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'S ' INTRODUCTION

This report summarizes the preliminary experimental results of the

noise suppression capability of a mixer type nozzle used with a model of

gj the externally blown flap (EBF) lift augmentation system., The EBF is one
CD

w of the systems proposed for use with STOL aircraft„ Previous results with

conventional nozzles (ref„ l) show that the jet exhaust-deflected flap

interaction noise must be suppressed to meet STOL aircraft noise goals

(95 EPNdB at 152.4 meters).

A mixer type nozzle consists of an array of multi-element flow pas-

sages rather than a single nozzle with one large flow passage„ The purpose

of the mixer nozzle is to cause rapid decay of the jet exhaust velocity by

mixing with the surrounding air prior to the flap station so that the noise

generated by the jet impinging on the flap surfaces is reduced to accept-

able levels.

. An experimental program to evaluate mixer nozzle effectiveness is

being conducted at the Lewis Research Center (e.g., ref. 2). The particu-
«

lar nozzle configuration employed in the noise tests of this report was

judged to be the most suitable at the time the work reported herein was

undertaken. Small scale EBF noise tests with a multi-element orifice,

grossly similar to the final configuration (ref. 3) showed a reduction in



-2-

noise level vhen compared to the results of a single orifice of the same

area and operating at the same conditions. Therefore, a large scale model

that more closely simulated a real nozzle was fabricated and tested.

This report presents the experimental noise measurements that were

obtained from the large scale mixer nozzle and EBF model. The data were

obtained over a range of nozzle exhaust velocities (172 to 28^ meters/sec)

and flap angles. Comparisons are made between the results of the mixer

•nozzle and those obtained with a standard single convergent nozzle„

APPARATUS

The air flow system with the wing and mixer nozzle in place is shown

in figure 1. The system is the same as the one used for the results

reported in reference 1. Pressure upstream of the nozzle was set by

adjustment of the flow control valve which was supplied with cold air

(280 K - 300 K) from the Center's air supply system. An orifice flowmeter

was located upstream of the control valve. Total pressure and temperature

were measured at the nozzle inlet. Mufflers installed in the regions

indicated in figure 1 helped suppress internal noise generation. The wing

was mounted on the stand so that the spanwise direction was vertical. The

nozzle axis was 3«91 meters above grade and was located 1.52 meters from

the bottom of the wing and 1.22 meters from the top.

The test configuration of the externally blown flap model and mixer

nozzle is shown in figure 2. The wing section with the flaps retracted,

had a chord length of 2.08 meters/ and a span of 2ajk meters. The flaps

could be placed in three positions relative to the wing chord line;
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(l) leading flap 30°, trailing flap 60°, (2) leading flap 10°, trailing

flap 20 , and (3) zero angle (flaps retracted). The wing chord line was at

a 5 degree angle of attack relative to the nozzle centerline.

The position of the mixer nozzle relative to the wing is shown.in the

sectional view in figure 2. The nozzle initially consisted of 4 straight

lobes and k lobes that were canted 10 outward from the nozzle centerline.

The canted lobes promoted the velocity degradation, (ref. 2).

Initially, the nozzle was operated as an eight-lobe nozzle (all lobes

open) and oriented so that a straight lobe was closest to the underside of

the wing. However., preliminary tests with this configuration and the wing

flaps in the 30 -60 position showed that only a slight reduction in flap

interaction noise was achieved, compared to flaps blown by a standard single

convergent nozzle. It was found that intense wing scrubbing occurred as a

result of the air jet from the closest lobe being located so near the wing.

Therefore, the distance from the wing to the nearest lobe was increased by

rotating the nozzle and blocking one canted lobe as shown in figure 2.

Figure 3 is a photograph of the test facility with the wing flaps in

the 10 -20 position.. Figure k shows the configuration and dimensions of

the mixer nozzle. The exit area of the nozzle lobes was reduced by about

20 percent from the upstream portion of the lobe. The total exit area of

2
the seven lobed mixer nozzle was 1255 cm . An elliptical centerbody was

placed upstream of the lobes to improve the flow coefficient of the nozzle.

A comparison of actual flow rate to ideal flow rate showed that the ratio

was about .99-



Free stream velocities with the wing removed were calculated from total

pressures measured downstream of the nozzle. The total pressure.surveys were

made across two diametrically opposed straight lobes and also two opposing

canted lobes. The velocities were calculated by assuming that the total

temperature at the probe was the same as the measured temperature upstream

of the nozzle. Also, the static pressure at the probe was assumed to be

atmospheric pressure.

Sound data were taken for the nozzle alone and with the wing in place.

