of additional tracking on predicted naviga-
tion uncertainties.

If time tp occurs inside the target planet sphere of influence,

Cartesian position and velocity uncertainties are transformed to
uncertainties in the B-plane parameters BT, B*R, S*R, and ST,
time of flight tes and energy C3. In addition, the B*T, B*R co-

variance matrix is diagonalized and the maximum and minimum eigen-
values are computed. The square roots of the maximum and minimum
eigenvalues can be identified with the (1lo) uncertainties in the
semimajor axis SMAA and the semiminor axis SMIA, respectively, of
the uncertainty ellipse in the B-plane. The orientation of this
ellipse in the B-plane is also computed. The analytical details
of this procedures are presented in the analysis sectors of sub-
routines PRESIM, BEPS, and BPLANE.



6. SIMUL ANALYSIS
6.1 General Description of SIMUL

There 18 an essentlal difference between the philosophies governing
the error analysis and simulation programs of STEAP. The error analysis
program 1s primarily a preflight mission analysis tool that gives informa-
tion related to uncertainties about some specified nominal trajectory. By
contrast, the simulation program is designed for a detailed analysis of
the orbit determination procedure and its efficacy in the presence of a
host of possible anomalies. The error analysis program might be used to
determine the nominal trajectory design for a specific mission; the simu-
lation program then '"flles" the mission, within the computer, and can
provide invaluable information for mission operations.

The computational structure of the simulation program is similar to
that of the error analysis program, There is a basic cycle in which sub-
sequent measurements are processed consecutively and there are events where
calculations not specifically related to the measurement~-processing cycle
are made. Section 6.2 outlines in detail the equations and logic used
within the basic cycle of the simulation program. In section 6.3 eigen~-
vector, prediction, and quasi-linear filtering events are treated. Finally,
section 6.4 includes a discussion of the problems of divergence and non-
observabllity that can plague an orbit determination procedure. The
guldance event is not covered in chapter 6, but 1s treated in chapter 7
together with the error analysis guidance event,

The computations themselves, within the simulation mode, are not any
more difficult than in the error analysis mode. There are, however, many
more of them and in the discussion to follow some of the most important
features of the simulation program will be discussed,

6.2 The Basic Cycle

Recall that in the error analysis program only two quantities, the
targeted nominal state vector X and the knowledge covariance matrix P,
were carried along through each step in the basic cycle. Within the
simulation program there are six key quantities carried from step to step
in the basic cycle. These 8ix quantities are summarized below:

1) Xk Targeted nominal position/velocity state vector
at time s updated at each guidance event.

2) 'ik Most recent nom?nal position/velocity state
vector at time <« ,; differs from X, after a

: ~1,3
quasi-linear filbering event that updates
the_state vector by the estimate; identical
to Xk immediately after a guidance event.
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3) 6X,, or X

> N Actual position/velocity state vector deviation
from most recent nominal state.
4) 6§k, or Qk Estimated position/velocity state vector
deviation from most recent nominal state.
5) 8%, or % Estimated solve~for parameter deviations
fx ®k from nominal parameter values,
6) Pk Knowledge covariance matrix after processing

all measurements up to and including time t .
See section 5.2 for definitions of the whole
set of knowledge covariance matrix partitions
which are carried from step to step in the
basic cycle.

The basic cycle of the simulation program refers to the computational
process by which all of the above quantities are propagated from time
t. (which may or may not have been a measurement time) to the next
measurement time t and updated after the measurement is processed.
We assume no events occur between ty and tk+1° '

Before proceeding with a step-by-step discussion of this basic cycle,
it is worthwhile to point out that, unlike the error analysis program,
the simulation program is involved in actually processing data to estimate
an interplanetary or lunar trajectory. Some '"actual" trajectory is being
flown within the computer and simulated measurements from Earth-based
tracking stations are recorded, based upon this '"actual' trajectory.

" These measurements are then processed in a recursive estimation algorithm;

thus the simulation program provides a check of the orbit determination
procedure's ability to reproduce the "actual' trajectory under a wide set
of conditions that might be anticipated on an actual mission.

The structure of the basic cycle in the simulation program is depicted
in figure 6.1 and shows the basic division within the simulation program
between the modeled world and the real world, The modeled world consists
of equations and parameters which are assumed to describe the motion of
the spacecraft and the generation of observations. It also consists of
assumed spacecraft injection statistics and assumed measurement noise
statistics, Of necessity the modeled world always differs from the real
world, The actual equations governing the spacecraft motion are never
completely known. Dynamic and measurement parameters can never be known
exactly. Non-zero injection errors always occur. Actual measurement
noise statistics can only be approximated. The whole purpose of the
simulation program is8 to provide a tool to study the effects of modeled
world/real world differences on the navigation process. The same philosophy

underlies the treatment of the guldance event in the simulaticn program
(see chapter 7).



143 3124y dTseq TAWIS T1°9 2in31y

X
-
]
a+3mw _ ~+xxm +
~ _ 103BI9UIS) UOTIBAIIT2DOY
_ ?3e3s 3oueld pelepouwup Ienioy
+ 3928ae3 TBNIOV °F ‘ Aorvanoow
_ SUOTIEBO0T uotlealdazul °¢
_ uotjels [enioy °] 810119
$103eI9URYH uotrloafuy Tenzoy °g
| Juswoansesl [eapI siajouweaied
_ oTweudp Ienioy *J
1103BI9U99
Lio3oefea BNJO
FONVIE04¥3d “ PEAL TenIvy
W3 =a °1
_ I+ $103)BI2U39
_ q Joxag I0sua§ [eni1oy aQ1doM TVad
aTioM aaTaaon
asiou
IOUBTIEAOD JUSWSINSE3W pAWNSSY °7 Fllllllllllm+xxe
I+%. uorjoafur pawunssy °¢ -3
+Mw uorido aapysuo) °g s133jsueaed
wy3tao8ie uewiey 1 : juswainseaw [BUTWON °T
-t .
84 fwyaTIody TH I *12POK
+ | UOTIBWIIST 2ATSIN2DY uojilealasqQ pozlaeaul]
Loeanodoe
[ UOTIBISTID0® uoi3ieadaluy TeRUFWON °¢
polopowun pawnssy °g¢ _ o .
. suotdo WIS °¢ 0= %¢°¢
0 siajsweaed sxo3suweaed
ojurukp TeUTWON °I ojweudp [eUTWON °
N .H+xw :Topon H+xN {I103RIBULY
Sjweud peziieaull] ~ L1o3o9feal TeuTwWON




72

Figure 6.1 will be used as a guide in the following discussion of
the computational flow in the basic cycle. It should be pointed out that
figure 6.1 has been simplified somewhat for the sake of clarity and does
not show all the details of the basic cycle. For example, only the first
member of all partitioned matrices is shown. We assume all required
quantities are avallable at time t, and that the next measurement occurs
at time Cptl” The first step in the basic cycle is to propagate the most

recent nominal spacecraft state forward to t using assumed dynamic

k+1
parameters and a nominal integration accuracy. Although not shown in
figure 6.1, the targeted spacraft state is also propagated forward to
tk+1 in the same way.

The next steps in the SIMUL basic cycle are the same as those in
the basic cycle of the error analysis program, State transition and
observation matrix partitions are computed, as are the assumed dynamic
noise and measurement noise covariance matrices. Next, the knowledge
covariance prediction and filtering equations given in section 5.2 are
evaluated to determine the reduction in all knowledge covariance matrix
partitions following the processing of the measurement. It should be

pointed out that the measurement residual covariance matrix Jk+1’ defined

by equation (5.13), is very important in what i1s known as adaptive filter-
ing, a topic to be discussed in section 6.4 of this chapter. An extension

of the current program to permit the use of adaptive filtering would not
be difficult.

We turn next to the generation of the actual spacecraft state at
time tk+1o The same virtual mass subroutines are used to compute the

actual frajectory, except now different dynamic parameters are used. For
example, different values for the gravitational constants of the Sun and
the target planet could be used. The target planet ephemerides could be
changed. Also, a different number of celestial bodies could be used in

the generation of the actual trajectory, as well as a different integration
accuracy. Returning from the virtual mass subroutines, we have available

a quantity Zk+1’ which would be the actual state at tk+1 if there were no

unmodeled accelerations acting on the spacecraft over the time interval
[tk’ tk+1] . However, the simulation program permits constant unmodeled

accelerations to act on the spacecraft over this time interval which
integrate into a state vector addition Wyt The actual state and the

actual state deviation from the most recent nominal are then given by



X, ., = z + W (6.1)

6% = X - ¥ (6.2)

Unmodeled accelerations are permitted to corrupt the actual state
vector for a very definite purpose. Along an interplanetary flight,
many possible sources of mechanical difficulty onboard the vehicle could
give rise to small accelerations. It 18 important, for the purposes of
the simulation, to determine how the orbit determination algorithm reacts
in the presence of small accelerations about which the algorithm itself
has no specific knowledge.

Another digression concerning the uvanderlying philosophy of the
slmulation program 1s now warranted. Recall that its purpose is essen-
tially to test a specific navigation and guidance process, insofar as
i8 possible, under real conditions. Four key assumed statistical descrip-
tions are used by the estimation algorithm to produce the optimal estimate
of the state vector. These four are in injection covariance PO, the

dynamic noise covariance Qk’ the measurement noise ‘covariance Rk’ and the
midcourse correction execution error covariances Qj All of the matrices

represent assumed errors and their probablllstic descriptions. Obviously
the convergence of the estimated trajectory to the actual trajectory,

for a real flight, is a function of the accuracy of these a priori
statistics. To test the orbit determination and guidance process within
the simulation program, actual injection errors 4X,, actual midcourse
execution errors, actual unmodeled accelerations, and actual measurement
noige statistics R, may be specified by the user. These specifications
permit the study ;¥ the effect of bad a priori statistics on the success
of the defined navigation and guidance algorithms,

The next step in the SIMUL basic cycle is concerned with the genera-

tion of the actual measurement Yk 1° Referring to figure 6.1, it is
: 5

apparent that the actual measurement provides the recursive estimation
algorithm's only contact with the real world. All other inputs to the
estimation algorithm are computed on the basis of the modeled world. To
compute the actual measurement we first determine the ideal measurement
Xk+1 which would be made for the actual spacecraft state in the absence

of all sensor errors. The equation defining Y Y has form

Y._k+1 = F(Xk+1’ Pa tk+1) (603)
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where Xk+1 is the actual spacecraft state and p denotes a vector of

actual dynamic and measurement parameters.

Then, assuming the actual
sensor error to be the sum of a bilas b

and a random noise e
k1 Vir? ¥
compute the actual measurement from

Yerr = L1 TP T Vi » (6.4)

The random noise Vk+1 is obtained by randomly sampling the actual measure-

ment noise covariance matrix.f_{_k_*_l°

The estimation algorithm operates on the measurement residual
€. ere ¢, .. is defined as
Kt1? wher €141 efin

a % 6.5
k1 k1 Yer1 (6.5)

A
and ?k+1 is the estimated value of the measurement, To compute Y

k+1
K1 which would be made if the

spacecraft were actually located at the most recent nominal state X

we first determine the ideal measurement ?

k+1°
The equation defining Yk+1 has form
Yerr T Ty e tygy) (6.6)

where P denotes a vector of assumed or nominal dynamic and measurement
parameters., Of course, the estimated spacecraft state does not, in
general, coincide with Xk+1. Further, some of the parameters are solve=-

for parameters which are being estimated along with the spacecraft state,
' . .
The estimated measurement Yk+1 reflects these estimated deviations and

is given by
Yo r T Y T 0V, (6.7)
where
3 N e 6.8
Y41 Hpp 8%y v My 0% (6.8)



Observation matrices H and M are defined in equation (5.3). Position/

k+1 k+1

= .
velocity deviation estimate 6Xk+1 and solve-for parameter deviation

estimate 6%:‘ are computed using the prediction equations
k+1
- + x4
= 6.
6%, 8%, + O 8% (6.9)
8 k
6% = 5ﬁ: | (6.10)
k+1 k

The recursive estimation algorithm now has available all the inform-
ation required to process the measurement and generate new estimates. The
Kalman recursive estimation equations are given by

0Xp T Kt Ky € (6.11)

~4 ~—

X = - 8% + S € (6.12)
51 5e1 k1 Sl

where Kalman gain constants Kk+1 and S have been computed previously

k+1
using equations (5.14) and (5.15).

The SIMUL basic cycle is complete with the computation of the actual
estimation error de . This error is defined as

k+1
~+ ~
Sey ., = 52k+1 - %, (6.13)

and is a measure of the performance of the recursive estimation algorithm.
A similar error quantity is defined for the solve-for parameter estimate.
Divergence is said to occur when these estimation errors grow in an un-
bounded fashion.

6.3 Eigenvector, Prediction, and Quasi-Linear Filtering Events

Eigenvector and prediction events in the simulation program involve
all the computations which are performed in eigenvector and prediction
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events in the error analysis program (see section 5.6). In addition, the

most recent nominaltik, the actual state deviation Sik, and the estimated
~

deviation 5ﬁk and 6§s are propagated forward from time tk
k

t.. These operations are performed by using equations (6.1), (6.2), (6.9),
J

to event time

and (6.10) with bl tj° Also, covariance matrix partitions are propa-

gated along the most recent nominal, rather than along the targeted nominal
as in ERRAN.

The prediction event, as it is treated in SIMUL, differs from an
ERRAN prediction event in one other respect. In addition to propagating
the knowledge covariance matrix partitions forward to time t_, the time

l’\‘l
to which we wish to predict, the estimated deviations 6&. and 6XS are
]
also propagated forward to tp. Equations (6.9) and (6.10) are used for
this purpose with tk+1 = tp.

At a quasi-linear filtering event the most recent nominal trajectory
is updated by using the most recent estimate. The purpose of the update
is to combat divergence due to the possible invalidity of the linearity
assumption that is the basis for the estimation algorithm being used.
Specifically, updating the nominal trajectory results in better computa-
tions of the state transition and observation matrix partitions employed
in the recursive estimation algorithm. The quasi-linear filtering event
is defined only in the simulation program since actual state deviation
estimates must be available.

Letting tj aenote the time of the quasi-linear filtering event, and

using ( )— and ( )+ notation to indicate values immediately before and
after the event; respectively, the primary state vectors and deviations
in the simulation program are updated as follows:

h| i h
X7 = 0
j
(6.14)
& = &% - s%7
j i j
X = X
j j



Knowledge covariance matrix partitions do not change across a quasi~linear
filtering event since nothing has occurred which would either increase or
decrease the uncertainty of our estimates. Control covariance matrices,
which are defined in chapter 7, likewise do not change across a quasi-
linear filtering event. Finally, nominal solve-for parameter state vectors
are not updated at-a quasi-linear filtering event since all parameters will
be reasonably well known initially.

6.4 Divergence and Other Problems

One of the purposes of creating such a detailed and extensive simu-
lation program was to study the problem of filter divergence. The problem
of divergence in a recursive navigation process and a companion difficulty,
computational nonobservability, are the subjects of this section.

Strictly speaking, when divergence occurs in a navigation process,
the navigation is failing to navigate properly. The phenomenon of
divergence never appears in an error analysis program because no actual
estimation is taking place and only covariance matrices are being propagated.
In a computer simulation such as the STEAP simulation program, where an
"actual" trajectory is being flown and concurrently estimated by a naviga-
tion algorithm, filter divergence refers to the failure of the estimated
trajectory to converge, within reasonable bounds specified by the covariance
matrices, to the 'actual" simulated trajectory. For real-world orbit
applications, where the actual trajectory is never known, divergence 1is
occurring when tne residual difference between predicted and actual
observation vectors becomes increasingly large.

In either computer simulation or a real orbit determination procedure,
divergence in the recursive filter manifests itself as a statistical in~-
consistency between the measurement residuals and the filtering algorithm,.

Recall that at each step of the recursive process, the matrix Jk+1 is

computed (see equation (5.13)). This matrix defines the a priori statistics
associated with the measurement residual €k+1' The measurement residual

€k+1 should represent a sample for the population defined by Jk+1°
divergence occurs, a group of successive residuals appear less and less
likely, statistically, to have been sampled from their covariances Jk+1°

To 1llustrate the divergence manifestation in terms of measurement
residuals inconsistent with their a prilori covariances, assume that a
scalar range-rate measurement is being taken along an interplanetary orbit,

For scalar measurements, the matrix Jk+1 is a scalar residual variance,

call it 062. Suppose that for the first two hundred measurements, each

When

measurement residual was compared to its statistical variance by solving
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¢ =Ky o i=1,2, ..., 100 (6.15)
3

for the value Kj° Suppose further that a frequency histogram of the

values Kj produced

" Interval No, Percent Theoretical Percent
1 1
- = - 38.3
5 <K< ) 79 39,5
_2gkc -t 55 27.5 24.17
2~ 2
5 3
-25K<-2 9 4.5 6,06
5
K< -3 4 2,0 0,62
1 3
+-2—$K<-2- 38 19,0 24,17
3 5 a :
> < K<L 5 13 6.5 6,06
5
K<-§ 2 1,0 0,62

Without subjecting the above data to a rigorous chi-square test of
hypothesis, it should be clear that the measurement residuals, each of
which is assumed to be an uncorrelated, Gaussian, mean zero random
variable, are more or less consistent with their statisticsy that is,
the ensemble values for the measurement residuals look reasonable in
terms of their a priori variances used within the estimation algorithm,

Now suppose that the next nine values of Kj’ determined in the

same fashion from the nine measurements following the two hundredth,
are given by the sequence



K = - 2.4 K =-4,7 K =~ 6,2

201 204 207
Kygy == 3.7 Kyge= =51  Kya=-71 (6.16)
Kpgy = = 44 Kyge = =55 Kyoo=- 7.8

From the underlying assumptions of the navigation process, each of these
events, taken singly, is extremely unlikely, However, the sequence of
values given is almost totally unlikely and should represent a dead
giveaway that divergence is occurring, Without pursulng the mathematics
too far, it should be stressed that if the nine values given in equation
(6.16) were supposedly chosen at random from a normal distribution with
near zero and unit variance, the governing distribution would fail every
test of statistical hypothesis, Such values for Kj indicate that some-

thing in the estimation process is definitely wrong: the most likely

candidate for the error is the assumed a priori Jk+1 matrix used for

weighting by the estimation algorithm,

The hypothetical example given above 1s typical of the divergence
phenomenon that recurs in complex orbit determination processes, Often,
the process couverges initially and then, after many measurements have
been taken, divergence begins, A general explanation for this 1is that
the covariance matrices assoclated with the estimated state vector
become overly optimistic and, subsequently, tend to disregard the new
measurement data in the weighting process,

The general cause of divergence is modeling insufficiency, For
most real problems, everything about the dynamical system and the
observations being treated by the filter is not known exactly, Unless
the estimation algorithm acknowledges, in some fashion, the incomplete
understanding of the governing equations, divergence may result, A
familiar source of insufficient modeling is the dynamic equations them-
selves, All the forces acting on spacecraft are never known exactly,

In addition, the filtering algorithm operates on perturbation equations
resulting from a linearization about some reference dynamic state, Thus,
the procedure is working with approximate equations and unless dynamic
nolse is added to the computational algorithm, the Kalman filter "thinks"
it knows the exact equations of motion, whereas in reality it does not,

Divergence can also result from other model inadequacles, Among
the most frequent causes are failure to account for measurement non-
linearities when the measurements themselves are very accurate, neglect
of correlated errors between sequences of measurements taken by the same
instruments, and overly optimistic a priori error statistics describing
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the measurement noise, Within the simulation program of STEAP, the
effect of all these model inadequacies on a specific reference trajectory
can be tested,

Many possible solutions to the problem of divergence have been
postulated and investigated, Four of the methods of divergence prevention
will be discussed in this section, These methodes are (1) dynamic noise
covariance modeling, (2) quasi-linear filtering, (3) consider mode
filtering, and (4) adaptive filtering., All but the last method are
available in the simulation program.

In an earlier section of this report the modeling of a dynamic
noise matrix Qk was discussed, Between measurements in the estimation

algorithm of STEAP, the state vector associated covariance matrix 1s
propagated according to equation (5.6). The Q matrix appearing in this
equation increases the magnitude of the key diagonal elements in the
covariance matrix, Because divergence generally occurs when the state
vector associated covariances become unduly optimistic and additional
measurements are weighted very slightly, the addition of Q represents

an attempt to systematically downgrade the dynamics information in favor
of the measurements,

Although the additinon of a proper Q matrix will impede divergence,
unless its size 1s determined by physical considerations it can also
s8low convergence, Most often the Q matrix is somewhat arbitrary and its
exact influence on the estimation algorithm is not clearly understood,
Thus, attempts should be made, based on the modeling for a particular
problem, to ensure that the elements of Q are realistic,

A second method of divergence prevention included in the simulation
program is the method of quasi-linear filtering., The fundamental esti-
mation process assumes that variatioms about the nominal trajectory and
nominal measurements are linear, In the case of highly accurate measure-
ments, which is usually the case of interplanetary spacecraft tracked
by the DSIF, measurement nonlinearities become significant model inade-
quacies when the actual trajectory is only slightly different from the
nominal, Quasi-linear filtering esgentially permits more accurate com-
putation of state transition and observation matrices, This is accomplished
by updating the most recent nominal trajectory, based on the estimated state
vectors coming from the navigation algorithm, and then computing both the
state transition and observation matrices in terms of linear perturbations
about the updated nominal,

Treatment of errors in dynamic or measurement parameters without
actually estimating them is generally called consider mode filtering.
This is_the third method of divergence prevention available in STEAP.



Consider mode filtering acts to prevent divergence in much the same way
as does dynamic noise covariance modeling, discussed earlier, The con-
sider parameter covariance matrices are not influenced by measurement
processing and, in fact, remain constant., Since consider parameter co-
variance matrices cannot be reduced, the effect of consider mode filter-
ing is to create a residue of uncertainty which can never be eliminated
from the assumed dynamic model, This, in essence, defines a lower bound
for the position/velocity covariance matrix,

Of the other methods for handling filter divergence that have been
suggested in the literature, the strongest appears to be adaptive
filtering, Reference 7 explains the theoretical basis for several
kinds of adaptive filtering schemes, The essential idea of adaptive
filtering is the feedback of actual measurement residuals into the
covariance matrix propagation process, Earlier it was pointed out that
a sign of filter divergence is a statistical inconsistency between the
measurement residuals €1 and their assumed a priorl covariance matrices

Jk+1 used by the estimation algorithm, In adaptive filtering, this statis-

tical inconsistency is used to change the assumed a priori statistics,

on both the dynamics and the measurements until the residuals and their
updated covariances are more or less consistent, Optimal implementation
of adaptive filtering is belng pursued by several researchers in the field,

Another problem associated with interplanetary orbit determination
that can be studied with the STEAP simulation mode is that of computational
nonobservability, Because this problem threatens to occur whenever
strictly Earth-based tracking is being used to determine the orbit of a
spacecraft around the Moon or another planet, it warrants attention,

In classical batch-processing algorithms, observability does not
exist when a key matrix inverse used to determine the estimate does not
exist, In a recursive algorithm, nonobservability manifests itself when
one of the correlation coefficients relating uncertainties in different
elements of the state vector has unit magnitude, Physically this means
that the navigation process cannot observe or estimate the two quantities
that are either positively or negatively correlated uniquely, The orbit
determination procedure has no unique convergence in this case,

When the correlation coefficients relating uncertainties in two
elements of the state vector are very close tounityin magnitude, then
the underlying estimation algorithm 18 very unstable, Although theoreti-
cally a unique solution still exists, any model inadequacies can produce
wild gyrations in the estimated solutions, Preliminary studies with STEAP
of orbit determination processes using Earth-based tracking for spacecraft
in Moon or Mars orbits indicate that the above orbit determination
instability, called computational nonobservability, is very much a real
problem,
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7. GUIDANCE ANALYSIS
7.1 Introduction

Of the many types of events available in the STEAP programs, guidance
events are by far the most complex. The purpose of Chapter 7 is to provide
a comprehensive and unified discussion of the analytical basis for all
types of guidance events modeled in the error analysis program ERRAN and
the simulation program SIMUL.

Guidance events yield much useful information for preflight mission
analysis. Using ERRAN we can evaluate, in a statistical sense, the efficacy
of the guidance process in achieving desired target conditions. Equally
important is the determination of the statistical AV requirements for
the mission. Using SIMUL we can determine the effect of modeled world/real
world differences on the guidance process., Actual AV requirements and
actual target errors can be computed for the simulated mission. In both
ERRAN and SIMUL the coupling of the guidance and navigation processes has
been carefully modeled.

Several types of guidance events are avallable in ERRAN and SIMUL,
At a midcourse guidance event the user can choose from three midcourse
guidance policies: fixed-time-of-arrival, two-variable B-plane, and three-
variable B-plane. The midcourse guidance event can be subjected to planetary
quarantine constraints. Two orbital insertion policies are available:
coplanar insertion and non-planar insertion. Options are also available
for changing target conditions in mid-flight and re-targeting the trajectory
using nonlinear techniques, or for simply applying an externally-supplied
or pre~-computed. AV at some arbitrary time along the trajectory. Two
thrust models are available: impulse and impulse series.

In the following section the concept of control covariance will be
presented, and all features of the guidance event which are independent
of the specific guidance policy will be discussed. Section 7.3 treats the
execution error model employed for impulsive AV's. Section 7.4 treats
both linear and nonlinear midcourse guidance, as well as biased aimpoint
guildance, which is required to satisfy planetary quarantine constraints.
All remaining guidance event options are discussed in section 7.5

7.2 General Analysis.

Most variables used in the general analysis have already been defined
in Chapters 5 and 6. We shall assume an arbitrary guidance event is to be
executed at guidance event time t, . In the following analysis the

notation ( )j, will be used to indicate the values of variables immediately
prior to the execution of the event; ( )j+’ immediately after. Although

denoted simply by P in Chapters 5 and 6, the knowledge covariance will
now be denoted by Py to distinguish it from the control covariance P

°



Only the spacecraft position/velocity knowledge and control covariance
partitions are required for guidance analysis, although the entire set

of covariance prediction equations given in section 5.2 are used whenever
covariances matrices are to be propagated over some interval of time.

Before proceeding with the general analysis of a guidance event, it
is necessary to digress briefly to discuss the control covariance P, and
how it differs from knowledge covariance P, . Recall that the knowledge

K
covariance represents the statistical dispersions of the estimation errors

about the spacecraft state estimate and 1s defined as

B, o= E [6e 5 eT] (7.1)

where estimation error 0e is defined as

- 6% . (7.2)

14

e = &

~
Here 60X and 632 denote the estimated and actual deviations, res-
pectively, from the most recent nominal trajectory. Processing of
measurements normally reduces the knowledge covariance, which, in geo-
metrical terms, corresponds to a contraction of the knowledge covariance
hyperellipsoid. The control covarlance represents the statistical dis-
persions of the actual trajectory about the targeted nominal trajectory
and is defined as

P = E [6x 6XT] (7.3)

(o

where @X denotes the actual deviation from the targeted nominal
trajectory. The time behavior of the control covariance depends solely
on modeled spacecraft dynamics and is in no way (except at a guidance
event) influenced by measurement processing. Control covariances, like
knowledge covariances, are propagated across an interval of time using
the covariance prediction equations given in section 5.2. However, the
covariance filtering equations, which are also presented in sectiom 5.2,
are never used to update control covariances. Control covarisnces are
used in both ERRAN and SIMUL to predict statistical target miss dispersions.
The control covariance is also important in the computation of statistical
midcourse guidance corrections in ERRAN,

We return now to the discussion of a general guidance event, At each
guidance event a commanded velocity correction AVj is computed. The

nature of this computation is, of course, policy-dependent and will be
treated in subsequent sections. In general, AVj will be a function
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of the desired target conditions and the estimated spacecraft state.
Except when midcourse guidance corrections are treated in an ensemble
sense, as they are in ERRAN, the required AVj can always be computed.

Otherwise, only the statistical "E [Z&VjT' can be computed.

Due to execution errors the actual velocity.correction will differ
from the commanded correction. The actual velocity correction Z&Vj is
given by

n

AV, AV + 840V (7.4)
] 3 j

where @$AV. 1is the execution error. The guidance process acknow-

ledges the existence of an execution error by generating the assumed stat-
istics of the execution error. The execution error is assumed to have
zero mean and covariance Qj , Wwhich is defined as

g - = [eav. Mva] (7.5)

Both 6 AV, and 8j are generated using the execution error model
J .

described in section 7.3.

The spacecraft state, estimated deviations, and covariance matrices
are altered when a guidance event is executed. The remainder of this
section develops all the equations required in this updating process for
an impulsive velocity correction. If the velocity correction is modeled
as an impulse series the modified equations presented in section 7.5.4
define the updating process,

In addition to the assumption of an impulsive velocity correction,
we also assume that the targeted nominal trajectory is updated after a
guidance correction, This is a reasonable assumption and permits the
simplification of the control covariance update equation. The targeted
nominal state update equation is given by

X = %+ é§f+ [_ 0 _} (7.6)

J J J AA
V.
3

- -
where Xj + éxj is the estimated spacecraft state just prior to the

guidance event. Note that equation (7.6) also defines the estimated state
immediately following the guidance correction. Thus, if we also update

the most recent nominal state using equation (7.6), then the estimated
state deviation is given by



X = 0. (7.7)

At a guidance event our estimation error @e 1is increased by the
execution error., Thus

bel = e - [_ 0 _ (7.8)
’ ’ 6AV,
J
where Ge. = 6?(.-- 6;(,-. (7.9)
J J j

The minus sign appears in equation (7.8) since, according to equation
(7.4), 6[3Vj is defined as the actual minus the estimate, while the

estimation error @ e is defined as the estimate minus the actual. Then
the new actual state deviation from the most recent nominal is defined by

6%, = 6%, - 6o " (7.10)
j j j

+
Combining equations (7.7) through (7.10) to eliminate all ( ) quantities
in equation (7.10) yields

j 3 ] Py

6% = 8%X- d§7+ [ 0 ] (7.11)
6AVj

This is the actual state deviation update equation.

It remains to develop the update equations for the knowledge and
control covariance matrices. The knowledge covariance immediately following
the guidance correction is defined by

+ + , +I |
PKj = E [6ej 5ej ] (7.12)

Substitution of equation (7.8) into equation (7.12) readily yields the

required knowledge covariance update equation:

= . I
B, = B t+t[ 0 !0 (7.13)
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The control covariance update equation is also casily derived. Sub-
gtitution of equation (7.7) into cquation (7.10) yields

63?; - - de. (7.14)

But the control covariance immediately following the guidance equation

.is defined by

pt - & [63’<,+ 8% * T] (7.15)
; ] ]

Substitution of equation (7.14) into equation (7.15) then yields the
control covariance update equation

PC = PK, (7°16)

All the update equations just presented are used in the simulation
program SIMUL., The error analysis program ERRAN treats only the ensemble
characteristics of the navigation and guidance processes and, as such,
does not generate estimated or actual state deviations. Thus, the state
deviation update equations are undefined in ERRAN. Oaly X, %., and
PC are updated at an ERRAN guidance event. The latter two quantities
are updated using equations (7.13) and (7.16), respectively, while the
targeted nominal is updated using

¥t x4+

7.17
J J - - ( )

UP.

where AVUP represents the non-statistical component of Aﬁj .

When Zkej is wholly statistical, as is the case for ERRAN midcourse

guidance events (with no aimpoint biasing), then of course ZXGUP is
zero and the targeted nominal is not updated. j

7.3 Execution Error Model

The computation of tEe actual execution error 6 AV and the execution

error covariance matrix Q is based on an execution error model defined
by four independent error sources. The first error source is called the
proportionality error and is in the direction of the velocity correction



vector AV with magnitude determined by the proportionality factor k.

A second error sourcc, in the direction of AV but independent of its
magnitude, is the resolution error s that corresponds to a thrust tailoff
error from the e¢ngincs. Two pointing errors defined in terms of angles

6ct and 68 complete the error model. From this description of the error
model, the equation for @AV <can be written as

AV = k AV + s _AV _ + ¢5Avpointing (7.18)
| AV
where AV is defined by two angular pointing errors, o and

pointing

6B .

For purposes of unique specification, assume that 0o is a pointing
error angle measured in a plane parallel to the ecliptic plane and along
a vector orthogonal to the velocity correction vector AV. If 6AV1

o ~ I
is the velocity error due to the angular pointing error && and i, j, k

form the unit triad in the ecliptic system, then for small angles dor ,
6AV1 is given by .

AV A AV R
84V, =pba Y i- X i (7.19)

2 2 % 2 2 %
(Avx+ AVY ) (AvX + AvY )

where AVX and AVY are the X and Y ecliptic components of the

velocity correction vector AV and p 1is the magnitude of AV . Note
that the velocity error ¢§AV1 resulting from doa has components only

in a plane parallel to the ecliptic.

The second pointing angle 63 defines a velocity error 6AV2 that

is orthogonal to both @§A Vl and the velocity correction vector AV .

Again for small angles §f, the velocity error resulting from this pointing
error, referenced to the ecliptic system, is given by

AV, AV, 68, AV AV, 88
sav, = —2——L—3 ., L '-6,B(AV)2(+AV

]
2 2. % 2 2. %
(AV, + V)" (AV, +AV)

2 %5A
Y) k  (7.20)
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From these equations it is clear that the vector set Av, 6[§Vl
and GZSVZ gsatisfies the mutual orthogonality imposed by the model.

The complete description of the execution error vector 6§ AV may then
be written in ecliptic coordinates as

pAV_6a + AV _AV_48 N
6av = | |k +_S.)Av + Y X Z i
p X u
i AV AV 3B - pAV. sa
1 s -+ Y Z X 12
+ K +p)AVY - j
s . _ ~
+ k +p)AVZ udfB | k (7.21)
L

where AVX? AVY, and AVZ are the ecliptic coordinates of the
velocity correction; i, 3, % are unit vectors in the X, Y, and 2
directions; p is the magnitude of AV; k, s, da, 8 are the four

independent error sources; and u 1is an intermediate variable defined by

2 2.1
u= (AVy + AVY)2 (7.22)

In SIMUL the components of the commanded velocity correction [X6j

and actual values of the errors k, s, §qy, and o are used to evaluate
equation (7.21) to determmine the actual execution error § AV. . Equation
(7.21) is not required in ERRAN., J

o~
The expression for the execution error covariance Q  is obtained

J
by substituting equation (7.21) into equation (7.5). The equations which

result from this operation are summarized in the subroutine QC@MP analysis
and will not be presented here. However, these equations have form given
by

o o 2 2 2 2
= vV, o o o2
Qj Qj(A O 2O s Oy 06/3) (7.23)

2
where dk through 05B are the assumed variances for the four error

sources which define the error model. No cross-correlations appear in
this equation since all the error sources are assumed to be independent.



