FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN THE MERIDIONAL PLANE OF A TURBOMACHINE

I — Centrifugal Compressor

by Michael R. Vanco

Lewis Research Center
Cleveland, Ohio 44135
This program will determine the velocities in the meridional plane of a backward-swept impeller, a radial impeller, and a vaned diffuser. The velocity gradient equation with the assumption of a hub-to-shroud mean stream surface is solved along arbitrary quasi-orthogonals in the meridional plane. These quasi-orthogonals are fixed straight lines.
FORTRAN PROGRAM FOR CALCULATING VELOCITIES IN THE
MERIDIONAL PLANE OF A TURBOMACHINE

I - CENTRIFUGAL COMPRESSOR

by Michael R. Vanco
Lewis Research Center

SUMMARY

A FORTRAN IV computer program which calculates the velocities in the meridional plane of a centrifugal compressor is presented. This program will determine the velocities in the meridional plane of a backward-swept impeller, a radial impeller, and a vaned diffuser. The velocity gradient equation with the assumption of a hub-to-shroud mean stream surface is solved along arbitrary quasi-orthogonals in the meridional plane. These quasi-orthogonals are fixed straight lines.

The input quantities for this program consist essentially of mass flow, rotational speed, number of blades, inlet total conditions, loss in relative total pressure, hub-to-shroud profile, mean blade shape, and a normal thickness table. The output yields meridional velocities, approximate blade surface velocities, streamline coordinates, blade shape coordinates, and stream-channel normal thickness in the meridional plane. Numerical examples are included to indicate the use of the program and the results obtained.

INTRODUCTION

Recently, increased interest has been shown in high-pressure-ratio backward-swept centrifugal impeller blades. Centrifugal compressors with backswept impeller blades have the potential of achieving higher efficiencies than those with radial impeller blades. Several methods are available for designing radial-bladed compressors, but limited work has been done on backward-swept impeller blades. Reference 1 gives the method and numerical techniques used to find the flow distribution in the meridional plane of a radial-flow turbine. This method solves the velocity gradient equations with the assumption of a hub-to-shroud mean stream surface. A set of arbitrary straight lines
from hub to shroud is used instead of normals. These arbitrary straight lines are called quasi-orthogonals and they remain fixed regardless of any streamline change. This analysis, which has been used for radial-bladed centrifugal impellers, has now been programmed to include backward-swept centrifugal impeller blades.

This report presents a computer program for calculating the velocities in the meridional plane of a centrifugal compressor. This program will determine the velocities in the meridional plane of a backward-swept impeller, a radial impeller, and a vaned diffuser, as well as approximate blade surface velocities. The output of this program is arranged in a form so that it can be used as input to programs used to calculate the blade-to-blade loadings from references 2, 3, or 4.

In this report, a description of the input and output and a FORTRAN IV computer program are presented. A brief description of the method of analysis and the computer program are given. Numerical examples are included to illustrate the use of the program and the results obtained.

METHOD OF ANALYSIS

Reference 1 presents the method and gives the numerical techniques used to find the flow distribution in the meridional plane of a radial-flow turbine. The general velocity gradient equation is derived along an arbitrary quasi-orthogonal in the meridional plane with the assumption of a hub-to-shroud mean stream surface. The equations derived in appendix B of reference 1 are

\[
\frac{dW}{ds} = \left(A \frac{dr}{ds} + B \frac{dz}{ds} \right) W + C \frac{dr}{ds} + D \frac{dz}{ds} + \left(\frac{dh_1}{ds} - \omega \frac{dx}{ds} \right) \frac{1}{W}
\]

\[
A = \frac{\cos \alpha \cos^2 \beta - \sin^2 \beta}{r_c} - \sin \alpha \sin \beta \cos \beta \left(\frac{\partial \beta}{\partial r} \right)_f
\]

\[
B = - \frac{\sin \alpha \cos^2 \beta + \sin \alpha \sin \beta \cos \beta \left(\frac{\partial \beta}{\partial z} \right)_f}{r_c}
\]

\[
C = \sin \alpha \cos \beta \frac{dW_m}{dm} - 2 \omega \sin \beta + r \cos \beta \left(\frac{dW_\theta}{dm} + 2 \omega \sin \alpha \right) \left(\frac{\partial \beta}{\partial r} \right)_f
\]

\[
D = \cos \alpha \cos \beta \frac{dW_m}{dm} + r \cos \beta \left(\frac{dW_\theta}{dm} + 2 \omega \sin \alpha \right) \left(\frac{\partial \beta}{\partial z} \right)_f
\]
The coordinate system and nomenclature are shown in figures 1 and 2.

In this analysis, the total enthalpy at the inlet \(h_i \) and the prerotation at the inlet \(\lambda \), \(r_i \theta_i \), are assumed constant. Therefore, equation (1) reduces to

\[
\frac{dW}{ds} = \left(A \frac{dr}{ds} + B \frac{dz}{ds} \right) W + C \frac{dr}{ds} + D \frac{dz}{ds} \tag{1a}
\]

Continuity must also be satisfied from hub to tip. The calculated mass flow across any fixed line from hub to tip must equal the specified mass flow. The mass flow is computed from

\[
w = N \int_0^s \rho W_n r \Delta \theta \, ds \tag{3}
\]

integrating from hub to tip along a quasi-orthogonal.

The density is calculated from the isentropic flow equation with a correction for loss in total relative pressure. This equation is derived in reference 1. The density equation is
\[
\rho = \left(\frac{T}{T'}\right)^{1/(\gamma-1)} \rho_1' - \left[\frac{T'}{T_1'} \left(\frac{T'}{T''}\right)^{1/(\gamma-1)}\right] \frac{\Delta p''}{RT_1'} \frac{T_1'}{T''} \tag{4}
\]

where

\[
\frac{T}{T_1'} = 1 - \frac{W^2 + 2\omega_\lambda - \omega^2 r^2}{2cpT_1'} \tag{5}
\]

\[
\frac{T''}{T_1'} = 1 - \frac{2\omega_\lambda - \omega^2 r^2}{2cpT_1'} \tag{6}
\]

and the relative total pressure loss

\[
\Delta p'' = p''_{isen} - p'' \tag{7}
\]

The change in the angular distance between blades \(\Delta \theta \) is

\[
\Delta \theta = \frac{2\pi}{N} - \frac{t_\theta}{r} \tag{8}
\]

where tangential thickness \(t_\theta \) is determined from

\[
t_\theta^2 = t_n^2 \left[1 + r^2 \left(\frac{\partial \theta}{\partial z_1}\right)^2 + r^2 \left(\frac{\partial \theta}{\partial r}\right)^2 \right] \tag{9}
\]

when the normal thickness \(t_n \) is specified.

From figure 2, it can be seen that the velocity normal to the quasi-orthogonal is

\[
W_n = W_m \cos(\psi - \alpha) \tag{10}
\]

where from figure 1

\[
W_m = W \cos \beta \tag{11}
\]
The flow angle β is determined from the mean stream surface, $\theta = \theta(m)$, for each streamline, between the blades. Therefore,

$$\tan \beta = r \left(\frac{d\theta}{dm} \right)_f = r \left[\frac{\partial \theta}{\partial r} \right]_f \sin \alpha + \left(\frac{\partial \theta}{\partial z} \right)_f \cos \alpha$$ \hspace{1cm} (12)

where $(d\theta/dm)_f$ is the directional derivative along a streamline.

The $\partial \theta/\partial z$ and $\partial \theta/\partial r$ in equation (9) refer to the mean blade shape. The $(\partial \theta/\partial z)_f$ and $(\partial \theta/\partial r)_f$ in equations (1a) and (12) refer to the mean stream surface between the blades. The mean stream surface is assumed to deviate from the mean blade shape at a radius r_b for a centrifugal machine. An approximate equation for determining r_b is given by reference 5,

$$r_b = r_1 e^{-0.71(\Delta \theta)}$$ \hspace{1cm} (13)

The equation for the mean stream surface when $r \geq r_b$ is

$$\theta_f = \left(\frac{\tan \beta_o - \tan \beta_b}{r_o - r_b} \right) (m - m_b)^3 \frac{\tan \beta_b}{3(m_o - m_b)^2} + \frac{\tan \beta_b}{r_b} (m - m_b) + \theta_b$$ \hspace{1cm} (14)

The boundary conditions used to obtain equation (14) were β_o, the outlet flow angle; θ_b, the angular coordinate of the mean blade shape at r_b; and $(d\theta/dm)_b$. Differentiating equation (14), we obtain

$$\left(\frac{d\theta}{dm} \right)_f = \left(\frac{\tan \beta_o - \tan \beta_b}{r_o - r_b} \right) \frac{(m - m_b)^2}{(m_o - m_b)^2} + \frac{\tan \beta_b}{r_b}$$ \hspace{1cm} (15)

It will be noted that equation (1a) is in terms of $(\partial \theta/\partial z)_f$ and $(\partial \theta/\partial r)_f$ and that, on the mean stream surface, θ is a function of the meridional distance m, for each streamline. The relation between them is

$$\left(\frac{d\theta}{dm} \right)_f = \left(\frac{\partial \theta}{\partial r} \right)_f \sin \alpha + \left(\frac{\partial \theta}{\partial z} \right)_f \cos \alpha$$ \hspace{1cm} (16)
The preceding equations are solved with the specification of a mean blade shape. The mean blade shape can be specified by two methods. The first method of specifying the mean blade shape is specifying the angular coordinate of the mean blade shape \(\theta \) constant along a quasi-orthogonal. Since the quasi-orthogonal is a fixed straight line, the mean blade shape is completely specified by specifying \(\theta \) as a function of the meridional distance \(m \) for the hub and shroud streamlines. Therefore, \(d\theta/dm \) is known, but the \(\partial\theta/\partial r \) and \(\partial\theta/\partial z \) have to be determined. If the directional derivative is taken in the \(m \) and \(s \) direction, then

\[
\frac{d\theta}{dm} = \frac{\partial\theta}{\partial r} \frac{dr}{dm} + \frac{\partial\theta}{\partial z} \frac{dz}{dm} = \frac{\partial\theta}{\partial r} \sin \alpha + \frac{\partial\theta}{\partial z} \cos \alpha \tag{17a}
\]

and

\[
\frac{d\theta}{ds} = \frac{\partial\theta}{\partial r} \frac{dr}{ds} + \frac{\partial\theta}{\partial z} \frac{dz}{ds} = \frac{\partial\theta}{\partial r} \sin(\mu + \alpha) + \frac{\partial\theta}{\partial z} \cos(\mu + \alpha) \tag{17b}
\]

With the specification of \(d\theta/ds = 0 \) and the geometry in figure 3, the following equations are obtained:

\[
\frac{\partial\theta}{\partial z} = \frac{\cos \psi}{\cos(\psi - \alpha)} \frac{d\theta}{dm} \tag{18}
\]

and

\[
\frac{\partial\theta}{\partial r} = \frac{\sin \psi}{\cos(\psi - \alpha)} \frac{d\theta}{dm} \tag{19}
\]

This case is used for backswept centrifugal impeller blades. This case is also used for centrifugal diffusers, but equations (13) to (15) are not used because the mean blade shape is the same as the hub-to-shroud mean stream surface.

The second method of specifying the mean blade shape is specifying \(\theta \) as a function of the axial distance \(z \). This case is used for radial-element centrifugal impellers. Therefore, \(\partial\theta/\partial r = 0 \) and

\[
\frac{d\theta}{dm} = \frac{\partial\theta}{\partial z} \cos \alpha \tag{20}
\]
However, when slip occurs, that is, when the mean stream surface deviates from the mean blade shape, \((d\theta/dm)_f\) is known from equation (15). It is assumed that the mean stream surface deviates from the mean blade shape only in the radial direction. Therefore, \(\partial\theta/\partial z\) is known (mean blade shape), and

\[
\frac{\partial \theta}{\partial r}_f = \frac{(d\theta)/(dm)_f - \frac{\partial \theta}{\partial z} \cos \alpha}{\sin \alpha}
\]

(21)

The numerical techniques and procedures used for the solution of equations (1a), (2), and (3) are given in reference 1.

