SURVEY OF TECHNIQUES USED TO
PRESERVE BIOLOGICAL MATERIALS

By

E. J. FEINLER and R. W. HUBBARD

January 1972

Distribution of this report is provided in the interest of information exchange. Responsibility for the
contents resides in the author or organization that prepared it.

Prepared under Contract NAS2-6201 by
STANFORD RESEARCH INSTITUTE
Menlo Park, California

for

AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
SURVEY OF TECHNIQUES USED TO PRESERVE BIOLOGICAL MATERIALS

By
E. J. FEINLER and R. W. HUBBARD

January 1972

Prepared under Contract NAS2-6201 by
STANFORD RESEARCH INSTITUTE
Menlo Park, California

for
AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SRI Project LSU-8930
ACKNOWLEDGMENT

Dr. R. W. Hubbard provided the review section for the report and acted as consultant to the project.

Maureen Cleary was responsible for ordering and organizing all of the material used in the report and for production of the computer-printed bibliography with the help of our programmer, Keith Klemba.

Christine Murray, Frances Hong, Marlene Adams, and Margaret Taylor assisted with the typing, proofreading, editing, and production of the report.

The staffs of the libraries of Stanford Research Institute; NASA, Ames; and Stanford University were most cooperative in helping us obtain the hundreds of reprints needed for extracting data.

Many thanks are extended to all of them for their help and cooperation.
I. INTRODUCTION AND METHOD OF APPROACH

Performance of research on living systems in space will require increasingly complex and varied methods of sampling and analysis. In-flight or real-time analysis is preferred, but priorities such as time, expense, adverse conditions, and availability of trained personnel will limit the amount of real-time analysis that can be done. Postflight or postponed handling of biological samples will be necessary. This introduces the problem of how best to store or preserve biological materials until they can be used.

The purpose of this report is to document and summarize existing techniques used to preserve biological materials. The report is presented in a handbook format that categorizes the most important preservation techniques available, and includes a representative sampling of the thousands of applications of these techniques to biological materials and organisms.

Details of the information coverage and method of approach are outlined in the following sections.

Literature Coverage

There is a vast amount of literature covering preservation of biological materials. Some preservation methods still in use today were originally described in the literature more than a century ago. Although there is a wealth of information available, most of it is poorly indexed or buried in books and articles whose main emphasis is not preservation per se. For these reasons, a variety of approaches were needed for searching the literature.

First, demand searches were requested from NASA, DDC, and MEDLARS. These were screened, and appropriate documents were ordered. Next, books, symposia, and reviews were covered through such sources as: Books in Print, Cumulative Book Index, The Publishers' Tradelst Annual, and the library catalogs of Stanford Research Institute, NASA Ames, and Stanford University. Few books were found that were directly related to the subject. Several books were found that had sections or chapters of interest, but these were not indexed under "preservation" headings and were therefore difficult to locate except by chance.

The bulk of the information presented here was found by searching the secondary abstracting sources. Again, the subject indexing was not adequate, and, in some cases, whole sections of the abstracting journal were scanned page by page to find useful information. Many author searches were also performed to obtain references to the work of recognized researchers.
The following abstracting journals were covered from approximately 1960 to June 1971 (unless otherwise noted):

- Chemical Abstracts
- Index Medicus
- Biological Abstracts
- Pandex (three years only)
- Science Citation Index (three years only)
- NLM Monthly Bibliography of Medical Reviews (two years only)

Pertinent abstracts were screened, and selected articles were ordered in hard copy or microfiche. When articles were received, they were separated into experimental or review papers and were further screened for inclusion in either the review section of the handbook, the data tables, and/or the bibliography. (Articles that were not included in either the review section or the tables due to various restrictions were still cited in the final bibliography, if of interest at all.)

Many of the bibliographies accompanying the articles were also checked for pertinent references, as were the tables of content of all issues of Cryobiology and several other relevant journals. In this manner, older information was obtained much more quickly than by searching the poorly indexed abstracting journals.

An overlap occurred between coverage in journal articles, symposium papers, and technical reports. Some authors published similar information in all three. The journal article was selected over the other two forms wherever possible, because journal literature was considered to be more easily obtainable by the user than report or symposium literature.

Subject Areas Not Covered

Because the literature covering preservation of biological materials is so prolific, it was impossible to cover all aspects of the subject within the scope of this report without making several restrictions. Therefore, the following information is not covered in this report:

1. Information written in a foreign language was not included. However, many foreign authors are represented through translations and publications in English journals.

2. Food preservation was not covered. This area is covered very well by the various abstracting services, books, and review sources such as Advances in Food Research. Many preservation techniques have been highly perfected for use on foods; however, the volume of literature on this topic was prohibitive for inclusion in a compilation of this scope.

3. Histology and histochemistry were not included in the data compilation, again because the information is well documented elsewhere and the amount of material was prohibitive. Although
we did not include this information in the data compilation, many references on histology or histochemistry are included in the bibliography.

(4) Organic or biochemical substances are often lyophilized, dried, or crystallized during extraction or synthesis. Although these are forms of storage, this information was not covered in this survey unless the preservation method was the main emphasis of the paper in question.

(5) Most preservation by radiation was not included as the bulk of this information pertained to food or to simple sterilization.

(6) Preservation by packaging was not included.

Organization of the Handbook

General Organization

The handbook is organized into four main sections following this section:

(1) A review of reviews
(2) Tables of techniques of preservation
(3) Indexes
(4) A comprehensive bibliography

This format was chosen in an attempt to cover a variety of interests. The review section emphasizes evaluations and comparisons of work done in the preservation field and attempts to summarize findings, while the tables present a listing of preservation techniques and their applications, essentially as reported by the author with no attempt made to rate the relative merit of the technique or application. This approach should permit the user to evaluate the appropriateness of a technique or application for his own use, and also to see how it has been evaluated by other researchers in the field.

The bibliography contains all the references referred to in the review section and the tables, as well as many more related references. It is arranged alphabetically by author and chronologically under each author. This arrangement serves as an author index and also as a progress report on the work of a particular author.

In attempting to organize the information that had been gathered, it became evident that there were relatively few types of preservation methods in use, but that many variations and applications of each method existed. Therefore, it seemed logical to first categorize the material
by type of preservation method, and then by various applications of the preservation method.

The types of preservation technique were somewhat arbitrarily divided into the following categories:

- Freezing (temperatures below 0°C)
- Refrigeration (temperatures around 4°C)
- Lyophilization
- Chemical preservation (includes chemical sterilants, perfusates, various metabolic inhibitors, antioxidants, etc.)
- Drying and heat sterilization
- Ashing
- Fixation and embedding
- Radiation
- Dialysis
- Incubation

Details of the organization of each of the above-mentioned four sections that follow are outlined below.

Review of Reviews

The review of reviews section summarizes key information covered in over 100 review articles. It is organized by the technique categories outlined above. In addition, the last section of the review discusses applications of these techniques to mammalian specimens.

An attempt was made to provide sufficient information about each review to give the user an indication of what material is covered in the original article. Each reference mentioned in the review section is included in the bibliography and is preceded by a double asterisk.

Tables of Preservation Methods

The handbook tables are arranged first by the type of preservation technique, next by the kind of material being preserved, and, finally, chronologically under each kind or material.

The preservation technique is listed in the upper left-hand corner of each page of the tables in bold-face type. Directly under the preservation technique arranged horizontally across the page in columns are
listed the various pieces of information that were extracted from each paper. These columns are:

1. **Specimen Type.** This gives a gross description of the type of material being preserved. The specimen types are listed alphabetically, and this list can be used as an index to the applications of each preservation technique under which the listing occurs.

2. **Original Form of Sample.** This column describes the form of the sample at the time it was preserved, and also describes the genus-species name of the organism or the origin of the sample.

3. **Brief Description of the Method.** This column provides a brief abstract of the preservation technique and details of its specific application.

4. **Limitations of the Method.** This column outlines the effects that the preservation method has on the specimen being preserved. It covers such concepts as viability, unusual effects, limitations, restrictions, length of preservation time, etc.

5. **Other Comments About Method.** This column presents additional information of interest, such as unusual observations, authors' comments, explanatory notes, etc.

6. **Estimated Preservation Time.** The figures listed in this column give a rough estimate of how much time is required to preserve the specimen in question.

7. **Survival Time.** These figures give an approximate length of time that the specimen can be stored, if preserved by the technique outlined. These figures are inexact, and they do not necessarily indicate that the specimen can be stored without damage for the length of time indicated. However, these figures should give an estimate of how long a sample preserved by a given technique can be kept.

8. **Estimated No. of Steps.** A "step" is defined as one operation, such as injecting an animal, rather than one movement. These figures are relative and are included to give the user an indication of the complexity of the method.

9. **Equipment and Reagents Used.** This column includes general equipment and reagents used during the preservation process.

10. **End Use of Specimen.** This column gives the intended use or the method of analysis for the preserved specimen.
An attempt was made to present enough information in the tables to allow the user to decide whether the method is useful for his purposes, and to make at least gross comparisons among the different methods and applications.

The left-hand column of specimen types is arranged alphabetically under each preservation technique. This alphabetic listing can be used as a rough index. Where more than one specimen type of the same kind exists, the entries are arranged chronologically. This arrangement lets the user follow chronological developments in preserving a particular kind of material by a particular technique.

Most papers are entered only once in the tables. If more than one preservation technique was covered in a single paper, the information was entered in the tables under what seemed to be the most important technique. However, all preservation techniques are entered in the index. By using either the tables or the index, the user should be able to pinpoint most any information covered.

Many words were abbreviated in the tables to save space. A list of the abbreviations used is given in the front of that section.

Indexes

The indexes include the preservation technique(s), the material being preserved, biochemical or other quantities affected by the preservation technique, and reagents important to the technique.

A genus-species name is included in the index, if one was given in the original paper. If not, the animal or plant is indexed by its common name combined with the type of specimen being preserved. (For example, an entry involving preservation of rat kidneys would be entered under "Kidney" and under "Rat kidney" rather than under "Rat" alone.

Chemical nomenclature is presented for the most part as it appears in the original paper. Organic chemical entries are not inverted.

Bibliography

The bibliography is a composite of the references cited in the review section and the tables, but it also contains a great many references of interest that were not included in either of these sections. References cited in the review section are marked with a double asterisk (**), references cited in the tables are marked with a single asterisk (*), and references not included in either of these sections are unmarked.
The bibliography is arranged alphabetically by the first author's last name, then chronologically under each first author. This arrangement not only provides an index to authors in the field, but it also gives a brief summary of the sequence of work done by a given author.

The use of all these sections together should give the user a variety of approaches to methods of preservation of biological materials.

This compilation does not claim to be a complete compendium of preservation methods. Such a work could easily fill several volumes. Rather it is hoped that the most commonly used preservation methods are represented here, along with several applications for each method.
II. REVIEW OF REVIEWS

Introduction

Since review articles were more apt to summarize methodology rather than present experimental detail, they did not fit into the tables of data as readily as experimental papers. For this reason, review articles have been summarized separately here.

This section of the handbook outlines the key points of more than 100 reviews, including books. It is organized primarily by preservation technique except for the last section which summarizes applications of the various techniques to mammalian systems.

Freezing of Biological Samples

The term "freezing" is defined here as hardening into a solid body by extraction of heat. This phenomenon occurs in the vicinity of 0°C for aqueous solutions. However, freezing temperatures as low as -200°C are often used for preservation of biological materials.

Freezing can slow, stop, or accelerate biochemical reactions. It can also preserve or disrupt the fine structure of biological cells. Which of these responses occurs during a given type of reaction or within a given cell depends on a variety of factors (Mazur, 1970).

If the freezing process is relatively slow within a biological system, ice crystals seem to form exclusively in the extracellular space (Mazur, 1970). Water within the cell becomes supercooled and, in this state, has a higher vapor pressure than ice. This intracellular water is then withdrawn from the cell to contribute to ice crystal formation, which finally consumes all freezable water in and out of the cell except for 5 to 10% of the intracellular water remaining in the cell unfrozen.

Rapid cooling produces more and smaller ice crystals, which are predominantly intracellular. In general, very slow freezing and very rapid freezing are lethal to most types of animal cells (Mazur, 1970). It is possible that injuries produced in living cells by extracellular freezing may result from critical dehydration of the living protoplasmic system (Asahina, 1965). The resulting deleterious effect of concentrated salt solutions on the protoplasmic membrane is well known (A. Smith, 1961).

In 1940, it occurred to Luyet and Genehio that crystallization of ice could be prevented by ultra-rapid cooling of minute amounts of fluid to a very low temperature, so that the water molecules would have no time to form crystals of ice, or the liquid become vitrified. If the
glassy material was subsequently rewarmed at an ultra-rapid rate, it should revert to the liquid state without ice formation. This approach only worked on a very limited micro-scale (G. Smith, 1950). In general, as cells are cooled below 0°C, they become subject to three phenomena: the temperature falls; ice crystals form; and liquid water is removed thus raising the concentration of solutes. Most of the freezing injury to biological cells appears to be due to the combined effects of exposure to concentrated solutes and the formation of large intracellular crystals (Richards, 1964; Mazur, 1965).

Epithelium, some tumor tissues, and erythrocytes are cellular types that will tolerate very rapid freezing. Optimum cooling velocities to give the best cell survival vary from 1.6°C per minute for bone marrow stem cells to about 3000°C per minute for human erythrocytes (Meryman, 1964; Mazur, 1966; Luyet, 1970). The optimum freezing rate for each cellular type minimizes both the intracellular ice formation and the solution effects (Luyet, 1970). Preservation of whole human skin for grafting purposes for periods of 1 to 61 days has been best accomplished with slow freezing and rapid thawing (Perry, 1966, 1966a; Ballantyne, Jr., 1966). The epithelial or outer layer of skin and whole skin, therefore, appear to respond differently to freezing and thawing for cellular survival. This is not surprising because of the greater number of different types of cells (each with different freezing and thawing requirements) found in whole skin compared with the epithelial layer alone.

The use of protective additives—such as a 5 to 20% concentration of glycerin, dimethylsulfoxide (DMSO), or polyvinylpyrrolidone (PVP)—prevents a significant amount of water from freezing and thus gives a much greater chance for cellular survival (Huggins, 1965). Practical methods for the removal of these additive agents after thawing, to allow for either utilization of the cellular materials in biological systems or further analysis of these materials, have been developed (Huggins, 1969). The need to remove glycerol, especially from blood cells, arises from the fact that the rate of water exchange across the red cell membrane is greater than the glycerol exchange, thus giving rise to an osmotic imbalance that could lyse the cell (Pyle, 1964). PVP produces a better survival rate for marrow cells and red cells than does glycerol, and PVP does not usually have to be removed before returning the cells to a physiological environment (Richards, 1964). All these cryoprotectants appear to exert protective action by reducing the concentration of salt in equilibrium with ice at any given temperature, thus decreasing the likelihood of denaturation of proteins and other complex organic substances in the external and internal membranes and organelles of living cells (G. Smith, 1950). These cryoprotectants appear to interact directly with the hydration shell of biologically important macromolecules and thereby influence macromolecular conformation (Doebbler, 1966; Rowe, 1966; Karow, Jr., 1969a).

Studies concerning the long term preservation of whole blood and red cells by freezing have been extensive (Tullis, 1966; Valeri, 1966, 1968, 1968a; Meryman, 1968). Recent advances in preservation of blood
by freezing and its clinical acceptability have been outlined (Valeri, 1968, 1968a). Erythrocytes recovered physically intact after rapid freezing have their electrolyte composition altered. Total cation concentration remains unchanged, while sodium increases and potassium decreases (Doebbler, 1965). This electrolyte change may be due to an increased activation after freezing of nucleoside triphosphatase activity, which is involved in erythrocyte membrane cation transport (Doebbler, 1965).

Other blood cells such as platelets have shown a very poor recovery rate after freezing (Gardner, 1968). Even the initial centrifugation to prepare platelet-rich plasma causes a 25% loss of platelets. The use of glycerol for platelet protection during freezing alters the platelet membrane before freezing and decreases the recovery of circulating platelets that can be recovered (Gardner, 1968). The use of radioactive sodium chromate (Cr51) has proved to be a successful platelet marker for measuring platelet survival (Aas, 1958).

It is suggested that a separation of marrow cells into component cells be attempted before freezing, so that the components may be studied separately (Ashwood-Smith, 1965). Although frozen marrow may have less antigenicity than fresh material, it is unlikely that a freezing method will be devised to enable marrow to be as good after freezing as before (Ashwood-Smith, 1964). Leukocytes or the white cells of whole blood have been frozen in 10% DMSO, and the surviving cells were evaluated (Cavins, 1968). Unfortunately, DMSO causes a human toxic response, which means that it must be almost totally removed from the preserved material if it is to be placed back in the human body (Gardner, 1968). Efforts to preserve human leukemic white blood cells in vitro for experimental purposes have been described (Shohet, 1967). Salient features of this technique include slow freezing, rapid thawing, the use of DMSO as cryoprotective agent, and brief exposure of the thawed cells to deoxyribonuclease. Overall recovery of viable cells was over 50%.

Antigens and antibodies that are constituents of blood serum can be preserved at -79°C for many months with no alteration in antigenic properties (Greaves, 1965; Krijnen, 1968). Greaves (1965a) states that freeze-drying is a more complex technique than simple freezing, and that it is also potentially more destructive. He also points out that the exact point of complete freezing can be detected using the electrical resistance of ice in an A-C conductivity cell.

Preservation of serum plasma by freezing illustrates the well-known lipid insolubility effect of freezing and thawing (Pennell, 1965; Greaves, 1968; Davies, 1968; Martinek, 1970). Lipoproteins have long been known to be most sensitive to freezing and thawing (Pennell, 1965), but urea and alkaline phosphatase activity levels are also adversely affected (Davies, 1968). In this case, lipoproteins are put into an insoluble state that causes the plasma to become cloudy after thawing. This cloudiness can be removed by suitable filtration (Greaves, 1968).
Successful freezing of large and complex organs is unlikely, owing to the number of different cells, each probably requiring a different freezing schedule (Greaves, 1965a). Certainly no mammalian heart has survived the rigors of freezing and thawing (Childs, 1969), but some fairly simple organ systems—such as cornea (Childs, 1969), when frozen to -195°C in the presence of 14% DMSO, serum, and sucrose—appear to be quite well preserved. With the corneas, freezing was done by degrees first to -80°C, then to 160°C, and then to -196°C (Pakarinen, 1969). Preservation of kidney, small intestine, lung, heart, and liver have all been attempted with varying degrees of success (Pakarinen, 1969). Refrigeration techniques and oxygen control have been tried more frequently than freezing (Norman, 1968; Pakarinen, 1969; Malinin, 1970). The many problems of organ storage by freezing—particularly of kidney, cornea, smooth muscle, and cartilage—are reviewed by A. Smith (1965), Martin (1968), and Halasz (1970). Freezing has not yet proven to be an effective way to preserve organs or, for that matter, adult mammalian cells, with the exceptions of a few cell types such as erythrocytes and sperm (Dolan, 1965; Abbott, 1969).

Assessment of tissue, organ, or cell viability has been well defined with divisions of apparent death, relative death, and absolute death (Malinin, 1967). The basic vital characteristic is the ability to take free energy from the environment and make it available for various synthetic processes (Dolan, 1965a).

Bull semen frozen to -196°C and kept for periods of at least ten years can still be used for artificial insemination (Sherman, 1965). However, aging of sperm is known to cause an increase in the incidence of embryonic or early fetal death (Sherman, 1965). Extensive studies of frozen human sperm have been made (Sherman, 1963), and viability of the frozen cell is also of primary interest (Wolstenholme, 1970).

Cryopreservation of bone or osseous tissue at -1°C to 7°C in various media—such as saline, citrated blood, Ringers solution, and merthiolate—has been done for at least 40 years (Boyne, 1968). Deep frozen bone homografts appear to be superior clinically and histologically to those maintained at 4°C in any of the above-mentioned media. Freeze-drying has also been used successfully for this application. Sterilization by irradiation has been practiced extensively on bone homografts, as has chemical sterilization with ethylene oxide and beta-propiolactone (Boyne, 1968).

Going down the phylogenetic scale from vertebrates through invertebrates to microorganisms and viruses, preservation by freezing becomes less difficult. However, like the higher animal cells, most protozoa and some bacteria require cryoprotectants such as DMSO to prevent extensive freezing injury (Meryman, 1963). Frozen protozoa have been stored successfully at temperatures as high as -19°C and as low as -196°C (Diamond, 1964). In general, the lower the storage temperature employed, the longer the period of survival. Thawing is usually done as rapidly as possible (Diamond, 1964). Microorganisms are, in general,
more resistant to freezing than other highly developed animal or plant cells and are easier to preserve in the frozen state than other animal cells (Nei, 1964). Culture collections of microorganisms may be stored at low temperatures and used whenever desired (Boyne, 1968; Nei, 1965, 1969). Declines in virus titers associated with velocities of freezing of the order of 60°C per minute or greater were lower than those found with velocities of freezing of 40°C per minute or less (Greiff, 1965). Such freezing stability data for viruses have been established by group classification for refrigeration, freezing, and freeze drying methods of preservation (Rightsel, 1967).

The preservation of plant tissues by freezing has also received considerable study. It can be demonstrated that freezing alters the permeability properties of plant cell membranes (Heber, 1968). However, plant cells have the ability to synthesize specific protein factors that can protect their membrane system against freezing injury (Heber, 1968; Steponkus, 1969). This freezing protection coincides with an increase in ribonucleic acid and protein synthesis in autumn during the frost-hardening period of certain types of plants (Levitt, 1964, 1966). Frost or freezing injury in plant cells can be measured by the amount of amino acids and other ninhydrin reactants released from frozen cells (Reeve, 1966).

A very special part of the living cell, the nucleus, has also been extensively studied (Stowell, 1965). The best structural preservation of nuclei has been attained with the most rapid possible cooling from 0°C to -100°C. Slow freezing leads to large, intranuclear, ice crystal formation during the change to the frozen state, with marked displacement of the nucleoplasm, including chromatin and nucleoli. Rapid thawing gives amazing structural reconstitution of the nucleus with only slight clumping of chromatin. Slow thawing, on the other hand, may give large residual areas of displaced nucleoplasm and changes in the nuclear envelope with general separation of the inner and outer nuclear membranes (Stowell, 1965).

Cellular damage by freezing appears to be caused by alterations of intra- and extracellular water. Bound water in the form of lattices seems to be essential to cell integrity, especially protein structure and function. Death by freezing seems to occur primarily as a result of extraction of bound water from vital cellular structures (Karow, Jr., 1965).

Electron microscopy is a valuable tool for the study of the fundamental mechanisms of biological freezing at the molecular level (Fernandez-Moran, 1960). The direct ultrastructural changes induced
in tissue by cold exposure must be directly visualized. Conventional thin section techniques cannot achieve this, but freeze substitution or "freeze-cleaving" or "freeze-etching" eliminates some of the artifact-producing steps of the thin section technique (Weinstein, 1967; Steere, 1969). Freeze substitution has been used on specimens of yeast cells, bacteria, algae, nematodes, mouse brain, parasitized red blood cells, and virus-infected tobacco cells (Steere, 1957, 1969).

The art of food preservation by freezing presents information that is of potential value to the preservation of all biological samples. The preservation of meat by freezing still offers the best organoleptic suitability over long periods of time (Lawrie, 1968). However, freezing of food does have some detrimental effects as far as the rate of freezing and thawing, as well as the use of chemical additives, are concerned; these are critical factors to consider in minimizing undesirable degradation (Fennema, 1966).

Lyophilization or Freeze-Drying

Lyophilization is the creation of a stable preparation of a biological substance by rapid freezing and dehydration of the frozen product under high vacuum.

Initial freezing of the sample must be done in a suitable low temperature medium, such as a mixture of dry-ice and acetone, followed by dehydration by sublimation from the frozen state. Heating the frozen sample to just below the melting point, as soon as the vacuum is attained, gives the most significant rate of sublimation. Sublimation starts at the ice surface and works progressively to the center or bottom. The amount of heat applied is significant because of the intense absorption of heat caused by sublimation. The amount of heat required during sublimation varies as the process continues, because the thermal gradient through the ice layer changes with the changing depth of ice (Chambers, 1949; Mullin, 1955; Flosdorf, 1959; Simatos, 1965).

Sublimation temperatures for most biological products such as blood serum, organic compounds, and bacterial suspensions are between -10°C and -40°C. This requirement can decrease to -100°C for cells where large ice crystal formation must be avoided (Chambers, 1949; Simatos, 1965).

Secondary drying after sublimation is usually done under high vacuum, or at slightly above room temperature, to lower residual water content of the sample to a minimum. However, the viability of certain bacteria and viruses is preserved only if their water content is kept above certain minimum levels (Sherman, 1963).

Most lyophilized samples are most effectively stored under nitrogen because of the very high porosity of the freeze-dried product (Simatos, 1965; Mullin, 1955).
Reconstitution of lyophilized biological samples commonly consists of rehydration with water or physiological saline. In many instances, the reconstituted product can be used in a more concentrated state than the initial product (Simatos, 1965).

The optimal freeze-drying temperature can be predicted for a given type of sample. Automatic control equipment can be used to measure this temperature by the use of electrical resistance measurements of the sample (Greaves, 1962, 1965).

The suspension medium used to freeze-dry a sample is very important for long term storage stability. Many different media have been reported to have been used successfully such as serum, broth, skimmed milk, and gelatin (Greaves, 1962).

The importance of mechanical design in lyophilization equipment cannot be minimized. Vapor paths must remain open, and differential pockets of high pressure must be avoided. Heating during lyophilization must not cause local melting. Constant removal of dried products offers a very fast drying rate. High vacuum spray freeze-drying has certain advantages in drying foods, if flavor and solubility are not critical, as both of these properties are sometimes altered by this technique (Mullin, 1955; Flosdorf, 1959; Greaves, 1962).

It is evident that the rate at which a solution freeze-dries depends on the temperature and the nature of the solute. Freeze-drying velocity is not always determined by the size of ice crystals which would in turn determine the size of vapor flow channels vacated by the subliming ice (Mullin, 1955; MacKenzie, 1965).

Mammalian spermatozoa and erythrocytes have both been freeze-dried with a significant percentage of survival (Meryman, 1963). A variety of mammalian serum protein fractions have also been freeze-dried (Rosenberg, 1964). Many different physical mechanisms have been employed to freeze-dry these serum proteins such as tray-drying, where the material has to be scraped from the trays and pulverized, and spray atomizing, where the frozen particles are transferred to a wire mesh drum mounted horizontally in a vacuum chamber with controlled radiant heat to insure operation just below the melting point (Greaves, 1960; Rosenberg, 1964). If a protein solution could be well preserved by freeze-drying without denaturation, this would probably be the method of choice, as it avoids the inconvenience of frozen storage (Rosenburg, 1964).

With more highly organized tissues and cells, the act of cooling itself can be expected to induce dislocations in interrelated enzyme systems due to the differing temperature coefficients of these systems (Rinfret, 1962). Alteration of aldolase activity has been reported in mammalian blood serum stored at low temperatures (Lehmann, 1965). Freeze-drying of nonviable human tissues, as developed by the Tissue Bank of the U.S. Naval Medical School, has permitted long term storage (several years) of these tissues in a state suitable for homotransplantation.
Many viruses and bacteria can be very satisfactorily preserved by freeze-drying after initial freezing to $-40^\circ C$ and drying at $-30^\circ C$. The use of 5% sodium glutamate and 10% purified bovine albumin in distilled water or isotonic saline has increased the yield of viable microorganisms that can be preserved by the freeze-drying process (Meryman, 1963). Most viruses will withstand freeze-drying (Burns, 1964), but the unfreezable water of cells plays an important role in cell viability during the freeze-drying of microorganisms (Nei, 1964). Lyophilization is often stated to be the most important method for the preservation of viruses. Viruses that are lyophilized are usually stored at $4^\circ C$ but, in many other instances, may be stored at room temperature.

Methods for freeze-drying of foods have had numerous applications and have great potential for the preservation of many different types of biological samples (Werntz, 1967).

Refrigeration

Refrigeration generally implies the storage of biological samples at from +4 to $+7^\circ C$.

The preservation of whole blood by refrigeration, in the presence of anticoagulants, is a well-known method commonly employed by blood banks (Hurn, 1968). The changes in certain specific blood constituents after refrigeration for varying lengths of time have been studied. Blood platelets from human and other mammalian sources have been of particular interest (Morrison, 1968; Baldini, 1968). However, the survival time of platelets preserved by refrigeration is only eight to ten days (Baldini, 1968) while the survival time for whole blood is 21 days or longer.

The preservation of whole body organs by refrigeration has come under intensive study (Wolstenholme, 1954; Lillehei, 1964; Blumenstock, 1967; Robertson, 1968). Cooling of organs sharply reduces metabolic activity since oxygen consumption of tissue falls exponentially with temperature reduction. Unfortunately, protection of organs by cooling alone does not exceed five to six hours for most tissues. Beyond this time, irreversible tissue damage occurs. However, a combination of hypothermia at 2° to $4^\circ C$ and hyperbaric oxygen has allowed whole organ storage up to 72 hours in a viable state (Lillehei, 1964). Several groups of investigators have been able to maintain viable mammalian hearts at subzero hypothermia as long as freezing is prevented (Karow, Jr., 1969). The best results for heart storage have been obtained by perfusion of the organ in an interim host (Humphries, Jr., 1967; Webb, 1969) or by in vitro perfusion (Norman, 1968; Childs, 1969; Jacob, 1969; Malinin,
Whole kidney storage has been attempted using one or more of the following methods: (1) hypothermia, (2) hyperbaria, (3) storage in an intermediate host, (4) treatment with metabolic inhibitors, and (5) perfusion with a suitable perfusate (Belzer, 1969).

Human artery preservation by refrigeration for later grafting applications has been used for carotid and other arteries (Dale, 1969; Ross, 1969). In this technique, the artery is removed and immersed in ice water. The muscle and elastic tissue are removed by treatment with ficin. Then the ficin is removed, and the artery is tanned, so to speak, with dialdehyde starch solution. The artery is again washed and tested for leaks before being used as grafting material (Dale, 1969).

Refrigeration of clinical samples such as urine, feces, etc., is covered below under preservation methods applied to mammalian specimens.

Drying

Drying as defined here refers to removal of moisture from a sample that is in any physical state except the frozen state.

One of the more interesting and challenging aspects of drying for preservation of biological materials is "flash drying" (Gordon, 1949). The process involves instantaneous removal of moisture from materials in from 2 to 10 seconds by the application of a turbulent stream of hot air. It is quite common to use air heated to $1300^\circ F$ for highly inflammable products such as spent grain, fine wood waste, and sewage sludge. Maximum agitation is fundamental, and the smaller the particle the more rapid the moisture removal. Flash drying systems are designed for (1) drying without disintegration, (2) drying with disintegration, or (3) drying and pulverizing (Gordon, 1949).

Evaporation techniques from temperatures of 20° to $100^\circ C$ are widely used in industrial food processing (Flosdorf, 1959). A variety of equipment concepts for this technique have been explored (Flosdorf, 1959).

The drying of bacteria by cloth drying and spray drying gives a 50% viable recovery of organisms with a storage half-life of greater than 700 days at $40^\circ F$ (Foster, 1954). Inlet temperatures on the order of 140° to $300^\circ F$ with collection temperatures varying from 50° to $140^\circ F$ have been tried. A variety of secondary drying techniques have also been applied such as vacuum drying, package dessication, direct contact with silica gel, and filter cake-air through drying. Regardless of the drying method used, complete removal of water markedly reduces the recovery of viable organisms (Foster, 1954).

Heat drying of foods, or similar materials, is often combined with other processing techniques such as concentration, homogenization, pasteurization, dilution with carrier, blanching, cutting or piercing, or treatment with antioxidants (Morris, 1947; Evans, 1965).
Chemical Preservation

Chemical preservation is used here to mean inhibition of bacterial or fungal multiplication, prevention of cellular change, or preservation of general morphology.

Chemicals for sterilization and preservation of biological materials have been in use for thousands of years. Lawrence and Block (1968) discuss the fundamental and practical aspects of controlling bacteria, protozoa, and helminths by both chemical and physical methods. These authors also include methods for spacecraft sterilization in preparation for a landing on other planets. Several testing methods for measuring the effectiveness of chemical disinfectants and preservatives have been developed. A variety of mammalian body exudates have been sterilized with various chemical treatments. For example, saliva and oral tissues have been sterilized with liquid ethylene oxide or hydrogen peroxide (Williams, 1962). The storage of mammalian waste products in space flight has also been described (Whirlpool Corp., 1964). For this application, solutions of solid germicides such as 8-quinolinol sulfate, sodium orthophenolphenate mixed with sodium chlorophenolphenolates, and neomycin sulfate plus myristyl gamma-picolinium chloride were used for stabilizing wet or dry wastes.

The use of antibiotics for preservation of foods such as cheese, fruits, meat, poultry, and fish has been used extensively (Collins, 1967). Salt is still used to preserve food stuffs along with propionates, benzoates (Collins, 1967), and sorbic acid (Luck, 1969).

The use of chemical stains to preserve the morphological detail of specimens for conventional and electron microscopy has been reviewed (Sternberger, 1969). Specific areas of histochemistry have also been extensively studied, such as lipid histochemistry (Adams, 1969). Histochemistry has been developed to include a great many very specific chemical detection reactions for preserving the desired material for later analysis (Lewis, 1962). Plant histology reviews are also available for evaluation of methods for preserving the structural details of plant material for later study (Chamberlain, 1924).

The preservation of biological specimens for gross observation has reached a high state of perfection with the advent of modern plastics. The work of Lutz (1969) summarizes the preservation of vertebrate, invertebrate, and plant specimens by plastic embedding. Various workers have described methods for preservation of zoological specimens (Wagstaffe, 1955; Costello, 1957), invertebrate animals (Galtoff, 1937), botanical specimens (Purvis, 1964), fungi (Sparrow, 1960), and algae (G. Smith, 1950, 1951; Florkin, 1969). Chemical zoology has also been reviewed (Florkin, 1969).

II-10
Radiation

There appears to be no doubt that freezing is the current method of choice for the preservation of most biological materials. Radiation, however, may in time become a serious competitor for the preservation of biological materials.

Radiation has been applied mostly to the preservation of food products. Pharmaceuticals have also been sterilized by radiation treatment (Brownell, 1968). Ionizing radiation can penetrate through considerable depth of product, even after packaging, with little rise in temperature and usually little chemical change (Lawrie, 1968). The ions and other activated molecules that the radiation creates are only the first events in a series, and form, for example, free radicals, polymers, and peroxides. With a dose of 5 Mrad (approximately that required for microbial sterility), there is a marked loss of water-holding capacity and change in the behavior of isolated myofibrils in meat, as well as a change in all pH values in the physiological range (Lawrie, 1968). Radiation can eliminate Salmonella and various fungi, particularly molds, from any biological product (Lamade, 1968). Either or both electromagnetic or particulate radiation can be used for sterilization (Wilson, 1968). Although complete destruction of microorganisms in food products by radiation is possible, a simple controlling dose of radiation to limit the multiplication of microorganisms is a more likely application (MacQueen, 1969). Very few foods can tolerate the big radiation dose required for total bacterial death, as such a dose produces off taste and odors (Sutton, 1969). Special reference to irradiation of wheat, potatoes, and onions has been made by the World Health Organization (WHO, 1970). Fruits and vegetables have also been extensively irradiated (Holdsworth, 1970).

The Above Techniques Applied to Mammalian Specimens

Special emphasis has been placed on this topic in present and past space flights, and several reviews on this subject are available (Winsten, 1965; Fraser, 1967; Spacelabs, 1967; General Electric, 1967). Below is a general summary of their findings.

Mammalian and related biological samples in the form of gases, liquids, or solids require several different methods of preservation. From the reviews quoted above, it is evident that freezing, lyophilization, refrigeration, drying, collection of gases, and certainly aliquoting of samples into containers containing special chemical preservatives are all required for complete sampling capability.

Specimens that will need to be collected are whole blood, serum or plasma, cerebrospinal fluid, urine, feces, and sweat. Also, specimens from the nasal passage, mouth, throat, and skin may be required. In general, untreated specimens are not acceptable for analysis beyond brief periods of storage, with the exception of inorganic constituents.
Except for metabolic studies, blood specimens should be obtained after an overnight fast or at least four hours after a solid meal. When a substance to be analyzed occurs in blood, serum is usually the preferred sample form. Serum samples should be free of hemolysis and should be separated from the clot within two hours after collection. Heparin, oxalate, citrate, and ethylenediaminetetraacetic acid (EDTA) can keep whole blood from clotting for a number of days. Plasma is required for analysis of amino nitrogen, antihemophilic globulin, fibrinogen, fibrinolytic activity, plasma thromboplastic component, plasma volume, and prothrombin activity. If blood cells, and also spermatozoa, are to be frozen, cryoprotectants—such as glycerol, DMSO, PVP, or dextran—are required to prevent injury from freezing. Even with these additives, white blood cells and platelets are, for the most part, destroyed without special handling techniques. There is no single method that can be used to preserve the different cellular components in whole blood, but rather each component should be separately isolated, and then each preserved individually according to its own characteristics to minimize destruction.

Hematocrit; karyotyping; platelet adhesiveness; platelet, red blood cell, and reticulocyte counting; clotting time; clot retraction; white blood cell differentials; white blood cell motility; and phagocytic activity cannot be measured on whole blood that has been frozen. Blood smears made from fresh whole blood treated with anticoagulant can be used for reticulocyte counting, white blood cell differentials, and a rough platelet count. The measurement of blood pH, pCO₂, pO₂, ketone bodies, clotting time, bleeding time, number of blood cells, and clot retraction appears to require real-time analysis. However, gas samples can be stored in glass or metal containers for later analysis, and blood smears can be made for counting many of the blood cells at a later time. Whole blood absorption on paper for later analyses of hemoglobin, alkaline phosphatase, glucose, phenylalanine, cholinesterase, uric acid, urea, ketone bodies, bile pigments, adrenaline, peptides, and nucleotides has been tried, and the method appears to have long term storage capability at room temperature (Comstock, 1966; Rice, 1967). Antibiotics have been used to prevent bacterial growth in blood (Bayliss, 1954). Lyophilization and spray drying have been used to preserve plasma and serum.

All organic chemical assays should be performed within five hours after sample collection if possible. If this cannot be done, then the sample should be refrigerated between 2⁰ and 4⁰C. If the delay is greater than 24 hours, the sample is best preserved at a minimum of -12⁰C. Most substances of this type, when frozen, are well preserved with the exception of some enzymes and proteins. Freezing and thawing denatures some proteins and lowers the concentration of other constituents. Thawing should usually be done rapidly in a 37⁰ or 45⁰ water bath.

Urine should be refrigerated during collection with the required preservative present in the collection container. Slight acidification of urine, usually with boric or benzoic acid, is necessary to preserve
the structures of the 17-hydroxy steroids, serotonin, and 5-hydroxyindoleacetic acid, while stronger acidification by compounds such as HCl or potassium bisulfate is required to preserve the catecholamines and antidiuretic hormone. Chloroform, formaldehyde, toluene, phenol, and thymol have been used as urine preservatives to retard bacterial growth. Freezing to -20°C with acid preservatives can meet urine storage requirements for at least two months. Lyophilization has also been applied successfully to the preservation of urine.

Sweat and feces can be preserved for four to seven days by refrigeration for later analysis of most of the organic compounds found in these biological materials. However, freezing to -100°C without exposure to light is the long term preservation technique of choice. Lyophilization can also be used in some cases.
III. TABLES OF TECHNIQUES OF PRESERVATION
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>absolute</td>
</tr>
<tr>
<td>ACD</td>
<td>acid-citrate-dextrose anticoagulant</td>
</tr>
<tr>
<td>alc</td>
<td>alcohol</td>
</tr>
<tr>
<td>alk</td>
<td>alkaline</td>
</tr>
<tr>
<td>amt</td>
<td>amount(s)</td>
</tr>
<tr>
<td>app</td>
<td>apparatus</td>
</tr>
<tr>
<td>approx</td>
<td>approximately</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere(s)</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>adenosine triphosphatase</td>
</tr>
<tr>
<td>av</td>
<td>average</td>
</tr>
<tr>
<td>biol</td>
<td>biological</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Centigrade</td>
</tr>
<tr>
<td>cc</td>
<td>cubic centimeter(s)</td>
</tr>
<tr>
<td>chem</td>
<td>chemical</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>compd</td>
<td>compound(s)</td>
</tr>
<tr>
<td>conc</td>
<td>concentration</td>
</tr>
<tr>
<td>contg</td>
<td>containing</td>
</tr>
<tr>
<td>CPD</td>
<td>citrate-phosphate-dextrose anticoagulant</td>
</tr>
<tr>
<td>detd</td>
<td>determined</td>
</tr>
<tr>
<td>detn</td>
<td>determination</td>
</tr>
</tbody>
</table>

Abbreviations:
- diam: diameter
- distd: distilled
- DMSO: dimethyl sulfoxide
- DNA: deoxyribonucleic acid
- DPG: diphosphoglycerate
- EDTA: ethylenediaminetetraacetic acid
- exptl: experimental
- ext: extract(s)
- extd: extracted
- extn: extraction
- °F: degrees Fahrenheit
- ft: foot/feet
- gm: gram(s)
- Hb: hemoglobin
- HCl: hydrochloric acid
- hr: hour(s)
- l: liter(s)
- liq: liquid
- max: maximum
- M: molar
- mag: magnetic
- mg: milligram(s)
- min: minute(s)
- mixt: mixture(s)
ml - milliliter(s)
mm - millimeter(s)
mM - millimole(s)
mon - month(s)
mOsm - milliosmole(s)
Na₂EDTA - disodium salt of ethylenediaminetetraacetic acid
NaOH - sodium hydroxide
no. - number
org - organic
pH - hydrogen ion concentration
phys - physical
physiol - physiological
physiol saline soln - physiological saline solution
powd - powder
prepn - preparation(s)
PVC - polyvinyl chloride
PVP - polyvinylpyrrolidone
satd - saturated
sec - second
sol - soluble
soln - solution(s)
temp - temperature(s)
TPN - triphosphopyridine nucleotide
UV - ultraviolet light
vol - volume(s)
v/v - volume by volume
wt - weight
w/v - weight by volume
yr - year(s)
> - greater than
< - less than
μ - micron
μgm - microgram(s)
μl - microliter(s)
% - percent
TABLES
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal glands</td>
<td>Pellet-2 homogenate of rat adrenal glands</td>
<td>Rat adrenal tissue was preincubated, and pellet-2 was isolated from KCl homogenates and resuspended. The pellet-2 prep was fortified with TPN, glucose-6-phosphate, and glucose-6-phosphate dehydrogenase. Pregnenolone synthesis in the presence of Ca$^{2+}$, Ba$^{2+}$, or Sr$^{2+}$, was analyzed for pregnenolone synthesis in the presence of Ca$^{2+}$, Ba$^{2+}$, or Sr$^{2+}$, with or without freezing.</td>
<td>Pregnenolone synthesis was stimulated by Ca$^{2+}$, Ba$^{2+}$, or Sr$^{2+}$ at higher conc could replace Ca$^{2+}$, and stimulation was not due to proenzyme activity. At pH 6.2 freezing pellet-2 decreased pregnenolone synthesis. At pH 7.5 the frozen pellet was more active than the normal one. Reasons for these phenomena were discussed.</td>
<td>Not given; Not Clear</td>
<td>Incubator, freezer, containers</td>
<td>Effects of freezing on enzyme activity</td>
<td>Koritz (1962)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td>Algal cultures</td>
<td>Algal cells to be frozen were harvested from vigorous cultures 4-6 days after inoculation and were suspended in a 10% glycerol soln. Samples of the suspension were placed in sterile vials and plugged with cotton. Then they were frozen either by controlled or uncontrolled heating to temp down to -196°C. The effects of freezing techniques on cell viability were observed.</td>
<td>Controlled cooling at 1°C/min to -180°C in 10% glycerol gave more intact, viable cells and more nitric activity than uncontrolled cooling. Euglena strains reacted the same as other algal strains to freezing and thawing, except there was a delay in the motility of cells in the recovered cultures.</td>
<td>1-2 hr</td>
<td>19-36 mon</td>
<td>3-4</td>
<td>Sterile vials, cotton plugs</td>
<td>10% glycerol in demineralized water</td>
<td>Hwang (1965)</td>
<td></td>
</tr>
<tr>
<td>Arteries, corneas, and adrenal glands</td>
<td>Human arteries, corneas, and adrenal glands from cadavers</td>
<td>Human arteries were taken from cadavers dead less than 12 hr that had been placed in cold storage at least 2 hr. The arteries were placed in sterile isotonic saline. Then they were placed in sterile pyrex tubes and frozen in a mixt of dry ice and alc at -79°C for 5 min. Afterward they were stored at -79°C or less. A similar technique was used for adrenal glands and corneas except a glycerol-saline soln was used. Arteries were maintained in a tissue bank up to 166 days, but showed no growth; adrenals were kept 6 mon but, as they were intended for autografts, were never used; corneal grafts retained clear up to 4 wk.</td>
<td>Not given; > 1 hr</td>
<td>Arteries, 160 days; adrenals, 6 mon; corneas, 4 wk</td>
<td>Freezer, test tubes, surgical tools, alc-dry ice bath</td>
<td>Transplants</td>
<td>Rob (1954)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>4. Beetles, Carabid</td>
<td>Whole live carabid beetles</td>
<td>Carabid beetles were collected at various intervals over a yr, and were maintained at the temp found until used. They were then fitted with a thermocouple affixed to the dorsal abdomen with wax, and were placed in insulated vials in a regulated bath. The temp was lowered to various levels, the beetles were thawed to room temp, and the results observed.</td>
<td>Winter beetles tolerate temp below -35°C but summer beetles die if frozen to -6.6°C. Winter beetles freeze at about -10°C and thaw near -3.5°C. Summer beetles thaw at -0.7°C. Cooling rates must be near 20°C/hr or less to avoid freezing damage.</td>
<td>Beetles had to be capable of walking, feeding, and avoidance response, with no paralysis or erratic behavior noted for up to 4 days, for them to be considered 'survived'. Winter beetles apparently adapt and can withstand much lower temp than summer beetles. This may due to changes in hemolymph glycerol.</td>
<td>4 hr</td>
<td>Up to 8 hr</td>
<td>2</td>
<td>Constant temp bath, copper constantan thermocouple, wax, insulated vials, drying oven</td>
<td>Study of freezing effects on adult insects</td>
<td>Miller (1969)</td>
</tr>
<tr>
<td>5. Bone marrow from needle puncture of the human iliac bone</td>
<td>Fresh marrow obtained by needle puncture of the iliac bone was aspirated and transferred to a collection bottle. Then it was filtered, and an eq vol of suspending fluid contg DMSO or glycerol and TC 199 culture fluid was added. The mix was centrifuged, and the narrow cells added to polythene aluminum bags. The bags were heat sealed and frozen at -17°C/min to -198°C.</td>
<td>25% of the cells were viable after 2 yr storage at -79°C.</td>
<td>The cryoprotective agent was not washed out before transfusion.</td>
<td>1-2 hr</td>
<td>2 yr at -79°C with 25% cell survival</td>
<td>8-9</td>
<td>Heparinized hypodermic syringes, collection bottles, centrifuge, Millipore filter, polythene aluminum bags, heat sealer, CO2 or liq nitrogen freezer</td>
<td>Bone marrow transplantation</td>
<td>Pegg (1964)</td>
<td></td>
</tr>
<tr>
<td>6. Bone marrow from rat or mouse femur</td>
<td>Fresh bone marrow cells obtained from the femur of mice or rats were evaluated in Hank's soln, strained through a fine mesh, resuspended in Hank's soln, and finally resuspended in freezing media contg 15-25% PVP K-15 and K-17, 10% PVP K-30, and 10% DMSO in Hank's soln contg 30% rat or mouse serum. 2 ml aliquots were slowly frozen to -25°C in ampules, and finally to -196°C. Various tests were carried out to evaluate the cryoprotective effectiveness of PVP.</td>
<td>The optimum conc of PVP K-15 and K-17 was 20%. Low sol it PVP was comparable to DMSO in cryoprotection, but was more desirable because of its rapid renal excretion.</td>
<td>PVP samples, which were acidic in nature, were neutralized before use.</td>
<td>2-3 hr</td>
<td>Up to 6 mon</td>
<td>6-7</td>
<td>Fine mesh strainer, flasks, ampules, Dewar flask, copper coil, thermocouple, recording galvanometer</td>
<td>Bone marrow transplants</td>
<td>Persidsky (1965)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>7. Bone marrow</td>
<td>Fresh aseptically collected human and mouse bone marrow</td>
<td>Aseptically collected human and mouse bone marrow were mixed with 3 vol of 30% glycerol or 10% DMSO in Osgood medium. Samples were frozen in vials in a freezer and maintained at -80°C.</td>
<td>Morphological preservation was good in human bone marrow stored for 7 yr. Prolonged storage resulted in less marrow cells being capable of excluding Trypan Blue. The capacity to incorporate thymidine was well preserved during prolonged storage.</td>
<td>Samples were thawed by immersion in an ice water bath. To each tube of thawed bone marrow suspension 1 vol of 33/1/3% cold glucose soln was added.</td>
<td>< 1 hr</td>
<td>7 yr</td>
<td>3-4</td>
<td>Surgical tools, hypodermic needles, sterilized syringes, screw-cap tubes, Canaval Freezer (Model 40 NG), Harris freezer</td>
<td>15% glycerol in Osgood's medium, heparin, 10% DMSO in Osgood's medium</td>
<td>Kurnick (1967)</td>
</tr>
<tr>
<td>8. Bone marrow</td>
<td>Freshly removed canine bone marrow</td>
<td>Allogeneic canine marrow, preserved in 70% TC 199 medium (Difco), 20% DMSO, and 10% autologous serum, was frozen in plastic bags between copper plates to -80°C. The stored marrow was used for transplantation in unrelated dogs following 1200 R whole body irradiation. Histocompatibility of matched and mismatched recipients were compared.</td>
<td>Matched recipients survived longer than mismatched recipients. Two matched dogs were alive more than 126 and 160 days respectively after transplantation. Freezing does not diminish the ability of marrow to produce the lethal graft-host disease.</td>
<td></td>
<td>1-1/2 hr</td>
<td>Up to 47 days</td>
<td>5-6</td>
<td>Surgical tools, stainless steel screens, flasks, plastic blood bags, copper plates, cobalt-60 source</td>
<td>TC 199 medium (Difco), 10% autologous serum contg 6.6 mg heparin, 10% DMSO, nethemate, sodium ampicillin</td>
<td>Transplants</td>
</tr>
<tr>
<td>9. Bone marrow</td>
<td>Freshly excised mouse bone marrow</td>
<td>Mouse femur bone marrow cells were suspended in Hank's soln contg 4% calf's serum plus either 12% glycerol or 12% DMSO at a conc of 50,000 cells/ml. The suspension was frozen in ampules to -100°C at 2°C/min.</td>
<td>Hematopoietic stem cells preserved in either glycerol or DMSO at -100°C replenished themselves at the same rate as stem cells from fresh marrow.</td>
<td>Glycerol was removed by serial dilution with 35% glucose and 6% dextran.</td>
<td>1 hr</td>
<td></td>
<td>4-5</td>
<td>Ampules, containers, Linde BF-3 114 nitrogen freezer, water bath</td>
<td>Hanks soln, 4% calf's serum, 12% glycerol, 12% DMSO</td>
<td>Narrow transplantation</td>
</tr>
<tr>
<td>10. Bone marrow</td>
<td>Fresh human and dog marrow</td>
<td>Human and dog bone marrow were collected by aspiration from the iliac crest and diluted with TC 199 medium contg heparin. The cell suspensions were further diluted with TC 199 contg either 30% glycerol or DMSO. The samples were sealed in 25 ml ampules and cooled at 1°C/min to -79°C for glycerol-protected cells and to -196°C for DMSO-protected cells. The results were compared after 3 yr of storage.</td>
<td>Bone marrow frozen with glycerol to -79°C was almost entirely destroyed after 3 yr, while marrow frozen with DMSO at -196°C was largely intact after 3 yr.</td>
<td>Glycerol was removed postthaw by gentle centrifugation.</td>
<td>1-2 hr</td>
<td>Up to 3 hr</td>
<td>5-6</td>
<td>Hypodermic syringe, polyethylene ampules, carbon dioxide or 114 nitrogen freezer</td>
<td>Glycerol, DMSO, TC 199, heparin</td>
<td>Transplants</td>
</tr>
</tbody>
</table>
Specimen Description

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Borrelia anserina</td>
<td>Whole blood infected with Borrelia anserina</td>
<td>Fowl blood containing Borrelia anserina was either diluted with an equal volume of sterile 1% citrate saline or allowed to clot. The clot was refrigerated for a couple of hours, while the diluted sample was held at room temperature and the serum removed. The serum and a portion of the diluted blood were mixed with an equal volume of 15% glycerol.</td>
<td>Borrelia anserina remained viable for 150 days in fowl serum and citrated blood, with or without glycerol, when stored in liquid nitrogen.</td>
<td>36-37 hr</td>
<td>150 days</td>
<td>6-7</td>
<td>Hypothermic syringes, refrigerators, containers, vials, dry ice freezer</td>
<td>Maintenance of cultures for production of fowl tick fever vaccine</td>
<td>Hart (1970)</td>
<td></td>
</tr>
<tr>
<td>12. Borrelia kansasii and Plasmodium berghei</td>
<td>Infected mouse blood</td>
<td>Albany white mice were infected with Borrelia kansasii or Plasmodium berghei. On the 2nd day after infection with Borrelia and the 7th with malaria, blood was removed for storage. One part blood was added to 25 parts sterile Thioglycollate Medium (Difco) containing 10% glycerol, and the mix was added to 1 or 5 ml vials which were heat sealed and slow-frozen to either -50°C or -196°C.</td>
<td>75-80% of Borrelia organisms remained motile after 6 months, and blood vials remained in good condition. Some hemolysis occurred during storage, but both organisms exhibited little change in rate or degree of parasitemia over a 6-month period.</td>
<td>2 hr (Not including inoculation procedure)</td>
<td>6 months-2 yr</td>
<td>5</td>
<td>White mice, hypothermic syringes, vials, heat sealers, liquid nitrogen freezer, dry ice freezer</td>
<td>Maintenance of viable parasitic organisms with consistent virulence, antigenicity, and related properties</td>
<td>Allen (1970)</td>
<td></td>
</tr>
<tr>
<td>13. Brain</td>
<td>Whole nephrectomized rat</td>
<td>Live rats were guillotined so that the heads fell into 20 vol of liquid nitrogen while the torso blood drained into a dish containing heparin. The cerebral hemispheres, cerebellum, and brain stem were removed with bone clippers in a -20°C room and ground in a mortar under liquid nitrogen. The brain powder was weighed and homogenized with 6 M HClO4. Homogenates were removed to a 4°C room, diluted with 1.22 M EDTA, and centrifuged. Supernatants were neutralized and stored at -70°C until used for enzyme studies on uronic rats.</td>
<td>Very little information was given about the limitations of the preservation method. Rat brains held in an ischemic state for 30 sec before freezing were compared to rat brains frozen immediately for levels of several enzymes. The levels varied. It was implied that rat brains frozen immediately retain most enzyme systems as they were at the time of decapitation.</td>
<td>Approx 1 hr</td>
<td>Not given</td>
<td>7-8</td>
<td>Rat guillotine, liquid nitrogen container, bone clippers, cold room (-20°C), mortar and pestle, homogenizer, cold room (4°C), centrifuge, liquid nitrogen freezer, other containers, balance</td>
<td>Brain metabolism studies in uremic and adenosine-infused rats</td>
<td>Van den Bosch (1970)</td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Brain
Brain: Freshly excised mouse brain
Method: Mice were decapitated and their brains removed within 30 sec and dropped into petroleum ether cooled to -70°C in a dry ice-ethanol bath. Brains were mounted in the frozen state on a cryostat and sectioned at -20°C. Five to six sections were dropped into cooled test tubes, and the tubes were briefly hand-held to melt the sections to the bottom. The tubes were immediately returned to -20°C until used.
Remarks: Brain sections stored in this manner were suitable for histochemical enzyme studies especially gamma-aminobutyrate transaminase.
Equipment and Reagents Used: Surgical tools, dry ice-alc bath, cryostat, test tubes, Dry ice, alc, petroleum ether.</td>
<td>Few min</td>
<td>Not given</td>
<td>6-7</td>
<td>Surgical tools, dry ice-alc bath, cryostat, test tubes</td>
<td>Histochem enzyme studies</td>
<td>Van Gelder (1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Brain
Brain: Whole live rats
Method: Rats were killed by immersion in liquid nitrogen, and the whole brain was removed and weighed. The brain was then pulverized in a 50 ml steel centrifuge tube embedded in solid CO₂. The tube was then placed in an ice bath, and 0.3 M cold HClO₄ soln was pipetted into the tube to give a final vol of 10 ml brain ext. This was homogenized and centrifuged at 0°C. The supernatant was filtered at 4°C into a test tube and was ready for analysis of the adenine nucleotides.
Remarks: ATP conc was higher using this method than it was after extn with trichloroacetic acid in acetone at -78°C. ATP and AMP were the same using either method. ATP conc was higher in freeze-dried brains than it was in frozen ones. AMP, ADP, or total nucleotides were the same for both methods. Brain extn using this method satisfactorily prevents breakdown of brain ATP.
Equipment and Reagents Used: Liq nitrogen bath, steel centrifuge tube, ice bath, pipette, plastic pestle, homogenizer, centrifuge, test tubes, refrigerator</td>
<td>1 hr</td>
<td>Not given</td>
<td>10-11</td>
<td>Liq nitrogen bath, steel centrifuge tube, ice bath, pipette, plastic pestle, homogenizer, centrifuge, test tubes, refrigerator</td>
<td>Assay of rat brain adenine nucleotides</td>
<td>Wilson (1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Bacteria
Bacteria: Organisms suspended in anq soln
Method: Aerobacter aerogenes was protected from freezing damage by most of the compd that protect red blood cells. 18 anq soln (usually 10% soln) were tested on 95-99% viable organisms, which were then fast frozen on liquid nitrogen. ENOS, human albumin, and ovalbumin gave essentially complete protection (95-99% viability) as compared to 50% viability with unprotected controls.
Remarks: Several protective agents gave 95-98% viability after rapid freezing and thawing. The others gave less protection or none at all.
Equipment and Reagents Used: Test tubes, liq nitrogen freezer, pipettes, reagent bottles</td>
<td>Few min</td>
<td>Not given</td>
<td>3-4</td>
<td>Test tubes, liq nitrogen freezer, pipettes, reagent bottles</td>
<td>Study of the effectiveness of cryoprotectants on bacteria and blood</td>
<td>Nash (1963)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>17. Bacteria</td>
<td>Bacterial cultures</td>
<td>Pseudomonas 10H and Escherichia coli try- (tryptophane-requiring nutrient) were suspended in physiologic saline and Sörensen phosphate buffer respectively. Ampules containing samples of the suspension were cooled and thawed at various rates, and the effects on genetic stability of the bacteria were investigated. Some samples were cooled and thawed several times, and the survivors were counted and tested for sensitivity to antibiotics and sulphonamides.</td>
<td>No change in response to Pseudomonas to freezing and thawing damage or to drugs was observed over 18 cycles of treatment. Freezing at various temp between 0° and -196°C did not produce mutants in Escherichia coli try-, therefore it was concluded that freezing and thawing are not mutagenic to bacteria.</td>
<td>Varied</td>
<td>Not given</td>
<td>4-6</td>
<td>Culture dishes, nutrient agar plates, incubator, ampules, Linde BFS freezer</td>
<td>Mutation studies</td>
<td>Ashwood-Smith (1965)</td>
<td></td>
</tr>
<tr>
<td>18. Bacteria</td>
<td>Bacterial suspension</td>
<td>Streptomyces viridoflavus shake flask cultures were subdivided into sterile, cotton-plugged 1 ml ampules and stored in vapor phase canisters in a liquid nitrogen refrigerator. Eq vol of 20% glycerol were added to some samples. Tables for Candidus production by cultures grown from slants after storage and transfer were given. Other organisms were tested in liquid nitrogen also.</td>
<td>Both slants and mycelial suspensions of S. viridoflavus were weakly viable, but fully productive after 1 yr at -20°C. Viable counts were constant at -185°C over a 12 mon storage period. Escherichia coli 8 suspensions showed no decreases in count after storage in liquid nitrogen for 15 mon.</td>
<td>Liq nitrogen storage has great potential value for preserving culture samples for future examination without subculturing.</td>
<td>Few min</td>
<td>Up to 1 yr</td>
<td>3</td>
<td>Linde L-25-9 liq nitrogen refrigerator, glass ampules, cotton stoppers, flask shaker, flasks, agar plates, cold canisters</td>
<td>Culture maintenance of type cultures</td>
<td>McDaniel (1968)</td>
</tr>
<tr>
<td>19. Bacteria</td>
<td>Cultured cells or bacteria</td>
<td>Bacteria that grow well in either an ordinary infusion broth or standard thioglycolate broth were grown, scraped off, emulsified in broth, then sealed in 0.7 Cryules (containers). The Cryules were placed in a hollow aluminum cane and immediately immersed in liquid nitrogen. Ones and ampules can be marked for easy retrieval.</td>
<td>No organisms or tissue culture tried failed to grow after being stored by this method. (Organisms were not listed).</td>
<td>Only young, actively growing cultures were used. Some organisms were killed during fast freezing, but the authors considered the convenience more important than the loss.</td>
<td>Few min</td>
<td>The authors felt frozen samples would last indefinitely</td>
<td>4-5</td>
<td>Cryules (Wheaton glass) aluminum cane, Linde freezer</td>
<td>Type cultures or cell-line preservation</td>
<td>Marymount (1969)</td>
</tr>
</tbody>
</table>
20. Bacteria

Cell suspension

- **Brief Description of Method**: 44 marine and 5 nonmarine strains of bacteria were freeze-dried in 1958 and then stored at room temp. Other samples were suspended in glycerol-nutrient broth and stored at -29°C. Total viable counts were made periodically for 10 yr, and the two methods of preservation were compared.