In SIMUL the components of the commanded velocity correction zx%j are

used to evaluate equation (7.23). InAERRAN the sum of the statistical

and non-statistical components of AV~ are used,
]

7.4 Midcourse Guidance
7.4.1 Linear Midcourse Guidance

Linear impulsive midcourse guidance policies have form

(7.24)

aAY = I 8%
] J ]

A
where AV  is the commanded velocity correction required to null out
]
deviations from the nominal target state, [  1is the guidance matrix,
i -

-
and 06X, 1is the estimated spacecraft deviation from the targeted nominal
]

trajectory just prior to the guidance correction.

Three midcourse guidance policies are modeled in ERRAN and SIMUL:
fixed-time-of-arrival (FTA), two-variable B-plane (2VBP), and three-variable
B-plane (3VBP). The derivation of the [ matrix for each policy will
be summarized below. J

The variation matrix 77 relates deviations in spacecraft state
at tj to target state deviations. If T 1is a vector which defines the

target state, then

8T = n 8X (7.25)

For FTA guidance the target state 7 is the nominal closest approach

position vector RCA at nominal time of closest approach tCA . State
deviations at t  are related to state deviations at toa by the equation
i .
60X = @ (t t 86X ' .
A (to,» j) ; | | (7.26)

where d’(tCA, tj) is the state transition matrix over the interval

[tj’ tCA]‘ Thus, for FTA guidance the variation matrix is given by
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- [¢1 | ¢2] (7.27)

where ¢1 and ¢2 denote the two upper 3x3 partitions of @ . We wish
to select a A%j such that &7 =0 1in equation (7.25). Employing

equation (7.27), this condition reduces to the equation

0 - [¢1E¢2] 63{3‘4’{"%-}

AV,
J
which, when solved for Avj, yields
A~ -1 ! A
N [-¢ ¢ 1-1] 5% (7.28)
i 2 Ll ]
and
-1 ]
I‘FTA- [-¢2 ¢ -I] . (7.29)

T
The target state for 3VBP guidance is defined as 7'==[ B-T, B-R, tSI] ,

where tSI is the time at which the nominal trajectory pierces the sphere
of influence of the target planet. The variation matrix 7, cannot be

easily defined in terms of a state transition matrix. Instead, a numerical
differencing technique, which is described in the subroutine VARSIM analysis
section, must be employed to construct the 7, matrix. Once the 7,
matrix is available we can write J

{
= (7.30)
;5 [771 | 772]
and proceed along the lines of the previous FTA derivation to obtain

-1 |
r = |- S O I .
3VBP [ PR I] (7.31)

T
The target state for 2VBP guidance is defined as 7T = [B-T, B-R] s

where, in contrast to 3VBP guidance, no time constraint is imposed.

Target deviations are related to state deviations at tSI by the equation

85T = M&XSI . (7.32)
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The computation of the matrix M 1is described in the subroutine PARTL
analysis section. Since 6XSI can be related to 6Xj using

= X (7.33
6XSI ') (tSI, tj) ) ; )

it is easy to show that the variation matrix is given by

Uj = M ¢ (tSI, tj) (7.34)

The variation matrix will be partitioned as follows

ﬂj= [A EB] (7.35)

where partitions A and B are 2x3 matrices. We wish to select a
[§Vj such that 87 = 0 in equation (7.25). Employing equation (7.35),

and defining 63\(j = [6§j, 6€lj ]T, this condition reduces to the

equation

A 5'f<j + B( a\”/j + A’\}j) = 0 (7.36)

v ~
This equation has no unique solution for AV, since the inverses of

J A
A and B do not exist. Non-uniqueness of AVj is to be expected since

~
three components of AVj can be varied to satisfy the two components

of T. One degree of freedom remains and it will be used to minimize
the magnitude of AVj, which is equivalent to minimizing AVjTAV,.
]

Using standard constrained minimization techniques, the solution for A%.
is given by J

AV, = I 5%
j 2VBP j

where

IEVBP = [-BT(BBT)'l A i -BT(BBT)“l B ] . (7.37)
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This concludes the derivation of the guidance matrices for the three
midcourse guidance policies modeled in ERRAN and SIMUL,

A quantity which is particularly useful in ERRAN since it provides

the basis for the computation of statistical AV's is the velocity
correction covariance matrix Sj , defined as follows:

§ = E [A?/J. A’\?J.T} (7.38)

A useful expression for S, will be developed below. The derivation
follows Reference 2.

Substitution of equation (7.24) into equation (7.38) yields

- =T T
s, = I e [a%7 6% | r : (7.39)
J ] J ] J
But according to equation (7.2)
$X. = 8X.+ de, (7.40)
] ] J

Substituting equation (7.40) into equation (7.39) and expanding yields

s, = I {E [5xj" 6xj'T]+ E[aej'axj"T]

T T

]+ E [aej' aej'T] r (7.41)

+ E [ax-.'ae.'
i3 j

Employing the definitions given by equations (7.1) and (7.3) the preceding

equation reduces to
=T -
se, ]+ P FJ (7.42)

Pre-multiplying the transpose of equation (7.40) by 6e; s and taking

the expected value of the result yields

E [aej' 6xj“T ]= E [6ej—. 5§(j"T] - PKj (7.43)



n -
1f we assume that the estimate 6Xj and the error in the estimate

de, are orthogonal, as is the case if the recursive estimation algorithm
J

is optimal, then

R
B [se 6% ]= o (7.44)
J ]
so that equation (7.43) reduces to
- T )
E T 8X, ]= -P 7.45
[6eJ A K (

If we substitute equation (7.45) into equation (7.42), we obtain the
desired result:

- _ T
sj = [} (ch - PKj) [} (7.46)

It was stated previously that ERRAN treats the midcourse guidance
correction in an ensemble sense. State estimates are not generated in
ERRAN, so that equation (7.24) cannot be used to determine A\G .

Instead, we compute a statistical or effective velocity correction in
ERRAN. Simply taking the expected value of equation (7.24) does not
yield useful information. The expected value of AVj is zero since

E [_6&j] is zero, which is a consequence of the fact that our recursive

estimation algorithm is an unbiased estimator. However, if we define
the effective velocity correction to be

w [a¥ )" = p 2 (7.47)
J iy e, .
| %3]
where
p o= & [|a%]] (7.48)
] 3
and aj/ laj| is a unit vector aligned with the most likely direction

of the velocity correction, then information which is useful for fuel
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sizing studies can be obtained. This effective velocity correction
is also used to evaluate the execution error covariance Qj in ERRAN,

It remains to define expressions for magnitude pg and direction
o. . Hoffman and Young (reference 6 ) have shown that a good approx-

imation for pj is given by

p ="[2A
] T

1 +%QT'_2)_) (7.49)
A'\/S.a
where
A = trace Sj’

B=A Ay vA A A, Ay

and Ai’ Az’ A3 are the eigenvalues of the covariance matrix S,

given by equation (7.46).

The statistical variance of the magnitude of the j-th midcourse
correction, also derived in approximate form in reference 6, is given
by the equation,

2 .

o = trace S -~ p.2 (7.50)

9 o
J
Velocity correction covariance Sj can also be used to determine the
direction & . Let ),
] 1 2

It can be shown that, under the assumption that some correction takes
place, the most likely direction for the midcourse maneuver, defined

probabilistically, is the direction of the eigenvector associated with
the maximum eigenvalue of Sj . Define ¢ . as this eigenvector

A.s and AB be the eigenvalues of S, .
J

associated with the maximum eigenvalue. An alternate model for o
T ]
assumes ¢ is aligned with the vector [A]} AQ, A3] . The validity
J
of this latter model is questionable.

It should be stressed that the computation of the effective mid-

course correction vector ''E AQ. " within ERRAN is only an artifice
J



to permit a realistic, a priori computation »f the execution error
N .
covariance Q. . The nominal trajectory returned to the basic cycle
J

is not affected by the computation. However, the calculated information
concerning likely magnitudes and directions for the maneuvers is critical
for fuel sizing studies.

The effective velocity correction just discussed is not defined in
SIMUL since equation (7:24) can be used directly to obtain the commanded
velocity correction l&Vj . Also computed in SIMUL is the perfect

velocity correction given by

Av_ = T 8X, (7.51)
3 il

and the error in the correction due to navigation error given by

AV = AV - AV : (7.52)
e L, .
j . J ]
The perfect velocity correction ZSV represents the velocity correction

which is actually required to null out target errors (assuming linear
guidance theory) since &X~ 1is the actual state deviation immediately
]

prior to the correction. The error in the correction due to navigation
error is indeed given by equation (7.52) since substitution of equations
(7.24) and (7.51) into equation (7.52) shows that

AV

e

(X, -~ 8X,) = = ) .
; 1“_](&J aJ) 1’“J.¢5ej (7.53)

To determine the efficacy of the midcourse correction at time ¢t

in meeting specified target conditions, it is necessary to compute the
target condition covariance matrix Wj , both before and after the

correction. Covariance Wj is defined by

W= é[ara T] | (7.54)

where 8T represents the actual target state deviation. Thus W, rep-

resents the statistical dispersions of actual target state deviations
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about the nominal target state. Substitution of equation (7.25) shows
that

W= n e n (7.55)

+ + T
wo=n_pr n_. (7.56)
j Iocy 3

Recall that control covariance PC is obtained by propagating Pc
k| j-1
over the time interval [tj 1’ tj] , where tj-l is the time of the

previous guidance event, using the standard covariance prediction equations
in section 5.2. Recall also that P, is obtained from equation (7.16).

b/
In SIMUL we also compute actual target errors resulting from actual
spacecraft state deviations at time tj just after the guidance correction.

Using equation (7.25), we obtain the total actual target error

o +
= n_ 58X (7.57)

€
tot.
j J J

Combining equations (7.8) and (7.14), we obtain

pX = - 6ej + 0 (7.58)

= - 0
n. 6ej + 77j (7.59)



Thus, the total target error can be divided into the target error due
to the navigation error

= - . o60
€ TIJ 6ej (7.60)

€ = n. 0 (7.61)

It will be helpful to summarize all the quantities computed at a
midcourse guidance event in each of the two programs ERRAN and SIMUL.
A summary is presented below:

ERRAN SIMUL
_ - . - - — e % -
X . P ,P ,W X, X
tJ J’ KJ’ CJ, j J’ j’ 6XJ, 6XJ’
Be s Po W,
j j
~ ~n
£ r,"e [AV,]",Q. r, 8% ,50v, av,
J 3 ] J i ]
Ay , AV L]
3 e, J
i
-+ _+ + o+ =+ o+ R4 +
et X, B , P, W X, X, 8%, 8%,
j j 3 5 3 it j 3 3
+ +
P
K.? Pc.’ wj’ 6nav ’
j j j
€ , €
ex., tot
j j
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7.4.2 Biased Aimpoint Guidance

+
The target condition covariance Wj given by equation (7.56)

can be used to compute the probability of the spacecraft impacting the
target planet. If planetary quarantine constraints are in effect and

if the probability of impact exceeds the allowable probability of impact,
then the nominal aimpoint must be biased so that the planetary quarantine
constraints are satisfied. This section describes the biased aimpoint
guidance technique which is used in ERRAN and SIMUL to select the biased
aimpoint. The technique is based on the technique presented in reference 13,

The linear impulsive midcourse guidance policy given by equation
(7.24) can be generalized to include deviations §u_  from the nominal
target state: J

AV = I 8k +y su (7.62)
"] ] J J J

The derivationof the U7j guidance matrix is very similar to the
derivation [i (section 7.4,1), Only the details of the derivation

of u% for tﬂe 2VBP policy will be presented here. We wish to select

a Aﬁj such that &7 = §u  in equation (7.25), Employing equation

A A T
(7.35) and defining 6X,6 = [6 ﬁ,, 6V, ] , this requirement reduces to
the equation J J J

A B8R, - )+ B(8V.+ AV.) =0 )
a8k - 5u) + (s, + 89 (7.63)

This equation is solved in the same manner as equation (7.36) was solved.
The solution is given by

Vo) A T T -l '
AV = [ 86X + BY(BBY) du (7.64)
J J 3 i :

Thus, for 2VBP guidance,

woo= BT(BBT)'1 ' (7.65)
; :



All aimpoint bhiasing will be constrained to lie in the impact
plane. This requirement is automatically satisfied for the 2VBP policy.
The other two policies, however, use 3-dimensional target states, which
means we simply use the projection of the aimpoint in the impact plane
for biased aimpoint guidance. The definition of the FTA impact plane
and equations for the Yy matrix for each policy are given in.the

subroutine BIAIM analysis section.

In computing the probability of quact PPI, we first project the
target condition covariance matrix Wj into the impact plane to obtain

the covariance matrix _/] .. Then, assuming the probability density
]
function associated with JQ, is gaussian and nearly constant over the
J

the target planet capture area permits us to compute PPI using

2
PPI = 7 R p (7.66)

where RC is the target planet capture radius and p represents the

gaussian density function evaluated .at the target planet center and is
given by

1 T -1
p = -—-——-—% exp [—% llj./l.j uj} (7.67)
27r|/l.|
]
The general statement of the biased aimpoint guidance problem is
as follows: Find an aimpoint p . in the impact plane which satisfies
J .

the impact probability (or planetary quarantine)constraint

PPI < P, (7.68)

where P is the allowable probability of impact, and minimizes a
performance functional having form
*T~ * Tae

J=(p -u) A(u - pu)=13%y Asyp (7.69)
j j ] ]

o .
where A is a constant symmetric matrix that will be defined subsequently.

99



100

Using equations (7.66) and (7.67), we can write the constraint
cquation (7.68) as

T -1 2
u- N Tu = (7.70)
3 h ]
where
2 R 2
& = 20 c (7.71)
%
2]/Lj| P
T % % T
If we define uj = [/11, /12] > o= [/11 ,,uz] s
by d /1.1 A A
= , an .= :
al a3 J 1 3
A
8q 4 3 Ay

2
and if we introduce a slack variable q , then equations (7.69) and (7.70)
can be written as follows:

= _,, *N2 _ ok
o= ay (upo-p )"+ 2a,Cu - dCp, - py )+
% 2 )
az(uz-,uz) (7.72)
¢ N 2 2 2 2
= + + - - = N
My T 2AM i, t A, s ma =0 (7.73)

Solution of this standard constrained minimization problem yields
the following set of necessary conditions:

q = 0 (7.74)



2 2
@A -aAdp + @A ~ax)u + @A -a,r)uu,

N N * * 4 a * *y .
Cayhgmy —ahpu, *ta o ta ko, i,

* * * N *
(-al)\zul -a3)\2/12 +a3)\3.ll1 + a, 3u2)ﬂ2=0 (7.75)

The method used to obtain M, and U, from equations (7.73) through

(7.75) is described in the subroutine BIAIM analysis section.

If t, is the time of the final midcourse correction, K. is

J *
chosen so that the miss distance |;1_- u | is minimized. Defining
w J :

A =1 1in equation (7.69) will provide us with the appropriate g . If
J
tj is not .the final midcourse correction, M  will be chosen so that
]

the velocity correction required to remove bias sU . at the time t
R j+l

of the next midcourse correction is minimized. This velccity correction
is given by

”~

v = - 7.76
AV.in j+1 OH (7.76)
The square of the magaitude of Avj+1 is given by
Ah T AA 5 T T
v \Y = J7R 7.77
#1 O 5 5 Y Ve M (7.77)
T
Thus, setting R = ¢3+1 ¢G+1 in equation (7.69) will provide us with

the appropriate ﬂj. Once bias 6ﬂj has been obtained, the bias velocity

correction is determined from

v = w é
Aj ; llj (7.78)
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7.4.3 Nonlinear Midcourse Guidance

Options are available in ERRAN and SIMUL for computing velocity
corrections using nonlinear techniques. In ERRAN we use the targeted
nominal state -25 as the zero-th iterate in the targeting process,

while in SIMUL we use the most recent gtate estimate X+ 6%3'.
' J
In ERRAN we can use nonlinear guidance only for computing the bias

component of the velocity correction. The statistical component

VE [Z&vj] " can only be computed using linear theory. This restriction,

of course, does not apply in SIMUL. It should be noted, however, that
the nonlinear two-variable B-plane policy, unlike the corresponding
linear policy, constrains the z-component of vaj to be zero.

The analytical basis for nonlinear targeting is presented in
section 4.4

7.5 Other Guidance Event Options
7.5.1 Re-targeting

In ERRAN and SIMUL a re-targeting event is defined to be the com-
putation of a velocity correction AVRT required to achieve a new set

of target conditions using nonlinear techniques. As with nonlinear
midcourse guidance, we use Xi' as the zero-th iterate in ERRAN; and
~n

§3-+ 52;', in SIMUL. Thus, the new target conditions must be close

enough to the original nominal to ensure a convergent targeting process.
The analytical basis for nonlinear targeting is presented in section 4.4.

7.5.2 Orbital Insertion

An orbital insertion event is divided into a decision event and an
execution event. At a decision event the orbital insertion velocity
correction AV¢I and the time interval At separating decision and

- - - X -
execution are computed based on XJ in ERRAN and on %, + 86X, in

J 3
SIMUL. At an orbital insertion execution event, [&V¢I is executed and
the new cartesian and orbital element states relative to the target planet
are computed. The analytical basis for orbital insertion is presented
in section 4.5.

7.5.3 External AV

An option is available in ERRAN and SIMUL for executing an externally-
supplied (input) velocity correction AGEX’ In ERRAN AVEX is added to

- - ~ - [> -
X, ; in SIMUL, to X + 6X .
J j ki



7.5.4 1Impulse Series Thrust Model

All the analysis presented thus far in Chapter 7 is based on the
assumption of an impulsive velocity correction. An option is available
in ERRAN and SIMUL for modeling the impulsive velocity correction as a
series of impulses. This section discysses the method of computing the
effective execution error covariance Qeff and the modified update

equations whenever an impulse series thrust model is used.

The modified update equations will be discussed first. For an
impulsive velocity correction, execution errors increase only the velocity
partition of the knowledge covariance. However, executing a velocity
correction as an impulse series permits execution errors to influence
the entire knowledge covariance. Thus, the knowledge covariance update
equation for an impulse series is written as

pt = P43 (7.79)

We continue to use equation (7.16) to update the control covariance.

In ERRAN the targeted nominal state is updated as before. However,
in SIMUL we compute effective estimated and actual spacecraft states at
t.. These states approximate the effect of the impulse series applied
oVer the time interval AT, where AT brackets event time tj’. The

analytical basis for the computation of effective states is presented in
section 4.6. If we use X.¢¢ and X gr to denote the estimated and

actual spacecraft states, respectively, then the state and deviation
update equations employed in SIMUL are given by

~ -+ A

Xj = Xegs

- 4 A

X = Xogg

© + A

5 = -

X, Xerr = Xogs

8

ax_j = 0 (7.80)

It remains tquescribe the computation of the effective execution
error covariance Qeff . We assume a series of n impulses AV,
o 1

i=1,..., n, over the interval AT has been defined. Let Qi denote

the execution error covariance associated with AV.,. Since AV, is
i i
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impulsive we can use theNimpulsive execution error model described in
section 7.3 to compute Q. . The state transition matrix over the interval
i

At, separating the i-th and i+l-th impulses will be denoted by ¢(Ati),
i

Then the effective ¢xecution error covariance after the second impulse
has been applied can be written as

@ ¢ y[o 1o Jocaty+ [o! o 7.81
Q¢ (at)) | 0 |0 o (A 0.0 (7.81)
0 [ 0 [
Proceeding recursively, we can write in similar fashion
m(l) N(l'l) T {
= t t + 0 0 .
Qs ¢ (ae, D . @7 (At 1) 0,0 (7.82)
|~
0, Q,
i
where
W (1) |
eff 9_!__8
[
0 | Ql

Then the effective execution error covariance matrix for the entire
interval AT 1is given by

~ . __-~(n)

Qeer T Qefr (7.83)
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8. GENERALIZED COVARIANCE ANALYSIS

8.1 Introduction

The performance of navigation filters for orbit determination
depends on how well the physical environment and ground-based or
onboard measurement instrumentation can be modeled. The design
of a navigation filter involves not only selection of an algorithm
for processing measurements, but also specification of error models
for all error sources thought to be important. The use of an er-
ror analysis technique, such as the one described in Chapter 5,
is not sufficient for determining actual filter performance in the
presence of incorrectly modeled or unmodeled error sources. Al-
though one could, of course, resort to a simulation technique such
as SIMUL (Chapter 6) to study filter performance, the operation
of simulation programs is expensive and only a single sample of
the navigation process can be generated on each run. A generalized
covariance program, however, can provide much useful information
relating to the design and performance of navigation filters, with
a significant reduction in program operating costs.

The generalized covariance technique described in this chapter
is primarily concerned with the propagation and update (at a meas-
urement) of both actual and assumed, i.e., filter-generated, es-
timation error statistics along a nominal trajectory. The deviation
of the generalized covariance equations assumes linearity and
gaussian statistics. Actual error statistics, however, are not
required to have zero means. The equations are written in recur-
sive form and are filter-independent, i.e., filter gains are not
assumed to have been generated by any specific type of navigation
filter.

The generalized covariance equations for the basic cycle
(measurement processing) are derived in section 8.2. These equa-
tions can be used to determine filter sensitivity to differences
between assumed (by filter) and actual:

1) Injection statistics;

2) Measurement noise statistics -- doppler, range, optical
measurements;

3) Dynamic parameter statistics -- gravitational constants,
target planet ephemerides;

4) Measurement parameter statistics —- instrument biases,
’ station location errors;

5) Dynamic noise statistics.
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The differences between assumed and actual error statistics can
involve differences in means, standard deviations, and correlation
coefficients. Actual error statistics can also be defined for
parameters whose uncertainty has been ignored in filter design.

In section 8.3 the generalized covariance technique is ex-
tended to the guidance process. The equations presented there
permit one to determine the sensitivity of the guidance process
to differences between assumed and actual execution error statis-
tics, as well as to differences in the previously described er-
ror statistics. Although execution errors are assumed to be un-
correlated, they are permitted to have nonzero means. The gen-
eralized covariance technique, as applied to the guidance process,
primarily involves the computation of both assumed and actual
target dispersions and velocity correction statistics.

The notation employed in this chapter is very similar to the
notation used in previous chapters, except for the following dif-
ferences:

1) Estimation errors are denoted by %, etc instead of
by 8e, etc;

2) Actual errors, deviations, means, covariances, etc
are usually denoted by ( )'.

8.2 Generalized Covariance Propagation and Update
8.2.1 The Basic Cycle

The generalized covariance basic cycle consists of the propa-
gation of both actual and assumed estimation error means and co-
variances from the previous measurement time (or event) to the
present measurement time, and the updating of each of these quan-
tities after the measurement has been processed. The propagation
and update of the assumed covariances was treated in Chapter 5
(assumed estimation error means are zero). The equations required
to propagate and update the actual estimation error means and
covariances are derived in this section. These equations are
filter-independent and are expressed in terms of arbitrary filter
gain matrices.

. A s
The filter employs an augmented state vector x partitioned as

X = (8.1)



where x denotes assumed position/velocity deviations (from nominal);
X assumed solve-for parameter deviations; u, assumed dynamic

consider parameter deviations; and v, assumed measurement consider
parameter deviations. The assumed dynamics are described by

e B S S A (8.2)

where state transition matrix partitions ¢, exx , and 9 are
xXu
S
defined over the time interval [tk, tk+l]’ and Wl denotes the

contribution of assumed unmodeled accelerations over the same time
interval. Parameter deviations are constant. The assumed meas-
urement is given by

Vel = B F stk+1 T Ou g Vi T Ve (8.3)

where H, M, G, and L are observation matrix partitions evaluated

at time tk+l’ and vk+l denotes the assumed measurement noise.

The actual augmented state vector x'A is partitioned as

x'A =fu' ' (8.4)

where x' denotes actual position/velocity deviations; xé, actual

solve-for parameter deviations; u', actual dynamic consider param-

eter deviations; v', actual measurement consider parameter devia-
tions; and w', actual dynamic and measurement ignore parameter
deviations. The parameters x;, u', and v' correspond to X > U,

and v, respectively, but have different statistical representations.
Ignore parameters w' are parameters whose statistical uncertainty

is completely ignored by the filter, but not by the actual esti-
mation error mean and covariance propagation process. (Parameters
not treated by either the filter or the actual propagation process
will be referred to as neglect parameters.) The actual dynamics
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Y
J

are described by

'+

' _ '
Xk+l = ka + 8XXS xsk 6 u

Xu

1
where wk+l

rations over the time interval [t
trix partition wa relates changes in
in x'.
urement is given by

1
+
k

k> Tkl

All parameter deviations are constant.

5] + w

! (8.5)

]
xw "k K+1

denotes the contribution of actual unmodeled accele-

1.

ignore parameters to changes

State transition ma-

The actual meas-

' = 1 ' 1 1 ' '
Yier1 T ¥ F stk+1 Oyt WV PN ey (846
where v denotes the actual measurement noise at t .
k+1 k+1
The actual estimation errors are defined by
V| = & o !
41 T Bl T Fen (8.7)
%! = % - x!' (8.8)
Sibl Sk#1l Sk+l
~ 1 = f I N |
417 %l T % T % (8.9)
ot = & | = —<!
Vibl T Ykl T Ykl T Vo (8.10)
' = - ! = !
M1 = Pkl T Y1 T Y (8.11)

where equations (8.9), (8.10), and (8.
estimates u, Vv, and W are always zero.

The estimates propagate over the
according to

5 = ok + 0
xk+l xk )Q{S
and
" A+
X = X s
k+1 k

v

11) have qsed the fact that

ti .
ime interval [tk, tk+l]

~+
X

Sk

(8.12)

(8.13)



where ( ) denotes values immediately before processing a meas-

urement and ( )+ immediately after. Substitution of equations
(8.5) and (8.12) into equation (8.7) yields the following equation
for the propagation of the actual estimation error:

<= _ L=t <1 _ v _ [ | .
41 T ka + exxS Xsk exu Yo exw Yo | (8.14)
Similarly,
SIS SO (8.15)
k+1 k
At measurement time terl the estimates are updated using
the equations
A .
M1 T Ferr T K1 Sl (8.16)
K=& 4 el (8.17)
k+1 k+1

where Kk+l and Sk+l are the filter gain matrices (generated by an

arbitrary filter). The actual measurement residual €' is defined
as the difference between the actual and predicted measurements

el o =y' - Hk .. - Mx_ . (8.18)
k+1 Tkl B+l Si 1

Substitution of equation (8.6) into equation (8.18) yields

' = - HF ' - M3 ! ' ' ' '
€+l HXk+l stk+l + Guo + Lvo + Nwo + YR+l - (8.19)

The update equation for the actual estimation error is obtained
by substituting equation (8.16) into equation (8.7). The resulting
equation is

<+ = % ! '
el T Bk T M1 Sk (8.20)
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Similarly,
= ' .
S X + Sk+l €l (8.21)

The propagation and update equations for the means of the
actual estimation errors and the actual measurement residuals can
now be derived. The filter assumes zero means for all estimates
and all error sources. Except for actual dynamic and measurement
noises, this is not the case for the actual propagation and up-
date process. Thus,

Bl ] = v

Elvg,,) = 43;

E(w) 4] = -w! (8.22)
Blugy,1=0

Elvg 1 =0

No generality is lost by setting the mean of the actual measurement
noise v' to zero, since a nonzero measurement mean can be absorbed
into the mean of the actual measurement bias. The model for the
actual dynamic noise w' will be assumed to have the same form as
the model for the assumed dynamic noise described in section 5.3 so
the mean of w' is also set to zero.

Applying the expectation operator to equations (8.14) and (8.15)
yields the following equations for the propagation of the means
of the actual estimation errors:

Elx ] = ¢ E[f{'] +o - E[i“;'] -6 ul-6 w! o (8.23)
s k
- +
E[ ' ]1=E[x '] . (8.24)
Sk+1 Sk



To initiate the propagation process described by the previous two
equations requires initial values for the means of %' and %'. At
initial time tO we have

E[ié] = E[io] - E[x;] (8.25)

and

E[%é ] = E[iS ] - E[x; 1 . (8.26)
[o] (o] (o]

Because initial estimates are always assumed to be zero, equations
(8.25) and (8.26) become

E[%)] = -x| . (8.27)
E(x] ] = —x! | (8.28)
(o] (o]

where ;; and ;; are the initial means of the actual position/
o
velocity and solve—-for parameter deviations, respectively.
Applying the expectation operator to equation (8.19) yields

the following equation for the mean of the actual measurement
residual:

' = - . % ! - . % ! M i} t
Ele) ] H-E[% ] -M E[xsk+l] + Gu! + Lv) + Nw! . (8.29)

The update equations for the means of the actual estimation

errors are obtained by applying the expectation operator to
equations (8.20) and (8.21). The resulting equations are:

<t = 3 1 . '
Bl = BlRgn] * K 7 Blogy] (8.30)

E[#x1' ] =©8[%x" ]+ S,pp ¢ Elel] . (8.31)
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The remainder of this section will treat the derivation of
the propagation and update equations for the actual knowledge
covariance matrix partitions. Since the actual estimation errors
do not, in general, have zero means, it becomes more convenient,
from both an analytical and a computational standpoint, to develop
propagation and update equations for the 2nd moment matrices rather
than for the covariance matrices, and then simply convert the 2nd
moment matrices to covariance matrices using the standard relation-
ship
e &
Xy

cov (x,y) = E[xyT] - (8.32)

where cov (x,y) denotes the covariance of x and y, and E[xyT]
denotes the 2nd moment matrix of x and y.

The required actual 2nd moment matrix partitions are defined
in the following pages. Note that primes have been dropped from
the 2nd moment variables to make the equations more readable in
the remainder of this section. The 2nd moment matrix partitions
that must be updated whenever a measurement is processed are listed
first.

- v gt 1 = ot gt T
P E[x' '] Ps E[xS Rs ]
= ~1 =T = ~p o~ T
CXx Elx g ] CX u E{x ]
s s
= oprar =T _oprsr ol
Cxu E[x'" u'"] CxSv E[xS v''] (8.33)
= <1 T = NN\
c ., = El& ] c, , = Elx ]
s
c,, = EIx’ W'y

The remaining 2nd moment matrix partitions do not change with time:

= 3! ""T = = ~ 1 ~|T -

Cuv E[a' ¥'7] CuVO U = Efa' a'"] = Uo
Coarae T U I

Cuw Efu ] C ] V = E[V ] Vo (8.34)
= A ""T = ] = ! ""T =

C E[v ] C ] W = E[Ww ] Wo



The 2nd moment matrix propagation equations for the time in-
terval [tk, tk+l] are obtained by substituting equations (8.14)
and (8.15) into (8.33) and expanding. All equations are simplified
by assuming w' and (ié, i; s ﬁﬁ, vﬂ, ﬁé) are uncorrelated. Thus,

for example, k k

E(% o"] = E[%!] * E[g/"] = 0

since the mean of wé has been assumed to be zero. The final

propagation equations are summarized below:

p” = [ep + o ¢t o+ T 49 1T )T
k+1 k XX XX xu xuk XW  XW
s sk k
- T - T -
+ C 8 + C 8- + C 8-+ Q (8.35)
XX XX X Xu XW XW k+1
s s Yt k+1
k+1
c = oct + 0 pt 46 (T +T (8.36)
XXS XXS XXS Sk Xu X u Xw X W
k+1 k k k
c -ocT +0 ct +6 U +6 T (8.37)
X'Uk+l Xl.].k XXS Xsu Xu e} XwW uw
k
c” —oct +8 ¢ +6 ¢ +8 cF (8.38)
XV. XV. XX XV Xu uv Xw vw
k+1 k S Kk
¢~ —oct +0 ¢ +6 Cc  +0 W (8.39)
XW. XW. XX X W Xu uw XwW (o]
k+1 k s Kk o
- +
PS = PS , (8.40)
k+1 k
- +
C = C (8.41)
Xsu XSU
k+1 k
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C =C (8.42)
X Vv X Vv
S K+l Sk
- +
€. w =cC_. ) (8.43)
S k+1 Sk

The actual dynamic noise 2nd moment matrix Q will be assumed
to have form

Q4 = diag %4 Ki AtY, 4 Ké Attty 4 Ké At™, Ki At2, Ké At2, Ké At?)
where At = byl ~ o and Ki, Ké, and Ké are constants which roughly

correspond to the variances of the actual unmodeled accelerations.
The form of this equation is identical to that of equation (5.23).

The actual measurement residual 2nd moment matrix is defined
by

J = E[e €, 1 . (8.45)

Substituting equation (8.19) into equation (8.45) yields

Joyp ~HA  +MB _ +GD . +LE . +NF . +R_ .  (8.46)

where observation matrix partitions H, M, G, L, and N have been
defined previously, R is the actual measurement noise 2nd moment
matrix defined by

T
= ' '
Rty = BV Vg ! (8.47)
and
- - - - - T
A= P HY + c,, M+ C ¢l + c,, 4 N
s | k+1 k+1
k+1
B =2~ M+ T ut o+ ¢ el + ¢~ R N
k+1 sk+l XX X u X Vv xSw
Sk+1 k+1 S x+1 k+1

(8.44)

(8.48)

(8.49)



D =¢T 5 4+ ¢ T M +uct+ ¢ N+c LT

k+1 xuk+l xsu o uw uv0
k+1

E = ¢ ¥ Hl 4+ ¢t ML+ ¢ NMorvil+¢T o

k+1 ka+l xsv o o) uv0
k+1

F..=WN +¢ T g +cT ML+ ¢ T T4 T 6T

k+1 o K+l X W vwo uwo

k+1

The 2nd moment matrix update equations, which correspond to
the processing of a measurement, are obtained by substituting equa-

tions (8.20) and (8.21) into (8.33) and expanding.
date equations are summarized as

+ - T T T
Pl = Pl " K A7 At Y K i Kenn
+ - T T T
= - - +
Cxx Cxx Kk+l B ‘Ask+l Kk+1 Jk+1 Sk+l
k+1 k+1
+ - T
C =C - D
X1 k41 et
+ - T
C =C - E
ka+l ka+l Kk+1
+ - T
C =C - F
X4l Py KL
+ - T T T
P =P -s B* - BS +S J S
5141 Sepp | ktl k+1 k+1 “k+1 k+1
+ - _ T
Cx u - stu Sk+l D
S k+l k+1 -
+ - T
- Cx v - Cx v - Sk+l E
S k+1 k+1
+ - T
Cx w - stw - Sk+l F
S k4l k+1

where Kk+l and Sk+l are the filter gain constants.