DESCRIPTION OF INPUT

A description of the input for the FORTRAN IV computer program QUAC is given in this section. The input quantities consist essentially of mass flow, rotational speed, number of blades, specific-heat ratio, inlet total temperature and density, gas constant, loss in total relative pressure, hub-to-shroud profile, mean blade shape, and a normal thickness table. Since the program does not use any constants which depend on the system of units being used, any consistent set of units may be used. In the following input, each item has units specified in both the SI and U.S. customary systems.
The input format is shown in table I. The first card is a title card and this card must be put in. The input variables are:

- **MX**: number of quasi-orthogonals
- **KMX**: number of streamlines
- **MR**: number of r-values of TN in the thickness table
- **MZ**: number of z-values of TN in the thickness table
- **W**: rotational speed, rad/sec
- **WT**: mass flow, kg/sec; slugs/sec
- **XN**: number of full blades
- **GAM**: specific-heat ratio
- **AR**: gas constant, J/(kg)(K); (ft)(lbf)/(slug)(\(^0\)R)
- **TYPE**: integer; used as a code to indicate how arrays WA, Z, R, and DN are given initially; the integer values are
 - 0: These quantities will be calculated by the program.
 - 1: Quantities just computed for previous case will be used for next case. (Used only when more than one case is calculated on single computer run.)
- **MT**: number of z-coordinates in ZT array
- **SRW**: integer that will cause the program to print out certain values; used for debugging purposes; the integer values are
 - 0: value when not debugging; usual case
 - 13: SPLINE
 - 16: SPLINT
 - 21: RUUT
- **MXBL**: quasi-orthogonal number where blade starts
- **TEMP**: inlet total temperature, \(T'_i\), K; \(^0\)R
- **ALM**: inlet prerotation, \(\lambda\), m\(^2\)/sec; ft\(^2\)/sec
- **RHO**: inlet total density, \(\rho'_i\), kg/m\(^3\); slugs/ft\(^3\)
- **PLOSS**: loss in relative total pressure, \(\Delta p''\), N/m\(^2\); lb/ft\(^2\)
streamline rotation angle, deg (The streamlines are rotated so that the slope of the program's cubic spline curve is not too large. Good results are obtained from the cubic spline if the absolute value of the slope is not greater than 1. Recommended angles are as follows: for an impeller, 45°; for a diffuser, 90°; and for an axial-flow compressor, 0°.)

KSTH determines the number of times the streamlines are smoothed for each iteration (For example, if KSTH = 0, no smoothing occurs. This is the usual case (KSTH = 0).)

NPRT output control that determines which streamlines are printed out (For example, if NPRT = 1, every streamline is printed out; and if NPRT = 5, every fifth streamline is printed out.)

ITER number of iterations to be performed after ERROR is less than TOLER or after ERROR has started to increase (If ITER = 0, data will be printed for every iteration; if ITER > 0, data will be printed only for the final iteration. Normally ITER = 1, but for a first-run set ITER = 0 and check the first few iterations to see if the data were put in properly.)

KD determines compressor type (For a backward-swept impeller, KD = 0; for a diffuser and an axial-flow compressor, KD = 1; for a radial element impeller, KD = 2.)

SFACT blade multiplier to allow for splitter blades (For the case with no splitters, SFACT = 1.0; and for the case with splitters, SFACT = 2.0.)

ZSPLIT z-coordinate where splitter blade begins, m; ft (If there are no splitters, ZSPLIT > ZH(MX).)

BETO outlet flow angle, βo, deg

CORFAC ratio of streamline correction used to calculated streamline correction (CORFAC affects the stability of the solution. If too large a value is used, the new streamlines are less smooth than the previous ones. If a computation is based on this set of streamlines, the calculated streamline correction becomes erratic. Therefore, it is important that the streamline correction used give a smooth streamline for the next iteration. A value of 0.1 is recommended.)

SSN last quasi-orthogonal where smoothing is desired (For no smoothing, SSN = 0.)

ZS array of z-coordinates on shroud of hub-to-shroud profile located at quasi-orthogonal positions (see fig. 4), m; ft
ZH array of z-coordinates on hub of hub-to-shroud profile located at quasi-orthogonal positions (see fig. 4), m; ft

RS array of r-coordinates on shroud corresponding to ZS (see fig. 4), m; ft

RH array of r-coordinates on hub corresponding to ZH (see fig. 4), m; ft

THTA array of \(\theta \)-coordinates (mean blade shape), rad (When KD = 0 and KD = 1, \(\theta \) is constant along a quasi-orthogonal and must correspond to the ZS, ZH, RS, and RH arrays. When KD = 2, \(\theta \) is a function of axial distance \(z \) and must correspond to the ZT array.)

ZT array of z-coordinates corresponding to the THTA array, m; ft (Only used when KD = 2.)

TN array of thickness normal to the mean blade shape, \(t_n \), m; ft (This array has z-values of thickness going across and r-values of thickness going down the table. Values of thicknesses and corresponding z- and r-coordinates should extend beyond all boundaries of hub-to-shroud profile so that valid interpolation can be done in the program.)

XZ array of z-coordinates for thickness table (TN), m; ft (The z-coordinates increase going across the table for a given r-coordinate.)

XR array of r-coordinates for thickness table (TN), m; ft (The r-coordinates increase going down the table for a given z-coordinate.)
INSTRUCTIONS FOR PREPARING INPUT

Theta Constant Along a Quasi-Orthogonal

After the hub-to-shroud profile has been specified (fig. 5), the mean blade shape is determined. The angular coordinate of the mean blade shape θ is specified as a function of the meridional distance m for the hub and the shroud, as shown in figure 6. Values of θ that are spaced to give good results from a cubic spline used in the program are selected. For a given value of θ, the meridional distances are determined for the hub and shroud from figure 6. These meridional distances are then converted to the

![Figure 5. - Hub-to-shroud profile.](image)

![Figure 6. - Hub and shroud mean blade shape. $\theta = \Theta(m)$](image)

proper z- and r-coordinates. Therefore, the z- and r-coordinates for the end points of a quasi-orthogonal have been determined. These are the quantities θ, r_0, z_s, r_h, and z_h that are put in the program. The maximum number of quasi-orthogonal allowed is 21.

Theta Not Constant Along a Quasi-Orthogonal

This case is used for a radial impeller. The quasi-orthogonals are arbitrarily selected on the hub-to-shroud profile. They should be selected so that the program's
cubic spline curve will fit them smoothly. The mean blade shape is determined by specifying \(\theta \) as a function of the axial distance \(z \), as shown in the third numerical example (p. 18). MT is the number of \(\theta \)-values used. It should, also, be noted that KD = 2 for this case.

Smoothing of Streamlines

If the streamlines are not smooth, a smoothing routine can be used. KSTH is the number of times the streamlines are smoothed, and SSN is the last quasi-orthogonal where smoothing occurs. For an impeller, the streamline smoothing can take place only in the area shown in figure 7. It cannot take place in the other region because of the methods used. A recommended value for KSTH for smoothing is 4.

![Figure 7. - Streamline smoothing region for centrifugal impeller.](image)

Another method of smoothing the streamlines is to put quasi-orthogonals upstream of the impeller. The mean blade shape is extended into this region with the requirement of a negligible blade loading. These upstream quasi-orthogonals will allow a smoother transition into the impeller. For this case, MXBL is set equal to the quasi-orthogonal number where the blade starts. The first numerical example (p. 14) uses both these techniques.
DESCRIPTION OF OUTPUT

An example of the output from the program is shown in table II. This output is in U.S. customary units. Each section of the output has been numbered to correspond to the following description:

(1) The first output of the program is the input.

(2) Output 2 gives the stagnation speed of sound at the inlet in meters per second (ft/sec); the radius at which the mean stream surface deviates from the mean blade shape (RB) in meters (ft); and a list of the number of iterations required to obtain a solution with the corresponding maximum streamline change in meters (ft).

(3) Output 3 gives some of the important quantities used in the calculation procedure which are also useful for debugging purposes. This output is given for every streamline printed out. Streamline 1 is at the hub and streamline 21 is at the shroud. The number of streamlines printed out is controlled by the input parameter NPRT. Items listed are

\begin{align*}
\text{ALPHA} & \quad \text{angle between meridional streamline and } z\text{-axis, deg} \\
\text{RC} & \quad \text{curvature of meridional streamline, m}^{-1}; \text{ ft}^{-1} \\
\text{SM} & \quad \text{meridional distance, m; ft} \\
\text{BETA} & \quad \text{flow angle, } \beta, \text{ deg} \\
\text{TT} & \quad \text{tangential blade thickness, m; ft} \\
\text{SA} & \quad A, \text{ eq. (2)} \\
\text{SB} & \quad C, \text{ eq. (2)} \\
\text{SC} & \quad B, \text{ eq. (2)} \\
\text{SD} & \quad D, \text{ eq. (2)}
\end{align*}

(4) Output 4 gives the velocities and pressure for every streamline printed out. Items listed are

\begin{align*}
\text{Z} & \quad \text{z-coordinate, m; ft} \\
\text{R} & \quad \text{r-coordinate, m; ft} \\
\text{WA} & \quad \text{relative velocity on mean stream surface, m/sec; ft/sec} \\
\text{PRESS} & \quad \text{static pressure, N/m}^2; \text{ lb/ft}^2 \\
\text{WTR} & \quad \text{suction-surface velocity, m/sec; ft/sec} \\
\text{WL} & \quad \text{pressure-surface velocity, m/sec; ft/sec} \\
\text{TTREL} & \quad \text{total relative temperature, K; } ^{\circ}\text{R}
\end{align*}
(5) Output 5 gives the stream-channel coordinates and the blade shape coordinates for the hub, mean, and shroud. Only the shroud information is shown here. This information is used to determine the blade-to-blade loading from reference 2, 3, or 4. The M ARRAY, R ARRAY, and the stream-channel normal thicknesses in the meridional plane are in meters (ft); and the THETA ARRAY, the angular coordinates of the blade shape, is in radians.

STGR angular distance from center of trailing-edge circle of blade to center of leading-edge circle of blade, rad
RI leading-edge radius, m; ft
RO trailing-edge radius, m; ft

For the case with splitters, the following additional output is given:

MLER distance from leading edge of blade to leading edge of splitter, m; ft
STGRS angular distance from center of trailing-edge circle of splitter to center of leading-edge circle of splitter, rad
RI leading-edge radius of splitter, m; ft
RO trailing-edge radius of splitter, m; ft
BETAS flow angle at leading edge of splitter, deg

(6) Output 6 gives the inlet flow angle for the hub, mean, and tip, in degrees. These angles are calculated inside the blade passage.

NUMERICAL EXAMPLES

To indicate the use of the program and the results obtained, three numerical examples are given. The first example is a backward-swept centrifugal compressor rotor, the second is a centrifugal compressor diffuser, and the third is the input for a radial compressor. All examples are in U. S. customary units.

Backward-Swept Centrifugal Compressor

This compressor has a 6-to-1 pressure ratio. The hub-to-shroud profile of the impeller is shown in figure 8. The mean blade shape is given in figure 9, where θ is specified as a function of the meridional distance m for the hub and shroud. The quasi-
Figure 8. - Hub-to-shroud profile of backswept impeller.

Figure 9. - Mean blade shape of backswept impeller.
orthogonals shown in figure 8 depend on the mean blade shape in figure 9 because \(\theta \) is constant along a quasi-orthogonal. It will be noted that in this example three quasi-orthogonals were put upstream of the impeller. This was done to allow a smooth flow transition into the impeller because of the low inlet hub-to-tip radius ratio and the high rpm. Streamline smoothing was also used. MXBL was set equal to 4, SSN set equal to 8.0, and KSTH set equal to 4. The input for this case is given in table III. The mean stream surface relative velocities are plotted in figure 10 for the hub, mean, and shroud streamlines. The velocity change near the impeller inlet was due to the blade blockage.

![Figure 10. - Relative velocities in meridional plane of backswept impeller.](image)

The blade shape coordinates and the stream-channel normal thickness needed for calculating the blade loading from reference 2, 3, or 4 are given in table IV for the mean streamline. These results are also obtained for the hub and shroud streamlines, but they are not shown here.

Diffuser

A flat-vaned diffuser for a centrifugal compressor was designed to have a linear static-pressure gradient from inlet to outlet. The meridional profile is shown in figure 11. The angular coordinate of mean blade shape \(\theta \) is given as a function of the me-
Figure 11. - Hub-to-shroud profile of compressor diffuser.

Figure 12. - Mean blade shape for compressor diffuser.
ridional distance m in figure 12. The quasi-orthogonals shown in figure 11 depend on the mean blade shape in figure 12 because θ is constant along a quasi-orthogonal. The input for this case is given in table V. The mean stream surface velocities and the approximate blade surface velocities are plotted in figure 13 for the hub, mean, and shroud streamlines. The blade shape coordinates and the stream-channel normal thickness needed for calculating the blade loading from reference 2, 3, or 4 are given in table VI for the mean streamline.