- **Limitations of Method**: After 10 yr 9% of the freeze-dried cultures and 41% of the frozen cultures were nonviable. Corynebacteria and micrococci withstood preservation the best, while vibrios and photobacteria were the least viable after storage.

- **Estimated Preservation Time**: Up to 10 yr

- **Equipment and Reagents Used**: Lyophilizer, ampules, freezer, heat sealer, glycerol, appropriate culture media

- **End Use of Specimen**: Maintenance of type culture

- **Reference**: Greig (1970)

21. Blood

Freshly collected human blood

- **Brief Description of Method**: Twelve units of ACD-collected fresh blood were centrifuged at 10°C to concentrate the red cells. One unit of packed cells was stored at 4°C, and the remaining 11 were frozen to -120°C by the low glycerol-sucrose method of Pert (1967). Another set of 12 units was frozen at -170°C. After storage and thawing, hemolysates were prepared and enzyme assays were run on these hemolysates.

- **Limitations of Method**: After 19 wk storage at -120°C or -170°C the activity of red blood cell enzymes was essentially unchanged, whereas several red blood cell enzymes were reduced in activity by 1/3 to 1/3 when stored at 4°C.

- **Survival Time**: Up to 19 wk

- **End Use**: Transfusions

- **Reference**: Mourad (1965)

22. Blood

Freshly drawn human blood

- **Brief Description of Method**: Blood from healthy donors was collected into standard ACD anticoagulant. Within 5 days of collection the blood was centrifuged. An equal vol of 5-5.6 M glycerol soln, also containing glucose, fructose, and Na$_2$EDTA, was added to the packed red cells in a sterile, disposable blood-freezing unit. The units were then frozen to -85°C.

- **Limitations of Method**: 90-95% of red blood cells could be recovered from whole blood using this method. 5% of the loss was hemolytic, the rest mechanical. 87-95% of treated red blood cells circulated 24 hr after transfusion with the slope of decline after 24 hr slightly longer than usual. Blood stored 2 yr shows no appreciable breakdown, and storage life may approach 10 yr.

- **Survival Time**: 7 hr (including complete freezing)

- **End Use**: Transfusions

- **Reference**: Huggins (1966)
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Freshly collected whole human blood</td>
<td>A simple blood processing and storage procedure was described for routine use which will provide a continuous daily supply of whole blood transfusions with coagulation factors similar to fresh blood. The method also provides fresh frozen plasma, packed cells, and plasma for fractionation. Blood can be collected on a routine basis.</td>
<td>Packed cells were kept 21 days and plasma 1 yr. The author felt they could be preserved longer.</td>
<td>The technique involved separating the plasma and packed cells initially and recombining them as needed. 50 units of blood can be stored in a freezer at one time.</td>
<td>4.30 min</td>
<td>12 mon for plasma; 21 days for whole blood</td>
<td>4-5</td>
<td>Specially designed refrigerator-freezer (described), refrigerated centrifuge, blood collection app, plastic bags, clamps, tubing ACD anticoagulant</td>
<td>Transfusions</td>
<td>Allen (1967)</td>
</tr>
<tr>
<td>Blood</td>
<td>Freshly drawn human blood</td>
<td>Blood units were prepared with a final cone of 15% hydroxyethyl starch as the protective material. The units were frozen in metal containers in liquid nitrogen at −196°C. During freezing the blood mixt was agitated at 200 cycles/sec to assure proper mixing.</td>
<td>Av recovery of red blood cells in vitro was 97.4%, saline stability averaged 83.4%, and Hb in the plasma averaged 283.3 mg/100 mL.</td>
<td>Hydroxyethyl starch has cryoprophylactic properties similar to PVP. It has the added advantage of being metabolized by the recipient which eliminates the need for extensive processing prior to transfusion.</td>
<td><1 hr</td>
<td>1 wk</td>
<td>4-5</td>
<td>Metal containers, agitator, Linde blood-processing app, liquid nitrogen container Hydroxyethyl starch</td>
<td>Transfusions</td>
<td>Knorpp (1967)</td>
</tr>
<tr>
<td>Blood</td>
<td>Fresh whole human blood</td>
<td>Several whole blood samples were collected in ACD soln from patients at 2 or 4 wk intervals preceding surgery. The blood was stored at 4°C for up to 5 days. Then each unit was centrifuged in a refrigerated centrifuge, and the plasma was removed and stored at −20°C. Packed red cell mass was transferred to a blood-freezing unit and glycerolized with an eq vol of 8.6% glycerol soln contg 0.3% Na2EDTA, 8% glucose, and 1% fructose. The red cell mass was then slowly frozen to −80°C and stored for 2 mon. The red cell mass was thawed, recombined with autologous plasma, and used during surgery on its donor.</td>
<td>Blood collected at 4 wk intervals and stored up to 2 mon was used during surgery on its donor without serious side effects. No significant decrease in peripheral hematocrit level was noted.</td>
<td>Use of this method eliminated blood transfusion complications during elective surgery.</td>
<td>Not given; approx 1 hr</td>
<td>Up to 2 mon</td>
<td>8-10</td>
<td>Blood collection app, refrigerated centrifuge, blood-freezing unit (Int Equip Co), Huggins Cytoglomerator, glass containers 50% dextrose soln ACD medium (NIH formula A)</td>
<td>Autotransfusion during surgery</td>
<td>Daane (1969)</td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Fresh blood from healthy donors</td>
<td>Blood from healthy donors was collected into ACD anticoagulant within 6 days of collection the blood was centrifuged, plasma was removed, and cells were transferred to the lower end of the blood freezing unit. An equal volume of 8.6 M glycerol solution was added to the packed cells with continuous mixing with a magnetic stirrer. The blood-freezing unit was removed from the cytoclysmator. The package was then laid horizontally in the -85°C freezer. Separately stored aliquots were used for compatibility testing.</td>
<td>Blood was still viable for transfusions after 4 yr of storage.</td>
<td>Cells preserved in this manner were easily transported in dry ice thus permitting international exchange of rare blood types. Many serious side-reactions of blood transfusions were eliminated, including serum hepatitis.</td>
<td>Not given; 4 yr</td>
<td>< 1 hr</td>
<td>5-6</td>
<td>Blood-freezing unit, donor collection app, freezer, cytoclysmator, sterile spiked coupler, pipettes, magnetic stirrer, water bath, centrifuge</td>
<td>Blood transfusions</td>
<td>Huggins (1969)</td>
</tr>
<tr>
<td>Blood</td>
<td>Whole blood, blood cells, or serum from hibernating ground squirrels</td>
<td>Whole blood, washed cells, or serum from hibernating ground squirrels and woodchucks was stored in liquid nitrogen for 4-5 mon. The blood was used to show that a 'trigger factor' for inducing summer hibernation in nonhibernating hibernators could be preserved cryobiologically in vitro.</td>
<td>'Trigger factor' for causing summer hibernation was still active after 4-5 mon storage at liquid nitrogen temp.</td>
<td>Washed cells, whole blood, and serum all caused nonhibernating hibernators to hibernate, and the reaction does not appear to be species specific.</td>
<td>Not given; few min</td>
<td>4-5 mon or longer</td>
<td>1-2</td>
<td>Liquid nitrogen freezer, containers for blood, centrifuge</td>
<td>To trigger hibernation in nonhibernating hibernators</td>
<td>Drew (1970)</td>
</tr>
<tr>
<td>Blood, kidneys and livers</td>
<td>Human blood cells in lactose-physirol saline soln; whole rabbit organs</td>
<td>Human blood in lactose-physirol saline soln in an aluminum container coated with vaseline was frozen in liquid nitrogen. Whole rabbit kidneys and livers were dipped in glycerol and frozen by immersion in liquid nitrogen. In both cases the thermally-insulating coating increased the cooling rate and cell viability. The thermodynamics of this were discussed.</td>
<td>Red cell recovery was 84% on thawing in 40°C water. Viable cells increased by 30% in the coated whole organs to a total of 89% viable cells.</td>
<td>Heat transfer by means of insulating coatings was applicable only in boiling liq.</td>
<td>5 min</td>
<td>Not given</td>
<td>2-4</td>
<td>Nitrogen container, rectangular aluminum container, dipping containers</td>
<td>Transplants</td>
<td>Cowley (1961)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>29. Blood cells, Red and Sperm</td>
<td>Freshly drawn human and bovine red blood cells or fresh bull ejaculate</td>
<td>Human or bovine red blood cells were suspended in 0.16 M sodium chloride soln contg 0.1% glucose, then cooled to 0°C. Glycerol or DMSO was added to 2, 5, 10, or 15% by wt. After allowing intervals of from 10 sec-2 hr for the solute to penetrate the cells, samples were frozen to -78°C by immersing tubes contg the samples in a bath of alc and dry ice. After 15 min the samples were thawed, and the extent of hemolysis was observed. Bull sperm was frozen under similar circumstances to -30°C and -78°C. Washed human red cells were suspended in buffered physiol saline soln contg different amt of pyridine N-oxide, and frozen 15 min at various temp between -20°C and -50°C. They were thawed, centrifuged, and analyzed for the amt of hemolysis in the supernatant.</td>
<td>30 sec of prefreezing equilibration with DMSO was sufficient for complete protection of red blood cells from hemolysis during freezing. Glycerol was more effective for protecting sperm, although DMSO did not seem to be particularly toxic to sperm.</td>
<td>DMSO was recommend- ed where permeabil- ity of membranes to glycerol was slight. A sharp rise in hemolysis occurred at -40°C, and, although limited protection was found, pyridine N-oxide was both penetrating and physically non-toxic up to high conc.</td>
<td>15 min</td>
<td>Not given</td>
<td>4</td>
<td>Cooling bath with alc and dry ice, tubes, pipettes, water bath, centrifuge</td>
<td>Studies of freezing phenomena in cells</td>
<td>Lovelock (1959)</td>
</tr>
<tr>
<td>30. Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>Washed human red cells were suspended in buffered physiol saline soln contg different amt of pyridine N-oxide, and frozen 15 min at various temp between -20°C and -50°C. They were thawed, centrifuged, and analyzed for the amt of hemolysis in the supernatant.</td>
<td></td>
<td></td>
<td>Few min</td>
<td>Not given</td>
<td>3</td>
<td>Blood collecting app, centrifuge, freezer</td>
<td>Cryoprotec- tant for red blood cells</td>
<td>Nash (1961)</td>
</tr>
<tr>
<td>31. Blood cells, Red</td>
<td>Freshly collected whole human blood</td>
<td>Whole blood was treated with 1 mg EDTA/ml blood. Not longer than 2 hr before freezing, the blood was mixed with half its vol of 40% sq sucrose soln (domestic granulated sugar can be used). The blood was frozen by dripping it into liq nitrogen where it formed frozen pellets 2-3 mm in diameter. The rate of freezing was approx 1-2 ml blood/min. Pellets were removed from liq nitrogen by decanting, placed in cardboard boxes filled with liq nitrogen, and stored in a liq nitrogen freezer.</td>
<td>More than 90% of the red blood cells were recovered intact immediately after freezing. This recovery rate was maintained over 1 yr. Anticoagulated blood samples could be stored one to two days before freezing. Although certain agglutina- tions deteriorated in avidity and titration scores dur- ing the yr, preservation was as good if not better than that generally seen after storage in glycerol.</td>
<td></td>
<td>1-2 ml/min</td>
<td>1 yr</td>
<td>4-5</td>
<td>Liq nitrogen freezer, liq nitrogen collection container, funnel, hypodermic needle, tygon tubing, retort stand, cardboard storage boxes, glass containers</td>
<td>Red cell anti- gen standards for identification of blood group antibodies</td>
<td>Huntman (1962)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>32. Blood cells, Red</td>
<td>Freshly drawn blood</td>
<td>Red blood cells were frozen rapidly by dropping sealed polyethylene-coated aluminum foil packets into liquid nitrogen. The cells were protected by sugars (glucose, lactose and/or sucrose) or by 10% PVP. Use of PVP allows blood cells to be used for transfusion.</td>
<td>A 97% postthaw recovery was reported for red cells frozen and thawed in aluminum-polyethylene packets with 10% PVP as an additive. Red cells should remain viable for several days if the temperature is maintained.</td>
<td>PVP as a preservative allowed the blood sample to be used for transfusions whereas high concentrations of sugar (5% glucose plus 9.35% sucrose) were not suitable for transfusions.</td>
<td>10-15 min</td>
<td>Indefinite</td>
<td>3</td>
<td>Liq nitrogen container, foil-polyethylene packets, wire rack to packets</td>
<td>Study of the effects of various additives on blood freezing</td>
<td>Greaves (1963)</td>
</tr>
<tr>
<td>33. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>10 cc aliquots of chromium-labeled, autologous red cells, which had been preserved with glycerol by the slow-freeze technique and washed with a nonelectrolyte sugar soln by the agglomeration technique, were transfused into healthy recipients. Clinical evaluation of the performance of such samples in vivo was given.</td>
<td>Red cells had acceptable survival rates after 7 days at -80°C, but cells stored at -20°C did not. Thawed erythrocytes that had been washed and disaggregated with isotonic saline could be stored postthaw for 6 days at 4°C in saline and 5-9 days in autologous plasma at a hematocrit of 45%. Saline is preferred over autologous plasma for postthaw washing.</td>
<td>Addition of EDTA to the glycerolizing soln prevented development of Coomb's positive red blood cells.</td>
<td><1 hr</td>
<td>Up to 7 days at -80°C</td>
<td>6-7</td>
<td>Blood collection app, nitrogen freezer, containers</td>
<td>Transfusions</td>
<td>Valeri (1966)</td>
</tr>
<tr>
<td>34. Blood cells, Red</td>
<td>Fresh human blood</td>
<td>Fresh intact red blood cells were washed, suspended in 0.153 M NaCl or 0.138 M NaCl containing 0.017 M EDTA, and stored at 4°C. Hb and hematocrit values and lipid extn were performed on aliquots of the samples, and the remainder of the sample was frozen to -20°C. The frozen samples were analyzed for Hb and lipid content over a period of 16 wk.</td>
<td>Lipid phosphorus and cholesterol were stable for one wk in all experiments. Glycerocosphosphatide degradation began within two wk, possibly from deacylation. This degradation seems to be catalyzed by Hb.</td>
<td>Loss of phospholipid was not observed with Hb-free red cell ghosts or plasma stored as long as 2 and 6 non respectively.</td>
<td>>1 hr</td>
<td>2 wk</td>
<td>8</td>
<td>Freezer, plastic syringes, glass containers, refrigerator</td>
<td>Biochem study of blood lipids</td>
<td>Ways (1967)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>35. Blood cells, Red</td>
<td>Fresh whole human blood</td>
<td>Blood from healthy male donors was collected in ACD-NIH-A anticoagulant or preserved in glycerol with or without slow freezing. After several days of storage, cells were washed either by a continuous wash technique with ionic solns, or by a dilution technique using non-electrolytes with recovery by agglomeration. Washing was carried out under a variety of conditions, and it was evaluated by measurement of intracellular potassium levels and mean corpuscular vol.</td>
<td>No loss of cellular potassium was observed when red blood cells were washed using continuous centifugation with ionic solns. However, recovery of red cells using agglomeration reduced cellular potassium significantly.</td>
<td>Removal of glycerol from previously frozen red cells should be accomplished by the use of a hypotonic soln.</td>
<td>Few min</td>
<td>5 days-3wk</td>
<td>3</td>
<td>Blood collection app., refrigerated centrifuge, refrigerator, Blood Freezing Unit (Int Equip Co), tubes, Cohn blood fractionator, Huggins cyto-gglomerator</td>
<td>Transfusions</td>
<td>Bunck (1968)</td>
</tr>
<tr>
<td>36. Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>The clinical efficacy of separated red cells, either lysed or previously frozen was investigated. Cells frozen by a variety of techniques were included, and clinical findings and practices for use of concomitant red cells in Vietnam were discussed.</td>
<td>Fresh red cells collected in ACD with part or most of the plasma removed and re-frozen at 4°C had a mean storage life of 23 days. Removal of plasma containing isoagglutinins prevented destruction of recipient red cells following transfusion. Frozen cells had an in vitro loss of 26.7% due to processing, and were slow to process. However, frozen cells have been very effective where large amt of blood are needed, and their use cut down on the incidence of hepatitis and blood group iso-sensitization.</td>
<td>Removal of plasma, which reduced the isoagglutinins anti-A and anti-B, allowed O-negative red cells to be used as universal donor units.</td>
<td>Varied</td>
<td>23 days for liq nonfrozen red cells; not given for frozen red cells</td>
<td>Many methods were explored so equipment varied</td>
<td>Transfusions</td>
<td>Valeri (1968)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>Fresh blood was collected into ACD soln and stored at 4°C, or if it was stored 3 days at 4°C, then centrifuged. Red cells were mixed with a glycerol-glucose-fructose-Na2EDTA soln and finally frozen and stored at -80°C for 4 days. Both previously frozen and nonfrozen red cells were washed with a variety of nonelectrolyte solns, and the effect of washing on posttransfusion survival and properties of the red cells was studied.</td>
<td>Washing with all nonelectrolyte solns of both types of blood reduced intracellular potassium levels. Storage for 48 hr at 4°C further reduced potassium levels. Loss was greater in previously frozen cells. Washing with 4.5% glucose and 4.5% fructose decreased the mean corpuscular vol and osmotic fragility while increasing mean corpuscular hemoglobin conc and cellular density.</td>
<td>The conc of glucose and fructose in the washing soln was highly critical. 8.5% glucose and 1% fructose was the best composition for washing red blood cells.</td>
<td>Varied with method</td>
<td>48 hr post-thaw storage at 4°C; up to 3 mon frozen</td>
<td>Blood bags, blood collection app, refrigeration, centrifuge, blood freezing unit</td>
<td>Blood bags, blood collection app, refrigeration, centrifuge, blood freezing unit</td>
<td>Transfusions</td>
<td>Valeri (1969a)</td>
</tr>
<tr>
<td>Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>Human red cells preserved with approx 45% (w/v) glycerol, frozen by the slow freeze-thaw method, and stored at -80°C for up to 6 yr were evaluated for postthaw viability. Two postthaw washing methods, continuous flow centrifugation and agglomeration, were compared, and the effect of postthaw treatment on red cell viability was investigated.</td>
<td>Cells stored up to 6 yr and washed by nonelectrolyte soln and agglomeration did not have as long a posttransfusion survival as those washed by continuous centrifugation. Postthaw stability was 4 hr at 4°C in the agglomeration cells and 24 hr at 4°C in the centrifuged cells.</td>
<td>Prior dilution of thawed red cells with a 10% glycerol soln was vitally important for maintaining viability during the washing of cells by continuous centrifugation.</td>
<td>2-3 hr 6 hr</td>
<td>Varied with method</td>
<td>Blood collecting app, PR-2 centrifuge, blood freezing unit, refrigeration, Cohn blood fractionator, Huggins Cytoglomerator (Int Equip Co), stainless steel centrifuge bowl</td>
<td>Blood collecting app, PR-2 centrifuge, blood freezing unit, refrigeration, Cohn blood fractionator, Huggins Cytoglomerator (Int Equip Co), stainless steel centrifuge bowl</td>
<td>Transfusion</td>
<td>Valeri (1969b)</td>
</tr>
<tr>
<td>Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>A plastic bag system made of a thin Kafton-Teflon-FEP double laminate for the deep-freezing of red blood cells preserved by the low glycerol technique was described. The advantages of the plastic container over the previously used aluminum containers were outlined.</td>
<td>The plastic bag was isotonic, could withstand temp of 200°C to -200°C, and was easily heat-sealed. Hemolysis was somewhat higher when the plastic bags were used than it was when the aluminum containers were used, but hemolysis levels were still within an acceptable range.</td>
<td>The plastic bags can be used for the agglomeration technique of washing glycerol from red cells.</td>
<td>5-7 min</td>
<td>Samples were thawed after 8 days</td>
<td>Blood collection app, special plastic storage bags, centrifuge, 11q nitrogen freezer, plastic bottles</td>
<td>Blood collection app, special plastic storage bags, centrifuge, 11q nitrogen freezer, plastic bottles</td>
<td>Transfusions</td>
<td>Akerblom (1970)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>40. Blood cells, Red</td>
<td>Whole human blood, some of which is autologous</td>
<td>Several aspects of maintaining blood supplies were presented. The authors felt that more use should be made of storage of autologous blood by patients to be used by them at a later date, especially in diseases like renal insufficiency which can often be predicted in advance.</td>
<td>The authors felt frozen blood still had disadvantages (such as lack of 2,3-DPG after a wk of storage) and that a sufficient supply of liq blood, including autologous blood, should be maintained in a blood bank.</td>
<td>A storage schedule of 1-4 wk was outlined.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintaining a blood bank for transfusions</td>
<td>Horgan (1970)</td>
</tr>
<tr>
<td>41. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Blood collected in ACD was centrifuged, and a soln of glycerol, sucrose and fructose was added to the packed cells. The cells were then frozen to -85°C. After cells were thawed glycerol was removed from them by dilution with a non-electrolyte soln. Reversible agglomeration after each dilution eliminated centrifugation during glycerol removal. Agglomeration cells were resuspended in physiol saline and were then ready for transfusion.</td>
<td>Blood stored by this method had a low conc of potassium and virtually no anticoagulant, protein, white blood cells, and blood group isoagglutinins. Blood can easily be shipped, and is free of hepatitis contamination. This method is in use at Mass. General Hospital, Boston.</td>
<td>Blood stored by this method showed an av 95% recovery of in vitro red blood cells was demonstrated. There was no appreciable difference using either the stainless steel container or the aerosol can, however, the can was much more convenient.</td>
<td>Up to 4 yr</td>
<td>4 not counting thawing</td>
<td></td>
<td>Blood collection app, cytoglomerator, disposable plastic blood freezing units, (exact detail of all equipment is given). Physiol saline soln, glycerol, sucrose, fructose</td>
<td>Transfusions</td>
<td>Huggins (1970)</td>
</tr>
<tr>
<td>42. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>500 ml of ACD-collected blood was centrifuged, and 250 ml of the supernatant plasma was removed and stored at -20°C. An equal vol of a soln of glycerol, sorbitol, and NaCl was added to the remaining cells, and the mixt was frozen in a stainless steel container or aerosol can with liq nitrogen. After thawing, 500 ml bottles or plastic bags were filled with the cell mixt, and the bags were centrifuged and washed twice with sorbitol and physiol saline soln. Then the washed cells were reconstituted with the thawed original plasma.</td>
<td></td>
<td></td>
<td>Several yr?</td>
<td>5-8</td>
<td></td>
<td>Centrifuge, freezer, bottles, plastic bags, water bath, stainless steel container or aluminum aerosol can</td>
<td>Transfusions</td>
<td>Krijnen (1970)</td>
</tr>
</tbody>
</table>

FREEZING (Continued)
Specimen Description

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>43. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>An attempt was made to explain the mechanism of freezing injury in red cells by investigating the effect of osmotic stress, salt cone, and thermal shock on red blood cells. The authors rejected the salt cone theory of freezing injury and presented data to support their arguments for freezing injury due to osmotic stress and related phenomena.</td>
<td>Cone of nonpenetrating solutes through freezing reduced total cell water and cell size. When 64% of the cell water was removed, and the size was reduced 40%, resistance to further shrinkage developed leading to an osmotic pressure gradient across the cell membrane. Cells so stressed were subject to thermal shock or to increased permeability to small molecules leading to hypertonicity and hemolysis on thawing.</td>
<td>Cryoprotective agents reduced the amount of ice formed thereby preventing the cone of extracellular solute which in turn prevented the reduction of cell size beyond the tolerable minimum.</td>
<td>1-2 hr</td>
<td>Not given</td>
<td>5-7</td>
<td>Freezer</td>
<td>Ammonium chloride, NaCl soln, ammonium acetate, hypotonic sucrose soln</td>
<td>Theory of freeze injury based on osmotic stress</td>
</tr>
<tr>
<td>44. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Plastic bags were filled with packed blood cells obtained by centrifugation of ACD-collected blood containing 15-20 vol % of glycerol-sucrose soln. The bags were heat-sealed and cooled between aluminum plates containing liquid nitrogen at a rate of 50°C per min to -120°C. Containers were folded and stored in cardboard cartons in a liquid nitrogen refrigerator.</td>
<td>The average recovery of red blood cells after freezing, thawing, and washing was 99.25%. No difference was noted between frozen and fresh blood transfused into the same patient. Potassium loss from freezing was 10%, and more was lost during post-thaw storage at 4°C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Extracellular agents such as dextran, PVP, or hydroxylethyl starch, were investigated as substitutes for glycerol in cryoprotection of red cells. The agents were dissolved in ACD mix to which fresh blood was collected. The blood with cryoprotectant was transferred to an aluminum container which was sealed, coated for insulation, and immersed in liquid nitrogen, then stored at liquid nitrogen temp.</td>
<td>7.5% of 40,000 mol wt PVP gave a red cell survival of 99.4%, was 94-95% stable in physiological saline soln, and had an in vivo red cell survival rate of 77.5% after 1 hr. After thawing, PVP-protected blood was stable for 2 wk at 4°C but deteriorated rapidly after that. Hydroxylethyl starch provided 96.7% cell survival, but hemolysis was high. Better results were achieved using packed cells.</td>
<td>The main advantage of extracellular protectants was that they did not make red cells osmotically unstable, and blood could be transfused directly after thawing without washing; also, freezing was very fast.</td>
<td>Few min. 90 sec to freeze</td>
<td>Not given</td>
<td>4-6</td>
<td>Blood collection app, flat metal containers, Linda freezer, liquid nitrogen bath, thawing bath</td>
<td>Transfusions</td>
<td>Robson (1970)</td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>46. Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>A special disposable centrifuge bowl was described which allowed centrifugation and gradual glycerolization of up to 45% glycerol. Cells were frozen slowly to -80°C and upon thawing slowly were deglycerolized in the same centrifuge bowl. The effect of this method on metabolism, viability, and post thaw survival time was investigated.</td>
<td>An av of 90.8% red cells were available for recipients after 10 yr storage at -80°C with a mean of 98.2% immediate posttransfusion survival. Red cells were stable in the liq state for several days after thawing if kept refrigerated at 4°C.</td>
<td>Samples stored at 4°C post thaw were recombined with their original plasma to which ACD soln or CPD soln, with or without adenine, had been added. The centrifuge bowl could be used for all major low-temp blood storage methods.</td>
<td>Approx 1 hr</td>
<td>7-10 yr</td>
<td>4-6</td>
<td>Abbott-BBI disposable centrifuge bowls, centrifuge, blood collection app, freezer</td>
<td>Transfusions</td>
<td>Tullis (1970)</td>
</tr>
<tr>
<td>47. Blood cryoprecipitate</td>
<td>Freshly drawn human blood</td>
<td>An investigation was made of the effect of CPD or acidified platelet-rich plasma on cryoprecipitation of Factor VIII from blood. Cryoprecipitates were prepared in plastic bags or test tubes; the ratio of ACD to blood was 1:6.7, while the ratio of CPD to blood was 1:7.15. CPD was at least as good if not better than ACD in preservation of Factor VIII. Cryoprecipitation of Factor VIII was adversely affected by low pH. The yield was very low at pH 6.0 and rose to a plateau at pH 6.6 with no further changes until pH 8.0. Acid in acidified plasma may be neutralized with NaOH before cryoprecipitation. Factor VIII was fairly stable at room temp in a variety of diluents.</td>
<td>Both platelets and cryoprecipitate could be added from the same blood sample without loss of Factor VIII, if a method were developed for neutralization of the plasma in the blood bag after platelet removal.</td>
<td>Both platelets and cryoprecipitate could be added from the same blood sample without loss of Factor VIII, if a method were developed for neutralization of the plasma in the blood bag after platelet removal.</td>
<td>Not given</td>
<td>24 hr at 37°C</td>
<td>Not clear</td>
<td>ACD soln; CPD soln; normal saline soln; citrated saline; citrated plasma, pH 5.9; supernatant plasma</td>
<td>Transfusions</td>
<td>Pool (1967)</td>
</tr>
<tr>
<td>48. Blood cryoprecipitates</td>
<td>Freshly drawn human blood</td>
<td>Eight units of whole blood were drawn into bags contg 1 of 4 anticoagulants: ACD, ACD-adenine, CPD, and CPD-adenine. Cryoprecipitates were prepared from each unit of plasma by a modification of Pool's method (1965). Assays for fibrinogen, prothrombin, and factors V, VII, VIII, IX and X were performed on the cryoprecipitates and on the supernatant plasma to see what effect adenine had on the viability of these substances. Adenine did not alter factor VIII. There was slight to moderate loss of factor V and fibrinogen in the plasma, but prothrombin and factors VII, IX, and X were unaffected. Good factor VIII activity was found in each unit of plasma obtained from double plasmapheresis, therefore both units were satisfactory for use in the prep of cryoprecipitates. CPD is as good as ACD for prep of blood cryoprecipitates. The effect of cryoprotectants and preservatives on blood components other than red cells should be taken into consideration since 'banked' blood is the main source of these components.</td>
<td>Specimens were re-thawed immediately</td>
<td>1-2 hr</td>
<td>Specimens were re-thawed immediately</td>
<td>Varied</td>
<td>Blood and plasma collection app, plastic bags, centrifuge, blood transfer packs, CPD-acetate bath, ethylene glycol bath, glass tubes</td>
<td>Preservation of blood components other than red cells for transfusions purposes</td>
<td>Graybeal Jr (1965)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>49. Blood factors</td>
<td>Outdated ACD-collected blood bank blood</td>
<td>Coagulation studies were performed upon blood bank plasma removed from settled cells 25-36 days after the blood was originally collected into ACD soln in plastic bags. Assay of clotting factors were also performed on plasma aliquots stored for four months at 4°C and -20°C.</td>
<td>Levels of Factor IX, Factor XI, Factor VIIa, and prothrombin consistently remained above 70%. Factor v levels were below 30%, and Factor VIII levels averaged 56% with many as high as 70%. No further deterioration occurred after 4 mon at -20°C.</td>
<td>Not clear</td>
<td>1-2 hr</td>
<td>4 mon</td>
<td>Plastic blood bags, centrifuge, refrigerator, plastic tubes</td>
<td>ACD soln</td>
<td>Transfusions for treatment of hemophilia</td>
<td>Rosenthal (1966)</td>
</tr>
<tr>
<td>50. Blood factors</td>
<td>Outdated blood bank blood contg ACD and stored at 4°C</td>
<td>Outdated blood bank blood contg ACD was centrifuged and the plasma separated into a transfer bag. The bags of plasma were submerged in a bath of ethylene glycol at -30°C and completely frozen. At a convenient time the frozen plasma was placed at 0-4°C for slow thawing. After thawing the plasma was centrifuged, and the Factor VIII-rich precipitate was resuspended in 25 ml of plasma and stored at -30°C until needed for transfusion.</td>
<td>56% of the Factor VIII activity was available after the 21 days of initial blood storage, and 60% of this was recovered by cryoprecipitation. On a vol basis the preserved material had about 4 times the activity of fresh human plasma.</td>
<td>The cryoprecipitate contg Factor VIII (or antihemophilic factor) was used to treat hemophiliacs without causing a circulatory overload.</td>
<td>1-2 hr</td>
<td>Several wk</td>
<td>6-7</td>
<td>Refrigerator, plastic blood bags, transfer packs, centrifuge (MR-2 Int.), ethylene glycol bath, deep freeze</td>
<td>Supernatant plasma, ethylene glycol</td>
<td>Transfusions for treatment of hemophilia</td>
</tr>
<tr>
<td>51. Blood lymphocytes</td>
<td>Freshly collected human blood</td>
<td>A complex method of lymphocyte prep was described involving centrifugation, agglutination of red blood cells, percolation through a bead column, and further centrifugation and resuspension. 2MGO was added to the suspension of lymphocytes and 15 ml samples were sealed in hemocrit tubes, os-iced at 1°C/min to -30°C, then more rapidly to -196°C; and stored in liq nitrogen.</td>
<td>Rapidly thawed suspensions which had been maintained at -196°C for 2 min were 85% viable. Frozen cells labeled with chromium-51 gave approx the same assay as unfrozen cells after adjustment for a higher background liberation of isotope in the frozen cells.</td>
<td></td>
<td>4 hr</td>
<td>2 mon</td>
<td>15-18</td>
<td>3 ml glass bulbs, centrifuge, Pasteur pipette, column of plastic beads in saline buffer, water jacket, incubator, stirrer, hemocrit tubes, heat sealer, ice bath, freezer</td>
<td>3% gelatine in saline, 35% fetal calf serum in tissue culture fluid, IgG fraction of chicken anti-human red blood cell serum, 3% DMSO soln</td>
<td>Histocompatibility typing</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>52. Blood plasma</td>
<td>Fresh blood plasma or blood bank plasma</td>
<td>Dried and frozen blood plasma that had been stored from 2-10 yr was evaluated for gross appearance, turbidity, pH, and conc of total protein, albumin, globulin, prothrombin, and complement. Viscosity and electrophoresis were determined on a few samples; and for the dried plasma, residual moisture and solubility were tested.</td>
<td>Dried plasma can be used for transfusions up to 10 yr but loses prothrombin activity after 5 yr. Plasma frozen at -20°C or lower was well preserved after 6 yr and is still useful after 10 yr of storage.</td>
<td>Not given</td>
<td>5-10 yr</td>
<td>Not given</td>
<td>Freezer, lyophilizer, metal or glass containers, rubber stoppers</td>
<td>Transfusions</td>
<td>Strumia (1952)</td>
<td></td>
</tr>
<tr>
<td>53. Blood plasma</td>
<td>Outdated ACD blood-bank blood</td>
<td>Outdated ACD-preserved bank blood to which additional glucose had been added was centrifuged, and the red blood cells were discarded. The plasma was mixed and divided into 10 ml aliquots. These were stored in screw-capped glass tubes at -10°C. Tubes were removed each day up to 6 mo and analyzed for 15 different protein, enzyme, and nonprotein constituents.</td>
<td>Significant change was noted in nonprotein nitrogen, glucose, and alk phosphatase. Albumin, globulin, total protein, urea, uric acid, creatinine, cholesterol, bilirubin, chloride, aspartate, glutamate, and acid phosphatase showed no significant relative change.</td>
<td>The values given in this paper were comparative initial and final values. Since outdated blood-bank plasma was used, the initial values were not necessarily normal values.</td>
<td>< 1 hr</td>
<td>6 mo</td>
<td>5-6</td>
<td>Centrifuge, pipettes, screw-capped bottles, freezer</td>
<td>Plasma standards for small</td>
<td>Walford (1956)</td>
</tr>
<tr>
<td>54. Blood plasma</td>
<td>Freshly collected homologous human blood plasma</td>
<td>Fresh-frozen, citrated homologous plasma was used for a priming fluid for clinical cardiopulmonary bypass.</td>
<td>56 patients were perfused with this soln during cardiopulmonary bypass surgery with a fair degree of success.</td>
<td>Approx 1 hr</td>
<td>24-48 hr</td>
<td>Not clear</td>
<td>Semi-automatic pump-oxygenator system, electromagnetic flow meter, water bath, freezer, containers</td>
<td>Blood substitute for cardiopulmonary bypass</td>
<td>Davila (1966)</td>
<td></td>
</tr>
<tr>
<td>55. Blood plasma</td>
<td>Freshly drawn rat blood</td>
<td>5-10 ml of blood was taken from male adult rats by heparinized syringe. Plasma was immediately separated and divided into 18 portions. Six portions were stored at 22°C, 6 at 4°C, and 6 at -20°C for 1, 2, 4, 8 or 16 days. Electrophoretic studies were performed on samples to determine the effect of storage on plasma proteins.</td>
<td>Different proteins react differently to storage time and/or temp. In general, temp has less effect on plasma proteins than length of storage.</td>
<td>Few min</td>
<td>Samples were held for 16 days</td>
<td>3-4</td>
<td>Heparinized syringes, electrophoresis agar, centrifuge, refrigerator, freezer, containers, Heparin</td>
<td>Electrophoretic studies of effects of storage and temp on blood plasma</td>
<td>Baker (1966)</td>
<td></td>
</tr>
</tbody>
</table>
Blood plasma

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>Survival Time</th>
<th>No of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood plasma</td>
<td>Fresh blood from subjects previously injected with heparin</td>
<td>Nine vol of blood from humans who had received parenteral injections of heparin were added to glass tubes contg 1 vol of 0.1 M trisodium citrate. The tubes were stored in ice water, then centrifuged. The resulting plasma samples were stored at -15°C for later anal of heparin-released lipoprotein lipase activity.</td>
<td>Lipoprotein lipase levels in plasma samples frozen for four mon decreased from 10-52% depending on the initial enzyme levels. A decrease in enzyme activity was about 0.02%/day of storage.</td>
<td>Not given</td>
<td>4 mon</td>
<td>4-5</td>
<td>Blood collection app, glass tubes, freezer, ice water bath, centrifuge 0.1 M trisodium citrate, heparin</td>
<td>Plasma enzyme studies</td>
<td>Boberg (1970)</td>
<td></td>
</tr>
</tbody>
</table>

Blood platelets

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>Survival Time</th>
<th>No of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood platelets</td>
<td>Freshly drawn human blood</td>
<td>A special app was described for closed-system plateletpheresis which utilizes plastic centrifuge bowls that can be attached to a standard lab centrifuge. The assembled blood bags, centrifuge bowl, and tubes remain connected to the donor throughout, thus allowing reconstituted red cells and plasma to be returned to the right donor easily. The collected platelets can be resuspended for storage in the liq state or frozen in glycerol.</td>
<td>4 whole blood units per donor could be used to extract platelets. 4-unit plateletpheresis from a single donor required about 100 min total time.</td>
<td>This paper described the A. D. Little continuous centrifuge bowl which can be used for washing red cells stored in glycerol as well as for separation of blood fractions.</td>
<td>100 min for collection & centrifugation of 4 units of blood</td>
<td>Up to 48 hr</td>
<td>2-4</td>
<td>Special collection and centrifuging app (described), containers Isotonic saline, anti-coagulant</td>
<td>Automatic platelet collection for storage</td>
<td>Tullis (1968)</td>
</tr>
</tbody>
</table>