(8.

(8.

(8

(8.

(8.

(8.

(8.

(8.

The final up-

53)

54)

.55)

56)

57)

.58)

59)

60)

61)

(8.50)

(8.51)

(8.52)
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8.2.2 Eigenvector and Prediction Events

The generalized covariance treatment of eigenvector and pre-
diction events is quite similar to their treatment in an error
analysis, At an eigenvector event, eilgenvalues, eigenvectors, and
hyperellipsoids are computed for both assumed and actual knowledge
covariances. At a prediction event, both assumed and actual know-
ledge covariances are propagated forward to tp, the time to which

the prediction 1s to be made. If tp occurs within the target planet

sphere of influence, both assumed and actual covariances are con-
verted from cartesian coordinates to B-plane coordinates (see
section 5.6 for more details).

8.3 Generalized Midcourse Guidance Analysis
8.3.1 Target Condition Dispersion Analysis

To generate actual target condition dispersions (mean plus
covariance) requires that equations be developed, first, for prop-
agating actual deviation means (control means) and actual control

2nd moment matrix partitions over the time interval [tj—l’ tj]

separating two successive guidance events. Second, equations must
be developed for updating actual knowledge and control means and
2nd moment matrices following the execution of a guidance event.
These equations are derived in this section.

The actual dynamics over the time interval [tj-l’ tj] are
described by :
- +
! = ! ] + 1 1 ]
xj ij—l + exxS xSo exu u + exw we + wj (8.62)

where actual parameter deviations xé, u', v', and w' do not change

with time. Notation ( ) and ( )+ indicates values immediately be-
fore and after a guidance correction, respectively. Applying the
expectation operator to equation (8.62) yields the following mean
propagation equation:

- — +

T = 1 oy | . !
xj ij—l + exxS xSo + exu ul + exw wl (8.63)

where we have assumed that the mean of actual unmodeled accelera-
tion w'! is zero.

3
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The dispersions of the actual deviations about the targeted
nominal trajectory are represented by the control 2nd moment matrix
'T

- '
ch E [xj x; ] (8.64)

and related partitions. Equations (8.35) through (8.43) can be
used to propagate all control 2nd moment matrix partitions over
the interval [tj—l’ tj] if we treat all 2nd moment variables ap-

pearing in these equations as control 2nd moment variables.

Initial control 2nd moment matrix partitions are identical to
initial knowledge 2nd moment matrix partitions since all initial
estimates are zero.

The updating of actual knowledge and control means and 2nd
moment matrices following the execution of a guidance event re-
flects the introduction of actual execution error statistics into
the mean and 2nd moment matrix propagation processes. The actual
estimation error at a guidance event is increased by the actual
execution error

cSAvJ', = AVJ! - AVJ! (8.65)

where AV} is the actual velocity correction and AVS is the actual

commanded velocity correction. Therefore, the estimation error im-
mediately following the velocity correction is given by

- A - SAVE (8.66)

where
A= [0 I]T . J

The actual knowledge 2nd moment matrix immediately following
the correction is defined by

P!t - g [i!+ i!+T] , (8.67)

K.
i J J
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Substitution of equation (8.66) into equation (8.67) yields
prt - p'T 4 A . E|sAV! cSAV'I] Al A E[GAV'. i!'T]
K, K, b h| i3
b h|
- E [xs" <SAVJ!T] G (8.68)

Defining the actual execution error 2nd moment matrix by

CHE E[cSAVJ! 5Avj'T] (8.69)

and assuming the estimation error immediately prio¥ to the cor-
rection and the execution error to be uncorrelated permits us to
rewrite equation (8.68) as

+ - ~, T -T
P' =P' + AQ' A -A-E[GAV'.]-E[R', ]
K.j Kj Qj ] ]

- E[}“c:']—] E[(SAVJ!T] G (8.70)

The mean of the actual estimation error immediately following
the correction is obtained simply by applying the expectation
operator to equation (8.66) to obtain

E[x:']+] = E[x:'j_] - A - E[GAVJ!] , (8.71)

The propagation equation for E i'; is given by equation (8.23).

An expression for E[éAVi] is given in section 8.3.3.

The actual estimation error following the correction is de-
fined by

= %' - . 8.72
xj xJ X ( )

But, since we assume that the nominal state is updated with the most
recent estimate at a guidance event,

;‘cj'+ =0 . - (8.73)
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Then, substituting equations (8.72) and (8.73) into equation (8.66)
yields

T+ A MvJ! . (8.74)

The actual control 2nd moment matrix following the correction
is defined by
+ .
p'T = E [x!+ x!+T] : (8.75)

c,
i J J

Substitution of equation (8.74) into equation (8.75) and comparing
the result with equation (8.68) shows that

v+
c

+
= p!
P PK . (8.76)

3 3

Taking the expected value of equation (8.74) and comparing
the results with equation (8.71) shows that

E[xJ'.+] = - E[}“<5+] . (8.77)

Similarly, under the assumption that we update the nominal solve-
for state, we can write

E[xs""'] = - E[i;+] , (8.78)
j j

The remaining control 2nd moment matrix partitions are updated
in the same manner as the pos;tion/velocity partition is updated
in equation (8.76).

Equations for the actual target dispersions can now be de-
veloped. The actual target state deviation 615 is related to the

actual state deviation xg at time tj according to

613 =7, x! (8.79)

where nj is the variation matrix (see section 7.4.1) for the ap-

propriate midcourse guidance policy. The mean of éri is given by
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E [Grj]’= nj E [xj] . (8.80)

The statistical target dispersions are represented by the actual
target condition 2nd moment matrix Wj, which is defined as

W= E [51:',1 aTJ'.T] . (8.81)

Substitution of equation (8.79) into equation (8.81) yields

T
W' =mn, P' . . 8.82
) ; CjnJ ( )

Equations (8.80) and (8.82) are evaluated immediately before
and after the guidance correction at time tj.

8.3.2 Velocity Correction Analysis

The actual commanded velocity correction 2nd moment matrix
is defined by

s' = E[A\“/! A\?',T] (8.83)
J ] J
where the actual commanded velocity correction is given by

AV =T, &' =T, (x!'+&YH . 8.84
J J ] ] ( ] J) ( )

The guidance matrix Fj corresponds to the appropriate linear mid-

course guidance policy (see section 7.4.1).

Substitution of equation (8.84) into equation (8.83) yields

S' =T, {E[x', x'.T] + E[fc'. i',T] + E|x! i!T + E[i'. x'.T]} 1“'? . (8.85)
b | i3 j ] i3 j3 h|

We can write

E[x3 xST] - E[XJ' xJ‘T] - E[x:'l xJ'T] : (8.86)

Then, substituting equation (8.86) into equation (8.85), we obtain
S! = P,{E x' x| - Efx fc'.T:I + E[}T:'. f('.T] + E[z! & TeT . (8.87)
J J J 1] J 1] J 3 J 1 J
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1f we define

¢ - E[XJ iJ'.T] (8.88)

J

and use the definitions of control and knowledge 2nd moment matrices,
we can write equation (8.87) as

L. t _ pt ' T T.
s} =T, (‘ch PKj + cEj + CE,>Fj : (8.89)

The corresponding expression for the assumed velocity cor-
rection covariance (section 7.4.1) is given by

T
S. = F. P - P P. . 8090
] J < Cj Kj) h| ( )

The assumed covariance CE does not appear in equation (8.90) since
3

the navigation filter assumed the estimate and the estimation er-

ror to be orthogonal (if the filter employs an optimal estimation

algorithm) .

The proper evaluation of equation (8.89) for Sj requires that

Cé and associated partitions be propagated between measurements
h|
and updated at each measurement. A set of propagation and update

equations for Cé and associated partitions can be developed in a
h|

straightforward fashion. These is some question, however, about
the feasibility of carrying along an additional set of 2nd moment

partitions merely to obtain a better value for 85. The programmed

generalized covariance guidance model will assume CE can be
neglected in equation (8.89). 3

The mean of the actual commanded velocity correction is ob-
tained by applying the expectation operator to equation (8.84):

E[m?J'.] - T, {E[XJ'] ¥ E[XJ']} , (8.91)

Expressions for E[xﬁ] and E[i&] are already available.
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Equation (8.91) gives no useful information for fuel sizing
studies. Instead, we must develop an expression for E[lAVSI]. In

section 7.4.1 the Hoffman-Young formula is used to evaluate the
assumed E[IAle]. We shall use the same formula to evaluate

E[IAV3|] . Thus

e[|av!]] = VfT—A 1+ B (=2 (8.92)
J A% /5.4
where now
A = trace S'!
J
= 3! 3! togt 1 o4t
B =] Ay + A] Ay AL AL ,
and Ai, Aé, and Aé are the eigenvalues of the 2nd moment matrix

83. No rigorous justification for the use of S! rather than
cov (AVS) to evaluate E [lAVéI] is available at present. It
should be apparent, however, that the use of cov (Aﬁ%) would not

reflect the fact that the actual commanded velocity statistics
are distributed symmetrically, not about the origin, but about
E[AV%].

The actual effective or statistical AV is defined as
"E[av!]" = E[m}!] .+ ol (8.93)
A LR [F1]

where u3 denotes a unit vector in the most likely direction of

the velocity correction. Although two options are presently
available in ERRAN for computing the most likely direction of

the assumed statistical AV, only one of these options will be de-
fined for the generalized covariance guidance model. The first
option assumes a3 is aligned with [Sil’ Séz, Séé]T, where the

Sii are the diagonal elements of Sj. Because this method presents

difficulties in the evaluation of E [SAVJ!] and QJ' it will not



be used. The 2nd option, which will be used in the generalized
covariance guidance model, assumes ag is aligned with the eigen-

vector associated with the maximum eigenvalue of S'.
8.3.3 Execution Error Model

The actual execution error 6AV§ will be assumed to have form

Av!
§6V! = k'AV! + ' —L— + sav' | . (8.94)
3 lav!| pointing
h|
where k' denotes the actual proportionality error; s', the actual
resolution error; and SAV' . | the actual pointing error.
pointing

These actual execution errors are not required to have zero-mean
statistics.

Both the mean and 2nd moment of GAVE are difficult to eval-
uate because of the complicated functional dependence of 6AV5 on
Aﬁ%. This problem is also encountered in the generation of as-
sumed execution error statistics, and will be resolved by making

certain simplifying assumptions.

The components of 8AV! can be found in equation (7.21) and
are reproduced as J

! ) p'a¥" sa' + AV AV 88

VA (k' + 57) &y R (8.95)
o\ . AV' AT 8B - p'AT! Saf

savy = (1 + 25 ) a0! + T % (8.96)
) .

GAVé = <k' + —2—,) AVé - u'sp'’ (8.97)

A A ~ ;/

where p' = IAV'|, p' = [AV)'(2 + Av;Z]z, and 8o' and SB' are the

actual pointing angle errors.

Before operating on equations (8.95), (8.96), and (8.97) to
obtain expressions for EI?AV%] and 63 = E[?Avj GAVET], we shall

assume that AV;, AV;, and AVé can be replaced by the components
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of the actual statistical velocity correction "E[AVE]". This

means only k', s', 8a', and SR' need be treated as random variables
when we apply the expectation operator to these equations or to
any products of these equations.

Under the previous assumption, we obtain the following ex-
pression for the mean of GAVB:

11 = ' t t
E[dAvj] E[aAVX] e + E[aAVy] e + E[GAVZ] e, (8.98)
where o . R
— 3 p'AV: Sa' + AV. AV S8
" = ' S {rt
E[6AV! ] (k. + o AV + w (8.99)
oy . N AR AR T A o'a¥! Sa'
E[cSAv;] = (k' + -p—,) A }', + 3z = (8.100)
_ s N —_
E[aAv;] = <k' + §T> Av; - p' 6B (8.101)

and ex, ey, and ez denote three unit vectors aligned with the

inertial ecliptic coordinate axes.

Denoting the elements of 63 by éik’ we will define

\
ALY = 12 A = 12 A = 12
Q1 E[aAvx 1, Q,, E[&AVy 1s Q34 E[asz ]
Qiz = Qél = E[GAVL GAv;]
> (8.102)
Qi3 = Qél = E[GAVé GAVé]
Qyy = Qy, = E[GAV}', sav'] )



Substituting equations (8.95), (8.96), and (8.97) into
(8.102) and assuming all execution error sources to be uncor-
related, yields

g 802 + u—}z' (p'z A\?}',Z sa"6a’  AV'2 Y2 3BT 6B

1

Q1

2A\7}'{ X ) ,
' [} ' 1 ot It 0
) +—= (p AL BaT + AL AT S8 (8.103)

+ 20" AV' AV' AV' Ba' S8BT
X y z U

Qyy = &' AV'2 +—}7 (A‘“l'z AG'2 BT 8B' + p'2 m?}'{z sa' sa
y H y z

PINA
_ toATT AT AUY T 58' |+ Y vl agr aqr T o 1At T
2p AVx AVy AVZ Sa B ) T C (AVy AVZ B8 o AVx Sa )

u
(8.104)
SY o o1 a2 12 Totxa' _ X N R Birere
Qyy = &' 6VIZ + w2 5gTegT - 2 aV) W' o' g8 (8.105)
Q' =@l = £' A0 AT + &r |2 a0 a0' a0Y SET - 0! (492 - a92) T
12 21 x y qu' Xy =z X Ty
l A ~ — ~ -~ ~ —_—
+ _ 12 t 1 1 ' ' ' 12 _ 12 1 1
;77- [ o AVx AVy §a' So' + p AVZ (AVy AVX) o g
+ AA' o G912 24 o'
VX AVy AVz §B' 8B ] (8.106)
) 5 . AV;
v =AY = ! toA{Y v | 2 1 AgY RaT V' OAY! =RV o 0 YL
Q13 Q31 £ AVx AVZ + o (p AVy Sa' + AVX AVZ SR ) U AVX 8B
- o' 89! Ta7 BT - a0' AV’ BT sET (8.107)
X X z
) i} o AV
- ' ' v | 2 ' VSR _ A' AT SA4T Vv AU Ra b
Q23 Q32 g AVy AVZ +z " (AVy AVZ 8B p AVx Sa ) U AVy 8B

+ o' A\”I;{ Sa' 8B’ - A\?}', A\“I; SB" 88" (8.108)
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where

o t oz (8.109)
and
J— =
N —¢S>_' (8.110)
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9. PROBE TARGETING, ERROR ANALYSIS, AND SIMULATION
9.1 Introduction

Main probe targeting proceeds via the same Newton-Raphson pro-
cedures as do all the other targeting options. Only the target
parameters themselves are different. They are time, latitude,
and longitude at impact on the target planet. The last two of
these, like inclination and radius of closest approach, are treated
by first transforming them into an equivalent pair of impact
plane coordinates, B+T and B°R.

Miniprobe targeting, on the other hand, is essentially dif-
ferent from all the other targeting problems solved in NOMNAL.
First, its controls are not simply three orthogonal velocity com-
ponents but rather four release variables. Second, its target
parameters outnumber its controls, making it necessary to settle
for a minimum-miss rather than a true solution. Miniprobe targeting
is therefore treated in Section 9.2 of this chapter.

Probe error analysis and simulation is based directly on the
theory presented in Chapters 5, 6, and 7. The only new features
are (1) the computation of an execution error covariance for the
miniprobe spin release maneuver, and (2) the transformations of
states and covariances at entry to the form required by the LTR¥*
program., The detalls of the error analysis and the simulation of
probe release are presented in the analysis sections of subroutines
PROBE and PROBS, respectively. The computation of the spin re-
lease execution error covariance is treated in the analysis of
MINIQ. Finally, subroutine NTRY describes the transformation of
the STEAP-generated state and covariance into a form suitable for
the LIR program. Thus probe error analysis and simulation re-
quire no further treatment in the current chapter.

9.2 Miniprobe Targeting
9.2.1 Introduction

The problem of finding the optimum miniprobe release controls
to achieve impacts as near as possible to the respective three de~
sired miniprobe entry sites divides naturally into three parts:
(1) model formulation, (2) initial iterate generation, and (3)
minimum-miss optimization. NOMNAL's treatment of each of these
three areas is surveyed below. For a more detailed discussion,
the STEAP Programmer's Manual should be consulted under the ap-
propriate subroutine.

*
Lander Trajectory Reconstruction.
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9.2.2 Model

The following bus/miniprobe configuration is assumed. Three
miniprobes are suspended on booms from the bus in such a manner
that they form the vertices of an equilateral triangle centered
about, and perpendicular to, the bus spin axis. These miniprobes
are then assumed to be released simultaneously so their three re-
spective velocities relative to the bus form an equilateral tri-
angle.

Only four release control variables are assumed available to
the designer in achieving the six target variables of declination
and right ascension at impact for each of the three miniprobes.
They are (1) the release roll angle,®* (2) the tangential velocity
at release, (3) the ecliptic declination of the spin axis, and
(4) the ecliptic right ascension of the spin axis. Three other
potential controls are (a) the release time and (b) and (¢) the
declination and right ascension of the impact site of the existing
bus trajectory at release. Controls (2) and (a) to first order
have exactly the same effect on the miniprobe impact site distri-
bution. Hence both cannot be used in a2 minimum-miss algorithm
based on linear sensitivities alone. On the basis of projected
Planetary Explorer mission profiles, it was decided to fix the
release time rather than the tangential velocity at release. The
other two controls could, however, be added to the existing al-
gorithm with only moderate difficulty. The vector of release
controls will be denoted in what follows by u.

To make use of the linear dependence of B°T and B°R on the
release controls and to avoid the difficulty of defining a pseudo-
impact point when a miniprobe misses the planet, all of the tar-
geting is done in the impact plane. The correspondence between
actual impact points on the planet and the fictitious asymptote
pierce points in the R*T plane is shown pictorially in Figure 2.1.
If the gravitational attraction of the target planet and the sun
could be turned off at the planet's sphere of influence, the ve-
hicle would follow a trajectory approximately coincident with the
asymptote to its actual trajectory. The shortest vector from the
planet to the asymptote or force-free trajectory is called the B
vector. The unit vector originating at the planet center and
pointing in the direction of the asymptote or hyperbolic excess

%

The roll angle is measured about the spin axis in the direc-
tion of rotation from the vector, which is the cross-product of
the spin vector with the ecliptic pole vector.
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velocity vector is called the S vector. The T vector is the cross-

product of the S vector with the ecliptic pole vector K, while the
R vector is the cross-produce of the S vector with the T vector.
Naturally the B vector lies in the R-T or "impact" plane and is
conveniently resolved into the components B*T and B*R along the

T and R axes respectively. Each desired miniprobe impact site

is converted into a corresponding B-TD - B'RD pair using the hy-

perbolic excess velocity vector for the miniprobe targeted to it.

Next the actual B-plane coordinates, B-TA and B-RA, are calculated.

An impact-plane miss vector ¢ can then be defined as

—cl (BT - B-TA);
C, (BT - B-T,),
$=1C4 (B-TD - B-TA)3 (9.1)
C, (B*Ry = B*R),
Cy (B*Ry - B*R),
LC3 (B+R - B-RA)3—

where the numeric subscripts identify the probes. The constants
Cl’ C2, and C3 are simply weighting factors assigned by the user

to the respective desired miniprobe impact sites. The magnitude
of a given factor should be in approximate proportion to the im-
portance of a nearby impact to the corresponding target site.
The miss index, y, can then simply be taken as the norm squared
of the miss vector; i.e.,

y=¢ 9 - (9.2)

Two trajectory propagation models are available in the mini-
probe targeting routine. The first is a high-speed conic scheme,
while the second is a time-consuming virtual-mass procedure. The
n-body integration computer time requirements are aggravated in
miniprobe targeting by the fact that each propagation entails the
integration of three separate trajectories. Hence one minimum-
miss iteration on n release controls demands 3(n+l) trajectory in-
tegrations. Here 3n of the integrations are required to generate
(by perturbation) the Jacobian sensitivity matrix of the miss vec-
tor with respect to the release controls, while the remaining three



are necessary to evaluate the miss vector for the new iteration.
Fortunately a glven set of release controls produce the same im-
pact time, declination, right ascension, velocity, flightpath angle,
and angle of attack for both models to within 1%. However, the set
of minimum-miss controls for the two models differ substantially.
In particular the optimal spin axis direction can differ by as
much as 10° between the two models. Lucklily, when the optimal
conic release controls are propagated with the n-body integrator,
the miss index is only slightly larger than when the optimal
virtual-mass controls are so propagated. It would appear then

that the conic propagation model is more than adequate for most
preliminary mission analysis work.

The conic model miniprobe propagation mode is somewhat in-
volved. First, the virtual-mass trajectory of the bus/miniprobe
combination is propagated to impact. The resulting impact state
is then used to generate an osculating planetocentric conic ac-
curately representing the near-planet trajectory. This near-
planet conic is then propagated backward to the nominal time of
release, and the resulting conic state is taken as the nominal re-
lease state. Hence the conic and virtual-mass trajectories are
matched at impact rather than release. Velocity perturbations
are then applied to the conic nominal release state and are propa-
gated forward conically to generate sensitivity matrices. These
matrices are then manipulated by the minimum-miss algorithm to
yield a set of release controls that minimize the miss index.

The virtual-mass propagation model is simpler in concept than
the conic scheme but more difficult in execution. All trajectories,
both nominal and perturbed, are simply propagated by integrating
their heliocentric state vectors. The virtual-mass method is ob-
jectionable not only because of its prohibitive running time but
also because of its limited resolution. Roundoff error limits
the accuracy of the sensitivity matrix of the miss vector to the
release controls, thereby limiting the precision to which the
controls can be made to converge.

Both of these difficultles could probably be eliminated by
generating the sensitivities analytically rather than by perturba-
tion. It seems reasonable to suspect that analytical sensitivities
based on the two-body model would suffice to produce reasocnable
convergence in the n-body propagation. The time required to com-
pute the sensitivies analytically would be negligible compared to
that required to calculate them numerically. Hence the generation
of n virtual-mass optimal release controls could be accelerated
n-fold. However, with the current virtual-mass perturbative sen-
sitivity matrix generation, the slight miss index improvement
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achieved with optimal virtual-mass controls will seldom justify
their increased cost in terms of computer running time.

The miniprobe propagation process is handled by the subroutine
TPPROP. Given a set of release controls and a spin axis orientation
mode, it generates the miss vector ¢ by propagating the miniprobes
to impact according to either the conic or virtual-mass models as
desired.

9.2.3 1Initial Control Estimate

To apply an iterative miss index-minimizing algorithm, an
initial estimate of the control vector must be devised. Further,
since the selected algorithm treats the miss vector ¢ as a linear
function of the control vector u, the estimate must be in a region
about the true minimum-miss point throughout which reasonable
linearity prevails. For this reason an elaborate initial control
estimate was designed for the conic model iteration. The converged
conic model controls then serve as the initial iterate in the
virtual-mass iteration.

The initial estimates for two of the controls (the spin axis
orlentation angles) depend of course on the spin axis orientation
mode. In three of the four possible modes the ecliptic decina-
tion and right ascension of the spin axis at release are fixed
rather than free controls. Hence no initial estimates for them
need to be provided. In the remaining mode, however, both of
these controls are free, and the initial estimates provided for
them are simply those that bring the spin axis into coincidence
with the bus velocity vector at release. This orientation was
chosen for the initial estimate since it produces the widest dis-
tribution of miniprobe entry sites for a given combination of the
remaining two controls.

An initial estimate for the other two controls (the release
roll angle and the tangential velocity at release) are generated
by merely targeting the first miniprobe to the miniprobe target
site nearest the bus impact point for the bus trajectory existing
at release. Using a single Newton-Raphson step, the release ve-
locity increment perpendicular to the bus spin axis that would
carry the first miniprobe to the nearest desired miniprobe site
is approximated. From this increment, the corresponding unique
pair of controls (1) and (2) is calculated. A more accurate tar-
geting of the first miniprobe is unjustified since this preliminary
targeting process ignores the remaining two miniprobes.



The initial control estimate generation is carried out en-
tirely in the subroutine TPRTRG.

9.2.4 Minimum-Miss Algorithm

Minimizing the miss index defined in equation (9.2) is clearly
a weighted least-squares optimization problem. Gauss developed
an extremely efficient pseudoinverse algorithm for treating such
problems when the miss vector ¢ is approximately a linear function
of the control vector u.* The Gauss procedure, which is merely
the exact one-step solution to the problem for the Jlinear case,
requires that the control correction

Au = - (JTJ)"1 gt o (9.3)

be applied at each iteration where J is the Jacobian matrix of
the miss vector with respect to the control vector; i.e.,

3¢i
(I)1j = 29 1=1,...,m (9.4)
9u] j=1,...,n
m=zn

It should be evident that the Gauss least~squares procedure then
degenerates to the Newton-Raphson algorithm when the number of
controls, n, is equal to the number of constraints, m.

The linear transformation applied to ¢ in the control correc-
tion formula (9.3) will, of course, be recognized as the left
pseudoinverse of J that is known to give the minimum ¢-norm solu-
tion to the system

-¢ = JAu . (9.5)

The least-squares property of the Gauss formula is then an im-
mediate consequence of this fact. Alternatively the correction
formula can be derived directly by expanding the identity

vy =237 ¢ (9.6)

*
See Reference 18.
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in a Taylor series about the current control vector iterate u,
neglecting all second and higher order terms, and requiring that

¥y (u+ 4w =0 . 9.7

-

Heuristically speaking, the Guass or pseudo-inverse scheme operates
by constructing hyperplanes tangent at the current iteration point
to the manifolds to constant miss for each of the components of the
miss vector. The scheme then extrapolates to the "zero-miss" hyper-
planes assuming that all of the manifolds of constant miss-vector
components are uniformly spaced hyperplanes. Finally it solves for
the unique point that is so located as to minimize the sum of the
squares of its distances from the respective ''zero miss" hyperplanes.

The linearity of the miniprobe targeting makes it a prime
candidate for the Gauss algorithm. Nonetheless considerable non-
linearity can arise in the minimprobe release problem because of
a poor original control estimate. In such a case the Gauss scheme
could easily diverge because of its unjustified linear extrapolation.
To cope with this problem, a best-step steepest-descent option was
incorporated in the least-squares routine. This option is used
when either of two situations arise indicating nonlinearity:

(1) the Gauss control correction is larger in norm than some in-
put upper bound, or (2) the Gauss step actually increases the
miss index over the previous iterate.

The logic of the steepest descent scheme is straightforward.
First the gradient to the miss index is calculated from the Jacobian
matrix of the niss vector with respect to the control vector and
the miss vector itself as

vy =23 ¢ . (9.8)

Next a search 1s conducted in the negative gradient direction un-
til the miss index 1s observed to begin increasing. Then a cubic
polynomial is fit to the miss index, y, as a function of the step
length, A, in the search direction by exactly matching function
values at A = 0, A = a, and A = a/2 and slopes at A = 0 where a
is that particular step size where y is first found to increase.
Then the abscissa value, Am’ of the minimum of the fitted poly-

nomial is computed. Finally the control correction is taken to be
Ay = -Amyy/||2y|| . (9.9)
The convergence of the scheme is only asymptotic, i.e., one can

only guarantee that the minimum-miss control vector can be arbi-~
trarily accurately approximated by takipg a sufficiently large




number of iterations. Nevertheless, the steepest-descent algo-
rithm seems to be the best available for extremely nonlinear per-
formance indices since it involves no linear extrapolation and since
it searches in the only direction in which improvement is assured.
Its poor terminal convergence is no handicap in the hybrid weighted
least-squares routine used in NOMNAL since once the iteration
sequence falls inside a suitably linear region about the miss

index minimum, the rapidly convergent Gauss scheme will take over.

The convergence criterion 1n either mode of the least-squares
algorithm is the same. Adequate convergence 1s assumed when a
weighted sum of the length of the change in the control vector
and the length of the change in the control vector and the magni-
tude of the change in this miss index fall below a preassigned
value, €; i.e.,

c, Haull +c, Jayl <e . (9.10)

With the units of u being radians or decameters/sec* and those of y

being km?, C1 and 02 are currently fixed inside the program at

10,000 and 1, respectively. Presently € 1s input by the user
with a suggested value being 1.

The entire iterative miss minimization process is conducted
in the subroutine GAUSLS.

—

These units were selected so that components of u are all of
the same order of magnitude. Numerical problems can arise if this
precaution is not taken.

104-31



104-32



10. INDIVIDUAL SUBROUTINE ANALYSES

This chapter is composed of three major items. In Table 10.1
all the subroutines of STEAP II are listed by category. In Table
10.2 an index of the subroutines is provided with a brief summary
of the function of eagh subroutine, again in categorical order.
The remainder and bulk of the chapter supplies the analytical
documentation of each technical subroutine in alphabetical order.
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Table 10.1 STEAP II Subroutine

I. Virtual-Mass Subroutines

A. Conic B. Ephemeris C. Propagation D. Input/Output
1. CAREL 1. TIME 1. vMp 1. TRAPAR
2. ELCAR 2. BLOCK DATA 2., ESTMT 2. INPUTZ
3. IMPACT 3. ORB 3. VECTOR 3. PRINT
4, SOIPS 4, EPHEM 4. VMASS 4. SPACE
5. CENTER 5. NEWPGE
6. PECEQ
7. EULMX
8. SUBSOL

II. NOMNAL Subroutines

A. Executive B. Zero Iterate C. Targeting
1. EXCUTE 1. BATCON 7. LUNTAR 1. DESENT
2. GIDANS "2, FLITE 8. MULCON 2. KTROL
3. MPPROP 3. HELIO 9. MULTAR 3. TARGET
4. NOMNAL 4, LAUNCH 10. SERIE 4. TARMAX
5. PRELIM 5. LUNA 11. ZERIT 5. TAROPT
6. TRJITRY 6. LUNCON
D. Insertion E. Pulsing Arc F. Miniprobe Targeting
1. COPINS 1. (BATCON) 1. SACOCS
2. INSERS 2. PERHEL 2. TPPROP
3. NONINS 3. PREPUL 3. TRRTRG
4. PULSEX
G. Mathematical H. Conic I. Ephemeris
Functions and
Operations
1. DINCOS 6. SCAD 1. CAREL 6. HYPT 1. EPHEM
2. DINSIN 7. SCAR 2. CONCAR 7. IMPACT 2. ORB
3. JACOB 8. THPSOM 3. DIMPCP 8., IMPCT 3. PECEQ
4, MATIN 9. USCALE 4. ELIPT 9. SPHIMP 4. SUBSOL
5. MATPY 10. UxV 5. HPOST 10. STIMP
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III. ERRAN and SIMUL Subroutines

A, Executive C. Navigation D. Event E. Input/Output
1. ERRAN 1. NAVM 1. SETEVN 1. DATA
2. SIMUL 2. GNAVM 2. SETEVS 2. DATAl

3. GAIN1 3. PRED 3. GDATA

B. Dynamic Model 4, GAIN2 4. PRESIM 4. SKEDM

5. SCHED 5. BEPS 5. DATAS
1. NTM 6. TRAKM 6. BATCON 6. DATALS
2. NTMS 7. TRAKS 7. ZRANS 7. CONURT
3. PSIM 8. TARPRL 8. ATANH 8. TRANS
4, NDTM 9. STAPRL 9. BPLANE 9. CORREL
5. PLND 10. MEMO 10. QUASI 10. STMPR
6. MUND 11. MENOS 11. GUIDM 11, SUB1
7. PCTM 12. BIAS 12, GUISIM 12, TITLE
8. CONCZ 13. RNUM 13. GUID . 13, GPRINT
9. CASCAD 14. DYNO 14. GUIS 14, MOMENT
15. DYNOS 15. VARADA 15. PRINT3
16. GHA 16. VARSIM 16. PRNTS3
17. JACOBI 17. PARTL 17. PRINT4
18. HYEIS 18. BIAIM 18. PRNTS4
19. EIGHY 19, POICOM
20. MEAN 20. QCoMP
21, SAVMAT 21. NONLIN
22. PULCOV
23. EXCUT
24, EXCUTS
25. PROBE
26. PROBES
27. MINIQ
28. NTRY
29. GENGID
30. ATCEGV
31. GQCOMP
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I. Virtual-Mass Subroutines

A'

B.

106-2

Table 10.2 STEAP II Subroutine Summaries

Subroutine

Conic

1. CAREL
2. ELCAR
3. IMPACT
4., SOIPS
Ephemeris
1. BLOCK DATA
2. CENTER
3; EPHEM
4, EULMX
5. ORB

6. PECEQ
7. SUBSOL
8. TIME

Function

Convert a Cartesian state to conic
elements

Convert conic elements to a Cartesian
state

Compute the impact-plane parameters

Conically extrapolate from the nearest
integration state to obtain impact
data at the SOI and at the planet
surface

Set the emphemeris constants of the
gravitational bodies

Convert the states of bodies to
barycentric coordinates

Compute the inertial state of a
gravitational body at a given time

Compute the rotational transforma-
tion matrix from the Euler angles

Compute the orbital elements of a
gravitational body at a given time

Compute the transformation matrix
from ecliptic to equatorial coor-
dinates

Compute the transformation matrix
from ecliptic to subsolar coordinates

Convert Julian dates epoch 1900 to
calendar dates or vice versa



Subroutine Function

C. Propagation

1. ESTMT Determine final position and magnitude
of the virtual mass on the current
step

2. VECTOR Compute the final position of the

spacecraft on the current step

3. VMASS Determine the virtual-mass data for
the current step

4, VMP Direct the virtual-mass trajectory
propagation

D. Input/Output

1. INPUTZ Convert the input data into a form on
which VMP can operate

2. NEWPGE Print headings for each new page in
VMP printout

3. PRINT PRINT periodic trajectory-status
data

4, SPACE Space paper keeping tracking of
paging

5. TRAPAR Compute and record navigation param-

eter data
II. NOMNAL Subroutines
A. Executive

1. EXCUTE Control the execution of a velocity-
increment trajectory correction

2. GIDANS Control the computation of a velocity-
increment trajectory correction

3. MPPROP Generate a time history of the main-
probe trajectory
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4.

5.

6.

NOMNAL

PRELIM

TRJTRY

B. Zero lterate

1.

10.

11.

BATCON

FLITE

HELIO

LAUNCH

LUNA

LUNCON

LUNTAR

MULCON

MULTAR

SERIE

ZERIT

C. Targeting

1.