Radial Impeller

This example is used to indicate the different input required. A hub-to-shroud profile is given in figure 14. The quasi-orthogonals for the profile shown are arbitrary and do not depend on the mean blade shape; that is, θ is not constant along a quasi-
orthogonal. The mean blade shape is put in as a function of the axial distance z, as shown in figure 15. Sample input is shown in table VII. The output obtained is the same as in the other examples.

PROGRAM DESCRIPTION

Main Program QUAC

The main program QUAC contains all the equations given in the method of analysis and makes the majority of the calculations. It will be noted that K is used for the streamline number and I is used for the quasi-orthogonal number. QUAC calls the subroutines RUUT, SMOOTH, INTGRL, CONTIN, SPLDER, SPLINE, LININT, and SPLINT to perform various functions such as smoothing, finding roots, integration, interpolation, and use of a cubic spline curve to determine derivatives. These subroutines, excluding RUUT and SMOOTH, are described in reference 1. A brief description of each is given herein.

The program variables for QUAC are

A temporary storage
AB temporary storage
AC	temporary storage
AD	temporary storage
AE	meridional length from leading edge
AL	α
ALM	see input
AMLER	MLER (see output)
ANGR	see input
AR	see input
B	temporary storage
BA	total weight flow between hub and K^{th} streamline
BETA	β
BETAD	β_l
BETAS	see output
BETAT	β_t
BETOH	exit blade angle at hub
BETOM	exit blade angle at mean
BETOT	exit blade angle at tip
C	temporary storage
CAL	$\cos \alpha$
CBETA	$\cos \beta$
CI	stagnation speed of sound at inlet
CORFAC	see input
COSBD	$\cos \beta_l$
COSBT	$\cos \beta_t$
CP	c_p
CURV	$1/r_c$
DELBTA	$\beta_t - \beta_l$
DELTA	calculated streamline correction
DENSTY ρ

DN distance along quasi-orthogonal from hub

DRDM $\frac{d}{dm} (r\omega + W \sin \beta r) r\Delta \theta$

DTDMB $(d\theta/dm)_b$

DTDMS $d\theta/dm$ at splitter leading edge

DTDR $\partial \theta / \partial r$

DTDZ $\partial \theta / \partial z$

DWMDM dW_m/dm

DWTDM dW_θ/dm

E temporary storage

ERROR maximum calculated streamline correction for present iteration

ERROR1 ERROR from previous iteration

EXPON $1/(\gamma - 1)$

G temporary storage

GAM γ

HR increment along quasi-orthogonal in r-direction

HZ increment along quasi-orthogonal in z-direction

I subscript to indicate number of quasi-orthogonal

IND code number for use by subroutine CONTIN

INF set equal to 1, when $(ZH - ZS) = 0$

ITER see output

K subscript used to indicate streamline number

KD see input

KMX see input

KMXM1 KMX - 1

KSTH see input

MR see input

MT see input

MX see input
MZ see input
N MXBL
N1 N + 1
N2 MX - 1
NPRT see input
PLOSS see input
PRS p
PSI ψ
R r
RB r_b
RC 1/r_c
REXIT average exit radius
RH see input
RHO ρ_i
RI leading-edge radius
RIS leading-edge radius of splitter
RO trailing-edge radius
RS see input
RSPLIT r-coordinate at leading edge of splitter
RUNO run number
SA A, eq. (2)
SAL sin α
SB C, eq. (2)
SBETA sin β
SC β, eq. (2)
SD D, eq. (2)
SFACT see input
SLA average distance between streamlines on a quasi-orthogonal
distance
SM distance from inlet along a meridional streamline
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM1</td>
<td>Meridional distance from first quasi-orthogonal to quasi-orthogonal that is before point where stream surface deviates from blade surface</td>
</tr>
<tr>
<td>SM2</td>
<td>Meridional distance from first quasi-orthogonal to a quasi-orthogonal that is after point where stream surface deviates from blade surface</td>
</tr>
<tr>
<td>SMF</td>
<td>Fractional meridional distance</td>
</tr>
<tr>
<td>SMEXIT</td>
<td>Meridional distance from first quasi-orthogonal to trailing edge of blade</td>
</tr>
<tr>
<td>SMRB</td>
<td>Meridional distance from first quasi-orthogonal to point where mean stream surface deviates from mean blade shape</td>
</tr>
<tr>
<td>SRW</td>
<td>See input</td>
</tr>
<tr>
<td>SSN</td>
<td>See input</td>
</tr>
<tr>
<td>STGR</td>
<td>See output</td>
</tr>
<tr>
<td>T</td>
<td>(t_n) (interpolated value)</td>
</tr>
<tr>
<td>TANBB</td>
<td>(\tan \beta_b)</td>
</tr>
<tr>
<td>TANS</td>
<td>(\tan \beta_s), at leading edge of splitter</td>
</tr>
<tr>
<td>TEMP</td>
<td>(T'_i)</td>
</tr>
<tr>
<td>THTAB</td>
<td>(\theta_b)</td>
</tr>
<tr>
<td>THTAF</td>
<td>(\theta_f)</td>
</tr>
<tr>
<td>THTAS</td>
<td>(\theta_s)</td>
</tr>
<tr>
<td>THH</td>
<td>Mean blade shape (\theta)-coordinate at hub</td>
</tr>
<tr>
<td>THHC</td>
<td>Temporary storage</td>
</tr>
<tr>
<td>THH1</td>
<td>Blade shape, (\theta)-coordinate at hub on surface 1</td>
</tr>
<tr>
<td>THH2</td>
<td>(\theta)-coordinate at hub on blade surface 2</td>
</tr>
<tr>
<td>THM</td>
<td>(\theta)-coordinate of mean blade shape at mean</td>
</tr>
<tr>
<td>THMC</td>
<td>Temporary storage</td>
</tr>
<tr>
<td>THM1</td>
<td>(\theta)-coordinate at mean on blade surface 1</td>
</tr>
<tr>
<td>THM2</td>
<td>(\theta)-coordinate at mean on blade surface 2</td>
</tr>
<tr>
<td>THS</td>
<td>(\theta)-coordinate of mean blade shape at shroud</td>
</tr>
<tr>
<td>THSC</td>
<td>Temporary storage</td>
</tr>
<tr>
<td>THSI</td>
<td>(\theta)-coordinate at shroud on blade surface 1</td>
</tr>
<tr>
<td>THS2</td>
<td>(\theta)-coordinate at shroud on blade surface 2</td>
</tr>
</tbody>
</table>
TN see input
TOLER iteration tolerance
TSPLIT normal blade thickness at leading edge of splitter
TPP1P T''/T'_1
TTREL see output
TT t_θ
TYPE see input
T1P T/T'_1
W ω
WA W
WAS W^*, eq. (13) of ref. 1
WASS W^{**}, eq. (13) of ref. 1
WT total mass flow
WTFL calculated total mass between hub and K^{th} streamline
WTHRU W_n
WTR W_t, eq. (10) of ref. 1 (suction-surface velocity)
WL pressure-surface velocity
XN see input
XR see input
XZ see input
YA average weight flow per unit length crossing a quasi-orthogonal
YH temporary storage
YM temporary storage
YS temporary storage
Z z
ZEXIT average z-coordinate at exit
ZH see input
ZS see input
ZSPLIT see input
ZT see input
24
Subroutine RUUT

Subroutine RUUT finds the root between two given points. It is used to find the meridional distance where the mean stream surface deviates from the mean blade shape when the radius at which this occurs is given. If the root cannot be found within the tolerance, a message is printed out and the input arguments are listed. If there is trouble in finding a root, set SRW = 21 in the input and all the input to the subroutine will be printed out.

The calling sequence for RUUT is

\[
\text{CALL RUUT(SM1, SM2, RB, SMRB, SM(1,K), R(1,K), MX)}
\]

where

- SM1 meridional distance of quasi-orthogonal before point desired (input)
- SM2 meridional distance of quasi-orthogonal after point desired (input)
- RB radius at point desired (input)
- SMRB desired meridional distance (output)
- SM(1,K) array of m-coordinates (input)
- R(1,K) array of r-coordinates (input)
- MX number of r-coordinates (input)

Subroutine SMOOTH

Subroutine SMOOTH smoothes the streamlines to obtain a better numerical solution. It uses the hub streamline as the base streamline for the smoothing operation.

The slopes of the quasi-orthogonals are

\[
m_I = \frac{y_{s_I} - y_{h_I}}{x_{s_I} - x_{h_I}}
\]

and the streamline slopes are

\[
m_K = \frac{y_{I+1} - y_{I-1}}{x_{I+1} - x_{I-1}}
\]
where K is the streamline number and I is the quasi-orthogonal number. The x-y coordinates of an intersection can now be determined. From analytical geometry,

$$
(x_{I})_I = \frac{(y_{I-1} - m_K x_{I-1}) - (y_{I} - m_K x_{I})}{m_I - m_K}
$$

(24)

The smoothed x-coordinate is

$$
(x_{I})_I = \frac{(x_{I})_I - x_I}{D} + x_I
$$

(25)

where D is the smoothing factor. The smoothed y-coordinate is

$$
y_I = y_{Ih} + m_I(x_{I} - x_{Ih})
$$

(26)

When $m_I = 0$, the following equations are used:

$$
(y_{I})_I = m_K(x_{I} - x_{I-1}) + y_{I-1}
$$

(27)

$$
(y_{I})_I = \frac{(y_{I})_I - y_I}{D} + y_I
$$

(28)

and

$$
(x_{I})_I = x_I
$$

(29)

When $m_K = 0$,

$$
(y_{I})_I = m_I(x_{I-1} - x_{h_I}) + y_{h_I}
$$

$$
(y_{I})_I = \frac{(y_{I})_I - y_I}{D} + y_I
$$

(30)
and

\[
\left(x_1 \right)_I = \frac{\left(x_1 \right)_I - x_I}{D} + x_I
\]

(31)

The value of \(D \) is 2 for all quasi-orthogonals except for the last three, where smoothing occurs. The values of \(D \) for these three are 2.6667, 4.0, and 8.0, respectively. This was done so that there would not be any discontinuities when only certain sections of the streamlines are smoothed.

The calling sequence for SMOOTH is

\[
\text{CALL SMOOTH}(Z(1, K), R(1, K), ZH, RH, AB, SSN, INF)
\]

where

- \(Z(1, K) \)
 - z-coordinate of streamline
- \(R(1, K) \)
 - r-coordinate of streamline
- \(ZH \)
 - z-coordinate of hub streamline
- \(RH \)
 - r-coordinate of hub streamline
- \(AB \)
 - slope of quasi-orthogonals, \(m_I \)
- \(SSN \)
 - last quasi-orthogonal where smoothing is desired
- \(INF \)
 - indicator for quasi-orthogonals with a slope of infinity

The program variables are

- \(D \)
 - smoothing factor
- \(\text{SLOPE} \)
 - slope of quasi-orthogonals, \(m_I \)
- \(\text{SLOPE1} \)
 - streamline slope, \(m_K \)
- \(X \)
 - z-coordinate of streamlines
- \(XH \)
 - z-coordinate of hub streamline
- \(X1 \)
 - z-coordinate of smoothed streamline
- \(Y \)
 - r-coordinate of streamlines
- \(YH \)
 - r-coordinate of hub streamline
- \(Y1 \)
 - r-coordinate of smoothed streamline
Other Subroutines

Subroutines INTGRL, CONTIN, SPLDER, SPLINE, LININT, and SPLINT are described in reference 1. INTGRL is used for numerical integration. CONTIN is used to determine the hub velocity for the next continuity iteration. SPLDER is used to determine the values of the derivatives at the specified interpolated points. SPLINE is used to determine the first and second derivatives. If there is a problem with the SPLINE subroutine, set SRW = 13 in the input and the input and output of the SPLINE subroutine will be printed out. LININT is used to determine the interpolated values of the normal blade thickness from the given thickness table. SPLINT is used for interpolation. The input and output data for SPLINT will be printed out if SRW = 16.