Blood serum

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>Survival Time</th>
<th>No of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood serum</td>
<td>Freshly drawn human blood sample</td>
<td>Blood samples drawn for phosphatase anal were allowed to sit at room temp for several hr. The blood samples were also exposed to temp of 0°, 25°, 35°, and 37°C for up to 48 hr, and some serum samples were stored at 4°C under toluene. The effects of these treatments on phosphatase activity were reported.</td>
<td>Only a slight increase in phosphatase activity was noted in sera remaining at room temp up to 6 hr, and 37°C was the preferred incubation temp. Phosphatase activity increased after 8 hr under refrigeration and decreased again after 3-5 days. Toluene did not alter this increase. Thoroughly-separated sera should ideally be kept no more than 1 hr at room temp, or 3-6 hr in the refrigerator. Clinically useful data of phosphatase may be made on serum kept at 0°C under toluene for 36-48 hr, although results may be 10-20% high.</td>
<td>Few min</td>
<td>Up to 48 hr</td>
<td>2-4</td>
<td>Blood collection app, containers, refrigerator Toluene</td>
<td>Anal of serum phosphatase activity</td>
<td>Bodansky (1933)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Blood serum 59.</td>
<td>Nonhemolyzed serum from a patient with adenocarcinoma of the prostate and skeletal metastases was frozen at -196°C. The effect of frozen storage on acid phosphatase activity was investigated.</td>
<td>Acid phosphatase stability in blood serum was unaffected by freezing and thawing. The enzyme remains stable for at least 112 days when stored at -196°C.</td>
<td>Few min 112 days 2</td>
<td>Blood collection app., containers, freezer</td>
<td>Anal of serum acid phosphatase by the Gutman method (1940) Davison (1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood serum 60.</td>
<td>Fresh human serum; commercial 30% bovine albumin soln</td>
<td>Methods for preparing and storing clinical standards were the following: 1) Pooled serum free of hemolysis, icterus, or lipemia was collected each day and frozen until 2 liters were accumulated. The pool was thawed, centrifuged, and mixed thoroughly. 2 ml aliquots were stored in corked vials at -196°C without preservative until needed for control serum. 2) Pooled protein-free filtrates were collected after glucose analyses were performed and were packaged and stored like the pooled control serum. 3) Standard 6% bovine albumin soln prepared from Armour’s 30% soln, was prepared in 25 ml aliquots and refrigerated.</td>
<td>Extensive evaluation of the use of control serum pools for various blood constituents was given.</td>
<td>< 1 hr Serum control pool, 16 mon; albumin soln, not given</td>
<td>Serum collection app., container, large bottles, freezer, centrifuge, pipettes, corked vials, refrigerator</td>
<td>Blood collection app., Armour’s 30% bovine albumin</td>
<td>Frier (1958)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood serum 61.</td>
<td>Freshly drawn human blood</td>
<td>Serum was placed in 1.2 ml hard-glass ampules and sealed. The samples were cooled quickly to -196°C.</td>
<td>There was no appreciable change in the conc of glucose, urea, total protein, alkaline phosphatase, glutamic oxaloacetic transaminase, phosphohexose isomerase, or lactate dehydrogenase on fast freezing and thawing. No measurements of qualitative changes were made (protein denaturation, etc).</td>
<td>1-5 min Several mos 2</td>
<td>Ampules, ampule sealer, Linde liq nitrogen refrigerator</td>
<td>Studies of enzyme activity in frozen blood serum Davies (1965)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62. Blood serum</td>
<td>Whole human blood or serum</td>
<td>This paper described an enzymatic assay specific for pyridoxal phosphate in serum and/or blood. It was found that apophosphorylase b, pH 6.2, stored at 0°C lost its activity after 14 days storage; as pyridoxal 5'-phosphate standard (100 μg/ml) began deteriorating after 4 wk at -50°C. Blood serum specimens containing pyridoxal phosphate and stored at -50°C should be assayed before 3 wk, as they become unstable after this time.</td>
<td>Recovery and assay of pyridoxal phosphate in blood serum specimens stored at -50°C should be carried out within 3 wk after initial storage.</td>
<td>Blood specimens should be light-protected after protein extn.</td>
<td>50 blood specimens/day can be assayed</td>
<td>Apophosphorylase b, 14 days at 0°C; pyridoxal-5'-phosphate soln 4 wk at -50°C; blood specimens, 3 wk at -50°C</td>
<td>4-5</td>
<td>Freezer, centrifuge, filtration column, foil, test tubes, hypodermic syringes, reagent bottles, incubator</td>
<td>Several, depending on which substance is being prepared</td>
<td>Blood pyridoxal phosphate assay</td>
</tr>
<tr>
<td>63. Blood serum</td>
<td>Blood-bank serum</td>
<td>Standard secondary serum covering the clinical range of protein values were prepared by a simple method for concentrating serum, based on the fact that solutes are excluded from ice crystals formed when watery soln are cooled to the freezing point. Human blood-bank serum was collected in polyethylene bottles and frozen to -20°C. The bottles were placed upside down at 4°C, and the dripping serum was caught and pooled in a collection vessel.</td>
<td>The degree of conc was dependent on the ambient temp at which freezing and thawing were performed. A more concentrated serum can be obtained by freezing at moderately low temp probably due to a more favorable ice lattice.</td>
<td>This method permits inexpensive prep of human serum standards.</td>
<td>10 hr</td>
<td>4-5</td>
<td>Freezer, polyethylene bottles</td>
<td>Concentration of human serum</td>
<td>Hollander (1970)</td>
<td></td>
</tr>
<tr>
<td>64. Blood serum, Standard soln</td>
<td>Fresh human serum</td>
<td>Glucose and bilirubin were added to pooled human serum to give concentrations of approx 100 mg/2 mg/100 ml respectively. The bilirubin was first dissolved in a small amt of 0.1 N NaOH, diluted with a little water, then added slowly to the serum with constant stirring. Sodium merthiolate was added to the serum as a preservative. The fortified serum was filtered through a Sartorius filter, and the filtrate was tubed under sterile conditions in 10 ml quantities and stored at -10°C.</td>
<td>Blood serum control soln can be shipped and stored for 2-3 mon in advance. Use of a control chart allows a laboratory supervisor to detect changes in the quality of test reagents and to expedite training.</td>
<td>Methods were also given for prep of serum controls for enzyme anal and protein-bound iodine detn as well as for prep of a whole blood protein-free filtrate.</td>
<td>3-1 hr</td>
<td>2-3 mon</td>
<td>7-8</td>
<td>Containers, stirrer, Sartorius filter, autoclave, sterile tubes, freezer</td>
<td>Standard for blood anal</td>
<td>Benenson (1955)</td>
</tr>
<tr>
<td>Specimen Description</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Other Comments about Method</td>
<td>Estimated Preservation Time</td>
<td>Survival Time</td>
<td>No. of Steps</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>65. Blood vessels</td>
<td>Whole live rat treated with vasoactive drugs</td>
<td>A vasoactive drug, either serotonin or angiotensin, was injected into rats. This was followed either immediately, or at 5, 10, 15, or 30 min, with an injection of Thorotrast. Within one min after the Thorotrast injection the organ to be studied was removed and frozen in liquid nitrogen (or isopentane cooled with liquid nitrogen), or it was frozen in situ before removal. After a gross radiograph was taken the organ was sectioned on a cryostat, and microradiography was performed to demonstrate microscopic vascular reactions to the drugs.</td>
<td>This technique permits the observation of both gross angiographic and microscopic reactions in blood vessels as small as 20-30 μ in diam.</td>
<td>Few min (not counting section prep)</td>
<td>Not given</td>
<td>8-9</td>
<td>Hypodermic syringes; surgical tools; film; cooled saw; cryostat; copper plate, cooled with dry ice, in contact with a wax resolution plate covered with celloidin; Siemens AG Cu 30 x-ray tube Angiotensin, serotonin, Thorotrast soln, liquid nitrogen or isopentane cooled in liquid nitrogen, dry ice, acetone Gevaert C 209A developer</td>
<td>Study of drug effects on small blood vessels</td>
<td>Kornano (1970)</td>
<td></td>
</tr>
<tr>
<td>66. Deoxyribonucleic acid</td>
<td>Purified DNA in standard saline citrate buffer soln, pH 7.0</td>
<td>Calf thymus or phage-T7 DNA, purified by phenol extraction and thawing thus causing a decrease in viscosity. DNA soln was placed in a hermetically-sealed, flat-bottomed retort and frozen to -196°C in liquid nitrogen; then it was thawed in a water bath. The process was repeated until the desired viscosity of DNA soln was obtained.</td>
<td>The method allowed degradation of DNA without denaturation, and the helical structure of DNA was maintained. However, degradation of DNA did not occur unless the thin layer of frozen material around the flask cracked.</td>
<td>Phenol used for extract may be present as a contaminant.</td>
<td>10-15 min to several hr depending on the no. of freezes and thaws needed to give the proper rat of degradation</td>
<td>3</td>
<td>Liquid nitrogen in Dewar flask; nitrogen tank; water bath; hermetically-sealed, flat-bottomed pyrex retorts</td>
<td>Degradation of DNA</td>
<td>Lyskov (1969)</td>
<td></td>
</tr>
<tr>
<td>67. Downy mildew</td>
<td>Lima bean seedlings infected with downy mildew colonies</td>
<td>Lima bean (Phaseolus limensis) seedlings were inoculated with zoospores of Phytophthora phaseoli, and colonization was allowed to proceed for 5 days. Seedlings were then placed in a dew cabinet for 24 hr at 20°C to obtain abundant sporulation. Sections of sporulating stems were then put in small bottles and maintained at -13°C, -18°C, or -60°C.</td>
<td>The organisms were still viable after 476 days when stored at -60°C, 150 days when stored at -13°C or -18°C. Percentage of viable sporangia decreased rapidly during the first 30 days of storage at all temp.</td>
<td>An abundant supply of sporangia can be obtained in 7-10 days by inoculating seedlings with stored sporangia.</td>
<td>6-6 1/2 days</td>
<td>1.3 yr at -60°C</td>
<td>5-6</td>
<td>Lima bean seedlings, dew cabinet, screw-cap bottles, refrigerator, freezer 2% sucrose soln</td>
<td>Epidemiology studies and class demonstration material</td>
<td>Hyre (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>68. Cartilage</td>
<td>Homogenous human costal cartilage</td>
<td>Cartilage from a tissue bank was used for the plombage of trepanation defects especially in skull impressions. The cartilage could be used for the plombage of septic cavities by removing necrotic tissue and sterilizing them with antibiotics. Cavities filled with cartilage in this way will gradually heal, and the transplant tissue will calcify.</td>
<td>Cartilage transplants into the bones of patients with chronic osteomyelitis were still intact and calcified after 8 yr.</td>
<td>The method of preserving tissue was not given. We assumed the tissue was preserved by freezing and chem protectants. However, this may not have been the case.</td>
<td>Not given</td>
<td>Not given</td>
<td>Not given</td>
<td>Bone transplantation</td>
<td>Bone (1968)</td>
<td></td>
</tr>
<tr>
<td>69. Catalase</td>
<td>Buffered ox liver catalase</td>
<td>0.5 ml samples of M/100-buffered ox liver catalase soln (0.8 µg/ml) were frozen in test tubes for 10 min by immersion in a bath set to various low temp. Samples were thawed rapidly in a bath at 25°C and, after suitable dilution, the remaining activity was detd in M/75 phosphate buffer, pH 7 at 0°C. Several chem protectants were tested for their effect on the enzyme activity during freezing and thawing.</td>
<td>Catalase inactivation upon freezing was dependent upon temp, conc, and pH. Concentrated enzyme was more resistant to freezing.</td>
<td>Varied</td>
<td>Several</td>
<td>3-4</td>
<td>Test tubes, constant temp bath</td>
<td>Maintenance of enzyme activity in preserved tissue samples</td>
<td>Shikama (1961)</td>
<td></td>
</tr>
<tr>
<td>70. Cell nuclei</td>
<td>Isolated cell nuclei</td>
<td>Two procedures were used for isolation of nuclei, both involving purification by sedimentation through cone sucrose soln. One method used white saponin for cell lysis, while the second used mechanical disruption of cells in a homogenizer. Liberated nuclei were centrifuged, washed, and sus­pended in a mixt of 95% glycerol contg 5 mM MgCl₂ and potassium phosphate buffer. The sus­pension was stored at -20°C or -196°C.</td>
<td>Saponin was a useful lytic agent for isolation of cell nuclei. Its use did not affect the RNA polymerase activity of rat liver nuclei and other nuclei. Enzyme activity was preserved in cell nuclei stored for 8 wk in 70% glycerol soln contg 0.1 M sodium acetate, 0.1 M ammonium sulfate, 0.1 M sodium butyrate, 0.1 M sodium caprylate, 5x10⁻⁴ M sodium dodecyl phosphate</td>
<td>Few min (not counting isolation of nuclei)</td>
<td>8 wk</td>
<td>2-3 (storage only; not sep)</td>
<td>Centrifuge, Dounce homogenizer, cold bath, tissue press, centrifuge tubes, gentle, cheesecloth filters, ampules or containers</td>
<td>Studies on RNA polymerase</td>
<td>Read (1970)</td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>71. Cell suspensions</td>
<td>Cell suspensions of blood and yeast; water droplets</td>
<td>A centrifugal method (described) for ultrarapid freezing of cells and subcellular particles was developed in which small droplets were centrifuged at high speeds through liquid nitrogen. Material such as blood and water were injected from a syringe or sprayer into a rotor. As the rotor speed increased smaller frozen droplets were formed.</td>
<td>Cell survival was inversely related to increasing droplet size, and directly related to rotor speed and warming rate. Survival rate of yeast cells was 33.8%.</td>
<td></td>
<td>½ hr</td>
<td>Not given</td>
<td>3</td>
<td>Special centrifuge in liquid nitrogen (described), containers, hypodermic syringe, sprayer, air filter</td>
<td>Studying effects of ultrarapid freezing on cells; also maintenance of cell lines for future use</td>
<td>Anderson (1966)</td>
</tr>
<tr>
<td>72. Cerebroside-α-galactosidase</td>
<td>Fresh rat brain</td>
<td>Cerebroside-α-galactosidase was isolated from rat brain. Electrophoresis yielded a major and a minor fraction. The major fraction was separated on a DEAE-Sephadex column to yield 3 fractions. The major fraction from this column can be purified further by precipitation of impurities at pH 5. The crude enzyme was fairly stable to storage at 4°C, but exposure to ion-exchange made it unstable. 50% glycerol preserved the enzyme fairly well at -20°C without the mixt freezing.</td>
<td>The enzyme purified by ion-exchange was unstable to storage at -20°C, but the addition of 50% glycerol and 1% galactose kept it stable for several mon.</td>
<td>Few min (not considering enzyme isolation)</td>
<td>Several mon</td>
<td>2</td>
<td>Freezer</td>
<td>50% glycerol, 1% galactose soln</td>
<td>Study of action of α-galactosidase on cerebrosides</td>
<td>Bowen (1968)</td>
</tr>
<tr>
<td>73. Chloroplasts</td>
<td>Chloroplast suspension</td>
<td>Spinach chloroplasts were prepared in a medium of 350 mM sodium chloride and 40 mM Tris-hydrochloric acid buffer, pH 7.5. Nine vol of a soln of 50% glycerol (v/v), 120 mM potassium chloride, and 20 mM Tris-hydrochloric acid buffer, pH 7.5, were added to the chloroplast suspension, and the mix was stored at -20°C.</td>
<td>There was a 50% loss of photophosphorylation during the first wk of storage, and 30% additional loss after 2 wk. Photosynthetic electron flow and light-induced conformational changes were lost more slowly than ATP hydrolysis or synthesis in stored, glycerinated chloroplasts.</td>
<td>Light-induced conformational changes were a more sensitive test for assessing the high energy state of spinach chloroplasts than reactions involving ATP hydrolysis or synthesis.</td>
<td>Up to 6 mon</td>
<td>3-4</td>
<td>Shaker, flasks, freezer</td>
<td>Study of photophosphorylation in chloroplasts</td>
<td>Packer (1966)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>74. Coccidial sporozoites</td>
<td>Eimeria nucleo-graminisi and E. tenella cells suspended in media</td>
<td>Coccidial sporozoites, and sporocytes contg sporozoites, were suspended in media contg 7% BMSO and frozen to -80°C at 1°C/min; the samples were then stored in a cylindrical tank above liq nitrogen.</td>
<td>After 1 mon there seemed to be no significant difference between frozen and nonfrozen sporozoites in patterns of development and infection of bird hosts. Frozen sporocytes fed to birds produced oocysts which in turn caused a less intense infection than nonfrozen sporocytes.</td>
<td>This method permits easy maintenance of stock cultures and makes it possible to work with parent strains for an extended time.</td>
<td>2-2.5 hr</td>
<td>Longer than 1 mon (probably much longer)</td>
<td>4</td>
<td>Liq nitrogen freezer with thermostat for lowering temp gradually, cylindrical storage tank</td>
<td>Maintenance of stock cultures</td>
<td>Doran (1968)</td>
</tr>
<tr>
<td>75. Coccidial sporozoites</td>
<td>Sporozoite suspension</td>
<td>Excysted sporozoites of Eimeria adenoides, E. nivati and E. tenella were suspended in media contg 2.5, 5, 7.5, 10, 12.5 and 15% BMSO in screw-cap tubes. The tubes were frozen to -30°C at 1°C/min, then 10°C/min down to -80°C. The tubes were then stored in liq nitrogen vapor.</td>
<td>At room temp, low conc of BMSO had the best effect on sporozoite survival. Frozen sporozoites were protected best by high conc of BMSO. The rate of cooling from 0°C to -30°C was important. More than 70% of each species survived thawing under the most favorable conditions.</td>
<td></td>
<td>1-2 hr</td>
<td>> 4 days</td>
<td>5-6</td>
<td>Grinder, centrifuge, screw-top tubes, biol freezer</td>
<td>Maintenance of viable sporozoites</td>
<td>Doran (1969)</td>
</tr>
<tr>
<td>76. Corneas</td>
<td>Whole human eye-bank corneas with small limbal rims</td>
<td>Corneas from 4 eye-bank eyes were excised with a small limbal rim. Time between death and enucleation of the specimens varied from 4-15 hr. Some corneas were put on ice 5 min then frozen and stored at -20°C in a cold moist chamber; others were lyophilized and stored at room temp or dehydrated with a mol sieve and 95% glycerine. Respiratory enzymes were measured as an indicator of viability of samples stored by each method.</td>
<td>Storage up to 3 days in a cold, moist chamber, or up to 5 min by lyophilization, decreased the amount of respiratory enzymes only moderately. Whereas storage with the mol sieve and sterile glycerine led to complete loss of enzymatic activity in the corneal stroma thus indicating that corneas stored in glycerine with a mol sieve are not viable transplants, but act only as a scaffold.</td>
<td></td>
<td>Not given</td>
<td>From 3 days to 5 days depending on method</td>
<td>Up to 6</td>
<td>Surgical tools; cryostat; Dewar flask or container; moist, constant temp storage chamber; liq nitrogen freezer; airtight containers; mol sieve; lyophilizer</td>
<td>Maintenance of viable corneas</td>
<td>Bioli (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>77. Endocrine glands</td>
<td>Fresh ovarian and testicular tissue from rats</td>
<td>Ovaries and testes from 1 wk old rats were cut in two, soaked in 15% glycerol-saline, and were gradually frozen to -79°C and kept for 1 hr. The testis tissue was also frozen to -190°C for varying periods. Later the tissues were thawed and placed under the skin of ovariectomized female rats and castrated male rats respectively to check for viability.</td>
<td>Although many follicles were destroyed during freezing and thawing, those that survived continued to grow in the ovariectomized rats. Testis tissue grafts readily 'took' after being frozen from 1 hr up to 7 wk.</td>
<td>The preservation method appeared to be more useful for testis tissue than it was for ovarian tissue.</td>
<td>Not given</td>
<td>1 hr-7 wk or more</td>
<td>3</td>
<td>Surgical tools, dry ice or liq air freezer with temp control, containers 15% glycerol-saline soln</td>
<td>Tissue grafts</td>
<td>Deanesly (1954)</td>
</tr>
<tr>
<td>78. Endocrine glands</td>
<td>Fresh ovarian autograft; testicular tissue from infantile male rats</td>
<td>Rat ovarian tissue and testicular tissue were slowly frozen in liq air to -190°C in 15% glycerol-saline soln. Implants of the stored ovarian tissue caused oestrous cornification in ovariectomized animals in 6-24 days. Implants of the testicular tissue into castrated adult males readily formed homografts.</td>
<td>Rat ovarian tissue stored up to 1 yr still caused reappearance of oestrous cornification in ovariectomized animals.</td>
<td>Other endocrine and related tissues can probably be preserved in a like manner for use in grafting.</td>
<td>Not given</td>
<td>>1 yr; indefinitely</td>
<td>3</td>
<td>Special cooling vessel (described) or nitrogen freezer, surgical tools, containers 15% glycerol-saline soln, liq air</td>
<td>Transplantation of sex glands</td>
<td>Smith (1954a)</td>
</tr>
<tr>
<td>79. Endocrine glands</td>
<td>Freshly excised rat ovaries and infantile testicular tissue</td>
<td>Ovaries removed from rats were treated with glycerol, frozen, and stored at -79°C to -190°C for periods varying from 1 hr to 1 yr. The ovaries were then thawed and reimplanted subcutaneously. In some cases the ovarian tissue was homografted and in others autografted into the animal from which it was taken. Some homografts were implanted into the same strain and some into other strains. Infantile testicular tissue treated with glycerol and transplanted into adult animals was also investigated.</td>
<td>Viability of frozen ovarian tissue was maintained even after storage in 15% glycerol at 190°C for 1 yr. Daily vaginal smears studied for months after implantation of the frozen tissue showed that oestrous cycles recurred regularly in many of the recipients. All stages of spermatogenesis followed testicular tissue transplantation into the scrotum of castrated rats.</td>
<td>Several other endocrine gland tissues were frozen in glycerol with varying results upon reimplantation.</td>
<td>1-2 hr</td>
<td>Up to 1 yr</td>
<td>3-4</td>
<td>Surgical tools, freezer, Glycerol</td>
<td>Study of cell survival at low temp</td>
<td>Smith (1954)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>80. Enzymes, Proteolytic</td>
<td>Trypsin-substrate mock at pH 7.5</td>
<td>The transfer reaction between amino acid ester and hydroxylamine which is catalyzed by trypsin was investigated for its reaction to cold. Three trypsin substrates, lysine ethyl ester, lysine methyl ester, and arginine methyl ester, reacted more rapidly with hydroxylamine in the presence of trypsin at -23°C then they did at 1°C. Benzoyl-L-arginine ethyl ester formed more hydroxamic acid in the presence of trypsin at 1°C initially than at -18°C, however, hydrolysis to the amino acid occurred. This change did not occur in the frozen state. This shows that freezing can accelerate catalyzed reactions.</td>
<td>Rates of hydroxylaminolysis of trypsin were roughly twice that of the same enzymes at 1°C. Relative rates of the three substrates differed also in the two systems.</td>
<td>Enzyme reactions may speed up or change their pathway in the frozen state.</td>
<td>Few sec</td>
<td>Not given</td>
<td>3</td>
<td>Tubes, acetone-dry ice bath, constant-temp chamber, water bath</td>
<td>Study of enzyme reactions in cold</td>
<td>Grant (1966)</td>
</tr>
<tr>
<td>81. Enzymes, Yeast</td>
<td>Yeast paste</td>
<td>Yeast paste prepared from Candida pseudotropicalis was suspended at room temp in sodium phosphate, pH 7.0. The paste was brought to 34°C in a water bath, and toluene was added. The mixt was stirred, then diluted with sodium phosphate to pH 7.0 at 4°C. Beta-mercaptoethanol was added, and the mixt was stirred overnight, then centrifuged. The supernatant gave a crude ext. This was further purified with (NH₄)₂SO₄', EDTA, and column chromatography, and finally the resulting soln contg uridine diphosphate galactose 4-epimerase was stored at -90°C.</td>
<td>A 31% enzyme yield with specific activity ranging from 41.4-87.4 units/mg was obtained.</td>
<td>24 hr at 4°C</td>
<td>>10</td>
<td></td>
<td>Water bath, stirrer, centrifuge, ice bath, tissue homogenizer, DEAE-cellulose column</td>
<td>Yeast enzyme studies</td>
<td>Darow (1968)</td>
<td></td>
</tr>
<tr>
<td>82. Escherichia coli</td>
<td>E. coli suspension in culture medium</td>
<td>Drops of a culture were allowed to fall from a pipette (36 drops/ml) into a Dewar flask containing liq nitrogen. 300 or more drops were transferred to a container previously cooled to -70°C and maintained at this temp until used.</td>
<td>E. coli B maintained 30% viability after 2 yr storage at -70°C. E. coli K12 B at 8°C maintained 80% viability after 1 mon storage at -70°C.</td>
<td>This method allows source material from a single culture to be stored unchanged.</td>
<td>1-2 min</td>
<td>2 yr</td>
<td>4</td>
<td>Dewar flask with liq nitrogen, freezer, storage flasks or bottles, pipettes</td>
<td>Maintenance of cultures</td>
<td>Cox (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Cells suspended in 2% gelatin</td>
<td>Cells suspended in 2% gelatin and freeze-dried for 8 hr at constant platen temp of 49°C and pressure of 10 mm of Mercury. The moisture content was less than 1.5%. Cells were also frozen at -40°C, and non-dried or frozen cells were used for controls. Effects of freeze-drying on enzyme induction, membrane permeability, RNA synthesis, protein synthesis, and susceptibility to antibiotics were investigated.</td>
<td>0.6% cells survived and 23% of the survivors were metabolically damaged after lyophilization for 8 hr at 49°C. Permeability was altered, RNA leakage occurred, cells were susceptible to antibiotics, and ribosomal degradation occurred. Cells frozen (only) at -40°C in 2% gelatin showed no appreciable metabolic damage or death.</td>
<td>DNA damage had to be repaired by the cells before protein synthesis and growth could resume. Nitrogen sources stepped up this process. Glyceraldehyde and glucose were better carbon sources than sodium lactate or sodium succinate for freeze-drying cells.</td>
<td>8 hr</td>
<td>Not given</td>
<td>4-5</td>
<td>VirTis freeze dryer, centrifuge, drying oven</td>
<td>Study of freezing and lyophilization effects on bacteria</td>
<td>Steecky (1970)</td>
</tr>
<tr>
<td>Eye lenses</td>
<td>Fresh or refrigerated enucleated human eyes</td>
<td>Normal human lenses were obtained immediately after enucleation of eyes or after storage of the eyes 12-18 hr at 4°C. After weighing, lenses were stored at -20°C under nitrogen until used. Chloroform extract of lipids from the lenses were also stored at -20°C.</td>
<td>Phospholipid composition was not altered during storage of eye lenses at -20°C.</td>
<td></td>
<td>60 min</td>
<td>Not given</td>
<td>3</td>
<td>Surgical tools, refrigerator, liquid nitrogen bath</td>
<td>Study of aging of lens tissue</td>
<td>Broekhuysen (1969)</td>
</tr>
<tr>
<td>Antarctic fish</td>
<td>Fresh caught Trematomus fish</td>
<td>Antarctic fish of the Trematomus species were caught by line or trap. Blood was immediately collected by cardiac puncture and allowed to clot at 0°C for 6 hr. Serum freezing points were measured, serum calcium was determined, and protein and carbohydrates were analyzed.</td>
<td>Serum freezing points of these Antarctic fish indicated that they do not freeze at -1.8°C because their blood is isosmotic to sea water. A glycoprotein in the serum accounted for 30% of the freezing point depression of the serum.</td>
<td>These fish frequently live on anchor ice but do not freeze.</td>
<td></td>
<td></td>
<td></td>
<td>Fishing gear, wire fish trap, hypodermic syringes, digital thermometer, refrigerator 10% trichloracetic acid</td>
<td>Study of freezing resistance in Antarctic fishes</td>
<td>DeVries (1969)</td>
</tr>
<tr>
<td>Killifish</td>
<td>Whole live killifish</td>
<td>Physicochemical properties (serum osmolality and blood pH), serum inorganic ions, and tissue water were studied in parallel groups of adult male killifish acclimated to temp ranging from 30°C to -1.5°C in salt water under otherwise constant lab conditions.</td>
<td>When the temp surrounding the fish was lowered from 20°C to -1.5°C, serum osmolality increased by 25% and inorganic electrolytes dropped from 98 to 93%. Serum electrolytes increased except for potassium and inorganic phosphate levels which were unchanged. Water content decreased 8% and blood pH was higher at 10°C than at any other temp.</td>
<td>Osmotic and ionic regulation were not as effective in the cold, but they were not poor enough to cause death by osmotic imbalance.</td>
<td>9-3</td>
<td></td>
<td></td>
<td></td>
<td>Study of cold adaptation in killifish</td>
<td>Unsinger (1969)</td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>87. Flexibacteria</td>
<td>Cell suspensions in culture media</td>
<td>28 species (9 strains) of flexibacteria, grown on special media and pipetted or centrifuged off, were frozen in liq nitrogen (-196°C) and most survived without protective additives. 10% glycerol or 10% DMSO permitted survival of some of the sensitive strains but adversely affected some others. Storage of organisms at -22°C was not as satisfactory, as most strains died after a wk or two. Others lasted for at least 21 wk.</td>
<td>Most of the organisms frozen at -196°C produced living cultures after 1 yr storage. Organisms stored at -22°C died within 1-21 wk.</td>
<td>Dense suspensions of cells froze better than dilute ones. Cryoprotective agents must be tested on each species and strain for protective effectiveness.</td>
<td>Few min</td>
<td>1 yr or longer</td>
<td>3-4</td>
<td>Pyrex tubes, cotton plugs, centrifuge, pipettes, incubator, liq nitrogen freezer, standard freezer, water bath, sterilizer</td>
<td>Species or strain maintenance</td>
<td>Sanfilippo (1970)</td>
</tr>
<tr>
<td>88. Foods</td>
<td>Varies with type of food being frozen</td>
<td>The food or product to be frozen entered the warm end of a tunnel on a belt. Gaseous cooling was continued until half the heat was removed from the specimen. Then fine droplets of liq nitrogen were sprayed on the specimen causing rapid boiling and generation of nitrogen gas until the product was frozen. The thermodynamics and processing were discussed.</td>
<td>The freezing tunnel operated at 85% efficiency in heat exchange. Samples lost up to 12% of their wt depending upon the type of food or sample. Samples frozen too rapidly crazed, ruptured, or curled.</td>
<td>Most foods stood up better if the temp of both specimen and gas were lowered gradually. 1% nitrogen gas was lost purposely to prevent infiltration of ambient air into the tunnel.</td>
<td>Few min</td>
<td>Not given</td>
<td>2</td>
<td>Freezing tunnel equipped with conveyor belt and liq nitrogen spray (described)</td>
<td>Food preparation</td>
<td>Alkire (1968)</td>
</tr>
<tr>
<td>89. Fruit. Tomato</td>
<td>Whole immature fruit</td>
<td>Wedges of tomato parenchyma from immature fruit, or the whole fruits themselves, were subjected to various freezing rates and thawing conditions. Freezing rates ranged from 0.1°C/min to >100°C/min. The effects of freezing and thawing on protoplasm and ice crystal patterns were observed.</td>
<td>A slow freezing rate resulted in enlarged intercellular spaces and separation or breakup of cells, while a fast freezing rate did not. Rapid freezing resulted in very small ice crystal formation, and rapid freeze-thaw reduced the least damage to cells and the least disorganization of protoplasm.</td>
<td>Few min-3 hr</td>
<td>Tissue was thawed after 1 hr</td>
<td>2-3</td>
<td>Copper-constantan thermocouples, Rikadenke recording potentiometer, liq nitrogen container, freezer</td>
<td>Study of freeze-thaw regimes on plant cell parenchyma</td>
<td>Mohr (1969)</td>
<td></td>
</tr>
</tbody>
</table>
Specimen Description

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments about Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>90. Fungi</td>
<td>Agar culture mycelial plugs</td>
<td>Agar-culture mycelial plugs were cut from fungal cultures with a cork borer. 4 such plugs were transferred to glass ampules which had previously been labeled, plugged with cotton, filled with 0.8 ml 10% glycerol soln, and autoclaved. Ampules were heat sealed and cooled at (1^\circ C/min) to (-35^\circ C); then they were frozen to (-196^\circ C).</td>
<td>Specimens stored 18 mon produced normal cultures when cultivated immediately after thawing. However 2/3 of the cultures showed a decrease in radiating growth as compared to controls.</td>
<td>1.5-2 hr</td>
<td>18 mon</td>
<td>4-5</td>
<td>Ampules; culture dishes; cork borer, #3; autoclave; pipettes; heat sealer; Linde BF-2 freezer; Linde LNR 250 ltr nitrogen freezer; 10% (v/v) glycerol soln, various culture media</td>
<td>Maintenance of type cultures</td>
<td>Hwang (1968)</td>
<td></td>
</tr>
<tr>
<td>91. Gastric secretions</td>
<td>Gastric secretion from dog</td>
<td>Gastric secretions were collected from a cannula inserted into either a canine gastric pouch or fistula. The samples were adjusted to pH 1.8 with acid and were either left at room temp or were cooled to (0^\circ), (-4^\circ), or (-20^\circ C) with albumin and/or acidified glycerol added as cryoprotectants. Pepsin activity was measured in samples stored at the various temperatures.</td>
<td>Canine gastric samples containing pepsin can be stored 3 hr at (0^\circ C) without preservatives, or up to 1 day at (-20^\circ C) in the presence of acidified glycerol with almost no loss of enzyme activity. 75% enzyme activity remains after 20 days at (-20^\circ C) in the presence of acidified glycerol.</td>
<td>7 hr</td>
<td>3 hr at (0^\circ C), 1 day at (-20^\circ C), 20 days at (-20^\circ C) with 75% enzyme activity</td>
<td>Surgical tools, ice bath or freezer, storage containers, HCl, glycerol, albumin</td>
<td>Anal of pepsin activity</td>
<td>Nussan (1969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92. Grass and clover herbage</td>
<td>Fresh mown grass and clover</td>
<td>Fresh mown grass and clover</td>
<td>Invertase activity was noted in both grass and clover after thawing. By 24 hr postthaw there was considerable loss of carbohydrate in grass but not in clover. Total nitrogen remained constant up to 60 hr postthaw, but extractable nitrogen was reduced upon freezing. Freeze-stored herbage samples should be consumed within 24 hr postthaw.</td>
<td>7 hr</td>
<td>24 hr postthaw</td>
<td>5-6</td>
<td>Grass cutter, polythene bags, freezer</td>
<td>Animal feed studies</td>
<td>Weeke (1970)</td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCES</th>
</tr>
</thead>
</table>
| **93. Guinea worms** | *D. medinensis* embryos in distd water | *D. medinensis* embryos in sterile distd water were placed in ampules containing about 2000 embryos/ml and cooled to
-78°C at 5°C/min. No additives were used. | A 15% infection rate was observed in cyclops infected with embryos stored for six months; one larva was released from a cyclops infected with embryos stored for 40 min. This is much lower than the infection rate obtained with cyclops infected with fresh embryos. A similar technique has been used for *Wuchereria bancrofti*, *Dirofilaria immitis*, *Brugia pahangi*. Although the infection rate was low, the technique is still effective for laboratory maintenance and study of the organism. The technique may be applicable to other parasitic nematodes with free-living larvae. | | 15-20 min | 6 mon-3 1/2 yr | | Freezer or liq nitrogen, ampules | Maintenance of strain | Muller (1970) |
<p>| 94. Heart | Freshly excised frog heart | Frog heart was removed, placed in Ringer's soln, and trimmed. The sinus venosus, with about 2 cm of the upper vena cava attached, was dissected and transferred to fresh Ringer's soln where it continued beating actively. The ventricle was placed in Ringer's soln and began beating after stimulation. All pieces (in several sizes) were placed in 30-100% ethylene glycol for less than 1 min to 10 min, then blotted to remove excess fluid. The pieces were frozen in liq nitrogen, then thawed and observed for resumption of activity. | 65% of the sinus venosus pieces and 57% of the ventricular pieces resumed beating after freezing. Pieces beat from 1-2 days after thawing. All conc of ethylene glycol were effective if pieces were exposed more than 1 min. 5 min exposure for sinus venosus and 10 min for the ventricle were optimum. The cryoprotectant provided only surface protection. A method is needed to supply protection throughout. | | 10-20 min | Heart pieces beat 1-2 days after freezing and immediate thawing | | Surgical tools, Petri dishes, liq nitrogen container, wire loop | Study of freezing effects on heart beat | Layret (1969) |</p>
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>95. Heart</td>
<td>Freshly excised frog hearts</td>
<td>Frog hearts were excised and placed in frog Ringer's soln. The hearts were transferred at 10 min intervals into gradually increasing cone of glycerol or ethylene glycol cryoprotectant at room temp. They were then cooled to 0°C and transferred again into gradually increasing cone of cryoprotectant. The temp was lowered to -55°C at 5°C/min intervals. Some hearts were then immersed in liquid nitrogen. Thawed tissues were examined microscopically for damage.</td>
<td>90% of the sinus venosae and 35% of the atria beat spontaneously 1-2 hr after rewarming. None of the ventricles recovered their beats even with stimulation. Much ice damage was observed in the heart tissues that had been frozen.</td>
<td>Several hr</td>
<td>Not given</td>
<td>7-10 Cooling bath, liquid nitrogen freezer, Frog Ringer's soln, glycerol, ethylene glycol</td>
<td>Study of freezing effects on heart tissue</td>
</tr>
<tr>
<td>96. Heart valves</td>
<td>Freshly excised bovine aortic valves</td>
<td>Homograft aortic valve homografts were immediately frozen to -70°C, then carefully packed in 2 polyethylene containers made from flattened tubes in such a way that an air cushion surrounded the tissue and protected it from damage. The whole package was stored in a freezer until it was sterilized by 2.0 megarads of high level radiation and used.</td>
<td>Not given</td>
<td>Deep-frozen aortic valve homografts are very brittle and fragile and are often damaged in handling. This method of packaging prevents this.</td>
<td>10 min</td>
<td>Not given</td>
<td>4 Nitrogen freezer, surgical tools, polyethylene tubing, heat sealer, electron beam energy source, glass indicator beads</td>
</tr>
<tr>
<td>97. Heart valves</td>
<td>Freshly excised bovine heart valves</td>
<td>Several commonly used methods of tissue preservation including chemical sterilization with β-propiolactone, freezing, freeze-drying and combinations of these were investigated to determine the best method for preserving the biol and phys integrity of beef homograft cardiac valves.</td>
<td>The authors concluded that none of the methods tested were optimal. Tensile strength and elasticity were reduced to some extent by all the combinations tried.</td>
<td>Varied</td>
<td>Not given</td>
<td>Varied with method (β-propiolactone, others not clear)</td>
<td>Heart valve transplants</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>98. HeLa cells</td>
<td>HeLa cell suspension in liq medium</td>
<td>Tang trachoma agent which had undergone six or more serial passages in HeLa cells was used. The infected cells were suspended in Hank's balanced salt soln without bicarbonate, with 0.5% (v/v) lactalbumin hydrolysate and 25% horse serum. IM50 was added, and specimens were cooled to -50°C at the rate of 1°C/min, then stored in ampules in dry ice or liq nitrogen. Infectivity titres were measured as an indication of viability.</td>
<td>Freezing of inclusion-bearing cells, rather than freed particles, was more effective as the cell medium seems to offer protection against damage.</td>
<td>1-3 hr</td>
<td>Up to 1 yr</td>
<td>4-5</td>
<td>Ampules, cooling bath (Raggington and Greaves) freezer</td>
</tr>
<tr>
<td>99. Kidney</td>
<td>Freshly excised canine kidney</td>
<td>Left kidneys were removed from mongrel dogs and perfused with standard dextran soln contg 15% IM50 at 20°C for 15 min. The kidney was placed in a sterile rubber glove and frozen at -10°C or -60°C. After thawing, the kidney was autotransplanted. A 25% soln of mannitol was given intravenously just before vascularization, and the effect of this on renal and ureteral swelling was observed.</td>
<td>After this treatment renal swelling seemed less severe and ureteral swelling was definitely decreased. Uniform ureteral survival and preservation of numerous tubules and glomeruli were noted, but transplanted kidneys did not function.</td>
<td>1 hr</td>
<td>Storage time was up to 144 hr; kidneys did not function however</td>
<td>5-6</td>
<td>Surgical tools, sterile rubber glove, freezer</td>
</tr>
<tr>
<td>100. Kidneys</td>
<td>Cannulated whole rat kidney</td>
<td>The renal artery of an anesthetized rat was cannulated, then the kidney was removed. The cannula was connected to a perfusion app, and the kidney was suspended in a cooling jacket. The kidney was perfused with a soln contg gradually increasing conc of IM50 as it was cooled to -25°C then was frozen to -79°C. Upon rewarming perfusion was recommenced, and IM50 was removed from the kidney. This technique kept wt gain and protein loss in the kidney to a minimum.</td>
<td>Kidneys were kept for 30-60 min in the frozen state. Kidneys were not reimplanted to test their viability. However, wt gain, histological changes, and protein loss were measured or observed.</td>
<td>(\leq 1) hr</td>
<td>At least 1 hr</td>
<td>4-5</td>
<td>Surgical tools, cooling jacket, perfusion app (Palmer timed injection app)</td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>101. Kidney</td>
<td>Whole rat kidney and ureter</td>
<td>Rat kidney was cannulated through the renal artery and removed along with the catheterized ureter. The cannula was connected to a perfusion app and perfused with solutions containing dextran (mol wt 110,000) and increasing amounts of DMSO in 5% increments up to 40%. 2 ml of soln were perfused at each step. As DMSO conc was increased, temp was gradually lowered to -35°C. At this temp perfusion was stopped, and the kidney was frozen to -79°C. After 1 hr the kidney was thawed, rewarmed, and the DMSO removed. The kidney was then linked by the cannula to the aorta of a 2nd rat, and the excreted urine was collected.</td>
<td>13 kidneys were maintained 1 hr at -79°C; 5 showed preservation of tubular function while 8 did not.</td>
<td>Not given; 41 hr</td>
<td>1 hr</td>
<td>5-6</td>
<td>Perfusion app, surgical tools, cannula, catheter, thermos flask with dry ice, cooling bath, Millipore filter</td>
<td>Kidney transplants</td>
<td>Carruthers (1969)</td>
<td></td>
</tr>
</tbody>
</table>

| 102. Kidney, heart, and liver | Solid blocks of rabbit tissue | Blocks of rabbit kidney, heart, and liver were either powd-coated with talc, flour, or starch; or coated with Cellusolve (ethylene glycol monomethyl ether) and immersed in liq nitrogen. The coated samples were compared to samples cooled in isopentane or liq nitrogen alone by measuring the cooling rate with a copper constantan thermocouple inserted into the center of each sample. | The powd-coated samples cooled twice as fast as the hydrocarbon-bath samples and 4-5 times as fast as Cellusolve-coated samples; the morphology of all samples was about the same. Talcum powd was the best coating agent. | This technique was recommended as a substitute for hydrocarbon baths cooled in liq nitrogen when safety, simplicity, and speed are needed. It is important to pass through the temp range of -30°C to -40°C as this is the range where ice crystals increase rapidly. | Few min | Not given | 2 | Dewar flask of liq nitrogen, container for coating material, forceps, thermocouple | Tissue fixation for microscopy | Mollin (1966) |

<p>| 103. Kidney, spleen, or ileum | Whole human spleen or kidney; ileum segments | Dog kidneys, spleens, and ileum segments were preserved with DMSO sole with or without dextran. Then they were frozen at 1°C/min. The frozen organs were later thawed with a diathermy machine. | The organs tested survived an av of 38 hr, but most were damaged and would not function on transplantation. Thawing by use of a diathermy machine was an unsatisfactory method. | The authors concluded that whole organ bank techniques could not exist with the knowledge now available (1964); and that the fundamentals of freezing and thawing effects on tissue must be further elucidated. | 36 hr av | 3 | Freezer, diathermy unit | 6 or 12% DMSO, 10% dextran | Whole organ bank | Manax (1964) |</p>
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>104. Insects, Ants, wasps, and bees</td>
<td>Whole live insects</td>
<td>Carpenter ants, ichneumon wasps, and honey bees were cold-stressed by placing them in pre-cooled glass vials containing wood shavings. Vials were cooled from 4°C to -30°C in an ice bath and stored in an ice chest in a cold room. Cold-stressed insects were weighed and everted in a homogenizer with methanol-water soln. The resulting suspension was centrifuged to remove debris, denatured, and prepared for analysis of its glycerol trisaccharide content by gas chromatography. Other metabolites were also measured.</td>
<td>Glycerol accumulation commenced immediately upon cold stress; the buildup induced by temp from 4°C to -3°C was quite uniform and the polyol was equally distributed throughout the insects' bodies. Glycogen levels decrease as glycerol levels increase, and glycogen may be the precursor to glycerol. Bee and ant glyceraldehyde-3-phosphate dehydrogenase was kinetically different from yeast and mammalian forms of the enzyme, and it maintained its activity below 0°C. Hibernation character and glycerol accumulation were related in ichneumon wasps and suggest that glycerol is important in the overwintering process.</td>
<td>Not clear</td>
<td>Ants were stored up to 1 yr at 4°C</td>
<td>Varied</td>
<td>Glass vials, wood shavings, ice bath, ice chest, cold room, thermometer</td>
<td>Ammonium sulfate</td>
<td>Study of glycerol metabolism in insects during cold stress</td>
<td>Nordin (1970)</td>
</tr>
<tr>
<td>105. Intestines</td>
<td>Either biopsy sample, or specimen from subject that had died 2 hr previously</td>
<td>A biopsy of distal duodenal or proximal jejunal mucosa was performed by means of a Crosby pre-oral biopsy capsule. The tissue was rinsed in 0.85% saline, blotted to remove excess sucrose, frozen on dry ice and stored at -20°C until assayed for disaccharidase activity. Sections of necropsy whole-thickness bowel wall were also frozen at -20°C.</td>
<td>Storage at -20°C for up to 2 wk did not affect disaccharidase activity in biopsy material; necropsy material gave consistent analyses up to 6 wk.</td>
<td>Few min</td>
<td>2 wk</td>
<td>3</td>
<td>Crosby pre-oral biopsy capsule, freezer, surgical tools, containers</td>
<td>Assay of disaccharidase activity including lactase, sucrase, palatinase and maltase</td>
<td>Arthur (1966)</td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN REFERENCE</th>
</tr>
</thead>
</table>
| 106. Intestines | Fresh sections of large and small human intestines | Samples of the proximal jejunum, terminal ileum, and colon of newborn, 4-, 7-, 10-, 14-, and 28-day rats, as well as additional samples from 21-day fetuses, adult, and germ-free adult rats, were immediately frozen in a dry ice-acetone bath and stored at -70°C. Frozen sections were cut in a cryostat at -15°C, incubated on various substrates for 4.5 hr at either 37°C or 23°C, counterstained with hematoxylin and eosin, dehydrated with alcohol, and cleared in xylol. Intestinal glucosidases were demonstrated in both the epithelial cytoplasm and the reticular cells of the lamina propria. | Not given | Few min | Not given | 1 step to preserve; 6-7 for staining | Dry ice-acetone freezer, Harris-International cryostat, incubator, glass containers, microscope | Demonstration of intestinal glycosidases in the neonatal rat

107. Leaves \[Dried conifer needles\] A method was given whereby thin sections of dry, fungus-infected conifer needles may be cut on a cryostat microtome at -15°C. Stained, temporary or permanent slides were made by this method using lactophenol-cotton blue or lactophenol-acid fuschin mount. Permanent slides could be prepared by this method as well as temporary slides for diagnosis or photomicrography. The method was varied slightly if the needle was badly infected. Also, different types of needles were handled with slight modifications. 2½ hr (unstained) | Not given | 8-12, depending on staining technique | Cryostat microtome, glass dishes, glass slides, oven, dissecting needle, covers Aerosol OT (Carter Ink Co), LePage's mucilage, 4% formalin, Stanvis Nicodine soln, abs alcohol-ether mixt, 7% abs, periodic acid-Schiff (P.A.S.) stain | Mycological studies of infected conifer needles

108. Lichens \[Growing lichens\] Usnea and Lobaria lichens were kept on a moist bed under natural conditions (in an assimilation chamber), and were exposed for 3-5 hr to every fluctuation of temp and light during each day of winter 1966-67. Photosynthesis and respiration were measured under various conditions to determine their sensitivity to cold in lichens. Usnea and Lobaria lichens were given photosynthesis to -10°C while Lobaria pulmonaria continued to -7°C. Respiration continued to -10°C and -12°C respectively. Details of paper were not clear due to poor trans- lation. Plants were exposed 3-5 hr per day for one whole winter | Not given | Not clear | Study of photosynthesis and respiration of mountain lichens during exposure to cold

References:
- Demonstration of intestinal glycosidases in the neonatal rat (Easterly, 1967)
- Mycological studies of infected conifer needles (Farris, 1968)
- Study of photosynthesis and respiration of mountain lichens during exposure to cold (Atanasiu, 1969)
109. Liver tissue

- **Description:** Mouse liver tissue slices
- **Method Description:** Mouse liver tissue was exposed to rapid and slow freezing and thawing, and to sonication to compare the effects on the activity of nuclear and mitochondrial enzymes. Nicotine adenine dinucleotide pyrophosphorylase, succinoxidase, succinic dehydrogenase, and glutamic dehydrogenase were the enzymes studied.
- **Limitations:** NAD-Pyrophosphorylase was unaffected by any of the freezing procedures or by sonication. Succinoxidase activity was decreased 26-29% by fast freezing; more by other methods. Freezing on dry-ice gave the best preservation of succinic and glutamic dehydrogenases.
- **Survival Time:** 15 min
- **Equipment and Reagents Used:** Microtome, beakers, Raytheon 10 KC magnetostriiction oscillator, tube filled with teflon pestle
- **Reference:** Vararudekar (1964)

110. Liver tissue

- **Description:** Freshly excised rat liver
- **Method Description:** Considerable decreases in the sum of NADP + NADPH2 conc in rat liver homogenates were occasionally observed during 30 min storage at 0°C. An attempt was made to find why these decreases occurred. Many substances were investigated to find a proper suspending soln. Also the effects of freezing on intact tissue and homogenates before extn of NADP and NADPH2 were studied in detail.
- **Limitations:** Addition of 0.5 M nicotinamide + 5 mM tris buffer to 0.25 M sucrose for use as a suspending medium preserved NADP + NADPH2 conc in homogenates at the same level as intact tissue for at least 30 min at 0°C. Freezing alone converts 30% of liver NADPH2 into NADP in intact tissue.
- **Survival Time:** 30 min
- **Equipment and Reagents Used:** Containers, ultracentrifuge, scissors, Potter-Elvehjem homogenizer, ice bath, liq nitrogen container
- **Reference:** Slater (1964)

111. Mitochondria

- **Description:** Isolated tomato tissue mitochondria
- **Method Description:** Isolated tomato tissue mitochondria were suspended in a re-action mixt of mannitol, MgCl2, tris(hydroxymethyl)aminomethane, K2HPO4, and EDTA plus substrate and ADP. Samples of the suspension were diluted with 5% DMSO and frozen in a deep freeze (-18°C), over liq nitrogen vapors, or immersed in liq nitrogen.
- **Limitations:** Dimethyl sulfoxide prevented loss of respiratory control and decrease in efficiency of oxidative phosphorylation when plant mitochondria were stored in liq nitrogen. ADP did not stimulate inhibited respiration in mitochondria frozen without DMSO.
- **Survival Time:** 4 wk
- **Equipment and Reagents Used:** Polycarbonate tubes, glass vials, freezer, liq nitrogen freezer
- **Reference:** Dickinson (1967)
112. Muscle

Muscle
Fresh squid muscle was frozen to -80°C and kept for 50 hr. 2 gm samples of the frozen muscle were taken at intervals and ground in a mortar in 20 ml of 40% perchloric acid solution. The suspension was filtered, and the filtrate was analyzed for adenine and hypoxanthine nucleosides and nucleotides to assess the effect of freezing on these compounds. During the first 10 hr a rapid dephosphorylation of adenosine triphosphate occurred with a concomitant accumulation of the diphosphate and of the monophosphate. The monophosphate accumulated gradually while the diphosphate decreased. Adenosine monophosphate thus formed, without conversion to inosine monophosphate, was converted to inosine and then to hypoxanthine. These changes were almost quantitative.

End use of specimen: Reference study of freezing effects on muscle. Equipment and reagents used: 40% perchloric acid solution.

113. Muscle

Muscle
Raw muscle between cover glasses with a copper constantan thermocouple embedded in it. Various coating agents including rough-surfaced vapor-nucleating substances (usually powd) and smooth-surfaced wetting agents were screened for their ability to increase rapid freezing of microscope slide prep of muscle tissue in liquid nitrogen. Cooling was recorded by a thermal junction at the center of the sample heated by a thermal source and surface temperature lower than -120°C was recorded. Out of more than 100 substances ashes of kieselguhr, silicon oxide, phosphorus pentoxide, and Kleenex paper, as well as soap foams and a fluorocarbon compound were the best. Metal powders were not good coatings. No comment was made about the phys effects of freezing on the sample. Cooling velocity could be increased by 20:1.

114. Muscle

Muscle
Blocks of aged beef muscle. High freezing rates (using liquid nitrogen) impaired constitution and color while conventional freezing rates did not. Muscles cut transversely in the frozen or semi-frozen state were more acceptable than ones cut before freezing. Freeze-dried meat was tougher and less acceptable than frozen meat.
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>115. Muscle</td>
<td>Freshly biopsied human muscle</td>
<td>Muscle biopsies, taken from adults after heavy exercise, were frozen immediately in liquid nitrogen and kept at temp below -80°C. The samples were weighed at -20°C and deproteinized by placing them on top of 0.1-0.2 ml of frozen 3 M HClO₄ for thawing to 4°C. These samples were used to determine muscle tissue lactate after exercise.</td>
<td>None given</td>
<td>Few min</td>
<td>Not given</td>
<td>Liq nitrogen freezer, containers</td>
<td>Liq nitrogen, 3 M HC10₄</td>
<td>Deoxymuscle lactate by the modified fluorometric method of Lowry (1964)</td>
<td>Dainat (1968)</td>
<td></td>
</tr>
<tr>
<td>116. Muscle</td>
<td>Freshly excised frog sartorius muscle</td>
<td>An app (described) was designed to flatten a pair of muscles between two metal faces that had been cooled to -196°C in liquid nitrogen. The muscles were simultaneously flattened and rapidly frozen.</td>
<td>Halving the thickness of a specimen quartered its freezing time. The authors estimated that the center of a squashed muscle reached -10°C in less than 100 msec.</td>
<td>Very thin specimen had a tendency to thaw on handling.</td>
<td>Few min</td>
<td>Not given</td>
<td>3-4</td>
<td>Special flattening and freezing app (described)</td>
<td>Liq nitrogen</td>
<td>Investigation of chemical changes associated with muscle contraction</td>
</tr>
<tr>
<td>117. Muscle</td>
<td>Intact porcine muscle</td>
<td>A Freon cooled cryoprobe was described which allowed the metabolic activity of a tissue sample to be determined before taking the tissue away from its blood supply. The app provided a large size sample and could be operated by personnel untrained in surgical techniques. Skeletal muscle metabolism was studied with the aid of this app.</td>
<td>Compared to freshly excised muscle, ATP and phosphorylase levels were significantly higher in samples taken through cryobiopsy while lactic acid conc was lower. This indicated that conventional biopsy caused excision amnesia while cyrobiopsy did not have this effect.</td>
<td>The probe with frozen tissue attached can be submerged in liquid nitrogen and the frozen sample fragmented and powdered for extn or anal.</td>
<td>10 sec</td>
<td>Not given</td>
<td>4-5</td>
<td>Cryoprobe (described), liq nitrogen container</td>
<td>Muscle sampling from live animals</td>
<td>Freon, liquid nitrogen</td>
</tr>
<tr>
<td>118. Muscle</td>
<td>Freshly excised taenia coli smooth muscle from guinea pigs</td>
<td>Strips of taenia coli smooth muscle from guinea pigs were bathed in oxygenated Kreb’s soln with the 2nS0 conc gradually increased as the temp plateau was gradually decreased. Temperatures were chosen so that no ice crystals formed in the bathing soln or the muscle. Muscle activity was measured after the various exposures to 2nS0 at various temp.</td>
<td>20% 2nS0 in Kreb’s soln did not affect muscle contractile response at 37°C. A lengthy discussion of 2nS0 toxicity at the other temp is given.</td>
<td>Varied</td>
<td>Varied</td>
<td>Test tubes, glass bubblers, cooling bath</td>
<td>Kreb’s soln, 2nS0</td>
<td>Study of ice formation in, and 2nS0 effect on, smooth muscle</td>
<td>Eiford (1970)</td>
<td></td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>119. Mycoplasma</td>
<td>Agar block cultures</td>
<td>Agar blocks with heavy growth of human and rat strains of Mycoplasma and Serratia L. forma were frozen to -60°C.</td>
<td>Agar blocks frozen to -60°C for 6 mon produced viable organisms upon thawing.</td>
<td>The advantages of this method were that growth colonies could be seen on the agar block, and subculturing was not necessary.</td>
<td>Not given</td>
<td>6 mon</td>
<td>3</td>
<td>Agar blocks, freezer</td>
<td>Maintenance of viable strain cultures</td>
<td>Kundsin (1965)</td>
</tr>
<tr>
<td>120. Mycoplasma</td>
<td>Organisms suspended in appropriate medium</td>
<td>Mammalian and avian mycoplasmas were grown on a medium consisting of Difco PPLO broth, serum, yeast, thallium acetate, penicillin G, phenol red, and glucose, arginine, or urea until the color change was complete. Cultures were stored at -70°C, -50°C, and -30°C, or lyophilized in ampules containing skim milk, dextrose-dextran, or bovine plasma albumin. They were sealed and stored at 4°C and 37°C.</td>
<td>Organisms were viable after 2 yr at -70°C, -50°C, and -30°C in either vials or plastic trays. Samples lost less than 1 log10 viable organisms after 42 mon at -70°C. However, storage at -30°C resulted in a marked decrease in viable organisms and should be used for high initial titres only. Lyophilization resulted in loss of over 90% of the microorganisms, but remaining organisms were viable for 27-34 mon at 4°C and 37°C.</td>
<td>Stabilizing fluids used were not helpful in preservation.</td>
<td>Not given</td>
<td>42 mon at -70°C</td>
<td>4</td>
<td>Drying, lyophilization, 3-4</td>
<td>Pipettes, glass vials with screwcaps and rubber liners, incubator, plastic disposable trays, low temp refrigerator, plastic adhesive tape, drying oven, UV light irradiator, refrigerator (V.E. Berry, Liverpool), Petri dishes, glass ampules, freeze-dryer (Edwards High Vacuum)</td>
<td>Preservation of prototype strains</td>
</tr>
<tr>
<td>121. Mycoplasma</td>
<td>Cell suspension in culture medium</td>
<td>Cultured Mycoplasma cells were centrifuged, decanted, and resuspended in fresh, sterile broth culture medium to produce a cone of cells 30x greater than the original culture. Cone culture suspension was diluted 1:1 with 30% aq glycerol solution and homogenically sealed in ampules which were then cooled at 1°C/min to -40°C and stored in a liq nitrogen freezer at -150°C to -196°C. Other samples of cone culture suspension were mixed with 24% aq sucrose solution, lyophilized, and stored under vacuum in sterile ampules at -70°C.</td>
<td>Liq nitrogen storage provided stable storage for some strains of Mycoplasma for as long as 6 yr. Lyophilization was also a successful technique if 12% sucrose solution was used as a protective additive.</td>
<td>20-22 hr for lyophilization</td>
<td>Up to 9 yr</td>
<td>Depends on method</td>
<td>Incubator, gyratory shaker, centrifuge bottles, ampules, freeze-dryer, centrifuge, cotton plugs, BF-3-2 freezer (Linde), liq nitrogen freezer, latex tubing, vacuum pump, heat sealer</td>
<td>Maintenance of type cultures</td>
<td>Norman (1970)</td>
<td></td>
</tr>
</tbody>
</table>
Nematodes

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PREPARATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>122. Nematodes</td>
<td>Live nematodes</td>
<td>Nematodes were treated with cyanide as an inhibitor 10 min prior to incubation in histochemical reagents. The worms were then frozen rapidly to -35°C, slowly warmed for 10 min, and transferred immediately after thawing into incubation medium. To prepare sections, living nematodes were placed in Lipshaw M-1 Embedding Matrix and frozen directly onto the precooled object disc of a microtome.</td>
<td>Incubation temp was important to the color reaction in stained specimens. Color deposits were pale at 19°C and strong at 25°C. Sections 12 μm thick and covering 70% of the nematode length could be cut by this method.</td>
<td>Staining techniques were discussed for identifying various enzyme systems especially cytochrome oxidase.</td>
<td>Few min</td>
<td>Not given</td>
<td>4-5</td>
<td>Containers, freezer, water bath, microscope, incubator</td>
<td>Histochemical demonstration of cytochrome oxidase</td>
<td>Deubert (1968)</td>
</tr>
</tbody>
</table>

Nematodes suspensions in culture media

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PREPARATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>123. Nematodes</td>
<td>Nematode suspensions in culture media</td>
<td>Free-living nematodes were successfully frozen in liquid nitrogen in heat-sealed glass ampules using 5 or 10% DMSO as a protectant. Thawed samples were resuspended in 2 ml of Heller's saline with added ergosterol and incubated. Active nematodes were counted on the 4th day after thawing.</td>
<td>From 18-87% recovery of the worms occurred upon incubation for 4 days after thawing. The number of viable worms was about the same after 6 days storage as it was after freezing and thawing immediately.</td>
<td></td>
<td>2-3 hr</td>
<td>6 mon</td>
<td>6-7</td>
<td>Culture plates, Petri dishes, centrifuge, water bath, vials or ampules, heat sealer, cotton, styrofoam cylinder, Programmed Temp Controller (Canalco Co), liquid nitrogen bath</td>
<td>Type cultures for nematodes</td>
<td>Hwang (1970)</td>
</tr>
</tbody>
</table>