106~4

DESENT

Control the generation of the nominal
trajectory (main program)

Perform preliminary data processing
for NOMNAL

Propagate the nominal trajectory
to the next guidance event

Propagate a conic trajectory by means
of the universal conic functions

Obtain the solution to Lambert's
time-of-flight equation

Compute the heliocentric phase of
the interplanetary zero iterate

Compute the launch phase of the in-
terplanetary zero iterate

Control lunar zero-iterate generation

Generate a patched conic lunar tra-
jectory

Control the patched conic targeting

Generate the lunar multiconic trajec-
tory

Control the lunar multiconic targeting

Compute the universal conic functions
used in FLITE

Control the computation of the zero
iterate

Compute the interplanetary velocity
targeting corrections using the
descent scheme



2. KTROL Compute the heliocentric ecliptic
velocity corrections given the launch-
planetocentric velocity controls

3. TARGET Control the n-body targeting

4. TARMAX Compute the Newton-Raphson targeting
matrix

5. TAROPT Set up the actual and auxiliary tar-

get parameter arrays

D. Insertion

1. COPINS Compute the coplanar orbit insertion
maneuver

2. INSERS Control the orbit insertion computa-
tion

3. ©NONINS Compute the nonplanar orbit insertion

E. Pulsing Arc

1. (BATCON) Propagate a conic trajectory by means
of the universal conic functions

2. PERHEL Propagate a perturbed heliocentric
conic

3. PREPUL Perform the prelimirary data proces-
sing for a multiple-pulse trajectory
correction

4. PULSEX Execute pulsing arc

F. Miniprobe Targeting

1, SAOCS Compute the sines and cosines of the
spin-axis right ascension and decli-
nation given the spin-axis orientation
mode

2. TPPROP Propagate the three miniprobe tra-

jectories according to either a conic
or virtual-mass model
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3.

TPRTRG

Control the miniprobe targeting
procedure

Mathematical Functions and Operations

1. DINCOS
2. DINSIN
3. JACOB
4. MATIN
5. MATPY
6. SCAD
7. SCAR
8. THPOSM
9. USCALE
10. UXV
Conic

1. CAREL
2. CONCAR

Calculate 1n degrees the inverse
cosine of a real number

Calculate in degrees the inverse
sine of a real number

Approximate by divided differences
the Jacobian sensitivity matrix of
a vector-valued function with re-
spect to a vector variable

Invert a matrix of real-valued
elements

Multiply two matrices of real-
valued elements

Calculate both the sine and cosine
of an angle given in degrees

Calculate both the sine and cosine
of an angle given in radians

Find the minimum of a function on
a given interval by cubic interpolation

Scale the length of a three-vector
to a specified real number

Calculate the vector product of two
three-vectors

Convert a Cartesian state to conic
elements

Convert a conic state in terms of
r, 0, e, P, Q, and u into a Cartesian
state



3. DIMPCP
4. ELIPT
5. HPOST
6. HYPT
7. IMPACT
8. IMPCT
9. SPHIMP
10. STIMP
Ephemeris
1. EPHEM
2. ORB

3. PECEQ
4, SUBSOL

Calculate the desired B-plane asymptote
pierce-point coordinates given the right
ascension and declination of a probe
target site

Calculate the time from periapsis on
an elipse given the true anomaly

Calculate the radius and true anomaly
on a hyperbola given the time from
periapsis

Calculate the time from periapsis
on a hyperbola given the true anomaly

Compute the impact-plane parameters

For auxiliary targeting compute actual
and desired B-plane asymptote pilerce -
points as well as actual target values

Calculate the true anomaly and time

from periapsis at which a conic ap-

proach trajectory plerces a planeto-
centric sphere of a given radius

Calculate the B-plane asymptote pierce-

point coordinates of a conic trajectory
given a state uypon it

Compute the inertial state of a
gravitational body at a given time

Compute the orbital elements of a
gravitational body at a given time

Compute the transformation matrix
from ecliptic to equatorial coordinates

Compute the transformation matrix
from ecliptic to subsolar coordinates

106-7



II1I.

A.

CO

106-8

ERRAN and SIMUL Subroutines

Executive
1. ERRAN
2. SIMUL
Dynamic Model
1. NTM

2. NTMS
3. PSIM
4. NDTM
5. PLND
6. MUND
7. PCIM
8. CONC2
9. CASCAD
Navigation
1. NAWM
2. GNAVM

Control error analysis program (main
program)

Control simulation program (main
program)

Control generation of trajectory data
for ERRAN

Control generation of trajectory data
for SIMUL

Control computation of state transi-
tion matrix (STM)

Compute unaugmented partition of STM
by numerical differencing

Compute STM partition associated with
ephemeris biases

Compute STM partition associated with
gravitational constants

Compute unaugmented partition of STM
by patched conic technique

Compute unaugmented partition of STM
by virtual-mass technique

Compute unaugmented partition of STM
by cascaded Darby matrizants

Propagate covariance matrices between
measurements and between events in
SIMUL

Propagate assumed and actual covariance
matrices between measurements and be-
tween events in ERRAN



10.
11.

12.
13.

14,
15.

16.

17.

18.

19.

GAIN1

GAIN2

SCHED

TRAKM

TRAKS

TARPRL

STAPRL

MENO

MENOS

BIAS
RNUM

DYNO

DYNOS

GHA

JACOBI

HYELS

EIGHY

Compute the Kalman GAIN matrices
Compute the GAIN matrices for the
equivalent recursive consider weighted-

least~-squares filter

Select next measurement time from
measurement schedule

Compute observation matrices

Compute observation matrices and
actual measurements

Compute target planet position
partials

Compute station location position
and velocity partials

Compute assumed measurement noise
covariance matrix

Compute assumed and actual measure-
ment noise covariance matrices

‘Compute actual measurement bias

Generate random numbers

Compute dynamic noise covariance
matrix

Compute dynamic noise covariance
matrix and actual dynamic noise

Compute Greenwich hour angle

Compute eigenvalues and eigenvectors
of a matrix

Compute hyperellipsoids

Control computation of eigenvalues,
eigenvectors, and hyperellipsoids
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20. MEAN
21. SAVMAT
D. Event

1. SETEVN
2. SETEVS
3. PRED
4, ©PRESIM
5. BEPS
6. BATCON
7. ZRANS
8. ATANH
9. BPLANE
10. QuAsI
11. GUIDM
12. GUISIM
13. GUID
14, GUIS
15. VARADA

Propagate and update means of actual
state or parameter deviations and
actual state of parameter estimation
errors

Stores one vector in a second vector

Perform computations common to most
events in ERRAN

Perform computations common to most
events in SIMUL

Perform prediction event in ERRAN
Perform prediction event in SIMUL

Compute B-Plane-Related covariances
and state transition matrices

Compute trajectory data at time T
given position and velocity at time O

Calculate transcendental functions
used in the universal form of Kepler's
equation

Find the angle Y whose TANH is X

Compute B-plane parameters

Perform quasi-linear filtering event
in SIMUL

Perform guidance event in ERRAN
Perform guidance event in SIMUL

Compute guidance and variation matrices
in ERRAN

Compute guidance and variation matrices
in SIMUL

Compute 3VBP variation matrix In ERRAN
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16. VARSIM Compute 3VBP variation matrix in SIMUL

17. PARTL Compute partials of BT, B*R, wrt
state

18. BIAIM Perform biased aimpoint guidance

19. POICOM Compute probability of impact

20. QCoMmp Compute execution error covariance
matrix

21. NONLIN Control execution of nonlinear gui-

dance events

22. PULCOV Propagate covariance matrix across
a series of pulses

23. EXCUT Control execution of pulsing arc in
ERRAN

24. EXCUTS Control execution of pulsing arc in
SIMUL

25. PROBE Control execution of probe release

events in ERRAN

26. PROBES Control execution of probe release
events in SIMUL

27. MINIQ Compute execution error covariance
matrix for miniprobe release

28. NTRY Compute entry parameters, covariance,
and communication angle

29. GENGID Generalized covariance technique
applied to guidance processes

30. ATCEGV Compute eigenvalues and eigenvectors
of actual target condition 2nd moment
matrices

31. GQCOMP Compute actual execution error statistics
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E. Input/Output

1. DATA Perform preliminary computations and
read data in ERRAN

2. DATAl Continuation of DATA

3. GDATA Initialized generalized covariance
quantities

4, SKEDM Set up bus, main probe, and miniprobe

- measurement schedules ’

5. DATAS ' Perform preliminary computations and
read data in SIMUL

6. DATAS1 Continuation of DATAS

7. CONVRT Convert JPL injection conditions

' to Cartesian components
8. TRANS Compute coordinate transformations
9. CORREL Compute and print correlation matrix

partitions and standard deviations

10. STMPR Print STM partitions

11. SUBl Compute position and velocity magnitudes

12, TITLE Print titles

13. GPRINT Print actual estimation error statis-
tics

14. MOMENT Convert 2nd moment matrices to cor-

relation matrices and print them

15. PRINT3 Print basic cycle data in ERRAN
16. PRNTS3 Print ERRAN summary
17. PRINT4 Print basic cycle data in SIMUL
18, PRNTS4 Print SIMUL summary
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BATCON-1

BATCON Analysis

BATCON is a conic propagator using the Battin universal variable formu-
lation. A total derivation is too involved to be given here; rather
the results of Battin's work will be given here.

Let the initial state of a point magi_mqg}ng under the influence of a
gravitational force U be given by Ty Voo It is required to determine

the state fﬁ'?'at a time T units later. It is useful to introduce the
parameters

— —
r vV
g = [e) 0
o —-7;——— )
V 5 (1
JdJ = 2 - Yo
r, u

Battin's approach is to introduce a new independent variable x(t) in place
of time by the relation

& _ Ve
at -~ r(t) x(0) = 0 : (2)

This parametrization greatly simplifies the conic propagation problem. For

suppose that the value of x corresponding to t = T is given by X, i.e. x(T) = X.

Then the final state is given by

— - .
T = Rl(X) T+ RZ(X) v,

R N N (3)
v = Vl(X) T+ V2(X) v,
where
1 £ .
Rl(X) =1 - r, UZ(X) RZ(X) =~/ [roUl(X)+ doUZ(Xﬁ

Ve oo 1
vl(x) =- Ul(X) vz(x) =1-2= U,

rO r0 [o]

(4)
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BATCON-2

and where

st/ x

o >0
Uo(x) = cog O X a>0 Ul(x) = Ve
sinh\/-ot X
= - —— o <0
cosh\/-& X a <o \/'—0!_ (5)
U, (X) = 1-U (X U500 = X-0, (X)
o o

The problem is thus reduced to the determination of X. X is generated
iteratively by the recursive formulae

= x - \/‘_‘—tn Vit x - Ax (6)

n+l n T n
r
n

where

VE <,

r
n

roUl(xn) + 0 U2(xn) + UB(Xn)
(7

roUo(xh) + 0 Ul(xn) + UZ(xn)

To start the process the initial guess is set to
Vi % 1 2 : 2
= 1e s T + - -
X, - § 3 \u —= I:B 7 r (1 aro)} UT (8
o 2ro 6r

The program sets X = x_when the correction Ax 1is less than 10-8.
It terminates if the number of iterations exceeds 1l0.

References:

Battin, R.H., Astronautical Guidance, McGraw-Hill Book Co.,
New York, 1964.

Battin, R. H. and Fraser, D.C., Space Guidance and Navigation, AIAA
Professional Study Series, 1970.
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BATCON Flowchart

‘ ENTER ’

Compute 06, a, etc.

Compute initial guess x

Compute UO(X)’Ul(x)’UZ(X
U3 (x) )-\//’7 tn) rn

)

<:11terations : 10

<0

2

‘ STOP

Compute correction Ax to x

X

x + Ax

il 3

<

Compute{f}, R2
Vis Vs, T, V

RETURN

BATCON-3
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BIAIM Analysis

Subroutine BIAIM performs biased aimpoint guidance computations. If
planetary quarantine constraints are in effect at injection or at a
midcourse correction, and if the nominal aimpoint does not satisfy these
constraints, subroutine BIAIM will compute a biased aimpoint and the
required bias velocity correction such that the constraints are satisfied
and some performance functional is minimized.

Aimpoint biasing is pcrformed in the impact plane and as such permits
only two degrees of freedom in the selection of the biased aimpoint. The
general aimpoint in the impact plane will be denoted by the 2-dimensional
vector Z?j’ where the j-subscript indicates that the biased aimpoint

guidance event is occurring at time tj. Three midcourse guidance policies
are available in STEAP, and it will be necessary to relate if, to the

]
specific aimpoint for each of these three policies. These relationships

are summarized below:

(a) Two-variable B-plane (2VBP):

-

MJ.= BT (1)
B - R

(b) Three-variable B-plane (3VBP):

ﬂ?j=[1 0 o} BT (2)
0o 1 o0 B.R
s1

(c) Fixed-time-of-arrival (FTA):

ﬁj = AT, ™

where ?CA is the nominal closest approach position of the spacecraft

relative to the target planet. Coordinate transformation A projects
the 3-dimensional vector ?CA (referred to ecliptic coordinates) into

an equivalenE FTA impact plane which is defined to be the plane
containing Toa and perpendicular to the spacecraft closest approach
velocity tCA relative to the target planet. If the ecliptic
coordinate £ T v

ates o Tea and Vey are denoted by rs ry, r, and Vo

vy, v, s respectively, then the transformation A is given by



r r r ]
. ¥ 2
A = Yca ca Tca (4)
r N - r v r v - r v r v - r v
y z z_y z_X X _z X 'y y X
| Tca Vea Tca Vea Tca Vea |

Spacecraft state variations at tj are related to aimpoint variations

(target condition variations) by the variation matrix 7 , which is always

available prior to calling BIAIM. Thus, the statistical state dispersions
about the nominal following the guidance correction at t, and represented
+
by the control covariance P., , can be related to the dispersions about
J

+
the nominal aimpoint represented by Wj according to the equation

W' o= /D " T (5)
b J %3 77j
The control covariance Péf is computed from
J
N i |

P.. = B+ 0 10 (6)

J i —

0 Q.

'Y

where Pki is the knowledge covariance prior to the guidance event and
J

o
Qj is the execution error covariance.

Transformations employed in equations (1) through (3) can also be employed
to project Wj into the impact plane. The resulting projection is denoted

+
by the covariance jqj’ and is obtained from W, according to the following

equations:
+
(a) 2VBP /1j =W (7)
+
(b)  3VBP A = [1 0 o] w, 1 0 (8)
i j
0 1 0 0o 1
0 0
+
(¢) TFTA A = aw. AT (9)
i j
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With covariance J«. available, it is now possible to compute the

]
probability of impact PPI. Assuming the probability density function
associated with . is gaussian and nearly constant over the target
J

planet capture area permits us to compute PPI using the equation
2
PP = TR P (10)
where R is the target planet capture radius and p represents the
c

gaussian density function evaluated at the target planet center and is

given by
E . I -1_\;*
p-=-—-—1-———exp[-%m*/L ﬂl} (11)
3

2| A |
J

= ok
The nominal impact plane aimpoint is denoted by M . Subroutine BIAIM

calls subroutine PPICHM to perform the computations involved in equations
(7) through (11).

Capture radius RC is simply the'physical radius R of the target

P
planet if the FTA guidance policy is employed, while for the two B-plane
policies the capture radius is given by

2 u
R, = R 1+ ——PB (12)

where ;lp is the target planet gravitational constant and Ve 1is the

hyperbolic excess velocity.

If the probability of impact PPI does not exceed the permissible impact
probability PI , and if the nominal aimpoint has not been previously

biased, we simply return to subroutine GUIDM (or GUISIM). If the nominal
aimpoint has been previously biased, a velocity correction AVRB required
J

to remove that bias is computed prior to returning. But if PPI exceeds

PI’ an aimpoint bias 6#% and the associated bias velocity correction AVE
J

must be computed. Before describing the details of the biasing technique

it is necessary to define the relationship between AV, and 6[2‘, for

linear midcourse guidance policies. J J

Linear impulsive guidance policies have form
av, = I éx ©(13)
J J j



-
where [ is the guidance matrix and 6X  is the spacecraft state
] &

deviation from the targeted nominal trajectory. (These guidance policies
are discussed in more detail in the subroutine GUIS analysis section.)
Such gdidance policies can be readily generalized to account for changes
in the target conditions from their nominal values. This generalized
version of equation (13) has form

AV, =T, 85X + ¥ U (14)
J J J J ]

where Ug can also be referred to as a guidance matrix. For the purposes
of the BIAIM analysis, we shall assume that 6]7, in equation (14) is
always an aimpoint change in the impact plane. Tﬁus, W will be a 3x2
guidance matrix. Thne derivation of the dﬁ matrix is éuite similar to
the derivation of the [ matrix and will not be presented here. If we
partition the previously éiscussed variation matrix Uj as follows:

U [771 i '72] (15)

then the ¥ matrices for the three midcourse guidance policies are
J .
given by the following equations:

T T -1
(a) 2VBP | llfj = ’72 (n2 772 D (16)
-1
(b)  3VBP : ufJ = ’72 1 0 (17)
0 1
0
(c) FTA : wj = Uz'lAT (18)

If an aimpoint bias were to be removed at time ¢t , the required velocity
correction would be given by ] '

A'\7RB. = 'llfj 6;7 : . (19)

| ]

If an aimpoint bias were to be imparted at time t, , the bias velocity
correction would be given by J

AV = W su, (20)
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(1)
If an aimpoint bias 6l1, had been previously imparted, and if a new
2 ]
aimpoint bias &M, is to be imparted, then the total bias velocity
J
correction would bhe given by

= W - 21
/_\.VBj ; [5,1j 5uj ] (21)

The general statement of the biased aimpoint guidance problem is as follows:
Find an aimpoint l;, in the impact plane which satisfies the impact
J

probability constraint

PPI & P (22)

and minimizes a performance functional having form

T"' =3 S
3o CE - ED K CE - D (23)

- ok o
where MU is the nominal aimpoint and A 1is a constant symmetric matrix
that will be defined subsequently.

The solution of this problem is detailed in the section on biased aimpoint
guidance in the analytical manual. Only the results will be presented here.
The assumption of constant probability density over the target planet
capture area permits us to rewrite constraint equation (22) as

A1u12+ 22, ul,u2+)\2u22 - (24)
where ) 2
¢’ = 2 Mn R, (25)
7 |./l.|%1>:L
and g = Ml ana 7! = )\1 }\,3
uZ A3 AZ

The inequality has been replaced by an equality since the solution can be
shown to lie on the constraint boundary, which, from inspection of equation
(24) is an ellipse centered at the target planet.

. I3 - . » 3 N .
If t. 1is the time of the final midcourse correction, matrix A will be

J :
chosen as a 2x2 identity matrix. The minimization of J is then equivalent
to minimization of the miss distance Iﬁ - ﬁ*| . If t, 1is not the
j ]

3 . . I3 ~ . *
final midcourse correction time, A will be defined as follows:



A= Vv (26)
i+l j+1

Here ¢Q+1 denotes the aimpoint guidance matrix for the next midcourse
J

correction occurring at time tj+1 . In this case the minimization of J
= ]
is equivalent to the minimization of AVRB , i.e., the velocity

i+l

required to remove hias M at time t will by minimized. The

j+l

computation of "’3+1 is based on the variation matrix 77j just as Ufj

+1°
was based on nj . However, n,+ can be computed more efficiently by
J

using the relationship

-1
n. = n ¢ 27)
it R ) P
where ¢j+l,j is the state transition matrix over [tj, tj+1]'

If we define

»>e
]

[

)

then the necessary condition for a minimum is given by

2 2 .
@ Aj-aappu * @A, -a N M, Y @A -aX)nu,

% * * *
e AT - a h o, v A T e, A )+

* * % *
Cay Ay =3k M, YA p v a A, p, =0 (28)

Thus, our problem is reduced to finding ”1 and #2 which satisfy

equations (24) and (28). Since the analytical solution of these equations
proved intractable, a standard Newton iteration technique is employed in

BIAIM which quickly converges to solutions for ;11 and ;12 . The iteration

process iqhitarted with an initial guess defined as the intersection of the
extended U vector and the constraint boundary defined by equation (24).
This initial guess is given by
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0 lul o)

I e P
MZ
(29)

6] * d

!12 = sgn(MZ) — =
x| H1 + 2 A ! + A
| 7 AJRLE

2 2

where ¢ 1is defined by equation (25).

In addition to the previously described iteration process, subroutine

BIAIM also_employs an outer iteration loop which accounts for the depen:“

dence of Qj (equation (6)) on 522_ . The execution error covariance Qj
]

is a function of the total velocity correction at tj , but the total

velocity correction, in particular AVB , depends on 5ﬁj . This coupling
b
is resolved by recomputing 3_ at the end of the previously described

biasing technique and repeating the biasing cycle until the error function
-3

- £ P
PO1 PI 1 ¥ 10

is satisfied. This outer iteration process is not performed, however, if
tj = injection time since at injection equation (6) is replaced by the

equation

and 3' is always zero.
]

Reference: Mitchell, R, T., and Wong, S. K.: Preliminary Flight Path
Analysis Orbit Determination and Maneuver Strategy Mariner

Mars 1969. Project Document 138, Jet Propulsion Laboratory,
.1968.



BIAIM Flow Chart < ENTER )

Initialize iteration counter ITRN and
define guidance policy code IIGP.

NO

AN

J IIGP> 17

: YES

Compute FTA transformation
matrix A

Compute nominal FTA aimpoint 77*
and most recent FTA aimpoint u

Set capture radius RC equal to

the physical radius of planet.

L

Compute ¢, matrix and

o = @-m"

L

Compute nominal B-plane aim-
point II'* and most recent
B-plane aimpoint J7 .

Compute effective capture radius
Rc for B-plane guidance policies.

Compute ¥ matrix and

or = @-m*

|

Write out

R
c

and ¥ .
J

YES Has a bias been previously NO
imparted? |

Write out bias 6,[7

/

Compute velocity correction required

to remove bias [}VRB .

63

NO T ] YES
tj = injection time?

Set A\V._ =20
RB

v

~ %
Set Q. and
[SVN to zero.
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—_

Set AVypor = AVgp + AVy

Call QC@MP to compute execution

i

error covariance Qj = Qj( AVTO

T)'

— ~ %
Write out ZBVRB and Qj .

simulation / error analysis
mode = ?

A\

—

RB’

set /N = AV _+ AV Set AV __ =
A Up O RB A N 4 up
Call P@ICOM tg compute and
write out /L © and PPI for
J
the nominal aimpoint.
YES NO
, PRI & P ;*\\\;7
1/
Set EZ==ZZ *.

Set IBIAS = O .

Will a velocity bias
be actually imparted?

RETURN

YES

NO




YES

t. = time of final

J
midcourse correct

NO

ion?

~
Set A = 1.

Set A\t = tj+1 - tj and call

PSIM to compute the state
transition matrix ¢ (t

[RELE

/

Call MATIN to compute
-1
¢ (t ., t).

st S

/

Compute variation matrix 77j+1°

y

Compute wj+l matrix for the
appropriate guidance policy.

T

Compute A = 1j/j+1 wj+1'

YES

'

/

j\\ IDENS # 1 7

NO

N
b

Write: IDENS @PTI@N
N@T AVAILABLE,

EXIT

Compute constants defining the
elliptical constraint boundary
associated with Jij.
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YES

Write out the equation of the
elliptical constraint boundary.

YES
< ITRN > 0 ?>

NO

Compute and write out the initial

—
guess 11 ©.

\

Initialize Newton iteration counter IKNT.

Compute constants defining necessary
condition for a minimum.

\
Use Newton iteration technique to

determine the i-th iterate

!

Write out ﬁi and 6ﬁi.

|
Set M = ul + 6;1 and

increment IKNT.
<1.?>

a1
Il .

|éui|+|5ﬁ4§_

/

NO
NO
< IKNT =25 7 O
YES

Write: Newton's method did not
converge in BIAIM.

5000



AvbJ'.as = wj 6/7

and write out.

i+l
Write out final iteration u .
V]
i+l %
Compute §uU= U - and

— i+
Store ul L in the XM array.

YES
< t; = injection time? N

NO

Y

Set -1 —_ —
\Y

=NV __ +AV
vp OV YOV

and __ ,

DVpgy =OVpgy +V

bias

Call QC¢MP to compute
Q=% @,
] h TPT

and write out.

Call PPICPM to compute A,
and PPI for aimpoint [ii+l.

Update iteration counter ITRN.

3, N\
<IP¢I-P|/-=PIX10 ) YES
NO
1B {ITRNéSB
NO .
301

1555
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—_— N
SetZBVUP =N\

VUP'

y

Call PPICEM to validate
PPI at injection.

Set QVyp = OVhias°

RETURN




BIAS-1

BIAS Analysis

The actual measurement Yz at time tk is riven by
a
Yk = -Xk + bk M

where -Ik. is the ideal measurement, which would be made in the absence

of instrumentation errors, bk is the actual measurement bias and Vk

represents the actual measurement noise.

The function of subroutine BIAS is to compute the measurcment bias bk

for the appropriate measurement type. The constant biases for all measure-
ment devices are stored in the vector BIA. Subroutine BIAS selects the
appropriate elements from this vector to construct the actual measurement
bias.
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RIAS Flow Chart

‘ ENTER )

Compute the bias vector
for 3 star-planet angle
measurements.

RETURN

BIAS-2

<:: MC@DE = ?;:>>

10,11,12,13
> A

1,2,3,4,5,6,7,8

NO YES
T MCODE even?

Compute the bias for
a range-rate measure-
ment from the appro-
priate station.

S

Compute the bias vector
for a range and range-
rate measurement from
the appropriate station.

RETURN
10

<<: MC@DE = ?

11,12,13

%

Compute the bias for
the appropriate star-
planet angle measure-
ment.

Compute the bias for
an apparent planet
diameter measurement.
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RETURN




BLKDAT Analysis

BLKDAT-1

Subroutine BLKDAT is responsible for setting up constants used in
computing ephemeris data for the gravitating bodies.

The arrays set up by BLKDAT and their definitions are as follows:

Array
CN(80)
ST(50)
SMJR(18)

EMN(15)

PMASS (11)
RMASS (11)
RADIUS (11)
SPHERE(11)
MONTH (12)
PLANET(11)

Definition

Constants defining mean elements for inner planets

Constants defining mean elements for outer planets

Constants defining semi-major axes for planets and
moon

Constants defining lunar elements

Gravitational constants of sun, planets, and moon

Mass of bodies relative to sun

Surface radii of sun, planets, and moon

Sphere of influence radii of sun, planets, and moon

Names of months for output purposes

Names of planets for output purposes

The definitions of the CN, ST, SMJR, and EMN arrays are provided in
Tables 2 through 5 on the following page. The actual constants stored
in those arrays are the ephemeris data listed on the next pages following.

The constants stored in the other arrays are given below.

Body PMASS (AU /day?) RMASS™ RADIUS (AU) SPHERE (AU)
Sun 2.959122083 (-4) 1.0 4.66582(-3) NA
Mercury 4.850 (-11) 1.639(-7) 1.617(-5) 7.46(-4)
Venus 7.243(-10) 2.448(-6) 4.044(-5) 4.12(-3)
Earth 8.88757(-10) 3.003(-6) 4.263(-5) 6.18(-3)
Mars 9.5497905 (- 11) 3.236(-7) 2.279(-5) 3.78(-3)
Jupiter 2.8252(-17) 9.547(~4) 4.7727(-4) .3216
Saturn 8.454 (-8) 2.857(-4) 4.0374 (~4) .3246
Uranus 1.290(-8) 4,359(-5) 1.5761(-4) .346
Neptune 1.5(-8) 5.069(~5) 1.4906 (-4) .5805
Pluto 7.4(-10) 2.501(-6) 4.679(-5) .2366

Moon 1.0921748(-11) 3.696(-8) 1.161(-5) 3.71394 (- 4)

* Truncated from program values
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Array Definitions

W,

11
31
51
71

Constant i Q2 o e M a
Mercury 1 2 3 4 5 6
Venus 9 10 11 12 13 14
Earth 17 18 19 20 21 22
Mars 25 26 27 28 29 30
Jupiter 33 34 35 36 37 38
Saturn 41 42 43 44 45 46
Uranus 49 50 51 52 53 54
Neptune 57 58 59 60 61 62
Pluto 65 66 67 68 69 70
Moon 73 74 75 76 77 78

Table 1. ELMNT Array -- Conic Elements

Conmstant Lo 11 1 139 82 2, 2wy 9,
Mercury 1 2 3 4 5 6 7 8 910
Venus 21 22 23 24 25 26 27 28 29 30
Earth 41 42 43 44 45 46 47 48 49 50
Mars 61l 62 63 64 65 66 67 68 69 70

Table 3. CN Array -~ Inner Planet Constants

C t t . . ~

onstan h i & £ 9
Jupiter 1 2 3 4 5
Saturn 11 12 13 14 15
Uranus 21 22 23 24 25
Neptune 31 32 33 34 35
Pluto 41 42 43 44 45

Table 4, ST Array -- Outer Planet Constants

nS s ~n ~S

Constant 2o & 2y, 25 W W W, W
Moon 1 3 4 5 6

Table 5, EMN Array -- Lunar Constants

G

15
23
31
39
47
55
63
71
79

£

12
32
52
72

£

16
26
36
46

16
24
32
40
48
56
64
72
80

13
33
53
73

14
34
54
74

17
27
37
47

11

15
35
55
75

Table 2.

16
36
56
76

18
28
38

48

12

O~ Ut L

11
13
15
17

17 18
37 38
57 58
77 78

19
29
39
49

13 14

19
39
59
79

BLKDAT-2

SMJR Array

20
40
60
80

10
20
30
40
50

a

15



Mean

Mean

Mean

Mean

BLKDAT-3

Planetary and Lunar Ephemerides

Elements of Mercury

5 7 52

i = 0.1222233228 + 3.24776685 x 10" T - 3.199770295 x 10 ' T

2 = 0.8228518595 + 2.068578774 x 10"2 T + 3.034933644 x 1076 T2
O = 1.3246996178 + 2.714840259 x 10°2 T + 5.143873156 x 10-6 T?
e = 0.20561421 + 0.00002046 T - 0.000000030 T?

M = 1.785111955 + 7.142471000 x 10™2 d + 8.72664626 x 10”2 D?

a = 0.3870986 A.U. = 57,909,370 km

Elements of Venus

i = 0.0592300268 + 1.7555510339 x 107> T - 1.696847884 x 10~ 8 T2
Q= 1.3226043500 + 1.570534527 x 1072 T + 7.155849933 x 10~6 12

2 T 4 1.704120089 x 10°° T?

2

= 2.2717874591 + 2.457486613 x 10~

e = 0.00682069 - 0.00004774 T + 0.000000091 T

2 4+ 1.682497399 x 10~6 D2

M = 3.710626172 + 2.796244623 x 10
a = 0.7233316 A.,U, = 108,209,322 km
Elements of Earth

i=20

2=0

2

@ = 1.7666368138 + 3.000526417 x 10°% T + 7.902463002 x 107 ° 72

5.817764173 x 1078 1°

+

e = 0,01675104 - 0,00004180 T - 0.,000000126 T2

M = 6.256583781 + 1.720196977 x 1072 d - 1.954768762 x 107/ D?

1.22173047 x 10~° p°

a = 1.0000003 A.U. = 149,598,530 km

Elements of Mars

i = 0.0322944089 -~ 1.178097245 x 10-5 T + 2.201054112 x lO'-7 72
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Mean

Mean

Mean

BLKDAT-4

0.8514840375 + 1.345634309 x 1072 T - 2.424068406 x 1078 72

-8 T3

o
n

- 9.308422677 x 10

g
0

5.8332085089 + 3.212729365 x 1072 T + 2.266503959 x 107 T2

-2.084698829 x 10~8 T3

0.09331290 + 0.000092064 T - 0.000000077 12
3

®
fl

5.576840523 + 9.145887726 x 10™° d + 2.365444735 x 10~/ D2

-10 D3

=
L]

+ 4.,363323130 x 10

i

a 1.5236915 AU, = 227,941,963 km
Elements of Jupiter

i = 0.0228410270 ~ 9.696273622 x 1072 T
Q= 1.7355180770 + 1.764479392 x 1072 T

@ = 0.2218561704 + 2.812302353 x 1072 T

e = 0,0483376 + 0.00016302 T

M = 3.93135411 + 1.450191928 x 10™3 d
a = 5.202803 A.U. = 778,331,525 km
Element of Saturn

i = 0.0435037861 - 7.757018898 x 1078 T
2 = 1.9684445802 + 1.523977870 x 1072 T
W= 1.5897996653 + 3.419861162 x 1072 T
e = 0.0558900 - 0.00034705 T

M = 3.0426210430 + 5.837120844 x 10°+ d
a = 9.538843 A.U. = 1,426,996,160 km
Elements of Uranus

1 = 0.0134865470 + 0.696273622 x 10"° T
2= 1.2826407705 + 8.912087493 x 1073 T

@ = 2.9502426085 + 2.834608631 x 10°2 T



Mean

Mean

Mean

g ©

BLKDAT-5

e = 0.0470463 + 0.00027204 T

M = 1,2843599198 + 2.046548840 x 10-4 d

a = (19.182281 - 0.00057008 T) A.U. = (2,869,640,310 - 85271 T) km

Elements of Neptune

{ = 0.0310537707 - 1.599885148 x 1074 T

Q= 2.2810642235 + 1.923032859 x 1072 T

W = 0.7638202701 + 1.532704516 x 10”2 T

e = 0.00852849 + 0.00007701 T

M = 0.7204851506 + 1.033089473 x 10”4 4

a = (30.057053 + 0.001210166 T) A.U. = (4,496,4§0,000 + 181039 T) km

Elements of Pluto

i = 0.2996706970859694

Q= 1.1914337550102258

@ = 3.909919302791948

e = 0.2488033053623924

M = 3.993890007 + 0.6962635708298997 x 10™

a = 39.37364135300176 A.U. = 5,890,213,786,146,730 km

Elements of Moon

i = 5.1453964°
= 259.183275° - 0.0529539222d + 0.002078 T° + 0.000002 T3
= 334.329556° + 0.1114040803d - 0.010325 T2 - 0.000012 T>

L = 270.434164° + 13.1763965268d - 0.001133 TZ + 0.,0000019 T3
a = ,00256954448 A.U.

0.054900489

[
n

13
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Note 1:

Note 2:

Note 3:

Note 4:

BLKDAT-6

The above elements are referred to the mean equinox and ecliptic
of date except for Pluto.