PROGRAM LISTING

$IRFTC QUAC DECK

C CALCULATION OF VELOCITY AND PRESSURE DISTRIBUTION IN A CYCLINDRICAL COMPRESSOR
C FOR USE OF QUASI-ORTHOGONALS
C
C BASIS
SRW
DIMENSION AL(21,21), BETA(21,21), CAL(21,21), CBETA(21,21), INF(21),
1 CURV(21,21), DNT(21,21), PRT(21,21), R(21,21), Z(21,21), S(21,21),
2 SAI(21,21), SP(21,21), SC(21,21), SD(21,21), SAL(21,21), SRBEA(21,21),
3 THI(21,21), T(21,21), WAI(21,21), WRT(21,21), TREL(21,21), W(21,21),
4 DIMENSION AR(21), AC(21), AD(21), BA(21), DELTA(21), DORM(21), AF(21),
5 YM(21), DTM(21), DWM(21), DWTM(21), RH(21), RS(21), ZH(21), ZS(21),
6 THETA(21), WTM(21), XR(21), XT(21), XZ(21), BETAI(3), AA(3), HTA(21),
7 THM(21), THM(21), THS(21), THH(21), THH(21), THH(21), THM(21),
8 TBN(21), THS(21), THS(21), DTM(21), DTOR(21), ZT(21),
9 TBN(21), YS(21), TS(21), TI(3), TO(3)
INTEGER RUNI, TYPE, SRW, HUB, SHROUD
RUNI = 0
READ (5,1001)
WRITE (6,1049)
WRITE (6,1001)
READ (5,1010) MX, KM, MR, MZ, W, WT, XN, GAM, AR
IAC = 1
RUNI = RUNI + 1
WRITE (6,1020) RUNI
WRITE (6,1007)
WRITE (6,1011) MX, KM, MR, MZ, W, WT, XN, GAM, AR
READ (5,1010) TYPE, MT, SRW, MXR, TEMP, ALM, RHO, PLOSS, ANGR
WRITE (6,1008)
WRITE (6,1011) TYPE, MT, SRW, MXR, TEMP, ALM, RHO, PLOSS, ANGR
READ (5,1010) KSTH, NPRT, ITER, KD, SFAC, ZSPL, RETO, CORFAC, SSN
WRITE (6,1009)
WRITE (5,1011) KSTH, NPRT, ITER, KD, SFAC, ZSPL, RETO, CORFAC, SSN
ITER1 = ITER
READ (5,1030) (ZS(I), I=1, MX)
WRITE (6,1029)
WRITE (6,1028) (ZS(I), I=1, MX)
READ (5, 1030) (ZH(I), I=1, MX)
28
UTCLER = WT/100000.
TCLER = (RS(1)-RH(1))/5000.
IF(RS(1).EQ.RH(1)) TOLER = (ZH(1)-ZS(1))/5000.
DC 110 K=1, KMX
11C SM(1,K)=C.
12C BA(1)=0.
DC 120 K=2, KMX
13C DN(1,1)=C.
14C ANGR = ANGR/57.29577
145 CONTINUE
C = SQRT(CAM*AR*TEMP)
WRITE(6,1049)
WRITE (6,1050) CI
```
KMXY1 = KMXY-1
CP = ATR*GAM/(GAM-1.)
EXPCH = 1./(GAM-1.)
BETC = BETO/57.29577
ZEXIT = (ZS(MX)+ZH(MX))/2.
REXIT = (RS(MX)+RH(MX))/2.
IF ( KD. EQ. 1 ) GO TO 149
CALL LININT(ZEXIT,REXIT,XZ,XR,TN,21,21,T)
RR = REXIT*EXP(-.71*(2.*3.14159/(XN*SFACT)-T/REXIT))
WRITE (6,1027) RR
149 ERRORR=100000.
C BEGINNING OF LOOP FOR ITERATIONS
15C IF (ITER.EQ.0) WRITE (6,1060) ITNO
C
C IF (ITER.EQ.0) WRITE (6,1070)
C ERRORR1=ERRORR
C ERRORR=0.
C START CALCULATION OF PARAMETERS
C
DC 180 K=1,KMX
DC 180 I=2,MX
SM(I,K) = SM(I-1,K)+SQR((Z(I,K)-Z(I-1,K)**2*2*(R(I,K)-R(I-1,K)**2)
1 2)
180 CONTINUE
DC 230 K=1,KMX
DC 160 I=1,MX
AP(I) = Z(I,K)*COS(ANGR) + R(I,K)*SIN(ANGR)
160 AC(I) = R(I,K)*COS(ANGR) - Z(I,K)*SIN(ANGR)
CALL SPLINE(AR,AC,MX,AL(I,K),CURV(I,K))
DC 170 I=1,MX
CURV(I,K)=CURV(I,K)/(1.+AL(I,K)**2)**1.5
AL(I,K) = ATAN(AL(I,K))+ANGR
CALL(SAL(I,K) = SIN(AL(I,K))
17C IF ( KD. EQ. 21 ) GO TO 171
CALL SPLINE(SM1(I,K),THTA,MX,DTDM,AC)
GC TC 172
171 CALL SPLDCE(ZT,THTA,MT,Z(I,K),MX,DTDZ)
172 DC 204 I =1,MX
T = 0.
THTA(I) = THTA(I)
IF(I.GE.MXR) CALL LININT(Z(I,K),R(I,K),XZ,XR,TN,21,21,T)
IF (ZS(I) .GE. ZH(I)) GO TO 202
PSI = ATAN((RS(I)-RH(I))/(ZS(I)-ZH(I)))+1.5708
GC TC 203
202 PSI = ATAN((ZH(I)-ZS(I))/(RS(I)-RH(I)))
203 IF ( KD. EQ. 2 ) DTDM(I) = DTDZ(I)*CAL(I,K)
IF ( KD. EQ. 2 ) DTDZ(I) = 0.0
IF (KC.GE.2 ) DTDZ(I) = COS(PHI)/COS(PHI - AL(I,K))*DTDM(I)
IF (KC.GE.2 ) DTDZ(I) = SIN(PHI)/COS(PHI - AL(I,K))*DTDM(I)
204 TT(I,K) = T+SQR(1.0+R(I,K)**2*(DTDZ(I)**2+DTDZ(I)**2))
IF (KC.EQ.1) GO TO 207
DC 205 I =1,MX
IF (RIK.GT. RP) GO TO 206
205 CONTINUE
206 SM1 = SM1(I-1,K)
SM2 = SM2(I,K)
CALL RUUT (SM1,SM2,RP,SMRB,SM(I,K),R(I,K),MX)
IF (KC.GE.2 ) CALL SPLINT (ZT,THTA,MT,Z(I,K),MX,THTA)
CALL SPLINT (SM1(K),THTA,MX,SMRB,1,THTAB)
```
CALL SPLINE (SM(1,K),TTAF,MM,SMRB,1,DTDMB)
TANRB = RB*DTDMB
SMEXIT = SM(MX,K)
DC 201 I = 1,MX
IF (R(I,K).LT.RB) GO TO 201
THTAF(I) = THTAB + (SM(I,K)-SMRB)**3*(TAN(BETO)/REXIT-TANRB/RB)**1.3*(SMEXIT-SMRB)**2 + (SM(I,K)-SMRB)* TANRB/RB
DTCM(I) = + (SM(I,K)-SMRB)**2*(TAN(BETO)/REXIT-TANRB/RB)**1.5*(SMEXIT-SMRB)**2*TANRB/RB
IF (SAL(I,K).EQ.0.0) GO TO 200
DTCR(I) = (DTDM(I)-DTDZ(I)*CAL(I,K))/SAL(I,K)
GC TC 201
200 DTCR(I) = 0.0
201 CONTINUE
207 DC 220 I=1,MX
BETA(I,K) = ATAN(R(I,K)*DTDM(I))
SBETA(I,K) = SIN(BETA(I,K))
CBETA(I,K) = COS(BETA(I,K))
AR(I) = WA(I,K)*CBETA(I,K)
22C AC(I) = WA(I,K)*SBETA(I,K)
CALL SPLINE (SM(1,K),AR,MX,DWDM,AD)
CALL SPLINE (SM(1,K),AC,MX,DWDM,AD)
IF ((ITER.LE.0).AND. (MOD(K-1,NPRT).EQ.0)) WRITE (6,IC80) K
DC 23C I=1,MX
SA(I,K) = CBETA(I,K)**2*CAL(I,K)*CURV(I,K)-SBETA(I,K)**2/R(I,K)
1+SA(I,K)*CBETA(I,K)*SBETA(I,K)*DTDR(I)
SB(I,K) = SAL(I,K)*CBETA(I,K)*DWDM(I) - 2.0*W*SBETA(I,K)* DTDR(I)
1+R(I,K)*CBETA(I,K)* (CWTDM(I)+2.0*W*SAL(I,K))
SC(I,K) = -CBETA(I,K)**2*SAL(I,K)*CURV(I,K)
1+SA(I,K)*CBETA(I,K)*SBETA(I,K)*DTDR(I)
SD(I,K) = SAL(I,K)*CBETA(I,K)*DWDM(I) + CTDZ(I)
1+R(I,K)*CBETA(I,K)* (CWTDM(I)+2.0*W*SAL(I,K))
IF ((ITER.GT.0).OR. (MOD(K-1,NPRT).NE.0)) GO TO 230
A = AL(I,K)*57.29577
B = SM(I,K)
E = TT(I,K)
G = BETA(I,K)*57.29577
WRITE (6,109C) A,CURV(I,K),B,E,SA(I,K),SR(I,K),SC(I,K),SM(I,K)
23C CONTINUE
C CALCULATE BLADE SURFACE VELOCITIES (AFTER CONVERGENCE)
C IF(ITER.NE.0) GO TO 260
DC 25C K=1,KMX
CALL SPLINE (SM(1,K),TT(1,K),MX,DLBTA,AC)
A=XN
DC 240 I=1,MX
24A AB(I) = (R(I,K)*W+WA(I,K)*SBETA(I,K))(6.283186*R(I,K)/ A-TT(I,K))
CALL SPLINE (SM(1,K),AR,MX,DRDM,AC)
IF (SFAC.IE.1.0) GO TO 245
A = SFAC*XN
DC 244 I=1,MX
244 AB(I) = (R(I,K)*W+WA(I,K)*SBETA(I,K))(6.283186*R(I,K)/ A-TT(I,K))
CALL SPLINE (SM(1,K),AR,MX,AD,AC)
24C DC 250 I=1,MX
BETAC = BETA(I,K)-DLBTA(I)/2.
BETAT = BETAD+DLBTA(I)
CCSC = COS(BETAC)
CCSPT = COS(BETAT)
IF(Z(I,K).GT.ZSPLIT) DRDM(I) = AD(I)
C EH C

START CALCULATION OF WEIGHT FLOW VS. DISTANCE FROM HUB

26C DC 370 I=1, KMX
 INC=1
 DC 270 K=1, KMX
27C AC(K)=DN(I,K)
 GC TC 29C
28C WAI(I,1)=.5*WA(I,1)
29C DC 30C K=2, KMX
 J=K-1
 HR=R(I,K)-R(I,J)
 HZ=Z(I,K)-Z(I,J)
 WAS=WA(I,J)*.10+SA(I,J)*HR+SC(I,J)*HZ +SB(I,J)*HR+SD(I,J)*HZ
 WASS=WA(I,J)+WAS+SA(I,K)*HR+SC(I,K)*HZ +SB(I,K)*HR+SD(I,K)*HZ
30C WA(I,K)=(WAS+WASS)/2.
31C DC 34C K=1, KMX
 TIP=1-((WA(I,K)**2+2.*W*WALM-(W*R(I,K)**2))/2.)/CP/TEMP
 IF(TIP>LT_{0}) GO TO 280
 TPIP=1-((2.*W*WALM-(W*R(I,K)**2))/2.)/CP/TEMP
 TTREL(I,K)=TPIP*TEMP
 SMF=0.0
 IF(I,GE,=XBL) SMF=(SM(I,K)-SM(MXBL$K,K))/(SM(MX,K)-SM(MXBL,K))
 DENS=TT**EXPON*RHO-(TIP/TPIP)**EXPON*PLOSS/AR/TPIP/TEMP*SMF
 PRS(I,K)=DENS*AR*TIP*TEMP
 IF(ZS(I,GE,ZH(I,I)) GC TO 320
 PSI=XAT((RS(I)-RH(I))/(ZS(I)-ZH(I,I)))+1.5708
 GC TC 33C
32C PSI=XAT((ZH(I,1)-ZS(I))/RS(I)-RH(I))
33C WTHR=WA(I,K)*CETA(I,K)*COS(PSI AL(I,K))
 A=AX
 IF(Z(I,K)=GT,ZSPLIT) A=SFAC*AX
 C = 6.283186*R(I,K)-A*TT(I,K)
34C AD(K)=DENS*WTHRU*C
 CALL INTERL(AC(I,1),AD(I,1),KMX,WTLF(I))
 YA(I)=WTLF(KMX)/DN(I,KMX)
 YH(I)=AD(I)
 KM=(KMX+1)/2
 YM(I)=AD(KM)
 YS(I)=AD(KMX)
 IF(APS(WT-WTLF(KMX)),LE,WTLER) GO TO 350
 CALL CONTIN(WAI(I,1),WTLF(KMX),IND,1,WT)
 IF(IND,NE,6) GO TO 290
35C CALL SPLINT(WTLF,AC,KMX,BA,KMX,AB)
36C DC 360 K=1, KMX
 DELTA=ABS(AB(K-CN(I,K))
 DN(I,K)=CN(I,K)+CORFAC*CN(I,K)+CORFAC*AR(K)
 IF(Delta,GT,ERROR)ERROR=DELTA
37C CONTINUE