Nerves

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PREPARATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>124. Nerves</td>
<td>Freshly isolated frog sciatic nerve</td>
<td>Frog sciatic nerves with or without perineurial sheaths were treated with various concentrations of DMSO or glycerol in amphibian Ringer's saline. Some samples were frozen to -10°C before treatment, some were frozen after, and others were not frozen at all, thus allowing a distinction to be made between drug toxicity and freeze-thaw damage.</td>
<td>Neither glycerol nor DMSO severely damaged nerves, but some effects were noted. DMSO was less damaging than glycerol and was almost independent of the nerve sheath. Glycerol changes were greater in desheathed nerves. DMSO protected desheathed nerves from freeze-thaw damage, but glycerol did not.</td>
<td>Conduction velocity, action potential, and absolute refractory period were measured as electrical parameters of nerves.</td>
<td>Not given</td>
<td>Not given</td>
<td>4-5</td>
<td>Glass containers</td>
<td>Effects of cold on nerve preservation</td>
<td>Pribor (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>125. Nucleoside diphosphatase</td>
<td>Purified rat-liver nucleoside diphosphatase</td>
<td>Nucleoside diphosphatase was purified from ext of rat-liver acetone powd by the method of Schramm and Morrison (1968) and stored for 6 mon at -10°C before use. The effect of storage on kinetics and reaction mechanism of the enzyme was investigated.</td>
<td>Mol wt and reaction to MgATP remained the same for stored enzyme as for fresh enzyme. The stored enzyme gave a linear plot of 1/v vs 1/magnesium inosine diphosphate conc, and its max velocity was unaffected by the addition of modifier. A theory of the reaction mechanism for the stored enzyme is also given.</td>
<td>Not given</td>
<td>6 mon</td>
<td>Not all given</td>
<td>Freezer</td>
<td>Study of the effects of ageing on the kinetics and reaction mechanism of nucleoside diphosphatase</td>
<td>Schramm (1970)</td>
<td></td>
</tr>
<tr>
<td>126. Pepsin</td>
<td>Standard soln of commercial porcine pepsin adjusted to pH 1.8</td>
<td>Commercial crystalline porcine pepsin was made into a stock soln contg 5 or 10 μg of pepsin/ml of 0.004 M HCl at pH 1.8. To these soln were added acidified glycerol and/or acidified canine or bovine albumin. Samples were kept at room temp or cooled to 4°C, 0°C, -4°C, or -20°C, and the temp effects on pepsin activity were measured.</td>
<td>The stock pepsin soln maintained 100% of its activity at 0°C for up to 5 hr without a preservative. 100% pepsin activity was maintained for 6 days at -20°C in the presence of albumin and glycerol. 80-90% pepsin activity remained after 20 days in the presence of albumin and glycerol. Preservatives were necessary for prolonged storage of sample.</td>
<td>Varied</td>
<td>5 hr with no preservative; up to 20 days with a preservative with some loss of activity</td>
<td>3</td>
<td>Ice bath or freezer, storage containers</td>
<td>Gastric secretion 'standard'</td>
<td>Runner (1969)</td>
<td></td>
</tr>
<tr>
<td>127. Phosvitin</td>
<td>Isolated phosvitin protein</td>
<td>If an aq soln of largely disordered phosvitin protein is frozen under certain conditions, subsequent thawing produces a soln which contains phosvitin in a folded conformation. This 'structure-making' effect of freezing was investigated especially with regard to its relationship to denaturation of proteins.</td>
<td>Phosvitin changed from unordered to B structure upon freezing and thawing. It occurred at pH 2 or less but was enhanced by acidity. Increases in salt or protein conc suppressed the phenomena, and the ordered structure was heat labile. Aggregation and polymerization were essential, and the phenomena seemed to be linked to freezing rather than thawing.</td>
<td>Not given</td>
<td>Samples were rethawed after a short time</td>
<td>Platinum-coated base test tubes, ethanol-dry ice bath, teflon cylinder</td>
<td>Study of protein denaturation and freezing and thawing phenomena</td>
<td>Taborsky (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>128. Phycoerythrin</td>
<td>Phycoerythrin in 0.001 M phosphate buffer, pH 6.6</td>
<td>Purified phycoerythrin was obtained from Porphyridium cruentum cell suspensions. Samples of the chromoprotein in 0.001 M phosphate buffer, pH 6.6, were frozen rapidly to -20°C, -30°C, -45°C, -60°C or -76°C, held for 10 min, then warmed rapidly or slowly to room temp. Rates of cooling and thawing varied.</td>
<td>Absorption spectrum, fluorescence yield, sedimentation, and electrophoretic properties of phycoerythrin are all altered by freezing and thawing. A discussion of the nature and significance of these changes was given.</td>
<td>Varied with method</td>
<td>Not given</td>
<td>2-3</td>
<td>Centrifuge, dialyzer, Aminco-French pressure cell, refrigerator, test tubes, controlled heating and cooling baths</td>
<td>Study of storage temp effects on chromoproteins</td>
<td>Leibo (1964)</td>
<td></td>
</tr>
<tr>
<td>129. Saliva</td>
<td>Fresh expectorated human saliva</td>
<td>Volunteers expectorated into a sterile container before eating, smoking, or brushing their teeth in the morning. This sample was immediately frozen to -78°C by placing it in a Dewar flask filled with dry ice. The sample was kept in this state until ready for anal.</td>
<td>Samples were kept 24 hr before anal and could probably be kept much longer.</td>
<td>Few min</td>
<td>24 hr</td>
<td>4 (incl. sterilization)</td>
<td>Dewar flask, 20 al sterile injection vials, autoclavable, drying oven, autoclave foil, Dry ice</td>
<td>Gas chromatographic anal of saliva volatiles</td>
<td>Larson (1968)</td>
<td></td>
</tr>
<tr>
<td>130. Saliva</td>
<td>24 hr human sputum sample</td>
<td>24 hr collections of sputum were made from each donor for a non. Within 12 hr of collection the sol phases were separated by centrifugation. Sol phases were pooled, divided into small set, and stored at -70°C.</td>
<td>Samples stored in this manner were suitable for electrophoretic studies.</td>
<td>Few hr</td>
<td>Not given</td>
<td>4-5</td>
<td>Containers, centrifuge, freezer</td>
<td>Sputum electrophoresis and anal</td>
<td>Ryley (1970)</td>
<td></td>
</tr>
<tr>
<td>131. Skin</td>
<td>Strips of undried rabbit skin</td>
<td>Large strips of rabbit skin were stretched on a cheesecloth pad, then immersed in liq nitrogen. Some of the strips were immersed in vaseline oil or glycerine for protection before freezing.</td>
<td>Skin specimens stored up to one non were used for autografts and homografts; however, homografts were eventually rejected. Vaseline oil improved the viability of the skin specimens somewhat.</td>
<td>Specimens should not be dipped into liq as liq may cause ice which can rupture the cells.</td>
<td>10 min</td>
<td>1 non optimum; up to 7 non max</td>
<td>3</td>
<td>Cheese cloth, liq nitrogen container, nitrogen tank</td>
<td>Skin grafts</td>
<td>Lapchinsky (1962)</td>
</tr>
</tbody>
</table>
Specimen Description

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Freshly excised rat skin</td>
<td>Abdominal skin from adult rat was excised, and muscle and subcutaneous tissue was removed. The skin samples were placed in tubes contg 3 cc of various media, sealed with cotton plugs and adhesive tape, and stored at 4°-70°C for various lengths of time after which the samples were reimplanted. Other samples were sealed in ampules with thermocouples attached to the graft. The rate of freezing and thawing was varied, and its effect on the samples observed before and after reimplantation.</td>
<td>Refrigerated samples in 5% glycerol soln in 0.85% NaCl could be stored up to 14 days and still produce permanent survival on reimplantation. Samples were protected against freezing and thawing damage by either 10% glycerol or 10% DMSO in 0.85% saline soln. Thawing rate was more important to survival than freezing rate, and rapid thawing was essential.</td>
<td>15 min</td>
<td>Up to 14 days</td>
<td>5-6</td>
<td>Surgical tools, tubes, cotton plugs, adhesive tape, ampules, thermocouples, refrigerator, water bath, special freezing app</td>
<td>Skin grafts</td>
<td>Lehr (1964)</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Freshly excised mouse skin</td>
<td>Mouse skin, full-thickness autografts were pretreated for 1 hr in 5% or 15% solutions of glycerol or DMSO in Ringer's soln. Samples were then frozen to -75°C in Stender dishes on dry ice at an av rate of 1.3°C/min. After thawing, the sections were thawed and observed for hair color, direction of hair growth, and microscopic appearance.</td>
<td>5% levels of either DMSO or glycerol were less toxic and gave the greatest postthaw survival. The pre-treatment had no effect on postthaw viability than the actual freezing and thawing. Glycerol and DMSO were approx eq in toxicity and cryoprotection.</td>
<td>Samples were thawed immediately and transplanted</td>
<td>1</td>
<td>Surgical tools, Stender dishes</td>
<td>Transplantation</td>
<td>Sherman (1965)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Freshly excised human abdominal skin</td>
<td>Small pieces of human skin were placed in Eagle's balanced salt soln plus 10% calf serum and varying amt of either glycerol or DMSO. After 1-8 hr the pieces were placed in finger cots with more medium. The cots were put in a rubber glove, and the glove was frozen at 10-8°C/min in liq nitrogen. Effects of cone of cryoprotectant and rate of cooling and heating on epithelial growth were investigated.</td>
<td>Human skin pretreated with 20-30% glycerol at 4°C for 1-2 hr before freezing did not show epithelial damage, and it grew on plasma clot culture like fresh skin.</td>
<td>2-3 hr (optimum)</td>
<td>Not given</td>
<td>5</td>
<td>Petri dishes, surgical tools, sterile finger cots, surgical gloves, Linde BF-1 freezer</td>
<td>Skin tissue culture</td>
<td>Athreya (1969a)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>135. Sodium methi-</td>
<td>Sodium methicillin reconstituted with water</td>
<td>Vials of sodium methicillin USP for injection were reconstituted with sterile water and stored at -16°C in a freezer. Samples were also stored at 24°C and 5°C, and others were incubated, then frozen. Recovery of the various soln was tested.</td>
<td>Reconstituted sodium methicillin was potent for 71 days after storage at -16°C. Frozen samples that were thawed, stored at 4°C, and re-frozen lost some potency.</td>
<td>Approx 1 hr</td>
<td>> 71 days</td>
<td>2</td>
<td>Freezer, disposable hypodermic syringe</td>
<td>Sterile water</td>
<td>Clinical use</td>
<td>Stoiber (1968)</td>
</tr>
<tr>
<td>136. Spermatozoa</td>
<td>Fresh human and fowl ejaculate</td>
<td>Human spermatozoa were successfully protected from freezing effects by addition of 5% glycerol (equal parts of semen and 10% glycerol in Baker's fluid). Ethylene glycol and propylene glycol gave similar results. Fowl spermatozoa required 40% glycerol for protection against freeze-drying and freezing at -79°C.</td>
<td>Motile human and fowl spermatozoa were observed after freezing and thawing at -79°C in the presence of glycerol. Motile fowl spermatozoa could be observed after freeze-drying in the presence of glycerol.</td>
<td>Revival was much better when semen was frozen in bulk rather than in small ampoules.</td>
<td>Several samples were thawed or reconstituted</td>
<td>Depends on method</td>
<td>Freezer, containers</td>
<td>Artificial insemination</td>
<td>Polge (1969)</td>
<td></td>
</tr>
<tr>
<td>137. Spermatozoa</td>
<td>Fresh ram and bull semen</td>
<td>Ram and bull semen were collected, and the initial pH was maintained with phosphate buffers and citrate-egg yolk medium. The semen was diluted 1:4 with egg yolk medium at 30°C and cooled slowly over 2-3 hr to 5°C. Aliquots were taken at 20°, 15°, and 0°C and diluted with equal vol of the appropriate glycerol and sugar medium to give either 3.75% or 7.50% (v/v) glycerol and 1.25% fructose. After each dilution at higher temp, cooling was continued to 5°C. After 1 hr at 0°C, samples were slowly frozen to -79°C. Samples were thawed after 24 hr, and sperm motility was measured.</td>
<td>Ram and bull spermatozoa frozen in glycerol-phosphate media survived best at a pH near neutrality and at a glycerol conc of 3.75% and 7.5%. Isosmotic media were most suitable for freezing spermatozoa.</td>
<td>Several hr</td>
<td>Not given</td>
<td>6-7</td>
<td>Electrical stimulator, artificial vagina, containers, refrigerator, pipettes, freezer</td>
<td>Artificial insemination</td>
<td>Blackshaw (1960)</td>
<td></td>
</tr>
<tr>
<td>FREZING (Continued)</td>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGIN OF SAMPLE</td>
<td>METHOD AND REAGENTS USED</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>138. Spermatozoa</td>
<td>Fresh bull ejaculate</td>
<td>3-4 days</td>
<td>Various artificial vagina, container, refrigerator, freezer, incubator, dialysis app</td>
<td>Glycero, various extenders, dialysis app</td>
<td>Not given</td>
<td>Varied</td>
<td>0-6</td>
<td>Artificial vagina, container, refrigerator, freezer, incubator, dialysis app</td>
<td>Tapered glass tubes, powdered cellulose, glass wool, vacuum, desiccating oven, liquid nitrogen freezer</td>
<td>Choong (1963)</td>
</tr>
</tbody>
</table>

Samples of bull semen with high initial motility were diluted at 30°C with 9 vol of one of several diluents plus added non-dialysable milk solids, casein, fructose, potassium, magnesium, calcium chlorides, and lactose. The mixtures were chilled slowly to 5°C over 2 hr. Equal vol of precooled glycerol-85%, diluent were added to the chilled suspensions to give a final glycerol concentration of 7.5%. The mixtures were allowed to equilibrate with glycerol for 18 hr before being sealed in ampules and cooled to -190°C. After 24 hr, ampules were thawed and incubated, and motility and motile sperm were estimated. Diluents used were: 0.72 M sodium chloride-0.154 M fructose, and Ringers solution-fructose. Spematozoa were removed from the extracellular fluid by placing the sperm suspension in a glass tube that contained 4 cm of powdered cellulose on top of fine glass wool. The fluid was drawn by negative pressure through the tube, leaving the cells trapped in the cellulose. The extracellular fluid was centrifuged, and the supernatant was frozen in liquid nitrogen.

Analyses of extracellular fluid of boar, bull, and turkey semen, before and after freezing, were conducted to test for leakage of various components into the extracellular fluid due to handling and freezing. The effects of various extenders and cryoprotectants on cell leakage were also studied.

Leakage of cellular components into extracellular medium could provide a possible test of spermatozoa cell damage. However, before this principle can be applied better techniques for separation of spermatozoa from medium are needed.

Data presented indicated that cellular damage occurred prior to freezing as well as during freezing.
Freezing (Continued)

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>140. Spermatozoa</td>
<td>Fresh human ejaculate</td>
<td>Semen specimens from several human donors were mixed 1:1 (v/v) with egg yolk-glycerol-citrate medium and refrigerated in ampules at 6°C for 7 days, or stored in liq nitrogen for 2-75 wk. DNA content of the stored specimens was examined and compared with the DNA content of fresh specimens.</td>
<td>DNA remained constant after refrigeration and after freezing for all of the time periods studied.</td>
<td>Varied with method</td>
<td>7 days at 6°C, 75 wk at -96°C</td>
<td>1-2 hr</td>
<td>6-7</td>
<td>Glass ampules, refrigerator, freezer, liq nitrogen freezer</td>
<td>DNA analysis</td>
<td>Ackerman (1968)</td>
</tr>
<tr>
<td>141. Spermatozoa</td>
<td>Fresh bull semen</td>
<td>Beta- or alpha-amylase was dissolved in 0.9% sodium chloride, 0.3 or 2.0 mg/ml, within 2 hr before semen was extended. One ml of amylase soln was added to each 99 ml of egg yolk-sodium citrate dihydrate extender. The non-glycerol extenders contg amylases at levels of 0, 0.2, or 20 µg/ml were added to 200 bull semen ejacula. The semen samples were then glycerolized so that the final conc of amylase were 0, 0.1, or 10 µg/ml. The semen was frozen and stored at -195°C for 2 wk-4 mon before thawing in 5°C water for insemination.</td>
<td>Anylase added to extended bovine semen may bring about fertilization of ova without prolonged residence of the sperm in the female tract.</td>
<td>1-2 hr</td>
<td>2 wk-4 mon</td>
<td>6-7</td>
<td>Containers, liq nitrogen freezer</td>
<td>Artificial insemination</td>
<td>Birken (1968)</td>
<td></td>
</tr>
<tr>
<td>142. Spermatozoa</td>
<td>Fresh bull semen</td>
<td>Bull spermatozoa in various buffered egg-yolk media, and in skim milk, were exposed to several levels of glycerol at 5°C for 6 hr, 30 min, and 10 sec prior to freezing. Freezing was done by placing droplets of the extended semen in small indentations on blocks of dry ice. Results were compared to find the optimum exposure of sperm to glycerol before freezing.</td>
<td>Skin-milk extender was not suitable for the rapid freezing of sperm by the pellet method. The 10 sec exposure time to glycerol gave the best sperm motility after freezing in comparison with 30 min or 6 hr exposures. Glycerol levels between 4.5% and 9.5% gave the highest postthaw survival rate for sperm. Motility following thawing was also affected by the thawing medium.</td>
<td>1-2 hr</td>
<td>Samples were thawed after 1 wk</td>
<td>> 10</td>
<td>Tubes, water bath, polyethylene syringes, dry-ice block, refrigerator, liq nitrogen freezer</td>
<td>Artificial insemination</td>
<td>Berndtson (1969)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>143. Spermatozoa</td>
<td>Fresh boar semen</td>
<td>Four freezing methods were tried: pellet freeze, nitrogen vapor freeze, fast mechanical alc freeze, and slow mechanical alc freeze. Glycerol and NN-dimethylacetamide were used as cryoprotectants. The methods and protective agents were compared for effectiveness in sperm preservation.</td>
<td>The slow mechanical alc freeze method gave the highest spermatozoa recovery rates. Glycerol protection produced higher recovery rates than NN-dimethylacetamide, but a combination of the two appeared to give good recovery rates also. However, no fertility occurred following insemination of 14 animals with frozen semen contg both glycerol and NN-dimethylacetamide as protective agents. No difference was noted between different types of freezing containers.</td>
<td>Several hr</td>
<td>4-3 hr after thawing</td>
<td>Varies with expt</td>
<td>Refrigerator, containers, glass ampules, plastic straws, liq nitrogen storage tank, dry ice blocks, alc freezing bath, liq nitrogen freezer</td>
<td>Skim milk-egg yolk-glucose extender, liq nitrogen vapor</td>
<td>Artificial insemination</td>
<td>Dalrymple (1969)</td>
</tr>
<tr>
<td>144. Spermatozoa</td>
<td>Fresh human ejaculate</td>
<td>Human semen specimens were obtained by ejaculation and allowed to liquefy. Samples were analyzed for motility, conc, morphology, and sperm penetration. Suitable samples were mixed with a glycerol-egg yolk protective mixt in a 1:1 ratio at room temp. The semen-media mixt was then drawn into plastic straws, and the straws were sealed and placed in test tubes contg 95% alc. The tubes were cooled to 4°C, then to -40°C and were finally stored at -196°C.</td>
<td>3 out of 7 patients had become pregnant using stored semen. The semen had a post thaw motility rate of 25-45%.</td>
<td>8-10 straws full of semen-media mixt were obtained for each ejaculate.</td>
<td>1 hr</td>
<td>Up to 180 days</td>
<td>8-9</td>
<td>Water bath, plastic straws, moisture solidifying goud, test tubes, alc bath, beakers, freezer, Linde LB-35 liq nitrogen freezer</td>
<td>Protective media contg egg yolk, 15% glycerol, and glucose in water (shelf life 3 mon at 4°C); sodium citrate; glycine-erythromycin mixt; 95% ethyl alc</td>
<td>Artificial insemination</td>
</tr>
<tr>
<td>145. Spermatozoa</td>
<td>Fresh rabbit semen</td>
<td>Rabbit semen samples with good initial motility and density were frozen in sealed glass vials after the addition of 9 vol of milk-diluent contg varying amt of TMSO. Diluted semen was cooled from room temp to 5°C over approx 2 hr. The vials were then frozen to -79°C and stored overnight in solid carbon dioxide. After thawing, the samples were examined for motility and tested for fertility.</td>
<td>Samples of rabbit semen frozen in 14% TMSO (v/v) in a skim milk dilluent contg fructose, which were cooled to 5°C in an isotonic dilluent then frozen in a hypertonic dilluent, and optimum post thaw motility. 46% of ova fertilized with sperm which had been frozen for 6 mon developed into embryos.</td>
<td>Several hr</td>
<td>Up to 6 mon</td>
<td>4</td>
<td>Glass vials, artificial vagina, oenometry, pipettes, rubber capes, refrigerator, freezer</td>
<td>Penicillin, streptomycin, skim milk diluent, TMSO, fructose, solid carbon dioxide</td>
<td>Artificial insemination</td>
<td>O'Shea (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>146. Spermatozoa</td>
<td>Fresh human ejaculate</td>
<td>Max survival was found when sperm were thawed before 24 hr or after 5 wk of storage. Thawing in the interim time produced lower survival rates. The best recovery of motility, 36.5%, occurred when samples were incubated with 7.5% glycerol (final conc) for 6 min. The fast-freeze method (holding the ampule over nitrogen vapor) gave a post-thaw motility of 44% compared to 21% for the slow-freeze method. Pregnancies have been reported from sperm stored up to 6 mo by this method.</td>
<td>The same method was applied to orangutan primates with some success; however, the method needs modification for successful application to primates other than man.</td>
<td>Up to several hr</td>
<td>6 mon</td>
<td>7-8</td>
<td>Containers, slide warmer, slides, sperm counter, pipettes, ampules, heat water, freezer, water bath, Glycerol, lq nitrogen</td>
<td>Artificial insemination</td>
<td>Trelford (1969)</td>
<td></td>
</tr>
<tr>
<td>147. Spermatozoa</td>
<td>Freshly collected fish sperm</td>
<td>Freezing caused a 1/3 reduction in vol of seminal plasma. Chloride conc in seminal plasma remained about the same, while sodium and calcium declined, and magnesium, phosphorus, potassium, protein, urea nitrogen and uric acid increased. The freezing point depression of the plasma increased from -0.489 to -0.635 following freezing. These changes are attributed to cold shock and suggest a change in the selective permeability of the sperm cell membrane.</td>
<td>Fish sperm preservation was hampered by a lack of basic knowledge of the biochem and physiology of fish semen.</td>
<td>Not clear</td>
<td>Not given</td>
<td>9-10</td>
<td>Gill nets, glass vials, styrofoam transport container, refrigerator, blood capillary tubes, centrifuge</td>
<td>Anal of the chem and phys properties of wild eye sperm</td>
<td>Gregory (1970)</td>
<td></td>
</tr>
</tbody>
</table>
Freezing (Continued)

<table>
<thead>
<tr>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL NO. OF TIME STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spermatozoa</td>
<td>Fresh ram semen</td>
<td>Not given</td>
<td>Egg yolk-citrate, glycerol, sucrose-KDTA soln</td>
<td>Not given</td>
<td>6-8</td>
<td>Artificial vagina, artificial insemination, refrigerators, flasks, pipettes, artificial semen diluent</td>
<td>Artificial insemination</td>
<td></td>
</tr>
<tr>
<td>Spermatozoa</td>
<td>Fresh ram semen</td>
<td>Not given</td>
<td>Egg yolk-citrate, glycerol, sucrose-KDTA soln</td>
<td>Not given</td>
<td>6-8</td>
<td>Artificial vagina, artificial insemination, refrigerators, flasks, pipettes, artificial semen diluent</td>
<td>Artificial insemination</td>
<td></td>
</tr>
</tbody>
</table>

References:
- Nath (1970)
- Salamon (1970)
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED OF SPECIMEN</th>
<th>PRO USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
</table>
| **150. Spermatozoa** | Fresh bull ejaculate | Several expt were conducted to determine the optimum levels of
DMO and glycerol in homogenized milk, skim milk, or egg yolk-Tris extender for preservation of bovine semen. Samples were pre-cooled 1-4 hr. All samples were glycerolated in 4 eq parts at 15 min intervals, and then placed in hermetically-sealed ampoules and frozen in a vapor phase canister according to the method of Benson (1969). | In no case did the addition of DMO to either milk extender result in a higher mean motility than that obtained with the optimum level of 6% glycerol alone. However, DMO in combination with 6% glycerol in egg yolk-Tris extender gave a significant increase in post-freeze spermatozoa motility. Optimum pre-freeze cooling time was 1 hr. | Not given | 6-7 | Several hr | Artificial vagina, refrigerator, flasks or tubes, glass ampule, sealer, vapor phase liquid nitrogen canister | Artificial insemination | Snedeker (1970) |
<p>| 151. Stem rust uredospores | Ungerminated spores | The following methods were compared for storing uredospores of stem rust: 1) Spore moisture was reduced to about 10%, and spores were stored at 4°C; 2) Spores were vacuum dried and stored in the absence of oxygen and water vapor; 3) Spores were stored in liquid nitrogen at -196°C. | Spores could be stored 1-2 yr at 4°C if spore moisture was reduced to about 10%. Vacuum-dried spores could be stored up to 5 yr in the absence of oxygen and water vapor. Spores frozen in liquid nitrogen could remain viable indefinitely. | Rate of cooling and thawing was not critical for survival of uredospores, nor was the moisture content below 25%. Spores frozen to -196°C require heat shock at 40°C to restore max germinability. | Differs with method | 1-5 yr | Differs with method: from 3-5 | Vacuum desiccator or oven, liquid nitrogen freezer, refrigerator, collection and storage containers | Maintenance of viable, exptl inoculum, epidemiology studies | Bromfield (1967) |
| 152. Streptococcus lactis | Cell culture suspension | Streptococcus lactis was stored at 3°C, -20°C, and -196°C. Effects of storage at different temp on acid production, viability, and protease activity and structure were investigated. | Cultures of Streptococcus lactis frozen rapidly to -196°C showed no loss in proteolytic activity or acid production on milk, after 60 days storage. Storage at 3°C or -20°C impaired both factors. | Proteinase activity is important in the ability of stored cells to grow and perform normally in milk. In following storage whether storage be at 3°C, -20°C or -196°C. | < 2 hr; depends on method | Up to 60 days | Not clear | Refrigerator, deep freeze, nitrogen freezer, centrifuge, culture media, liquid nitrogen | Effect of temp on protease activity and structure | Cowman (1969) |
| 153. Sucrose gradients | Layered sucrose solutions | Beginning with the lightest sucrose soln, the aliquots of increasing sucrose conc were layered into Beckman cellulose nitrate centrifuge tubes with a Brakke funnel. Overnight diffusion produced smooth gradients. The gradients were then frozen at -60°C and later thawed to 20°C by placing the tubes in a test tube rack and letting the air thaw them. Thawing took approx 90 min. | Density gradient centrifugations are inconvenient because small numbers of fresh gradients must be made before each expt. This method allows the gradients of sucrose to be frozen for a convenient steady supply. Each gradient is virtually identical to the other. | The method did not work for NacI gradients because the frozen saline expanded and split the nitrocellulose tubes. However, it could be used for salt-coated sucrose gradients with certain limitations. | 1 day | Not given | 4-5 | Beckman cellulose nitrate centrifuge tubes, Brakke funnel, test tube rack, pipette, freezer | For use in density gradient centrifugation | Shore (1969) |</p>
<table>
<thead>
<tr>
<th>SPECIFIC DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>154. Tendon tissue</td>
<td>Small pieces of freshly excised tendon</td>
<td>Tendons were preserved by 5 different methods: 1) Small pieces of tendon were stored in Kovalenko's glucose-citrate-penicillin so in at 4°C. 2) Tendon pieces were frozen at -20°C. 3) Tendon pieces were soaked in 15% glycerine, then stored at -20°C. 4) Specimens were kept in 15% glycerine. Tendon tissue showed no cell growth.</td>
<td></td>
<td></td>
<td></td>
<td>18-90 days</td>
<td></td>
<td>Freeter, regrigerator, lypophilizer, container, surgical tools, vacuum dessicator or oven</td>
<td>Tendon transplant</td>
<td>Demichev (1969)</td>
</tr>
<tr>
<td>155. Thyroid glands</td>
<td>Fresh beef thyroid gland</td>
<td>Fresh beef thyroid glands from a slaughter house were immediately wrapped in plastic bags, frozen, and stored at -25°C. The effect of freezing on microsomal peroxidase was investigated.</td>
<td></td>
<td></td>
<td></td>
<td>Few min</td>
<td>1 yr at -25°C</td>
<td></td>
<td>Plastic bags, freezer</td>
<td>Isolation and identification of peroxidase</td>
</tr>
<tr>
<td>156. Tissue culture cells</td>
<td>Cell suspensions</td>
<td>Ampules of tissue cells in 10% DMSO with 5% calf serum in Gey's salt solution were slowly frozen to -196°C (1°C/min to -25°C), then more rapidly in a container over liq nitrogen. Continuous cell lines frozen by this technique included several HeLa strains and HKG. Primary cultures included human amnion, human embryo kidney and lung, and monkey kidney.</td>
<td>Unlimted storage could be maintained as long as cells were frozen slowly and maintained at liq nitrogen temp.</td>
<td></td>
<td></td>
<td>Unlimited if temp maintained</td>
<td></td>
<td>Linde low-temp storage containers, ampules, Dewar-polyethylene frozen</td>
<td>Maintenance of cell lines</td>
<td>Greaves (1963)</td>
</tr>
<tr>
<td>157. Tissue culture cells</td>
<td>Cells suspended in Nagle's medium</td>
<td>Cat kidney cells, L-cells, and HeLa cells were grown in protein-free Nagle's medium and pooled. 12 ml samples were centrifuged, and supernatants replaced with a medium containing 10% DMSO at various conc, 1 ml aliquots were sealed in ampules, then placed at 4°C for 20-30 min. Finally they were slowly frozen to -193°C.</td>
<td>Cell viability was 86-90% for L-cells stored in 4% DMSO for 1 mon; 81-87% for HeLa stored in 8% DMSO; and 74-86% for cat kidney cells stored in 45 DMSO.</td>
<td></td>
<td></td>
<td>Approx 1 hr</td>
<td>1 mon</td>
<td>Centrifuge, incubator, 2 1 bottles with stoppers, bottle shaker, 40 ml bottles, Linde liq nitrogen refrigerator, ampules, serum bottles, refriger- ator Nagle's medium (described), DMSO</td>
<td>Visible cell lines without serum or protein hydrolyzate contamination</td>
<td>Brown (1965)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND AGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tissue culture cells</td>
<td>Cultured embryonic kidney tissue</td>
<td>Human embryonic kidney tissue was placed in NCTC 109 medium or Hank's balanced salt soln and refrigerated at 4°C until processed. The fibrinous capsule was removed, and the kidney tissue was minced in Hank's soln. The tissue was then rinsed 3-6 times in a trypsinizing flask with Eagle's basal media in Hank's soln. Then the tissue was digested with enzymes, the collected suspension was centrifuged, the packed cells were resuspended, and finally the cells were planted in tissue culture media contg DMSO and frozen in sealed ampules to -196°C.</td>
<td>85% of all frozen kidney cell suspensions could be cultured after thawing. Cells from different kidneys required different times to produce confluent cultures, but cells from the same kidney tissue required the same time for confluency.</td>
<td>A continuous supply of human kidney cell cultures is needed for screening and production of viruses.</td>
<td>Approx 1 hr for freezing</td>
<td>At least 8 mon</td>
<td>10</td>
<td>Refrigerator, Petri dishes, surgical tools, trypsinizing flasks, Millipore filters, water bath, incubator, magnetic stirrer, funnel, gauge, centrifuge, bottles, ampules, screw cap tubes, ice bath, heat sealer, Linde BF 3-2 freezer, perforated plastic bags, Linde LNR 185 containers</td>
<td>Tissue culture bank</td>
<td>Perry (1965)</td>
</tr>
<tr>
<td>Tissue culture cells</td>
<td>Tissue obtained from an abortus</td>
<td>Tissue from 7 spontaneous human abortuses was minced, rinsed in Hank's balanced salt soln, then cut into pieces 2-4 mm in diameter. The tissue was placed in a medium of 60% lactalbumin hydrolysate with Hank's salt, 10% glycerol. The suspension was put in vials, sealed, and placed in cotton-filled containers for freezing to -80°C at 1-2°C/min. After several days the vials were thawed and the tissue was washed and resuspended.</td>
<td>In all 7 cases cultures were successfully initiated after thawing. No adverse cytological findings were noted, and no segregant cells were observed.</td>
<td>The authors felt that the technique should also apply to preservation of adult tissue.</td>
<td>1-2 hr</td>
<td>Several days</td>
<td>6-7</td>
<td>Culture dishes, stoppered glass vials, cotton-filled paper cup, Revco freezer, water bath, tissue mincer</td>
<td>Preservation of tissue and tissue cultures</td>
<td>Stanchever (1965)</td>
</tr>
<tr>
<td>Tissue culture cells</td>
<td>Previously cultured cells (7 yr old cell line)</td>
<td>The cryoprotective action of 26 chem agents on tissue culture prep was investigated by testing the reproductive integrity of cells from a tissue culture cell line after freezing. The plating efficiency of individual cells was determined by Puck's cloning technique.</td>
<td>Cells frozen in normal tissue culture medium contg 0.5% lactalbumin hydrolysate and 5% calf serum in Hank's balanced salt soln had an av survival of 16.3%. The best cryopreservatives were ethylene glycol, propylene glycol, glycerol, DMSO, pyridine-N-oxide, and hexamethylenetetramine. Others had lesser effect or were toxic to the cultures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evaluation of cryoprotective agents</td>
<td>Vos (1965)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>161. Tissue culture cells</td>
<td>Tissue cultures</td>
<td>4 ml ampules contg human embryo fibroblasts, or one of five other cell lines, were control-rate frozen in 7.5% DMSO after heat sealing using a Linde BF 3-2 freezing app. Ampules contg each kind of cell were later removed from storage at liq nitrogen temp and stored for 9 days in cardboard cartons in a styrofoam box contg dry ice. On days 2, 4, 7, and 9 samples of each cell line were thawed and checked for viability.</td>
<td>Short term storage of tissue culture cells in dry ice for 9 days had no observable effects on cells previously stored for long periods in liq nitrogen.</td>
<td></td>
<td><1 hr</td>
<td>9 days at dry ice temp</td>
<td>3</td>
<td>Linde BF 3-2 freezer, styrofoam dry ice container, ampules, heat sealer, water bath</td>
<td><1 hr</td>
<td>9 days at dry ice temp</td>
</tr>
<tr>
<td>162. Tissue</td>
<td>Solid block of human tissue</td>
<td>Tissue blocks were frozen on the chuck of a rocking microtome using solid carbon dioxide. 5 μ tissue slices were cut at -20°C and collected in weighed pots. Sectioned tissue was eluted with normal saline buffered with phosphate to pH 7.6 (3 ml/gm sliced tissue). A slurry of tissue and buffer was agitated or mixed 3 hr and left standing overnight at 2°C. The suspension was centrifuged and the supernatant pipetted. Supernatants and/or unmacerated tissue sections can be stored at -20°C.</td>
<td>This technique was a superior method for homogenation, and it produced more disrupted cells than other standard methods.</td>
<td></td>
<td>1 day</td>
<td>Not given</td>
<td>6-7</td>
<td>Cambridge rocking microtome, containers for sample, pipettes, rotary mixer, deep freezer or Bright's cryostat</td>
<td>Not given</td>
<td>Up to 35 days</td>
</tr>
<tr>
<td>163. Tooth dentin and cementum</td>
<td>Freshly extd human tooth roots</td>
<td>Human tooth roots were freed of soft org matter, cut into buccal and lingual halves 5-mm long, with nicks made on both inner and outer root walls. Roots were placed in a freezer at -5°C immediately after exta for storage, then thawed and implanted into the subcutaneous tissue of rat for up to one yr. Host tissue reactions and histochemical changes in the transplanted tooth were noted.</td>
<td>Roots could be preserved up to 35 days in this manner with 27 days being the av. Freezing caused quantitative but not qualitative changes, and tissue reactions were seen earlier and to a greater degree than with fresh implants.</td>
<td></td>
<td>Not given</td>
<td>Up to 35 days</td>
<td>4-5</td>
<td>Surgical tools, freezer</td>
<td>Not given</td>
<td>Up to 35 days</td>
</tr>
</tbody>
</table>
FREEZING (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>164. Toxoplasma gondii</td>
<td>Tissue culture suspension of infected cells and free organisms</td>
<td>The Rh strain of Toxoplasma gondii was cultured in vitro in 4 oz bottles on bovine kidney cells in Eagles minimum essential medium plus nonessential amino acids and 10% fetal calf serum. Infected cells were scraped from the culture bottle, transferred to centrifuge tubes, and spun for 30 min. The resulting pellet was resuspended in medium, using 7% DMSO, added to sterile ampules which were then sealed, and slowly frozen to -45°C. The ampules were stored in a liquid nitrogen freezer</td>
<td>Viable, infectious Toxoplasma were demonstrated by mouse inoculation after 333 days of storage.</td>
<td>Infected cell cultures incubated at 37°C did not survive longer than 7 days, but the cell culture method was still considered a good one for production of clean, uniform seed stock.</td>
<td>3-4 hr</td>
<td>333 days</td>
<td>9-10</td>
<td>4 oz bottles, rubber scraper, incubator, centrifuge tubes, centrifuge, ampules, heat sealer, refrigerator, liquid nitrogen freezer, paper tubes, liquid nitrogen freezer LH-25-G (Linde)</td>
<td>Maintenance of type cultures</td>
<td>Poole (1969)</td>
</tr>
<tr>
<td>165. Trichomonas vaginalis</td>
<td>Pooled cultured organisms</td>
<td>Trichomonads were grown axenically on trypticase-yeast extract-maltose medium containing agar. After 72 hr cultures were pooled, centrifuged, and the flagellates resuspended in fresh medium without agar to which 5% DMSO was added. Samples were put in screw-cap vials, frozen to -35°C at 3°C/min, then rapidly to -196°C, and finally were stored over liquid nitrogen. Virulence of stored samples was assayed by a special mouse test.</td>
<td>Trichomonads thawed and subcultured after 2 yr showed no loss of virulence compared to nonfrozen controls.</td>
<td>Culture dishes, centrifuge, screw-cap vials, Caneco freezing unit, liquid nitrogen container</td>
<td>1-1½ hr</td>
<td>2 yr</td>
<td>6-7</td>
<td>Culture dishes, centrifuge, screw-cap vials, Caneco freezing unit, liquid nitrogen container Trypticase-yeast extract-maltose medium, agar, DMSO, liquid nitrogen</td>
<td>Maintenance of microorganism line</td>
<td>Diamond (1965)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>166. Tryphosphopyridine nucleotide, reduced</td>
<td>Incubated mixt</td>
<td>TPN was prepared from sheep liver by ion exchange chromatography. TPNH was prepared enzymatically as follows: TPN was dissolved in 0.1 M phosphate buffer, pH 7.5. 0.1 M MgCl₂ and 0.05 M d-isocitrate were added. The reaction was started by a phosphate est, pH 7.5, of washed, dried pig heart contg isocitric dehydrogenase. The reaction was allowed to continue 30-60 min until optical density of 340 nm was reached. The incubated mixt was adjusted to pH 9.0-9.5 and placed in a boiling water bath 3 min. The resulting suspension was centrifuged 5 min, and the supernatant was stored at -196°C.</td>
<td>TPNH soln could be stored for months at -15°C and still maintain its extinction coefficient at 340 nm.</td>
<td>Approx 2 hr</td>
<td>Several</td>
<td>3-6</td>
<td>Incubator, flasks, boiling water bath, centrifuge, freezer</td>
<td>Standard for enzyme studies</td>
<td>Nason (1953)</td>
<td></td>
</tr>
<tr>
<td>167. Trypanosomes</td>
<td>Neparalised blood contg live organisms</td>
<td>Blood samples contg Trypanosoma brucei were extd from infected live mice by cardiac puncture with heparin as anticoagulant. The blood mixt was cooled to 0°C, and 1 ml aliquots were added to Wasserman tubes contg glycerol or DMSO. Thick-walled capillary tubes were filled 2 cm with each sample and sealed. The capillary tubes were plunged into liq nitrogen at -196°C for approx 3 sec, then stored under liq nitrogen until used.</td>
<td>Samples stored without cryoprotectants dropped 1.3 log units after 4 days preservation. From 4-200 days, infectivity remained stable. Glycerol and DMSO did not protect the organisms against loss of viability or infectivity.</td>
<td>3-10 min</td>
<td>200 days at -196°C</td>
<td>4</td>
<td>Microhematocrit capillary tubes, Dewar flask with liq nitrogen, hypodermic syringe, Wasserman tubes (75x10 mm), forceps, boxes Glycerol, DMSO</td>
<td>Maintenance of viable strains</td>
<td>Herbert (1968)</td>
<td></td>
</tr>
<tr>
<td>168. Trypanosomes</td>
<td>Cultured trypanosomes</td>
<td>Trypanosoma brucei stabilate from 50°C was deep-frozen, thawed, and immediately examined by electron microscopy to see whether any cell abnormalities could be detected which would account for low infectivity immediately after thawing.</td>
<td>There is gross dilatation of the mitochondrial envelope of the DNA core of the kinetoplast.</td>
<td>Freezer</td>
<td>Infectivity studies with trypanosomes</td>
<td>Macadam (1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tsetse flies or sandflies containing trypanosomes</td>
<td>Whole tsetse or phlebotomine sandflies</td>
<td>Whole, naturally-infected tsetse flies or phlebotomine sandflies were frozen 'dry' with no preservative or 'wet' in 8% glycerol and 10% DMSO made up in phosphate-buffered saline, fetal calf serum, or normal rat serum. Cooling rate was approx 2°C/min down to -40°C.</td>
<td>All 'wet' mix resulted in good preservation of the whole insect. Live trypanosomes were recovered from the mouthparts, salivary glands, and midguts of the frozen flies after preservation up to 18 wk, even after having been thawed and refrozen. One infection of sandfly flagellate was cultured and successfully sub-passaged.</td>
<td>Tissues were excellently preserved, and peristaltic movements were often seen in insects dissected after storage. The technique is useful for field work.</td>
<td>1-2 hr</td>
<td>>18 wk</td>
<td>2</td>
<td>Liq nitrogen freezer, 8% glycerol, 10% DMSO, phosphate-buffered saline, fetal calf serum, rat serum</td>
<td>Tissue culture of parasitic organisms living in the host insects, and histological studies of the host</td>
<td>Minter (1970)</td>
</tr>
<tr>
<td>Tumor tissue (cells, strips, or pieces)</td>
<td>A variety of tumors (mostly mouse, rat, or hamster) were cultured, harvested, and placed in a freezing medium containg 75-80% Eagle's Basal Media with Hank's balanced salt soln, 15% horse serum, 10% penicillin or streptomycin/ml. The samples were frozen in sealed ampules at 1°C/min to -80°C, then rapidly cooled to -190°C.</td>
<td>Viability and histological characteristics of most tumors tested may be preserved for long periods by use of frozen storage. Sensitivity of tumors to chem agents did not seem to be altered by this technique.</td>
<td>DMSO was a better cryoprotectant than glycerol for Hogderson Sarcoma and marine chondrosarcoma.</td>
<td>Not given</td>
<td>Up to 4 yr; av 1 yr</td>
<td>4-5</td>
<td>Linde BF-3-2 freezer or dry-ice freezer, strip recorder, thermocouple, ampules, Petri dishes, metal covers, stoppered vials</td>
<td>Tumor tissue bank</td>
<td>Kline (1964)</td>
<td></td>
</tr>
<tr>
<td>Tumor tissue</td>
<td>Freshly excised normal or neoplastic tissues</td>
<td>Dextran 3, 10, 20, 40, 80, and 120; PVP; glycerol; and DMSO were prepared with Hank's balanced salt soln in conc of 3, 5, 10, 15, 20, 25, 30, 35 and 40%. These soln were tested for protection of normal neoplastic tissues (such as hamster cheek pouch, Sarcoma 180, Novikoff hepatoma, mouse breast adenocarcinoma, and 591 Cloudman melanoma) against freeze-thaw damage to cellular nucleic acid and glycine-related synthetic systems. Most soln were adjusted to pH 7.4 before use, and tissues were frozen at 1°C/min from 4°C to -350°C, then rapidly to -70°C.</td>
<td>Glycerol and DMSO at 10 and 20% conc were greatly superior to ether compounds tested. DMSO was effective in a broader range of conc than glycerol.</td>
<td>Approx 1 hr</td>
<td>Not given</td>
<td>5-6</td>
<td>Surgical tools, Petri dishes, Canalo freeze storage freezer</td>
<td>Study of nucleic acid and glycine-related synthetic systems in normal or neoplastic tissues</td>
<td>Woolfrey (1964)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGNAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>172. Tumor tissue</td>
<td>Freshly excised mouse tumor</td>
<td>Murine tumors were removed from donor animals at the optimal stage of growth and were placed in wide-mouthed glass vials contg 8 ml of a medium consisting of 70% Hank's balanced salt soln, 15% horse serum, with or without 20% glycerol or 10% DMSO. The tumors were agitated for 15 min on a shaker at 4°C, the medium was removed and the vials were flame sealed. Tumors were slowly frozen in a Linde BR-3-2 nitrogen freezer to -196°C, then fast frozen to -190°C and stored at that temp. Mouse tumors can be successfully stored by freezing in the presence of glycerol or DMSO. However, DMSO gives better protection. Percent of tumor takes on reimplantation was given for the various tumors studied, and enzyme activities after freezing were also given.</td>
<td>2 hr Not given 6</td>
<td>Surgical tools, wide-mouth glass vials, mechanical shaker, flame sealer, Linde BR-3-2 freezer, thermocouple, Electronik 17 strip recorder, Linde LNR 640-B storage freezer</td>
<td>Tumor preservation</td>
<td>Ellis (1965)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173. Tumor tissue</td>
<td>Freshly excised tumor tissue</td>
<td>A large variety of neoplasms were diluted with a freezing medium contg 80% Eagle's basal medium, 15% calf serum, and 5% glycerol. They were then homogenized, and suspensions were sealed in ampules and frozen at 1°C/min to a final temp of -70°C. Samples were stored in a liquid nitrogen refrigerator. After storage they were inoculated into animals to test their viability. 53 out of 55 tumors remained viable up to 1 yr. 40-95% of ascites tumor cells survived storage without producing change in mean survival time when implanted in new hosts. Drug sensitivity of tumors was unchanged after freezing.</td>
<td>2 hr 1 yr 5-6</td>
<td>Homogenizer, ampules, liquid nitrogen refrigerator, Canaco freezer</td>
<td>Maintenance of tumor tissue bank</td>
<td>Rodinsky (1965)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174. Tumor tissue</td>
<td>Minced tumor tissue</td>
<td>Minced tumor tissue was suspended in Hank's balanced salt soln 1:1, without addition of serum. Either glycerol, 5%, or dimethyl sulphoxide, 7.5%, was added; and the mix was placed in 4 ml quantities into plastic tubes and sealed. Samples were stored at 4°C for 30 min then cooled in a freezer at 1°C/min to -196°C. 40 tumor strains were tested and many showed 75-100% takes on transplantation after 1 yr. Others exhibited irregular behavior during storage. Hank's soln plus 5% glycerol or 7.5% DMSO was suitable for freezing most tumors tried. In some cases, however, a supercooling effect during freezing destroyed the tumor viability. This was overcome by hand-regulating the liquid nitrogen influx during the critical time.</td>
<td>1-2 hr > 1 yr 6</td>
<td>Tissue mincer, plastic tubes, P-F-3-1 freezing app (Union Carbide Ltd), heat sealer, refrigerator, liquid nitrogen freezer</td>
<td>Tumor transplants</td>
<td>Gericke (1966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>175. Urine</td>
<td>Fresh canine urine or blood serum</td>
<td>Urine from a nephritic dog was placed in the barrel of a 20 ml plastic syringe and frozen at -4°C overnight. The plastic syringe barrel was placed on top of a 5 ml glass bottle in the bottom of a 100 ml centrifuge bucket, wrapped, and centrifuged for 1 min at 3,500 rpm at room temp. A yellowish liq was obtained from the glass bottle, leaving a cast of frozen colourless ice in the syringe barrel.</td>
<td>This technique will not work if the substance is frozen beyond a critical temp (not given).</td>
<td>This method was primarily a separ method, but could be coupled with protein preservation. Water froze first in serum and urine, and other substances suspended or dissolved therein were trapped in the lattice work of ice crystals in a conc form, and were then removed by centrifugation. If all constituents are frozen the method will not work.</td>
<td>Few min</td>
<td>Not given</td>
<td>2-3</td>
<td>20 ml plastic syringe, 5 ml glass bottle, 100 ml centrifuge bucket, centrifuge wrapping material</td>
<td>Protein anal using Biuret method; sodium anal using Beckman spectrophotometer</td>
<td>McErlean (1966)</td>
</tr>
<tr>
<td>176. Urine</td>
<td>24 hr human urine specimen</td>
<td>Urine samples to be subjected to amino acid electrophoresis or chromatography were conc to a uniform level by first drying 3 ml aliquots down in vacuo over conc H₂SO₄. The dried samples were kept in a deep freeze until needed, at which time they were reconstituted to 2 ml with 0.01 N HCl.</td>
<td>Urine samples handled this way may be kept for years. Asparagine and glutamine were especially stable in urine samples stored by this method.</td>
<td>Few hr</td>
<td>Several yr</td>
<td>3-4</td>
<td>Containers, dessicator, freezer, H₂SO₄, 0.01 N HCl</td>
<td>Urine electrophoresis or chromatography</td>
<td>Pasieka (1968)</td>
<td></td>
</tr>
<tr>
<td>177. Urine</td>
<td>Freshly voided human urine</td>
<td>The effect of urine storage at room temp and at -20°C on ammonia content and pH was investigated using a direct method for ammonia determination.</td>
<td>Noninfected urine can be stored in sterile, stoppered bottles for 48 hr at room temp and for 8 wk at -20°C without change in ammonia content or pH.</td>
<td>Few min</td>
<td>48 hr at room temp; 8 wk at -20°C</td>
<td>1-3</td>
<td>Sterile test tubes, sterile stoppered bottles, paraffin sealer</td>
<td>Urine anal by Berthelot indophenol reaction directly on diluted urine</td>
<td>Gips (1970)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>178. Uterine horns</td>
<td>Freshly excised rat uterine horns</td>
<td>Female rats were killed after 6 days of diethylstilbestrol injections. The uterine horns were removed and incubated in a modified physiol saline soln congt varying amt of either glycerol or DMOS. The horns were finally plunged into liq nitrogen then thawed after 1 hr. The effects of cryoprotectant cone, incubation time, and temp on freezing and thawing damage were noted.</td>
<td>DMOS was no more effective than glycerol as cryoprotectant. Drug-induced contractions were normal, but electrolyte balance was altered with both substances. Slow thawing to reduce osmotic shock caused further electrolyte imbalance.</td>
<td>Sufficient time to allow intracellular penetration of the cryoprotectant seemed to be the most important step in preservation by this method.</td>
<td>Varied with method</td>
<td>Were thawed after 1 hr</td>
<td>Varied</td>
<td>Incubator, liq nitrogen container, air bubbler, freezer</td>
<td>Study of cryoprotsectants</td>
<td>Carroll (1968)</td>
</tr>
<tr>
<td>179. Uterine horns</td>
<td>Freshly excised rat uterine horns</td>
<td>Rat uterine horns were excised and incubated at 37°C in physiol saline soln congt MgSO4 or MgSO4 and glycerol. The horns were frozen in liq nitrogen and thawed with physiol saline soln congt varying amt of calcium. The effects of these procedures on contractility were measured.</td>
<td>MgSO4 alone or with glycerol was not an effective cryoprotectant for uterine horns frozen at -190°C. Both omission of, or a 10-fold increase in, calcium changed the electrolyte balance in thawed tissue for the worse.</td>
<td></td>
<td>Varied</td>
<td>Not given</td>
<td>3-4</td>
<td>Liq nitrogen freezer, incubator, containers</td>
<td>Freeze-thaw effect on uterine horn contractility</td>
<td>Lin (1968)</td>
</tr>
<tr>
<td>180. Viruses</td>
<td>Measles virus suspended in support medium</td>
<td>Attenuated measles virus was incubated 6-9 days at 32°C, pooled with maintenance medium, and centrifuged. Either DMOS or another protectant congt calcium lactobionate and normal human serum albumin was added, and samples were frozen at -78°C, -40°C, and -20°C. The samples were also lyophilized at 0°C, -20°C, -40°C and -78°C. Comparisons of activity titres were made to determine optimum freezing and drying temp.</td>
<td>The smallest loss of titre (39 log) was found in suspensions stored for 180 days at -40°C. These were lower than those stored at -20°C or -65°C.</td>
<td></td>
<td></td>
<td></td>
<td>180 days</td>
<td>3-4</td>
<td>Lyophilizer with special tube attachment, centrifuge, pyrex tubes, pipette, water bath, ice bath or freezer</td>
<td>Strain maintenance for research</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Viruses</td>
<td>Cultured BVD virus strains</td>
<td>Cultures of BVD virus were given the following treatment prior to filtration. They were: 1) freshly grown in susceptible cells, 2) stored at -75°C for 1-4 yr, 3) frozen and thawed for 3 cycles of -70°C and 37°C, 4) sonicated at 20,000 cps for 10 min, 5) incubated with 0.1 mg/ml of ribonuclease for 30 min at 25°C. Samples were then centrifuged and ultracentrifuged, and the resultant changes reported.</td>
<td>Storage of cytopathogenic NADL virus for 1.5 yr at -75°C altered the visible particle size and increased the filterability, whereas storage of noncytopathogenic BVD virus for 3 yr at -75°C did not increase filterability significantly. Multiple freeze-thaw or sonication of the two types of viral cultures produced a reverse effect on filterability.</td>
<td>Not given</td>
<td>Up to 4 yr</td>
<td>Centrifuge, ultracentrifuge 0.1 mg/ml ribonuclease (others, if any, not given)</td>
<td>Viral culture maintenance</td>
<td>Fernelius (1968)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFRIGERATION

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>182. Blood Blood</td>
<td>Freshly collected whole human blood</td>
<td>Blood from two human donors was expressed into siliconized flasks contg ACD. Aliquots were stored in capped containers at 4°C or placed in a 37°C water bath. All samples were swirled weekly. Analyses of nucleotide content were carried out on fresh samples and at intervals on stored samples until the samples were considered 'outdated'. The nucleotide metabolic breakdown pattern during storage was studied.</td>
<td>ATP followed the pattern ATP → ADP → AMP → IMP → hypoxanthine in aging blood. ATP steadily decreased while hypoxanthine increased. The reactions took 8 wk at 4°C and 3 days at 37°C.</td>
<td>Few min</td>
<td>72 hr at 37°C, up to 8 wk at 4°C</td>
<td>3</td>
<td>Blood collection app, siliconized flasks, pipettes, refrigerator, capped bottles, water bath</td>
<td>ACD soln</td>
<td>Transfusions</td>
<td>Bishop (1961)</td>
</tr>
<tr>
<td>184. Blood Blood</td>
<td>Freshly drawn whole human blood</td>
<td>Whole blood samples for use in measuring blood pH should be stored in ice water, if the pH cannot be measured immediately after collection. Sodium fluoride can be used to delay glycolysis, but it does introduce some error.</td>
<td>Whole blood may be stored in ice water up to 2 hr with less than 0.015 units change in pH. For precise detn of PCO₂, blood samples should not be stored in ice water for more than 1 hr. Sodium fluoride between 10⁻³ and 10⁻⁴ M conc can be used to delay glycolysis; however, the conc is critical. Even when the conc was optimum, sodium fluoride introduced a variable error of 0.006 to -0.014 pH units.</td>
<td>Few min</td>
<td>3-2 hr</td>
<td>2</td>
<td>Blood collection app, containers, ice-water bath</td>
<td>Anal of pH and PCO₂ of whole blood</td>
<td>Gambino (1965)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>185. Blood</td>
<td>Freshly collected whole blood</td>
<td>Human blood was stored in its oxygenated form, and after deoxygenation with nitrogen, for 14-56 days at 4°C in the following preservation media: ACD or CPD, adenine plus ACD or CPD, and adenine plus ACD or CPD buffered to pH 7.2 with tris(hydroxymethyl)aminomethane. Biochemical changes during storage in these media were noted.</td>
<td>Storage of deoxygenated blood resulted in a rapid decrease of pH, an increase in lactic acid, and a less rapid change in oxygen affinities and 2,3-DPG levels. Storage at neutral pH maintained 2,3-DPG levels and oxygen affinity. Addition of adenine increased ATP somewhat. 2,3-DPG level was dependent on pH. Minor Hb levels were essentially unchanged.</td>
<td></td>
<td>>1 hr</td>
<td>Up to 56 days</td>
<td>Varies with method</td>
<td>4-7</td>
<td>Sterile plasma flasks, DeliMax disposable filter, bottle shaker, refrigerator</td>
<td>Transfusions</td>
</tr>
<tr>
<td>186. Blood</td>
<td>Freshly collected ACD-blood</td>
<td>Freshly collected ACD-blood was left undisturbed at 4°C for 12-24 hr. About half the supernatant plasma was removed under sterile conditions. The plasma was pooled and used for production of stable plasma fractions. The remaining unit of partly deplasmatized blood can be used for transfusions without further treatment.</td>
<td></td>
<td>Partly deplasmatized blood had hematocrit at near normal levels and may be stored for 3 wk at 4°C. Its properties were essentially identical with whole blood.</td>
<td></td>
<td>12-24 hr</td>
<td>3 wk</td>
<td>4</td>
<td>Containers, blood collection app, refrigerator</td>
<td>ACD soln</td>
</tr>
<tr>
<td>187. Blood</td>
<td>Freshly drawn human donor blood</td>
<td>Blood was collected from young, non-smoking males in units (450 ml). During collection the blood was diverted into two Fenwal plastic bags each containing either ACD or CPD with or without added adenine and/or inosine preservatives. The bags were then stored at 4°C in a blood bank refrigerator. Aliquots of these samples were used to determine oxygen dissociation curves and conc of 2,3-DPG. The changes in oxygen affinity which occurred during blood storage in these preservatives were summarized.</td>
<td>Deterioration of Hb in stored blood due to decline of 2,3-DPG conc in red blood cells occurred less in blood stored in CPD than in blood stored in ACD (probably due to the higher pH of the former). Adenine added to CPD-stored blood lowered 2,3-DPG, whereas inosine added to the CPD-adenine mixt, either initially or on day 25 of storage, regenerates 2,3-DPG so that Hb function could be preserved for a longer time during storage.</td>
<td></td>
<td>Few min</td>
<td>14-26 days optimum; up to 40 days sub-optimum</td>
<td>2</td>
<td>Blood bank collection app, Fenwal plastic bags, blood bank refrigerator</td>
<td>Transfusions</td>
<td>Dawson (1970)</td>
</tr>
</tbody>
</table>
REFRIERATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPT</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STIPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>188. Blood</td>
<td>Freshly collected human blood</td>
<td>Various preservatives and additives for blood were investigated to see if high 2,3-DPG levels could be maintained in red blood cells during storage.</td>
<td>Inosine added to ACD-adenine blood on the 6th day (when DPG normally drops to half the normal value) kept DPG above 6th day levels for 8-12 days. Weekly additions of small amount of inosine to ACD-adenine blood maintained high levels of both ATP and DPG and also reduced toxic side effects of a large initial addition of inosine.</td>
<td>Not given</td>
<td>2½ wk 7</td>
<td>4-5</td>
<td>Blood collection app, ACD, adenine, inosine</td>
<td>Transfusions</td>
<td>Devverger (1970)</td>
<td></td>
</tr>
<tr>
<td>189. Blood cells, Red</td>
<td>Freshly collected whole human blood</td>
<td>Whole blood was stored at 4°C in either ACD or CPD anticoagulant for 21 and 28 days. In vivo viscosity of the stored cells was measured, and it was found that the rate of ATP present was related to the postinfusion viscosity of stored cells. Correlation between poststorage ATP levels and red blood cell viscosity was not as significant.</td>
<td>ATP levels decreased less than 5% in the first 24 hr of storage at 4°C in ACD or CPD. After this time ATP began to decrease and the rate of decrease was related to the viability of the blood. CPD was the preferred anticoagulant for storage over 21 days, possibly due to the fact that it better preserves the ATP.</td>
<td>Few min</td>
<td>21-28 days</td>
<td>3</td>
<td>Refrigerator, blood collection app, modified plastic blood containers, pipettes ACD anticoagulant, CPD anticoagulant</td>
<td>Transfusions</td>
<td>Derm (1967)</td>
<td></td>
</tr>
<tr>
<td>190. Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>Rate of loss of 2,3-DPG was investigated under the following storage conditions: 1) storage in ACD soln, 2) storage in CPD soln with or without adenine at varying pH, 3) storage in CPD, 4) storage in ACD and CPD with or without adenine.</td>
<td>After 2 wk storage of blood at 4°C in ACD soln, 65-85% of the red-blood-cell 2,3-DPG was lost; slightly less in CPD. Adenine increased the rate of loss of 2,3-DPG, while an alk pH helped maintain 2,3-DPG levels but adversely affected ATP. 2,3-DPG is restored gradually on reinfusion, but the process may take more than a day. Because of loss of 2,3-DPG, stored blood may fail to transport oxygen efficiently for many hr after reinfusion.</td>
<td>Few min</td>
<td>3-3 wk</td>
<td>Varied</td>
<td>Blood collecting app, Fenwal plastic bags, refrigerator, centrifuge, Bahnoff shaker, hypodermic syringes Citrate soln, glucose, adenine, phosphate buffer, CPD soln, ACD soln, heparinised plasma, penicillin, streptomycin, CO₂</td>
<td>Transfusions</td>
<td>Beutler (1969)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Blood cells, red</td>
<td>Freshly drawn human blood</td>
<td>Several units of blood were collected in ACD soln, or into ACD soln contg 0.5 mM adenine, and were stored in a blood bank refrigerator. Blood was separated into types A and O. Type O was reinfused as an autologous transfusion, or was given as a type-specific homologous transfusion, or was administered to type A recipients.</td>
<td>During storage plasma Hb and potassium increased less with adenine, however. A small increase in osmotic fragility was noted on longer storage. Hematocrit and pH decreased. Adenine units had higher survival times and a 70% 24 hr posttransfusion survival even after 42 days of storage.</td>
<td>Eleven out of twelve recipients of type-specific homologous transfusions developed mild urticaria.</td>
<td>Few min</td>
<td>42 days</td>
<td>4</td>
<td>Blood collection app, refrigerator, flasks or bags</td>
<td>Transfusions</td>
<td>Shields (1969)</td>
</tr>
<tr>
<td>Blood cells, red</td>
<td>Freshly collected human blood</td>
<td>The role of phosphorylated compounds in red cell preservation was studied by incubating blood for 4 hr at 37°C with ACD and various combinations of adenine, adenosine, inosine, guanosine, and inorg phosphorus. Blood samples were then stored at 4°C. The effect of pH on many of the combinations was also investigated.</td>
<td>ACD plus adenine and inosine at pH 6.0 gave good storage for 3 wk. Almost all other combinations were good for 2 wk along with controls. Addition of adenine and inosine, adjustment of pH, and a short incubation period before storage increased ATP and DPG.</td>
<td>Incubated 4 hr</td>
<td>2–3 wk</td>
<td>Viried</td>
<td>Blood collection app, containers, refrigerator, incubator</td>
<td>Transfusions</td>
<td>Chamartin (1970)</td>
<td></td>
</tr>
<tr>
<td>Blood cells, red</td>
<td>Freshly collected human blood</td>
<td>Red blood cells from one donor were used to test the effect of colloids such as gelatin, high mol wt dextran, albumin, or hydroxyethyl starch as replacements for plasma in ACD-plasma preservative for red blood cells. Inorg phosphate or adenine added to the nonplasma mixt were also investigated as blood preservatives.</td>
<td>The ATP content was lower by 1/3 in all cases where plasma was replaced by another medium. Samples contg ACD plus adenine that were stored 4 wk showed 71.8% av survival 24 hr posttransfusion.</td>
<td>The authors also presented a detection method for impurities in adenine using thin-layer chromatography.</td>
<td>Not given</td>
<td>Up to 5 wk</td>
<td>Viried</td>
<td>Blood collection app, refrigerator, test tubes, centrifuge</td>
<td>Transfusions</td>
<td>Gaskarth (1970)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>194 Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Units of blood collected into plastic bags contg ACD were stored overnight in a cold room and centrifuged in the morning. 0.9% NaCl soln was added to some samples before storage, inosine-adenine-guanosine soln was added to others, and the effects on K⁺ and ATP were noted. CPO was compared with ACD as a packed-cell preservative. Some effects of ACD and temp on 2,3-DPG and ATP levels during storage were also investigated.</td>
<td>Loss of ATP in packed cells stored in CPO was counteracted by a higher rate of glycolysis.</td>
<td>Few min</td>
<td>2-3 wk</td>
<td>3-5-</td>
<td>194: Blood collection app, transfusion bottles, triple collection bags, refrigerating various packing materials, centrifuge, ice bath</td>
<td>ACD, CPO, 0.9% NaCl soln, inosine-adenine-guanosine soln</td>
<td>Prins (1970)</td>
<td></td>
</tr>
<tr>
<td>195 Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Blood samples were preserved with the following combinations of preservatives: ACD plus adenine; ACD plus adenine and guanosine; ACD plus inosine, adenine and guanosine. The results of these nucleosides on storage time and the metabolic state of the stored cells was reported.</td>
<td>A triple-bag storage system allowed tailored preservation, sep., and recombination of the cell and plasma fractions.</td>
<td>Not given</td>
<td>5 wk</td>
<td>Not clear, 3-6</td>
<td>195: Blood collection app, triple plastic collection bags, refrigerator</td>
<td>Adenine, guanosine, inosine, ACD</td>
<td>Seidl (1970)</td>
<td></td>
</tr>
<tr>
<td>196 Blood cells, Red</td>
<td>Freshly collected whole human blood</td>
<td>Blood from adult humans was collected into ACD-NIH-A anticoagulant in plastic bags. Other samples were collected in the same manner except that 0.25 and 2.50 µmoles/ml of adenine and inosine respectively were added. A fresh blood sample was drawn to detn the initial ATP level. The blood bags with additives were cooled in chipped ice for 30 min, then stored at 1°C for various periods of time. The ATP conc in red blood cells was measured after various lengths of storage time.</td>
<td>A 70% survival of red cell ATP occurred in blood stored up to 30 days with one addition of inosine and adenine, and up to 56 days with a double addition of the two amino acids.</td>
<td>30-45 min</td>
<td>Up to 56 days</td>
<td>4</td>
<td>196: Blood collection app, plastic storage bags, ice bath, refrigerator, pipettes</td>
<td>Adenine, inosine, ACD-NIH-A anticoagulant</td>
<td>Strumia (1970)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>197. Blood cells, Red</td>
<td>Freshly drawn human blood</td>
<td>Studies were conducted on the effects of adenine, adenosine, inosine, and ouabain on ATP levels in stored blood. Also studied were the effects of trauma due to shipping or moving plastic containers of blood, and the possible interaction of the stored blood with the plastic container itself. All of the above studies were carried out on blood stored with various preservatives.</td>
<td>Phosphate enhanced preservation of ATP and normal oxygen dissociation, and in CPD soln viable and 'more physiologic' cells were maintained up to 4 wk. Adenosine also preserved nucleotides and at 0.5 mM extended blood shelf life to 5 wk. An improved PVC plastic was the best plastic for storage. ACD, CPD and ACD-adenine gave approx the same yield of antihemophilic globulin cryoprecipitate in indicating that any of them may be used.</td>
<td>Inosine may also extend red cell preservation time, but it had not been thoroughly investigated as of 1970. The storage temp was not altogether clear. It was assumed blood was refrigerated at 4°C as usual.</td>
<td>Not given</td>
<td>4-5 wk</td>
<td>3-5; varied with method</td>
<td>Plastic containers, blood collection app ACD, CPD, adenosine, adenine, ouabain</td>
<td>Transfusions Warner (1970)</td>
<td></td>
</tr>
<tr>
<td>198. Blood plasma</td>
<td>Freshly collected human blood</td>
<td>Non-esterified fatty acid conc in plasma stored at 4°C, -20°C, and 20°C for up to 17 days was detd by Novak's method.</td>
<td>Non-esterified fatty acid conc was unchanged after 17 days if stored at 4°C or -20°C. Hepatine ext of plasma were stable for 7 days at 20°C.</td>
<td>This data did not agree with Forbes and Omlin (1959) probably because they used a less specific method and were titrating other org acids then those intended.</td>
<td>Few min</td>
<td>17 days</td>
<td>2-4?</td>
<td>Not given</td>
<td>Anal by method of Novak (1965)</td>
<td>Broeckoven (1968)</td>
</tr>
<tr>
<td>199. Blood platelets</td>
<td>Freshly drawn human blood</td>
<td>Human blood was collected from fasting donors into a plastic bag contg ACD anticoagulant. The blood was centrifuged, and the upper 3/4 of the platelet-rich plasma delivered into a plastic transfer pack. Excess ACD was added to prevent clumping. The platelet-ACD mix was centrifuged to sediment red blood cells, and the resulting platelet-rich plasma was finally ultracentrifuged to produce a platelet pellet. The pellet was washed, resuspended in wash fluid, and stored in plastic bags on ice until used. Glucose and fatty-acid oxidations were observed for various lengths of storage time.</td>
<td>Storage of human platelets at 4°C for 24 hr reduced the oxidative capacity for glucose by 25% and for long-chain fatty-acids by almost 50%.</td>
<td>The degree of osmolality of the medium was significant to the oxidation rates for oleic acid and glucose. Decreased osmolality caused decreased oleic acid oxidation but increased glucose oxidation.</td>
<td>1 hr</td>
<td>Samples were stored up to 48 hr but not without damage</td>
<td>9-10</td>
<td>Blood collection app, centrifuge, plastic transfer pack, ice bath, plastic blood bags ACD anticoagulant soln, 300 mM 300 potassium phosphate buffer</td>
<td>Transfusions (1970)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>200. Blood serum</td>
<td>Freshly drawn human blood</td>
<td>The effect of refrigeration on serum potassium was investigated. Blood samples were analyzed for potassium after storage at room temp and at 4°C for 24 hr.</td>
<td>Refrigeration of clotted blood resulted in a large increase (up to 230%) in serum potassium, while storage at room temp resulted in only a slight increase.</td>
<td>Blood specimens for anal of serum potassium should be centrifuged as soon as possible, and specimens should not be stored in the refrigerator.</td>
<td><1 hr</td>
<td>24 hr</td>
<td>2-4</td>
<td>Lustroid tubes, blood collection app, centrifuge, refrigerator</td>
<td>Anal of serum potassium by the flame photometer method</td>
<td>Goodman (1954)</td>
</tr>
<tr>
<td>201. Blood serum</td>
<td>Freshly drawn human blood</td>
<td>The effect of serum storage procedures on cephalin-cholesterol flocculation, zinc sulfate turbidity, phenol turbidity, and serum bilirubin were investigated. Samples of serum were stored at room temp or at 4°C with or without contact with the clot. Some samples were stored under mineral oil to keep them from reacting with air.</td>
<td>Decreased thymol and zinc sulfate turbidity values were observed in serum serum that was refrigerated overnight. Phosphol turbidity increased. Changes in thymol, zinc, and phenol turbidities were largely prevented by allowing serum to remain in contact with the clot during storage. Serum bilirubin conc decreased slightly during storage. Anaerobic storage prevented changes in thymol and zinc turbidities but not in phenol turbidity.</td>
<td>Few min</td>
<td>24 hr</td>
<td>2-4</td>
<td>Test tubes, refrigerator, Mineral oil</td>
<td>Hepatic function tests</td>
<td>Yonan (1957)</td>
<td></td>
</tr>
<tr>
<td>202. Blood serum</td>
<td>Freshly drawn human blood</td>
<td>Blood from healthy adult East Africans was collected in dry universal containers, and the serum was separated within 1-2 hr after centrifuging. After sepn the blood serum was either stored at room temp or at 4°C. Electrolytes were estimated within 24 hr with a flame photometer.</td>
<td>At room temp potassium levels rose 7.5% after 2 hr. At 4°C, levels rose 23% in 2 hr.</td>
<td>Serum should be separated immediately for potassium anal. Anal for potassium should be carried out within 2 hr, and blood samples or serum should not be refrigerated.</td>
<td>Few min</td>
<td>Serum should be separated and analyzed within 2 hr</td>
<td>2</td>
<td>Centrifuge, tubes, refrigerator, blood collection app</td>
<td>Blood serum potassium anal using a flame photometer</td>
<td>Ower (1965)</td>
</tr>
<tr>
<td>203. Endolymph</td>
<td>Freshly extd guinea pig cochlear endolymph</td>
<td>Endolymph was taken from the third turn of a guinea pig cochlea with a small glass pipette and placed in a 30 μl vial.</td>
<td>Not given</td>
<td>Not given</td>
<td>Not given</td>
<td>Pipettes, 30 μl vials, refrigerator, lyophilizer (?)</td>
<td>Thin-layer chromatography of mucopolysaccharides</td>
<td>Ishiyama (1968)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>204. Epidermal cells</td>
<td>Cultured epidermal cells from sea lion or sea flipper</td>
<td>Epidermal samples from the flippers of seals and sea lions were minced and incubated at 33° and 37°C in a modified Eagle's minimal essential medium. Cells were pooled and suspended in fresh medium in tissue culture flasks. These flasks were incubated at several temp between 4°C and 37°C for at least 10 days (some up to 3 wk). Other cells were held up to 6 mon at 4°C, and then were tested for viability at 37°C.</td>
<td>Seal epidermal cells stopped growing at 17° to 12°C but were viable when returned to 37°C. Controls also stopped growing at 17°C. Sample cells held up to 6 mon at 4°C were viable when returned to 37°C indicating a high degree of adaptation to hypothermia. Controls did not have this adaptability.</td>
<td>Pinnipeds offer unparalleled opportunities for investigation of cutaneous heat requirements and adaptation.</td>
<td>1 hr (after culturing)</td>
<td>6 mon at 4°C</td>
<td>3-4</td>
<td>Refrigerator, culture dishes, incubator, pipettes, shaker, flasks</td>
<td>Study of cutaneous cell cold adaptation</td>
<td>Feltz (1966)</td>
</tr>
<tr>
<td>205. Eye sclera</td>
<td>Whole scleral cup of cat eyes</td>
<td>Cat eyes were enucleated, washed with antibiotic, and refrigerated at 4°C up to 24 hr. The anterior segment was removed from the globe, the optic nerve was removed, and the eye was turned inside out and scraped to remove the retina, choroid, and pigment. After washing with antibiotic soln, the scleral cup was placed right-side out over a nylon mesh bag. It was then dehydrated in 95% anhydrous glycerine.</td>
<td>Preserved scleral grafts in cats were still intact after 110 days. Preserved grafts seemed to perform as well as fresh grafts. The grafts themselves were stored up to 12 wk before use.</td>
<td>A homograft reaction was rarely encountered in scleral grafts.</td>
<td>15-20 min</td>
<td>>12 wk</td>
<td>4 for dehydration; 2 for re-refrigeration</td>
<td>Surgical tools, refrigerator, nylon mesh bag, beakers or containers</td>
<td>Scleral grafts</td>
<td>Hassard (1967)</td>
</tr>
<tr>
<td>206. Gastric Juice</td>
<td>Neutralized human gastric juice</td>
<td>Gastric juice was collected from human volunteers after intragastric neutralization with sodium bicarbonate, and the lactic dehydrogenase activity was measured immediately. Two samples were stored at 4°C and two at -20°C, and the lactic dehydrogenase activity was measured daily.</td>
<td>After 7 days, neutralised human gastric juice stored at 4°C had approx 85-94% of the initial lactic dehydrogenase activity. Specimens stored 7 days at -20°C had less than half of the activity remaining. Freshly collected specimens were preferred, but if storage cannot be avoided, 4°C was the best storage temp.</td>
<td>Few min</td>
<td>7 days</td>
<td>3-4</td>
<td>Collection app, pipettes, storage containers</td>
<td>Anal of enzymes in gastric juice</td>
<td>Fenton (1966)</td>
<td></td>
</tr>
<tr>
<td>REFREGERATION (Continued)</td>
<td>ORIGINAL FORMATION</td>
<td>FORM OF SAMPLE</td>
<td>DESCRIPTION</td>
<td>LIMITATIONS OF METHOD</td>
<td>STEPS</td>
<td>REAGENTS USED</td>
<td>REFERENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------</td>
<td>---------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207.</td>
<td>Hemocyanin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208.</td>
<td>For experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.</td>
<td>Heart Freshly excised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Hemocyanin was prepared from the fish, Helix pomatia, and stored in sealed tubes at 4°C.
- Hemocyanin samples were examined by the method of Delley and stored in sealed tubes at 4°C.
- The study of hemocyanin properties was conducted using different methods described in various references.

Table Notes:
- Hemocyanin samples were examined by the method of Delley and stored in sealed tubes at 4°C.
- Hemocyanin samples were examined by the method of Delley and stored in sealed tubes at 4°C.
- The study of hemocyanin properties was conducted using different methods described in various references.

References:
- Delley's study on hemocyanin properties.
- Further studies on hemocyanin properties.
REFREGERATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>211. Heart</td>
<td>Freshly excised dog hearts</td>
<td>Excised living dog hearts and cadaver hearts were stored at 4°C in Ringer's lactate soln with or without perfusion with various perfusates. The effect of hypothermia, perfusate, and hyperbaric oxygen on myocardial contractility was measured.</td>
<td>Preservation by perfusion with colloidal plasma expander (6% hydroxethyl starch in 0.9% saline) at 4°C and normal pressure was the best method; however, all preservation methods produced a decrease in the contractile force.</td>
<td>Glutamic-oxaloacetic transaminase was used as an indicator of myocardial contractility. More than 600 U/gm indicated lack of contractility, but lower levels did not always indicate viability.</td>
<td>Varied</td>
<td>24 hr</td>
<td>Varied</td>
<td>Surgical tools, refrigerator, perfusion app, thermistor probe, EEG app, polyethylene balloon, catheters, plastic bags, pressure transducer, oxygen bubbler, steel hyperbaric chamber</td>
<td>Heart transplants</td>
<td>Garzon (1969)</td>
</tr>
<tr>
<td>212. Humans, Schizophrenic</td>
<td>Lightly anesthetized, naked schizophrenic patients</td>
<td>Naked and slightly anesthetized schizophrenic patients were placed between rubberized blankets that contained rubber coils through which a refrigerant was circulated. The refrigerant entered at a temp of -2°C to -5°C during the induction period and lowered the skin temp by 30°C or more. Patients were treated up to 48 hr with this treatment and observations were reported.</td>
<td>In 17 instances the patient's temp was below 37°C but the metabolic rate was elevated, often more than doubled, during the induction stages. This was mostly due to shivering. Voluntary movements continued at body temp of 30°C and below. Flexor muscles contracted. Acetonuria was at times intense and carbohydrate depletion was suspected. Respiratory vol was large initially, but dropped later. Several blood changes were reported, and acidosis was prevalent. Respiratory regulation remained effective to a body temp of 25°C.</td>
<td></td>
<td>48 hr</td>
<td>2</td>
<td>Rubberized blanket with rubber coils containing refrigerant</td>
<td>Study of human body function during hypothermia and treatment of schizophrenia</td>
<td>Dill (1941)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>213. Interferon</td>
<td>Fresh urine and serum from Sindbis virus-inoculated rabbits</td>
<td>Blood serum and urine from rabbits inoculated with Sindbis virus were immediately acidified with 2 M citric acid and dialysed at 4°C at pH 2.1 with constant stirring against 40 or more vol of 0.1 M citric acid for 4-5 days with 4 changes in order to preserve and isolate interferon. Urine precipitate was removed by centrifugation and freeze-dried. The urinary interferon-like viral inhibitor was compared to the serum interferon to see if the two were similar in properties.</td>
<td>The urinary interferon-like viral inhibitor was stable at pH 2 for up to 5 days at 4°C. It was nondialysable but highly susceptible to trypsic action, and it was reasonably heat stable.</td>
<td>4-5 days</td>
<td>Not given</td>
<td>4-6</td>
<td>Visking dialysis tubing, stirrer, large beakers, refrigerator, centrifuge, lyophilizer</td>
<td>Detection of interferon by the biuret method using bovine serum albumin as a standard; also, ass by UV absorption at 280 nm</td>
<td>Bocci (1967)</td>
<td></td>
</tr>
<tr>
<td>214. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Excised dog kidneys were stored under the following conditions: 1) hypothermia, 2) freezing at -10°C, 3) freezing with hyperbaric oxygenation, 4) hyperbaric oxygenation only, 5) hypothermia and hyperbaric oxygenation, and 6) hypothermia, hyperbaric oxygenation, and perfusion combined. The last combination gave the best 24 hr preservation method.</td>
<td>100% of the kidneys preserved for 24 hr in the hypothermia, hyperbaric oxygen chamber survived 2 wk after transplantation into animals in which immediate contralateral nephrectomy was performed.</td>
<td>pO₂ values of the perfusate were markedly raised, while pCO₂ values, initially low, showed a slight increase during the 24 hr preservation period. pH remained normal and constant.</td>
<td>20-30 min</td>
<td>24 hr or longer</td>
<td>4-5</td>
<td>Surgical tools, refrigerator, hyperbaric oxygen chamber, freezer, cannulation needles, pump, Tygon tubing, flasks, ivalon sponge, autoclave</td>
<td>Kidney transplants</td>
<td>Ackermann (1966)</td>
</tr>
<tr>
<td>215. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>The effects of graded hypoxia at 37°C and 7°C on total tissue water were measured on in vitro slices of canine renal cortex with and without the presence of low mol wt dextran. Slices were 0.3 mm thick and weighed 25-30 mg. They were incubated 30 min in 3 ml of modified Krebs-Ringer-phosphate soln with constant shaking, while a gas-oxygen mixt was bubbled into the medium through a 22 gauge needle. After incubation, slices were blotted, weighed, dried at 100°C, cooled in a desiccator, and reweighed to determine tissue wt loss.</td>
<td>Cell vol was maintained by an active energy-requiring process of the cell. Hypothermia, hypoxia, or other metabolic deprivations increased the cell vol in tissue slices in vitro. Reduction of oxygen concentration to 5% was required to produce significant cell swelling at 7°C. At 20% oxygen, or less, no significant hypothermic swelling occurred. Low mol wt dextran exerts a coloidal osmotic effect on in vitro tissues with reversal of hypothermic swelling.</td>
<td>Approx 1 hr</td>
<td>Not given</td>
<td>5-6</td>
<td>Surgical tools, microtome, incubator, shaker, 22-gauge hypodermic needle, balance, dessicator</td>
<td>Study of cell vol changes during hypothermia and hypoxia</td>
<td>Enerson (1966)</td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Dog kidneys, including the renal artery, vein, and ureter, were removed and perfused immediately with 10% dextran soln in physiol saline at 4°C for 5-8 min. When venous outflow was clear, the kidneys were placed in a sterile container contg Tis-U-Sol (Baxter Labs), and refrigerated for 24 hr at 4°C. Other samples were perfused at room temp and stored under oxygen pressure while a third set of samples were perfused at 4°C and stored under oxygen pressure and refrigeration. Results were compared.</td>
<td>Dogs survived more than 1 yr on transplanted kidneys stored 24 hr at 4°C under oxygen pressure.</td>
<td>Refrigerator or ice bath, sterile containers, pressure chamber, surgical tools and sutures</td>
<td>Kidney transplantation</td>
<td>Lidaga (1966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217. Kidneys</td>
<td>Whole fresh excised canine kidney</td>
<td>The right kidney of a normal adult dog was removed after a needle probe thermometer connected to a continuous recorder was inserted near the center of the kidney. The kidney was perfused with 100 ml of heparinized, autologous, arterial blood or Ringer's soln at a constant pressure of 1.5 meters of water using gravity drainage through the renal artery. The kidney was wrapped in lint and placed in a polythene bag contg 100 ml of Tc 199 medium (Glaxo) at 4°C. It was then kept at 0°C in a hyperbaric chamber for various lengths of time after which the organ was reimplanted.</td>
<td>Kidneys preserved 24 hr after perfusion at 2-3 atm of oxygen with autologous arterial blood were capable of supporting life after delayed opposite nephrectomy.</td>
<td>Hyperbaric storage chamber, surgical tools, needle probe thermometer, Kent recorder, perfusion app, lint wrapper, polythene bag</td>
<td>Transplants</td>
<td>Basso (1967)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Dog kidneys were excised and perfused with a low mol wt dextran soln at 0°C in order to make the organs totally ischemic and cool. Then they were kept refrigerated at 0°C for various periods of time up to 96 hr. The kidneys were reimplanted and their function observed for periods up to one yr.</td>
<td>Reimplanted kidneys functioned for one yr after preservation of up to 20 hr by this method. Renal blood flow, PAH and inulin clearances, and intrarterial blood pressure were good up to one yr after reimplantation.</td>
<td>Surgical tools, refrigerator</td>
<td>Kidney transplantation</td>
<td>Brunius (1967)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen Description</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Other Comments About Method</td>
<td>Estimated Preservation Time</td>
<td>Survival Time</td>
<td>No. of Steps</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>219. Kidneys</td>
<td>Whole, freshly excised canine kidneys</td>
<td>Canine kidneys were preserved for 24 hr by hypothermia, hyperbaric oxygen, and continuous low pressure perfusion with both sanguineous and nonsanguineous media (described).</td>
<td>Canine kidneys were successfully reimplanted after storage at low temp and pressure for 24 hr in a blood-heparin-TC 199 medium.</td>
<td>Few min 24 hr 4-5</td>
<td>Vickers' hyperbaric oxygen perfusion unit with attached refrigeration unit (described), bottles, cannulas</td>
<td>3 different storage media (50% homologous blood in TC 199 with 5000 units of heparin was most successful)</td>
<td>Kidney transplants</td>
<td>Hendry (1968)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220. Kidneys</td>
<td>Whole or sliced rat kidneys</td>
<td>Whole or sliced rat kidney was placed in flasks with 5 ml of Krebs-Ringer-bicarbonate buffer without glucose; gassed with oxygen-carbon dioxide, 95:5 (v/v) stoppered; and stored at 4°C without shaking. Sterile precautions were not taken, but some samples had 100 mg streptomycin and 100 units of penicillin added.</td>
<td>Amino acid transport in the preserved samples was similar to that of fresh tissue for up to 24 hr. Activity dropped to less than half after 8 days of storage.</td>
<td>5 min 24 hr 3</td>
<td>Flasks, refrigerator</td>
<td>Buffer, oxygen, carbon dioxide</td>
<td>Study of amino acid transport by kidneys</td>
<td>Lowenstein (1968)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221. Kidneys</td>
<td>Freshly excised dog kidney</td>
<td>Excised dog kidneys were immediately flushed with 5% Rheomacrodex, preceded in some cases with 0.5% procaine saline contg heparin until the perfusate was clear. Then a soln of eq parts 10% invert sugar and 1.3% bicarbonate at 37°C was infused into the kidneys. The organs were wrapped in gauze moistened in perfusate and stored at 5°C. After varying lengths of storage, the kidneys were reimplanted.</td>
<td>Organs preserved up to 20 hr with this technique can be reimplanted successfully. Function studies showed that some damage occurs to tubules and glomeruli, but that autologous implanted kidneys can survive successfully a year or longer.</td>
<td><1 hr 20 hr 5-6</td>
<td>Surgical tools, catheters, gauze compresses, refrigerator</td>
<td>5% soln of Rheomacrodex in normal saline, 15 procaine soln, 1% invert sugar soln - buffered with bicarbonate</td>
<td>Kidney transplants</td>
<td>Brunner (1969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>222. Kidneys</td>
<td>Heparinised whole rabbit kidney in situ</td>
<td>Kidneys were bathed in 10 mg of papavarine and preserved in situ in rabbits after the animal had been given 5-10 mg of heparin. The kidney and clamped pedicle were stored in the finger of a surgical glove and surrounded by iced saline slush at -0.5°C in the rest of the glove. The glove was inserted into a cooling coil and maintained at 0°C in stirred saline. At the end of storage, clamps were removed, the kidney was excised, and serum creatinine values were determined for 7 days. This method simulated removal and reimplantation without the variability.</td>
<td>The kidney could be stored up to 12 hr without perfusion. Creatinine values were 1.9 mg% for 8 hr and 2.6 mg% for 12 hr storage.</td>
<td>Simple heparinization prevented clotting for at least 12 hr of storage. 1/2 hr of warm ischemia following 7/2 hr of hypothermic storage was damaging, and might degrade the results of storage; therefore, a cooling device should be used during implantation.</td>
<td>13 min from clamping the artery to cooling to 0°C</td>
<td>8-12 hr without perfusion</td>
<td>6</td>
<td>Rubber glove or suitable container, cooling bath, bulldog clamps</td>
<td>Kidney transplants</td>
<td>Collins (1969)</td>
</tr>
<tr>
<td>223. Kidneys</td>
<td>Freshly excised dog kidneys</td>
<td>Dog kidneys were excised and flushed free of blood with 4°C, 8°C heparinized Ringer's lactate soln. The renal artery was cannulated, and the kidney placed in chipped ice. Slow perfusion was begun from a height of 1 m with ice cold saline, saline with 6% clinical dextran, or saline plus 6 gm/100 ml conc human albumin. Angiograms, wt changes, and gross changes were noted after various lengths of storage as indicators of degree of vascular bed obstruction.</td>
<td>Perfusion with albumin soln gave a wt gain of less than 2%, a good angiograph pattern, and a flow rate of 14 ml/min after 3 hr. Dextran perfusion was next best, while saline perfusion was least effective.</td>
<td>Few min</td>
<td>3½ hr</td>
<td>5</td>
<td>Surgical tools, cannulas, ice bath, perfusion app</td>
<td>Kidney transplants</td>
<td>Dienst (1969)</td>
<td></td>
</tr>
<tr>
<td>224. Kidneys</td>
<td>Whole excised baboon kidney</td>
<td>ATP was measured in the renal artery, vein, and urine of 32 baboon kidneys during isolated bloodless perfusion, under normothermic, normobaric conditions and oxygen or helium exposure in the fresh state, or after 24 hr hypothermic (4°C), hyperbaric (3 atm) preservation. Change in ATP level indicated a change in kidney viability.</td>
<td>Helium-exposed kidneys did not utilize ATP as well as oxygen-exposed ones. ATP had a direct renal vascular effect on kidneys perfused under either gas with evidence of some renal ATP utilization. ATP levels after 24 hr indicated depressed cellular enzyme function and mitochondrial O2 uptake capacity.</td>
<td>Not given; <1 hr</td>
<td>24 hr</td>
<td>6-7</td>
<td>Pulsatile perfusion system, surgical tools, refrigerator, chamber with temp and pressure control, containers. Heparinized saline, soln of 5% invert sugar and 6% dextran in saline, 8% NaN03, ag soln, urea, oxygen gas, helium gas, ATP in isotonic saline</td>
<td>Kidney transplants</td>
<td>Murphy (1969)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGIN OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>225. Kidneys</td>
<td>Freshly excised dog kidneys</td>
<td>Dog kidneys were perfused at normal atm pressure with modified, undiluted, microfiltered plasma for up to 24 hr at 5°-10°C. The system was completely closed, and the pulsatile flow was approx 1 ml/gm/min. The effect of the perfusion technique on metabolism and hydrogen ion activity was investigated.</td>
<td>Kidneys gained up to 13% in wt over 24 hr preservation, but tissue damage was minimal. All animals survived autograft with preserved organs for 30 days. Oxygen consumption, surface pH, lactate/pyruvate ratio, and perfusate potassium were relatively normal.</td>
<td>< 1 hr</td>
<td>24 hr</td>
<td>4-5</td>
<td>Perfusion app including silastic membrane oxygenator, pulsatile pump, refrigerator unit, heat exchanger; silastic tubing; Fenwal blood packs; transfer packs; cannulas; electrometer; glass electrode; aneroid manometer; Neomycin, plasma perfusate (modified Belzer), Ringer's soln, Solucortef (Upjohn), heparin, oxygen</td>
<td>Kidney transplants</td>
<td>Alexander (1970)</td>
<td></td>
</tr>
<tr>
<td>226. Kidneys</td>
<td>Whole excised dog kidney</td>
<td>Canine kidneys were stored in physiol saline with ice slush at 0°C for 16-30 hr using surface cooling alone or combined with initial perfusion with various solns. A special perfusate (described) plus infusion of mannitol and phenoxybenzamine gave the best results.</td>
<td>Perfused kidneys were viable for 24-30 hr. The max creatinine was 1.9 mg/100 ml.</td>
<td>Few min</td>
<td>24-30 hr</td>
<td>4-5</td>
<td>Styrofoam box, polypropylene bottle, surgical tools, oxygen bubbler, hypodermic syringes; Perfusion soln, mannitol, pentobarbital, phenoxybenzamine, pentobarbital</td>
<td>Kidney transplants</td>
<td>Collins (1970)</td>
<td></td>
</tr>
<tr>
<td>227. Kidneys</td>
<td>Fresh intact dog kidney</td>
<td>An expi model was presented for comparing warm ischemic dog kidneys with perfused ischemic kidneys without transplantation. Ringer's soln with or without heparin and xylocaine, dextran soln, diluted dog blood, dog plasma, and other perfusates were tested at various temp for their effectiveness in renal preservation.</td>
<td>Perfused kidneys were damaged by perfusion and functioned more poorly than warm ischemic kidneys. Rapid cooling and gentle flushing with a small vol of perfusate coat heparin and xylocaine gave the best results. No particular perfusate was preferred.</td>
<td>15 min</td>
<td>2 hr</td>
<td>4-5</td>
<td>Surgical tools, bulldog clamp, Rochester needle, tubing, perfusate equipment; Heparin, dextran, xylocaine, Ringer's soln, dog plasma, dog blood</td>
<td>Preservation of kidneys for transplants</td>
<td>Hardner (1970)</td>
<td></td>
</tr>
</tbody>
</table>
SPECIMEN DESCRIPTION

<table>
<thead>
<tr>
<th>#</th>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>Kidney and ileum</td>
<td>Freshly excised canine kidney and ileal sections</td>
<td>Canine kidneys and ileal sections were removed and stored by one of four methods: 1) hypothermia at 2°C and hyperbaric oxygen pressure of 3 atm, 2) hypothermia and hyperbaric pressure of 15 atm, 3) supercooling to -5°C and hyperbaric oxygen of 3 atm, 4) intermittent perfusion, hypothermia, and hyperbaric oxygen pressure of 3 atm. All organs were perfused with low mol wt dextran soln containing 10% DMSO.</td>
<td>Renal function sufficient to sustain life 1 yr will return to a reimplanted canine kidney stored 24 hr at 2°C under 3 atm hyperbaric oxygen. Ileal sections stored the same way for the same length of time remain viable and absorb glucose 1 yr after cervical reimplantation. Higher pressures of 8-15 atm were detrimental to renal function.</td>
<td>All dogs living to 1 yr with reimplanted preserved kidneys were hypertensive.</td>
<td>Varied</td>
<td>24 hr</td>
<td>Varied</td>
<td>Refrigerator, surgical tools, pressure chamber, stainless steel basket</td>
<td>Transplants</td>
<td>Rudolf (1967)</td>
</tr>
<tr>
<td>229</td>
<td>Killifish</td>
<td>Whole live killifish</td>
<td>Adult killifish were acclimated in a controlled temp salt water aquarium to 20°C for 22 wk, and then to 10°C for 32 wk, and finally were placed in water at 1°C for varying times up to 63 days. The fish were injected with either saline or glucose, once at 1°C until they died. The effect of these injections on survival at subzero temp was reported. Glucose was also added directly to the water and its effect observed.</td>
<td>A hyperglycemic response was observed at once when fish were transferred to 1°C, and the increase in serum glucose was accompanied by depletion of hepatic glycogen. When serum glucose levels fell to normal, the fish began to die. Glucose added to the water significantly increased cold tolerance, while injected glucose did not.</td>
<td>Liver proteins were unaffected by temp from 20°C to -1.0°C, while muscle proteins decreased slightly after long exposure to cold.</td>
<td>52 wk</td>
<td>3 out of 14 were alive after 84 days at -1.0°C in glucose-treated water</td>
<td>Salt water aquarium with temp control, hypodermic syringes, saline soln, glucose soln</td>
<td>Study of cold adaptation in fish</td>
<td>Ungerer (1970)</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Knee joints</td>
<td>Whole canine knee joint</td>
<td>Knee joints were removed from dogs killed with sodium pentothal and were preserved in paraffin oil at 4°C. Before use the specimens were washed and left for 1 hr in physiol saline contg antibiotics.</td>
<td>Specimens were kept for 2 wk in paraffin oil at 4°C.</td>
<td>Knee joint grafts with preserved specimens lasted 4-8 wk then began deteriorating due to the formation of cysts filled with fibrous tissue. There was no discussion as to whether the method of preservation was a contributory factor.</td>
<td>Few min</td>
<td>2 wk</td>
<td>3</td>
<td>Surgical tools, containers, refrigerator</td>
<td>Knee joint transplants</td>
<td>Field (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>231. Liver</td>
<td>Freshly excised puppy and adult canine livers</td>
<td>Livers of puppies and adult dogs were perfused with Ringer's lactate saline containing penicillin and sodium bicarbonate at 4°C; then they were excised. The livers were injected with heparin and perfused with balanced salt saline containing insulin and penicillin. The organs were lowered into a hyperbaric perfusion chamber and perfused under 3 atm of oxygen. Livers were reimplanted and the effects of preservation were observed.</td>
<td>Puppy livers can be preserved 24 hr under pulsatile perfusion with a balanced salt saline at 3 atm of O2; however, function was altered, and it was not demonstrated that reimplantation of perfused livers could sustain life for a prolonged period of time.</td>
<td>4 hr 24 hr 6-7</td>
<td>Surgical tools, Bird respirator, hypodermic syringes, cannulas, hyperbaric perfusion app. (described)</td>
<td>Liver transplants</td>
<td>Slapak (1967)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232. Liver</td>
<td>Freshly excised dog liver</td>
<td>Orthotopic canine liver transplantation was performed using various techniques with homografts preserved 8-10 hr after removal from the donor. The most effective technique involved hypothermia at 4°C, hyperbaric oxygenation at 3-4 atm, and divided perfusion with diluted homologous blood at a total rate of 6 ml/gm tissue/hr. All dogs were treated postoperatively with immunosuppressants.</td>
<td>Livers preserved 8 hr gave similar transplant results to controls. Only 1 dog died in 19 days, and one was alive after 13 mon. Livers preserved 24 hr and transplanted, caused death in all recipients within a few hr or days from ischemic necrosis.</td>
<td>Varied with method</td>
<td>Varied with method</td>
<td>Ice bath, cannulas, hyperbaric chamber, oxygenator</td>
<td>Liver transplants</td>
<td>Brett-Schneider (1968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233. Liver</td>
<td>Freshly excised porcine liver</td>
<td>Excised porcine livers were perfused with cold (10°C) heparinized, homologous, oxygenated blood diluted to a hematocrit of 15% with 50% lactate Ringer's saline in 50% dextran saline. Portal vein flow was 150 ml/min, and hepatic artery flow was 40 ml/min. Livers were preserved up to 24 hr in this manner and were then transplanted into recipients. Some recipients received e-aminocaproic acid, but none received immunosuppressive drugs.</td>
<td>Transplants that had been preserved up to 8 hr survived and functioned normally, except for serum transaminase. After 3 wk signs of rejection were noted. Recipients of organs preserved 18-24 hr died within 5 hr of transplantation.</td>
<td><1 hr 8 hr 3-4</td>
<td>Perfusion app, surgical tools</td>
<td>Transplants</td>
<td>Mienczak (1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Freshly excised porcine liver</td>
<td>Pigs were heparinized, bled to death, and their livers removed. The livers were flushed with Ringer's lactate soln containing procaine and bicarbonate, then attached to a perfusion app where they were perfused at 35-10°C with a mix of porcine plasma (which had been collected in ACD soln and cryoprecipitated to remove labile lipoproteins), magnesium, cortisone, penicillin, and dextrose. After perfusion from 8-24 hr the livers were reimplemented, and the effects of the prior preservation were noted.</td>
<td>Porcine livers perfused with cryoprecipitated plasma could be preserved effectively up to 10 hr. Organs preserved for 24 hr and reimplemented developed bleeding diathesis.</td>
<td>Animals receiving transplants of preserved livers lived from 5-34 days and most died of tissue rejection.</td>
<td>< 1 hr Up to 10 hr</td>
<td>6-7</td>
<td>Surgical tools, perfusate app (described), plastic bags, cannulas, micropore filters</td>
<td>Liver transplants</td>
<td>Belzer (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td></td>
</tr>
<tr>
<td>Fresh cultures grown on Fries basal medium</td>
<td>Cell-free ext were prepared from mats of wild Neurospora crassa grown on Fries basal medium. Mats were collected on a Buchner funnel, triply washed with distilled water, and frozen 1-3 hr at -15°C. They were then homogenized in 3x their wt of cold 0.1 M K2HP04 and centrifuged at 4°C. The cell-free, turbid supernatant was used for studies of the nitrate reductase content of mycelia and for further enzyme purification.</td>
<td>85% or more of the nitrate reductase activity of the homogenates was present in ext prepared in this manner.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nason (1953)</td>
<td></td>
</tr>
<tr>
<td>Oviductal fluid</td>
<td>Fresh oviductal fluid from live monkeys and New Zealand rabbits</td>
<td>A system for continuous collection of oviductal fluid from monkeys was described. The uterine tube was ligated and the cannula fixed at the fimbriated extremity and brought through a stab wound in the lateral abdominal wall. Externally the extremity was connected to a special insulating chamber to which refrigerant was delivered. Accumulated fluid was maintained at 37°C. The monkeys were restrained, and superovulation was induced with human menopausal gonadotropin and human chorionic gonadotropin. The method was also applied to New Zealand rabbits.</td>
<td>3 out of 13 monkeys yielded fluid suitable for assay. Most of the other monkeys died from stress or strangulation or excreted blood into the tubal fluid making it unfit for sm. Rabbits yielded fluid continuously for 2 mon. Many artifacts affected the continuous collection of oviduct fluid, but the method was useful for studying changes occurring during the menstrual cycle.</td>
<td>The method allowed a daily assessment of tubal fluid throughout the menstrual period.</td>
<td>Approx 1 hr Up to 2 mon</td>
<td>5-6</td>
<td>Specially designed oviductal fluid collection system (described) surgical tools, cannulas, adhesive tape, restraining chair, hypodermic syringes</td>
<td>Study of Fallopian tube fluid composition throughout the menstrual cycle</td>
<td>Mastroianni, Jr (1969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen Description</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Other Comments About Method</td>
<td>Estimated Preservation Time</td>
<td>Survival Time</td>
<td>No. of Steps</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>237. Phosphatase substrate</td>
<td>Freshly prepared substrate</td>
<td>Sodium glycerophosphate, 2.5 g, and monosodium diethylbarbiturate, 2.12 g, were dissolved in water in a 500 cc volumetric flask. Aliquots of 100-250 cc were stored in the refrigerator in glass-stoppered bottles under a 3 cm layer of washed petroleum ether (b.p. 30°-36°C).</td>
<td>When the substrate was covered with petroleum ether and stored up to 2 mon in small bottles in the refrigerator, the activity ratios were 1.0 ± 0.03. Absorption of carbon dioxide by alk substrates could cause a change in pH.</td>
<td>Few min > 2 mon 3-4</td>
<td>Volumetric flasks, glass-stoppered bottles, refrigerator, washed petroleum ether</td>
<td>Anal of serum phosphatase activity</td>
<td>Bodansky (1933)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238. Rats</td>
<td>Live rats</td>
<td>Long-Evans rats were cooled by placing them in plexiglas cylinders with an open top and a floor of spaced plexiglas rods. The chambers were put in a constant temp room, and the body temp of the animals was measured with a thermocouple inserted rectally and taped to the tail. Rats were injected i.p. with varying amt of I14SO in physiol saline soln. Some of the rats were shaved. The animals were maintained in 1°C, 15°C, and 25°C environments, and the effects on body temp were noted.</td>
<td>Shaved rats receiving 6 g/kg I14SO cooled 2.5-3.9 min times as fast as controls. EMSO-treated animals cooled 2.5-3.8 times as fast as controls.</td>
<td>175-412 min Several days at 1°C unshaven</td>
<td>6-8</td>
<td>Plexiglas cylindrical cages, constant temp room, copper constantin thermocouples, tape, razor Ether, EMSO, physiol saline soln</td>
<td>Study of EMSO-induced hypothermia in whole animals</td>
<td>Panuska (1966)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239. Soil</td>
<td>Fresh topsoil from under grazed pastures of grasses and clovers</td>
<td>The effects of 4 different methods of storage on the dehydrogenase activities of topsoils were detd. Samples were sieved, thoroughly mixed, and stored in the dark in separate samples in polythene bags. The samples were then stored by one of the following methods: 1) air dried 48 hr at room temp, then stored at 20°C, 2) undried and stored at 20°C, 3) undried and stored at 4°C, and 4) undried and stored at -20°C. Dehydrogenase activity was measured before and after storage and the results compared. Storage at 4°C or -20°C was the most satisfactory for retaining dehydrogenase activity. A slight increase in dehydrogenase activity was noted after 77 days when compared to undried samples stored overnight at room temp. Drying and storage at 20°C was unsatisfactory as half the dehydrogenase activity was lost. Some topsoils could be stored undried at room temp for less than 77 days, but refrigeration or freezing gave better results.</td>
<td>Few min to 2 days Up to 77 days 5-7</td>
<td>Containers, 2 mm sieve, polythene bags, rubber bands, refrigerator, freezer</td>
<td>Dehydrogenase data</td>
<td>Ross (1970)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>240. Spermatozoa</td>
<td>Fresh ram ejaculate</td>
<td>High motility ram ejaculates were diluted 40-50 fold with diluents contg the following: 1) lactose plus varying ratios of potassium to sodium and magnesium to calcium, 2) varying salt of potassium, calcium, and magnesium plus varying salt of casein, 3) fructose, glucose, lactose, or sucrose plus varying salt of sodium chloride, 4) lactose and skim milk. Motility of the sperm were scored after incubation at 37°C, slow cooling, and storage at 5°C.</td>
<td>Spenn were viable up to 5 days at 5°C depending on the diluent.</td>
<td>The storage temp influenced the effectiveness and optimum salt of diluent needed.</td>
<td>Few min-2 hr</td>
<td>Up to 5 days</td>
<td>3</td>
<td>Refrigerator, glass tubes, diluents, pipettes</td>
<td>Artificial insemination</td>
<td>Martin (1966)</td>
<td></td>
</tr>
<tr>
<td>241. Spermatozoa</td>
<td>Fresh bull ejaculate</td>
<td>Bull semen was extended with a variety of extenders including Cornell Univ Extenders CUE and CD-16, and modified Illinois Variable Temp Extender. Other substances such as catalase, sodium bicarbonate, and sodium citrate were also added in varying salt as buffers or modifiers. All buffers had 10-20% egg yolk (by vol) added. Air, nitrogen, or carbon dioxide was used in the ampules above the semen mixt before sealing. All of these factors were compared to determine the best preservation method for unfrozen bull spermatozoa.</td>
<td>Up to 42% of the spermatozoa were motile 30 days after storage at 5°C. The best technique included extending with CUE with added catalase under air.</td>
<td>The method is useful when freezing is not available.</td>
<td>½ hr</td>
<td>30 days</td>
<td>Varied with sect</td>
<td>Containers, glass ampules, plastic tubes, incubator, vacuum sealer, heat sealer</td>
<td>Artificial insemination</td>
<td>Foote (1967)</td>
<td></td>
</tr>
<tr>
<td>242. Spermatozoa</td>
<td>Fresh bull ejaculate</td>
<td>DNA was determined in bovine spermatozoa stored in Cornell Univ Extender at 5°C in sealed ampules. The samples were exposed to light, dark, air, nitrogen gassing, and addition of cysteamine to determine the effect of these treatments on DNA and sperm nuclear site.</td>
<td>Light decreased the sperm motility and increased the nuclear area. Light also reduced DNA from 4.32 to 3.70 relative units. In nitrogen many nuclei were shrunken, as were nuclei of sperm stored in the dark with air or nitrogen. Cysteamine was toxic to spermatozoa and caused complete disappearance of nuclei exposed to light in an air atmosphere.</td>
<td></td>
<td>Up to 12 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anal of DNA by Feulgen-positive staining and microspectrophotometry</td>
<td>Peufler (1967)</td>
</tr>
</tbody>
</table>
REFRIGERATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>243. Spennatozoa</td>
<td>Fresh turkey semen</td>
<td>Pooled samples of semen were collected by digital massage from 2 strains of turkey and were aspirated into 10 ml centrifuge tubes held in vacuum flasks at 16°C. These tubes were removed to a beaker of water at 16°C and cooled slowly (7°C/hour) to 4°C. The semen was diluted with a special diluent containing several sugars, sugar alcohol, and antibiotics. The effect of stored semen on fertile egg production and poult survival was noted.</td>
<td>Samples showed no significant loss of quality or fertility after 2 hr storage and transport in stoppered tubes at 5°C.</td>
<td>Viable semen samples were noted after 3 wk.</td>
<td>2-3 hr</td>
<td>3 wk</td>
<td>4</td>
<td>Centrifuge tubes, vacuum flasks, water bath, refrigerator, beakers, pipettes</td>
<td>Artificial insemination</td>
<td>Clark (1969)</td>
</tr>
<tr>
<td>244. Spennatozoa</td>
<td>Fresh bull ejaculate</td>
<td>Bull semen was collected by electroejaculation and pooled. The pooled semen was diluted in egg yolk-buffered citrate glycerol diluent and extended to a final concentration of 100 x 10⁶ live normal spermatozoa/ml. Sperm samples were stored in full, stoppered tubes, insulated with cotton wool, and placed in a vacuum flask with ice to cool to 5°C and equilibrate. 18 hr later the samples were further diluted to 50 x 10⁶ and then sealed into 1 ml glass ampules and frozen to -70°C using a Linde BF 3-2 liquid nitrogen biofreezer.</td>
<td>The effect of stored semen on fertile egg production and poult survival was noted.</td>
<td>Viable semen samples were noted after 22 hr.</td>
<td>5 min</td>
<td>18 hr at 5°C</td>
<td>7-8</td>
<td>Test tubes with stoppers, cotton wool, vacuum flask with ice (or refrigerator), ampules, Linde BF 3-2 liquid nitrogen biofreezer, heat sealer</td>
<td>Artificial insemination</td>
<td>Singleton (1970)</td>
</tr>
<tr>
<td>245. Stomach, intestines and pancreas</td>
<td>Freshly excised canine organs</td>
<td>Dog stomach, intestines, or pancreas were excised by described surgical techniques. The intestines and stomach were cooled to 5°C, while the pancreas was perfused with cold (5°C) balanced salt solution containing 2% low mol wt dextran at pH 7.4. Then the pancreas was cooled to 5°C, kept under 4 atm of oxygen and perfused with autogenous plasma diluted with balanced salt solution at a rate of 20-50 ml/hr.</td>
<td>Stomach and intestines could be maintained for 5 hr and successfully reimplanted. The pancreas with its attached proximal portion of the duodenum could be preserved in vitro for 22 hr and reimplanted successfully.</td>
<td>Viable for stomach 5 hr and intestines 22 hr for pancreas</td>
<td>5 hr for stomach and intestines; 22 hr for pancreas</td>
<td>3-5</td>
<td>Surgical tools, refrigereator, containers, cannulas</td>
<td>Transplants</td>
<td>Lillehei (1967)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>246. Teeth</td>
<td>Freshly excised human teeth, usually premolars</td>
<td>Donor teeth that have incomplete root development with wide open root ends, root length at least equal to the height of the crown and undamaged periodontal membrane or root sheaths were immediately placed in Hank's soln containing antibiotics. The teeth were then refrigerated at 2°C-10°C.</td>
<td>Teeth extd and placed in Hank's soln at 2°C-10°C can be stored up to several mn before transplantation. Transplanted teeth required 6-12 wk to become immobile, but no tissue rejection was noted. Transplanted teeth have survived more than 5 yr.</td>
<td>Few min</td>
<td>Several mn before transplanting; transplants have survived over 5 yr</td>
<td>3</td>
<td>Surgical tools, refrigeration</td>
<td>Transplants</td>
<td>Viener (1969)</td>
<td></td>
</tr>
<tr>
<td>247. Thyroid glands</td>
<td>Freshly excised guinea pig thyroid lobes</td>
<td>Guinea pig thyroid lobes were frozen for 15 min at -30°C to -5°C or supercooled at 0°C with M500 protectant. Then they were thawed and incubated at 37°C with [131]Iodide to test the effect of freezing on metabolism of thyroid tissue.</td>
<td>Freezing leads to the irreversible inhibition of diiodotyrosine formation in thyroid tissue; but thyroid tissue supercooled to -80°C retains its ability to form diiodotyrosine, and iodinate thyroglobulin.</td>
<td>15-20 min</td>
<td>Not given</td>
<td>3-4</td>
<td>Dubnoff incubator, conical flasks, ice-salt bath, water bath</td>
<td>Study of thyroid metabolism</td>
<td>Cavalieri (1963)</td>
<td></td>
</tr>
<tr>
<td>248. Tympanic membranes</td>
<td>Cadaver drumhead attached to the malleus</td>
<td>Homograft tympanic membrane was obtained from a donor within 12-24 hr after death. The bone containing the drumhead was placed in a preservative soln of 1:5000 aq Cisilt (Sodium salt of an organomercurial compd contg sulfur and methylene). The graft was refrigerated until ready for use, or it could also be kept in a tissue bank for up to 3 mn.</td>
<td>Preserved tympanic membranes were still useful for transplants after 3 mn of storage.</td>
<td>24 hr</td>
<td>Up to 3 mn</td>
<td>3-4</td>
<td>Surgical tools, refrigeration, glass container 1:5000 Cisilt (Sodium salt of an organomercurial compd contg sulfur and methylene)</td>
<td>Transplant for repair of perforated eardrum</td>
<td>Brandon, Jr (1969)</td>
<td></td>
</tr>
<tr>
<td>249. Urine</td>
<td>Fresh human urine samples</td>
<td>Urine was obtained from normal subjects and was refrigerated at 5°C for 24 hr. The urine was then pooled, sterilized by pressure filtration, and stored at 5°C in 100 ml aliquots in sterile bottles at pH 7.0. The sterile urine samples were inoculated with a known initial conc of bacteria, and the samples were then stored at 0°C, 10°C, and 15°C. A portion of each sample was plated every 24 hr for 4 days to test for bacterial growth.</td>
<td>Bacteria multiplied rapidly at 10°C, but not at 10°C or lower. Therefore refrigerators holding urine samples should be carefully monitored to keep the temp below 10°C at all times.</td>
<td>4 days</td>
<td>8-9</td>
<td>Refrigerator, pressure filter equipment, sterilizer, pipettes, bottles, Petri dishes</td>
<td>Out of bacteria control</td>
<td>Ryan (1963)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>250. Urine</td>
<td>Fresh urine from patients with urinary tract infections</td>
<td>Clean-voided or catheterized samples of urine which contained red and white blood cells, were obtained from male patients with urinary tract infections and refrigerated immediately; pH, red and white blood cell counts, and microscopic examinations were made within one hr of collection. Cell counts were made at 2 hr intervals the first day, once a day for the next four days, then at longer intervals of time. The same tests were run on aliquots made acid or alk to see what effect hydrogen ions had on blood cell preservation.</td>
<td>Red and white blood cells persisted in refrigerated acid urine of relatively 'normal' specific gravity for at least 10 days; up to 45 days in some instances. Untilled refrigerated urine that is slightly alk may be examined for blood cells for several hr after collection.</td>
<td>After 24 hr at room temp bacteria which split urea may be present and cause alkalinity to rise and storage conditions to change.</td>
<td>Few min</td>
<td>3-45 days</td>
<td>3</td>
<td>Microscope, collection containers, Spencer hemocytometer, refrigerator</td>
<td>Bed and white blood cell counts in urine</td>
<td>McIntyre (1965)</td>
</tr>
<tr>
<td>251. Urine</td>
<td>Fresh human urine</td>
<td>Urine samples were stored at a variety of temp and at different pH to find the best storage conditions for preserving gonadotrophic hormone intact.</td>
<td>The optimum pH was 5, and samples should be stored at 20°C. Refrigeration did not prevent the destruction of the hormone.</td>
<td></td>
<td>Few min</td>
<td>6 days</td>
<td>1-2</td>
<td>Containers, Buffers</td>
<td>Anal of gonadotrophic hormone</td>
<td>Masat (1966)</td>
</tr>
<tr>
<td>252. Urine casts</td>
<td>Suspension of casts in fresh human urine</td>
<td>Urine at pH 4.0-5.5 conta casts, was placed in conical tubes to which 3-4 drops of 40% formaldehyde had been added to kill yeast and bacteria. The tubes were refrigerated 2 hr, and the resulting supernatant was decanted leaving a sediment containg the casts. Serum of the same blood type as that found in the urine may be used for mounting slides of the casts or for preserving the sediment during storage in the refrigerator.</td>
<td>Urine casts remained stable 4 to 12 mon in the refrigerator. Leukocytes, granular cells, red cells, and nearly all crystals maintained their morphology during this time.</td>
<td>The technique does not work well with highly alk specimens.</td>
<td>2 hr</td>
<td>4-12 mon</td>
<td>3-4</td>
<td>Refrigerator, conical tubes, pipettes, Petri dishes, slides</td>
<td>Instructional material for students</td>
<td>Lehman (1968)</td>
</tr>
</tbody>
</table>
Lyophilization