The elements for pluto are oscillating values for epoch 1960
September 23.0 E.T, = J.D. 2437200.,5

The time interval from the epoch is deuoted by T when measured
in Julian centuries of 36,525 ephemeris days, by D = 3.6525 T
when measured in units of 10,000 ephemeris days, and by d =
10,000D = 36,525 T when measured in ephemeris days, Times are
measured with respect to the epoch 1900 January 0.5 E.T. = J.D.
2415020.0.

Angular relations are expressed in radians for planets and degrees
for moon.

References: (1) Space Research Conic Program, Phase I1II, J.P.L., May 1969

(Planetary constants)
(2) The American Ephemeris and Nautical Almanac - 1965, U.S.

Government Printing Office, Washington, p. 493 (Lunar
constants)



CAREL-1

CAREL Analysis

CAREL converts the cartesian state (position and velocity) of a massless
point referenced to a gravitational body to the equivalent conic elements
about that body.

Let the cartesian state be denoted ;j v
stant of the central body be pu .

and let the gravitational con-

The angular momentum constant ¢ 1is
c =T xV (1)

Fal
The unit normal W to the orbital plane is

ﬁ=r:" | (2)

The semilatus rectum p 1is

C
P = — 3
M ( )
The semi-major axis a 1is

a = —I 4)

Thus a >>0 for elliptical motion, a< 0 for hyperbolic motion. The
eccentricity e 1is .

e = 1 - £ (5)

Thus e <1 for elliptical motion, e > 1 for hyperbolic motion. The
inclination of the orbit i is computed from

N

cos i = Wz (6)

The longitude of the ascending node @ 1is defined by

=
]

tan . (7)

>
<
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CAREL-2

The true anomaly f at the given state is computed from

Now define an auxiliary vector Z by

2 =fv .- 7 (9)
c c
Pal A
Then P , the unit vectoer to periapsis, and Q , the in-plane normal
to P , are defined by
P = T cos f - Z sin f : (10)
Q@ = Tsinf + 2 cos f (11)
where T =% The argument of periapsis w is then computed from
T
Fa)
P
tan w = £ (12)
"~
Q
z

The conic time from periapsis t is computed from different formulae
depending upon the sign of the sgmi-major axis. For a >0 (elliptical

motion)
a3
.t = V '7:‘ (E - e sin E)

Vil - e2 sin f

e + cos f

cos E = sin E = (13)
1 + e cos f 1+ e cos f
For a<0 (hyperbolic motion) the time from periapsis is
3
t = 2. (e sinh H - H)
P M
H e - 1] £
tanh - = tan = 14
an 2 e + 1 o 2 (14)

Reference: Battin, R. H., Astronautical Guidance, McGraw-Hill Book Co.,
New York, 1964.
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CASCAD-

CASCAD Analysis

CASCAD approximates the state transition matrix ¢f ° defining state
b

perturbations over an arbitrary interval [to, tf by recursively

1

computing state transition matrices over intervals [to, tl] s [to, tz] se e

oo o

The recursive formula for the k+l1 iteration based on the k-th iteration
is given by

¢k+1,o = wk+1,k ¢k,o ®

where Uﬁr+ Kk is the state transition matrix for the kt+l-st interval
3
[tk’ tk+lj

The time interval Atk+1 = tk+l - tk is determined by the position vector

-
T

X of the spacecraft relative to the target planet along the nominal n-body

trajectory at the time t, . Then if R denotes the radius of the sphere

SOoI1
of influence of the target planet the time interval is defined by

= i <
Atk+1 Atplanet if T = RSOI

= . . f "
At if 1, >RSO

and the n-body nominal
sun

I
trajectory propagated over Atsun does

not intersect the SOI.

= AtSOI if T, >'RSOI and the n-body nominal
trajectory intersects the SOI after the
time interval t h
A gop Vhere AtSOI Atsu
where Atplanet and Atsun are input parameters. For the last interval
a partial step may be required so that At = t_ - t
n £ n-1
The ¢&+1 K matrix may be computed by either of two models. 1In the patch
b —_
conic model the position and velocity vectors Rk,‘VL of the spacecraft
relative to the dominant bod the sun if t = t
y ( u A Wl A sun °F AtSOI’ the

target planet if Atk+l = Atplanet) at the time t, 1is used to define a

a .
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CASCAD-2

conic with respect to the dominant body and the Danby matrizant over the
given interval defines W,., . (CONC2) .
b

—_— ewn
In the virtual mass model the position and velocity vectors Rk’ Vk are

computed relative to the virtual mass and the gravitational constant used
is that of the virtual mass magnitude at the time tk. The Danby matrizant

corresponding to this conic then is used to compute Y (CPNC2) .
P K+, k
b

The recursive process copntinues until the state transition matrix over the
entire interval {to’ th is determined.

Reference: Danby, J.M.A., "The Matrizant of Keplerian Motion," AIAA
Journal, vol 2, no 1, January, 1964,
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CENTER Analysis

Let the state vector of position and velocity of the gravitating bodies
(excluding the moon) in heliocentric ecliptic coordinates be denoted
p;> vy at some reference time. Let the index of the earth be iE. Then

the coordinates of all bodies (excluding the moon) relative to the earth
is

—_— .
T, = > -‘51 i=l,n , 1f1,
ot )
— — -— .
VT W Oy i=l,n , ifi

Let the position and velocity of the moon relative to the earth be
—

denoted T , V. .
lM lM

Define the radius vector to the center of mass (in earth ecliptic coordin-
ates) by

n - n
1 = =
RCM - Z MoTS M Z u, 2)
i=1 i=1

Its velocity relative to the earth may then be found by differentiation.

v 1 3 v
e~ W L MYy (3)
i=]

The coordinates of all gravitating bodies relative to the center of mass
may then be computed

"

X R

i i CM
{4)

—_— . —

\Y = vy, -V

i i
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CONC2 Analysis

CONC2 is responsible for the computation of a state transition matrix
about a conic trajectory using the Danby matrizant analytic formula,

Danby has shown (see Reference 2) that the state transition matrix (or
matrizant) has a particularly simple form if written in the orbital plane
coordinate system. The state transition matrix ¢ defined by

6xf = @ (tf, to) 6Xo (1)

where dxf, 0x refer to perturbations about a conic trajectory at time
o

tes b, respectively may be written in the orbital plane system

y -1
d(t_, to) = M(tf) M

; (t,) @)

where M(t), M-l(t) may be computed from the following formulae

M o= X Y&-h 0 2X-3TX YY 0
Y -xXk 0 2Y-3TY -YX-2h 0
0 0 .Y 0 .0 X
X YYX 0 -%-37% ¥ + ¥ 0 (3)
¥ -%2-xX 0 -¥-371% -X¥-YX 0
L0 0 Y 0 0 -X
ML= Ayt (%)

where X,Y,i,?,i,? are evaluated at the time t
h is the angular momentum constant
T 1s the time interval from t to some epoch (periapsis)

and A = diag ( a/y, a/yh, 1/h, a/y, a/uh, 1/h) (5)
0 -1 . s

Thus to use the Danby formulation one must Cetermine the transformation
from the reference frame to the orbital plane coordinates, compute the
values of the quantities X,Y,X,Y,X,Y and h and 7T at the times t

t
O’
and then use the above equations.

f

Let the initial state of the conic be denoted T, V, the gravitational

force f, and the time inerval At. Then the unit vectors P in the
direcgioquf periapsis, W in the direction of the angular momentum vector,
and Q=W x P defining the orbital planpe coordinate system may be computed
by the following conic equations
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h = -fxv (7)
ﬁ - x vV (8)
h
f = ?.7 (9)
v
2
= b (10)
P u
a = T | (11)
2 - rvz/#
e =3V1 - P/a (12)
cos f = R X sin £ = LI (13)
er ue
7 = Ivy-LI¥ (14)
“h h
A Ed . -
P = cos f& - sin f Z (15)
r
6 = gin f f + cos £ Z (16)
£ = < (17)
2
r

The transformation matrix from the original ¥, V system to the orbital
plane system may then be written

'ﬁ] _ (18)

T=['15§6

‘.

Let the true anomaly at the pertinent time (to or tf) be denoted f .

Then the quantities required in (3) are written

X
X

X

]

r cos £ Y = r sin £
$cos f-rfsinf Y = ¥ sin £+ rf cos £ (19)
_HX Yy = - HY
3 3
r r

Having computed the state transition matrix ) corresponding to the
orbital plane system by equations (2), (3), (4), it is an easy task to
convert it to the normal reference system

= TpT (20)
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References: Battin, R. H., Astronautical Guidance, McGraw-Hill Book Co.,
New York, 1964,

Danby, J.M.A., Matrizant of Keplerian Motion, AIAA J., vol. 3,
no. 4, April, 1965,
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CONC2 Flow Chart

ENTER

Fa AN Y
Compute P, Q, W, and
transformation matrix T

<,,

Compute T;» 'rf, Compute T,, T,
and ff (Kepler and ff (Kepler
equation) for equation) for
ellipse. hyperbola,

Q

ompute X,Y,X,Y,i,?,
(ti), M-l(tf), and 9P .

=

Compute @ = TP T .

RETURN

143



144

CONVRT-1

CONVRT Analysis

Geocentric equatorial position and velocity components are related to geo-
centric radius, declination, right ascension, velocity magnitude, flight
path angle, and azimuth through the following equations:

X

e

[]
Z

r cos ¢ cos ©
r cos ¢ sin 6
r sin ¢

v (sin T cos ¢ cos 6 - cos 7 sin ¢ sin 6 - cos T
cos ¢ sin @ cos 8)

v (sin T cos ¢ sin @ + cos T sin @ cos 8 - cos T
cos g sin ¢ sin @)

v (sin T 8in ¢ + cos T cos ¢ cos @)

The definitions of pertinent quantities are apparent in the following

figure.

N v
4 \~\\
~ g T
~
~
~
~
¢
r

equator
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COPINS Analysis:

COPINS determines the impulsive correction and time required to insert

from an approach hyperbola into a coplanar ellipt;gfl orbit., The approach
hyperbola 1s specified by a planetocentric state T, ¥ at a decision time
td. The desired elliptical orbit is prescribed by Input parameters a, e,

Dw where a and e are the semi-major axis and eccentricity of the
desired ellipse and AW 1is the angle (measured counter clockwise) from

the hyperbolic periapsis to the periapsis of the desired orbit. The
gituation is {llustrated in Figure 1.

n

AQ

o
Y

N

Figure 1. Approach Hyperbola and Desired Orbit

The planetocentric ecliptic state T, vV at the time of decision ty 1is

first converted to Keplerian elements (aH, ey, ip, H’SQH’ tHd) via sub-
routine CAREL where thg is the time from periapsis (negative on the approach

ray). The angle f£f_, between the hyperbolic periapsis and the approach
A
asymptote S 1s computed from

cog £, =

o [

0 < £,¢ 90° ’ (1)

Thus the angle w between the hyperbolic periapsis and the desired elliptical
periapsis is given by

w=Ddw (2)

The hyperbola and ellipse may therefore be described in the PQ plane by
standard conic formula, specifically, '
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(3)

E 1+ e cos (9 - w)

A
where © 18 measured counter-clockwise from P and Py Py 2re the semi-

latus rectum of the hyperbola and ellipse respectively, Obviousyg %f EP*
angle of intersection 6% is known, the states on both conics (z ", vy )
and ( ;.*, ;}*) may be computed from conic formulae and the desired impul-

sive correction is given by

— — ke —) .
Av Ve Vi (4)

*

Likewise the time from periapsis to the intersection point t may be
computed using hyperbolic formula and therefore the time from decision to
execution is given by

Atzt*-td (5)

Thus the coplanar insertion problem reduces to the determination of the
¢
optimal angle © for the impulsive maneuver.

From (3) the values of 6 for which r, = r; are glven by

- + \/
cos @ = __xl_"'__z—_iul_)_. (6)
y2 + z
where
¥ = Py Py
y = pH eE cosWw - pE eH 7
z = pH eE sinw

D= y? 42 o y2

i

1f the discriminant D= (0 there are at most two real non-extraneous
solutions 91,92 such that rE(G) = rH(Q). Note that the angle € may

not lie in the region inside the approach and departure asymptotes. If

there are two solutions, both Av 's are computed by (4) and the minimum
Av transfer is selected.

146



COPINS-3

If D<O0, the applied hyperbola and the desired orbit do not intersect and
there 1s no impulsive transfer between the two conics. In such a case the
desired elements ap and e, are modified to determine the ''best' tangen-

tial solution possible. Three different modifications are tested:

(1) Vary r while holding rp at the desired value.

(2) Vary r, while holding r_, at the desired value,

a

(3) Vary ap while holding ep

The three modification schemes are illustrated in Figure 2 where the original
nonintersecting orbit is shown by the broken lines.

at the desired value.

a. Modify T b. Modify rP c. Modify a
Figure 2. Candidate Orbit Modifications

It is desired to modify the "a" and the "e" of the desired orbit to achieve
the tangential configurations. From (6) it 1s obvious that a necessary
condition for a tangential solution is given by D=0. Using (7) D may be
written

2 2 2
D = - 1) + -
Py (eE 1) Pr b + 2pHpE cpper
2
where b = e -1
H
¢ = 2pye, cosw (8)

where it is observed the approach hyperbola is fixed and it is desired not
to vary the w of the desired ellipse so that subsequent apsidal rotations
are avoided.
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Modification Option 1: Rewriting (8a) in terms of a and rP leads to

2 L2 - 2
a’D = (4 rp b+ 4 rp Py 2 rp c) a
+ (-2 p2 r ~-4r1r b-20p r2 + 3 r° ba
H p H p
2 2 4 3
- 9
+ (pH L + T b-c¢ r ) (9)

Now if D 1is set equal to O, rp held at its desired value, and the resulting

quadratic solved for '"a", the solution will correspond to the tangential
solution which holds rp constant. If a=<0 or imaginary, the solution

is disregarded. The modified eccentricity is of course defined by

r
e = 1-2 (10)
a

Modification Option 2: Rewriting (8a) in terms of a and ra leads to

20 2 2
a“D 4 r b+ 4 r, Py + 2 r, c)a
2 3 2 2
+ (-2 Py T - 4 r, b~ 2 py r - 3 r cla
2
+ (pH ri + rZ b+ ¢ rZ ) (11)

For computational purposes the similarity between (9) and (11)'may be

exploited. Again setting D = 0 and holding r, at its desired value,

the value of "a" may be determined which specifies the tangential solution
holding r, constant. Having determined a realistic value of "a'", the

corresponding eccentricity is given by
Ia
a

e =

-1 (12)

Modification Option 3: Rewriting (8a) in terms of a and eE leads to

2 2 2
D (d"b)a” + (2pHd - cd eE)a - de

d = (1~ eé ) (13)

Setting D = 0 and solving for "a" while holding ep at its desired value

then defines the option 3 solution.
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To determine the '"best" modified orbit from the three candidate options
a rather arbitrary scheme is used. A scalar error is assigned to each
option according to a weighting factor and the difference between the
desired and achieved values of the periapsis and apoapsis radii:

Ei = wi ( l Ara, + ’Arp! )

where the scalar factor Wi is set to 1,2,3 respectively for the three

options. Thus the preferred strategy is the one which requires a correction

only at apoapsis while the least desired scheme requires subsequent corrections
both at periapsis and apoapsis.

Having determined orbital elements that necessarily lead to a tangential '
solution, (6) may now be used to compute the angle of intersection 0 .
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COPINS Flow Chart ENTER

Set Nominal values of flags: IEX=IOPT=0, NSQLS=1

Compute elements of hyperbola at time of decision
(CAREL) and record.

Compute coefficients X,Y,Z of quadratic equatien
defining cos 6 (eqns 6,7) and discriminant DISC

DISC=7? — 250

<0

Prepare for tangential solution modifications by
setting IOPT = 1, NSOLS = 3, and compute constants
B,C,D for tangential solutions (eqn 8).

105
ISOL = ISOL + 1
=34
=4 ———>(500
Modify rp solution. Modify r, solution,
Set s =r1,, i=-1 " |Set s =7r_, i=+1
\
: Modify "a" solution. Compute

Compute coefficients, AA, BB, .| coefficients AA, BB, CC of

CC of quadratic in "a' quadratic in "a'.’

defining tangential solution.

\
Compute discriminant DISK of quadratic
defining "a'" of tangential solution.
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<0

DISK=?

=20

Set
¢ IS

Determine two candidate
solutions

COPINS-7

Determine e

corresponding to a,

e <0
e >1
e 0
Set € = 10%°
e >1 ISOL
0<exl
105
Compute X,Y,Z, DISC
for tangential solution.
Solve quédratic for cos 6.
: >
1
<]cos e ' = z} 500
<1
25
Set = 1077,
°t €1soL

of 6:

Determine principle value

0 <0 <71.

v>@
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500

Determine radius at interscction on
hyperbola T, and ellipse T, o
3

Compute state T;, V;» and time

t on hyperbola and state on

n
ellipse T,, V, at intersectionm,

i

Compute insertion velocity and time
AVISOL =Ve -V,
8trsoL = 'h ~ p

ISOL

il

Choose ihdex MIN of minimum
Set AV = .A'Vhl

N
Ae = Aty
' Y
_ 25
If eMIN = ,5x10 or At <0

Set IEX = 1

RETURN

250
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DESENT Analysis

DESENT computes a correction to an initial velocity by the steepest
descent or conjugate gradient techniques for use by TARGET.

The technique used is determined by the value of METHOD. DESENT takes n
steps in the conjugate gradient directions before rectifying by making a
steepest descent step where n = METHOD - 1 . Thus if METHOD = 1, all
steps are taken in the steepest descent direction.

—
Let the current iterate initial state be denoted r, ;}. Let the scalar
error of the auxiliary parameters corresponding to this state be denoted € .
Let the perturbation size for the sensitivities be dv

The current gradient g; is computed by numerical differencing. For the

k~th component of g; the corresponding component of velocity is perturbed
by dv
v v+ d 8 ' (1)
v = v v
P Sk O’ 631(]
The initial state (3& ;; ) is then propagated to the final stopping

conditions. Let the auxiliary parameters of that trajectory be denoted «

The error associated with the perturbed state is then

ep=’ﬁ"<3;-?*> )

- *
where W represents the weighting factors and 3 are the desired target

conditions. The k-th component of the current gradient is then

g, = —t—— (3)

E; = gc steepest descent step
2
_ |gC| —_ =) . N
= > pp + 8, conjugate gradient step %)
|
P

where the subscript ¢ refers to a current parameter, p refers to a
previous-step parameter.
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The unit vector in the direction of the next step is then given by

(5)

L
o IO'UL

c
The directional derivative of the scalar error in the the direction ﬁ; is

- D
d = ¢ . q (6)
C C

The nominal step size h 1is computed from a linear approximation to null
the error :

- €
h=-_—d' (7)

The initial state corrected by this nominal correction is then propagated
to the final stopping conditions and the resulting error € computed.
The three conditions

y (o)
y (h)
y' (o) (8)

may now be applied to the formuli of a parabola vy - é* = a(x - h*)2 to
predict the optimal step size h yielding the minimum error ¢ *

il
o ompm

b dn 2 ©)
2(dh + € - € )

The correction for the current is then given by

Av = n* i‘g (10)

Reference: Myers, G. E., "Properties of the Conjugate Gradient and Davidon
Methods', AAS Paper 68-08l. Presented at 1968 AAS/AIAA Astro-
dynamics Specialist Conference, Jackson, Wyoming.



DESCENT Flow Chart
‘ ENTER ’

Set KOMP = 0, set up accuracy
level, perturbation Av, and .
save nominal auxiliary values Q.

Set up ISP2, ICL2 Flags
based on ISTOP flag.

O,
O

KOMP = KOMP + 1

Call VMP to integrate tra-
jectory to stopping conditions.

DESENT-3

Did trajectory miss SOI i ‘;7 = ;J- A
and ISTOP # 1 AV (KOMP) =

NO

Call TAROPT(3) to compute and
ESpre trajectory target parameters
a , and auxiliary parameters o

Do target parameters T
satisfy tolerances? P

NO

Compute error of component €
— — __A*
ek=w-(a_a)

and comp of grad = 8, = £k

YES

-—

(KOMP)
v (KOMP) /4

<

IEND =

1

— <
QKOMP:NOPAR ) >®

RETURN
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c

\

YES Does IT = 1 or NO
IT = 0 (mod KREK)?

np=

\

Be P. = P, t 8

Compute direction E; of correction

- P
pC

Compute directional derivative DD
DD = grad €.q,

v

Compute nominal size of correction
h = € /|pD}

Integrate nominally corrected state
(VMP) and call TAROPT to compute
auxiliary values to generate nominal

error € .

Compute optimal step size h*
by parabolic fit.

Compute correction AV = h¥ ;c .

Update parameters for next iterate
IT=IT+1

7 -7

le,l =1 &,

RETURN

DESENT-4
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DIMPCP Analysis

Subroutine DIMPCP converts the actual probe target parameters of
declination 8§ and right ascension o of the trajectory impact point
on the planet into the auxiliary target parameters of equivalent
B*T and B°R. To do so it assumes the direction of the hyperbolic
excess velocity and the energy of the trajectory are known so the
S, T, and R* in the ecliptic frame and the semimajor axis, a, of
the approach hyperbola are available as inputs. To complete the
specification of the probe impact point, the subroutine also re-
quires the radius, r, of the planet at impact as well as the trans-
formation, L, from the inertial ecliptic frame to the coordinate
system to which the right ascension and delcination are referenced.

Derivation of the necessary equations is relatively straightforward
once the appropriate variables are defined. Let p be a planet-
centered unit vector in the direction of the impact point. Then,
in the inertial ecliptic system,

cos o cos §
p = LT sin o cos 6 . (1
sin ¢

Define ¢ to be the unique angle on the closed interval from 0 to w
between p and S (see Fig. 1). Finally denote the true anomalies
of p and S by 6 and GS, respectively.

First DIMPCP determines whether the desired impact point is indeed
targetable. It is apparent from Figure 1 that

lel = ¢ - &g (2)

It is further obvious from the figure that the approach hyperbola
will intersect the planet surface at true anomalies of both +6

and -9, Obviously only the negative true anomaly impact points are
physically realizable since the trajectory stops at the filrst inter-
section with the planet. Hence DIMPCP requires the

es < ¢ . (3

*
For definitions of these vectors see the analysis section of
the subroutine STIMP.
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Trajectory
Asymptotes

Trajectory
Corresponding
to Extraneous
Cl’ C2 Values
e
7~
' .
Planet—
Surface

Desired
Trajectory

B-Plane

e

‘"“<fjgyrg_1~mpeometry of Probe Impact

In other words, there is a circular region on the planet surface
of radius Os about the outgoing pierce point of the S vector inside

of which no probes can be targeted. If p falls in this untarget-
able region, DIMPCP repositions the desired impact point direction
to p', the nearest acceptable direction in the plane determined

by S and p. Analytically this is done by expressing p' as a linear
combination of p and S; that is

' =
] d; o # d2 S . (4
Then the constraints
[le'l] =1 (5)
and
p o p' = cos (8 - 9) (6)
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are applied. These result in the following pair of simultaneous
equations for d, and d,:

1 2
= 42 . 2
1=dg+2 d, d, cos ¢ + d2 (7
cos (es - ¢) = dl + d2 cos ¢ . (8)

Solving (8) for dl in terms to d2 and substituting into (7) pro-

duces the quadratic

1 - cos? (GS - ¢) = d% (1 -~ cos? $) . (9

Assuming | cos ¢l # 1 leads then to the conclusion that

1 - cos? (SS - ¢)
d2 = + : . (10)
1 - cos? ¢

Figure 2 geometrically interprets the two roots of equation (9)
given by (10).

> o' (Extraneous)

Figure 2 Geometrical Interpretation of the Two dz—Roots
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Clearly the d2 value corresponding to the positive radical is ex-

traneous since it produces a p' nearer § than p. Hence

1 - cos? (65 = ¢)
d, = - (1)
1 - cos? ¢

1 - cos? (85 - ¢)
= cos (GS - ¢) + cos ¢ . (12)
1 - cos? ¢

[N
|

The exceptional case that cos ¢ = =1 cannot occur since then ¢ = =
and hence GS < ¢. However, cos ¢ can equal 1. In this case p

and S are coincident so p' cannot be taken as a linear combination
of the two. Further, no particular point on the boundary of the
circular untargetable region recommends itself. Hence DIMPCP ar-
bitrarily puts p' in the S-T plane as

p' =S cos 6, + T sin 6 (13)

S S

On repositioning p, DIMPCP prints out the right ascention a' and
declination §' of p' making use of the formulae

o' = tan~!} (pé/pi) (14)

6'

sin—! (pé) . (15)

Having repositioned p, if necessary, DIMPCP calculates the magni-
tude of the desired B. It can readily be shown that

1
cos B n (16)

[

(17)

B = |a \/e2 -1 . (18)

sin es
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Recall the polar equation of the near-planet conic trajectory, namely

1 i(i ;ozzé (19)
Substituting equation (2) into (19) and rearranging gives
a(l - e2) =r [1+ e (cos ¢ cos eS + sin ¢ sin eS] . (20)
Using equations (16) and (17) in (2) yields
a(l -e2) =1 (L+cos ¢ + Ve2 =1 sin ¢) . (21)

Eliminating the eccentricity from equation (19) by means of (18)
produces a quadratic in B, that is,

-B2/a =t (L + cos ¢) -rB/a . (22)

Applying the quadratic formula to (20) gives

B = [r sin ¢ i\/fz sin? ¢ - 4 ar (1 + cos $) 1
2

(23)

Since 1 + cos ¢ 2 0 for all ¢ and a < O for hyperbolic approach
trajectories, the root corresponding to the negative radical in
(21) produces a negative magnitude of B and hence must be extrane-
ous. Thus

_ [r sin ¢ + \/r2 sin? ¢ - 4 ar (1 + cos ¢)]

B 7

(24)

One can further conclude from the radicand of (23) that a solution
for B will exist if, and only if,

4 ar (1 + cos 8) < r? (1 - cos? ¢) , (25)
or equivalently if cos ¢ # - 1
ba

cos ¢ <1 - (26)
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Since a is negative for a hyperbolic approach, this last inequalit-
is always true. Further if cos ¢ = -1, B = 0. Hence equation (22)
always has the unique nonnegative solution given by (24).

Next DIMPCP computes the direction of B. Since the desired B must
lie in the plane determined by S and p, there must exist real num-
bers C, and C, so that

1 2
B/B = Cy S + C,o 27
Applying the constraints that ||B/B|| = 1 and B+S = 0
respectively
2 2 _
Cl + 2 Cl C2 cos ¢ + C2 1 (28)
Cl + C2 cos ¢ =0 . (29)

Solving these two equations  simultaneously for a and b gives

@]
1

) + 1/sin ¢ (30)

€

T cot ¢ . (31D

The negative C2 root and the corresponding positive Cl root are ex-

traneous since they place B on the side of S opposite to p as shown
in Figure 1. Substituting the correct pair of roots from (30) and
(31) into (27) gives the direction of the desired B as

B/B = (p - S cos ¢)/sin ¢ . (32)

Clearly in the exceptional case¢ that sin ¢ = 0, the trajectory

passes through the center of the planet coinciding with its asymptote
so that B = 0.

Finally DIMPCP calculates the desired BT and B°R coordinates now
that B is known:

BeT = Bl '1‘1 + B2 'I'2 (33)

BeR = Bl R1 + B2 R2 + B3 R3 . (34)
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’ DYN@-1

DYN® Analysis

Subroutine DYN® evaluates the assumed dynamic covariance matrix Q

over the time interval ¢t = tk+l - tk if ICADE = 0. If IC@DE = 1

the actual dynamic noise covariance matrix Q' is evaluated over the
same interval. In either case the dynamic noise covariance matrix
is assumed to have the form

Q = diag (% K; At*, % K, ot", % K3 At", Ky At?, K, At?, K3 Ot?)

where 'dynamic noise constants K;, K,, and K3 have units of km? /s,
To compute the actual dynamic noise covariance matrix Q', we simply
replace Ky, Ky, and K3 with the actual dynamic noise constants

K{, K}, and K}, respectively.
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DYN@S Analysis

Subroutine DYNZS performs two functions. It's first function is
identical to that of subroutine DYNZ, namely, to evaluate the dynamic
noise covariance matrix § over the time interval ANt = t -t

[

k+1 k’

The second function of subroutine DYNZS is to comnute the actunal
dynamic noise W1 which represents the integrated effect of

unmodelled accelerations acting on the sp:cecraft over the time
interval Nt. Actual dynamic noise is used elsewhere in the
program to compute the actual state dev%a%lons of the spacecraft
from the most recent nominal trajectory.

I def w T, wh
7 we define w = w . w , Where
k+1 [ rk+1 vk+l ]
57 and 23 denote the contributions of unmodelled
r v
k+1 k+1

accelerations to spacecraft position and veloc1ty, resvectively, and
if we assume constart unmodelled acceleration a, then

"y 2 (t £t )% v o (¢ ) ©
w = 2 = + W - +

rk+1 > k+l k vk k+1 k rk
z)) — ——

vk+1 = 2 (tk+l - tk) * a)vk

The program permits the entire trajectory to be divided into three
"arbitrary consecutive 1ntervals, over each of which a Aifferent con-
stant unmodelled acceleration a can be specified.

These intervals are
represented by (to, tl) (tl t2). and (t

>0 f), where t0 is the
initial trajectory time and tf is the final trajectory time. If t,
and tk+1 occur in different intervals, then the above eguations must

be evaluated piece-wise over ( tk‘ tk+1 ) .
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DYN@S Flow Chart

ENTER

Is Q or & to be \
computed? J

DYNOS-2

—
w

at tk'

. . . —_
Initialize W to zero

70 YES St >t
A k

1

D,

No

< 41>ty ? >

YES

Compute dynamic noise
covariance matrix Q .

RETURN

No

I =
At =

b1
Ic=1

1 (lst interwval)

-t

k

Compute Atz .

Compute actual dynamic
noise @ at the end of
the interval At ,

( 1c= 2 N
N\ /
3 4
I I =2 I =3 I =2
At=tk+1 -t At=t2-t1 At:tk+1‘ At=t2—tk
IC =1 IC = 4 IC =1 IcC =1
\

159



Q ~ DYNOS-3

YES ?
: < tk>t2 ? )

No
\/ \\ YES
< St >t D
No
I = 2 (2nd interval) @
At =t " 5
IC =1 :
I = 3 (3rd interval
At =t "%
IC = 5

P\ ) ‘

' L YES B
C ey >6,7 / |
No '
- ()

I =1 (1st interval)
At = t1 - tk I =1 (1st interval)
IC = 2 At =

IC =

tl - tk
3

40
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EIGHY Flow Chart

< ENTER ’

/

Call JACPBI to compute
eigenvalues and eigenvectors
of the input matrix.

Write out eigenvalues,
their square roots, and
eigenvectors.

YES

— 2 7\
(IHYPI 27)

NO

Call HYELS to compute and

write out the 10 hyperellipsoid
associated with the input
matrix.

YES

< IHYP1 = 1 ?4)}*

NO

Call HYELS to compute and write
out the 30 hyperellipseoid
associated with the input
matrix.

RETURN

EIGHY-1
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ELCAR Analysis

ELCAR transforms the standard conic clements of a massless point referenced
to a gravitational body to cartesian position and velocity components with
respect to that body.

Let the gravitational constant of the body be denoted 4 and the given
conic elements (a, ¢, i, W, &, £ ). The semilatus rectum p is

2
p = a (1 - e") (1)
Then the magnitude of the radius vector is given by

_ P
ro- 1+ e cos £ 2)

The unit vector in the direction of the position vector is

u_ = cos (wo+ f) cos § - cos i sin (w + f) sin Q2
uy = cos (w+ f) sin & + cos i sin (w + f) cos 2 (3)
u = sin ( w+ f) sin i

z

The position vector Tt is therefore

T = rQ 4)

—h

The velocity vector v is given by

x / f? [(e + cos ﬁ)(-sin wcos{l -cos i sin Q cos w )

~sin £ (cosw cos @ ~cos i sin Q sin w )]

Vy = ,/ f} [(e + cos f)(-sin o sin @ +cos i cos  cos w )

-sin f (cos w sin Q +cos i cos Q sin ag)]

. v/ Kl [(e + cos f) sin i cos w-sin f sin i sin w] (5)
P

The conic time from periapsis t_ is computed from different formulae
depending upon the sign of the sgmi-major axis. For a >0 (elliptical

motion)
3
tp = 2. (E - e sin E)

K

<
I

<
]
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ELCAR~2

cos E = e + cos f Vi1 - e2 sin f

in E = (6)
1 4+ e cos £ st 1+ e cos £
For a <:() (hyperbolic motion) the time from periapsis is
3
t = 2 (e sinh H - H)
P M
H e -~ 1 f
tanh — = an =
an > . 1 tan > (7
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EPHEM Analysis

EPHEM first determines the current value for the mean anomaly of the

pertinent body. The mean anomaly M 1is computed from

M= My + Mt + M2t2 + M2t3 for inner planets

M= MO + Mt for outer planets

M= L, +Lt+ L2t2 + L3t3 - @(t) for the moon

EPHEM~1

Kepler's equation M = E - e sin E is then solved iteratively to determine
the eccentric anomaly E . The subsequent computations are basic conic

manipulations:
p=a(l-ed)

r = a(l - e cos E)

Y- 42_%
r a

cos f= P XL sin £ = VI - cos2 f sgn(sin E)

cos ¥ = E sin ¥ = VI - cos? sgn(sin E)

The cartesian position and velocity relative to the reference body are then

—_ A A A
r—rxi + ry_] + rzk

r =r« cos{w+ f) cosf - r sin(w+ f) sin £ cos i
r, = cos(W+ f) sinf2 + r sin(w+ f) cos & cos i

r =1 sin(w+ f) sin i

v

]
=<

[(v/} xT ) cos? +‘?sin7]

A A A A
where w = (sin i sin 2 ) i - (sin i cos 2 ) j + (cos i) k



EPHEM-2

When option 1 is used, the reference body for all the planets is
the sun while the reference body for the moon is the earth.

When option 2 is used with heliocentric inertial coordinates, the
cartesian state of the earth is added to the cartesian state of the
moon to convert the state of the moon to heliocentric coordinates
before storing that state in the F-array.

When option 2 is used with barycentric inertial coordinates, sub-
routine CENTER is called to convert all elements to barycentric
coordinates before storing in the F-array.
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ERRANN Analysis

Subroutine ERRANN controls the computational flow through the basic
cycle (measurement processing) and all events in the error analysis/
generalized covariance analysis program.