END OF BLADE SURFACE VELOCITY CALCULATIONS

C CALCULATE STREAMLINE COORDINATES FOR NEXT ITERATION

DC 320 K=2, KMX
DC 39C I=1, KMX
7(I,K)=DN(I,K)/DN(I,KMX)*(ZS(I)-ZH(I,1))+ZH(I,1)
3805 INFI(I) = 1
381 CCINDINUE
 DC 382 K=2,KMXM1
 DC 383 J=1,KSTH
382 CALL SMCCTR (Z(1,K),R(1,K),ZH,RH,AR,SSN,INF)
383 IF((ERROR,CE,ERROR1), OR,(ERROR,LE,TOLER)) ITER=ITER-1
 IF(ITER,GT,0) GO TO 410
 WRITE (6,1100)
 DC 400 K=1,KMX,NPR
 WRITE (6,1080) K
 DC 390 I=1,K
 CALL SPLINE (AR,AC,MX,AD,CURV(1,K))
 DC 410 I=1,K
 CURV(1,K)=CURV(1,K)/(1,+.AD(I) **2)**1.5
 A=# 7(I,K)
 D=R(1,K)
40C WRITE (6,1110) R,D,WAI(K),PSI(I,K),WTRI(K),WL(I,K),TTREL(I,K)
 WRITE (6,1130)
41C A=ERROR
 WRITE (6,1120) ITNO,A
 ITNC=ITNC+1
 IF(ITER,GE,0) GO TO 150
 N = MX+1
 DC 419 J=1,3
 K = 1
 IF(J.EQ.2) K = (KM+1)/2
 IF(J.EQ.3) K = KM
 IF(J.EQ.2) GO TO 417
 CALL SPLINE (SM(1,K),THTA ,MX,DTDM,AC)
 GC TC 41F
417 CALL SPLINTER(ZT,THTA,MZ(1,K),MX,DTDZ)
 DC 420 J=1,3
 DTH(Z)=CAL(MZ,K)*CTDZ(MX)
418 IF(J.EQ.1) BETCH = ATAN(R(MX,K)*DTDM(MX))
 IF(J.EQ.2) BETCH = ATAN(R(MX,K)*DTDM(MX))
 IF(J.EQ.3) BETCH = ATAN(R(MX,K)*DTDM(MX))
 CALL LININT (Z(MX,K),R(MX,K),ZX,XR,TN,21,21,TI(J))
419 CALL LININT (Z(N,K),R(N,K),Zx,XR,TN,21,21,TL(J))
 K = (KM+1)/2
 DC 420 I=1,5
 SLA = DN(1,KM)/FLOAT(KM-1)
 IF((ZS(I),GE,ZHI(I))) GO TO 420
 PSI = ATAN((RS(I)-RH(I))/(ZS(I)-ZH(I)))+1,5708
 GC TC 43C
42C PSI = ATAN((ZH(I)-ZS(I))/(RS(I)-RH(I)))
430 IF(AB(I)) YAI(1)*SLA*COS(Psi-Al(I,1))/YHI(1)
 AC(I) = YAI(1)*SLA*COS(Psi-Al(I,KM))/YM(I)
440 IF(IN,LE,1) GO TO 442
 DC 441 I=1,K
 THP(I) = THTA(I)
 THP(I) = THTA(I)
441 THS(I) = THTA(I)
 GC TC 442
CALL SPLINT (ZT, THTA, MT, Z(1, 1), MX, THH)
CALL SPLINT (ZT, THTA, MT, Z(1, K), MX, THM)
CALL SPLINT (ZT, THTA, MT, Z(1, K), MX, THS)

RI = T(I)/2.
THC = T(H(N)+RI*TAN(BETA(N,1))/R(N,1)
RC = T(O(I))/2.

THP1(MX) = T(H(MX)+RO*TAN(BETO)/R(MX, 1) -THMC
THP2(MX) = T(H(MX)-RO*TAN(BETO)/R(MX, 1) -THMC
RI = T(I(2))/2.

THC = T(H(N)+RI*TAN(BETA(N,K))/R(N,K)
RC = T(O(I))/2.

THS1(MX) = T(H(MX)-RO*TAN(BETO)/R(MX, K) -THMC
THS2(MX) = T(H(MX)-RO*TAN(BETO)/R(MX, K) -THMC
RI = T(I(3))/2.

THC = T(H(N)+RI*TAN(BETA(N,K))/R(N,K)
RC = T(O(I))/2.

THS1(MX) = T(H(MX)-RO*TAN(BETO)/R(MX, K) -THMC
THS2(MX) = T(H(MX)-RO*TAN(BETO)/R(MX, K) -THMC

DC 449 I=1, MXBL
THH1(I) = 0.0
THS1(I) = 0.0
THS2(I) = 0.0

DC 450 I=I+1, MX

AE(I) = SM(I, 1) -SM(MXBL, 1)
WRITE(6, 1239) (AE(I), I=1, MX)
WRITE(6, 1240)

RI = T(I(1))/2.
RC = T(O(I))/2.

WRITE(6, 1250)
WRITE(6, 1251)
WRITE(6, 1252)
WRITE(6, 1253)
RIS = TSPLIT/2.0
STGRS = THM1(MX) - RIS * TANS / RSPLIT - THTAS + THMC
AMLER = AMLER - SM(MXBL, 1)
BETAS = ATAN(TANS)
BETAS = BETAS * 57.29577
WRITE(6, 1255) AMLER, STGRS, RIS, RO, BETAS
WRITE(6, 1201)
WRITE(6, 1239)
WRITE(6, 1251)
DC 454 I = 1, MX
454
AE(I) = SM(I, K) - SM(MXBL, K)
WRITE(6, 1230)(AE(I), I = 1, MX)
WRITE(6, 1249)
WRITE(6, 1230)(RI(I, K), I = 1, MX)
WRITE(6, 1240)
WRITE(6, 1230)(AC(I), I = 1, MX)
WRITE(6, 1250)
WRITE(6, 1251)
WRITE(6, 1230)(AE(I), I = 1, MX)
WRITE(6, 1252)
WRITE(6, 1230)(THM1(I), I = 1, MX)
WRITE(6, 1253)
WRITE(6, 1230)(THM2(I), I = 1, MX)
RI = TI(2) / 2.
RC = TO(2) / 2.
STCR = THM1(MX)
WRITE(6, 1254) STCR, RI, RO
IF (Z(MX, K) .LT. ZSPLIT) GO TO 456
CALL SPLINT (Z(I, K), SM(I, K), MX, ZSPLIT, 1, AMLER)
CALL SPLINT (SM(I, K), RI(I, K), MX, AMLER, 1, RSPLIT)
CALL SPLINT (SM(I, K), THM, MX, AMLER, 1, THTAS)
CALL SPLINT (SM(I, K), THM, MX, AMLER, 1, DTOMS)
CALL LININT (ZSPLIT, RSPLIT, XZXR, TN, 21, 21, TSPLIT)
TANS = RSPLIT * DTOMS
RIS = TSPLIT / 2.0
STGRS = THM1(MX) - RIS * TANS / RSPLIT - THTAS + THMC
AMLER = AMLER - SM(MXBL, K)
BETAS = ATAN(TANS)
BETAS = BETAS * 57.29577
WRITE(6, 1255) AMLER, STGRS, RIS, RO, BETAS
456
WRITE(6, 1202)
WRITE(6, 1239)
WRITE(6, 1251)
DC 457 I = 1, MX
457
AE(I) = SM(I, KMX) - SM(MXBL, KMX)
WRITE(6, 1230)(AE(I), I = 1, MX)
WRITE(6, 1249)
WRITE(6, 1230)(RI(I, KMX), I = 1, MX)
WRITE(6, 1240)
WRITE(6, 1230)(AC(I), I = 1, MX)
WRITE(6, 1250)
WRITE(6, 1251)
WRITE(6, 1230)(AE(I), I = 1, MX)
WRITE(6, 1252)
WRITE(6, 1230)(THS1(I), I = 1, MX)
WRITE(6, 1253)
WRITE(6, 1230)(THS2(I), I = 1, MX)
PI = TI(2) / 2.
RC = TO(2) / 2.
STCR = THS1(MX)
WRITE(6, 1254) STCR, RI, RO
IF (Z(MX, KMX) .LT. ZSPLIT) GO TO 459
CALL SPLINT (Z1,KMX),SM1,KMX),MX,ZSPLIT,1,AMLER
CALL SPLINT (SM1,KMX,R1,KMX),MX,AMLER,1,RSPLIT)
CALL SPLINT (SM1,KMX,THS,SM,AMLER,THTAS)
CALL SPLINT (SM1,KMX,THS,THS,AMLER,1,TDOMS)
CALL LININT(ZSPLIT,RSPLIT,XZ,XR,TN,21,21,TSPLIT)
TANS = RSPLIT*TSPLIT
RIS = TSPLIT/2.0
STGRS = THS1(MX)-RIS*TANS/RSPLIT-THTAS+THSC
AMLER = AMLER-SM1(MX,KMX)
RETS = ATAN(TANS)
RETS = RETS+57.29577
WRITE(6,1255)AMLER,STGRS,RIS,RO,BETAS