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>253. Antigens</td>
<td>Various ext from growing cultures</td>
<td>Brucella abortus, dourine, and glanders antigens were prepared by various methods (outlined). The antigens were titrated, added to 1 ml ampules, and frozen in a rotary device in an all-dry ice mixt. Then they were lyophilized at -76°C to -78°C for 6 hr. Ampules were sealed under vacuum and stored at 4°C until used.</td>
<td>Dourine and glanders antigens maintained their activity for 3 yr. Brucella antigens activity decreased gradually after 9 mo.</td>
<td></td>
<td>6-7 hr</td>
<td>Brucella abortus antigens, 9 mon; Glanders and dourine antigens, 3 yr</td>
<td></td>
<td>5-6</td>
<td>Ampules, rotary flask and motor, all-dry ice bath, Utrifroid freeze-dryer, heat sealer, refrigerator</td>
<td>Antigen for use in complement-fixation tests</td>
</tr>
<tr>
<td>254. Apples</td>
<td>Fresh apple slices</td>
<td>A freeze-drying technique suitable for lab or pilot plant quantities of foods or other materials was described. This technique used a simple vacuum app along with molecular sieves for the adsorption of water vapor. Samples were first frozen to -20°C on screen trays, then placed between screen trays of molecular sieve adsorbents for drying.</td>
<td>Initial freeze-drying rates of apple slices at 25°C was estimated as 0.1 lb H2O/sq ft/hr.</td>
<td></td>
<td>0.1 lb H2O/sq ft/hr at 25°C</td>
<td>Not given</td>
<td>5-6</td>
<td>Drying chamber (20 liters); vacuum pump; type 4A molecular sieves, 1/16" pellets (Linde), airtight container for pellets; screen trays; strain gage; thermocouple; electronic recorder; freezing chamber</td>
<td>Freeze-drying foods or lab materials</td>
<td>Sarasvacos (1967)</td>
</tr>
<tr>
<td>255. Arteries</td>
<td>Fresh or cadaver arterial segments</td>
<td>Heterologous arterial grafts used with vessels stored aseptic precautions were sterilized with ethylene oxide, rapidly frozen in liquid nitrogen, dehydrated, and stored at room temp in glass containers sealed under high vacuum.</td>
<td>Successful grafts have been made with vessels stored 2-3 mon, and the author estimated that the vessels would still be useful after 1 yr.</td>
<td></td>
<td>8 hr</td>
<td>Up to 1 yr</td>
<td>6-7</td>
<td>High vacuum pump, liq nitrogen specially-designed traps, lyophilizer, glass tubes; surgical tools, oxygen torch; Ethylene oxide, physiol saline soln, penicillin, liq nitrogen, dry ice</td>
<td>Tissue grafts</td>
<td>Hufmang (1954)</td>
</tr>
<tr>
<td>256. Ascites</td>
<td>Fresh human ascites fluid</td>
<td>Sterile 300 ml bottles were filled with 150 ml of ascites fluid from a polyethylene tube inserted into the peritoneal cavity. The fluid was frozen at -35°C by rotating the bottle. The vacuum drying process began 14 hr later and took 24 hr. The dried product was dissolved in pyrogenic water before use.</td>
<td>Not given</td>
<td></td>
<td>1-2 days</td>
<td>Not given</td>
<td>3-4</td>
<td>Lyophilizer, collection bottles, polyethylene tubing, surgical tools; Apyrogenic water</td>
<td>Correction of hyperproteinemia in patients with portal hypertension</td>
<td>Klein (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL NO. OF TIME STEPS</td>
<td>EQUIPMENT AND AGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>257. Bacteria</td>
<td>Bacterial suspensions</td>
<td>Washed cell suspensions resuspended in a small vol of fresh media (10^11 viable cells/ml) were frozen into small pellets at -78°C until used. One vol of thawed pellets was mixed with 49 vol of soln contg 1% oxidizable sugars, and the suspension was freeze-dried in a batch-type dryer at -50°C and 40 μg under unfavorable humidity conditions. From 5-50% Serratia marcescens cells survived freeze-drying in the presence of various sugars. Monosaccharides provided the best protection against freeze-drying. Oligosaccharides provided the best protection against cryopreservation. Suspensions survived longer than 72 hr at 4°C.</td>
<td>3-4 hr >72 hr 5-6</td>
<td>Waffle-iron freeze-dryer with temp control, 15 ml vials</td>
<td>Storage of organisms at unfavorable humidity</td>
<td>Tryptose-glucose phosphate medium, several common sugars (1% soln) distd water</td>
<td>Preserved strains of bacteria for research or further culturing</td>
<td>Zimmerman (1962)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258. Bacteria</td>
<td>Bacterial suspension in liq media</td>
<td>Arginine, homoarginine, arginic acid, and related compounds were tried as suspending media for freeze-drying bacteria. S. cremoris, L. arabinosus, E. lysodeikticus, E. coli, and A. aerogenes were cultured on various media. Media was adjusted to 0.06 M of the tested compd and kept at pH 7. Cells were harvested at the stationary phase and washed with saline. Washed cells were resuspended in the suspending media to a final con of 1-2x10^9 viable cells/ml. One ml samples were freeze-dried in sterile vials at -30°C with final heating to 30°C after vacuum drying. From 13-88% of organisms protected by arginine were viable after freeze-drying. Other protectants tried were not quite as effective as arginine.</td>
<td>The L-COON, L-NH₂ and guanidine groups are all essential to the protective action of arginine, but the optical activity of the molecule is not important. The -NH₂ group can be replaced by an -OH group without affecting activity.</td>
<td>8-10 hr Not given; probably a long time</td>
<td>Petri dishes or containers, glass vials, freeze-dryer (Stokes 2003 F-2)</td>
<td>Various media, HCl, NaOH, arginine, homoarginine, arginic acid</td>
<td>Preserved strains of bacteria for research or further culturing</td>
<td>Morichi (1965a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>259. Bacteria</td>
<td>Bacterial suspensions</td>
<td>DL-Threonine, DL-allothreonine, and DL-tartaric acid as well as the D- and L- forms were added to 14 strains of bacteria. The bacteria were then lyophilized, and the protective effect of the various compd was assessed. DL-Threonine and DL-allothreonine had a protective effect (between 10 and 70% survival) on bacteria while the D- or the L- form alone had almost none. The optical form of tartaric acid serine, proline, and pyrrolidonecarboxylic acid did not affect the protective action.</td>
<td>Not given Not given</td>
<td>Culture bottles, lyophilizer</td>
<td>Culture maintenance</td>
<td>D-, L-, and DL-threonine, allothreonine, tartaric acid, serine, proline, and pyrrolidonecarboxylic acid</td>
<td></td>
<td>Morichi (1965)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LYOPHILIZATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>260. Blood serum</td>
<td>Fresh serum from infected and noninfected cattle</td>
<td>4 anti-Brucella sera and 4 normal sera for the complement-fixation test, and 2 positive and 4 negative sera for the agglutination test were used. The complement-fixation and agglutination titers of positive sera were 800 and 400 respectively. Positive sera were obtained from cattle infected with Brucella abortus, and negative sera were obtained from healthy cattle. Serum titer was determined, then samples were stored in 10 ml ampules, frozen in an alc-dry ice mix, and lyophilized for 6-7 hr. Ampules were sealed and stored at 4°C until used.</td>
<td>Complement-fixation and agglutination tests remained unchanged for 3 yr.</td>
<td>No anticomplementary activity was observed in lyophilized positive and negative sera for the complement fixation test.</td>
<td>6-8 hr (including lyophilization)</td>
<td>3 yr</td>
<td>6-7</td>
<td>Usifroid freeze-dryer, 10 ml ampules, alc-dry ice bath, heat sealer</td>
<td>Diagnostics and therapeutics</td>
<td>Grycz (1969a)</td>
</tr>
<tr>
<td>261. Bones</td>
<td>Cadaver femur or tibia removed no more than 24 hr postmortem</td>
<td>Bone homografts from cadaver tibia or femur were aseptically removed within 24 hr postmortem and freeze-dried. The grafts were stored in a vacuum at room temp for 33 mon or less. Eighty bone grafts were performed using the preserved materials. Evaluation of the effectiveness of the method and the material was made.</td>
<td>85% of all the grafts were successful. Donor age, donor site, and graft storage time did not seem to be statistically significant.</td>
<td>The criteria used for classification as a successful bone graft were partial incorporation of the graft by the host, and advanced fracture healing.</td>
<td>Not given</td>
<td>Up to 32 mon</td>
<td>3-5</td>
<td>Lyophilizer, vacuum storage container</td>
<td>Bone transplants</td>
<td>Gresham (1964)</td>
</tr>
<tr>
<td>262. Bones</td>
<td>Freshly excised cadaver bone</td>
<td>91 cases of the use of freeze-dried bone homografts in cystic defects of the jaw were evaluated to see how many grafts were successful and what problems were encountered with unsuccessful grafts.</td>
<td>18% of the grafts were unsuccessful, and 82% were successful. Follow-up periods ranged from 3 mon to 9 yr with an av of 33 mon.</td>
<td>Infection was the greatest cause of failure. No rejection phenomena were noted.</td>
<td>Not given</td>
<td>Survived up to 9 yr after grafting</td>
<td>Not given</td>
<td>Not given</td>
<td>Jawbone grafts</td>
<td>Marble (1968)</td>
</tr>
</tbody>
</table>
LYOPHILIZATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>263. Brain</td>
<td>Freshly excised brain tissue or biopsy specimens</td>
<td>Slices of brain tissue 1-2 mm thick were dropped in isopentane. They were then freeze-dried by a specially designed app that does not employ diffusion pumps or auxiliary heaters and is capable of drying simultaneously several batches of brain slices.</td>
<td>Activity of five different enzymes was equal to or higher than the activity in sections preserved by standard fixation methods. Too rapid freezing of large sections caused fissures while thawing the tissue before it was fully dried caused damage from rapid evolution of water vapor.</td>
<td>The degree of dryness of the tissue was indicated by the rate of water evolution, and the temp of the drying tube was not allowed to rise until 12 hr after the rate of water evolution fell below 50 μg/min/gm tissue.</td>
<td>1-2 days</td>
<td>Not given</td>
<td>4-5</td>
<td>Lyophilizer (described drying tube with wax bed, platinum loop, filter paper, vacuum flasks)</td>
<td>Fixation of brain tissue for microscopy</td>
<td>Neuro (1956)</td>
</tr>
<tr>
<td>264. Brain and cord</td>
<td>Homogenized rabbit brain and cord</td>
<td>A 10% (w/v) emulsion of normal adult rabbit brain and cord in phosphate-buffered saline was homogenized at 0°C with 10% (v/v) trifluorotrichloroethane (Arcton 111). The mix was centrifuged, and the supernatant fluids were freeze-dried. This substance was reconstituted in phosphate-buffered saline and Freund's adjuvant, and was then tested in guinea pigs to see whether an allergic encephalitis lesion occurred.</td>
<td>Lyophilized rabbit brain homogenate was lyophilized with trifluorotrichloroethane and produced no allergic encephalitis lesions in guinea pigs for up to 33 days.</td>
<td>Use of trifluorotrichloroethane in prep of rabies vaccine from rabbit or sheep brain should eliminate the encephalitogenic factor responsible for serious side reactions.</td>
<td>Several hr</td>
<td>Not given</td>
<td>5-6</td>
<td>Lyophilizer, mixer, containers, centrifuge, ice bath, surgical tools</td>
<td>Rabies vaccine prepn</td>
<td>Kaplan (1968)</td>
</tr>
<tr>
<td>265. Brain dura mater</td>
<td>Sterile or nonsterile cadaver dura mater</td>
<td>Sterile or nonsterile dura mater from cadavers was divided into pieces, placed in balanced salt solution containing serum and antibiotics, and held at 4°C until further processing. Nonsterile samples were sterilized by one of several techniques, then all samples were wrapped in perforated cellophane and frozen in bottles at -70°C. After freezing, the samples were freeze-dried for 3 days. Both chemical and radiation sterilants were used successfully.</td>
<td>Lyophilized dura mater was stored at room temp under vacuum seal for up to 10 yr. 98% of dura mater grafts in patients were considered successful.</td>
<td>Surgical tools, refrigerator, perforated cellophane, pyrex bottles, fume hood, Van de Graaff generator, plastic bags, freezer, freeze-dryer</td>
<td>3 days</td>
<td>Up to 10 yr</td>
<td>6-7</td>
<td>Tissue grafts</td>
<td>Abbott (1970)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGNAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>266. Chickens, Whole body and feces</td>
<td>Whole chicken and fresh droppings with some foreign inclusions such as food and feathers</td>
<td>Whole chickens were weighed, thoroughly minced, freeze-dried and stored at room temp. Chicken droppings were also collected and stored in wash bottles at -20°C until needed. Then the droppings were milled and dried using an acid-scrubbing system attached to the bottle with inlet and outlet tubes that were connected to the oven air vent so that ammonia-free air at 80°-85°C dried the droppings. The dried samples were stored in airtight bottles until analyzed.</td>
<td>Less than 2% whole-body nitrogen was lost after lyophilization and storage of minced chicken at room temp for 56 days. No information was given on length of storage of the droppings.</td>
<td>The difference between nitrogen retention as measured by balance and by body anal methods was 13-16%.</td>
<td>Not given for minced tissue; 3 days for droppings</td>
<td>56 days for minced tissue; not given for droppings</td>
<td>3-4</td>
<td>Lyophilizer, hand mincer, aluminum trays, glass bottles, Perapex cage for collecting feces, drying oven, ball mill, polythene tubing, 0.1 N HgSO₄, methyl red soln</td>
<td>Total nitrogen anal</td>
<td>Davidson (1968)</td>
</tr>
<tr>
<td>267. Chorion and amnion tissue</td>
<td>Human chorion and amnion tissue</td>
<td>Chorion and amnion tissue were freeze-dried on synthetic sponges. The tissue was sterilized in saline-streptomycin-penicillin-Ca gluconate soln for 30 min and used to treat burned surfaces by suturing the graft to the surface.</td>
<td>The freeze-dried material had 'ideal storage possibilities' and was effective for grafts in 2nd degree burns. However, the material was not suitable on deep burns or infected areas.</td>
<td>Chorion tissue was generally more successful than amnion for grafts.</td>
<td>Not given</td>
<td>Not given</td>
<td>3</td>
<td>Sponge, surgical tools, lyophilizer, glass containers, saline-streptomycin-penicillin-Ca gluconate soln</td>
<td>Skin grafts</td>
<td>Tashkova (1968)</td>
</tr>
<tr>
<td>268. Electropherograms</td>
<td>Thin-film electropherograms</td>
<td>Alumina, silica gel or kieselguhr thin-film electropherograms were produced using food coloring. They were dried at 100°C, 110°C and also freeze-dried by first placing the 20x20 glass plates on a bed of powd dry ice for 10-20 sec and then lyophilizing them in a special cold-finger app (described).</td>
<td>Freeze-drying electropherograms eliminated most zone-migration caused by heat drying.</td>
<td>Freeze-drying provided a simple method for detecting zone-migration whenever the phenomenon was suspected.</td>
<td>1-1 hr</td>
<td>Not given</td>
<td>2-3</td>
<td>Powd dry ice bed, special coldfinger lyophilizer (described)</td>
<td>Drying of electropherograms</td>
<td>Criddle (1965)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fascia lata</td>
<td>Freshly extd cadaver fascia lata</td>
<td>Fascia lata was removed from cadavers, using sterile conditions, and put in a sterile container contg merthiolate. Tissue was cut in strips parallel to the direction of fibers. Fat was removed by rubbing the strips with sterile gauze, and the strips were then rolled around 10 cm glass tubes. Several tubes were threaded together and immersed into 90% alc cooled by dry ice. Tubes were unthreaded, placed in sterile test tubes, lyophilized under vacuum, and sealed.</td>
<td>The author implied that tissues can be stored for a long time by this method and still be useful for scleral buckling procedures for retinal detachment.</td>
<td>Fascia lata did not cause necrosis of underlying sclera as other substances did.</td>
<td>Several hr</td>
<td>Not given; long period implied</td>
<td>8-9</td>
<td>Surgical tools, sterile containers, gauze, 10 cm glass tubes, alc bath Merthiolate, 90% ethanol, solid carbon dioxide</td>
<td>Transplants for scleral buckling procedures</td>
<td>Shoukri (1966)</td>
</tr>
<tr>
<td>Feces</td>
<td>24 hr chicken feces collections</td>
<td>Chicken feces were collected quantitatively each morning in plastic boxes with covers. The boxes were stored in a freezer until used. 120 gm of the feces were freeze-dried and ground on a plate mill for detn of fat and energy content before they were stored in the freezer.</td>
<td>Frozen or freeze-dried samples gave better results for anal because there was less chance of oxidation of fats in the fecal samples.</td>
<td>Freezing, few min; Freeze-drying, several hr</td>
<td>Not given</td>
<td>2-4</td>
<td>Plastic boxes with tops, freezer, lyophilizer, plate mill</td>
<td>Anal of fat, energy, and nitrogen content of feces</td>
<td>Petersen (1968)</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Not given</td>
<td>Previously lyophilized strains of Phycomycetes, Ascomycetes and Fungi Imperfect were tested for viability.</td>
<td>Cultures of all 447 lyophilized fungal strains sporulated as well as, or better than, frequently-transferred agar slant cultures. Lyophilized ranged from 2-23 yr old.</td>
<td>Not given</td>
<td>Up to 23 yr</td>
<td>Not given</td>
<td>Not given</td>
<td>Maintenance of type cultures</td>
<td>Ellis (1966)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Heart valves</td>
<td>Human and bullock cadaver pulmonary valves or aortic cusps</td>
<td>Human and bullock cadaver pulmonary valves and aortic cusps were removed up to 12 hr after death. They were sterilized by incubation at 37°C for 2-3 hr in a soln of γ-propiolactone in sodium bicarbonate. The valves were then washed with physiol saline soln and stored in Hank's soln at 4-10°C. They were tested for sterility and finally lyophilized and stored in glass ampules until used. These valves were used for tympanic membrane repair.</td>
<td>93% of the recipients of homostatic valve grafts had intact drums up to 3 yr later. Four had perforations, and some had other complications.</td>
<td>When bullock tissue was used for tympanic grafts in humans, no significant antigenic re-action was observed, although some reaction may be present.</td>
<td>Not given</td>
<td>Indefinite-</td>
<td>5-6</td>
<td>Surgical tools, refrigerator, lyophilizer, ampules, vials, incubator</td>
<td>Tympanic grafts</td>
<td>Cornish (1968)</td>
</tr>
<tr>
<td>Leaves</td>
<td>Whole leaves</td>
<td>Leaf material was frozen directly in liq air or nitrogen in a lyophilization vessel. Excess liq was poured out, and the vessel was attached to the lyophilization system described. Several samples were lyophilized at once. The leaf material was then ground in a Wiley mill and stored in stoppered containers until used.</td>
<td>Not given</td>
<td>Drying can also be carried out with a simple dessicating over alumina.</td>
<td>4-5 hr</td>
<td>Indefinite-ly if kept dry</td>
<td>3</td>
<td>Liq nitrogen, lyophilization app, lyophilization containers, stoppered bottles</td>
<td>Leaf anal</td>
<td>Millikan (1964)</td>
</tr>
<tr>
<td>Muscle</td>
<td>Fresh slices of beef muscle samples, 1 mm thick, were either quick-frozen in isopentane at -150°C or allowed to freeze in a cold room at -10°C. Slices from these samples were freeze-dried in a constant-temp high vacuum app at -10°C. Some were warmed to 80°C, and a comparison of the effects of heat in the presence of 0.2% and 2% moisture on protein extn was made.</td>
<td>There was no loss in extd protein or increase in insol residue due to freeze-drying if the temp was kept at -10°C. Exposure of freeze-dried structural proteins to 80°C reduced protein solubility by 65%.</td>
<td>Heat, rather than freeze-drying, reduced the extractability of muscle proteins.</td>
<td>Not given</td>
<td>~ 24 hr</td>
<td>3</td>
<td>Vacuum freeze-drier that maintains constant temp, isopentane freezeer, specimen chamber, cooling bath, oil bath</td>
<td>Study of protein denaturation</td>
<td>MacKenzie (1967)</td>
<td></td>
</tr>
</tbody>
</table>
Lyophilization (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>275. Muscle</td>
<td>Aged, refrigerated lean meat</td>
<td>Slaughtered beef carcasses were cooled to 3°C, muscles were dissected and aged in plastic bags for 1 week, fat was trimmed, and the meat was frozen in a -30°C freezer for 3-5 days. Transverse slices of the muscles were freeze-dried in a radiant heat freeze-dryer to residual moisture of 1.0-1.5% of total dry wt. Meat was packaged in gas-tight pouches using various combinations of head-space gases and/or oxygen scavenging systems to see which offered the best preservation.</td>
<td>Lyophilized beef samples stored with a hydrogen-palladium oxygen scavenger and nitrogen headspace gas had a shelf life of 1 yr at 30°C. Carbon dioxide in the headspace affected reconstitution and organoleptic qualities of meat. The more fat meat had, the harder it was to store it for long periods.</td>
<td>1 yr</td>
<td>9</td>
<td>Freeze-dryer, equipment for packaging under nitrogen</td>
<td>Lyophilizer, Waring blender, centrifuge, centrifuge bottles</td>
<td>Food</td>
<td>Bengtsson (1968)</td>
<td></td>
</tr>
<tr>
<td>276. Muscle</td>
<td>Suspension of fragmented rabbit and lobster sarcoplasmic reticulum</td>
<td>Rabbit and lobster fragmented sarcoplasmic reticulum were homogenized in 0.3 M sucrose and 10 mM Tris maleate, centrifuged, and lyophilized. Dithiothreitol had little effect on Ca uptake, ATPase activity, or increased stability during storage of rabbit white-muscle sarcoplasmic reticulum, although it did prevent loss of activity in lobster samples.</td>
<td>Lyophilized, fragmented white-muscle sarcoplasmic reticulum from rabbits lost no activity after 4 mon of storage. Lyophilized lobster fragmented reticulum was as active as fresh sarcoplasmic reticulum after 18 days of storage.</td>
<td>Few hr</td>
<td>Up to 4 mon</td>
<td>3-4</td>
<td>Lyophilizer, Waring blender, centrifuge, centrifuge bottles</td>
<td>Muscle tissue studies</td>
<td>Brener (1970)</td>
<td></td>
</tr>
<tr>
<td>277. Mycoplasma</td>
<td>Suspensions of Mycoplasma</td>
<td>Broth cultures of 26 strains of Mycoplasma were mixed with equal parts of sterile skim milk (10 g powd/100 ml water). 1 ml samples were lyophilized in 3 ml ampules. Cultures were shell-frozen in alic and dry ice and freeze-dried under vacuum for 3-9 hr. Ampules were sealed and stored in freezers at -20°C or -65°C, or both. The effects of freezing and thawing varied from strain to strain.</td>
<td>All cultures were viable through 3-4 yr of storage at -65°C, with the greatest loss of viability occurring during the first mon of storage. The cultures were viable up to 10 mon at -20°C. The effects of freezing and thawing varied from strain to strain.</td>
<td>6-7 hr</td>
<td>Up to 4 yr</td>
<td>4-5</td>
<td>Flask shaker, culture plates, ampules, flasks, autoclave, alic and dry ice container, freeze-dryer, oxygen torch, freezer</td>
<td>Maintenance of cell lines</td>
<td>Kelton (1964)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>278. Nerve growth factor</td>
<td>Venom from commercial suppliers</td>
<td>Nerve growth factor from snake venom of Russell's viper was purified by a chromatographic method (described). The highly active material was stored in phosphate-buffered saline at pH 7.4 or 10.8 at 2°C, or was freeze-dried and stored at 20°C.</td>
<td>Highly active nerve growth factor loses potency on storage in saline. An equivalent response to that given at a conc of 10^-14 g/ml requires 10^-12 g/ml after storage in saline at pH 7.4 at a conc of 10 mg/ml for 6 days at 2°C, but this less active material can be stored at pH 10.8, even in very dilute saline, for up to 30 wk without further change. Freeze-dried nerve growth factor is more stable but activity falls to 10^-10 g/ml after 12 wk at 20°C.</td>
<td>Neither embryo extract serum was necessary for the growth of nerve fibers if a small amount of nerve growth factor was present in the culture medium.</td>
<td>Varied with method</td>
<td>Up to 12 wk</td>
<td>4-6</td>
<td>Refrigerator, lyophilizer, containers</td>
<td>Stimulation of growth of embryonic sensory and sympathetic ganglia</td>
<td>Banks (1968)</td>
</tr>
<tr>
<td>279. Pituitary gland</td>
<td>Acetone powd of bovine pituitary posterior lobes</td>
<td>Acetone powd of bovine pituitary lobes (1.8 I.U. of oxytocic activity/mg) was extd by suspending the powder in a suitable medium. After 18 hr at 4°C the inactivated material was removed by centrifugation. The supernatant was dialyzed against distilled water and freeze-dried. The freeze-dried samples were compared with fresh tissue for sol protein content.</td>
<td>Electrophoresis of fresh protein showed 8 distinct protein bands, while electrophoresis of lyophilized samples showed only 6.</td>
<td>Cathepsin activity was most active at pH 3-4. For best results, cathepsin activity should be destroyed.</td>
<td>Not given</td>
<td>Not given</td>
<td>4-8</td>
<td>Dessicator, refrigerator, lyophilizer, dialyzer, centrifuge</td>
<td>Study of sol proteins in pituitary neurosecretory granules</td>
<td>Dean (1957)</td>
</tr>
<tr>
<td>280. Pituitary gland</td>
<td>Live winter Necturus m. maculatus</td>
<td>Hypophyses of thyroidectomized and normal winter Necturus were divided into rostral and caudal portions, and these portions were transferred to coverslips resting on dry ice. Groups of 6 or 12 were weighed in the wet stage and stored at -18°C after lyophilization. The freeze-dried samples were homogenized and injected into mice for bioassay of thyrotrophic activity.</td>
<td>Thyroid-stimulating hormone activity was still intact after freeze-drying. No comparison with nonfreezedried specimens was given.</td>
<td>In normal Necturus, nearly two-thirds of the thyroid-stimulating activity was in the rostral portion. After thyroidectomy caudal portions yielded 90% of the thyrotrophic activity.</td>
<td>Not clear</td>
<td>Not given</td>
<td>3-5</td>
<td>Dissecting tools, glass coverslips, powder dry ice, lyophilizer</td>
<td>Thyroid-stimulating hormone assay by the method of NCRI (1958)</td>
<td>Aplington, Jr (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>281 Proteins</td>
<td>Wheat leaves</td>
<td>Wheat-leaf protein, extd by the method of Morrison (1961), was lyophilized and stored at -10°C.</td>
<td>Wheat-leaf protein was stored for 16 mon without serious impairment to its nutritive value.</td>
<td>Not given</td>
<td>16 mon</td>
<td>3</td>
<td>Extraction app, lyophilizer, refrigerator, flasks</td>
<td>Food protein</td>
<td>Buchanan (1969)</td>
<td></td>
</tr>
<tr>
<td>282 Rectal gland</td>
<td>Freshly excised shark rectal gland</td>
<td>The rectal gland of elasmobranchs was removed at the site of catch, frozen on dry ice, and shipped to the laboratory within 1-2 days. Wet wt was recorded, and small samples were taken for dry wt detn and histology. The rest of the gland was homogenized in a 10% (w/v)aq soln. Aliquots were lyophilized at -20°C and stored at -25°C until used for Na-K-activated ATPase studies.</td>
<td>Samples still had high enzyme activity after storage.</td>
<td>Several hr</td>
<td>Not given</td>
<td>6-7</td>
<td>Surgical tools, dry-ice shipping container, homogenizer, pipettes, lyophilizer, freezer</td>
<td>Study of Na-K-activated ATPase in elasmobranch rectal glands</td>
<td>Bonting (1966)</td>
<td></td>
</tr>
<tr>
<td>283 Ribosomes</td>
<td>Frozen, minced dog pancreas</td>
<td>Canine pancreatic ribosomes were prepared in the cold by a complex series of suspensions, precipitations by Mg++, and centrifugations (described). Purified ribosomal suspensions were either stored for not more than 2-3 days on ice, or lyophilized and stored at -20°C.</td>
<td>2 mg of ribosomes were obtained per gm of wet tissue. Lyophilization of the post-microsomal ribosomes caused partial dissociation.</td>
<td>2-3 days on ice</td>
<td>>10</td>
<td></td>
<td>Tissue homogenizer, gauze, centrifuge, dialyzer</td>
<td>Study of ribosome properties</td>
<td>Hollinshead (1968)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>284. Saliva</td>
<td>Fresh human saliva</td>
<td>Parotid saliva from adult males was collected by paraffin masti-</td>
<td>None given. Lyophilized saliva seemed to give desired results upon electrophoresis and should have a reasonably long shelf life.</td>
<td>1-2 days</td>
<td>Not given</td>
<td>4-6</td>
<td>Modified Lashley cups, dialyzer, lyophilizer</td>
<td>Paraffin, deionized water</td>
<td>Saliva electrophoresis</td>
<td>Meyer (1965)</td>
</tr>
<tr>
<td>285. Saliva</td>
<td>Fresh sputum from fasting human donors</td>
<td>Saliva was collected from fasting, healthy donors after the mouth had been rinsed with a bactericidal soln. Saliva was collected in sterile beakers immersed in ice. Each sample was dialyzed against distilled water at 4°C for 24 hr, then freeze-dried. In some collections salivary flow was stimulated with a tablet of citric acid. Length of collection time was carefully controlled.</td>
<td>Samples were used to isolate sialogastrone. Use of citric acid stimulation lowered the gastric inhibitory activity of saliva by raising the vol, and apparently by causing an intrinsic change in the content of the saliva.</td>
<td>2 days</td>
<td>Not given</td>
<td>4-5</td>
<td>Sterile beakers, ice bath, dialysis tubing, dialyzer, lyophilizer</td>
<td>Bactericidal soln, citric acid</td>
<td>Characterization and isolation of sialogastrone</td>
<td>Menguy (1967)</td>
</tr>
<tr>
<td>286. Sclera</td>
<td>Sclera from human enucleated eyes used in keratoplasty</td>
<td>Sclera obtained from enucleated eyes used in keratoplasty were cleaned of fat and episcleral tissue. Intraocular contents were removed, and the inside surfaced rubbed with gauze to remove the uveal pigment. The stump of the optic nerve was cut, and sclera was either cut into straight or zig-zag strips. The strips were placed for 20 min in previously boiled glycerin contg streptomycin. Then they were washed with saline, rolled on thin glass tubes, and stored in larger tubes which were immersed in a mixt of abs alc and dry ice for 20 min, then lyophilized. The tubes were sealed by flame.</td>
<td>Strips can be refrigerated in glycerol-streptomycin soln at 4°C until lyophilized. The lyophilized strips may be used in lid or retinal detachment operations for an 'indefinite period of time'. Sterile conditions were followed throughout.</td>
<td>Several hr</td>
<td>7-8</td>
<td>Surgical tools, surgical gaze, small glass tubes, larger tubes, Edward's vacuum lyophilizer, air-dry ice bath, heat sealer</td>
<td>Boiled glycerin with 1 gm of streptomycin, sterile saline soln, abs alc, dry ice</td>
<td>Tissue repair and transplantation</td>
<td>Shoukry (1966a)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>287. Scorpion venom</td>
<td>Fresh-milked scorpion venom</td>
<td>Approx 450 Vejovis spiniger venom samples were lyophilized and stored in the dark at 0°C until used. The venom was lyophilized during storage.</td>
<td>LD₅₀ of the venom slowly changed over 1 yr. In one case LD₅₀ fell from less than 5.0 mg to 20 mg/kg body wt of the test animal.</td>
<td>Not given</td>
<td>Kept 1 yr but deteriorated over this time</td>
<td>3-47</td>
<td>Lyophilizer, container, refrigerator</td>
<td>Toxicity studies; electrophoresis of proteins</td>
<td>Russell (1968)</td>
<td></td>
</tr>
<tr>
<td>288. Spermatozoa</td>
<td>Fresh human, fowl and rabbit semen</td>
<td>Human semen was mixed with an equal volume of 10% glycerol in Baker's medium. Fowl semen was mixed with 10-40% glycerol in Ringer's soln.</td>
<td>50% motile spermatozoa were recovered from freeze-dried semen that had been frozen to -78°C in the presence of 5% glycerol in Ringer's soln and dried at -25°C. Glycerol also improved the survival rate of human spermatozoa that were frozen but was toxic to rabbit spermatozoa.</td>
<td>Glycerol in conc form was toxic to spermatozoa at room temp.</td>
<td>Several hr</td>
<td>10 wk</td>
<td>Varied</td>
<td>Flasks, freezer, lyophilizer</td>
<td>Artificial insemination</td>
<td>Polge (1949)</td>
</tr>
<tr>
<td>289. Spores. Bacterial spores in 5% sugar soln</td>
<td>0.1 ml samples of bacterial spores in 5% soln of glucose, lactose, or fructose were freeze-dried at 0.01 mm of mercury over phosphorus pentoxide for 18 hr. Then they were irradiated with up to 5x10⁴ rads of gamma radiation. The effects of freeze-drying on rate of radiation damage was observed.</td>
<td>Bacterial spores freeze-dried from sugar soln had 95% viability after irradiation with 4x10⁴ rads of gamma radiation. Protection was apparently associated with the production of a "glass" during the freeze-drying process. Maltose did not form a glass so it was not effective.</td>
<td>Not given</td>
<td>16 hr</td>
<td>Lyophilization flask, vacuum pump, desiccator</td>
<td>Radiation protection studies</td>
<td>Cook (1963)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290. Spores. Bacterial spores suspended in culture medium</td>
<td>The effects of water activity, solutes, and temp on the viability and heat resistance of Bacillus and Clostridium strains were investigated.</td>
<td>No loss of viability occurred in freeze-dried bacterial spores after storage at 25°C with water activity of 0.2-0.8. At 0.00 water activity all spores showed loss of viability both in air or under vacuum. Bacillus spores stored at 1.00 water activity lost viability under vacuum but not in air; the reverse was true for Clostridia. Protective agents had variable effects on viability.</td>
<td></td>
<td>Several hr to 6 yr</td>
<td>Up to 6 yr</td>
<td>5-6</td>
<td>Centrifuge, drying oven, pyrex tubes, cotton plugs, lyophilizer, ampules, heat sealer, vacuum chamber</td>
<td>Maintenance of strain lines</td>
<td>Marshall (1963)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Streptomyces</td>
<td>Bacterial suspension</td>
<td>Sterile filter-paper wicks, 5 mm wide, were inserted into 1 ml of a crude suspension of 10% (w/v) Bacto Skim Milk soln and Streptomyces organisms (scraped with a loop from the surface of Hopwood medium). The wicks were each placed in a sterile ampule, and the neck of each ampule was constricted to 1/2 its original size and freeze-dried for 4 hr. Ampules were sealed and stored.</td>
<td>No apparent loss of viability was noted after 10 mon.</td>
<td>Poor or non-poorly growing strains can be preserved with this method. The method is fast (48 samples can be dried at once), and it is particularly useful for preserving genetically marked stocks of Streptomyces.</td>
<td>4 hr</td>
<td>> 10 mon</td>
<td>7</td>
<td>Autoclave, filter paper wicks, glass ampules, cans for drying, freeze dryer (Edwards High Vacuum Ltd), high frequency tester (Model T2, Edwards High Vacuum Ltd), flammaster double tipping attachment (Buck & Hickman, Ltd), cultures tubes, Petri dishes</td>
<td>Bacterial culture maintenance</td>
<td></td>
</tr>
<tr>
<td>Tapeworm scolices</td>
<td>Fluid from hydatid cysts containing tapeworm scolices</td>
<td>Fluid was withdrawn from fresh hydatid cysts and refrigerated 24 hr. The tapeworm scolices were removed from the supernatant and washed 3x in physiol saline by gentle centrifugation and suspension. 4% sucrose soln was added to the final deposit, and the suspension was freeze-dried and stored in ampules under vacuum at 20–4°C. The preserved scolices were then used to produce antigen for the fluorescent-antibody test.</td>
<td>The whole-scolex complement fixation test using freeze-dried scolices gave identical results with frozen antigen. Freeze-dried scolices also gave good reproducible results on the fluorescent-antibody test for diagnosis of human hydatid disease.</td>
<td>2 days</td>
<td>Not given</td>
<td>7-8</td>
<td>Hypodermic syringes, refrigerators, containers, centrifuge, lyophilizer, ampules, vacuum dessicator</td>
<td>Hydatid antigen production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue culture cells</td>
<td>Cultured mouse embryo fibroblasts</td>
<td>Non-confluent layers of 3T3 cells were prepared in tissue culture dishes and were either lyophilized or irradiated in situ. Fresh 3T3 cells were then added to these prepared layers and their growth followed with radioactive labels.</td>
<td>No growth of added cells occurred on confluent layers of either untreated or irradiated cells. Growth was unimpeded on monolayers of lyophilized cells. When cells were added to non-confluent normal or irradiated cells, the added cells grew until they contacted the pre-existing cells and covered the remaining surface of the dish.</td>
<td>No definite conclusion was drawn as to whether the phenomena of contact inhibition was a phys and/or a chemical one.</td>
<td>Few days</td>
<td>Varied with procedure; several</td>
<td>Plastic Petri dishes, dessicators, Van de Graaff generator, incubator</td>
<td>Investigation of the phenomena of contact inhibition in cell cultures</td>
<td>Schutz (1968)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN REFERENCES</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>294. Tumor cells</td>
<td>Milky ascites fluid from mouse peritoneal cavity, containg 170x10^6 cells/ml, were diluted two-fold with Hank's soln. One-half ml of this soln was mixed with 0.5 ml each of isotonic sodium glutamate, glycerol, sucrose, or lactose soln. These mixt were frozen rapidly to -22°C and lyophilized 3-4 hr. Various methods of drying, other than by vacuum, were investigated also and results reported.</td>
<td>Ehrlich ascites tumors from mouse peritoneal cavity, containg 170x10^6 cells/ml, were diluted two-fold with Hank's soln. One-half ml of this soln was mixed with 0.5 ml each of isotonic sodium glutamate, glycerol, sucrose, or lactose soln. These mixt were frozen rapidly to -22°C and lyophilized 3-4 hr. Various methods of drying, other than by vacuum, were investigated also and results reported.</td>
<td>10% sodium glutamate proved to be the best medium for lyophilization. A survival time of mice inoculated with lyophilized cells was doubled over that of controls, thus indicating that only a few cells survive the treatment.</td>
<td>Cells from milky white ascites sur- vived lyophilization better than those from homoraphic ascites.</td>
<td>4-6 hr</td>
<td>Not given</td>
<td>5-6</td>
<td>Lyophilizer, freezeor, ampules, air dryer, dessicator, Petri dishes, pipettes</td>
<td>Tumor studies Byers (1968)</td>
<td></td>
</tr>
<tr>
<td>295. Vaccine, Brucella abortus</td>
<td>Continuous-culture harvest conc diluted to 6% cell conc by packed cell vol</td>
<td>Brucella abortus cells from continuous culture were flask- lyophilized to remove impurities mixed with a freeze-drying soln consisting of Bacto-Casitone (Difco), 5; sucrose, 10; and oxoid monosodium glutamate, 2 (w/v) in distd water at pH 7.0 and dried in bottles on trays in a precooled commercial freeze-dryer. Samples bottles were tested for purity, number of viable organisms, and moisture content. Then the bottles were stored at 4°C.</td>
<td>Lyophilized cells had a 55-60% survival rate; however, rough-celled strains sometimes evolved from cultures of the lyophilized organisms.</td>
<td></td>
<td>36 hr</td>
<td>Not given</td>
<td>7-1</td>
<td>Autoclave, liter aspirator, freeze-drying tray, 5 ml bottles, stoppers, test tubes, Model SIIIR freeze-dryer (Usifroid, Paris), refrigerator</td>
<td>Brucella abortus vaccine Boys (1966)</td>
<td></td>
</tr>
<tr>
<td>296. Vaccine, Shigella flexneri 2a strains, a mutant and a hybrid, were rehydrated in Brain Heart Infusion and streaked on agar plates. Colonies were emulsified with the medium and transferred to a seed bottle containg 600 ml of the same medium. After incubation the seed culture was spread over Kółle flasks and incubated again. The organisms were harvested and pooled, and 10 ml portions of the viable organisms were freeze- dried in vaccine bottles at -44°C. The bottles were scaled and stored at 4°C.</td>
<td>Two freeze-dried Shigella flexneri 2a strains, a mutant and a hybrid, were rehydrated in Brain Heart Infusion and streaked on agar plates. Colonies were emulsified with the medium and transferred to a seed bottle containg 600 ml of the same medium. After incubation the seed culture was spread over Kółle flasks and incubated again. The organisms were harvested and pooled, and 10 ml portions of the viable organisms were freeze-dried in vaccine bottles at -44°C. The bottles were scaled and stored at 4°C.</td>
<td>Both strains retained the biological properties of freshly grown bacteria for all tests taken after 2 yr storage.</td>
<td></td>
<td>42 hr</td>
<td>Up to 2 yr</td>
<td>10-11</td>
<td>Agar plates, incubator, seed bottles, Kółle flasks, rate, vaccine bottles, stoppers, trays, freeze-dryer chamber, aluminum seals, Tesla coil, refrigerator</td>
<td>Preservation of Shigella vaccines Formal (1967)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LYOPHILIZATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>297. Viruses</td>
<td>Viruses in tissue culture media</td>
<td>Para-influenza viruses, enteroviruses, rhinoviruses, and respiratory syncytial virus in tissue culture were mixed with an equal amount of a stabilizer such as skim milk, glucose, or dextran. 0.1 ml aliquots were put in ampules and dried for one day on a centrifugal freeze-dryer and were sealed at a final vacuum of less than 20 torr. Ampules were stored in an ordinary refrigerator at 4°C.</td>
<td>A drop of 2 log units in titre was noted for most viruses tested, but residual infectivity was unchanged after 2 wk at room temp or several mos at 4°C. Strain differences occurred as the method must be adapted to each organism.</td>
<td>This method maintained viruses in an infectious state for long periods of time as long as stabilizers such as glucose, dextran, albumin, etc., were present. The stabilizers were strain specific.</td>
<td>1-1.5 days</td>
<td>2 wk to several mos</td>
<td>3</td>
<td>Centrifugal freeze-dryer (Edwards model 5PS), ampules, refrigeration, vacuum sealer</td>
<td>Maintenance of infectious viral cultures</td>
<td>Tyrrell (1965)</td>
</tr>
<tr>
<td>298. Viruses</td>
<td>Liquid suspension of influenza virus</td>
<td>Influenza virus, strain PR8, in physiol saline soln plus 1% calcium lactobionate and 1% serum albumin was frozen to -30°C, slowly brought back to 0°C, and finally lyophilized at that temp to a moisture content of 3.2, 2.1, 1.7, 1, or 0.4%. The stability of the several suspensions was determined by an accelerated storage test.</td>
<td>Stability (time for dried prep to lose 1 log of infectivity titer) was greatest at 1.7% moisture. The suspension took 20.2 days at 28°C to lose 1 log titer of stability with residual moisture of 1.7%.</td>
<td>The results were inconclusive.</td>
<td>Approx 36 hr</td>
<td>Not given</td>
<td>3</td>
<td>Edwards High Vacuum freeze-dryer, glass vials, freezer</td>
<td>Study of residual moisture effects on lyophilization of influenza virus</td>
<td>Greiff (1968)</td>
</tr>
<tr>
<td>299. Yeast</td>
<td>Yeast cells were disintegrated and the extract mixed with NaCl to a final soln of 0.9%. To this suspension was added the various preservatives to be tested.</td>
<td>DMSO, glycerol, sucrose, and glucose were added to Saccharomyces cerevisiae cells suspended in 0.9% sodium chloride soln, and the suspensions were frozen. The same compd were added to S. cerevisiae cells suspended in 0.9% sodium chloride soln, and the suspensions were frozen. The same compd were added to S. cerevisiae and the samples were dried in an attempt to discover whether freezing or drying causes damage to the organism. Results indicated that drying from the liq state is usually lethal to cells. In drying from the frozen stage, the lower the drying temp the better the survival. DMSO was the best protective agent for S. cerevisiae followed by the others in the order listed above.</td>
<td>No long term effects were studied. Emphasis was on separation of effects of freezing and drying in order to better understand the phenomena.</td>
<td>Not given</td>
<td>Not given</td>
<td>4</td>
<td>Two-stage 'Frigiston' refrigerator mounted on a brass plate under vacuum, nitrogen pump, moisture trap, ampules, freeze press</td>
<td>Study of the effects of freezing and drying on yeast cells</td>
<td>Greaves (1965)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>300. Yeast</td>
<td>Freshly cultured yeast cells</td>
<td>Candida pseudotropicalis was maintained at 19°C on slants of Difco yeast ext., (NH₄)₂SO₄, and KH₂PO₄ plus glucose and agar. Slant organisms were transferred to a roller tube containing 10 ml of medium (with galactose instead of glucose) and allowed to grow for 6-20 hr at 37°C. Tube contents were then transferred to a 1-liter flask and shaken. Next they were transferred to a carboy, aerated, and grown for 24 hr at 37°C. The yeast cells were collected in a supercentrifuge and washed 10x. The cell paste was frozen, freeze-dried, and stored at -10°C.</td>
<td>Yeast cell paste could be stored for 6 mon and still be suitable for use as uridine diphosphogalactose 4-epimerase enzyme.</td>
<td>Several days</td>
<td>At least 6 mon</td>
<td>>10</td>
<td>Slant culture tube, autoclave, roller tube, 1-liter flask, shaker, aerator, spectrophotometer, Sharples centrifuge</td>
<td>Yeast enzyme studies</td>
<td>Darlow (1968)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>301. Adrenal glands</td>
<td>Bovine adrenal gland from a freshly killed animal</td>
<td>Bovine adrenal glands were removed 15 min after the death of the animal and kept in ice for 30-60 min until perfusion was begun. The cortex was removed, and the medulla was cannulated through the adrenal vein and tied with a ligature around a small amt of aortic and cortical tissue left. The organ was perfused with a special perfusate (described). Methylene blue was included just before the perfusion fluid entered the tissue. This showed that the cortical tissue was not perfused. Secretagogues were added to the perfusion fluid in an attempt to see whether the medulla reacts differently alone than it does with the cortex attached.</td>
<td>There appears to be no difference in the mechanism for catecholamine secretion from cortex-free perfused medulla as compared to the whole gland.</td>
<td>Not given</td>
<td>1 hr</td>
<td>Not given</td>
<td>7-8</td>
<td>Surgical tools, ice bath, cannulas, hypodermic syringe, oxygenator, Harvard infusion pump. Perfusate contg NaCl, KCl, CaCl₂, NaH₂PO₄, MgCl₂, NaHCO₃ and glucose; methylene blue; misc secretagogues.</td>
<td>To study the differences in secretion between the adrenal medulla and the whole gland.</td>
<td>Schneider (1969)</td>
</tr>
<tr>
<td>302. Animal and plant specimens</td>
<td>Fresh plant or animal tissue</td>
<td>A method for preserving plant and animal tissues so that they retained their natural color and shape and did not deteriorate was presented. The method consisted of treating the tissue with a water-dissolving, volatile, org liq (such as tertiary butyl alc) contg an oxidation inhibitor thiourea and a preserving substance such as sodium sulfite which controls the pH and stabilizes the color and composition of the tissue. After this treatment the specimens were dipped or imbedded in plastic, or treated with wax coatings.</td>
<td>Specimens treated in this manner did not deteriorate for long periods of time at room temp. It was important to use an antioxidant which would protect against oxidation but would not bleach the specimen. Also, adjustment of the pH to approx that of the original specimen was necessary.</td>
<td>Not given</td>
<td>Several hr</td>
<td>Not given</td>
<td>Varied</td>
<td>Many reagents were used depending on the type of tissue being preserved.</td>
<td>Biol specimens or museum specimens.</td>
<td>Fessenden (1953)</td>
</tr>
<tr>
<td>303. Animal specimens</td>
<td>Human cadaver</td>
<td>A water-soluble gel embalming fluid contg from 5-60% formalin and cellulose ester gels was used to embalm cadavers.</td>
<td>The gel allowed the embalming fluid to stay in contact with the cadaver, but it could easily be removed with water. Evaporation and excessive fumes were also avoided by the use of a gel.</td>
<td>Not given</td>
<td>15 min-1 hr</td>
<td>Not given</td>
<td>2</td>
<td>Water-sol gel embalming fluid contg 5-60% formalin and cellulose ester gels.</td>
<td>Embalming</td>
<td>Haydens (1966)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>304. Animal specimens</td>
<td>Freshly killed or dissected animal specimens</td>
<td>The 6-lactone of 2-p-dioxanone was dissolved in an appropriate solvent such as water, benzene, toluene, xylene, dioxane, etc, and used as an embalming agent for animal specimens. The solution was either injected or infused into the specimen, usually through the circulatory system.</td>
<td>Storage from 1 min to an indefinite period can be achieved by treatment of the specimen with 5-50% of its wt with 2-p-dioxanone compounds. Dog hearts remained soft and naturally appearing for 10 min without signs of deterioration, and rabbit liver was kept 2 min without deterioration.</td>
<td>Few min after preps of sample</td>
<td>From 1 min to several non depend on specimen</td>
<td>2-4</td>
<td>Equipment varied</td>
<td>2-p-dioxanone in a variety of solvents</td>
<td>Museum specimens</td>
<td>Langer (1966)</td>
</tr>
<tr>
<td>305. Arteries</td>
<td>Freshly extd bovine carotid arteries</td>
<td>Freshly extd bovine carotid arteries were immersed in cold water and shipped to labs where they were washed, cleaned, and the tributaries were ligated with 000 surgical silk. Then they were soaked 2 hr at 37°C in a 1% soln of ficin at pH 5.5. Enzyme action was stopped by soaking in a 1% soln of sodium chlorite for 18 hr. The arteries were tanned for 24 hr in 1.3% aqueous dialdehyde starch soln at pH 8.8. The vessels were washed, tested for strength and leakage, slid onto glass mandrels, and sterilized in 50% ethanol-1% propylene oxide soln for 14 days. The glass container served as a package until used.</td>
<td>Excellent 'patency' occurred with grafts up to 14 days old, when the grafts were applied to blood vessels of similar size; it was not clear how long samples could be maintained in their sterilized form.</td>
<td>There was no antigenic response or rejection of the grafts. They were generally tolerated much better than synthetic materials.</td>
<td>About 18 days (including sterilization)</td>
<td>Not clear, longer than 14 days</td>
<td>8</td>
<td>Glass mandrels, steriliser, glass containers, surgical silk, air under pressure</td>
<td>Blood vessel transplants</td>
<td>Dale (1969)</td>
</tr>
<tr>
<td>306. Bacteria</td>
<td>Bacterial cultures of Thiobacilli and Ferrobacilli</td>
<td>Thiobacilli and Ferrobacilli, two types of bacteria that cause disintegration and loss of large numbers of pyritic mineralogical and fossil specimens in museums, were cultured and treated with a number of volatile sterilants. 4-chloro-m-cresol crystals proved to be the most effective, 4-chloro-3,5-xylene, or a combination of thymol and dicyclohexylamine nitrate (ammoniated) both acceptable alternates.</td>
<td>Although extensive field tests over a long period of time have not been performed, the authors feel that crystals of the sterilants mentioned placed in museum cases or containers should inhibit specimen attack by iron and sulfur bacteria. The compounds were volatile but relatively nontoxic.</td>
<td>Few min</td>
<td>Not given</td>
<td>Varied</td>
<td>Incubator, cotton wool plugged flasks, aluminum cups, sterile media</td>
<td>Preservation of pyritic museum specimens</td>
<td>Booth (1970)</td>
<td></td>
</tr>
</tbody>
</table>
CHEMICAL PRESERVATION (Continued)

307. Bacteriophage

SPECIMEN DESCRIPTION

ORIGINAL FOAM OF SAMPLE
Suspension of Staphylococcus infected with bacteriophage

BAIEF DESCRIPTION OF METHOD
A study was made of the effects of phys and chem agents such as thermal, ionizing, radiation, ultrasonic vibration, lyophilization, long term storage, temp, UV light, salt soln, and soln at various pH on Staphylococcus bacteriophage. Tryptose phosphate broth was used to grow the host organism and was also used as the diluent. Agar was added for plate or slant production.