Twenty 1.27 cm diameter condenser microphones were placed at various inter-

vals on a 15.24 meters radius circle around the wing-nozzle setup. The

center of the microphone circle was located on the nozzle centerline halfway

between the nozzle exit and the intersection with the 60 flap.. The micro-

phone circle was in a horizontal plane 3.91 meters above an asphalt surface

and perpendicular to the vertically mounted wing. . • -.'•

Sideline noise measurements were made with the mixer nozzle and the

flaps in the 30 -60 position. This was done by suspending a microphone

15.2̂  meters above the center of the microphone circle from the boom of a

mobile crane. For these tests only two microphones were placed -on the

standard microphone circle, one at 85 and one at 275 from the air supply

line,, .

Noise data were analyzed by a 1/3-octave band spectrum analyzer. The

analyzer determined sound pressure level (SPL) spectra referenced to

—s P
2x10 N/m . Overall sound pressure levels (OASPL) were computed from

the SPL data.
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BESULTS

Peak Velocity Degradation

Velocity profiles across the straight lobes of the mixer nozzle are

shown in figure 5. The measurements were made without the wing at an axial

distance of 183 cm downstream of the nozzle exit. This distance is that

from the nozzle exit to the impingement point on the 60 degree flap, mea-

sured along the axis of the nozzle, when the wing is in place. With the

wing in place, the left side of the figure would be the side nearest the

wing. .As shown in figure 5, the jet is still in the development stage

since the flow characteristics of each element is easily identified. In

addition, the profile is seen to be asymmetric about the nozzle centerline

as a result of the asymmetry of the 7-lobe nozzle configuration.

Results of the velocity decay measurements for the mixer nozzle are

summarized in figure 6. The local peak axial velocity, V, used as part of

the ordinate in figure 6, is for a straight lobe. (At a given axial dis-

tance, the straight-lobe peak velocity was greater than the peak velocity

from a canted lobe.) The value of the abscissa was based on the total

equivalent diameter (D .) of the exit area of the nozzle. For the nozzlee~o

of this test the total equivalent diameter was k-0 cm. The curve in figure 6

is representative of the velocity decay results obtained with circular

single element nozzles (ref. 2). Data for a 33 cm diameter convergent

nozzle (ref. l) and a 6.1 cm diameter orifice (ref. 3) are presented for

comparison. As shown in the figure the mixer nozzle performed as expected

by giving a faster rate of velocity decay than a single nozzle.
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Sound Measurements

Nozzle alone. - Results of the sound, measurements for the mixer nozzle

alone are shown in figure 7- In figure 7(a) the variation in overall sound

pressure level (OASPL) directivity is shown at a radius of 15.2̂  meters .at

various nozzle pressure ratios. The directivity is symmetrical about the

nozzle centerline with the peak OASPL occurring at 135 « A decrease in ̂ he
i i •

level occurs as the exhaust velocity decreases. In figure 7(b) the sound,

pressure level (SPL) 1/3 octave spectra is shown at 85 from the air supply

line for a nozzle pressure ratio of 1.7 and 1.3. The spectra are broadband

with a rapid rate of decrease in SPL above 10 kHz. Figure 7(c) shows a

comparison of the spectra for the two nozzle pressure ratios at the peak

OASPL position, 135 from the air supply line. Again, the spectra are

broadband but, compared to the 85 position, have, a higher SPL up.to. a

frequency of 10 kHz. Above 10 kHz the data at the two angular positions. •

are similar.

Comparison of the noise data for the mixer nozzle alone and a standard

single convergent nozzle alone is shown in figure 8. The standard nozzle

data were obtained at Lewis (ref. l) for a nozzle with.a 33 cm diameter,

exit and then scaled up to the mixer nozzle size. The method of scaling is

given in reference 1. Figure 8(a) shows that the mixer nozzle has a .1 to

2 dB higher noise level than the standard nozzle at nearly all angular .

positions for both nozzle pressure ratios. In figure 8(b) the. SPL 1/3

octave spectra for the nozzles are compared at 85 . As. shown, the mixer,

nozzle contains higher levels of high frequency noise which is character-

istic of multi-element nozzles.



Hozzle with wing. - Noise data for the .mixer nozzle with the wing in

place and the flaps at the 30 -60 position are shown in figure 9. The

OASPL directivity plot at a radius of 15.2̂ - meters, figure 9(a)> shows that

the noise level is greatest below and forward of the wing (0°-105°). The

SPL 1/3 octave spectra at 85 , figure 9(b), peak at a frequency between

. 200 and 0̂0 Hz depending on the pressure ratio (or exhaust velocity).

A direct comparison of the noise data for the mixer nozzle with the

30 -60 flaps and the mixer nozzle alone is shown in figure 10. The OASPL

between 0 and 105 degrees is much greater with the wing in place than with

the nozzle alone. This is a result of the additional noise generated by

the impingement of the jet on the wing-flap system. The results are similar

'for the other nozzle pressure ratios.