459 DO 460 J=1,3
 I = MXBL
 K=1
 IF(J.EQ.2) K=(KMX+1)/2
 IF(J.EQ.3) K=KMX
 TJ1= I+.W(I,K)**2+2.*W+ALM-(W*R(I,K))**2)/2.*CP/TEMP
 DKSTY = T1**EXPH/RO
 C = 6.283186*R(I,K)**XN*TT(I,K)
 WIDTH = AB(MXBL)
 IF(J.EQ.2) WIDTH = AC(MXBL)
 IF(J.EQ.3) WIDTH = AD(MXBL)
 WM = BA(2)/DEFSTY/C/WIDTH
 WTHETA = ALM/R(I,K)-W*TR(I,K)
 RETAI(J) = ATAN(WTHETA/WM)
 AA(J) = RETAI(J)*57.29577
46C CONTINUE
WRITE (6,1170) AA
GC TC 10
101C FORMAT (115,6F10.4)
102C FORMAT (EMORUN NO.13,10X,25INPUT DATA CARD LISTING)
103C FORMAT (7F10.4)
104C FORMAT (10X24HRCY CARDS FOR DN,WA,Z,R)
105C FORMAT (26HK STAG. SPEED OF SOUND AT INLET = ,F9.2)
106C FORMAT ('\\%X13HITERATION NO.13')
107C FORMAT (1H6X5XALPHA95HXRC 9X5HSM 9X5HBETA 9X5HTT 9X5HSA 9
 1X5H8 5X5H5C 9X5H5D)
108C FORMAT (2X10HSTREAMLINE13)
109C FORMAT (6F14.6)
110C FORMAT (1HM9X5H 215X5H & 15X5HWA 15X5HPS14X3HWR14X3HWHL
 114X6HHTRE)
111C FORMAT (6F19.6,F18.6)
112C FORMAT (18H ITERATION NO. 13,10X,24HMAX. STREAMLINE CHANGE = ,
 IF10.6)
113C FORMAT (1HJ)
114C FORMAT (12F11.4)
117C FORMAT ('///1H1L,10X,20HINLET ANGLES - HUR,F7.2,8H, MEANF7.2,10H
 1, SHRCLDF7.2)
1C01 FORMAT (RCH
 1)
1007 FORMAT (1H0,3X,2HMXX,2X,3HMXX,3X,2HMXX,3X,2HMXX,3X,2HMXX,3X,2HMXX,3X
 113X,2HXX,12X,3HGM,12X,2HAR)
1008 FORMAT (1H0,1X,4HTYPPF,1X,4H MT ,2X,3HSMW,1X,4HMXXBL,5X,4HTEM,
 111X,3HALK,12X,3HRHO,12X,5HPLCSS,9X,4HANGR)
1009 FORMAT (1H0,1X,4HKSTY,1X,4HNPR,1X,4HTER,1X,4H KD ,4X,5HSFACT,
 19X,6FZSPLIT,10X,4HBETO,11X,6F4HCFAC,9X,3HSSN)
1011 FORMAT (415,6G15.5)
1027 FORMAT (1H0,4HRB = ,F8.5)
1028 FORMAT (7G15.5)
1025 FORMAT (1H0,5X,8HZS ARRAY)
1031 FORMAT (1H0,9X,8HZH ARRAY)
SUBROUTINE ROOT(A,B,Y,X,SM,R,MX)
C
C ROOT FINDS A ROOT FOR (FX-Y) IN THE INTERVAL (A,B)
C
C
COMMON SRW
INTEGER SRW
DIMENSION SM(21),R(21)
TOLERY = Y/50000.
IF (SRW.EQ.21) WRITE(6,1000) A,B,Y,TOLERY
X1 = A
CALL SPLINT (SM,R,MX,X1,1,FX1)
IF (SRW.EQ.21) WRITE(6,1010) X1,FX1
X2 = P
10 DC 3C I=1,15
X = (X1+X2)/2.
CALL SPLINT (SM,R,MX,X,1,FX)
IF (SRW.EQ.21) WRITE(6,1010) X,FX
IF ((FX-FX1).GT.0.) GO TO 20
20 X1 = X
FX1 = FX
30 CONTINUE
IF ((FX-FX1).LT.TOLERY) RETURN
WRITE (6,1020) A,B,Y,FX,X
RETURN
100C FORMAT(32H1INPUT ARGUMENTS FOR ROOT -- A =G13.5,3X,3HB =,G13.5,
1 3X,3HY =,G13.5,3X,8HTOLERY =, G13.5/16X,1HX,17X,2HFX)
101C FORMAT(32H1ROOT CUTOFF OF TOLERANCE,2X,3HA =,G16.5,2X,3HB =,G16.5,2X,
1 3HY =,G16.5,2X,4HFX =,G16.5,2X,3HX =,G16.5)
ENC
$IBFTC SMCCTH DECK$

SUBROUTINE SMOOTH (X,Y,XH,YH,SLOPE,SSN,INF)

DIMENSION X(21),Y(21),XH(21),YH(21),X1(21),Y1(21),INF(21),

ISLOPE(21)

NS = SSN

N1=NS-1

DC 10 I =2,N1

D=7.0

IF(I.EQ.(NS-1)) D=8.0

IF(I.EQ.(NS-2)) D=4.0

IF(I.EQ.(NS-3)) D=2.6667

IF(X(I+1).EQ.X(I-1)) GO TO 5

SLCPE1 = (Y(I+1)-Y(I-1))/X(I+1)-X(I-1)

IF (INF(I).EQ. 1) GO TO 6

X1(I) = ((Y(I-1)-SLCPE1*X(I-1)-(YH(I)-SLCPE(I)*XH(I)))/(SLOPE(I)

1-SLCPE1)

X(I) = (X1(I)-X(I))/C+X(I)

Y1(I) = YH(I)+SLOPE(I)*X1(I)-XH(I))

GC TC 10

C

C

SLOPE1 = INFINITY

5

Y1(I) = SLOPE(I)*X(I-I)-XH(I)) + YH(I)

Y1(I) = ((Y1(I)-Y(I))/C)+Y(I)

X1(I) = ((X(I-I)-X(I))/D)+X(I)

GC TC 10

C

C

SLOPE = INFINITY

6

Y1(I) = SLOPE1*(X(I)-X(I-1)) + Y(I-1)

Y1(I) = ((Y1(I)-Y(I))/C)+Y(I)

X1(I) = X(I)

10 CONTINUE

DC 2C I =2,N1

X(I) = X1(I)

20 Y(I) = Y1(I)

RETURN

END

$IBFTC INTCRL DECK$

SUBROUTINE INTCRL (X,Y,N,SUM)

DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),

IG(50),EM(50),SUM(50)

COMMON SRW

INTEGER SRW

DC 1C I =2,N

1C S(I) = X(I) - X(I-1)

NC=N-1

DC 20 I =2,NC

A(I) = S(I)/6.0

B(I) = (S(I)+S(I+1))/3.0

C(I) = S(I+1)/6.0

2C F(I) = (Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)

A(N) = -.5

B(N) = 1.0

P(N) = 1.0

C(I) = -.5
$IFTEC CONTIN DECK

SUPECLLINE CONTIN (WA,WTFL,IND,I,WT)

DIMENSION SPEED(3),WEIGHT(3)

135 GC TC (140,150,210,270,370),IND

14C SPEED(1) = WA

WEIGHT(1) = WTFL

DELTA = WT/WTFL*WA-WA

IF(ABS(DELTA)>GT.100.) DELTA = SIGN(100.,DELTA)

WA = DELTA+WA

INC = 2

RETURN

15C IF ((WTFL-WEIGHT(1))/(WA-SPEED(1))) 180,180,160

16C SPEED(2) = WA

DELTA = (WT-WTFL)/(WTFL-WEIGHT(1))*(WA-SPEED(1))

IF(ABS(DELTA)>GT.100.) DELTA = SIGN(100.,DELTA)

WA = DELTA+WA

16C SPEED(1) = SPEED(2)

WEIGHT(1) = WTFL

RETURN

17C WRITE (6,1000) I,WTFL

INC = 6

RETURN

18C INC = 3

IF (WTFL,GE,WT) GO TO 140

IF (SPEED(1)-WA) 190,200,200

19C SPEED(2) = SPEED(1)

SPEED(1) = 2.0*SPEED(1)-WA

SPEED(3) = WA

WEIGHT(2) = WEIGHT(1)

WEIGHT(3) = WTFL

WA = SPEED(1)

RETURN
20C SPEEC(2) = WA
SPEEC(3) = SPEED(1)
SPEEC(1) = 2.0*WA-SPEED(1)
WEIGHT(2) = WTFL
WEIGHT(3) = WEIGHT(1)
WA = SPEED(1)
RETURN
21C WEIGHT(1) = WTFL
IF (WTFL.GE.WT) GO TO 140
IF (WEIGHT(1)-WEIGHT(2)) 230,380,220
22C WEIGHT(3) = WEIGHT(2)
WEIGHT(2) = WEIGHT(1)
SPEEC(3) = SPEED(1)
SPEEC(2) = SPEED(1)
SPEEC(1) = 2.0*SPEED(2)-SPEED(3)
WA = SPEED(1)
RETURN
23C IF (SPEEC(3)-SPEEC(1)-10.0) 170,170,240
24C INC = 4
25C WA = (SPEEC(1)+SPEED(2))/2.0
RETURN
26C WA = (SPEEC(3)+SPEED(2))/2.0
RETURN
27C IF (SPEEC(3)-SPEEC(1)-10.0) 170,170,280
28C IF (WTFL-WEIGHT(2)) 320,350,290
29C IF (WA-SPEED(2)) 310,300,300
30C SPEEC(1) = SPEED(2)
SPEEC(2) = WA
WEIGHT(1) = WEIGHT(2)
WEIGHT(2) = WTFL
GO TC 245
31C SPEEC(3) = SPEED(2)
SPEEC(2) = WA
WEIGHT(3) = WEIGHT(2)
WEIGHT(2) = WTFL
GO TC 245
32C IF (WA-SPEED(2)) 340,330,330
33C WEIGHT(3) = WTFL
SPEEC(3) = WA
GO TC 245
34C WEIGHT(1) = WTFL
SPEEC(1) = WA
GO TC 245
35C INC = 5
IF (WA-SPEED(2)) 380,360,360
36C SPEEC(1) = SPEED(2)
WEIGHT(1) = WEIGHT(2)
SPEEC(2) = (SPEEC(1)+SPEED(3))/2.0
WA = SPEED(2)
RETURN
37C INC = 4
WEIGHT(2) = WTFL
WA = (SPEEC(1)+SPEED(2))/2.0
RETURN
38C INC = 5
39C WEIGHT(3) = WEIGHT(2)
SPEEC(3) = SPEED(2)
SPEEC(2) = (SPEEC(1)+SPEED(3))/2.
WA = SPEED(2)
RETURN
10C FORMAT (/12H FIXED LINE 12,12H, MAX WT = F10.6)
END
$IBFTC SPLINTER DECK

SUBCUTINE SPLINTER(X,Y,N,Z,MAX,DYDX)
DIMENSION X(50),Y(50),Z(50),A(50),B(50),C(50),F(50),W(50),SB(50),
IG(50),EM(50),Z(50),DYDX(50)
DC 1C I=2,N
1C S(I)=X(I)-X(I-1)
 NC=K-1
 DC 2N I=2,NC
 A(I)=S(I)/6.0
 B(I)=S(I)+S(I+1))/3.0
 C(I)=S(I+1)/6.0
2C F(I)=(Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
 A(N)=-.5
 B(I)=-1.0
 C(I)=-.5
 F(1)=0.0
 F(N)=0.0
 W(I)=B(I)
 SB(I)=C(I)/W(I)
 G(I)=0.0
 DC 3C I=2,N
 W(I)=B(I)-A(I)*SB(I-1)
 SB(I)=C(I)/W(I)
3C G(I)=(F(I)-A(I)*G(I-1))/W(I)
 EM(N)=G(N)
 DC 4C I=2,N
 K=N+1-I
4C EM(K)=G(K)-SB(K)*EM(K+1)
 DC 90 I=1,MAX
 K=2
 IF(Z(I)-X(I)) 60,70,70
6C WRITE (6,1000)Z(I)
100C FFORMAT (17H OUT OF BLADE Z =F10.6)
 GC TC 85
 85 WRITE (6,1000)Z(I)
 K=N
 GC TC 85
 7C IF(Z(I)-X(K)) 85,85,80
8C K=K+1
 IF(K-N) 70,70,65
85 DYDX(I)=EM(K-1)*(X(K)-Z(I))**2/2.0/S(K)+EM(K)*(X(K-1)-Z(I))**2/2.
 10/S(K)+(Y(K)-Y(K-1))/S(K)-(EM(K)-EM(K-1))*S(K)/6.0
9C CONTINUE
10C RETURN
 ENC

$IBFTC SPLINE DECK

SUBCUTINE SPLINE (X,Y,N,SLOPE,EM)
DIMENSION X(50),Y(50),Z(50),A(50),B(50),C(50),F(50),W(50),SB(50),
IG(50),EM(50),Z(50),DYDX(50)
CCM#CN C
INTEGER C
DC 1C I=2,N
1C S(I)=X(I)-X(I-1)
 NC=N-1
 DC 2C I=2,NC
 A(I)=S(I)/6.
 B(I)=(S(I)+S(I+1))/3.
 C(I)=S(I+1)/6.