LIMITATIONS OF METHOD
Bacteriophage PI was inactivated by heat at a logarithmic rate and has a temp characteristic of 100,000 cal/mole. Inactivation by high frequency oscillation was a first order reaction with a velocity constant of 0.77 cm³/min. Photoreactivation occurred when UV-treated PI were exposed to strong visible light. Adsorption constants of PI to host bacterium SK9 range from 489 x 10⁻¹² at 10°C to 748 x 10⁻¹¹ cm³/min at 37°C. PI is most stable at pH 5-7. Mono- and divalent ions tested did not stabilize the phage, and citrate did not prevent phage multiplication. PI phage in tryptose phosphate broth are stable for 1 mon at 4°C. PI can be lyophilized but with a considerable loss of titer.

OTHER COMMENTS ABOUT METHOD

EQUIPMENT AND REAGENTS USED
Culture tubes, Petri dishes, autoclave, centrifuge, refrigera
tor, lyophilizer, Sela filtration candle, alc
dry ice bath, various containers, sonic oscillator (Raytheon), constant-temp water bath, GE germicidal lamp

**Tryptose phosphate broth, agar, alc
dry ice, physiol saline soln, NaCl, glucose,
N₂H₄·H₂O, NaOH, sodium citrate, diva
lent salts, deionized water

REFERENCE
Holmes (1956)

308. Blood

SPECIMEN DESCRIPTION
Fresh human blood

ORIGINAL FOAM OF SAMPLE
One drop of a satd soln of potassium fluoride was added to each 5 cc of fresh blood. Specimens were collected in tubes containing potassium fluoride so In which had been stoppered with cotton and autoclaved. Samples were kept at room temp.

BAIEF DESCRIPTION OF METHOD
Blood sugar or carbon dioxide levels in preserved blood samples did not change for up to 7 days at room temp.

LIMITATIONS OF METHOD
Oxalate was not needed if potassium fluoride was used.

OTHER COMMENTS ABOUT METHOD

EQUIPMENT AND REAGENTS USED
Test tubes, autoclave, Blood sugar pipettes, cotton plugs and by the Folin method, Potassium fluoride satd and CO₂ anal soln by the Van Slyke method

REFERENCE
Major (1923)

ESTIMATED PRESERVATION TIME
Varied with method

SURVIVAL NO. OF TIME STEPS
Varied with method

END USE
To study the effects of phys and chem agents on bacteriophage viability

IIII-111
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>309. Blood</td>
<td>Fresh human blood drawn by venipuncture</td>
<td>The effect of blood storage methods on the prothrombin time measurement of blood by the Quick method was investigated. Oxalated blood specimens were stored in opened test tubes, in stoppered tubes, and in filled Vacutainer tubes. The effects of loss of CO₂ and resultant change in pH on storage stability were discussed.</td>
<td>Stability of prothrombin time was demonstrated if the oxalated blood specimen was stored in a stoppered, filled tube in a test tube rack at room temp. Vacutainer tubes gave the best results, but it was necessary to fill them full. After 24 hr of storage only 3 out of 86 revealed changes of 2 sec or greater.</td>
<td>¼ hr 24 hr 3-5</td>
<td>Vacutainer tubes, test tubes, needles, centrifuge, test tube rack 0.1 M sodium oxalate soln</td>
<td>Anal of prothrombin time by the Quick method</td>
<td>Schoen (1962)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310. Blood</td>
<td>Freshly drawn citrated human blood</td>
<td>Citrated blood diluted with 5% glucose in a transfusion set leads to clumping or agglomeration of the blood. To try to alleviate the agglomeration the following were tried: 1) NaOH was added to the glucose soln to neutralize HOCl, 2) physiol saline and 5, 10, or 25% blood were used instead of glucose 3) 0.9% physiol saline was used to resuspend the clumps 4) donor or recipient plasma was used to dissolve the clumps. All suspensions were examined microscopically for clumping.</td>
<td>Clumping was most pronounced at low cone of blood and at room temp rather than at 37°C. NaOH did not reduce clumping. When blood was diluted with physiol saline, no clumping was observed. Some clumps were formed in 25% blood mixt, but more formed in 5% blood mixt. Clumps can be broken up by vigorous shaking.</td>
<td>No conclusive results were found. The clumping phenomenon did not appear to have serious adverse effects but could cause an embolism if not dissolved.</td>
<td>EETO blood warmer, autoclave Isotonic glucose soln, NaOH soln, blood, blood plasma, physiol saline soln</td>
<td>Transfusion without clumping</td>
<td>LaCour (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>311. Blood</td>
<td>Human autopsy blood</td>
<td>Investigation of glucose and ethyl alc content of autopsy blood showed that, if blood glucose was high, microorganisms in the autopsy blood would produce alc even in the presence of 0.5% sodium fluoride. 1% sodium fluoride was necessary to act as both an enzyme and microb. inhibitor in autopsy blood. Blood samples could be kept up to 7 days at 20°C-25°C if stored in 1% sodium fluoride.</td>
<td>The Folin Wu method of glucose anal was not satisfactory for autopsy blood glucose anal.</td>
<td>Few min 7 days at 20°C-25°C 2</td>
<td>Blood collection app, sterile containers 1% sodium fluoride soln</td>
<td>Glucose and ethyl alc soln</td>
<td>Plueckhahn (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>SPECIMEN</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>312</td>
<td>Blood cells, Red</td>
<td>Freshly drawn pig blood</td>
<td>Preservability of pig red blood cells was examined in citrate and Alsever’s soln completed with various quantities of KCN or NaCN. Blood was collected from unsterile skin by a hypodermic syringe contg a small amt of sodium citrate and was put at once into 4 ml of citrate soln. Red blood cells were washed twice before being suspended in the test soln.</td>
<td>Red blood cells could be preserved in citrate soln contg 1 part cyanide to 17,000-21,000 parts red cell-citrate mixt for 4 wk. 2,000’and 3,000 parts of red blood cells in Alsever’s soln to 1 part cyanide lasted 60 days in excellent condition.</td>
<td>Few min</td>
<td>Up to 60 days</td>
<td>4-5</td>
<td>Hypodermic syringe, centrifuge, test tubes</td>
<td>Blood-typing standards</td>
</tr>
<tr>
<td>313</td>
<td>Blood cells, Red</td>
<td>Aq soln of rabbit red blood cells contg 0.6% sodium chloride to prevent simple osmotic hemolysis</td>
<td>Ten chemical antimicrobial preservatives were compared for hemolysis of red blood cells. Addition of 10-20% DMSO dramtically decreased the hemolytic activity of all the antimicrobials. Preservatives covered were: Phenol, benzyl alc, phenyl ethyl alc, m-cresol, chlorobutanol, p-chlorophenol, thimerosal, chlorhexidine di-acetate, benzalkonium chloride, and phenyliceric nitrate.</td>
<td>Denaturation of blood occurred at about 30% DMSO.</td>
<td>Few min</td>
<td>Not given</td>
<td>4</td>
<td>Centrifuge, test tubes, water bath, pipettes</td>
<td>Hemolysis prevention</td>
</tr>
<tr>
<td>314</td>
<td>Blood cells, Red</td>
<td>Freshly collected human blood</td>
<td>Red cells lost their biconcavity and progressive shape changes occurred on loss of ATP during storage. This paper investigated the effect of adenosine on these phenomena in blood collected in ACD at 37°C.</td>
<td>Blood cell vol and mean cellular Hb remained constant 45 hr at 37°C, then large shrinkage of the cells occurred coinciding with loss of ATP. Also at this time K⁺ was exchanged for Na⁺ within the cells. These phenomena were completed in 80 hr without adenosine, but were prolonged to 90 hr with the addition of adenosine</td>
<td>Few min</td>
<td>90 hr</td>
<td>3</td>
<td>Plastic bags, blood collection app, transfer packs, water bath, plastic tubing</td>
<td>Adenine effect on red blood cell vol and metabolism</td>
</tr>
</tbody>
</table>
CHEMICAL PRESERVATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>315. Blood plasma,</td>
<td>Freshly drawn human blood</td>
<td>The effect of heparin on potassium conc of blood plasma was studied. Various levels of heparin were added to blood samples and potassium was analyzed.</td>
<td>200-300 units of heparin/2-5 ml of blood had a stabilizing effect on plasma potassium values. Heparinized plasma can be left in contact with blood cells for more than 4 hr with no change in potassium conc.</td>
<td>Few min 4 hr Not clear</td>
<td>Test tubes, centrifuge, pipettes</td>
<td>Plasma potassium anal</td>
<td>Hultman (1962)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316. Blood serum</td>
<td>Unadulterated human blood serum</td>
<td>Blood samples from humans, dogs, and rats were added to tubes with no anticoagulant, or with 25 mg of heparin, 15 mg of potassium oxalate, or 25 mg of sodium citrate. Serum and plasma were separated and stored at 2°C until used. The effects of the various anticoagulants on serum and plasma amylase activity were measured.</td>
<td>Amylase activity in human blood sera was almost 20% lower in the presence of oxalate or citrate than it was in controls, whereas heparin had no significant effect on amylase activity. Amylase activity of rat and dog blood sera were not appreciably changed by any of the anticoagulants. Heparin did not change human saliva amylase activity either.</td>
<td>Few min Not given 2-3</td>
<td>Syringes, surgical tools, test tubes, refrigerator</td>
<td>Anal of amylase activity by the method of Van Loon (1952)</td>
<td>McGrechin (1957)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>317. Blood serum</td>
<td>Citrate buffer, 0.5 ml of 0.2 M solu, pH 5.2, was added to test tubes and dried at 75°C. When serum, 1.50-1.75 ml, was added to the tubes, the citrate buffer redissolved. This method eliminated error caused by adding incorrect vol of acid soln.</td>
<td>Serum acid phosphatase activity was unchanged up to 48 hr using this method.</td>
<td>Ordinarily a liq acid solution is used and allows more room for error.</td>
<td>Few min > 48 hr 3-4</td>
<td>Pipettes, test tubes 0.2 M citrate buffer</td>
<td>Clinical anal of serum acid phosphatase</td>
<td>Ramsio (1970)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESENTATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>318. Blood substit­ute</td>
<td>Excised heart (animal species not given)</td>
<td>A mix of dried bullock blood dissolved in water to resemble normal blood was diluted with 5 parts 0.75% physiol saline soln. This was used as a normal blood 'standard' to perfuse the ventricle of an excised heart. Soln of distd water or 0.75% physiol saline soln to which egg white, serum albumin, potassium chloride, other potassium salts, syrup (glucose?), sodium phosphate and/or more sodium chloride were added, were perfused through the ventricle, and the results were compared to the 'standard' for effects on ventricular systole and diastole.</td>
<td>0.75% physiol saline soln to which 1x10⁻⁴ parts of potassium chloride have been added made an excellent circulating fluid for detached heart ept according to the author.</td>
<td>This was Ringer's original paper.</td>
<td>Varied</td>
<td>Up to 4½ hr</td>
<td>Varied</td>
<td>Cannula, Roy's tono-meter</td>
<td>0.75% physiol saline soln, egg white, serum albumin, dried bullock blood, distd water, potassium chloride, several potassium salts, syrup, sodium phosphate, sodium chloride</td>
<td>Blood substi­tute for heart perfusion</td>
</tr>
<tr>
<td>319. Bone</td>
<td>Freshly excised human cadaver bone</td>
<td>Anorganic bone prepared by treating ordinary bone with hot ethylenediamine to remove the org matter, was implanted into the tibia of a sheep and into the skull of a rabbit. Its properties were compared to controls and to implants with other commercial bone preps that did not have the org matter removed.</td>
<td>Anorganic bone may be stored for a very long time, is well tolerated, is a useful space filler, and shows good osteoconduction. It does not have mechanical strength and is replaced in the body very slowly. Kiel bone and Boplant showed evidence of antigenic reaction which anorganic bone did not.</td>
<td>The author mentioned other work where the recipients own bone marrow was combined with the anorganic bone to give better results.</td>
<td>Not given</td>
<td>Unlimited if kept sealed</td>
<td>3</td>
<td>Surgical tools, sealed containers</td>
<td>Ethylenediamine, Kiel bone, Boplant (Squibb)</td>
<td>Transplants</td>
</tr>
<tr>
<td>320. Bone</td>
<td>Whole animal skeletons</td>
<td>Animals were skinned, most of the flesh was removed, and the skeleton was boiled in water until the remaining meat was cooked. The meat was removed, and the bones were brought to a boil again. Sodium perborate was added to the boiling water in an amt sufficient to make a 2.5% (w/v) soln. After several hr in this soln the bones were removed, washed in hot detergent soln, and dried.</td>
<td>Frothing took place when perborate was added to the water, therefore the container had to be much larger than the skeleton. This technique of preserving skeletons not only bleached the bones, but it also degreased them.</td>
<td>The cone of perborate was not critical, but if it was too high crystals were deposited on the specimen.</td>
<td>Depends on the type of specimen; bones can be left in the soln for up to 2-3 mon without damage</td>
<td>Not given; a long time probably</td>
<td>7</td>
<td>Surgical tools or knife, metal containers</td>
<td>Sodium perborate tetrahydrate, detergent</td>
<td>Museum skeletal specimen</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>321. Feces</td>
<td>Fresh pig feces</td>
<td>Pig fecal samples to be analyzed for carbohydrates, were mixed with eq volumes of water and acetone to which toluene was added as a preservative. Aliquots were centrifuged, and the supernate was treated with zinc sulfate/barium hydroxide, 1:20, to give a protein-free filtrate. (Although the paper does not say so, it was assumed that the samples were refrigerated until analyzed.)</td>
<td>Marked changes in total reducing sugar occur in stored feces, even if they are frozen, unless the samples are deproteinized shortly after collection.</td>
<td></td>
<td>3 hr</td>
<td>At least 5 days</td>
<td>4-6</td>
<td>Metabolism crates, containers, pipettes, centrifuge</td>
<td>Analysis of carbohydrates</td>
<td>Sheep (1969)</td>
</tr>
<tr>
<td>322. Flowers</td>
<td>Fresh flower buds on stems</td>
<td>Flowers of several chrysanthemum cultivars were harvested at the 'tight-bud stage'. The foliage was partially trimmed, and the buds were trimmed to 18 in. in length. The stems were placed in vases filled with water plus a commercial floral preservative. Others were placed in water containing 8-hydroxyquinoline and sucrose. The various preservatives were compared for their effect on flower opening, flower size, and bloom preservation.</td>
<td>Flowers held in 8-hydroxyquinoline or Everbloom were larger than flowers held in other preservatives. They were also fully developed and globular in form after 6 days. Stems were heavier with 8-hydroxyquinoline than they were with other preservatives. Flowers held in 8-hydroxyquinoline plus sucrose solution weighed more after 2 wk than those held in water alone.</td>
<td>Few min</td>
<td>2 wk</td>
<td>2-3</td>
<td>Scissors; quart glass jars; constant temp, light, and humidity room (greenhouse)</td>
<td>To reduce damage and prolong transportation time for commercial flowers</td>
<td>Marousky (1970)</td>
<td></td>
</tr>
<tr>
<td>323. Flowers</td>
<td>Gladiolus spikes 2-6 hr old from picking</td>
<td>Gladiolus spikes were conditioned in water or solution of 1,000, 5,000 or 10,000 ppm 8-hydroxyquinoline citrate with or without 4% sucrose for 24 hr in an attempt to find a floral preservative.</td>
<td>Spikes conditioned in 1,000 ppm 8-hydroxyquinoline plus 4% sucrose for 24 hr weighed more after 4 days of vase life than spikes conditioned in 8-hydroxyquinoline alone. The preserved spikes were turgid after 4 days while the spikes conditioned with water only showed wilting. Spikes conditioned in 8-hydroxyquinoline at 110°F weighed more after 4 days of vase life than spikes conditioned at 74°F.</td>
<td>Few min</td>
<td>4 days</td>
<td>3</td>
<td>Scissors or knife, plastic containers, constant light and temp room</td>
<td>Botany specimen or decorative flowers</td>
<td>Marousky (1970a)</td>
<td></td>
</tr>
</tbody>
</table>
CHEMICAL PRESERVATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>324. Fluorescein soln</td>
<td>Fluorescein sodium soln contaminated with P. aeruginosa</td>
<td>A 2% fluorescein sodium soln was inoculated with Pseudomonas aeruginosa strain NCTC 2102 to make a standard 'contaminated' mixt. The following compds were tested on the mixt as preservatives: 1) Phenylmercuric nitrate, 0.002%, 2) Phenylethyl alc, 0.6%, 3) Phenylmercuric nitrate, 0.002% plus phenylethyl alc, 0.6%, 4) Phenylmercuric nitrate, 0.002% plus phenylethyl alc, 0.4%, 5) Phenylmercuric nitrate, 0.002% plus phenylethyl alc, 0.2%.</td>
<td>Combinations 3 and 4 achieved sterility within 60 min. All achieved sterility after 180 min.</td>
<td>The effectiveness of phenylethyl alc in combination with another chem antibacterial agent against Pseudomonas aeruginosa was probably related to the permeability of the bacteria to the agent.</td>
<td>Few min</td>
<td>Not given</td>
<td>2</td>
<td>Incubator, containers</td>
<td>Sodium fluorescein soln, phenylmercuric nitrate, phenylethyl alc</td>
<td>Richards (1969)</td>
</tr>
</tbody>
</table>

| 325. Heart | Excised heparinized whole rat heart | The effects of perfusion with modified Ringer's soln; cardiac arrest using sodium fluoride, adrenochrome, acetylcholine, potassium chloride, or magnesium sulfate; and resuscitation with perfusion fluid contg magnesium sulfate, glutathione, and norepinephrine on excised rat heart storage and metabolism were studied. | Magnesium sulfate-arrested hearts could be resuscitated after 6 hr of arrest. Hearts arrested 4 hr or longer in all soln functioned poorly. | Survival of organs at body temp can be prolonged by metabolic inhibitors. They are thought to inhibit autodigestion and prevent enzyme depletion and cell intoxication. | 5-10 min | Up to 4 hr | 6-7 | Constant temp bath, Langendorff column, cannulation needles, beakers | Oxygenated modified Ringer's soln with 100 mg% dextrose; heparin; pentobarbital; sodium fluoride, 0.8 mg/ml; adrenochrome, 0.2 mg/ml; glutathione, 0.4 mg/ml; magnesium sulfate; acetylcholine; potassium chloride | Heart transplants | Webb (1966) |

<p>| 326. Heart | Canine and human normothermic heart-lung preparations | Canine and human normothermic heart-lung preparations were maintained without a pump oxygenator in a fully perfused, forcefully beating stage outside the body by using the pumping force of the graft itself. A stabilizer bag was used to regulate the blood pressure and the blood vol circulating in the prep according to the pressure in the ascending aorta. The autoperfusate was heparinized to avoid clotting. | Heart-lung preps could be preserved up to 27 hr. The av was 11 hr 8 min. | After varying times of asoxia cadaver hearts were resuscitated and preserved for several hr using autoperfusion prep. | Up to 27 hr; av 11 hr | 6-7 | | Stabilizer bag, surgical app, app for suspending excised organs, electrocardiogram, blood pressure monitor, oxygen saturation monitor, pump oxygenator, respirator 25% glucose soln, insulins, heparin | Heart-lung transplants | Robicsek (1969) |</p>
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL NO. OF TIME STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>327. Heart</td>
<td>Freshly excised human and canine heart and lung removed en bloc</td>
<td>Canine and human heart and lung were removed en bloc. The lung was ventilated with a Harvard respirator. The heart and lung were kept at room temp from 30 min-5 hr and were then connected to a pump oxygenator and resuscitated. After restoration of a forceful beat the heart and lung were disconnected from the pump and converted into an autoperfusing heart-lung prep. Calcium chloride and isoproterenol were given prior to defibrillation, dexamethasone after resuscitation, and glucose and insulin every hr after the 2nd hr of spontaneous activity.</td>
<td>Anoxic periods exceeding 30 min cut down on survival time of the autoperfusing heart-lung prep directly proportional to the length of anoxia. However, resuscitation of cadaver hearts up to 180 min after cardio-respiratory arrest is feasible.</td>
<td>Survival time of the heart-lung prep from functioning donors was much better than that of prep from cadavers.</td>
<td>Up to 7 hr after 30 min anoxia (optimum)</td>
<td></td>
<td>Travenol Miniprobe pump, surgical tools, Harvard respirator</td>
<td>Heart-lung transplant</td>
<td>Ten (1969)</td>
</tr>
<tr>
<td>328. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Dog kidneys were excised, cannulated, and flushed with 10 ml isotonic saline contg heparin. Dog blood collected in plastic bags contg heparin was used to perfuse the kidney at 25°C in a special perfusion app (described). Other kidneys were perfused with blood to which either hyperontronic of isotonic sodium chloride and 5% glucose were added, and some were perfused with added creatinine and Locke's soln. Blood and urine flow were monitored.</td>
<td></td>
<td>The average ischemic time was 30 min.</td>
<td></td>
<td></td>
<td>Perfusion app (described), surgical tools, cannulas, Fenwal blood bags, calibrated hypodermic syringe</td>
<td>Kidney transplants</td>
<td>Couch (1958)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGIN FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>329. Kidneys</td>
<td>Whole excised primate and sheep kidney</td>
<td>Sheep and baboon kidneys were removed and immediately cooled to 10°C and perfused with 10% low mol wt dextran in physiol saline contg heparin and procaine. The organs were weighed, cannulated, and placed in a perfusion chamber at 37°C. Perfusate in the chamber contained heparinized blood, balanced heparinized blood, balanced salt soln, White's or Hank's soln, dextran, penicillin, and streptomycin. Addition of low mol wt dextran to the perfusate and a low hematocrit contributed to successful maintenance of the excised kidneys.</td>
<td>Baboon kidneys isolated for 24 hr maintained adequate blood flow and urine production. Reimplanted baboon and sheep kidneys that had previously been isolated 5-7 hr resumed relatively normal functioning following contralateral nephrectomy.</td>
<td>1 hr</td>
<td>5-24 hr; optimum 7 hr</td>
<td>5-6</td>
<td>Perfusion app (described), reciprocating pump, surgical tools</td>
<td>Transplants</td>
<td>Telander (1964)</td>
</tr>
<tr>
<td>330. Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Dog kidneys were excised, weighed and cannulated. The kidneys were then perfused at room temp against a venous pressure (to prevent intrarenal vascular spasm and collapse) with a variety of perfusates until the venous effluent was clear. The perfused kidneys were autotransplanted and observed. The most effective perfusate was 5% low mol wt dextran in balanced salt soln buffered to pH 7.4 and contg heparin.</td>
<td>Kidneys could be preserved up to 48 hr and still produce a successful autotransplant.</td>
<td>1 hr</td>
<td>Up to 48 hr</td>
<td>5-6</td>
<td>Perfusion app, surgical tools, polythene cannula</td>
<td>Transplants</td>
<td>Hanax (1965)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heparin, 5% low mol wt dextran, balanced salt soln, tromethamine buffer, heparin</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>METHOD LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>Freshly excised canine kidney</td>
<td>Dog kidneys could be stored for up to 5 days in an intermediary recipient.</td>
<td>Many details of performing kidney removal, preservation, and transportation to a recipient, and preparation of the cadaver and recipient on a routine basis were included.</td>
<td>Up to 5 days</td>
<td>Up to 50 hr</td>
<td>Surgical tools, LI-400 preservation unit (Lifecore, Inc.) and mobile van, sterilizing oven, Millipore filters</td>
<td>Transplants Ackermann (1966a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>Freshly excised human cadaver kidney</td>
<td>Cadaver kidneys from acceptable donors were removed 5 min after cardiac arrest and cooled by flushing with cold, normal saline or Ringer's lactate solution. They were installed in a sterile LI-400 preservation unit and perfused at 50°C with modified human AB+ or AB- plasma that was filtered on a series of Millipore filters. KCl, mannitol, penicillin, Decadron, and insulin were added to the perfusate.</td>
<td>Circulation of 20 dog cadavers was maintained with the Anstadt EMVA (external mechanical ventricular assistors), and their livers and kidneys were employed as allografts implanted 4-24 hr after donor death. 63 patients received cadaver kidneys preserved up to 50 hr. Typical preservation time was 24-36 hr. Both livers and kidneys functioned well for 2 days after transplantation.</td>
<td>Up to 50 hr</td>
<td>Up to 24 hr</td>
<td>Surgical tools, normal saline solution, Ringer's lactate solution, human AB+ or AB- plasma, KCl, mannitol, penicillin, Decadron, heparin</td>
<td>Transplantation of dogs and cadaver kidneys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL NO. OF TIME STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>334. Lungs</td>
<td>Freshly excised baboon lung</td>
<td>Excised baboon lungs were wrapped in saline-soaked sponges to prevent drying, and were maintained at 37°C for up to 3 hr. The lung was then perfused with 500 cc of cold, low mol wt dextran and reimplanted. Counting reimplantation time, total ischemia was more than 4 hr.</td>
<td>Lung reimplantation after 4 hr of ischemia resulted in a 30-day mortality rate of 33%.</td>
<td>Few min</td>
<td>Up to 4 hr</td>
<td>3</td>
<td>Surgical tools, saline-soaked sponges, containers</td>
<td>Lung transplants</td>
<td>Armar (1967)</td>
</tr>
<tr>
<td>335. Lungs, liver, and kidneys</td>
<td>In situ dog lungs and cadaver lungs, liver, and kidneys</td>
<td>Canine and human lungs were preserved and transplanted under a variety of conditions involving organs from cadavers and from living donors. The length of time organs can withstand non-ischemic ischemia and mechanical ventricular assistance before deterioration was investigated. Emphasis was on short-term in situ preservation using various perfusion techniques mostly involving Ringer’s soln and heparin.</td>
<td>Organs from patients who die while on cardiopulmonary bypass would make good transplant specimens.</td>
<td>1-8 hr</td>
<td>Varies</td>
<td>Surgical apparatus, Oxygen, nitrogen, perfusion fluids (mostly Ringer’s soln with various additives), heparin</td>
<td>Organ transplants</td>
<td>Vieth (1969)</td>
<td></td>
</tr>
<tr>
<td>336. Muscle</td>
<td>Freshly excised rat diaphragms and uterine muscles</td>
<td>A synthetic interstitial cell fluid was formulated containing the following: NaCl, 0.3 gm/l; KCl, 0.26 gm/l; NaHCO₃, 1.7 ml of 10% soln; MgSO₄, 0.17 gm/l; NaH₂PO₄, 2.5 gm/l; MgO₂, 2.5 gm/l; sodium gluconate, 2.1 gm/l; glucose, 1.0 gm/l; and sucrose, 2.6 gm/l. The soln was tried on rat diaphragms and uterus at 25°C, and comparisons with Ringer’s and Kreb’s soln are given.</td>
<td>Rat diaphragm resting potentials for synthetic interstitial fluid were much closer to those measured in vivo than muscles bathed in Kreb’s or similar soln.</td>
<td>Few min</td>
<td>Not given</td>
<td>3-4</td>
<td>Containers, surgical tools, carbogen bubbler</td>
<td>Interstitial fluid replacement soln</td>
<td>Bretag (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>337. Muscle</td>
<td>Freshly excised frog sartorius muscle</td>
<td>Frog sartorius muscles were excised under sterile conditions, and incubated in a 250 ml screw-cap flask with incubating medium. Carbon dioxide-oxygen mix (5:95%) was allowed to flow over the surface of the medium to flush air out of the flask, then the flasks were closed and sealed with paraffin. Flasks were shaken in a constant temp bath at 25°C ± 0.05°C or stored in a constant temp room at 25°C ± 1.0°C. The sodium, potassium, and resting potential of the incubated muscles were measured over a period of time.</td>
<td>Frog sartorius muscle could be preserved in vitro at 25°C for up to 8 days with little change in potassium, sodium, and contractility.</td>
<td>Few min</td>
<td>8 days</td>
<td>1-5</td>
<td>Dissecting tools, Erlemeyer flasks with screw-caps, Amino constant temp bath or constant temp room, shaker</td>
<td>Muscle tissue specimens</td>
<td>Ling (1969)</td>
</tr>
<tr>
<td>338. Muscle</td>
<td>Fresh chicken heart or skeletal muscle</td>
<td>Pieces of chicken heart or skeletal muscle were placed in a vial containing a 5% solution of 2-phenoxyethanol with or without 0.25 M sucrose. The vials were capped and stored at room temp. Serum albumin, lactate dehydrogenase, and malate dehydrogenase activities were measured after 2 wk storage.</td>
<td>Lactate and malate dehydrogenases and serum albumin were normal after 2 wk although the act was diminished. Physical, catalytic, and immunological properties of the preserved proteins appeared normal after 2 wk.</td>
<td>5 min</td>
<td>2 wk or more</td>
<td>2</td>
<td>15 ml vials with caps, tissue mincer</td>
<td>Biochem taxonomy</td>
<td>Nakanishi (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>339. Sea pudding</td>
<td>Whole sea pudding im­</td>
<td>Propylene phenoxetol was</td>
<td>Dissected specimens</td>
<td>The sea pudding undergoes</td>
<td>1-5 min</td>
<td>Up to 5 days</td>
<td>1</td>
<td>Dissection tools and dish</td>
<td>Dissection</td>
</tr>
<tr>
<td></td>
<td>ersed in sea water</td>
<td>added to sea water which</td>
<td>exposed to propylene</td>
<td>a process of local degen­</td>
<td></td>
<td></td>
<td></td>
<td>Sea water, propylene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>contained the marine</td>
<td>phenoxetol were still</td>
<td>eration when exposed to</td>
<td></td>
<td></td>
<td></td>
<td>phenoxetol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>invertebrate, Stichopus</td>
<td>intact after five days</td>
<td>trauma such as dissection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>noebli.</td>
<td>and had begun to ooze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and degenerate within</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340. Seed</td>
<td>Stored corn seed</td>
<td>Ceresan and Coversan, an</td>
<td>None of the fungicides</td>
<td></td>
<td>15 min</td>
<td>Up to 1 yr</td>
<td>2-3</td>
<td>Closed containers, constant</td>
<td>Seed corn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>organomericurial fungicide</td>
<td>reduced the vigor of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temp room</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and a nonorganicurial</td>
<td>seedlings, or caused</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ceresan (2.3% phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fungicide respectively</td>
<td>distortion, for up to 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mercury acetate and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>were dusted on maize</td>
<td>yr of storage. Stored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4% ethoxy mercury</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>seed as dry seed dressing,</td>
<td>treated seed was not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silicate), Coversan (96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>was sprayed on maize</td>
<td>tested in the field or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tetrachloro-p-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>seed. Treated seed was</td>
<td>by the cold test method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>benzoquinone), and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kept in closed containers</td>
<td>(Hoppe 1955) because</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Panogen (2.2% methyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 24 hr at room temp or</td>
<td>soil-borne pathogens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mercury dicyanamide)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>at 18°C. Then the seed</td>
<td>could mask any reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>was stored for varying</td>
<td>in germination caused by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lengths of time, and the</td>
<td>direct effects of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>effects of the fungicides</td>
<td>fungicides.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>341. Spermatozoon</td>
<td>Fresh rabbit ejaculate</td>
<td>Pooled rabbit semen was</td>
<td>Rabbit sperm stored in</td>
<td>This method did not</td>
<td>20 min</td>
<td>6 days</td>
<td>4</td>
<td>Artificial vagina, centrifuge,</td>
<td>Study of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>washed free of seminal</td>
<td>CME at room temp was</td>
<td>increase acrosome</td>
<td></td>
<td></td>
<td></td>
<td>flasks, 2 cc plastic vials,</td>
<td>senescence in living</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plasma by centrifugation</td>
<td>75% viable and 64%</td>
<td>cap loss apprecia­</td>
<td></td>
<td></td>
<td></td>
<td>caps, preservative</td>
<td>cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>within 30 min of col­</td>
<td>motile after 6 days.</td>
<td>bly.</td>
<td></td>
<td></td>
<td></td>
<td>Coconut Milk Extender</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lection. Washed sperm was</td>
<td>Sperm stored in N-J-2 was</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CME) medium, Norman</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>diluted with either</td>
<td>60% viable and 72%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Johnson soln No. 2 (N-J-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>coconut milk extender</td>
<td>motile after 6 days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium, citrate buffer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CME) or Norman Johnson</td>
<td>N-J-2 was a better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soln No. 2 (N-J-2) to give</td>
<td>diluent for storing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a final conc of 10-12x10^6</td>
<td>rabbit sperm at room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sperm/cc 2 cc plastic</td>
<td>temp because more cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vials were filled</td>
<td>remained motile, and a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>completely with suspen­</td>
<td>larger % of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ded cells, tightly</td>
<td>cells could be reactiva­</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>capped, and stored in</td>
<td>ted by resuspension.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END USE OF SPECIMEN

- Dissection
- Seed corn
- Study of senescence in living cells

REFERENCE

- Hill (1966)
- Smith (1970)
- Gulyas (1966)
CHEMICAL PRESERVATION (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>342. Fungi</td>
<td>Fungal spores in static malt broth cultures</td>
<td>The effects of preservatives on the swelling characteristics of several types of spores were examined using the Coulter Counter. Penicillium sp. was chosen as a test organism for assessing preservative efficiency because it began swelling earliest and had the most rapid swelling rate. The preservatives propylhydroxybenzoate, Phenonip (Nipa labs), and benzoic acid were evaluated by this method.</td>
<td>Propylhydroxybenzoate and Phenonip decreased the swelling rate of germinating fungal spores, while benzoic acid increased the time before swelling began.</td>
<td>This method is useful for screening chemical preservatives.</td>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>McCafferty (1970)</td>
</tr>
<tr>
<td>343. Tendon</td>
<td>Freshly excised rabbit calf tendon</td>
<td>Rabbit tendon homotransplant was preserved in one of the following solutions: 1) AGM, containing amnicovin, 85.0; glycerine, 10.0; diprazin, 1.0; micerin, 300.0 IU, or 2) RGM in which Ringer-Locke solution was used instead of amnicovin. The samples were maintained at 2°C and 4°C for 30-60 days. Physiological properties and histochemical properties were observed, and transplants were made to test the effectiveness of the storage.</td>
<td>AGM preserved tendons for 30 days and RGM for 60 days successfully. Sterility of the solutions was maintained for 18 mos.</td>
<td>After 6 mos the transplant was entirely replaced by new live cells which grew into the transplant without encapsulation or scar formation.</td>
<td>Few min</td>
<td>30-60 days</td>
<td>3</td>
<td>Surgical tools, refrigerator</td>
<td>Calf-tendon transplant</td>
<td>Beringer (1969)</td>
</tr>
<tr>
<td>344. Tissue cultures</td>
<td>WI-38, HEP-2, and primary bovine kidney cell cultures</td>
<td>Polyvinyl trays used in antiviral screening were sterilized with 100% ethylene oxide for 5 hr after 48 hr of prehumidification, or by 12% ethylene oxide plus 88% Freon for 1, 3, 5, or 18 hr. The sterilization of the trays left a residue of ethylene oxide that was toxic to the primary bovine kidney cells usually grown on them. Various types of aeration were tried to remove the toxic residue.</td>
<td>Exposure to 12% ethylene oxide plus 88% Freon for one hr followed by a 7-day aeration period at 37°C was sufficient to sterilize the trays and eliminate toxicity to cell monolayers grown on the trays. Sterilization with 100% ethylene oxide required 14 days aeration at 3°C to eliminate cytotoxicity.</td>
<td>Polyvinyl trays used for antiviral screening were subject to seasonal outbreaks of bacterial and mycotic contamination of the tissue culture cells. Ethylene oxide was an effective sterilant but it left a toxic residue.</td>
<td>1 hr</td>
<td></td>
<td>6-8</td>
<td>Limbro FB-54 clear polyvinyl trays, dishwasher, detergent, polyethylene bags, paper bags, stapler, cotton, heat sealer, Amer ZTO sterilizer, vacuum oven</td>
<td>Antiviral screening</td>
<td>Rutter (1969)</td>
</tr>
<tr>
<td>Specimen Description</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Other Comments about Method</td>
<td>Estimated Preservation Time</td>
<td>Survival Time</td>
<td>No. of Steps</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>345. Tympanic membrane</td>
<td>Tympanic membrane-ossicular chain tissues removed from a human cadaver</td>
<td>Homograft tympanic membrane ossicular chain transplants, obtained through routine autopsy, were stored in a soln of Zephiran chloride and Tis-U-Sol. (No proportions were given).</td>
<td>Homografts produced effective transplants after storage. Length of stored time was not given.</td>
<td>Very little detail about the storage method was given.</td>
<td>Few min</td>
<td>Not given</td>
<td>2</td>
<td>Surgical tools, containers</td>
<td>Transplants</td>
<td>House (1969)</td>
</tr>
<tr>
<td>346. Urine</td>
<td>Fresh human urine</td>
<td>Toluene or hydrochloric acid was recommended for preservation of urine.</td>
<td>No detail given</td>
<td>Few min</td>
<td>Not given</td>
<td>2-3</td>
<td>Flasks</td>
<td>Toluene, HCl</td>
<td>Urinalysis</td>
<td>Brandt (1924)</td>
</tr>
<tr>
<td>347. Urine</td>
<td>Fresh human urine</td>
<td>Phenylpyruvic acid in urine was preserved for long periods by adding a little chloroform to the samples and acidifying to pH 4 with dilute HCl.</td>
<td>Samples could be stored for 'long periods' using this method.</td>
<td>Phenylpyruvic acid is found in the urine of certain mental patients.</td>
<td>Few min</td>
<td>'long periods'</td>
<td>2-3</td>
<td>Flasks</td>
<td>Chloroform, HCl</td>
<td>Anal of phenylpyruvic acid</td>
</tr>
<tr>
<td>348. Urine</td>
<td>Fresh urine</td>
<td>10 mg/l of ethylmercuric thiosalicylate and phenylmercuric borate were used to preserve urine samples at room temp.</td>
<td>The method did not interfere with standard anal of urine, nor did the reagents attack aluminum containers.</td>
<td>Few min</td>
<td>Not given</td>
<td>1-2</td>
<td>Containers, pipettes</td>
<td>Ethylmercuric thiosalicylate, phenylmercuric borate</td>
<td>Standard urine anal</td>
<td>Fabiani (1951)</td>
</tr>
<tr>
<td>349. Urine</td>
<td>Fresh human urine</td>
<td>Urine collected for anal of corticosteroids was preserved from bacterial contamination by addition of chloroform followed by refrigeration. The corticosteroids were maintained by adding 5 gm of a mixt of potassium dihydrogen phosphate and disodium hydrogen phosphate, 2:1, to each liter of urine. This kept the pH at approx 6.5.</td>
<td>Urine samples were usable for 48 hr if buffered to pH 6.5. Refrigeration and addition of chloroform were recommended to cut down bacterial contamination.</td>
<td>Few min</td>
<td>48 hr</td>
<td>3</td>
<td>Containers, refrigerator</td>
<td>Corticosteroid anal</td>
<td>Tomsett (1955)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>350. Urine</td>
<td>Fresh or 24 hr human urine collection</td>
<td>5 ml of a 1% thymol soln in isopropanol/24 hr urine sample kept urine from deteriorating for 7 days.</td>
<td>Urine samples were good for 7 days at room temp when preserved by this method. The method was compatible with most routine urine anal.</td>
<td>Thymol-isopropanol preservation of urine causes interference with the Bay's test for bile salts and the Zimmeman reaction for 17-ketosteroids</td>
<td>Few min</td>
<td>Up to 7 days at room temp</td>
<td>1</td>
<td>Flasks or containers</td>
<td>Urinalysis</td>
<td>Naftalin (1958)</td>
</tr>
<tr>
<td>351. Urine</td>
<td>Midstream fresh human urine sample</td>
<td>A clean, midstream, human urine specimen was obtained and immediately diluted 1:2 with formalin soln (37% formaldehyde soln, 100 ml; sodium acetate, 25 gm; distilled water, 800 ml) which acts as a preservative and fixative. Within 5 days after collection the preserved specimen was filtered through a filter membrane which had been moistened with physiol saline. The filter was rinsed with saline, and the vacuum was broken just before the rinse was complete to avoid cell distortions. Formalin-preserved specimens required no further fixation, but if fresh cells were used, they were fixed with alc. After fixation the cells were stained with Shorr's stain and counted for casts and cells.</td>
<td>80% of samples fixed with formalin were suitable for quantitative examination after 7 days at 37°C.</td>
<td>Precipitate formation was the principal drawback of this method.</td>
<td>Approx 1 hr</td>
<td>7 days</td>
<td>6-8</td>
<td>Specimen, filter, 1.2 µm Millipore filters, vacuum source, microscope slides, cover slips, micrometer</td>
<td>Quantitative anal of cells and casts in urine</td>
<td>Trivel (1964)</td>
</tr>
<tr>
<td>352. Urine</td>
<td>24 hr urine sample</td>
<td>24 hr urine samples were collected from suspected cases of phaeochromocytoma during a hypertensive phase. Total vol was measured, and a 50 ml sample was taken. 150 mg of ascorbic acid in pure form (either powd or from an ampule) was added to the urine, and the pH was maintained at 5.5. All patients were free from hypotensive drugs or barbiturates for at least 2 days prior to the urine collection.</td>
<td>Not given</td>
<td>Vitamin C tablets should not be used because they have an alk base which may oxidize the pressor amines. The paper did not state that 24 hr urine samples were refrigerated, but this was probably the case.</td>
<td>5-10 min</td>
<td>Not given</td>
<td>4</td>
<td>Urine collection containers</td>
<td>Assay of catecholamines in urine</td>
<td>Fernando (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>353. Vaccines, tissue grafts or blood plasma</td>
<td>Fresh plasma, cadaver tissue, or viral cultures</td>
<td>0.45% beta-propiolactone was used, with or without UV irradiation, to sterilize human blood plasma. The sterilant was also used on arteries, bones, kidney, liver, and cartilage for transplants, and to produce inactivated virus vaccines.</td>
<td>Beta-propiolactone caused a rapid and irreversible sterilizing action. It produced minimum alteration of proteins thus avoiding final neutralization, and it also produced relatively non-toxic end products. The sterilant rapidly penetrated tissue, and inactivated viruses completely and irreversibly in 10-15 min at 37°C.</td>
<td>Few min</td>
<td>Plasma keeps for 'long periods'</td>
<td>Beta-propiolactone</td>
<td>Sterilization of plasma and tissue, and viral antigen production</td>
<td>Hartmann (1957)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>354. Viruses</td>
<td>Allantoic fluid infected with influenza virus</td>
<td>Influenza-infected allantoic fluid contg penicillin and streptomycin was added to sterile precipitation tubes and sealed with hot solid paraffin. The tubes were stored in the dark at 26-30°C.</td>
<td>The influenza isolates stored by this method maintained 80-100% viability for 25-35 days at room temp.</td>
<td>5 min</td>
<td>25-35 days at room temp</td>
<td>2</td>
<td>Hypodermic syringe, precipitation tubes, sterilizer</td>
<td>Simple virus storage for shipping</td>
<td>Gan (1970)</td>
<td></td>
</tr>
</tbody>
</table>
SPECIMEN DESCRIPTION

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>355. Amoeba</td>
<td>Aq or ethanol suspension of amoeba or other samples</td>
<td>Small polystyrene cubes (0.6-0.9 mm per edge) were cut with a razor blade, weighed, and impaled on a glass needle. The sponge was dipped into 5-10 μl of a suspension of amoeba collected in the tip of a microcone. Both sponge and microcone were under vacuum to remove air and allow the sponge to fill. After filling the sponge was allowed to dry. The whole process was repeated 6-7 times, and before the last drying the needle was removed to prevent it from sticking to the sponge.</td>
<td>Not given, since emphasis here was on technique for weighing dispersed samples on a quartz-fiber microbalance. However, the sponge held six to seven times its own wt of specimen and could be a useful preservation technique. Also the wt of the loaded sponge did not change after repeated handling.</td>
<td>Polyurethane dissolves in most org solvents but is impervious to ethanol, water and mostaq reagents. Sponges can be heated to 60°C for drying specimens, but soften and collapse above this temp.</td>
<td>Depends on how many times sponge is filled and dried</td>
<td>Not given; however, samples dried in this manner can presumably be stored for sometime, if kept dry</td>
<td>4-5</td>
<td>Polystyrene sponge cubes, glass needle, ethanol or aq suspension of sample, razor blade, drying oven, container under vacuum</td>
<td>Ethanol</td>
</tr>
<tr>
<td>356. Pissmangel</td>
<td>Sterile plasma-gel samples stored in hermetically sealed vials</td>
<td>Modified fluid gelatin soln (Pissmangel) was stored in hermetically sealed 125 ml glass vials. The vials were exposed to temp between -5°C and 45°C and to ultrasonic vibration to simulate conditions that might exist during long-term storage.</td>
<td>Ultrasonic vibration had a negligible influence on Pissmangel whereas elevated temp led to slight changes of fluidity and acidity. 20°C was the optimum storage temp for long term storage.</td>
<td>Pissmangel would be needed in great amt in the case of a national disaster.</td>
<td>> 70 days</td>
<td>3</td>
<td>Sterilizer, glass vials</td>
<td>Blood substitute</td>
<td></td>
</tr>
<tr>
<td>357. Feces</td>
<td>Fresh Pig feces</td>
<td>Pig feces were collected and analysed for various nitrogen factors before and after drying. All feces were collected immediately after being passed, put in a capped glass jar, and stored in the refrigerator. Half of a composite 2-day sample was dried on porcelain trays for 24 hr at 60°C. Dry matter, total nitrogen, and true protein content were detd on both fresh and dried samples.</td>
<td>The % loss in the total-, protein-, and ammonium-nitrogen content in dried feces as compared to fresh feces was 7.9, 10.8, and 38.1% respectively. The non-protein nitrogen content increased after drying.</td>
<td>The protein nitrogen fraction of dried pig feces probably decreased because of bacteria and proteolytic enzymes that are present in feces.</td>
<td>24 hr</td>
<td>Not given</td>
<td>3-5</td>
<td>Glass jars, refrigerator, drying oven, porcelain tray, centrifuge filter funnels, crucibles</td>
<td>Anal of fecal nitrogen fractions</td>
</tr>
</tbody>
</table>

- Polystyrene is impervious to water and mostaq reagents.
- Sponges can be heated to 60°C for drying but soften and collapse above this temp.
- Ultrasonic vibration had a negligible influence on Pissmangel whereas elevated temp led to slight changes of fluidity and acidity.
- 20°C was the optimum storage temp for long term storage.