In the basic cycle the first task of ERRANN is to_control the gen-
eration of the targeted nominal spacecraft state xk+l at time

tes K’ Then calling PSIM, DYN@,

TRAKM, and MEN@®, successively, ERRANN controls the computation of
all matrix information required by subroutine GNAVM to compute the
actual and assumed knowledge covarilance matrix partitions at time

1’ given the state ik at time t

t:+l immediately following the measurement.

At an event, ERRANN simply calls the proper event subroutine or
overlay where all required computations are performed. Subroutine
ERRANN also controls miniprobe targeting in the error analysis
program.
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ERRANN Flow Chart
- ENTER

Initialize event counter NEVENT,
print counter IPRN, event time
TEVN, and ggidange event counter II

220 ,*;g

Define state Xk at time t

§

Call SCHED to obtain the time
tk+1 of the measurement and

4

Define time interval At =

v

< Does an event occur before tk+1? Yes @

Nog

Call NTM to compute state X

¥

Incremgnt measurement counter MCNTR

i

Call PSIM to compute state
transition matrix partitions
over [tk, tk+1]

}

Call DYNP to compute assumed Qk+1 K

;

Call TRAKM to compute the observation
matrix partitions at tk+1

k

b T Y

k+1
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Call MEND to compute assumed R

Call GNAVM to compute assumed covariance
matrix partitions at t;+1 and t:+1

k+1

Increment print counter IPRN
hi
O

: . . N\
<:7 I{u[ﬁ tymehto>pr1n§34/r

Yes ﬂ

Call PRINT3 to write out all
assumed basic cycle data

}LLL
< IGEN = 0?2 N\o___¢&s
4
No ¢

Call DYN@ to compute actual Qu,,

&

Call MEND to compute actual R/

k+1

Call GNAVM to compute actual
2nd-moment matrix partitions

- +
at tk+1 §nd tk+1

|

Call MEAN to compute actual
estimation error means at

- +
tee1 and ¢,

No
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< Is it time to print? >ﬁ°——‘
Yes §

Call GPRINT to write out all
actual basic cycle data

101 ,14

Reset time and state in preparation
for next basic cycle. Store this
information in RSAVE and TLAST for
use in the WLS version of subroutine

GAINZ

296 ﬂ
ot > b J\Yes RETURN

No“

No
Qave all measurements been processed

Yes l

No Define state X
Have all events been executed? , k+1
at time tk+1

Yes ;

= LD
3 @

Define time interval At = tf - tk*l
and state Xk+1

Propagate targeted nominal and assumed
covariance matrix partitions to tf

l \\7Yés
< IGEN = 0? S

No l

Propagate actual estimation error means
and 2nd-moment matrix partitions to tf

RETURN :
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@)

Define event code'ICQDE and time tj

¥ No
C ICPDE # 5 Or 67 e

Yes ¢

Call SETEVN to compute information
common to most types of events

’ - 2 N\
' ICADE e
! Zw 3 4 5]6 718
Call CONCOM Call GUIDM y
event overlay Call prediction
v event overlay
A 4

Write quasi-linear filter-
ing event (5) or adaptive
filtering event (6) not
available in ERRAN.

| canr aensio |

Y i 4 1L ¥ 4

<
-~

2
[increment event counter] &

Y

NO{
(&9 nain
<:Ma1n probe or miniprobég>>-3--b
Mini &
Propagate targeted nominal to

probe sphere. Write out probe
sphere conditions

¥

Call TPRTRG to perform
miniprobe targeting

v

[Vbefine miniprobe target contro]s]

| P

<+
Call PRPBE to execute probe
release event

-
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ESTMT Analysis

The initial values of the state variables are first set equal to the
values at the end of the previous interval. The nominal time interval
to be used during the current step is computed from

Dt = —;—-——-—B (1)

where ¢ is the constant input true anomaly increment relative to the
virtual mass trajectory.

The time interval to the final time tf or to the next time printout ¢t

is computed and the current time interval /\t is adjusted if necessary.

Finally the virtual mass final position and magnitude are estimated by
the expansions

.. :. 2
u = M +an. Dt +u Nt
VE VB VB \Y
T = r + r t + t
\ \ \' Ty A
E B B . av
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ESTMT Flow Chart

( ENTER )

Update state variables
for next step.

NO ; YES

- , Is printout to occur

< First interval? after this increment?
|KOUNT=1|

I ITRAT=1 l

Calculate nominal
value of [}tk .

YES
<tB+Atk>tf/
NO
/ =0
IPR = 7 )
—/
#0
NO
t + A\t >t
p
YES
t, = ¢t -t t = -
At =ty -ty A =t -ty
t. =t t =t+at t = t
E P . E B k E f
t, =t +Atp KOUNT = 1

h ’ |
\

Estimate final magnitude “V
R E
and position Ty of virtual mass.
E

RETURN
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EXCUTE Analysis

EXCUTE is the executive subroutine controlling the actual execution of
the velocity increment Av. The E; is computed by TARGET or INSERS or
read in by the user.

Before executing the correction EXCUTE computes peripheral information
of interest to the user. It first determines the dominant body acting
on the spacecraft. If the spacecraft is in the moon's SOI (with respect
to the earth), the moon is the dominant body. If not in the moon's SOI
hut in any of the planets' SOl (with respect to the sun) that planet is
the dominant body. Otherwise the sun is the dominant body.

Having determined the dominant body EXCUTE computes the state of the space-
craft relative to that body. It then computes the conic elements of the
trajectory both before and after an impulsive addition of the Av in
ecliptic coordinates,

If the dominant body is not the sun, it makes the same computations in
equatorial coordinates.

EXCUTE then operates on the current value MODEL of the array MDy;h If
MODEL = 1, the impulsive model of execution is commanded. The Av is

therefore added to the current inertial ecliptic velocity before returning
to GIDANS.

If MODEL = 2, the pulsing arc model of execution is required. PREPUL is
called to perform the preliminary work needed for the pulsing arc. PULSEX
then actually propagates the trajectory through the series of pulses. At
the completion of the arc EXCUTE updates the time and inertial ecliptic
state (both position and velocity) of the nominal trajectory to the state
determined by PULSEX.

1
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EXCUTE Flow Chart

( ENTER ’

Compute index and code
of dominant body (DB).

Determine spacecraft state
to DB and u of DB.

Compute ecliptic conic of
S/C wrt DB before and
after impulsive correction.

Compute equatorial conic of
S/C wrt DB before and after
impulsive correction.

=1 — — —
MODEL=? v=v+ Av | g RETURN

Call PREPUL for preliminary
work for pulses.

Call PULSEX for actual
execution by pulse model.

\

Update time and state to
values at end of arc.

RETURN .
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EXCUTS Flow Chart

ENTRY

CALL
PREPUL
1F YES
CALL
IEPX PULCQV
NO
CALL
PULSEX
RETURN

EXCUTS-1
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FLITE-1

FLITE Analysis

FLITE solves the time of flight cquation (Lambert's theorem) using Battin's
universal cquation formulation. Stated functionally Lambert's theorem
states that the time of {light tf is a function

tf = tf (r1 + Ty c, a) (1)

solely of the sum r, + r, of the distances of the initial and final points

of the trajectory from the central body, the length ¢ of the chord joining
these points, and the length of the semimajor axis a of the trajectory.
Usually the time of flight is known and it is desired to solve for the semi-
ma jor axis. The standard formulation involves different equations for the
elliptic, parabolic, and hyperbolic cases, all of which then iterate on a
to determine the solution.

In Battin's approach the semimajor axis a 1is replaced by a new variable x .

By further introducing two new transcendental functions S(x) and C(x),
the special cases of the flight-time equation are combined into one single,
better behaved formula. The functions S(x) and C(x) are defined by

S(x) = VX - s1§ Vx Ck) = 1 - czs Vx x>0
' X
sinh Ve~x - V-x - cosh V-x -1 x < 0
3 -X
Vx
. 1 = 1 =
. > X 0
A parameter Q 1is introduced as
s-c
Q=-——-—
s
where c = (r 2 +r 2 _ 2r r cos @ )%
1 2 12
.1
= 7 @ +r +c) (3)

The universal flight-time formula is



T = Q
3/2 3/2
% ) >y
yC(y) = Q x C(x)
where T = l% tf . The choice of the upper or
s

made according to whether the transfer angle 6 1is less
180° respectively.

The development of equations (4) is too long and complex

It may be obtained from the first reference listed below.

steps of that reference are noted:

(1) the two body problem on pp.I15,16

FLITE-2

(4)

lower sign is

or greater than

to be given here.
The following

(2) the "vis viva" equation and Kepler's equation on pp. 50,51
(3) Lambert's theorem proved from Kepler's equation on p. 71
(4) the basic flight-time formula and detailed analysis on pp. 72-78

(5) The universal formulation on pp. 80,81.

"Ins;ead of using the equations (4) the authors of refence 2 (listed below)

determined y as a function of x as

xsC(x)
2

-4%2§ ’ stzgxz + ’ x%ngx! 1

4 arc sin

«
[}

E’

x <0 (5)

‘Theréforgga single variable iteration is possible. Newton's method is used

to solvée” (4a) given T and Q as
T(x ) - T
_n_

X = X -
T'(x)
n

3/2
where T(x) = —S%éél- + Q / —E%ézl—
C (%) c

T'(x) =

1+ k[I <% 1.5V2-yC(y) T(x)]

(6)

(7)

2x \/ C(x)

(8)
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FLITE-3

2-xC(x) (9)

20
k = sgn (r - x 2-yCly)

-4 .
As |2-yC(y)| — 0, k—>1 . Thercfore if |2-yc(y)] < 10 k is set

to 1. Also T'(x) brecaks down as x —»0 . Thercfore the approximation
is used:
1+ 3/2 6
T'(x) = -——-9——2-— | x| < 10 (10)
2

The starting value for x 1is given by x = xl - Ax(T,Q) where

X, = 82.1678 + 352.8045 T

‘ 2 X
- (123954.8504 T + 43904.0083 T + 13423.6819) "

Ax(T,Q) = + < 22'36 + T3J;5.1) 0.3 Q2 + 0.7 Q) (11)
° + .15

To insure that the routine will not fail for large or small values of T
certain restrictions on T are built into the program. The nominal value
of T 1is forced to be no larger than 950,000 and no smaller than 10'6.
This forces the corresponding limits for x of -823.0473 < x < 39.14553.

- T

Finally convergence is achieved when IT(Xn) - T <« 100000

Having solved for semimajor axis a , the semilatus rectum p 1is given by

1 rlrzsing T T 7 1 2
= = - — + - - =
P 2 3 c @ s-C 2a sgn (tm t) % S 2a % (12)

Then the eccentricity e is given by

e = 1-+<= (13)

References:

(1) Battin, R. H., Astronomical Guidance, McGraw Hill Book Co., Inc.,
New York, 1964.

(2) Lesh, H. F., and Travis, C., FLIGHT: a Subroutine to Solve the
Flight Time Problem, JPL Space Programs Summary 37-53, Vol. II.
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FLITE Flow Chart

( ENTER >

Y
Enforce restrictions on T

/

Compute zero iterate x

4
Compute S(x), C(x)

Compute S(y), C(y) Enforce restrictions on x
N
_ T(x) - T
Compute Q and T(x) X = X - T (%)
y
T >
'T(x) - T|: — Compute T'(x)
10
<

y
Enforce restriction on x

xC (%)

Compute p,e

RETURN
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GAIN1 Analysis

Subroutine GAIN1 computes the Kalman~Schmidt filter gain matrices
Kk+l and Sk+1 that are used in subroutines GNAVM and NAVM to update

estimation error covariance matrices after a measurement has been
processed.

The measurement residual covariance matrix Jk+l and the auxiliary

matrices Ak+1 and Bk+ are assumed to be available (from GNAVM or

1
NAVM) when GAIN1 is called. Subroutine GAIN1 then evaluates the
following equations to determine the filter gain matrices:

-1
Kt 7 At T (1)

-1
k+1 = Bye1 e (2)

179-1
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GAIN2-1

GAIN2 Analysis

Subroutine GAIN2 computes filter gain matrices Kk+l and Sk+1

for an equivalent recursive weighted-least-squares (WLS) consider

filter. The equations required to compute Kk+l and Sk+l are iden-

tical to those used to compute the Kalman filter gains, but with
all consider parameter covariances removed.

Subroutine GAIN2 propagates and updates (at a measurement) a
set of covariance matrix partitions that are completely inde-
pendent of those processed in subroutines NAVM or GNAVM for the
sole purpose of generating filter gain matrices Kk+l and Sk+1'

The propagation and update equations employed in GAIN2, which
are a subset of the NAVM and GNAVM propagation and update equa-
tions, are summarized below. For definitions of all matrices,
see either the subroutine NAVM or GNAVM analysis section.

Propagation equations:

T
- + + + - T
Pk+1 . ka + exx Cxx ¢+ CxxS exxs + Qk (1)
s Sk k+1
o -=ect  +8  pF (2)
XX XXS XXS Sk
Sk+1 k
- +
Ps = Ps . (3)
k+1 k
Gain equations:
- T - T
At = Prrr Bt O Me+1 (4)
Sk+1
- T - T
Br1 = Psk+l Mt b cxxS B (5)
k+1
Tt © Berg At M B Y R (6)

179-2



= =1
Ket1 = At T

= -1
S e S RS

Update equations:

+ - T
Pt © P17 K1 Aen1
+ - T
CxxS Lxx Kk+l Bk+l
k+1 Sk+1
+ - T
2 = p -s B
sk+l sk+l k+1 "k+1

179-3
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GAIN2 Flow Chart

Has an event occurred since

the last measurement at time YES
t ?
k

Propagate covariance matrix
partitions from tk to tk+1

y

Compute filter gain matrices

v

Update covariance matrix
partitions at tk+1'

. + +
Symmetrize Pk+1 and Ps

k+1
JV_ O YES
< INFLAG = 0? >
NO
¥

Restore NDIM2, NDIM3, NDIM4,
and all state transition
matrix partitions

4

Restore TRTM1 and DELTM
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NO Was the event a
‘ guidance event?

lYES

executed?

<<:ﬁas guidance event::>

Save NDIM2, NDIM3, NDIM4,
and all state transition
matrix partitions

|

Set all knowledge covariance

matrix partitions equal to
the corresponding control

covariance, matrix partitions
following the guidance event

| save TRTMI and DELTH |

}

Set NDIM2, NDIM3, and
NDIM 4 to zero

}

Set TRTM1 to the time of
the last measurement

4

Set DELTM to the current
time minus the time of
the last measurement

) 4

Call PSIM to compute the
state transition matrix
partitions ¢ and o

XXg

y

Call DYNe to compute the
dynamic noise covariance
matrix

GAIN2Z - 4
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GAUSLS Analysis

GAUSLS is a hybrid algorithm to obtain a least-squares solution to
the system

$(® =0 | (1)

where x is an n-dimensional control vector, ¢ is an m-dimensional
constraint vector, and m > n. Current array dimensions in GAUSLS
require that n £ 5 and m < 10. By least-squares we mean that the
square of the standard Euclidean norm of ¢, namely

el =98 (2)

is minimized. The principal algorithm used is the well-known pseudo-
inverse scheme originally due to Gauss. When, however, the depend-
ence of ¢ on X deviates substantially from the approximate linearity
tactily assumed by the Gauss method, a best-step steepest descent
algorithm is invoked. Either of two indications of nonlinearity

can cause GAUSLS to transfer from the normal pseudo-inverse mode

to best-step steepest descent technique: (1) the Gauss control cor-
rection is larger in norm than an input upper bound , So, or (2)

the Gauss step actually increases the miss index, ||¢||%, over the

previous iterate.

The Gauss procedure can readily be derived since it is simply the
exact one-step solution to equation (1) when ¢ depends on x lin-
early. Let J represent the Jacobian or sensitivity matrix of ¢
with respect to x; that is

i=l,...,m

L= — j=l,...,n . (3)

m2>n
Next let y denote the least-squares miss index; that is

112 (4)

y=1ls

179-6



GAUSLS-2

Then the gradient of the miss-index is simply

w=2J34 . (5)

Now a necessary condition for the miss-index to be minimized after
a control correction of Ax is

vy (x+4x) =0 . (6)

Substituting equation (5) into (6) gives

ZJT(E'FAE)_Q(E{_'FA_X):Q_ . (7)

Assuming J either constant or approximately so and using the first
two terms of the Taylor's series for ¢ yields the approximation

2 3% [¢(x) + Jbx] =0 . (8)

Solving for the control correction then yields the pseudo-inverse
control correction

rx = ~(3T3)"L JTQ(E) . (9

Clearly equation (9) is exact if "¢ is a linear function of x so that
the Taylor series of ¢ (x + Ax) has only two terms and J is inde-
pendent of x. Since one can reasonably expect that if the depen-
dence of ¢ on x is approximately linear, formula (9) can be applied
iteratively to yield a convergent sequence of control vectors con-
verging to the least-squares solution and one arrives at the Gauss
algorithm, namely,

CRURINEITES (10)

W

k =0,1,2,...

%
I

Bl T B K (v
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where Xy is an initial control estimate suggested by other sources.

GAUSLS requires as an input parameter this zero-iterate control
estimate, together with the corresponding constraints Qﬂﬁo).

Since equation (6) only guarantees an extremum of the miss index
(i.e., 2 minimum, a maximum, or an inflection point), no more can
be said for the Gauss algorithm. It must be assumed that the ini-
tial estimate of X, is sufficiently near a local minimum and that

y is well enough behaved that the algorithm indeed leads to that
minimum. It is interesting to note that in the case that m = n,
equations (10) and (11) reduce to the familiar Newton-Raphson scheme
for solving nonlinear systems of equations.

The logic behind the steepest-descent mode is less elegant but more
straightforward than the Gauss procedure. First, the gradient of
the miss index is computed via equation (5). Next a search is con-
ducted in the negative gradient direction until the miss index is
observed to begin increasing. Let a denote the step length in the
search direction where y is first observed to increase. Then the
subroutine THP@SM is called to find a minimum of y on the step
length interval from 0 to a by cubic interpolation. Let Am denote

the step length value corresponding to the minimum returned by
THP@PSM. Then the control correction for the kth iterate is taken
to be

bx, = -xp W/l . (12)

The convergence of this scheme is only asymptotic with no accel-
eration as the minimum-miss controls are approached. Nevertheless,
the steepest descent algorithm seems to be the best available for
extremely nonlinear miss indices since it involves no linear extra-
polation and since it searches in the only direction in which im-
provement is guaranteed. Its poor terminal convergence is no
handicap in the hybrid GAUSLS routine because once the iteration:
sequence falls inside a suitably linear region about the miss-index
minimum, the rapidly convergent Gauss scheme takes over.

GAUSLS calculates the Jacobian matrix J by numerical differencing
through a call to the subroutine JAC@B. Hence the user is required
to supply a perturbation size § to GAUSLS for us by JAC@B in ap-
proximating J by the forward-divided difference

[¢i (x, +8) - ¢, (x.)]
s h| i3
Jij 3 (13)
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The user could conceivably use an analytical Jacobian matrix by
replacing the call to JAC@B by formulae for the appropriate par-
tial derivatives.

The convergence criterion in either mode of GAUSLS is the same.
Adequate convergence is assumed when a weighted sum of the length
of the change in the control vector and the magnitude of the change
in the miss index fall below a preassigned value; i.e.,

Cl |IA§JI + C2 |Ay| <€ . (14)

The user must supply Cl” C.,, and € as input parameters to GAUSLS.
To expedite convergence, tﬁe user should scale the components of

X so they are, as far as possible, all of the same order of magni-
tude, say in the range from 0.1 to 10. This scaling makes meaning-
ful the use of a single perturbation size § for all components of
x in approximating J and avoids numerical problems in matrix inver-
sion and search direction calculation. Further he must supply as
an input parameter the maximum number of iterations kmax he will

allow before terminating the algorithm.

GAUSLS supplies enough output to adequately monitor either mode

of the iterative least-squares process. Initially under the heading
"Gauss Least-Squares Routine," it prints out all of the input param-
eters. These include n, m, §, Cl’ C2, €5 Sq» and kmax‘ Next

the user-supplied initial-control estimate Xy together with the
corresponding miss index y(§0), are printed out under the heading

"Gauss Iteration Point." Then the printout relative to the gen-
eral kth iterate begins. All data concerning the Jacobian matrix

J are printed from the subroutine JAC@B under the heading ''Jacobian
Matrix Routine." Each iterate, of course, starts with a Jacobian
matrix computation even i1f it eventually ends in a steepest-
descent step. All of the control vectors and corresponding con-
straint vectors that go into the approximation of the Jacobian
matrix are printed under the heading '"Nominal and Perturbed Func-
tion Values." The divided-difference approximation to J is then
printed under the heading "Jacobian Matrix.' Next GAUSLS prints
out the Gauss pseudo inverse matrix, (JTJ)'l JT, under the heading
"Projection Matrix." Finally the next Gauss control vector iter-
ate, the corresponding miss index, and the gradient magnitude of
the previous iterate are printed out under the heading '"Gauss Iter-
ation Point." If the length of the control correction Ax exceeds
so, however, the migs index is neither calculated nor printed.
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If the Gauss iterate is such that a steepest—-descent step is re-
quired, GAUSLS prints out all of the pertinent data. Under the
heading '"Cubic Interpolation Routine'" are printed all trial step
lengths and corresponding miss indices used in bracketing the mini-
mum, the input parameters to the routine THP@PSM, and the minimum
miss step length and index are returned by THP@SM. If the miss
index decreases monotonically in the search direction, a message

to that effect is printed out and execution of the program is
stopped. Finally the steepest descent control iterate and the
corresponding miss index is printed out under the heading '"Best-
Step Steepest-Descent Iteration Point." The iteration printout
then is repeated with each successive iterate. When convergence
finally occurs, the message ''Adequate convergence occurred on pre-
vious step" is printed after the last iterate and the convergence
flag, ICPNV1 is set to 1. If, on the other hand, convergence fails
to occur in kmax iterations, the message "Convergence did not oc-

cur" is supplied after the last iteration point and IC@NVL is set

to 2. After either of these two stopping conditions is reached,
a summary of the iteration points is printed under the heading
"Iteration History." This summary contains the control vector,
the miss index, and the gradient to the miss index at each of the
iterates in consecutive order.
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GAUSLS Flow Chart
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GENGID Analysis

Subroutine GENGID controls the execution of generalized guidance
events. Generalized guidance has been extended to all guidance

options defined for subroutine GUIDM except for biased aimpoint

guidance and impulse series thrusting.

Unlike GUIDM, which computes target dispersions and fuel budgets
based on filter-generated statistics, subroutine GENGID computes
target dispersions and fuel budgets based on actual statistics.
In other words, the generalized covariance technique as applied
to the guidance process is programmed in GENGID. The required
equations are summarized below.

Before the guidance event at time t, can be executed, it is neces-

3

sary to propagate the actual control mean and control 2nd-moment
matrix partitions forward to tj from the previous guidance event

at time tj 1 The control mean propagates according to
=0 x 46 X +68. uw+o w (1)
h| j-1 XX s Xu o xw "o
s o
where ¢, © , 0, and 8 are state transition matrix partitions
XX Xu XW

s
over the interval [fj—l’

position/velocity and solve-for, dynamic-consider, and ignore param-
eter deviation means. The notation ( )~ indicates actual values

as opposed to the unprimed assumed values, while ( ) and ( )+
indicate values immediately before and after the execution of the
guidance event, respectively. The actual control position/velccity
2nd-moment matrix is defined by

T
= E [%T xf:]. . (2)
PC_ j 3
h|

The remaining control 2nd-moment matrix partitions are defined
similarly. The propagation equations appearing in subroutine
GNAVM are used to propagate the control 2nd-moment matrix parti-

tions over the interval [Ej_l’ ti].

t.|, and x , Xs’ u , and w denote actual
J
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-

The actual target state deviation 8t 1s related to the actual

3
state deviation xi at time tj according to
8t; =m, x; (3)
3 il
where nj is the variation matrix for the appropriate midcourse

guidance policy. The mean of 615 is given by

B[

The statistical target dispersions are represented by the actual
target condition 2nd-moment matrix W;, which is defined as

h|
T
Wi =E [6t] &§t7 {. 5
3 l:J j] )
Substitution of equation (3) into équation (5) yields
. T
Wi =mn, P . 6
] jcj”j (6)

Equations (4) and (6) are evaluated immediately before and after
the guldance correction to determine how much the target errors
have actually been reduced by the velocity correction at tj.

The actual commanded velocity correction 2nd-moment matrix is de-
fined by

s; = E ‘AQi A§5T| (7)

where the actual commanded velocity correction is given by

- ~ N
AV, =T, x7 =1, |x7 + x7}. 8
3 33 3 ( 3 J) ®)
The guidance matrix Fj corresponds to the appropriate linear mid-
course guidance policy. The equation used to evaluate Sj is given
by
sc=r. (b0 -\t (9)
3 j(%‘ kj)j
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where all E [x] ;’f] terms have been neglected in the derivation

A
of equation (9).

The mean of the actual commanded velocity correction is obtained
by applying the expectation operator to equation (8):

- N
E jav;1=1, {E |x]| + E|x]]}. (10)
Since this equation gives no useful information for fuel-sizing

studies, the Hoffman-Young formula will be used to evaluate

E EAQ:
J

E “A\}j’” = 2_‘_\(14_13__(_77__‘_21) (11)

g A2 J@ijr

where

>
]
[n3
ad
1]
0
14
wn
TSN

= A7 AL+ AT AL+ AL A
B AT A AT A 2 M3

-

and Ai, )2, and AB are the eigenvalues of the 2nd-moment matrix

S;.
J

The actual effective or statistical AV is defined as

"E [AVj’]" = E UAvj'[‘ "o (12)

where aj denotes a unit vector in the most likely direction of

the velocity correction. The most likely direction is assumed
to be aligned with the eigenvector associated with the maximum
eigenvalue of Sj.

With "E [}Vi " available, the actual execution error statistics

can be comﬁuted (by calling subroutine GQC@MP). These are the
actual execution error mean E 6AV§ and 2nd-moment maxtrix

4
Qi defined as
?53 = EE&AV'j‘ szwj'lj. (13)
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It remains to summarize the equations which are used to update

all actual control and knowledge means and 2nd-moment matrix par-
titions immediately following the execution of a guidance event.
The actual estimation error means and 2nd-moment matrix partitions
are updated using the following equations:

'\'a+ v - - . -
E [xj:l E l:xj] A-E EAvj] (14)
E E"’] E [x'":! (15)
S. s
J ]

T
+ - AT N - N -
P° =P° 4+ A A" - A « E |6AV]] » E |x? - E :

j J
T T
dR:B A I (16)
P;+ = p~ (17)
k. '
j i

where A = [0 i I]T. The actual deviation means are updated using
the following equations:

El|x |=-E x (18)
-JJ ;j_
E x+ = - E §+ (19)
s, s
L 4 |4

The entire set of actual control 2nd-moment matrix partitions is
updated by equating them to the corresponding actual knowledge

+
2nd-moment matrix partitions at tj.
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GHA Analysis

Subroutine GHA computes the Greenwich hourlapgle in degrees and days at
gome epoch T* referenced to 1950 Jauuary 1%"n. Epoch T is computed from

T* = J.D., + 2415020.0 - J.D

0 ‘REF
where
J.D. = Julian date ﬁt launch time t referenced to 1900
0 0
January 07127,
J'D'RET = Reference Julian date 2433282.5
= 1950 January ldOh referenced to January Odth of
the year 4713 B.C.
d, h d, h
and 2415020.0 = 1900 January 0 12 referenced to January 0 12

of the year 4713 B.C.

Tgeg T* is the Julian date at launch time t referenced to 1950 January
1

The Greenwich hour angle corresponding to T* 1s given by

GHA(T*) = 100,0755426 + 0.985647346d + 2.9015 x lO"13 d2 +wt
where 0 £ GHA(T#*) < 360°
and d = integer part of T*, t = fractional part of T¥,
and W = Earth's rotation rate is degrees/day.

The Greenwich hour angle in days is given by %%é.
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GIDANS Analysis

GIDANS is an executive routine responsible for processing a gyid-
ance manuever for the computation of the velocity increment Av
to the execution of the correction.

Before entry to GIDANS, TRIJTRY has computed the index of the
current event (KUR) and has integrated the nominal trajectory

to the time of the event. GIDANS now evaluates the KUR compo-
nent of two integer arrays -- KTYP and KMXQ. The values of
these flags determine the operation of GIDANS, The flag KTYP
specifies the type of guidance event to be performed, while
KMXQ prescribes the compute/execute mode to be used according to

KTYP Termination event
Targeting event
Retargeting event
Orbit insertion

Main probe propagation

Miniprobe targeting

wt W N

Sw e

KMXQ Compute A§ only
Execute Av only N
Compute and execute Ay

Compute but execute Av later

GIDANS first checks for a termination event. If the current
index prescribes such an event, the flag KWIT is set to 1 and
a return is made to the main program N@MNAL.

In prepration for a normal guidance event, GIDANS calls VMP
with the current spacecraft heliocentric state and a time incre-
ment of zero to restore the F and V arrays providing the current
geometry of spacecraft and planets. If the current event is an
execute-only mode, the transfer is made to the execution section
of GIDANS for the addition of the preset velocity increment.

Otherwise GIDANS interrogates KTYP for the type of maneuver to

be computed. For a targeting event, Subroutine TARGET is called
directly for the computation of the Av necessary to satisfy input
target conditions. After calling TARGET, the F and V arrays are
restored as indicated above.
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A retargeting event 1s defined as a targeting event that requires
computation of a new zero iterate. Thus a retargeting event 1s
an event in which the current nominal state when integrated for-
ward would miss the target conditions badly. Such an event would
be the broken-plane correction. For this event TRITRY stores the
current position (and possibly the target position) in the ZDAT
array. It then calls ZERIT for the computation of the massless-
planet's initial velocity consistent with the target conditions.
It then operates identically to the targeting event.

The third guidance maneuver is the insertion event. GIDANS calls
INSERS for the computation of the velocity increment Av and the
time interval At before 1t is to be executed.

The main-probe propagation event involves storing the current
spacecraft state, propagating the main probe to an appropriate
stopping condition while printing a time history, and restoring
the original state in preparation for the next event. It is
carried out in a single call to the subroutine MPPR@P. Upon
return to GIDANS, the F and V arrays are restored as indicated
above.

The miniprobe targeting event, although somewhat complicated,

is completely executed by the single subroutine TPRTRG. The
current bus state is first stored. Next the miniprobe release
controls are calculated to apply at the current time to target
three miniprobes respectively to three target sites character-
ized by imput values of declination and right ascension. Using
the minimum~miss release controls, each miniprobe is then propa-
gated from release to a stopping condition while a time history
is concurrently printed. Finally, the original bus state is re-
stored. On returning to GIDANS, the F and V arrays are restored
as usual,

The three subroutines TARGET, INSERS, and TPRTRG signal trouble
to GIDANS via the flag KWIT. If problems are encountered in
their execution, e.g., failure to converge in TARGET or TPRTRG or
the impossibility of insertion in INSERS, KWIT is set to 1.
Otherwise KWIT = 0. On return to NYMNAL, if KWIT = 1 the current
case is terminated while if KWIT = 0 it is continued.

If the current event is a compute-only mode, TRITRY now sets

KWIT = 0 (so that the program will continue regardless of whether
the correction computations were successful) and returns to N@MNAL.
However 1f the current event failed (KWIT = 1) and was to be exe-
cuted (KMXQ # 1) GIDANS consideres this a fatal error for the cur-
rent case and returns with KWIT = 1.

-2
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If the compute/execute mode is compute-execute later (KMXQ = 4)
as 1s the insertion event, GIDANS now sets up for the subsequent
execute-only event. The Av computed is stored in the DELV array,

the time of the execution is computed (tex = tk + At) and stored

in the TIMG array, and the KMXQ flag 1is set to a 2 (execute-only).
The return is then made to N@MINAL.

For an event to be executed at the current time (KMXQ = 2,3),
GIDANS now calls EXCUTE for the completion of that task.

It should be noted that for all events that are completed at
this time, the KUR components of the KTIM array are set equal
to 0 so they are no longer considered in determining the next
event in TRJTRY. Only in the case of KMXQ = 4 is the KTIM flag
nonzero on exit from GIDANS.
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GNAVM Analysis

Subroutine GNAVM propagates and updates (at a measurement) both
assumed (or filter) covariance matrix partitions and actual 2nd
moment matrix partitions. The equations programmed in GNAVM are
independent of the filter algorithm employed to generate gain
matrices.

The covariance and 2nd moment matrix partitions manipulated by
GNAVM are defined as follows:

P = E[x %] P = E[i xT]
s s s

C = E[f{ ch] C = E[% uT]
XX s X u s

s s

LT .. T -
CXu = E[%x & ] stV E[xS v ] (1)

R e T
CXV = E[x V] CxSw E[xs w] .