2C F(I)=(Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
 A(N)=-.5
 B(I)=1.
 B(N)=1.
 C(I)=-.5
 F(I)=0.
 F(N)=0.
 W(I)=E(I)
 SB(I)=C(I)/W(I)
 G(I)=C.
 DC 3C I=2,N
 W(I)=E(I)-A(I)*SB(I-1)
 SB(I)=C(I)/W(I)

3C G(I)=(F(I)-A(I)*G(I-1))/W(I)
 EM(N)=G(N)
 DC 40 I=2,N
 K=1+1

4C EM(K)=G(K)-SB(K)*EM(K+1)
 SLOPE(I)=-S(I-1)*EM(1)+EM(2)+(Y(I)-Y(I-1))/S(I)
 DG50 I=2,N

5C SLOPE(I)=S(I-1)*EM(I)+EM(I-1)+(Y(I)-Y(I-1))/S(I)
 IF (G(EQ,13)) WRITE (6,100) N,(X(I),Y(I),SLOPE(I),EM(I),I=1,N)

10C FORMAT (2X15HNO. OF POINTS =I3/10X5HX 15X5HY 15X5HSLOPE15X5H
1EM /(4F20.8))
 RETURN
 END

$IBINT LININT DECK

SUBCUTINE LININT(X1,Y1,X,Y,TN,MX,MY,F)
CC*MCN K
DIMENSION X(MX),Y(MY),TN(MX,MY)
DC 1C J3=1,MX

1C IF(X1.LE.X(J3))GO TO 20
 J3=MX

2C DC 3C J4=1,MY

3C IF(Y1.LE.Y(J4))GO TO 40
 J4=MY

4C J1=J3-1
 J2=J4-1
 EPS1=(X1-X(J1))/(X(J3)-X(J1))
 EPS2=(Y1-Y(J2))/(Y(J4)-Y(J2))
 EPS3=1.-EPS1
 EPS4=1.-EPS2
 F=TN(J1,J2)*EPS3*EPS4+TN(J3,J2)*EPS1*EPS2+EPS4+TN(J1,J4)*EPS2*EPS3+
 1TN(J3,J4)*EPS1*EPS2
 IF(K.EQ.14) WRITE (6,100) X1,Y1,F,J1,J2,EPS1,EPS2

1FORMAT (8H LININT3F10.5,2I3,2F10.5)
 K=C
 RETURN
 END
$IRFC SPLINT DECK$

SUBROUTINE SPLINT (X,Y,N,Z,M,MAX,YINT)
DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),
IG(50),EM(50),Z(50),YINT(50)
INTEGER C
INTEGER I=2,N
1C S(I)=X(I-1)-X(I)
 NC=N-1
 DC 2C I=2,NC
 A(I)=S(I)/6.0
 B(I)=(S(I)+S(I+1))/3.0
 C(I)=S(I+1)/6.0
2C F(I)=(Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
 A(N)=-.5
 B(N)=1.0
 C(N)=-.5
 F(1)=.0
 F(N)=0.0
 W(1)=B(1)
 SB(I)=C(I)/W(I)
 G(I)=0.0
 DC 3C I=2,N
 W(I)=W(I-1)-A(I)*SB(I-1)
 SB(I)=C(I)/W(I)
3C G(I)=(F(I)-A(I)*G(I-1))/W(I)
 DC 4C I=2,N
 K=N+I-1
4C EM(K)=G(K)-SB(K)*EM(K+1)
 DC 9C I=1,MAX
 K=2
 IF(Z(I)-X(I)) 60,50,70
5C YINT(I)=Y(I)
 GC TC 90
6C IF(Z(I)+LT.(1.1*X(I)-.1*X(N-1)))WRITE (6,1000)Z(I)
 GC TC 85
10CC FORMAT (17H OUT OF RANGE Z =F10.6)
 IF(Z(I)+GT.(1.1*X(I)-.1*X(N-1))) WRITE (6,1000)Z(I)
 K=N
 GC TC 85
7C IF(Z(I)-X(K)) 85,75,80
75 YINT(I)=Y(K)
 GC TC 90
8C K=K+1
 IF(K-N) 70,70,65
65 YINT(I) = EM(K-1)*(X(K)-Z(I))*3/6./S(K)+EM(K)*(Z(I)-X(K-1))*3/6.*
1/S(K)+Y(K)/S(K)-EM(K)*S(K)/6.*(Z(I)-X(K-1))+{Y(K-1)/S(K)-EM(K-1)
2*S(K)/6.)*X(K)-7(I))
9C CONTINUE
 EM(1)=S(1)
$\text{IF}(\text{C.EQ.16}) \text{ WRITE}(6,1010) N,\text{MAX},(X(I),Y(I),Z(I),YINT(I),I=1,\text{MAX})$

1010 FORMAT (2X21HNO. OF POINTS GIVEN =,I3,30H, NO. OF INTERPOLATED POI
NTS =,I3,/10X5HX 15X5HY 12X11HX-INTERPOL.9X11HY-INTERPOL./4
2E20.8))

100 RETURN

END

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 16, 1971,
132-15.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>coefficient, eq. (2)</td>
</tr>
<tr>
<td>B</td>
<td>coefficient, eq. (2)</td>
</tr>
<tr>
<td>C</td>
<td>coefficient, eq. (2)</td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat, $J/(kg)(K); (ft)(lbf)/(slug)(^0R)$</td>
</tr>
<tr>
<td>D</td>
<td>coefficient, eq. (2)</td>
</tr>
<tr>
<td>h</td>
<td>enthalpy, $J/kg; (ft)(lbf)/slug$</td>
</tr>
<tr>
<td>m</td>
<td>meridional streamline distance, m; ft</td>
</tr>
<tr>
<td>N</td>
<td>number of blades</td>
</tr>
<tr>
<td>$\Delta p''$</td>
<td>loss in relative total pressure, $N/m^2; lb/ft^2$</td>
</tr>
<tr>
<td>R</td>
<td>gas constant, $J/(kg)(K); (ft)(lbf)/(slug)(^0R)$</td>
</tr>
<tr>
<td>r</td>
<td>radius from axis of rotation, m; ft</td>
</tr>
<tr>
<td>r_c</td>
<td>radius of curvature of a meridional streamline, m; ft</td>
</tr>
<tr>
<td>s</td>
<td>distance along a quasi-orthogonal, m; ft</td>
</tr>
<tr>
<td>T</td>
<td>temperature, K; 0R</td>
</tr>
<tr>
<td>t_n</td>
<td>blade thickness normal to mean blade shape, m; ft</td>
</tr>
<tr>
<td>t_θ</td>
<td>blade thickness in tangential direction, m; ft</td>
</tr>
<tr>
<td>V</td>
<td>absolute velocity, m/sec; ft/sec</td>
</tr>
<tr>
<td>W</td>
<td>relative velocity, m/sec; ft/sec</td>
</tr>
<tr>
<td>w</td>
<td>mass flow, kg/sec; slugs/sec</td>
</tr>
<tr>
<td>z</td>
<td>axial distance, m; ft</td>
</tr>
<tr>
<td>α</td>
<td>angle between meridional streamline and z-axis, rad</td>
</tr>
<tr>
<td>β</td>
<td>angle between relative velocity and meridional plane, rad</td>
</tr>
<tr>
<td>γ</td>
<td>ratio of specific heats</td>
</tr>
<tr>
<td>θ</td>
<td>angular coordinate, rad</td>
</tr>
<tr>
<td>λ</td>
<td>inlet prerotation, $m^2/sec; ft^2/sec$</td>
</tr>
<tr>
<td>ρ</td>
<td>density, $kg/m^3; slugs/ft^3$</td>
</tr>
<tr>
<td>ψ</td>
<td>angle between quasi-orthogonal and radial direction, rad</td>
</tr>
<tr>
<td>ω</td>
<td>rotational speed, rad/sec</td>
</tr>
</tbody>
</table>
Subscripts:
- b: point at which mean stream surface deviates from mean blade shape
- f: flow
- h: hub
- i: inlet
- $isen$: isentropic
- l: leading surface
- m: direction of meridional streamline
- n: normal direction
- o: outlet
- s: shroud
- t: trailing surface
- θ: tangential direction

Superscripts:
- $'$: absolute total conditions
- "$": relative total conditions
REFERENCES

<table>
<thead>
<tr>
<th>TABLE I. - INPUT FORM FOR QUAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>MX</td>
</tr>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>KSTH</td>
</tr>
<tr>
<td>XS ARRAY</td>
</tr>
<tr>
<td>XII ARRAY</td>
</tr>
<tr>
<td>RS ARRAY</td>
</tr>
<tr>
<td>RH ARRAY</td>
</tr>
<tr>
<td>THTA ARRAY</td>
</tr>
<tr>
<td>ZT ARRAY (IF KD = 2, ZT ARRAY USED. THTA = (GT). MT = No. of.)</td>
</tr>
<tr>
<td>TN ARRAY</td>
</tr>
<tr>
<td>XZ ARRAY</td>
</tr>
<tr>
<td>XR ARRAY</td>
</tr>
</tbody>
</table>
TABLE II. - SAMPLE OUTPUT

INPUT DATA CARD LISTING

<table>
<thead>
<tr>
<th>RUN AC.</th>
<th>INPUT DATA CARD LISTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

INPUT DATA CARD LISTING

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>M</th>
<th>N</th>
<th>W</th>
<th>WT</th>
<th>XN</th>
<th>GAM</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>21</td>
<td>5</td>
<td>6</td>
<td>755.98</td>
<td>0.62160E-01</td>
<td>15.0000</td>
<td>1.40000</td>
<td>1716.20</td>
</tr>
</tbody>
</table>

TYPE

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>R</th>
<th>MXL</th>
<th>TEMP</th>
<th>ALM</th>
<th>RHO</th>
<th>PLOSS</th>
<th>ANGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0</td>
<td>4</td>
<td>518.700</td>
<td>0</td>
<td>0.23770E-02</td>
<td>1622.80</td>
<td>45.0000</td>
<td></td>
</tr>
</tbody>
</table>

KST + NPER + ITR + KED + SFAC + ZSPLIT + BET0 + CORFAC + SSN

| 4 | 5 | 1 | 0 | 2 | 0.00000 | 0.12500 | -93.9500 | 0.10000 | 8.00000 |

2S ARRAY

<table>
<thead>
<tr>
<th>-0.75430E-01</th>
<th>-0.50000E-01</th>
<th>-0.25000E-01</th>
<th>0.99200E-02</th>
<th>0.39682E-01</th>
<th>0.72917E-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67583E-01</td>
<td>0.13142</td>
<td>0.16958</td>
<td>0.18258</td>
<td>0.18892</td>
<td>0.19167</td>
</tr>
</tbody>
</table>

SH ARRAY

<table>
<thead>
<tr>
<th>-0.75430E-01</th>
<th>-0.50000E-01</th>
<th>-0.25000E-01</th>
<th>0.10167E-01</th>
<th>0.54000E-01</th>
<th>0.12093</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15975</td>
<td>0.18433</td>
<td>0.20100</td>
<td>0.20470</td>
<td>0.20549</td>
<td>0.20617</td>
</tr>
</tbody>
</table>

RS ARRAY

<table>
<thead>
<tr>
<th>0.14125</th>
<th>0.14125</th>
<th>0.14125</th>
<th>0.14125</th>
<th>0.14135</th>
<th>0.14320</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14692</td>
<td>0.15712</td>
<td>0.18291</td>
<td>0.20487</td>
<td>0.22771</td>
<td>0.25004</td>
</tr>
</tbody>
</table>

RH ARRAY

<table>
<thead>
<tr>
<th>0.42375E-01</th>
<th>0.42375E-01</th>
<th>0.42375E-01</th>
<th>0.42375E-01</th>
<th>0.43229E-01</th>
<th>0.60442E-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85655E-01</td>
<td>0.12620</td>
<td>0.17845</td>
<td>0.20711</td>
<td>0.22771</td>
<td>0.25004</td>
</tr>
</tbody>
</table>

THTA ARRAY

<table>
<thead>
<tr>
<th>0.68290</th>
<th>0.69770</th>
<th>0.33600</th>
<th>0.01250</th>
<th>0.05000</th>
<th>0.09000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.10000</td>
<td>-1.30000</td>
<td>-1.50000</td>
<td>-1.60000</td>
<td>-1.67500</td>
<td>-1.75000</td>
</tr>
</tbody>
</table>

BLADE THICKNESS TABLE

<table>
<thead>
<tr>
<th>TN ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41670E-02</td>
</tr>
<tr>
<td>0.20300E-02</td>
</tr>
</tbody>
</table>

Z ARRAY

<table>
<thead>
<tr>
<th>-0.83900E-03</th>
<th>0.47250E-01</th>
<th>0.94450E-01</th>
<th>0.14170</th>
<th>0.18333</th>
<th>0.20833</th>
</tr>
</thead>
</table>

R ARRAY

<table>
<thead>
<tr>
<th>0.41670E-01</th>
<th>0.91580E-01</th>
<th>0.14125</th>
<th>0.20833</th>
<th>0.25417</th>
</tr>
</thead>
</table>