The noise data for the mixer nozzle and the flaps in the 10 -20 posi-

tion are shown in figure 11. Again, the OASPL is greater below and forward

of the wing, but the level is not as great for a given pressure ratio as

when the flaps were in the 30 -60 position. The SPL spectra, figure ll(b),

again show a peak between 200 and ̂ 00 Hz depending on pressure ratio.

A summary of the noise radiation patterns at 15.2̂  meters for the

various wing flap positions, as well as the nozzle alone, is shown in

• figure 12. The data are for "a pressure ratio of 1.7 only. The other pres-

sure ratios yield similar directivity patterns, but with different levels.

As shown in the figure, greater separation of the levels for the four con-

figurations occurs below and forward of the wing, with the 30 -60 flap

position being the noisiest. In the other directions the separation of the

levels is not as pronounced.
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. A comparison of the noise data at 15.24 meters for- -the mixer nozzle

with the 30°-60° flaps and a 33 cm single convergent nozzle .-with the 30°-60C

flaps scaled to the mixer nozzle size is shown in figure 13. The QASPL for

the single nozzle is seen to "be greater than that with the mixer nozzle at

all angles from the engine inlet. The same comparison with the flaps in

the 10 -20 and zero position is shown in figures 14 and .15, respectively.

Very little difference in the level occurs below and forward of the wing

for either the mixer nozzle or the single convergent nozzle for either flap

position. • , • ; - : - . -

Sideline noise.. - The results of the sideline noise tests, with the

flaps in the 30 -60 position, are shown as SPL 1/3 octave spectra in •-

figure l6 and are compared with the spectra below the wing at 85 from the

engine inlet. The OASPL for both locations are also given. For both

nozzle pressure ratios the levels below the wing are higher than those at

the sideline. The OASPL at the sideline is 5 to 6 dB lower than the OASPL

below the wing.

Perceived noise level for the wing with the mixer.nozzle and standard

nozzle. - A comparison of the perceived noise level (PNL) directivity

pattern at 152.4 meters for the mixer nozzle with the 30 -60° flaps and the

scaled-up 33 cm diameter convergent nozzle with .the .30 -60 flaps is shown

in figure 17. The FNL for the flaps blown by the single convergent nozzle

is higher at all angles. With the wing flaps in the 10 -20 position,

figure l8, the results show that the PNL with the mixer nozzle varies from

slightly higher to slightly lower below and forward of the wing. Figure 19
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shows the ENL comparison for the wing with the zero (retracted) flap position.

The PNL with the mixer nozzle is higher than with the single convergent nozzle

(2 to 3 EWdB) for all positions below and forward of the wing«

SUMMARY OF RESULTS

The results of the noise tests with a specific..configuration of a mixer-

type nozzle blowing on the wing flaps of an EBF lift augmentation system can

be summarized as follows:

1. With the wing flaps set in the 30 -60 position, the noise level is

lower (about 6 dB) with the mixer nozzle blowing on the flaps than with a

single convergent nozzle blowing on the flaps.

2. With the wing flaps in the 10°-20° setting, there is little differ-

ence in the noise level below the wing when either the mixer nozzle or the

single nozzle is used.

. 3- With the wing .flaps retracted, the noise, level below the wing is

higher (l to 2 dB) when the mixer nozzle is used than when the single nozzle

is used. ' • , . -

4. The sideline noise level with the mixer nozzle blowing on the 30 -60

flaps is lower than the noise level below the wing (5 to 6 dB),,
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SYMBQL LIST .

C nozzle (orifice) discharge coefficient
e -

="][ 4 (TX Area)
»

D, equivalent diameter = , Cme~t » ' *

M. Mach number at nozzle (orifice) exit plane.
J

—5 2
OASPL overall sound pressure level 'referenced to 2x10 N/m , dB

PNL perceived noise level, PNdB

-5 / 2 '
SPL sound pressure level referenced to 2x10 N/m , dB

/
j -

sec

V. peak velocity at nozzle (orifice) exit plane, m/sec
0 .

X axial distance from nozzle (orifice) exit plane, m
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Figure 1. - Air flow system.
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Figure 2. Test configuration of the externally blown flap model with the mixer .nozzle
(all dimensions in centimeters).



Figure 3« Externally-blown-flap model with research mixer nozzle.
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Figure 4. Configuration and dimensions of the mixer nozzle (all dimensions in centimeters).
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Figure 17. Comparison of perceived noise level directivity pattern at 152.4 meters for the mixer
nozzle with 30°-6o° flaps and a 33 cm single convergent nozzle with 30°-60° flaps
scaled up to the mixer nozzle.
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Figure 19. Comparison of perceived noise level directivity pattern at 152.lt- meters for the mixer
nozzle with the zero (retracted) flaps and a 33 cm single convergent nozzle with zero
flaps scaled up to the mixer nozzle.