T

(@]
[}
5]
—
e
£

The following matrix partitions are used in GNAVM, but are not
changed in GNAVM:

c,, = Ela ¥']

Cw = EIT '

Cpy = EL¥ W] (2)
U=E[ud)l ’
V= E[¥ v0]

W= E[® ]
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In these definitions %, is, i, ¥, and W represent, respectively,

the estimation errors in position/velocity state, solve-for param-
eters, dynamic consider parameters, measurement consider parameters,
and ignore parameters. Ignore parameters, of course, are not de-
fined when assumed (or filter) covariance matrix partitions are
being propagated or updated. Furthermore, the assumed C  has been
set to zero. uv

The equations used to propagate covariances or 2nd moment matrices

from time tk to tk+l are summarized:
- + '
p7.o=feet +6 T 40 T o+ T )T
k+1 k XX XX Xu xuk XW  XwW
S sk k
- T - T , A~ T
+ C 8 + C g -+C 8- + Q (3)
xxS xxs xuk+l Xu, fWk+l xw k+1
k+1
c =ect  +0 pT+e T 44 (T T (4)
XXS XXS XX Sk Xu X u Xw X W
k+1 k k k
c =oct +06 ¢ +8 U +6 cf (5)
Xll.k_'_l xuk XXS XSU Xu (o] Xw UWO
: k
c_ = oct  + 0 ¢ + 0 +8 ! (6)
XV. XV, XX X Vv Xu uv xw W
k+1 k s s Kk (o}
c_ =oct +o0 ¢t o+ +0 W (7)
XW. XW. X X W Xu uw Xw [o]
k+1 k s s Kk
- +
Ps = PS (8
k+1 k
‘- +
CX u CX u (9)
S 1+1 & k
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C = C (10)
XV XV
k+1 Sk
- +
Cu  =Ciy . (11)
k+1 S x

In these equations ( ) indicates immediately prior to processing

+
a measurement; ( ) , immediately after. The state transition ma-
trices over the interval [tk, ] are indicated by ¢, 6 , 0,

tk+1 xxs Xu

and exw. The dynamic noise covariance or 2nd moment matrix is de-

noted by Qk+l°

Before covariance (or 2nd moment) matrix partitions can be updated
at a measurement, the measurement residual covariance (or 2nd moment)
matrix, defined by

) T
Tt ~ E[ék+l Ek+i} (12)

must be computed. The required equations are summarized

Jer1 T HAL T MB ) T 6D FLE ) YRR Y Ry (13)
Byp = P;+l B + ¢ M+ c; ¢k + c;v o c;w NT (14)
* XKy U+l k+1 k+1
k+1
B, =p" ML4+cT ut o+ ¢ ¢l + ¢ R Nt (15)
k+1 sk+1 xxS xsu xsv X w
k+1 k+1 k+1 S K+l
D = ¢ T ut + ¢ T Ml+uel +¢o N o+c LT (16)
k+1 xuk+l xsu o uwo uvo
k+1
E =c T gTlyecTt M+ ¢ N +viT+c T 6f (17)
k+1 XV X V v o uv
k+1 2] K+1 o fo}
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F . =wN +c¢ T yfqcT ML+ T TeceT T L s
k+1 0 xwk+l xsw vw uw

In these equations H, M, G, L, and N represent observation matrix
partitions, and Rk+l represents the measurement noise covariance

(or 2nd moment) matrix.

.Gain matrices Kk+l and Sk+l are also required before covariance

(or 2nd moment) matrix partitions can be updated. These are not
computed in GNAVM but are obtained by calling either subroutine

GAIN1 or GAIN2, depending on which recursive estimation algorithm
is desired.

With Jk+1’ Kk+l’ and Sk+l available, the following equations are

used in the updating process:

+ - T T T
Pl T P T K A T A TR e K (19)
+ - T T T
Cax = O “ K Bo- A5 Y K Jeer Sk (20)
S+l Sk+1
+ - T
C =cC - D (21)
Mgy | myy kel
+ - T
c =C - D (22)
ka+l ka+l Kk+1
+ - T
¢ =C - F (23)
el e R
+ - T T T
P =p -s . B -BsT _4#sS .3 ..8 (24)
Sep Sy kL 1l T Skt Y1 Sl
+ - _ T
. =, Sppp D (25)
S k+1 k+1
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+ - A _ T
stv Cx v Sk+1 E (26)
k+1 k+1
+ - T
Cx w B Cx w Sk+1 F : (27)
S k+1 S k4l

It should be noted that propagation equations (3) through (11) are
also used to propagate both assumed control covariance and actual

2nd moment matrix partitions over the time interval separating two
successive guidance events. The update equations, of course, are

not used in this situation.
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GQCPMP Analysis

Subroutine GQC@MP computes the actual execution error mean and
2nd moment matrix for use in the generalized covariance analysis
of a guidance event. The actual execution error 8§AV! is assumed

to have the form i
) av!
SAV! = k' AV + 8' —d— + sV (1)
h| IAQ,I pointing
k|

where k' denotes the actual proportionality error; s', the actual

resolution error; 8AV' | » the actual pointing error; and
pointing

AVS, the actual commanded velocity correction.

The means of the three ecliptic components of §AV! are given as:

3
_oTn p'Av; So' + aV' a¥! §E
1] = 1 s '
E[64V!] (k + p,) AV + " (2)
' (_ E') . 0T aY! B - p'av! '
E[6aV!] = \k' + 35 20" +
( y] o y " (3)
- —' A~ —
E[éAv;] = (k' + %T).Av; - u' 88! (4)

where p' = IAV'I, u' = [AV;Z + AV;Z]%, and o' and 8B' are the

actual pointing angle errors, and both E( ) and (") indicate mean
values.

The actual execution error 2nd moment matrix is defined by
Q! = E|6aV! say!T : 5
6y - el o .
the elements Qik of matrix Q% are given as:
~ N 1 n oy e A Ay e
vt =t 12 4 - 12 12 57 s 12 12 1 T4
11 £ AVx 'ﬁz(? AVy a' Sa AVx AVz 88' &8

247!
'AUY AU AT 3o 3R —X . [paG To! Gt AU '
20" avy Vo Ay, o B > L ( Avy Sa’ + AV av! T8 ) (5)
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~ ~ 1 e ———— L) A —————————
* = ] 12 12 2 [ T "2 12 ] vt
Qy, = &' V2 + ;Tz-(AVy A0}2 58" 8B + p'2 AV)2 8a' da
. ) INA
TAgY U ' Sq! sg') + Yy . J' AU' TR _ ' AQY 3ot
2p AVx Avy sz Sa’ 6B 0 g (Avy sz B8 p AVx Sa ) (6)
33 = B AUIZ 4+ ut2 88T 8BT - 200) ' ¢t &B (7

)
S VoA g Gt ATt AQY v At [AT2 - 12 7
Qj, =@, = ¢ Avx AVy + = [ZAVX AVy av) 8B 0 (Avx AVy )éa J +

1 — A2 AT AU T & 1 AT g2 "v?_) o '
W [ P AVx AVy So' Sa +p AVZ AVy AVx So g’ +
ISAN AN A T 63']

X Yy z

A

INA
AR ARN Ay 2 YAT! ' O
Q Q £ AVx AVZ z [ ¥ (p AVy Sa' + AV

t AT SRt v Tt
13- 93 u x AV 98 ) LAY j
- 0'a¥; Fa' 88’ - ¥y AV! EBT GB" (9)
o W A
T = Q' = r' AU AU ' et vOTRY A 0AyY Rl v A XR
Q23 Q32 3 AVy AVz +z W (AVy sz S8 P AVx Sa ) u AVy 8B
TATY B0 TR _ AUY AUY XpT =g T

+p AVx Sa' &R AVy AVZ §B' 68 (10)

where
— T o
£' = k' k'+—%k' 81+_Sp_q_§_ (11)

and

1

- 7
c' o= kT o+ 2 (12)

©
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GUID-1
GUID Analysis

Subroutine GUID is used in the error analysis modc to compute the same
quantities which subroutine GUIS computes in the simulation mode. Sub-
routine GUID differs from GUIS in that instead of calling NIMS and VARSIM
as does GUIS, subroutine GUID calls NTM and VARADA. 1In addition, the

state transition and variation matrices computed in GUID are referenced to
the targeted nominal since the most recent nominal is not defined for the
error analysis mode. These differences entail only minor logic differences
in the flow chart for GUID, and for this reason no GUID flow chart is pre-
sented. See subroutine GUIS analysis and flow chart for further details.
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GUIDM Analysis

Subroutine GUIDM is the executive guidance subroutine in the error analysis
program, In addition to controlling the computational flow for all types
of guidance events, GUIDM also performs many of the required guidance
computations {tself,

Before considering each type of guidance event, the treatment of a general
guidance event will be discussed, Let tj be the time at which the guidance

event occurs, _Before any guldance event can be executed the targeted
nominal state Xjﬁ knowledge covariance PE , and control covariance P;'

— J
must all be available, where ( ) 1indicates values immediately before
the event, The first two quantities are avallable prior to entering
GUIDM, However, GUIDM controls the propagation of the control covariance
over the interval [tj-l’ tj ], where tj—l denotes the time of the previous

guidance event,

The next step in the treatment of a general guidance event is concerned
with the computation of the commanded velocity correction and the execution
error covariance, In the error analysis program a non-statistical velocity
correction is computed whenever the nominal target conditions are changed;
otherwise, only a statistical velocity correction can be computed, The

A

commanded velocity correction z&Vj is then used to compute the execution
error covariance matrix QjP A summary of the execution error model and

the equations used to compute Q, can be found in the subroutine QC@MP
analysis section. J
The last step is concerned with the updating of required quantities prior
to returning to the basic cycle, An aspumption underlying the modeled
guldance process is that the targeted nominal is always updated by the
commanded velocity correction, In the error analysis program only the
non-statistical component is used to perform the state update and is

indiecated by the variable AVUP . Thus, the targeted nominal state

J
immediately following the guidance event is given by
’)ZJ,"' = i’j_ +[-9A~=] .
AVp
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The knowledge covarlance is updated using the equation
L \
PK+ = Pt 2w
i 3 0 1 Q

if an impulsive thrust model is assumed, If the thrust is modeled as a
series of impulses, then an effective execution error covariance Qeff is

computed and the knowledge covariance is updated using the equation

In either case the control covariance 1s updated simply by setting

+ +
Poo= B .
j i

This equation is a direct consequence of the assumption that the targeted
nominal state is always updated at a guidance event,

A "compute only" option is available in GUIDM in which all of the ( )+
quantities will still be computed and printed, _However, the state and all
covariances are then reset to their former ( ) values prior to returning
to the basic eycle,

Each specific type of guidance event involves the computation of other
quantities not discussed above. These will be covered in the following
discussion of specific guidance events,

1. Midcourse and Biased Aimpoint Guidance

Linear midcourse guidance policies have form

~ - }’E
AVNj Fj 6 ;

where the subscript N indicates that this is the velocity correction
required to null out deviations from the nominal target state, This
notation is required to differentiate between this type of velocity
correction and velocity corrections required to achieve an altered target

o
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state, Linear midcourse guldance policies are discussed in more detail
in the subroutine GUIS analysis section,

Subroutine GUIDM calls GUID to compute the guidance matrix, I&, and the

target condition covariance immediately prior to the guidance event,
W, , and then uses Fj to compute the velocity correction covariance Sj’
J

which 18 defined as

and is8 given by the equation

- -, T
S = F. P - P . o
hj ] (cj Kj) rJ

This equation assumes that an optimal estimation algorithm is employed. in
the navigation process, since the derivation of this equation requires the
orthogonality of the estimate and the estimation error.

In the error analysis program AVN is never available since no estimates
~ ] -~
6Xj are ever generated, Only the ensemble statistics of 5Xj are available
which means only a statistical or effective velocity correction "E[:AV& ]"
J

can be computed, In the STEAP error analysis program this effective velocity

correction is asgumed to have form

"E[A\?N ' = b, 25 .
: T Teyl

The magnitude pj is given by the Hoffman-Young approximation

B (1 22
a%4s.4
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where

>
i

trace Sj = Xl + Xz + x3,

w
]

Xlkz + xlx3 + x2x3,

and Al, %2’ A3 are the eigenvalues of Sj' The direction of the effective

wvelocity correction 18 assumed to colncide with the eigenvector correspond-
ing to the maximum eigenvalue of Sj' This eigenvector 1is denoted by aj. An

alternate model assumes the direction coincides with the vector (Xl, Az, X3).

1f planetary quarantive constraints must be satisfied at a midcourse correction,
GUIDM calls BIAIM to compute the new aimpoint pj and the (non-statistical)

bilas velocity correction A@% . All computations in BIAIM are based on linear

. ]
guidance theory. However, an option is available in GUIDM to recompute

AV , but not u , using nonlinear techniques. This option is recommended
Bj i

if a biased aimpoint guidance event occurs at tj = injection time, It
should also be noted that Q, is set to zero if tj = injection time since

3

it is assumed that the injection covariance does not change for small
changes in injection velocity,

+ .
After the updated control covariance Pc has been computed, the target

+ j
condition covariance matrix wj following the guidance correction is com-

puted using the equation

where variation matrix 15 has been previously computed in subroutine GUID,

2, Re-targeting

In the error analysis (and simulation) program a ré-taggeting event
1s defined to be the computation of a velocity correction AVRT required to

achieve a new set of target conditions using nonlinear techniques. Since
the original targeted nominal will be used as the zero-th iterate in the
re-targeting process, the new target conditions must be close enough to the
original nominal target condition to emsure a covergent process,

189
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It should be noted that after a re-targeting event the new target condi-
tions are henceforth treated as the nominal target conditions,

3. Orbital insertion

An orbital insertion event 18 divided into a decision event and an
execution evgnt., At a decision event the orbital insertion velocity
correction AVpI and the time interval At separating decision and execution

are computed based on the targeted nominal state at tj. The relevant

equations can be found in the subroutine CPPINS analysis section for co-
planar orbital insertion; in NPPINS, for non-planar orbital insertion,
Before returning to the basic cycle, GUIDM schedules the orbital insertion
execution event to occur at tj + At and re-orders the necessary event

arrays accordingly.

At an orbital insertion execution evept the targeted nominal state is up-
dated using the previously computed AVPI' In addition, the planeto-centric
equatorial components of AVpI and the nominal spacecraft cartesian and

orbital element state following the imsertion maneuver are computed,
4, Externally-supplied velocity correction

At this type of guidance event the targeted nominal state is simply
updated using the externally-supplied velocity correction Aﬁ EX®

Because of the complexity of the GUIDM flow chart, a simplified flow chart

depicting the main elements of the GUIDM structure precedes the complete
GUIDM flow chart,
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GUIDM Flow Chart

< ENTER '

Define guidance event index II.

Store impulsive AV execution error
variances in the DUMMYQ array.

Save ISPH and set ICPDE2 = 1,

X \\\\\\\ 5
?

310

\\\\\:>I//////r

Store all knowledge covariance matrix
partitions in the P1, CXXS1l, CXUl,
CXvl, PS1, CXSUl, and CXSV1 arrays.
Store all control covariance matrix
partitions in the P, CXXS, CXU, CXV,
PS, CXSU, and CXSV arrays.

Call PSIM and STMPR to compute and
write out the state transition matrix
partitions over the interval

t, tu] .
[ bl S

Call DYND to compute the dynamic noise
covariance matrix. Write out.

Call NAVM to compute the control co-
variance matrix partitions over

[tj_l, tj] .

GUIDM-8
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Call C@RREL to compute and write out
control correlation matrix partitions
and standard deviations.

Store position/velocity covariance
matrix partition (Pl array) in the PP
array for use in subroutine PPICHM.

Set IC@DE2 = 2.

Store position partition of the P
array in the Z and VEIG arrays.

Call EIGHY to compute and write out
the eigenvalues, eigenvectors and
hyperellipsoid of the position par-
tition of the P array. A

Store velocity partition of the P
array in the Z and VEIG arrays.

Call EIGHY to compute and write out
the eigenvalues, eigenvectors, and

hyperellipsoid of the velocity par-
tition of the P array.

GUIDM-9
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Write out complete description
of guidance event. !

GUIDM=-10

QGUID(S,II) =7 >
2,3,4

851

' =7 N
IGUID(1,1I) = ? 5

1,2,3

Define guidance policy code IGP
and execution error code IQP.

.

J
and certain quantities required

for biased aimpoint guidance.

Call GUID to compute I, n.,WV
37

4,5
854 N
105
YES
/

Restore state vector,
time, and knowledge
covariance matrix par-
titions to their tj-

values. Restore ISPH,

RETURN

YES

—  ISPH = 0?

N

NO

<i,t. = injection time?<\\
J /

NO

/

Compute velocity correction co-
variance matrix Sj' Write out

correlation matrix and standard
deviations. Compute and write out
eigenvalues and eigenvectors.,

Set "E[AVN']"

to zero.

— IGP = 27 >

NO

Compute and write out
hyperellipsoid of S .
i

858
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YES NO
Use simplified method for computing Use Hoffman-Young formula
"E A'\?N ]". Write out. Compute to compute "E[A . ]n.
i ~ ) ]
and write out Q, and its eigen- Write out.
values, eigenveltors, and hyper-
ellipsoid. '

@ 862
NO YES
-——<IGU1D(3,11) = 07

f ' 1 NO YES
Store E[}XVNj ] in DVN array tj = injection time?)
for use in subroutine BIAIM,.

Compute6j using Set 6j = 0 and

~ N
Call BIAIM to perform biased aim- IWZ[AVN.] " AVUP. = 0.
point guidance event. Return J ]

aimpoint #j’ bias velocity

”~
correction AVyp, , and execution
. & Set IRET = 1 @

error covariance matrix Qj‘

()

\O
[¢)]
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YES

< IGUID(3,II) = 17 \/ 900

,

NO

Set IX =1 and JX = II.
Set XIN to state at tj.

4

Write: Bias velocity correction will
be recomputed using nonlinear guidance.

<IGUID(1,II) - ?> 3

FTA 3VBP

2 2VBP

/

Compute Julian date corresponding
to teop and set IGOP = 1.

y
' Define target variables Define target variables
9974 XTAR, LKTAR, LNPAR, XTAR, LKTAR, LNPAR,
and TGT3 for nonlinear and TGT3 for nonlinear
2VBP guidance. 3VBP guidance,
Compute position and '
velocity of target
planet at the specified
time.
\\ 2
IGQ = 7 )>— 9973
1
Define target variables
XTAR, LKTAR, LNPAR,
and TGT3 for nonlinear
FTA guidance.
9980

197



YES

9980

Call NPNLIN to compute
nonlinear bias velocity
correction. Return XDELV.

GUIDM=-13

< \ NO
KWIT = 07 )
YES
Set AQUP to XDELV, Write: Nonlinear guidance
J failed.

ngpute magnitude.

AVyp, and its magnitude.
J

Write out

Linear guidance
will be employed.

S .
et QJ

198

J// tj = injection time? j>>

NO

Compute 3, using

A’\?UPj + g [AVNj ] "
Set IRET = 2.

9761

Write out correlation matrix
and standard deygations
associated with Qj'

2 < IRET = >
\_1

Set AvUP- to zero.
J

105

900
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IGUID(5,1I)="?
2,3 ’
1,2 (Is velocity correction 444//EgbID(1 I11)=4 or 5?

' (YES) to be treated at tj?) (NO)
: YES
IGUID(4,1I1) = ? \\\\\ 2
(What kind of thrust model 904
//// (impulse

is to be employed?)

series)

3 (finite burn) 1 (single impulse)

Write: Finite burn
not available.

y
Store Pl array in PSAVE array.

Update knowledge covariance by
( EXIT ) adding Q to the velocity par-
- tition of the Pl array.

909

Call CPRREL to write out control
and knowledge correlation matrix
partitions and standard deviations
just after the guidance correction.

IC@DE2 = 3

199
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, ~ YES
< IGUID(l,II)E&?/
NO

[f -3

 16uID(1,11) = 2§ :>_.____§°
YES

.

Compute target condition covariance
matrix Wj+ following the guidance

correction, Write out the associated
correlation matrix and standard
deviations,

Compute and write out eigenvalues,
eigenvectors, and hyperellipsoid
assoclated with Wj .

2
(NO)

IGUID(5,I1) = ? 4
(Is velocity correction to be executed?)

1,3 | (YES)

Store PSAVE array
in the Pl array so

that the Pl array

Update and write out targeted nominal
immediately following the guidance
correction,

contains the know-
ledge covariance
just before the

y

guidance event.

Update state vectors, times, and control
and knowledge covariance matrix partitions

in preparation for nmext cycle. Restore
ISPH,

N
Q
(@]

RETURN



, NO IGUID(1,I1) <3
IGUID(1,II) = 7

GUIDM-16
851

YES

SN
*/

Set A% to the pre-specified
UPj
/N
DELV array. Write out AVUPj
and its magnitude.
: NO
<IGUID(1,II) =4 or5 ?>—T

YES

Define Julian date at orbital
insertion and set IGQ = 2,

9974

Write: Error in
IGUID array.

EXIT

Compute and write out nominal
spacecraft state relative to the

“target planet immediately following

orbital insertion.

Call PECEQ to compute the trans-
formation from planeto-centric
ecliptic to planeto-centric
equatorial coordinates.

Compute and write out planeto-
centric equatorial coordinates of
AVUP and the relative spacecraft

J
state.

v

Compute target planet gravitational
constant. Call CAREL to compute the
orbital elements of the spacecraft
orbit, Write out elements.

LY N
Compute Qj using AVUPj .
Set IRET = 2 .,

201




NO

Set IX = 2 and JX = II.
Set XIN to state at tj.

Define IKTAR array for
orbital insertion.

Call NONLIN to compute
orbital insertion AV and
time. Return XDELV and
TGT3.

set AVyp,. to XDELV and
j

DTQ to TGT3.

GUIDM~17

o
Compute Qj using
AGUPJ . Set
IRET = 3 .,

N
(@]
N

YES
<KWIT=1?>
NO
)4 Write: Orbital
\\ IGUID(5,I1) # 2 ? :> insertion failed.
YES
Define orbital insertion execution <ifIGUID(5’II) 7 2 {:>

event. Write out time at which
event will be executed.

YES NO

'

Re-order event arrays as required
by previous definition of orbital
insertion event.

i
( EXIT ’ @




YES

Set IX = 1 and JX = II.

Set XIN to state at t .
J

Call NONLIN to perform
re-targeting event (target
variables are defined in
namelist). Return XDELV.

NO

GUIDM-18

Set AVyp, to XDELV.
KWIT = 0 7
< >
YES

7 R
{_1eUID(5,11) = 2 ?>

NO

Update nominal target conditions
in TN@MB and TNPMC arrays.
Write out.

Compute ?2’ using Av . Write
j UPj
out AGUP and its magnitude.

[

Set IRET = 2 .

Write:
failed.

Re-targeting

<IGUID(5,II) =2 ?>

NO

EXIT

YES

203
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Set XXIN to state at t;.
5 1 O 1"
Set DELPX to AV, + E[Aij] :

Define Julian date at tj'

Set INPX = 2 and store impulse
series execution error variances in
the DUMMYQ array.

Call EXCUT to compute the effective
execution error covariance matrix
corresponding to the impulse series.
Return QK.

Restore single impulse execution
error variances into the DUMMYQ array.

Store Pl array in the PSAVE array.
Update knowledge covariance by adding
effective Qj to the Pl array.

204
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GUIS Analysis

Subroutine GUIS is called at a midcourse guidance event at tj in the

simulation mode to compute three. primary quantities for the selected mid-

course guidance policy. These three quantities are the variation matrix
7., the target condition covariance matrix prior to the velocity correction
J

w}, and the guidance matrix [ . Three midcourse guidance policies are
J
available: fixed-time-of-arrival (FTA), two-variable B-plane (2VBP), and

three-variable B-plane (3VBP). All are linear impulsive guidance policies
having form

AV, = I's%
J jo

~ "
where [}V. is the commanded velocity correction, and 88X is the estimate

J J
of the spacecraft position/velocity deviation from the targetcd nominal.
The relevant equations for each guidance policy will be summarized below.

The variation matrix . for FTA guidance relates deviations in spacecraft
) J

state at tj to position deviations at time of closest approach and

tcas
is given by

7j - [Ql i ¢2]
1

where [Ql | QZ] is the upper half of the state transition matrix dﬁ(tCA,tj).

The guidance matrix for FTA guidance is given by

Iy = ['Qz-l 9, 1 -1

The variation matrix for 3VBP guidance relates deviations in spacecraft

state at t, to deviations in B-T, B+R, and tSI’ where tSI is the time

at which the sphere of influence is pierced. Unlike the variation matrix
for FTA guidance, which can be computed analytically or by numerical differ-
encing, the 3VBP variation matrix must always be computed using numerical
differencing since no good analytical formulas are available which relate

deviations in spacecraft state at tj to deviations in tSI If the

variation matrix is written as

then the guidance matrix for 3VBP guidance is given by

5= [0 w4

205
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The variation matrix for 2VBP guidance relates deviations in spacecraft
state at t_ to deviations in BeT and B'R and is given by
J

nj = M@ (tSI, tj)

where M 1is an analytically computed matrix relating B+«T and B-R

deviations to spacecraft state deviations at tSI , and d5(tSI,tj) is the

state transition matrix over [tj’tSI] . If 7 is written as

77j=[A|:B] J

then the guidance matrix for 2VBP guidance is given by

T T -1 -1
ro= [-s@) s -sTa) 5 |
J

All state transition matrices and, hence, all variation matrices used by

the above three guidance policies are referenced to the most vecent nominal
trajectory for improved numerical accuracy.

Once the variation matrix 7, is available for any of the above guidance
J

policies, the target condition covariance matrix can be computed using

where PC is the control covariance matrix immediately prior to the

. ]
guidance event.



GUIS Flow Chart

< ENTER >

GUIS=-3

L~ FTA

Call NTMS to integrate targeted

nominal to final time tf and to

define closest approach conditions.

/

YES Was SOI encountered

over

t .
J

,th ?

/

Call PARTL to compute partials
of B'T ‘and B*R with respect
to state at t . Compute

M matrix. S1

L_\ 2 ~ 2VBP
/ 3 ~ 3VBP

NO

geted nominal.
cycle.

Write: SPI not encountered on tar-

Returning to basic

Compute time

t
CA

and velocity magnitudes at
closest approach.

and position

Write out closest approach con-
ditions for targeted nominal.
Write out M matrix.

/

Define variables ATRANS, VINF,
and TMPR required for biased
aimpoint guidance.

RETURN
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< N YES
NWTRJ=O?4/
NO
/
Call NIMS to integrate most
recent nominal to final time t Set most recent nom-
f inal to targeted
and to define closest approach nominal at t
conditions. £
NO Was SOI encountered YES
over [t., t ?
i f

Write: S@I not encountered on
most recent nominal., Return-

ing to basic cycle.

208

Call @RB and EPHEM to compute
position and velocity compon-
ents of target planet at
closest approach on most recent
nominal.

4

< RETURN )

Compute inertial ecliptic pos-
ition and velocity components of
spacecraft at closest approach
on most recent nominal.

Write out closest approach
on most recent nominal.

conditions

/

Call PSIM to compute state
matrix partitions over t

ISPH = 1

., t
j

on most recent nominal. Call STMPR
to write out these partitions. Set

transition

CA]

FTA guidance policy.

Compute variation matrix 7  for

J

4 H
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{ Write out variation matrix 1,

J

Compute target condition covariance matrix
Wj and write out associated correlation

matrix and standard deviations.

4

Call JAC@BI and HYELS to compute eigenvalues,
eigenvectors, and hyperellipsoid of W, . '
Write out. ]

Call MATIN to invert the second half of the
variation matrix 7,

YES
t, = injection time? \\\
| //’ Rk .

NO
/
Compute guidance matrix [ . Set ['= 0.
/
NO YES RETURN
l <<;IGP =3 ’.74\\L '
Write out guidance matrix Write out guidance matrix I~
for FTA guidance policy. for 3VBP guidance policy.
RETURN
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YES Has S@I been previously NO

encountered on targeted
\\Vnominal?

Write: S@1 has been previously
encountered on targeted nominal.
B-plane guidance policies un-
defined. Returning to basic
cycle.

210

ISPH = O

/

RETURN

YES

Call NTMS to integrate targeted

nominal to final time ¢t and to

define sphere of influence con-

ditions.
v

Was SOI encountered

< over [tj, tf] ?

/ NO

Write: S@I not encountered
on targeted nominal,

Return-
ing to basic cycle. '

4

RETURN

Call PARTL to compute partials of BoT

and B*R with respect to state at t
Compute M matrix.

Compute time tSI and position and vel-

ocity magnitudes at sphere of influence.

/

Write out S@I conditions for targeted

nominal. Write out M matrix.

{

Define variables TMPR and VINF required

for biased aimpoint guidance.




N@MTRJI=07?
N\ 2

GUIS-7

\ YES

NO
Call NIMS to integrate most Set most recent nominal
recent nominal to final time equal to targeted nom-
tf and to define SQPI conditions. inal at tf.

NO

Was S@PI encountered
over [t,, t ] ?
j> . f

YES

Write: S@I not encountered
on most recent nominal,
Returning to basic cycle.

/
RETURN

Call @RB and EPHEM to compute
position and velocity components
of target planet at S@I on most
recent nominal.

Compute inertial ecliptic position
and velocity components of space-
craft at S@PI on most recent nominal.

/

recent nominal.

Write out S@PI conditions on most

NO

IGP=37

\\/

YES

Call VARSIM to compute variation matrix
nj for 3VBP guidance policy.
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e

Call PSIM to compute state transition
matrix partitions over [ t,, tSI] on

most recent nominal., Call STMPR to
write out thesc partitions. Set ISPH = 1,

Call PARTL to compute partials of B-T
and B-R with respect to most recent
nominal state at t . Write out these
partials.

Compute variation matrix nj for 2VBP

guidance policy. Write out.

Compute target condition covariance ma-
trix Wj and write out associated cor-

relation matrix and standard deviations.

Call JACPBI and HYELS to compute eigen-
values, eigenvectors, and hyperellipsoid
of Wj—. Write out.

-Call MATIN to invert BBT.

GUIS-8

’ /
NO : : YES
_ < tj = injection time? :>>——————1
Compute guidance matrix [ for set I =0
2VBP guidance policy and write out.

RETURN
‘ RETURN ’
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GUISIM Analysis

Subroutine GUISIM is the executive guidance subroutine in the simu-
lation program, In addition to controlling the computational flow for
all types of guidance events, GUISIM also performs many of the required
guldance computations itself,

Before considering each type of guifdance event, the treatment of a
general guidance event will be discussed., Let tj be the time at which

the guidance event occurs, Before any guldance event can be executed the
targeted nominal state Xj’ most recent nominal state X, 6, estimated state

deviation 5&; from most recent nominal, actual state deviation Si} from

most recent nominal, knowledge covariance P; , and control covariance P;
- ] k|
must all be available, where ( ) indicates values immediately before the
event, Only the control covariance is not available prior to entering
GUISIM, The propagation of the control covariance over the interval

[tj-l’ tj]’ where tj-l denotes the time of the previous guidance event,

is performed within GUISIM,

The next step in the treatment of a general guildance event is con-
cerned with the computation of the commanded velocity correction, execution
error covariance, actual execution error, and actual velocity correction.
In the simulation program a non-statistical commanded velocity correction
can always be computed, This commanded velocity correction Al 3 is used

to compute the execution error covariance matrixiaj and the actual execu-
tion error SAV.. A summary of the execution error model and the equations

used to compute 53 and BAVj can be found in the subroutine QCPMP analysis

section, The actual velocity correction is then computed using the equation
A
AV, = AV, + 84V,
J J 3

The last step 1s concerned with the updating of required quantities
prior to returning to the basic cycle, An assumption underlying the
modeled guidance process is that the targeted nominal is always updated
by the commanded velocity correction, In the simulation program the
update velocity correction AVUP is always identical to the commanded

]

velocity correction Aﬁj. This is in contrast to the error analysis program

where AﬁUP i8 equated with the non-statistical component of dﬁ*. The
j u
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most recent and targeted nominal states immediately following the guidance
event are updated using the equations

§j=7{3 +6§(3 + -g-
8&Vyp |
i
X =%t
j h|

The actual and estimated state deviations from the most recent nominal are

given by
~E e Ao 0
X, = 8X, - 86X, + |- < -
63’ h ki 5 AV,
3
5X =0
J

The previous 4 equations assume an impulsive thrust model, If,
instead, the thryst is modeled as an impulse series, then an effective

estimated state Xeff and an effective actual state Xeff are computed,

The equations used to compute these effective states are summarized in
the subroutine PULSEX analysis section, The previous update equations
are then replaced by the following equations

=)

~4
8%, = X pp - X gg

At
60X, =0
]

The knowledge covariance is updated using the equation
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if an impulsive thrust model is assumed, If the thrust is modeled as a
series of impulses, then an effective execution error covariance Qeff is

computed and the knowledge covarliance is updated using the equation

This equation is a direct consequence of the assumption that the targeted
nominal {s always updated at a guidance event,

+ A "compute only" option is available in GUISIM in which all of the
() quantities will still be computed and printed, However, states,
deviations, and covariances are then reset to their former ( ) values
prior to returning to the basic cycle.

Each specific type of guidance event involves the computation of
other quantities not discussed above, These will be covered in the
following discussion of specific guidance events,

1. Midcourse and biased aimpoint guidance,

Linear midcourse guidance policies have form

av. =T 8%
v. =T
Nj i o3

where the subscript N indicates that this is the velocity correction
required to null out deviations from the nominal target state. This
notation is required to differentiate between this type of velocity
‘correction and velocity corrections required to 'achieve an altered
target state. .Lincar midcourse guidance policies are discussed in
more detail in the subroutine GUIS analysis section.

Subroutine GUISIM calls. GUIS to compute the guidance matrix, I}, and

the target condition covariance immediately prior to the gulidance event,

WE, and then uses I} to compute the veloclty correction covariance Sj’ which

is defined as

215



N

[

(oY

GUISIM-4

A AT
5, = E [Aij_avN '],

and is given by the equation
- - T
s, =TI, -°? )T
c, K |
3 3 ey g 3
This equation assumes that an optimal estimation algorithm is employed
in the navigation process, since the derivation of thils equation requires

the orthogonality of the estimate and the estimation error,

A
Since state estimates 60X, are generated in the simulation program,

A i
an actual AVN can always be computed, This is in contrast to the error
3 A ,
analysis program where only a statistical or effective AV, can be computed,

N

3
The perfect veloclity correction Qyj, defined as the velocity correction
required to null out actual deviations from the nominal target state, is

also computed for midcourse guidance events, Assuming linear guidance
theory, the perfect velocity correction is given by

Av, = T 68X,
=i 3 ]

where 6Xj is the actual deviation from the targeted nominal, An option

~
is also available in GUISIM for re-computing AVN using nonlinear techniques,
3 _
However, it should be noted that the nonlinear two-variable B-plane guidance

poligy, unlike the corresponding linear policy, constrains the z-component
of AVN to be zero,

3

If planetary quarantine constraints must be satisfied at a midcourse
correction, GUISIM calls BIAIM to compute the new aimpoint “j and the

A
bias velocity correction ANB . All computations in BIAIM are based on
i .
linear guidance theory, However, an option is, available in GUISIM to re-
compute the total velocity correction ANB + A N’ but not u , using non-

j I
linear techniques, This option is recommended if a biased aimpoint guidance
event occurs at tj = injection time, It should also be noted that Qj is

set to zero if tj = injection time since it is assumed that the injection
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covariance does not change for small changes in injection velocity. i

+
After the updated control covariance Pc has been computed, the

]

+
target condition covariance matrix W, following the guidance correction

3

18 computed using the equation

where variation matrix nj has been previously computed in subroutine
GUIS,

2, Re~targeting,

In the simulation (and error analysis) program a re-targeting event
is defined to be the computation of a velocity correction A RT required

to achieve a new set of target conditions using nonlinear techniques.
~

Since the state estimate Xj'+ 5%5 is used as the zero-th iterate in

the re-targeting process, the new target conditions must be close enough
to the original nominal target conditions to ensure a convergent process.