MAX. STREAMLINE CHANGE = 0.018577

MAX. STREAMLINE CHANGE = 0.015987

MAX. STREAMLINE CHANGE = 0.014245

MAX. STREAMLINE CHANGE = 0.012898

MAX. STREAMLINE CHANGE = 0.011650

MAX. STREAMLINE CHANGE = 0.010522

MAX. STREAMLINE CHANGE = 0.009499

MAX. STREAMLINE CHANGE = 0.008590

MAX. STREAMLINE CHANGE = 0.007747

MAX. STREAMLINE CHANGE = 0.006983

MAX. STREAMLINE CHANGE = 0.006293

MAX. STREAMLINE CHANGE = 0.005668

MAX. STREAMLINE CHANGE = 0.005104

MAX. STREAMLINE CHANGE = 0.004611

MAX. STREAMLINE CHANGE = 0.004168

MAX. STREAMLINE CHANGE = 0.003731

MAX. STREAMLINE CHANGE = 0.003354

MAX. STREAMLINE CHANGE = 0.003014

MAX. STREAMLINE CHANGE = 0.002709

MAX. STREAMLINE CHANGE = 0.002434

STAG. SPEEC CF SOUND AT INLET = 1116.36

RR = C.21747
<table>
<thead>
<tr>
<th>ITERATION NO. 67</th>
<th>ALPHA</th>
<th>RC</th>
<th>SM</th>
<th>BETA</th>
<th>TT</th>
<th>SA</th>
<th>SR</th>
<th>SC</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAMLINE 1</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
<tr>
<td>STREAMLINE 2</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
<tr>
<td>STREAMLINE 3</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
<tr>
<td>STREAMLINE 4</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
<tr>
<td>STREAMLINE 5</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
<tr>
<td>STREAMLINE 6</td>
<td>0.000000</td>
<td>0.000100</td>
<td>0.001200</td>
<td>0.002300</td>
<td>0.003400</td>
<td>0.004500</td>
<td>0.005600</td>
<td>0.006700</td>
<td>0.007800</td>
</tr>
</tbody>
</table>

TABLE II. - Continued. SAMPLE OUTPUT

<table>
<thead>
<tr>
<th>Z</th>
<th>R</th>
<th>WA</th>
<th>PRESS</th>
<th>WTR</th>
<th>WL</th>
<th>TREL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Note: The table continues with more data not shown here.
TABLE II. - Concluded. SAMPLE OUTPUT

<table>
<thead>
<tr>
<th>SHROUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM-CHANNEL COORDINATES</td>
</tr>
<tr>
<td>W ARRAY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R ARRAY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>STREAM-CHANNEL NORMAL THICKNESS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PLACE COORDINATES</td>
</tr>
<tr>
<td>W ARRAY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>THETA ARRAY PLANE SURFACE 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>THETA ARRAY PLANE SURFACE 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>STGR = -1.73352</td>
</tr>
<tr>
<td>SPLITTERS</td>
</tr>
</tbody>
</table>

INLET ANGLES - HUB -30.70, MEAN -53.79, SHROUD -60.95
TABLE III - INPUT FOR QUAC FOR BACKSWEPT IMPELLER

<table>
<thead>
<tr>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>31</th>
<th>40</th>
<th>41</th>
<th>50</th>
<th>51</th>
<th>60</th>
<th>61</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>ACKSWEPT IMPELLER</td>
<td>MX</td>
<td>KM</td>
<td>MN</td>
<td>MZ</td>
<td>W</td>
<td>WT</td>
<td>X</td>
<td>GAM</td>
<td>AR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>21</td>
<td>5</td>
<td>6</td>
<td>7053.38</td>
<td>.06116</td>
<td>15.0</td>
<td>1.40</td>
<td>17.162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>MT</td>
<td>SHW</td>
<td>MXBL</td>
<td>TEMP</td>
<td>ALM</td>
<td>RHO</td>
<td>PLOB</td>
<td>AXH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>518.7</td>
<td>0</td>
<td>.002377</td>
<td>.022.8</td>
<td>.450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KTH</td>
<td>NPRT</td>
<td>ITER</td>
<td>KD</td>
<td>SFAC</td>
<td>ZSP</td>
<td>DETO</td>
<td>COKFAC</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1.0</td>
<td>.208</td>
<td>.53.95</td>
<td>.1</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZS ARAY

| - .07543 | -.05 | - .025 | 0 | .0009206 | .0306042 | .072017 |
| .007560 | .12142 | .10956 | .12158 | .18802 | .19107 | .072017 |

ZH ARAY

| - .07543 | -.05 | - .025 | 0 | .010167 | .05409 | .12013 |
| .15575 | .18433 | .20109 | .20475 | .20589 | .20687 | .12013 |

HS ARAY

| .14125 | .14125 | .14125 | .14125 | .14125 | .14125 | .14320 |
| .14666 | .15712 | .18291 | .20467 | .22767 | .25004 | .14320 |

HI ARAY

| .04237 | .04237 | .04237 | .04237 | .04237 | .04237 | .06042 |
| .08505 | .12620 | .17845 | .20711 | .22771 | .25004 | .06042 |

THTA ARAY

| 1.0829 | .6977 | .338 | 0 | -.125 | -.530 | .960 |
| -1.100 | -1.300 | -1.500 | -1.600 | -1.675 | -1.750 | .960 |

ZT ARAY (II KD 2, ZT ARAY USE). THTA = (XZT). MT = No. of.)

TN ARAY

.00716	.005000	.005333	.007500	.007500	.007500	.007500
.003125	.003750	.004375	.005833	.007500	.007500	.007500
.002083	.002083	.002250	.003333	.005000	.005823	.005417
0	0	0	0	0	0	0
0	0	0	0	0	0	0

XX ARAY

| - .000033 | .04723 | .09445 | .1417 | .18333 | .20833 |

XH ARAY

| .0167 | .09167 | .14125 | .20833 | .25417 | |
Table IV. - Stream-Channel and Blade Coordinates for Backswept Impeller

<table>
<thead>
<tr>
<th>M ARRAY</th>
<th>C 1</th>
<th>0.50017E05</th>
<th>0.25006E01</th>
<th>0</th>
<th>0.100130E01</th>
<th>0.444378E01</th>
<th>0.890485E01</th>
<th>0.1198214</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 0.166369</td>
<td>0.231293</td>
<td>0.2570320</td>
<td>0.2794789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R ARRAY</td>
<td>0.1041787</td>
<td>0.1051547</td>
<td>0.1058929</td>
<td>0.1064478</td>
<td>0.1068066</td>
<td>0.1094699</td>
<td>0.1164862</td>
<td>0.1256780</td>
</tr>
<tr>
<td>C 0.1482864</td>
<td>0.2607066</td>
<td>0.2861517</td>
<td>0.2276400</td>
<td>0.2500400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAM-CHANNEL NORMAL THICKNESS</td>
<td>0.4259891E-02</td>
<td>0.415687E-02</td>
<td>0.4181409E-02</td>
<td>0.4095016E-02</td>
<td>0.3960968E-02</td>
<td>0.3570975E-02</td>
<td>0.3193655E-02</td>
<td></td>
</tr>
<tr>
<td>0.2587770E-02</td>
<td>0.1053555E-02</td>
<td>0.8437943E-03</td>
<td>0.724833E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLADE COORDINATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M ARRAY</td>
<td>-0.7546577E-01</td>
<td>-0.50017E05</td>
<td>-0.25006E01</td>
<td>0</td>
<td>0.100130E01</td>
<td>0.444378E01</td>
<td>0.890485E01</td>
<td>0.1198214</td>
</tr>
<tr>
<td>0.166369</td>
<td>0.231293</td>
<td>0.2570320</td>
<td>0.2794789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETA ARRAY BLADE SURFACE 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.8467653E-01</td>
<td>-0.4606674</td>
<td>-0.8628947</td>
<td>-1.0642809</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.266348</td>
<td>-1.4700192</td>
<td>-1.5709620</td>
<td>-1.6472431</td>
<td>1.7265479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THETA ARRAY BLADE SURFACE 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.1290727</td>
<td>-0.5030818</td>
<td>-0.9008545</td>
<td>-1.0994683</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-1.2974013</td>
<td>-1.4937300</td>
<td>-1.5927871</td>
<td>-1.665061</td>
<td>1.7265479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STGR = -1.72655</td>
<td>RI = 0.14103E-02</td>
<td>RO = 0.15993E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT VANE DIFFUSER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MX</th>
<th>KMX</th>
<th>MR</th>
<th>MZ</th>
<th>W</th>
<th>WT</th>
<th>XN</th>
<th>GAM</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0.0235</td>
<td>18.0</td>
<td>1.607</td>
<td>593.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>NT</th>
<th>SHW</th>
<th>MXBL</th>
<th>TEMP</th>
<th>ALM</th>
<th>RHO</th>
<th>PLOSS</th>
<th>ANGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>737.6</td>
<td>77.35</td>
<td>0.009740</td>
<td>171.4</td>
<td>90.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KSTH</th>
<th>NHT</th>
<th>ITER</th>
<th>KD</th>
<th>SFCT</th>
<th>ZPLST</th>
<th>BTET</th>
<th>CORFAC</th>
<th>SBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>0.03</td>
<td>41.03</td>
<td>.1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZS ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00698</td>
</tr>
<tr>
<td>.01910</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZH ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.02527</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RH ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1917</td>
</tr>
<tr>
<td>.2417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RH ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1917</td>
</tr>
<tr>
<td>.2417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THTA ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>.37224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZT ARRAY (IF K) 2. ZT ARRAY USED. THTA = (ZT). NT = No. of.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NZ ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZR, MRRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1785</td>
</tr>
</tbody>
</table>
Table VI. - Stream-Channel and Blade Coordinates for Diffuser

Mean Stream-Channel Coordinates

<table>
<thead>
<tr>
<th>Method</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Array</td>
<td>0.1660000E+01</td>
<td>0.3330000E-01</td>
<td>0.4160000E-01</td>
</tr>
<tr>
<td>R Array</td>
<td>0.2500000E+00</td>
<td>0.3330000E-01</td>
<td>0.5000000E-01</td>
</tr>
</tbody>
</table>

Stream-Channel Normal Thickness

<table>
<thead>
<tr>
<th>Method</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Array</td>
<td>0.1660000E+01</td>
<td>0.3330000E-01</td>
<td>0.4160000E-01</td>
</tr>
<tr>
<td>R Array</td>
<td>0.2500000E+00</td>
<td>0.3330000E-01</td>
<td>0.5000000E-01</td>
</tr>
</tbody>
</table>

Blade Coordinates

<table>
<thead>
<tr>
<th>Method</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Array</td>
<td>0.1660000E+01</td>
<td>0.3330000E-01</td>
<td>0.4160000E-01</td>
</tr>
<tr>
<td>R Array</td>
<td>0.2500000E+00</td>
<td>0.3330000E-01</td>
<td>0.5000000E-01</td>
</tr>
</tbody>
</table>

Note: The coordinates are in meters and the format is 0.XXXXE+YY.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>COMPATIBLE</th>
<th>INPUT FOR QUAC FOR RADIAL IMPELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>KMX</td>
<td>KIT</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>TYPE</td>
<td>MY</td>
<td>SHW</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>KSTH</td>
<td>NPT</td>
<td>ITH</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Z5 ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.11967</td>
<td>.02225</td>
<td>.043083</td>
<td>.05975</td>
<td>.076416</td>
<td>.088916</td>
<td>.10558</td>
<td></td>
</tr>
</tbody>
</table>

ZII ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.14642</td>
<td>.15142</td>
<td>.051416</td>
<td>.076416</td>
<td>.10142</td>
<td>.11967</td>
<td>.13642</td>
<td></td>
</tr>
</tbody>
</table>

ZS ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.14592</td>
<td>.14600</td>
<td>.14700</td>
<td>.14975</td>
<td>.15475</td>
<td>.15087</td>
<td>.17325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZH ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.077416</td>
<td>.0775</td>
<td>.0805</td>
<td>.089166</td>
<td>.1035</td>
<td>.12217</td>
<td>.15033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THTA ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- .078</td>
<td>- .1785</td>
<td>- .2659</td>
<td>- .3745</td>
<td>- .4802</td>
<td>- .5519</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ZT ARRAY (IF KD 2, ZT ARRAY USED. THTA = [(ZT) MT = No. of.])

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.08475</td>
<td>.005583</td>
<td>.013917</td>
<td>.02225</td>
<td>.03475</td>
<td>.051416</td>
<td>.068083</td>
<td></td>
</tr>
</tbody>
</table>

TR ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.002667</td>
<td>.003417</td>
<td>.00495</td>
<td>.009083</td>
<td>.01075</td>
<td>.01167</td>
<td>.01132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TX ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- .00323</td>
<td>.005583</td>
<td>.010083</td>
<td>.05975</td>
<td>.08475</td>
<td>.10142</td>
<td>.11433</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XII ARRAY

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.075</td>
<td>.10833</td>
<td>.1500</td>
<td>.18533</td>
<td>.21667</td>
<td>.25166</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546