It should be noted that after a re-targeting event the new target
conditions are henceforth treated as the nominal target conditions,

3. Orbital insertion.

An orbital insertion event is divided into a decision event and an execu}ion
event, At a decision event the orbital insertion velocity correction £§V¢I

and the time interval At separating decision and execution are computed
~_ N
based on the state estimate X + 6Xj. The relevant equations can be

found in the subroutine C¢PINSJana1ysis section for coplanar orbital
insertion; in NPPINS, for non-planar orbital insertion. Before returning

to the basic cycle, GUISIM schedules the orbital insertion execution event
to occur at tj + At and re-orders the necessary event arrays accordingly.

~ At an orbital insertion execution event the previously computed
AVpI is used to update the targeted nominal state, In addition, the

A
planeto-centric equatorial components of AVpI and the actual spacecraft
cartesian and orbital element states following the insertion maneuver are
computed,
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4, Externally-supplied velocity correction,

~—- R
At this type of guidance event the state estimate X, + Xj is simply

updated using the externally-supplied velocity correction ZBQEX o

Because of the complexity of the GUISIM flow chart, a simplified

flow chart depicting the main elements of the GUISIM structure precedes
the complete GUISIM flow chart,
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GUISIM Flow Chart. ' ENTER

Store impulsive AV execution error
variances in the DUMMYQ array.

Define guidance event index II.

ICPDE2 = 1
@
2 S 3
120 . ICPDE2 = ? > @
] .

Write out actual dynamic noise and

the estimated and actual deviations
from the most recent nominal at tj.

i

Store all knowledge covariance matrix
partitions in the Pl, CXXS1, CXU1l,
CXvl, PS1, CXSUl, and CXSV1 arrays.
Store all control covariance matrix
partitions in the P, CXXS, CXU, CXV,
PS, CXSU, and CXSV arrays.

Call PSIM and STMPR to compute and
write out the state transition matrix
partitions over the interval

[tj_l, tj] .

/

Call DYN@S to compute the dynamic
noise covariance matrix. Write out.

y
Call NAVM to compute the control co-
variance matrix partitions over

[e500 5] -
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XS]

Call CQRREL to compute and write
out control correlation matrix
partitions and standard deviations.

Store position/velocity covariance
matrix partition (Pl array) in the
PP array for use in subroutine

POICEM.

ICPDE2 = 2

Store position partition of the P
array in the Z and VEIG arrays.

Call EIGHY to compute and write out
the eigenvalues, eigenvectors, and
hyperellipsoid of the position
partition of the P array.

Store velocity partition of the P
array in the Z and VEIG arrays.

Call EIGHY to compute and write out
the eigenvalues, eigenvectors, and

hyperellipsoid of the velocity par-
tition of the P array.

()

GUISIM-10
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Write out complete description
of guidance event,

< IGUID(5,1I) = ? > 1 @

2,3,4
6
> 851
7

Define guidance policy code IGP.

\:

Call GUIS to compute I}, Uj, W

4
854 3 \fIGUID(l,II) =

N/

PR ]

J
and certain quantities required

for biased aimpoint guidance.

320
YES {ISPH=O ?>
NO
YES
Restore state vector, t. = injection time?gﬁ\\
time, and knowledge co- J
variance matrix par- NO
titions to their t ~
3 set AV =0
values. N,
Compute velocity correction covar-, J
iance matrix Sj' Write out cor-
relation matrix and standard dev- ‘
RETURN iations., Compute and write out :
eigenvalues and eigenvectors,

YES f——li
IGP = 2 7
N

NO

Compute and write out hyperellipsoid of Sj°

130 293
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Compute and write out actual and estimated

position/velocity deviations from the
targeted nominal.

Compute and write out the commanded and
perfect yelocity corrections to null out
errors from most recent target conditions,
Compute and write out the error in the
velocity correction due to navigation
uncertainty.

861

NO YES

/ =
\\7IGUID(3,II) 07 //>

» YES
i . = injection time?

~ NO
Store AVN- in DVN array for use in £, =
< J
subroutine BIAIM.

o)
Compute Qj using

C A
all BIAIM to perform blased aimpoint A% Set IRET = 1.

Set Q. to zero.
N.° J

guidance event. Return aimpoint l‘j’ i

bilas velocity correction AQUP , and
j o~
execution error covariance matrix Qj'

| a @
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YES
900

< 1c;u11>(3,i1) =1 ?\/

NO

977

Y
-

\4

Set IX = 1 and JX = II.
Set XIN to estimated state at t .

J

Write: Commanded velocity correction will
be recomputed using nonlinear guidance.

FTA

< IGUID(1,II) = ?>

2| 2VBP

to tcp and set IGP = 1 .

Compute Julian date corresponding

9974

3VBP

Compute position and velocity
of target planet at the
specified time.

Define target variables
XTAR, LXTAR, LNPAR, and
TGT3 for nonlinear 2VBP
guidance.

Define target variables
XTAR, IKTAR, LNPAR, and
TGT3 for nonlinear 3VBP
guidance.

Define target variables XTAR,
IXTAR, LNPAR, and TGT3 for
nonlinear FTA guidance.

99731

9980
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9980

Call NPNLIN to compute
nonlinear commanded velocity
correction. Return XDELV.

<i;KWIT 0 ? :>F S

YES

Set AG to XDELV. Compute Write: Nonlinear
uP. . .
J guidance failed.
Linear guidance
will be employed.

magnitude. Write out AQ
. \ UP.
and its magnitude. ]

YES

<<: t., = injection time? >
]

o]
N

Set IRET = 2 .

Compute ’Qj using A?IUP-'
J
9761

Write out correlation matrix
and standard deviations assoc-
iated with 6'.

J
2 — IRET = ? > 3 :%(ggg)
, 1 ‘
4
900 Compute and write out eigen-

values, eigenvectors, and
hyperellipsoid associated with
Qj"

Set AV AV
et UPj to A Njo

9760
YES

) NO
900 7 - N
{ 1U(2,11) = 0 7 > 977




1,2.3 IGUID(S,II) = 7
2 (Is velocity correction to
(YES) \ be treated at t,?) (NO)
_IGUID(4,1I1) = ? 1\L )

(What kind of thrust model - 904

is to be employed?) // (impulse
: series)

3 (finite burn) 1 (single impulse)
¥
Write: Finite

burn not available,

( EXIT >

GUISIM-15

IGUID(1,II) = 4 or 5?>

YES

7

Store Pl array in PSAVE array. ~update
knowledge covariance by adding Qj to

the velocity partition of the Pl array.

Call CORREL to write out controi and
knowledge correlation matrix partitions
and standard deviations just after the
guidance correction.

f1c¢DE2 =3

909

NO
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170
' YES
t, = injection time?‘\
J /
NO
~ NO
Avyp | £ 0 2\
<L‘ uE; | s
YES
Use AV to compute the actual
UPj

execution error 6AVj. Compute

the actual velocity correction
AVj. Write out éAVj and AVj.

Set 8AV and
]
AVj to zero.

YES
( IGUID(1,II) # &4 or 5 ? >“‘—‘—____——‘

NO

Compute and write out planeto~centric
equatorial components of AV .

YES t:

4—<4}GUID(4,II) 4 2 ?4>

NO

Set XXIN to the actual state
at tj. Set DELPX to Avj.

Compute Julian date at tj' Set
INPX = 1 .

Call EXCUTS to compute the
effective actual state. Return
XXIN. Set XACT to XXIN.

9102

»N
(o]
[0 ]
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NO

< IGUID(1,11I) # 4 or 5 ?A>

YES

91020

YES

Compute Julian date at t

Set 1IGp = 2 .

J

< IGUID(1,ID) > 4 7 )
NO
NN = 3
NO
( IGUID(1,II) = 2 ? >h_______
YES
NN = 2

Compute target condition covariance
matrix Wj+ following the guidance

correction. Write out the associated
correlation matrix and standard
deviations.

Compute and write out eigenvalues,
eigenvectors, and hyperellipsoid

associated with Wj+.'

v

Compute and write out actual target

error due to navigation uncertainty,
actual target error due to execution
error, and total target error.

2
(NO) <

IGUID(5,II) = ?
(Is velocity correction to be execute

4

\
d?/ri

\

Store PSAVE array in the P1

array so
contains
variance
2uidance

that the Pl array
the knowledge co-
just before the
event,

(YES)

851

229




GUISIM-18

YES
WNO IGUID(4,11) = 2 7
y
Update most recent nominal Update most recent nominal,
targeted nominal, and estimated targeted nominal, and estimated
and actual state deviations for and actual state deviations for
an impulsively-applied AV. a AV applied as an impulse series.

Write out most recent nominal, targeted
nominal, and estimated and actual state
deviations,

Update state vectors, times, and control
and knowledge covariance matrix partitions

in preparation for next cycle. Set
NPMTRJ = O .

RETURN

@ 851
_No IGUID(1,11) < 3 or \ YES N
IGUID(1,11) = 7 7 / >

— \
Set ZBVUP. to the pre-specified Write: Error in

J A~ IGUID array.
DELV array. Write out AVUP-
and its magnitude. J

| EXIT
o A

Compute Q, using AV .

j UPj

Set IRET = 2

<

230 9761




— Y0 { 1eums,11) # 12 /\ YES

N

Compute actual spacecraft
state relative to target
planet immediately following NO
orbital insertion.

GUISIM-19

YES

1
<IGU1D(4,11) 727 )

series thrust model,

Compute actual spacecraft state relative
to target planet immediately following
an orbital insertion employing an impulse

Write out actual spacecraft state relative
to target planet immediately following
orbital insertion in ecliptic coordinates.

Compute and write out above spacecraft
relative state in planeto-centric equatorial
coordinates.

Compute target planet gravitational constant.
Call CAREL to compute the orbital elements
of the spacecraft orbit. Write out elements.
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Sct IX = 2 and JX = II. A
Set XIN to estimated state at tj.

Define LKTAR array for orbital insertion.

NO

Call N@NLIN to compute orbital
insertion AV and time. Return
XDELV and TGT3.

N A
Compute Qj using AVUPj .
Set IRET = 3.

Set AV, . to XDELV and

UPj .
DT@® to TGT3.

YES
LKW,IT =17)

NO
/ Write: Orbital
\ IGUID(5,I1) # 2 ?;> insertion failed.

YES

Define orbital insertion <;IGUID(5,II) # 2 ?>
execution event. Write
out time .at which event NO YES
will be executed,

@ ( EXIT )

Re-order event arrays as
required by previous
definition of orbital
insertion event,




Set IX = 1 and JX = 1I.
Set XIN to cstimated state at tj'

Call NONLIN to perform re-targeting
event (target variables are defined

in namelist). Return XDELV,

Set A\“IUPJ, to XDELV.

NO

GUISIM-21

<>KWIT =0 ?4>—

/ =
(. IGUID(5,II) = 2 a

NO

Update nominal target conditions
in TNGMB and TN@MC arrays.
Write out.

Compute 6j using AVUP.' Write
A 3
out AVyp. and its magnitude.
J
Set IRET = 2 .

Write: Re-targeting
failed.

\
IGUID(5,II) = 2 ?)

YES NO

@ ExIT
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Set XXIN to estimate state
at tj. Set DELPX to AVUP-‘
]

"

Define Julian date at tj.

Set INPX = 2 and store impulse
series execution error var-
iances in the DUMMYQ array.

Call EXCUTS to compute the
effective execution error co-
variance matrix and the
effective estimated state
corresponding to the impulse
series. Return QK and XXIN,

Restore single impulse execution
error variances into the DUMMYQ
array.

W

Store Pl array in the PSAVE
array. Update knowledge co-
Yvariance by adding effective
Qj to the Pl array.

Set XEST to XXIN,

3]
L
I~

GUISIM~22
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HELIO Analysis

HELIO computes the zero iterate initial state for interplanetary trajectories.
The initial and final states are determined either by an arbitrary position
vector or by the location of a specified planet at a prescribed time according
to

IZERO = 1 planet to planet
2 planet to arbitrary final point
3 arbitrary initial point to planet
4 arbitrary initial point to final point

The final time used in locating a planet must correspond to the closest
approach (CA) to the planet. Therefore if the target time is read in as
a sphere of influence (S80I) time, a modification is required. The helio-
centric conic is computed (as described below) using the ¢t I time to

determine the final position. The approach asymptote ﬁhp corresponding

to that trajectory is used with the desired r to compute the time from

CA
SOI to CA. 1If rCA is not a target variable then the target values of B-T
and B+'R are used to estimate the Tea
2u \? 2
M 1
r = - 4= po— + 4B 1
CA v 2 (\7 > (1)
HP HP

Then the approximate approach hyperbola is given by

SI
a =
h 2
2u -V
B~ Vap Ts1
r
CA
e = 1 - —2
h a (2
2
P an(l-eh)

and the hyperbolic time to go from SOI to CA is given by

ot = V—“g (e sinh F - F) (3)
HP

where
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tanh % = n_ tanh =

P
cosfﬂl(-—-h—-l> (4)
e r
ST

The final time is then given by t,. = t.. + A

£ sy ts1ca -

The initial and final positions '?: and '?} of the heliocentric conic
i

are either input or computed from the positions of planets determined by
ORBR and EPHEM., The unit normal to the heliocentric orbit plane is

. T, xT
Vo= —— )
|ri x rfl

The inclination to that plane is

, v
cos 1 = W (6)
z
The ascending node of the plane is given by

A\
W
tan Q = -7\—}5 (7)
-W
y

The central angle of transfer is defined by
cos ¥ = = (8)
r

The semi-major axis .a and eccentricity e of the heliocentric coaic are.
computed from Lambert's theorem in subroutine FLITE. The true anomaly £

i
at the initial and final points are computed from
p = a (1- e2)
P-T
cos f, cosV¥ - £
P-T, i er
cos fi = — sin f = £ (8)

i ' sin V¥
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= f <+
ff { '

Finally, the argument of periapsis w 18 computed from

/\
T -U
1

cos (w + fi) =

(10)
r :
i

AN
where U = (cos  , sin Q2 , 0)

Therefore the initial or final states (jif ?z.) or (T_,V_ ) may now be

£ f
computed by ELCAR. Let (T, V ) denote either state and let (i?,?i))

denote the state of the relevant planet. The departure (or approach)
asymptote is then given by

—n

HP

-3 (11)

—— — —
= v -V v
£ P i p

v,
HE

The latitude and longitude of the position vector are

sin @ =

" in)

r
tan 6 = ;1 (12)
X

The path angle I' may be computed from

cos I' = YEP (13)
rv
The azimuth of the relevant state is
sin2 = (I x¥)-U (14)
| T x 7|
-\
cosy = U _ (15)
VcosT

If the initial state is referenced to a planet, subroutine LAUNCH is called
to convert the departure asymptote and launch profile into an injection
radius, velocity, and time. Otherwise the initial state is returned as the
initial state on the heliocentric conic.

Reference: Space Research Conic Program, Phase II1I, May 1, 1969, Jet
Propulsion Laboratory, Pasadena, California.
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HELIO Flow Chart ENTER

Initialization
ITIM = O

tf = DT (KUR)
ty = DG (XUR)

(X,,V ) = state of LP at t; X, = ZDAT(1),ZDAT(2),ZDAT(3)
(ORB,EPHEM) . 1

L I

@ .

=1,3 =2,4
IZERO = ?

/
(X ;V ) = state of TP at t

(ORB, EPHENM) £ X, = ZDAT(4) ,ZDAT(5) ,ZDAT (6)

Compute heliocentric plaqg\elements
Orbital plane normal W
Central angle of transfer ¥
Orbital plane inclination i

v

Compute heliocentric semi~-major axis and
eccentricity from Lambert's theorem (FLITE)
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Compute heliocentric conic angles
fia ffs W, w

Compute initial velocity T;i

on heliocentric conic (ELCAR)

Compute approach asymptote v;IP
NO E
YES
Is Tep 2 target YES
parameter?
NO
Compute B2 = BuT2 + B-R2
M 1 2 M 2
Y = - 00—+ 7 —, + 4B
CA Vip 2 (VHPZ )

Compute nominal time to

go from SOI to CA = AtSICA

from nominal approach conic

Set DF = DF + At
ITIM—fl

SICA

HELIO-5
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Compute initial state on heliocentric

conic (ELCAR) and associated data.

HELIO-6

Compute VHE at launch planet.

mine injection s

Compute launch profile to deter-

tate (LAUNCH).

RETURN
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HYELS Analysis

Subroutine HYELS computes and writes out hyperellipsoids associated with
a 2 or 3 dimensional covariance matrix P,

If P is agsumed to be the covariance matrix of an n~-dimensional random
variable x having a gaussian distribution with mean zero, then the pro-
bability density function is given by

— l _]:_.sT P-l -
P = am™ 2 | |72 exp =2 % X

Re~writing this equation as
§TP‘1§=21n[ n/21 1/2] -k
2™ p |P|

shows that the surface of constant probability density p is an m-dimen-
sional ellipsoid, where m is the rank of P, The constant k can be shown
to correspond to the sigma level of the ellipsoid,

2

For n = 3, the above equation has form

ax2 + by2 + cz2 +dxy +e xz +£f yz = k2

= = 2
where a asq d .al2
b =ay, e = 23y,
c = a33 f= 2a23
and the aij are the elements of P-lo

* Subroutine HYELS uses this equation to compute a 3~dimensional hyperellip-
sold, and sets the appropriate constants to zero to compute a 2-dimensional
hyperellipsoid,

Reference: H, forenson, "Kalman Filtering", Advances in Control Systems,
Vol, 3, C. T. Leades (Ed,), New York: Academic Press, 1966,
p. 219. '
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IMPACT Analysis

The impact parameters B-T and B:R form a convenient set of variables
for the description of the approach geometry for lumar and interplanetary
missions. Let a reference cartesian coordinate system XYZ (ggliptic in
STEAP) be established at the center of the target body. Let Voo denote
the hyperbolic excess velocity of the spacecraft in the XYZ system. An
auxiliary coordinate system R-S-T may be constructed relative to the Vo
by the definitions

T x

"N — N N A
S = Voo /Yo = R=SxT @D

w? jn>
=> IR>

13 xR |

A A
Therefore S 1is in the direction of the approach asymptote, T 1lies along
the intersection of the impact plane (tne plane normal to S and passing.
through the center of the planet) and the reference plane (XY-plane), and
R completes the right hand system. The B vector lies in the impact

plane and is directed to the incoming asymptote. Then B+T and B¢R have
the usual vector definitions.

A
Z

Incoming hyperbola

Figure 1. Impact Plane Parameters

In the optional part of the subrqutine, the target impact parameter 'i*
asgsociated with and a target inclination i (relative to target planet
equator) and radius of closest approach Iep is computed. However given

A
an approach asymptote S there are generally four trajectories with the
same values of i and Toa® Two of these trajectories are retrograde and



IMPACT=-2

two are posigrade. For each type of motion there are two distinct planes
that have tne same inclination and include tne S vector. These are
digtinguished by the direction of motion wnen tne approach asymptote is
crossed, i.e., wnetner the motion 1s from north to south (northern approach)
or from soutn to north (southern approach). Let 0% o & 90°. Then
setting the target Inclinations to the following values determines the
trajectory which will be specified:

i Trajectory

o posigrade with northern approach
- posigrade with southern approach
180+ ¢ retrograde with northern approach
180~ ¢ retrograde with southern approach

The possible trajectories are illustrated in Figure 2.

i=to

i=-0

v

Figure 2. Possible Trajectories with Same Inclination

The detailed computations for the basic part of the program are straight-
forward. Using the standard conic abbreviations,

c = ??J(??‘ (2)

A T xV

w= T (3)
C2

p= e (4)

a=—2%X (5)
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2
e =1 - B (6)
a : .
b =\[p | a| @))
cos f= R X (8)
er
gin £ = I-£ (9)
e
2=L v-IF (10)
C C
A T —
P=2cos £f -2 sgin £ (11)
r
A - fas
Q= % sin f + Z cos £ 12)
o a r b A
S=w—te B + —=— @ (13)
V aZ4p? V a?+b2 -
A ~ /N .
T= SxK (14)
A o~
: S xK
~
R= ,g x T (15)
B = P + —22_ Q (16)
V aZ+b2 V a2+p2
TGV aN
BT = B.T (17)
- A
B'R = B-R (18)

The computations for the optionalipart_gf the program which converts
the 1 and Tea into an equivalent B* proceed as follows. The

approach asymptote is first converted into target planet equatorial
coordinates and its right ascension and declination computed



IMPACT-4

N

s 3
4= ¢ gCcEQ

S
0 = tan ! j—jll (19)

S (sq),

-1
dg = sin (Sq)z

The angle A® between the ascending node of the trajectory and the
right ascension of the approach asymptote is from Napiers rule

tan JS

gsin 08 = (20)

tan i

after assuring that |i| A ldsl . The ascending node of the trajectory

is then computed recalling the definitions of the angle 1
Q = 6.+ A0 (+7) (21)

Thus the unit vector to the ascending node is given by
N
R, = (cos 2, sin 2, 0) 22)

The normal to the orbital plane (in target planet equatorial coordinates)
is A~ A
q alle @)

= YA A

q , Sq x‘ﬁAl

This is8 now converted to the ecliptic coordinate system

Fa\ T A
We = Ppcpq Ya t (24) .

—
The unit vector in the desired B* direction is

>

X

(25)

>
)| »)

e
=2 =

cl
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—
B* vector 1s given by

= 2 U
B* = rCA\/l F e (26)

2
\'
rcA oo

The magnitude of the

— N
Then the target impact parameter is B¥ = B* B* . The target values are
then given by their obvious definitions

— N
BeT* = B%x - T

—

~ X))
B-.R*¥ = B¥ - R

Finally the hyperbolic time from (f, ¥) to periapsis is computed from
tne conic formula

taph £ = e~ 1l ¢and
e

1 2

(28)

2 +
t = e (e sinh F = F)

Reference: Kizner, W., A Method of Describing Miss Distances for Lunar

and Interplanetary Trajectories, Ballistic Missiles and
Space Technology vol III, Pergamon Press, New York, 1961.
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IMPCT Analysis

The subroutine IMPCT is responsible for computing all.of the
target parameter data associated with auxiliary targeting. Three
basic types of target information are required given a planeto-
centric ecliptic state. First, what are the actual B-plane pierce

point coordinates, BA°T and BA-R? Second, what are the values of

the actual target parameters? These may be triples of inclina-
tion, radius and time at closest approach or right ascension,
declination, and time at impact. Third, what are the B-plane

pierce point coordinates, BD-T and BD°R on the current tra-

jectory required to achieve the desired values of the corres-
ponding actual target parameters. In addition to supplying all
of this information, IMPCT places it in the appropriate loca-
tions for sorting by the processing routine TAR@PT.

Whenever IMPCT is called, it first calculates the actual B-plane
pierce point coordinates for the current state. In the process
it also calculates other useful information about the osculating
conic, including the parameters a, e, 0, W, S, T and R. For the
equations giving these quantities see the subroutine STIMP analy-
sis. 1If option flag K@PT is 1, only this information is desired
and a return to the calling program is executed.

The values of the actual target parameters are calculated if K@PT
is not 1. If the targets are inclination, radius, and time at
closest approach, K@PT must be 2. If TARGET is not in the second
phase of a two-phase targeting case, the target parameters, i,
Topo and tCA are obtained by conic extrapolation from the current

state (SOI):

ro, < @ (1 -e). (L)

Let D denote the transformation from planetocentric ecliptic
coordinates to the planetocentric equatorial frame:

1= cos™l ED _v_r)3:| (2)

If TARGET is in a second phase, the virtual mass program will
have integrated the trajectory all the way to closest approach
rather than stopping at the SOI. Hence refined values of all
three target parameters are available from VMP,
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Suppose, on the other hand, that the targets are right ascension
a, declination 6§, and time ty; at impact. Then K@PT must be 3.

Again if TARGET is not involved in a second phase, these target
parameters are calculated by extrapolating conically from the SOIL.

Let I and e denote the position vectors of the vehicle at im-

pact in the planetocentric ecliptic and probe-sphere frames,
respectively. Let C denote the transformation from the former
frame to the latter. Obviously

The right ascension and declination at impact are then

tan~! [(pl)z/(pl)l:l , (5)

o

and

©r
il

sin™! [(pl)3/p1:] . (6)

Let AtSC and AtIC be the times from the sphere of influence and

from the probe sphere to closest approach, respectively. Let 0

I
denote the true anomaly on the osculating conic at the probe
sphere:

cos 6, = (p/ r; - l/a)/ e (7)
where

p=a (l-e?) (8)

is the semilatus rectum of the conic. Since impact occurs before
peripsis,

i = - 2
sin GI 1l - cos 0. (9)

With the true anomalies on the conic at the current state and at

the probe sphere avallable, IMPCT cals HYPT to determine Atsc

and AtIC. 1f, as above, tgop denotes the time from the sphere

of influence to periapsis,

t. =t +(At - At

I so1 SC Ic)‘ (10)
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Finally, if TARGET is involved in the second phase of targeting,
the virtual-mass algorithm integrates the trajectory all the way
to the first integration increment inside the probe sphere. Hence
the preceding conic extrapolation formulae can be used to obtain
accurate impact target parameters by replacing the state at the
SOI with the first state inside the probe sphere.

IMPCT calculates the desired B-plane pierce point coordinates

BD-T and BD-R for either the i and Top OF © and R target options

if the flag ITARR is 2 indicating that a new control iteration is
being made. The equations and logical flow of this calculation
for the former target option is given in the subroutine IMPACT
while tose for the latter are presented in DIMPCP.
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Yes

ENTER

Compute conic parameters
A, E, P, P, Qand Z
from input state vector

¢

Compute actual B-plane
parameters: S, T, R,
BA’ BA-T and BA-R

Are
values
of actual
target parameters
required?

Do

actual
targets
include

i, rCA?

Is
conic

\

Conically
extrapolate values
of i, *eAs tea from

current state
(use HYPT)

L

extrapolation
adequate?

Obtain intggrated
values of i, *eA tCA

from VMP

IMPCT-4



Are
desired
B-plane coordinates

BT and By-R

required?

Can
desired i
be achieved
on current
trajectory?

Rest i to
nearest possible
targetable value

v

Print reset

i value
],

Calculate desired
B-plane data

BD’ BD-T, and B,-R

D

Is
conic

Yes extrapolation

adequate?

Obtain nearest
virtual-mass
state inside
probe-sphere
(from VMP)

IMPCT-5
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Conically extrapolate
to probe-sphere state
(Use HYPT)

\ 4

Calculate impact
RA, DEC, and TIME
using probe-sphere
state

Are
desired
B-plane coordinates
BD-T and BD-R

required?

Can

IMPCT-6

desired
impact RA and
DEC be achieved

on current
trajectory?

Reset impact
RA and DEC to
nearest possible
targetable pair

y

Print reset
impact RA
and DEC pair

Calculate desired
B-plane data
BD’ BD-T, and BD-R




INSERS-

INSERS Analysis

INSERS controls the processing of an orbital insertion event. The sub-
routine COPINS and NONINS perform the actual computations for the co-
planar and non-planar options respectively.

INSERS first records the specific parameter values for the current orbit
insertion event.

It then computes the current state (;, ;) of the spacecraft in target-
planet centered ecliptic coordinates, Subroutine PECEQ 1s called to
compute the transformation matrix ¢EC from ecliptic to equatorial
coordinates, The planet centered equggorial coordinates are then

q = PrcEq T

Hy

<l

Ve = Prcrq
This state is then sgnt to COPINS or NONINS for the computation of the
insertion velocity[lv and the time interval t between the current time
and the time at which9the insertion should take place,(based on conic
propagation about the target body). The correction/M_ is then con-
verted to ecliptic coordinates !

— T__—l
Dv =" Nv
q
If the event is a compute-only mode, the return is made to GIDANS.

If the event 1is to be executed the flag IEX (set by COPINS or NONINS
to indicate success or failure) is then interrogated. If IEX = 1,

no acceptable insertion event was found and so the executive flag

KWIT 13 set to 1 before returning, If IEX = 0 an acceptable insertion
was determined and so it 1s set up.

1

/
2
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INSERS Flow Chart

ENTER

INSERS-2

Store current insertion parameters

!

state r , Vv
q

Compute ecliptic state of spacecraft
wrt target planet r, v, compute ¢

and compute planetcentric equatorial

ECEQ’

/
Call COPINS for
coplanar insertion
computation of A\v, At

Call NONINS for
non-planar insertion
computation ofA\v,/At

/

——
Convert[}v

to ecliptic

i
~

= 1
{ KMXQ = ?

=

]
o

: RETURN
KWIT =
KTTM = RETURN

KTIM

[

1
(@]
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JACOBI Analysis

The Jacobi method subjects a real, symmetric matrix A to a sequence of
transformations based on a rotation matrix:

~-81
cos ¢K 11¢K

K sin @ cos @
K K

where all other elements of the rotation matrix are identical with the
unit matrix, After n multiplications A 1is transformed into:

1 =
A ON e 01 A 01.... 0N

If ¢K is chosen at each step to make a pair of cff-diagonal elements

zero, then A' will approach diagonal form with the eigenvalues on the

diagonal. The columns of O1 02...0N correspond to the eigenvectors of A.

The angle of rotation @ is chosen in the following way. If the
four entries of 0K are in (i,1i), (i,3), (j,i) and (j,j) then the corres-

ponding elements of Ol-1 A 01 are

2 . 2
A a, cos“Q 2a, ., sin @ cos @ a,, sin“¢

b,. =Db,, = (a,, - aii) sin @ cos @ + aij(cosz¢ - sin2g)

ij ji ij

b = a,, sinz¢ - 2a

T ii 15 sin @ cos ¢’+ ij cosz¢

If ¢ 1is chosen so that tan 2¢ = zaij/(aii - ajj) then

bij = bji =0

Each multiplication creates a new pair of zeros but will introduce a non-
zero contribution to positions zeroed out_on previous steps. However,

successive matrices of the form 0,°% 0."1 A 0, 0. will approach the
; . 2 1 172
required diagonal form.

Reference: Scheid, Frances: Theory and Problems of Numerical

Analysiss McGraw-Hill Book Company, Inc., New York,
1968. .
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JACOBI Flow Chart
ENTER

Set initial V matrix to unity.
Set W2(l) = A(1)

YES
<<rls A a 1x]l matrix? RETURN

NO

Set Tl = ABS(A(2)). Scan upper
off-diagonal elements of matrix A
by rows to find greatest element in
absolute value. Set T1 equal to
this element.

Set IREDO = 0. Scan upper off-
diagonal elements of matrix A by rows
until a value greater than Tl is
found. Pivot on this element.

/

Compute rotation angle §.
Set IREDO = 1

Compute eigenvectors and
diagonalize matrix A.

W x
@\L —Q IREDO 17 >

NO
YES
| Place diagonal from
{ T1 .LE. FgD? >————%1 A ioto W2
NO

y —
. RETURN
Tl = T1 * 0.001




KTRAL Analysis

KTRPL calculates the targeting velocity increment Av given the

targeting state vector X = (g_/x)T of the spacecraft relative
to the launch planet and the launch-planetocentric velocity con-
trols cl, Cys and c3. This computation is required in two dis-

tinct situations. The first is in calculating the sensitivity
matrix of the auxiliary parameters to the velocity controls by
successively perturbing each control while holding the remaining
two constant. The second is in applying the control correction
indicated by the Newton-Raphson algorithm to arrive at the next
iterate to the postimpulse targeting state.

In either case the three unit vectors V, U, and W that serve to
define the local, spherical, velocity-control coordinate system
are first computed /

A\'4
y== (1)
I x Xy
N T . 2)
U=Wx¥V. (3)

V specifies the direction of zero latitude and zero longitude
in the control frame while the W axis determines the +z or polar

direction. Then c2 and c3 are, respectively, the latitude and

longitude of the posttargeting velocity while c, is the increase

1
in length of that velocity. Figure 1 defines the controls pic-
torially when the earth is the launch planet. The velocity in-
crements required in either of the two situations mentioned above
can readily be calculated in terms of the vector V, U, and W.

First consider the calculation of the iﬁcrement AvI produced by

perturbing the ith control an amount c, while fixing the other

i
controls at zero as required in the sensitivity approximation.
KTIRPL performs this conputation when IOPT = i. Reasoning from
Figure 1 it follows immediately that

Av, =,V (4)
Av, =[x (cos cy - l)V +sinc, U (5)
vy = (°°S c3 - 1>1+ sin ¢4 W. (6)

KTRAL-1
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AR = (B0 * Ysp) s
Spaéecraft //‘ H(”s/@ X !S/a)i"
Trajectory

o
€ Slos

c
. 3

Trajectory \
Targeting T — U = W xV
Point

Vg,

i -

Vs 5 2
® i

Figure 1 Pictorial Definition of Launch-
Planetocentric Targeting Controls

Next consider the calculation of the increment Av produced by
perburbing all three controls simultaneously as required in the
Newton-Raphson control correction. KTRAL performs this computa-
tion when I@PT = 4, Reasoning again from Figure 1

Av =[=’(||X“+ cl) cos ¢, cos cqy - (A Jg

+ “LX||+ cl)‘sin c, cos cg 2 +(H‘zﬂ + cl)sin c,y W. (N

Note that equation (7) degenerates to equations (4), (5), and (6)
when the appropriate controls are set to zero.
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KTRAL Flow Chart

( ENTER )
y
Write
X, CON
' IBPT

KTRQL-3

A2

Calculate
DV Due to
coN = (0, c,, 0)

2 ////)%\\\\k 3
IQPT = 2

lorid
Calculate Calculate
U, V and W DV Due to
Vectors CON = (0, 0, c
Calculate Calculate
DV Due DV Due to
CON = (cl, 0, 0 CON = (cl’ €y cj

O

(rerurn)
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LAUNCH Analysis

LAUNCH computes the injection time, position and velocity from the
departure velocity 'th (computed in HELIO) and the launch profile par-

ameters input by the user,

The rotation matrix @E defining the transformation from ecliptic to

CEQ
Eﬂuatorial coordinates is first computed (PECEQ). The departure velocity
VHE is then normalized and converted into ecliptic coordinates to yield

s
the departure asymptote S .,

AN = & V>m'_f,
EC
R Vye

(1)

N\
Auxiliary information associated with S is then computed. The energy
C3, the declination ¢s and the right ascension QS of the departure

asymptote, and the eccentricity of the departure hyperbola are given by

r. C
= —p3
e 1