Reference

Thomas (1959)
Thiercelin (1969)
Ziolecka (1968)
Drying and Heat Sterilization (Continued)

<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>358. Insect larva</td>
<td>'Dry' Polypedilum vanderplanki (relative humidity less than 10%)</td>
<td>Larvae of Polypedilum vanderplanki, RHI, were exposed to various regimens of dehydration and temp extremes. They were frozen in liq helium or liq air; they were exposed to temp ranging from -20°-20°C; they were immersed in sea or pure glycerol; and they were repeatedly dehydrated and rehydrated under various conditions of initial moisture content. The larvae were considered partially recovered if the pharyngeal or esophageal beat returned, and a response to stimuli was obtained. The larvae were considered fully recovered when they were able to metamorphose.</td>
<td>Freeze-thawed larvae metamorphosed, if they were dry when frozen. Some metamorphosed after exposure to 100°-105°C for 1 min when dry, and some recovered temporarily after exposure to 105°-110°C for 3 hr or 200°C for 5 min. Larvae immersed in glycerol for 1, 3, or 7 days metamorphosed, and one metamorphosed after immersion in abs alc for 24 hr. The larvae can stand repeated dehydration and partial dehydration (up to 10x), and some larvae recovered temporarily after being stored dry for 10 yr.</td>
<td>The capacity of 'dry' inactive larvae to withstand prolonged periods of storage or extremes of heat and cold is greater the drier they are.</td>
<td>Varied with exp</td>
<td>Up to 10 yr in dry state</td>
<td>Varied</td>
<td>Petri dishes, filter paper, incubator, glass tubes with 5-8 mm of mud at the bottom, drying oven, dessicator, wash bottle, watch glasses, glass tubes in a metal container</td>
<td>Studies of adaptation of animals to extreme temp and moisture conditions</td>
<td>Hinton (1960)</td>
</tr>
<tr>
<td>359. Microorganisms</td>
<td>Freshly cultured bacteria and coliphage T2</td>
<td>Pseudomonas fluorescens was grown on Brain Heart Infusion aerated at 30° for 20 hrs. Coliphage T2 lysate was prepared from E. coli B. The bacteria were centrifuged, resuspended in distilled water, and mixed with an equal vol of T2 lysate. Aliquots were diluted with a mix of distilled water, mannitol and sucrose. Samples of these suspensions were placed in ampules and dried in a vacuum dryer at -20°, 0°, and 20°C.</td>
<td>The drying temp had no significant effect on the sv number of Pseudomonas fluorescens that survived drying, but coliphage T2 survival increased as the temp rose from -20° to 20°C. Temp effects were also dependent on the conc of solutes present.</td>
<td>Several hr</td>
<td>Not given</td>
<td>5-6</td>
<td>Shaker, flasks, filters, refrigerator, centrifuge, ampules, vacuum dryer, 4-gauge thermocouples, recording potentiometer</td>
<td>Maintenance of bacterial strains</td>
<td>Leach (1959)</td>
<td></td>
</tr>
<tr>
<td>360. Microorganisms</td>
<td>Microorganisms suspended in an appropriate culture medium</td>
<td>The specimens were grown on a specified, aerated medium and collected by centrifugation. The collected cells were resuspended in skim milk precooled to 0°C, and added dropwise to a chilled tube half full of sterile, anhydrous silica gel. The tubes were placed in a desiccator for 1 hr, then each tube was sealed and stored in a sealed jar contg silica gel at 20°-4°C.</td>
<td>The survival rate varied from 13-111 wk depending on the species. Viable Thiobacillus theoparus, Chlamydomonas eugametos, and Euglena gracilis could not be recovered by this method.</td>
<td>15 min</td>
<td>13-111 wk</td>
<td>4</td>
<td>Centrifuge, plastic centrifuge tubes, pyrex glass tubes, cotton-wool stoppers, autoclave, dessicator, re- frigerator</td>
<td>Maintenance of microbial strains</td>
<td>Grivell (1969)</td>
<td></td>
</tr>
<tr>
<td>Specimen Description</td>
<td>Original Form of Sample</td>
<td>Brief Description of Method</td>
<td>Limitations of Method</td>
<td>Other Comments about Method</td>
<td>Estimated Preservation Time</td>
<td>Survival Time</td>
<td>No. of Steps</td>
<td>Equipment and Reagents Used</td>
<td>End Use of Specimen</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mosquitoes</td>
<td>Whole adult or larval insect</td>
<td>Adult mosquitoes were anesthe- tized with ether, then placed on 2 layers of filter paper sur- rounded by a ring of cotton in a Petri dish. The cotton was soaked with acetone, and the dish was covered for 3 hr. The specimens were then dried under an electric light bulb to remove the excess acetone. A similar technique was used for larvae, except the larvae were immersed in acetone. This technique preserved the insects sufficiently for taxonomic studies.</td>
<td>Adult insects were not shriveled, and the scales and genitalia were intact; however, the eyes lost their natural color. Larvae had hairs intact and did not lose body parts easily. Specimens were durable and could be pin-mounted.</td>
<td>The technique works for several other kinds of insects and is particularly suitable for field work.</td>
<td>3-3½ hr</td>
<td>Not given; probably more than 6 mon</td>
<td>3-4</td>
<td>Petri dish and cover, cotton, filter paper, light bulb, dropper Ether, acetone</td>
<td>Taxonomic studies</td>
<td>Truman (1968)</td>
</tr>
<tr>
<td>Organic compounds, Volatile</td>
<td>Volatile org compounds</td>
<td>Sterilization of solutions of volatile org compounds was carried out by placing 5 ml of the volatile compound into glass ampules immersed in ice water. The ampules were heat-sealed 3 cm above the solvent level and autoclaved. Recoveries were checked by gas chromatography and a flame ionization detector.</td>
<td>Recovery from autoclaved culture tubes was 90% or greater at all times, while recovery from sealed glass ampules was 98-100% except in the case of ethyl acetate and ethyl alcohol which were in the 90-94% recovery range. No convincing explanation for this loss was given.</td>
<td>Volatile org compounds often need to be added to microbiol or bioi preparations and they must be sterile to avoid contaminating the specimen to which they are added.</td>
<td>1-² hr</td>
<td>Not given</td>
<td>3</td>
<td>Ampules, heat-sealer, autoclave</td>
<td>Production of sterile org volatile compound or addition to bioi preparations</td>
<td>Bills (1967)</td>
</tr>
<tr>
<td>Protein</td>
<td>Protein soln</td>
<td>Rods of dried polymeric hydrophilic gel were dropped into protein soln to remove water.</td>
<td>Protein dried by this technique appeared to be unaltered in structure or properties.</td>
<td>This method was much quicker than freeze-drying or dialysis, and a constant ionic strength was maintained.</td>
<td>10-20 min</td>
<td>Not given</td>
<td>3</td>
<td>Silicone-coated glass tubes, test tubes, centrifuge, glass dish, cold room, dessicator Rods of hydrophilic gel, phosphorus pentoxide</td>
<td>Studies of intact proteins</td>
<td>Curtain (1964)</td>
</tr>
</tbody>
</table>
Drying and Heat Sterilization (Continued)

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>364. Protein</td>
<td>Heat-coagulated leaf protein</td>
<td>Heat-coagulated leaf protein that had been filtered through drill stockings, was pressed at 75 kg/cm² for 8 hr to give a cake containing 65-75% moisture. The wet cake was crumbled into 0.5-2 mm particles and air dried in a 40°C warm air-flow to a moisture level at which the particles no longer formed a paste when compacted. The particles were finely ground with a mortar and pestle or end runner mill to a fine green powd. This powd could be further dried to the desired extent without change in appearance.</td>
<td>Samples dried to 6.9% moisture were stored for 6 mon and were predicted to be good for more than 2 yr.</td>
<td>The nutritional value of the protein was damaged if the temp exceeded 82°C; oxidation of unsatd lipids was the main storage problem. Enzyme digestibility of the air-dried protein was comparable to freeze-dried leaf protein.</td>
<td>Approx. 12 hr</td>
<td>6 mon</td>
<td>6-7</td>
<td>Drill stockings, press, food cutter or grater, end runner mill, drying oven or tumble dryer</td>
<td>Food protein</td>
<td>Arkcoll (1971)</td>
</tr>
<tr>
<td>365. Protozoa</td>
<td>Protozoan suspension</td>
<td>Culture medium congn Strigomonas monocellata was dropped onto freeze-dried peptone plugs in ampules and dried in a super-cooled state at -8°C.</td>
<td>The organisms exhibited good survival as long as drying was carried out from a liq film and not from the frozen state.</td>
<td>Protective additives such as glycerol cannot be used for freeze-drying because, being nonvolatile, they concentrate to toxic levels. Different organisms have different requirements for residual moisture, and the removal of this residual moisture kills the organism.</td>
<td>5 min</td>
<td>Not given</td>
<td>2</td>
<td>High vacuum, ampules, freeze-drying app Peptone plugs</td>
<td>Maintenance of organisms</td>
<td>Greaves (1963)</td>
</tr>
<tr>
<td>366. Spores</td>
<td>Dried bacterial spores</td>
<td>Dried Bacillus subtilis spores were tested for resistance to dry-heat thermal destruction in a specially-designed dry-heat oven. Both air and nitrogen gases were passed over the organisms. Higher flow rate of gas was believed to cause greater dehydration of the spores, and moisture loss was a major factor in dry-heat thermal destruction of bacterial spores. Dextrose-tryptone-starch-agar medium was used as the protective agent.</td>
<td>90% of the spores were destroyed in 43 min at 140°C in still air. Tables of other conditions were given.</td>
<td></td>
<td>Not clear</td>
<td>< 43 min at 140°C</td>
<td>3-4</td>
<td>Special drying oven, Petri dishes, test tubes, shaker Dextrose-tryptone-starch-agar medium, compressed air, nitrogen</td>
<td>Heat sterilization studies</td>
<td>Fox (1968)</td>
</tr>
</tbody>
</table>
Table: Drying and Heat Sterilization (Concluded)

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>367. Urine</td>
<td>Fresh human urine</td>
<td>Absorbent materials such as filter paper, woven glass cloth, or fibrous glass were treated with a preservative such as 2.5-4% sodium fluoride, mercuric chloride, merthiolate, or other mercury compounds. 8-10 drops of urine were collected on these absorbents and allowed to dry. The samples were then stored at room temp until analyzed.</td>
<td>The samples may be kept for indefinite periods and soluted with suitable solvents prior to anal. For quantitative inorg tests no preservative was needed.</td>
<td>Few min</td>
<td>Indefinite time</td>
<td>1-2</td>
<td>Filter paper disks, fiberglass cloth, glass fibers</td>
<td>Urinalysis</td>
<td>Dry (1953)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGNAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Blood cells, Red</td>
<td>Sensitized sheep red blood cells</td>
<td>A method for preparing stable, antigen-coated red blood cells by fixation with neutralized glutaraldehyde is outlined.</td>
<td>Fixed red blood cells remained stable up to 6 mo at 4°C.</td>
<td></td>
<td>6 non</td>
<td>>10</td>
<td></td>
<td>Incubator, ice bath, Bunsen/Bioptic II monocular, test tubes, pipettes, Y plates (Cooke Bug Co) Culture media, physalian saline soln, phosphate-buffered saline, tannic acid, CaCO₃, 15% glutaraldehyde in saline, sensitized sheep red blood cells, sodium azide, sodium merthiolate</td>
<td>Prep of stable antigen-coated red blood cells</td>
<td>Neimark (1968)</td>
</tr>
<tr>
<td>Brain</td>
<td>Whole excised brain</td>
<td>Histologic sections of whole brain were prepared as follows: The brain was immersed in 10% buffered neutral formalin for 14 days, then sliced no more than 1.5 cm thick. The slices were washed with water, submerged, and dehydrated with constant agitation in a series of alc and chloroform for 3 days. The dehydrated specimen was impregnated with liq Paraplast in a vacuum oven at 60°C and was ready for storage, or sectioning with a microtome and staining.</td>
<td>Histologic sections of whole brain can be prepared in a little over 1 wk instead of several wk or mo. The sections lost about 10% of their original vol.</td>
<td></td>
<td>5 days</td>
<td>Not given</td>
<td>6-8</td>
<td>Bausch and Lomb sliding microtome, water bath, glass slides, 1000 ml rectangular dishes, cover glasses, sas stirrer, metal pan, cover dish, vacuum oven, warming table Chloroform, alc (several conc), gelatin, Harris' hematoxylin stain, alcoholic eosin stain, Paraplast</td>
<td>Brain studies</td>
<td>Prophet (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>370. Esophageal varices</td>
<td>Freshly excised cadaver esophagus</td>
<td>Before removal from the body the esophagus was tied off at both ends to prevent blood loss. The esophagus was then removed, untied, opened, and placed in 10% formaldehyde soln. After 24 hr the mucosal layer was stripped from the muscularis and the esophagus was dehydrated in three changes of 50%, 95%, and 100% alc with 1 hr between changes. The flat specimen was dried between towels and submerged in benzene for clearing for 30-60 min. Then a thin layer of Permount was poured over the specimen in the inverted top of a Petri dish. The bottom was used as a press to force out air bubbles, and the two dishes with the specimen between were clamped and placed in an incubator to dry. 24 hr later more Permount was added between the dishes to force out any air bubbles left. The sample was incubated for 5-7 days, and an additional top was put on as a cover and taped with transparent tape.</td>
<td>Esophageal varices preserved in this manner maintained their color and transparency for up to 18 mon.</td>
<td>The same method can be used to demonstrate enlargement of the vascular channels of the diaphragm, particularly in cirrhosis.</td>
<td>1 wk</td>
<td>>18 mon</td>
<td>10</td>
<td>Surgical tools, ties, containers, paper towels, tray, Petri dishes, C-clamps, incubator, micropipettes, transparent tape</td>
<td>Demonstrations of vascularization</td>
<td>Chomet (1969)</td>
</tr>
<tr>
<td>371. Fish, mollusks, and other bioI specimens</td>
<td>Whole organisms or organs</td>
<td>A 10% soln of acetic anhydride or anhydrous monomer was used to acylate biogenic amines in water-alc. dried bioI specimens embedded in acrylic or polyester casting resins. These amines caused delayed formation of bubbles, especially in embedded specimens of mollusks, fish, and isolated organs of higher animals. Acylation took from 3-5 days before embedding.</td>
<td>This technique eliminated bubbles and blurring around the specimen. Specimens should be preserved indefinitely by this method.</td>
<td>Acid chlorides were not recommended.</td>
<td>3-4 days</td>
<td>Indefinitely</td>
<td>4</td>
<td>Mold, containers for aclc drying and acylation</td>
<td>Production of permanently embedded bioI specimens</td>
<td>Hofer (1964)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Kidneys</td>
<td>Fresh sliced rat kidneys</td>
<td>Cortical slices were fixed in 10% neutral, phosphate-buffered formalin; embedded in paraffin; and stained with hematoxylin and eosin.</td>
<td>The embedded samples cannot easily be used for further anal.</td>
<td>1 hr</td>
<td>Indefinite if kept away from heat</td>
<td>5</td>
<td>Petri dishes, tissue slicer</td>
<td>Study of amino acid transport by kidneys</td>
<td>Lowenstein (1968)</td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>Fresh sliced rat kidney</td>
<td>Cortical slices were fixed in 3% phosphate-buffered glutaraldehyde, washed in phosphate-buffered saline and post-fixed in 1% phosphate-buffered osmic acid. Samples were dehydrated in graded ethanol, embedded in epoxy resin, and stained with lead citrate and uranyl acetate.</td>
<td>Samples cannot easily be used for further anal.</td>
<td>1 hr</td>
<td>Indefinite</td>
<td>7</td>
<td>Epoxy resin, several containers for dehydrating, tissue slicer</td>
<td>Study of amino acid transport by kidneys</td>
<td>Lowenstein (1968)</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Blocks of fresh rat liver tissue</td>
<td>The glycogen content of fresh rat liver was preserved in tissue blocks by several common fixation methods including freezing on carbon dioxide, and treatment with Lavdowsky's fluid or Rossman's fluid. Fixed tissues were lyophilized or embedded in paraffin, and some were also rehydrated. The effect of fixation or fixation plus rehydration on glycogen content was studied.</td>
<td>Freeze-drying, Lavdowsky's fixation, and Rossman's fixation gave quantitative preservation of glycogen. Formalin and 80% ethanol did not. Glycogen preservation in rehydrated tissue sections was variable.</td>
<td>5 min-24 hr depending on method</td>
<td>Not given</td>
<td>Depends on method</td>
<td>Preservation of histochemical sections with glycogen intact</td>
<td>Swigart (1960)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>Whole protozoa</td>
<td>A method was described for maintaining the natural shape and size of protozoa for viewing with an electron microscope. Specimens were washed, then fixed with Parducz's fixative containing osmium tetroxide and mercury chloride. Next they were washed again and added as microdrops to liquid nitrogen. The frozen drops were freeze-dried and then fixed with gold and palladium vapor under vacuum until examination.</td>
<td>Specimens maintained a great deal of detail and were not misshapened or distorted. They can be viewed under the microscope several times.</td>
<td>12-13 hr</td>
<td>Not given</td>
<td>10-11</td>
<td>Centrifuge, micropipette, aluminum containers, aluminum dish, aluminum planchet, Parducz tissue dryer, Distilled H2O, isomaltose, Parducz' fixative, liq nitrogen</td>
<td>Electron microscopy</td>
<td>Small (1969)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>376. Reticulin fibers</td>
<td>A method for the demonstration of reticulin in paraffin sections was described, which reduced the risk of silver precipitate formation and the impregnation of nuclei by silver.</td>
<td>Not given</td>
<td></td>
<td>1-1 hr</td>
<td>Not given</td>
<td>10</td>
<td></td>
<td>Microtome, stain dishes</td>
<td>Demonstration of reticulin by staining</td>
<td>Chadwick (1969)</td>
</tr>
<tr>
<td>377. Salt gland</td>
<td>Freshly extd duckling salt gland or Fundulus grandis gill filament</td>
<td>Razor-sliced salt-gland tissue slices weighing 20-40 mg were covered with 2% agar, cooled 5 min at 4°C, and chopped on a tissue chopper to 100-200 μ. Tissue sections were fixed at 4°C with 2 or 3% formaldehyde, prepared from paraformaldehyde, fixed with 0.1 M cacodylate to pH 7.2. Sections were rinsed in buffer, then homogenized in cold 0.25 M sucrose, and finally incubated in the Wachstein-Meisel medium. The same technique was applied to teleost gill filaments.</td>
<td>Fixation of avian salt-gland tissue with 2 or 3% formaldehyde resulted in a loss of only 50% Na-K-ATPase activity and 65% Mg-ATPase activity after 60-90 min. Whereas fixation with glutaraldehyde completely inhibited Na-K-ATPase and reduced Mg-ATPase by 85%. Similar results were observed with teleost gill filaments.</td>
<td>1 hr</td>
<td>60-90 min</td>
<td>7-8</td>
<td>Razor blade, Smith-Farquhar tissue chopper, flask, incubator</td>
<td>Anal of Na-K-ATPase and Mg-ATPase</td>
<td>Ernst (1970)</td>
<td></td>
</tr>
<tr>
<td>378. Spermatozoa</td>
<td>Fresh human ejaculate</td>
<td>Sperm were ejaculated into a buffered picric acid-formaldehyde fixative (a modified Bouin fluid), the mixture was centrifuged for 10 min, and the supernatant was discarded. The remaining pellet of spermatozoa was washed in phosphate buffer, post-fixed with osmium tetroxide, and rapidly dehydrated. The pellet was reduced to small fragments and embedded in Epon 812.</td>
<td>Spermatozoa fixed in this manner showed intact plasma membranes, well preserved acrosomes, small nuclear vacuoles, well defined flagella, and mitochondria of uniform density.</td>
<td>In this method some inorganic crystals form.</td>
<td>1 hr</td>
<td>Not given</td>
<td>8</td>
<td>Centrifuge, collection vials, hot plate, cylinder, filter funnel</td>
<td>Electron microscopy</td>
<td>Stefanini (1967)</td>
</tr>
</tbody>
</table>
Fixation and Embedding (Concluded)

<table>
<thead>
<tr>
<th>Specimen Description</th>
<th>Original Form of Sample</th>
<th>Brief Description of Method</th>
<th>Limitations of Method</th>
<th>Other Comments About Method</th>
<th>Estimated Preservation Time</th>
<th>Survival Time</th>
<th>No. of Steps</th>
<th>Equipment and Reagents Used</th>
<th>End Use of Specimen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>379</td>
<td>Tissue culture cells</td>
<td>Fresh liver tissue, cultured Chinese hamster cells, and cultured Escherichia coli</td>
<td>A method was described for extracting DNA from tissues and cells fixed with a variety of common fixatives such as might be available on a field trip. Cells were removed from the culture flask with 0.1% Pronase soln. The cell suspension was centrifuged and the pellet was dispersed in an appropriate fixative such as 95% ethanol; abs methanol; 1 abs methanol: 9 ethanol; 5 abs methanol:5 ethanol; 3 methanol:1 glacial acetic acid; 2-propanol; acetone; or 10% formalin in phosphate buffer, for 4 to 66 days. After fixation, cells were washed and the DNA was extracted by the method outlined in the paper.</td>
<td>The purity of DNA prepared from fixed mammalian material compares favorably with DNA from fresh or frozen samples except for samples from formalin fixed tissue. Bacterial DNA after fixation had lower absorbance ratios than controls. 2-propanol was the best and most convenient fixative for most materials.</td>
<td>4-66 days</td>
<td>Not given</td>
<td>3-4</td>
<td>Culture flasks, centrifuge, other containers</td>
<td>Isolation and characterization of DNA</td>
<td>Arrighi (1968)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>380. Blood cultures</td>
<td>Freshly drawn human blood</td>
<td>Blood samples were introduced into plastic bags containing a sterile medium comprised of 5% glucose with Proteose Peptone No.3, Tryptose, yeast ext, sodium chloride, and disodium phosphate added. The medium diluted the blood, agglomerated the red cells, and nourished any bacteria. Red cells settled to the bottom of the bag and were clamped off. The fluid was then passed through cellulose ester filters which collected any bacteria. The filters were placed on solid media for culture.</td>
<td>Growth was detected and microorganisms were identified faster with this method than with a broth method. Blood samples collected in an emergency can be held 24 hr in the plastic bags during which time the bacteria continue to grow. Also inhibitors were diluted by this method.</td>
<td>2-4 hr</td>
<td>6-7</td>
<td>Autoclave, blood collection app, plastic blood bags, plastic jaw sealer, clamps, cellulose ester filters, vacuum source, sterile forceps</td>
<td>Blood culturing</td>
<td>Kozub (1969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>381. Parathyroid gland</td>
<td>Fresh, newborn human parathyroid</td>
<td>A method was described for culturing parathyroid gland tissue from newborn humans in such a way that the tissue was gradually adapted from growth on an embryonic medium (consisting of plasma, cord serum, fetal brain press juice, and balanced saline) to growth on a medium extant from the future host. Such tissue was used for parathyroid transplantation especially in postoperative tetany.</td>
<td>After 14-21 days on the new medium the explants were considered 'adapted' and ready for transplantation. Results of transplants showed that only acceptors under 30 yr had a chance for recovery.</td>
<td>Total time not given; however, final adaptation to the host fluids took 10-21 days</td>
<td>Not given; it was implied that tissue could be continuously cultured for some time</td>
<td>Surgical tools, culture dishes, embryonic watch glasses, incubator</td>
<td>Parathyroid transplants</td>
<td>Gaillard (1954)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>382. Sputum</td>
<td>Fresh human sputum</td>
<td>Sputum from a suspected tuberculosis patient was placed on sterile cotton swabs which were immersed in vials containing Cary-Blair medium and were then tightly capped. The vials were easily transported or kept in this fashion.</td>
<td>Samples examined by smear and culture were positive up to 23 days. Samples held from 51-154 days were negative on culture but positive for acid-fast bacilli on smear.</td>
<td>Few min</td>
<td>Up to 23 days</td>
<td>Glass vials, cotton swabs</td>
<td>Culture and smear tests for diagnosis of bacterial diseases</td>
<td>Cohen (1967)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGIN OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>383. Tissue culture cells</td>
<td>Suspension of cells in fluid medium</td>
<td>Pure L strain of fixed tissue cells was successfully grown in fluid suspensions of circulating dilute horse serum, chick embryo extract, and 0.1% methylcellulose. The cells were discouraged from adhering to the container by rapidly rotating the tubes containing medium and cells. A history of techniques leading up to this technique was also given.</td>
<td>Viability of the fluid suspensions of tissue cells was not given; however, cells grown by previous methods were maintained for more than 10 yr.</td>
<td>There was an initial conditioning period for the cells to modify the fluid medium before growth occurred.</td>
<td>Not given</td>
<td>From 6 mon to 10 yr depending on strain and method</td>
<td><10</td>
<td>Multiple drum rotating or roller tube unit, tubes, refrigerator, incubator?</td>
<td>Continuation of cell lines for research</td>
<td>Earle (1954)</td>
</tr>
<tr>
<td>384. Trypanosomes</td>
<td>6-day cultures of Trypanosoma lewisi grown on a diphasic modified medium</td>
<td>Trypanosoma lewisi, usually cultured in a complex diphasic agar medium, was successfully grown in the liquid phase of a culture medium in which the blood agar components were placed inside a double layer of dialysis tubing, autoclaved, and immersed in Locke's saline. Agar appears to have an important function in the culture and reasons for this are discussed.</td>
<td>Viable organisms can be observed 3 mon post inoculation. They exhibit normal morphology and exponential growth between the first and fifth or sixth days. All free amino acids decrease in the dialysate medium during growth of the flagellates, except alanine, which increases. Ammonia conc also increases.</td>
<td>Not clear</td>
<td>3 mon</td>
<td>8-9</td>
<td>Pipettes, dialysis tubing, centrifuge, autoclave, 0.22 μm Millipore filter, Freon Model 805 incubator</td>
<td>Culturing methods for Trypanosoma lewisi</td>
<td>Duncan (1969)</td>
<td></td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 385. Biol samples | Mostly fresh samples | A combustion or ashing system was described for preparing large numbers of bioI samples for scintillation counting. The system can be used for a variety of samples and includes a method for evaporating tissue homogenates in gelatin or plastic capsules. Capsules were dropped into a furnace and the combustion products were collected in scintillation solvent ready for counting. The system accepts samples of at least 500 mg and is limited by the solvent capacity for water. Samples may be dried or lyophilized right in the capsules before combustion, and they may be refrigerated after combustion until ready for counting. | The method compared favorably with the oxygen flask method but was much faster. It had a collection recovery of 96%, was calibrated by internal standards, and had a coefficient of variation of 2.9%. Plastic capsules were preferred over gelatin ones, but they had to be specially made. Although oxygen was used in the system, no hazardous incidents have occurred during its use. Few min not counting sample drying or lyophilizing which can be done in batches | Not given | Combustion tube apparatus (described), gelatin or plastic capsules, evaporation block, hot plate, vacuum system, dessicator, glass vials, refrigerator | Scintillation counting

386. Mollusks | Fresh live mollusks | Mytilus galloprovincialis mollusks were allowed to take up radioisotopes of cerium, cobalt, manganese, proactinium, ruthenium, and zinc from sea water for 1-7 days. The mollusks were washed, and the soft parts were separated from the shells, placed in porcelain crucibles, weighed, and dried at 110°C. Then they were heated at temp from 250°-800°C for several hr to obtain constant activity in the sample. After heating, samples were cooled, and radioactivity was measured. All of the trace elements studied were partly volatilized even at the low ashing temp; therefore wet ashing, rather than dry ashing, was recommended for detn of radioactive contaminants in bioI material. This particular mollusk was used for the expt because of the high bioI conc factors of the investigated radionuclides. | 6-7 | Sea water aquarium, sea water, porcelain crucibles, oven, gamma ray spectrometer, analytical balance | Anal of trace minerals by a dry ashing technique

Strohal (1969) |
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL NO. OF TIME STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa cells</td>
<td>Monolayer cultures of HeLa cells</td>
<td>HeLa cells in Eagle's medium with 20% pooled human serum and 10% DMEM were frozen in ampules to liq nitrogen temp. Some samples were gassed with CO₂ in white spot nitrogen to make them hypoxic, and others were irradiated at -196°C with X-rays at the rate of 100 rads/min acute radiation or with Co60 gamma rays at the rate of 100 rads/day continuous radiation.</td>
<td>Acute X-ray radiation caused a decrease in the slope of the HeLa cell survival curve. Addition of DMEM, lowering the radiation temp to -196°C, and rendering the HeLa cells hypoxic indicated successive dose modifying factors. The D₀ rose from 146 rads at room temp to 943 rads when cells were subjected to all three of these dose modifying factors.</td>
<td>There was an oxygen effect with respect to the quality of cells produced after irradiation, since oxygen apparently combined with free radicals formed during irradiation.</td>
<td>Varies with method</td>
<td>Not given</td>
<td>5-8</td>
<td>Pipettes, ampules, culture bottles, degassing app, Linde bioI freezer (Type BFS), Union Carbide liq nitrogen refrigerator, heat sealer, Dewar flask, Resorax X-ray machine, Co60 source</td>
<td>Study of fundamental action of radiation on a biol system</td>
</tr>
<tr>
<td>Spores</td>
<td>Freshly cultured bacterial spores</td>
<td>Clostridium botulinum strain 33A spores which were resistant to gamma radiation, UV radiation and heat, were cultured in tryptase-peptone broth. Equal vol of spores and borate buffer were combined to give a pH range of 6-12. Samples were pipetted into pyrex tubes, sealed, and frozen to 0°C, -20°C, or -196°C. Then they were irradiated with 0.6-0.9 Mrad of Co-60. After irradiation, samples were thawed and analysed for surviving spores.</td>
<td>Radiation resulted in a wavelike pattern of survival influenced by pH, temp, and radiation dose. Three patterns were recognized: A, at -190°C showed peaks of high survival at pH 7 and 9.5 and troughs of low survival at pH 8 and 10-11; B, at -50°C showed high survival at pH 8.5-9 and low survival at pH 7 and 10; C, at 0°C showed high survival at pH 7.5 and 10 and low survival at pH 6, 9, and 11. An explanation was presented.</td>
<td>Not clear</td>
<td>Samples were thawed immediately</td>
<td>5-7</td>
<td>Oval culture tubes, pipettes, autoclave, pyrex tubes, freezer, radiation source</td>
<td>Sterilization using radiation</td>
<td>Upadhay (1969)</td>
</tr>
<tr>
<td>SPECIMEN DESCRIPTION</td>
<td>ORIGINAL FORM OF SAMPLE</td>
<td>BRIEF DESCRIPTION OF METHOD</td>
<td>LIMITATIONS OF METHOD</td>
<td>OTHER COMMENTS ABOUT METHOD</td>
<td>ESTIMATED PRESERVATION TIME</td>
<td>SURVIVAL TIME</td>
<td>NO. OF STEPS</td>
<td>EQUIPMENT AND REAGENTS USED</td>
<td>END USE OF SPECIMEN</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Milk dialysate</td>
<td>Fresh whole milk</td>
<td>Fresh whole milk was centrifuged in sterile centrifuge bottles at 5°C. Skim milk was removed with a sterile pipette, re-centrifuged and the skim-milk supernatant passed through both 1 and 45 μ sterilized Seitz filters. A sterile dialysis bag contg 250 ml of sterile distd water was immersed completely in 625 ml of the milk filtrate in an Erlenmeyer flask and was dialyzed for 2 days at 0-4°C. The skim milk was replaced with a fresh vol of raw skim milk, and dialysis was continued for one more day. The contents of the dialysis bag were collected aseptically in a sterile Erlenmeyer flask. Total vol was 120 ml.</td>
<td>No bacterial growth occurred on Standard Plate Count Agar after incubation of the milk dialysate at 35°C for 72 hr. The dialysate could be stored several wk at 4°C and was free of protein.</td>
<td>Milk dialysate is used as a native protein-free milk buffer in protein research.</td>
<td>3-4 days</td>
<td>Several wk</td>
<td>9-10</td>
<td>Dialysis bag, autoclave, sterile centrifuge bottles, sterile pipettes, 1 and 0.45 μ Seitz filters, Erlenmeyer flasks</td>
<td>For use as a native protein-free milk buffer in protein research</td>
</tr>
</tbody>
</table>

Koka (1967)
<table>
<thead>
<tr>
<th>SPECIMEN DESCRIPTION</th>
<th>ORIGINAL FORM OF SAMPLE</th>
<th>BRIEF DESCRIPTION OF METHOD</th>
<th>LIMITATIONS OF METHOD</th>
<th>OTHER COMMENTS ABOUT METHOD</th>
<th>ESTIMATED PRESERVATION TIME</th>
<th>SURVIVAL TIME</th>
<th>NO. OF STEPS</th>
<th>EQUIPMENT AND REAGENTS USED</th>
<th>END USE OF SPECIMEN</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood plasma USP blood plasma</td>
<td>USP human blood plasma was found to have unusually high levels of free fatty acids ranging from 2,889-3,272 μg/l. During prepn plasma was kept at 32°C for several mon to inactivate hepatitis virus. An investigation was made to see if the long incubation time was the cause of the high fatty acid content.</td>
<td>The long incubation period for USP human plasma apparently caused the increase in free fatty acids. Reasons for this were discussed. 0.6 M sodium chloride reduced the release of free fatty acids during incubation.</td>
<td>The authors suspected that lipoprotein lipase liberated the free fatty acid but this was not proven.</td>
<td>Several wk including incubation</td>
<td>Not given</td>
<td>0.6 M NaCl</td>
<td>Prep of USP blood plasma</td>
<td>Barboriski (1968)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. INDEX TO TABLES
INDEX

ACETALDEHYDE 362
ACETIC ANHYDRIDE 371
ACETONE 362
ACETONURIA 212
ACETYLCHOLINE 325
ACROMOBACTER 020
ACID-CITRATE-DEXTROSE ANTICOAGULANT (ACD) 021 022 023 025 026 035 036 037 041 042 044 045 047 048 049 050 052 183 185 186 187 188 189 190 191 192 193 194 195 196 199 314
ACIDOSIS 212
ACRYLAMIDE GEL 284
ACRYLIC RESINS 371
ACTAEA CELBA 302
ADAPTATION 358
ALBUMIN
 053 193
ALBUMIN, BOVINE
 060 120
ALBUMIN, HUMAN
 016 223
ALBUMIN, SERUM
 180 298 338
ALCALIGENES FAECALIS
 258 259
ALGAE
 002
ALGAE, RED
 128
ALLERGIC ENCEPHALITIS
 264
ALLOTHREONINE
 259
ALSEVER'S SOLUTION
 312
AMINCROVIN
 343
AMINO ACID TRANSPORT
 220
AMINO ACIDS
 176 384
AMMONIA
 177 357 384
AMNION
 267
AMOEBA PROTEUS
 375
AMOEBAE
355

AMYLASE
053 141 316

ANABAENA CYLINDRICA
360

ANIMAL TISSUE
302

ANKISTRODESMUS
002

ANOPHELES
361

ANTIBIOTICS
068 083 205 234 243
246 265 267 329

ANTIGENS
253 292

ANTIHEMOPHILIC FACTOR
050

ANTIMICROBIALS
311 313 324

ANTIOXIDANTS
302

ANTS, CARPENTER
104

APHELENCHOIDES SACCHARI
123

APIS MELLIFERA
104

APOPHOSPHORYLASE B
062

APPLES
254
ARGININE
258
ARGININE METHYL ESTER
080
ARGININIC ACID
258
ARTERIES
003 255 305 353
ARTHROBACTER SIMPLEX
259
ASCITES FLUID
256
ASCITES TUMORS
173 294
ASCOMYCETES
090 271
ASCORBIC ACID
352
ASHING
385 386
ASPARAGINE
176
ASPERGILLUS NIDULANS
360
AVIAN MYCOPLASMAS
120
AZOTOBACTER VINELANDII
360
BABOON KIDNEYS
224
BABOON LUNGS
334
<table>
<thead>
<tr>
<th>BACTERIA</th>
<th>016 017 019 087 152 257 258 259 296 306 324 359 360 380</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARINE</td>
<td>020</td>
</tr>
<tr>
<td>CULTURE</td>
<td>382</td>
</tr>
<tr>
<td>SPORES</td>
<td>289 290 366 388</td>
</tr>
<tr>
<td>PHAGE</td>
<td>307</td>
</tr>
<tr>
<td>PHAGE-T2</td>
<td>066</td>
</tr>
<tr>
<td>PHAGE-T2</td>
<td>359</td>
</tr>
<tr>
<td>BARIUM</td>
<td>001</td>
</tr>
<tr>
<td>BEANS</td>
<td>364</td>
</tr>
<tr>
<td>BEEF</td>
<td>114</td>
</tr>
<tr>
<td>MUSCLE</td>
<td>274 275</td>
</tr>
</tbody>
</table>
BEEF THYROID GLANDS 155

BEETLES, CARABID 004

BENZOIC ACID 342

BENZOYL-L-ARGININE 080

BETA-GALACTOSIDASE 072

BETA-PROPIOLACTONE 097 272 353

BILIRUBIN 053

BIOGENIC AMINES 371

BIOLOGICAL SAMPLES 385

BIOPSY 117

BLOOD 012 023 025 026 027 028 040 071 167 183 184 185 186 187 188 308

BLOOD AMYLASE 316

BLOOD ANALYSIS CONTROL SOLUTION 064

BLOOD BAGS 039 044

BLOOD CELLS 026 041 194 252 310

IV-7
<table>
<thead>
<tr>
<th>Test Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Cells, Occult</td>
<td>351</td>
</tr>
<tr>
<td>Blood Cells, Red</td>
<td>021 022 023 024 025 030 031 032 033 034 035 036 037 038 039 042 043 044 045 046 189 190 191 192 193 195 196 197 250 312 313 314 368</td>
</tr>
<tr>
<td>Blood Cells, White</td>
<td>250</td>
</tr>
<tr>
<td>Blood Cultures</td>
<td>380</td>
</tr>
<tr>
<td>Blood Electrolytes</td>
<td>189</td>
</tr>
<tr>
<td>Blood Enzymes</td>
<td>021</td>
</tr>
<tr>
<td>Blood Factor VIII</td>
<td>047 050</td>
</tr>
<tr>
<td>Blood Factors</td>
<td>048 049</td>
</tr>
<tr>
<td>Blood Plasma</td>
<td>023 025 026 048 052 053 054 055 056 186 198 316 353 381 390</td>
</tr>
<tr>
<td>Blood Plasma Standards</td>
<td>053</td>
</tr>
<tr>
<td>Blood Platelets</td>
<td>047 057 199</td>
</tr>
<tr>
<td>Blood Potassium</td>
<td>200 315</td>
</tr>
<tr>
<td>Blood Prothrombin Time</td>
<td>309</td>
</tr>
</tbody>
</table>
BLOOD SERUM
061 063 085 086 175
201 202 213 316 317

BLOOD SERUM ENZYMES
062

BLOOD SERUM PHOSPHATASE
058 059

BLOOD SERUM STANDARDS
060

BLOOD SERUM, DIAGNOSTIC
260

BLOOD SERUM, FETAL
169 381

BLOOD SERUM, HORSE
098

BLOOD STANDARDS
063 064

BLOOD SUBSTITUTES
054 285 318

BLOOD SUGAR
189

BLOOD VESSELS
065

BLOOD, AUTOPSY
311

BODY TEMPERATURE
238

BONE MARROW
005 006 007 008 009
010

BONES
261 262 319 353

BORRELLIA ANSERINA
011

IV-9
BORRELLIA KANSAS
012
BOUIN FLUID
378
BOVINE ADRENAL GLANDS
301
BOVINE ALBUMIN
060
BOVINE ARTERIES
255
BOVINE BLOOD SERUM
260
BOVINE CAROTID ARTERIES
305
BOVINE HEART VALVES
097 272
BOVINE PITUITARY GLAND
279
BOVINE SPERMATOZOA
137 138 139 141 142
150 241 242 244
BOVINE VIRAL DIARRHEA VIRUSES (BVD)
181
BRAIN
013 014 015 263 265
369
BRAIN ENZYMES
072
BRAIN HOMOGENATES
264
BREVIBACTERIUM AMMONIAGENES
259
BRUCELLA
380
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella abortus antigen</td>
<td>253</td>
</tr>
<tr>
<td>Brucella abortus vaccine</td>
<td>295</td>
</tr>
<tr>
<td>Brucella abortus-infected serum</td>
<td>260</td>
</tr>
<tr>
<td>Butyl alcohol, tertiary</td>
<td>302</td>
</tr>
<tr>
<td>Caenorhabditis briggsae</td>
<td>122</td>
</tr>
<tr>
<td>Calcium</td>
<td>001</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>179</td>
</tr>
<tr>
<td>Calcium gluconate</td>
<td>267</td>
</tr>
<tr>
<td>Calcium lactobionate</td>
<td>180</td>
</tr>
<tr>
<td>Calf serum</td>
<td>156</td>
</tr>
<tr>
<td>Calf-thymus DNA</td>
<td>066</td>
</tr>
<tr>
<td>Camponotus pennsylvanicus</td>
<td>104</td>
</tr>
<tr>
<td>Candida</td>
<td>380</td>
</tr>
<tr>
<td>Candida pseudotropicalis</td>
<td>081</td>
</tr>
<tr>
<td>Candidin</td>
<td>018</td>
</tr>
</tbody>
</table>
CANINE BONE MARROW
008 010
CANINE GASTRIC SECRETIONS
091
CANINE HEART
208 211 304
CANINE HEART-LUNG PREPARATION
326 327
CANINE ILEUM
103 228
CANINE INTESTINES
245
CANINE KIDNEYS
099 103 214 215 216
217 218 219 221 223
225 226 227 228 328
330 331 333
CANINE KNEE JOINTS
230
CANINE LIVER
231 232 333 335
CANINE LUNG
208
CANINE PANCREAS
245
CANINE PANCREATIC RIBOSOMES
283
CANINE SPLEEN
103
CANINE STOMACH
245
CANINE URINE
175
CELL VOLUME
215

CELLULOSE ESTER GEL
303

CELLS
071

CELLS. ANIMAL
019 157 383

CEMENTUM
163

CENTRIFUGAL FREEZING
071

CENTRIFUGATION
057 175

CENTRIFUGATION GRADIENTS
153

CENTRIFUGE BOWL
046

CEREBROSIDASE
072

CERESAN
340
<table>
<thead>
<tr>
<th>CHEMICAL PRESERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>003 005 006 007 008</td>
</tr>
<tr>
<td>009 010 011 012 016</td>
</tr>
<tr>
<td>022 024 026 029 030</td>
</tr>
<tr>
<td>033 036 038 042 044</td>
</tr>
<tr>
<td>045 046 047 048 051</td>
</tr>
<tr>
<td>054 056 058 068 070</td>
</tr>
<tr>
<td>072 075 077 078 087</td>
</tr>
<tr>
<td>090 094 095 097 099</td>
</tr>
<tr>
<td>103 110 111 121 122</td>
</tr>
<tr>
<td>123 124 132 133 136</td>
</tr>
<tr>
<td>137 138 139 140 141</td>
</tr>
<tr>
<td>143 145 146 149 150</td>
</tr>
<tr>
<td>159 160 164 165 170</td>
</tr>
<tr>
<td>172 173 178 179 185</td>
</tr>
<tr>
<td>186 187 188 189 190</td>
</tr>
<tr>
<td>192 194 195 196 197</td>
</tr>
<tr>
<td>201 210 218 219 221</td>
</tr>
<tr>
<td>223 225 227 228 230</td>
</tr>
<tr>
<td>232 233 234 238 240</td>
</tr>
<tr>
<td>241 242 245 246 248</td>
</tr>
<tr>
<td>252 255 257 258 259</td>
</tr>
<tr>
<td>259 264 269 272 276</td>
</tr>
<tr>
<td>288 294 296 301 302</td>
</tr>
<tr>
<td>303 304 305 306 307</td>
</tr>
<tr>
<td>308 309 310 311 312</td>
</tr>
<tr>
<td>313 314 315 316 317</td>
</tr>
<tr>
<td>318 319 321 321 322</td>
</tr>
<tr>
<td>323 324 325 326 327</td>
</tr>
<tr>
<td>328 329 331 332 332</td>
</tr>
<tr>
<td>333 334 335 336 337</td>
</tr>
<tr>
<td>338 339 340 341 342</td>
</tr>
<tr>
<td>343 344 345 346 347</td>
</tr>
<tr>
<td>348 349 350 351 352</td>
</tr>
<tr>
<td>353 354 358 361 367</td>
</tr>
<tr>
<td>387</td>
</tr>
</tbody>
</table>

CHICK EMBRYO EXTRACT
383

CHICKEN FECES
266 270

CHICKEN MUSCLE
338

CHICKENS
266 302
CHIRONOMIDAE
 358
CHLAMYDOMONAS
 002
CHLORELLA
 002
CHLORIDE
 053
CHLOROFORM
 347 349
CHLOROPLASTS
 073
CHOLESTEROL
 034 053
CHOLINESTERASE
 053
CHORION
 267
CHROMOPROTEINS
 128
CHRYSANTHEMUMS
 322
CIALIT
 248
CITRATE
 011 052 054 056 140
 154 244 285 31n 312
 316 317
CITRATE-PHOSPHATE-DEXTROSE ANTICOAGULANT (CPD)
 047 048 185 187 189
 190 194
CLOSTRIDIUM BIFERMENTANS
 290
CLOSTRIDIUM BOTULINUM
290 388

CLOTTING FACTORS
048 049

CLOVER
092

COATING POWDERS
102 113

COATINGS
028

COCCIDIA
074

COCCIDIAL SPOROZITES
075

COCCOMYXA
002

COCONUT MILK EXTENDER
341

COLD ADAPTATION
004 085 086 104 108 204 212 229 238

COLOIDS
193

COLON
106

COMPLEMENT
052

CONIFER LEAVES
107

CONTRACTILITY
178 179 211

CONVALLARIA MAJALIS
302
COOLING VELOCITY
113
CORN SEED
340
CORNEAS
003 076
CORTICOSTEROIDS
349
CORTISONE
234
CORYNEBACTERIUM
020
CORYNEBACTERIUM EQUI
258 259
COVERSAN
340
CREATININE
053 222 328
CRYOBIOLOGY
104 238
CRYOHIOPSY
117
CRYOPRECIPITATES
047 048 197
CRYOPROTECTANTS

002 004 005 006 007
008 009 010 011 012
016 018 021 022 024
025 026 029 030 031
032 035 036 038 039
041 042 043 045 046
051 069 070 073 075
077 078 079 087 090
094 095 098 099 100
101 103 110 111 118
120 121 123 124 132
134 136 137 138 139
140 141 142 143 145
146 149 154 154 156
158 159 160 164 165
167 170 171 172 173
178 179 180 190 243
247 257 259 288 292
294 299 387

CULEX
361

CULICIDAE
361

CULTURING
380 381 382 383 384

CYANIDE
122 312

CYSTEAMINE
242

CYTOCHROME OXIDASE
122

CYTOPHAGA
020

CYTOPLASM
355
DECADRON
332

DEGRADATION
066

DEHYDRATING AGENTS
302

DEHYDRATION
076 205 358 361

DEHYDROGENASES
239 338

DENATURATION
069 127

DENTIN
163

DEOXYRIBONUCLEIC ACID (DNA)
066 140 148 168 242 379

DEPROTEINIZATION
321

DEXAMETHASONE
327

DEXTRANS
045 099 101 103 120 171 193 209 215 216 218 223 228 233 245 292 297 329 330 334

DEXTROSE
120

DIALDEHYDE STARCH
305

DIALYSIS
213 279 284 285 384 389

DIAPHRAGM VARICES
370
DICYCLOHEXYLAMINE NITRATE
306

DIDININIUM
375

DIETHYLENE GLYCOL
160

DILUENTS
149 240 243

DIMETHYL SULFOXIDE (DMSO)
0.05 0.06 0.07 0.08 0.09
0.10 0.16 0.29 0.51 0.74
0.75 0.87 0.98 0.99 1.00
1.01 1.03 1.11 1.18 1.23
1.24 1.32 1.33 1.34 1.45
1.50 1.56 1.57 1.58 1.60
1.61 1.64 1.65 1.67 1.69
1.70 1.71 1.72 1.74 1.78
1.80 2.28 2.38 2.47 2.99
3.13 3.87

DIPRAZIN
343

DISACCHARIDASES
105

DITHIOTHREITOL
276

DOURINE ANTIGEN
253

DRANUNCULUS MEDINENSIS
93

DRYING
151 176 239 266 274
290 294 355 356 357
358 359 360 361 362
363 364 365 366 367

DRYING AGENTS
363

IV-21
DUCK SALT GLAND
377

DURA MATER
265

EGG-YOLK MEDIUM
140 141 142 144 244

EHRLICH ASCITES TUMORS
294

EIMERIA ADENOEIDES
075

EIMERIA MELEAGRIMITIS
074

EIMERIA MIVATI
075

EIMERIA TENELLA
074 075

ELASMOBRANCHS
282

ELECTROLYTES
086 147 175 178 202

ELECTROPHEROGRAMS
268

EMBALMING FLUID
303 304

EMBRYONIC TISSUE
267

ENDOCRINE GLANDS
078 079

ENDOLYMPH
203
ETHANOL
305 311 358 362

ETHYL ACETATE
362

ETHYLENE GLYCOL
094 095 136 160

ETHYLENE OXIDE
255 344

ETHYLENEDIAMINE
319

ETHYLENEDIAMINETETRAACETIC ACID (EDTA)
022 025 031 033 037

ETHYLMERCURIC THIOSALICYLATE
348

EUGLENA
002

EUMETOPIAS JUBATA
204

EXTENDERS
139 150 241 341

EYE LENSES
084

EYES
205

FALLOPIAN TUBE FLUID
236

FASCIA LATA
269

FATS
270
FATTY ACIDS
198 199 390

FECES
266 270 321 357

FERROBACILLUS
306

FETAL BRAIN PRESS JUICE
381

FETAL TISSUE
159

FIBRINOGEN
048

FIBROBLASTS
161 293 383

FICIN
305

FILTRATION
351

FISH
086 229 371

FISH BLOOD SERUM
085

FISH GILL FILAMENTS
377

FISH RECTAL GLANDS
282

FISH SPERMATOZOA
147

FIXATION AND EMBEDDING
106 107 109 282 368
369 370 371 372 373
374 375 376 377 378
379
FIXATIVES
374

FLAVOBACTERIUM
020

FLEXIBACTERIA
087

FLOWER PRESERVATIVES
322

FLOWERS
302 323

FLUORESCIN SODIUM SOLUTION
324

FLUORESCENCE
128

FLUORIDE
184 308 311 325 367

FODDER
092

FOIL PACKETS
032

FOODS
088 254

FORMALDEHYDE
252 377

FORMALIN
303 351 369 372

FOSSILS
306

FOWL SPERMATOZOA
136 288
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>002</td>
<td>003</td>
<td>004</td>
<td>005</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>007</td>
<td>008</td>
<td>009</td>
<td>010</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>012</td>
<td>013</td>
<td>014</td>
<td>015</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>017</td>
<td>018</td>
<td>019</td>
<td>020</td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>022</td>
<td>023</td>
<td>024</td>
<td>025</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>027</td>
<td>028</td>
<td>029</td>
<td>030</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>032</td>
<td>033</td>
<td>034</td>
<td>035</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>037</td>
<td>038</td>
<td>039</td>
<td>040</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>042</td>
<td>043</td>
<td>044</td>
<td>045</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>047</td>
<td>048</td>
<td>049</td>
<td>050</td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>052</td>
<td>053</td>
<td>054</td>
<td>055</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>057</td>
<td>058</td>
<td>059</td>
<td>060</td>
<td></td>
</tr>
<tr>
<td>061</td>
<td>062</td>
<td>063</td>
<td>064</td>
<td>065</td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>067</td>
<td>068</td>
<td>069</td>
<td>070</td>
<td></td>
</tr>
<tr>
<td>071</td>
<td>072</td>
<td>073</td>
<td>074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>075</td>
<td>076</td>
<td>077</td>
<td>078</td>
<td>079</td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>081</td>
<td>082</td>
<td>083</td>
<td>084</td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>086</td>
<td>087</td>
<td>088</td>
<td>089</td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>091</td>
<td>092</td>
<td>093</td>
<td>094</td>
<td></td>
</tr>
<tr>
<td>095</td>
<td>096</td>
<td>097</td>
<td>098</td>
<td>099</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>244</td>
<td>266</td>
<td>27n</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>288</td>
<td>299</td>
<td>358</td>
<td>387</td>
<td></td>
</tr>
</tbody>
</table>

FREEZING POINT DEPRESSION

148

FROG HEART

094 095

FROG MUSCLE

116 337

IV-27
FROG SCIATIC NERVE
124
FRUCTOSE
022 025 032 037 041
137 138 289
FRUIT
089
FUMIGANTS
306
FUNDULUS GRANDIS
377
FUNDULUS HETEROCLOLITIS
086 229
FUNGAL ENZYMES
235
FUNGAL SPORES
342
Fungi
090 271 360
Fungi imperfecti
090 271
FUNGICIDES
340
GALACTOSE
072
GAMMA-AMINOBUTYRATE TRANSAMINASE
014
GARDENIA
302
GAS VELOCITY
366
GASTRIC SECRETION STANDARD
126
GASTRIC SECRETIONS
091 206
GELATIN
083 193
GELS, HYDROPHILIC
363
GELS, WATER SOLUBLE
343
GERMINATION
340
GEY'S SALT SOLUTION
156
GLADIOLUS
323
GLANDERS ANTIGEN
253
GLANDS
301
GLANDS, RECTAL
282
GLEE'S SIVLER SOLUTION
376
GLOHULIN
053
GLOSSINA PALLIPEDES
169
GLUCOSE
022 025 032 037 041
053 061 154 199 289
297 299 310 311 327
328

IV-29
GLUCOSIDASES
106

GLUTAMATE
294

GLUTAMIC DEHYDROGENASE
109

GLUTAMIC OXALACETIC TRANSAMINASE
061 211

GLUTAMIC-OXALACETIC TRANSAMINASE
211

GLUTAMINE
176

GLUTARALDEHYDE
368 373

GLUTATHIONE
325

GLYCEROL
002 003 004 005 007
009 010 011 012 018
020 021 022 025 026
028 029 033 035 037
038 039 041 042 046
057 070 072 073 076
077 078 079 087 090
095 121 124 131 132
133 134 136 137 140
141 142 143 144 146
149 150 154 159 160
167 169 170 171 172
173 174 178 179 244
286 288 294 299 343
358

GLYCEROL METABOLISM
104

GLYCEROL REMOVAL
026

GLYCEROL, ANHYDROUS
205

IV-30
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLYCEROPHOSPHATIDES</td>
<td>034</td>
</tr>
<tr>
<td>GLYCOGEN</td>
<td>374</td>
</tr>
<tr>
<td>GLYCOGEN METABOLISM</td>
<td>104</td>
</tr>
<tr>
<td>GLYCOLYSIS</td>
<td>013</td>
</tr>
<tr>
<td>GLYCOLYTIC ENZYMES</td>
<td>104</td>
</tr>
<tr>
<td>GLYCOPROTEINS</td>
<td>085</td>
</tr>
<tr>
<td>GOLD VAPOR</td>
<td>375</td>
</tr>
<tr>
<td>GONADOTROPHIC HORMONE</td>
<td>251</td>
</tr>
<tr>
<td>GRASS</td>
<td>092</td>
</tr>
<tr>
<td>GROUND SQUIRREL BLOOD</td>
<td>027</td>
</tr>
<tr>
<td>GUANOSINE</td>
<td>192</td>
</tr>
<tr>
<td>GUINEA PIG ENDOLYMPH</td>
<td>203</td>
</tr>
<tr>
<td>GUINEA PIG SMOOTH MUSCLE</td>
<td>118</td>
</tr>
<tr>
<td>GUINEA PIG THYROID</td>
<td>247</td>
</tr>
<tr>
<td>GUINEA WORMS</td>
<td>093</td>
</tr>
<tr>
<td>HAMSTER TUMORS</td>
<td>170</td>
</tr>
</tbody>
</table>
HANK'S SOLUTION
 246 294

HEART
 094 095 102 208 209
 210 211 304 325

HEART PUMPS
 333

HEART VALVES
 096 097 272

HEART-LUNG PREPARATION
 326 327

HEAT STERILIZATION
 362 366

HEDERA HELIX
 302

HELA CELLS
 098 157 387

HELIUM
 224

HELIX POMATIA
 207

HEMAGGLUTINATION TEST
 368

HEMATOCRIT
 191 328

HEMATOXYLIN
 106 372

HEMOCYANIN
 207

HEMOGLOBIN
 034 037 185 187 189
 191 191 314

HEMOLYMPH
 004

IV-32
HEMOLYSIS
030 313

HEPARIN
056 210 221 222 227 233 315 316 326 328 329 330 335

HEPATITIS
026 390

HEXAMETHYLENE TETRAMINE
160

HOLOTHURIANS
339

HOMOARGINE
258

HONEYBEES
104

HORMONES
251

HORSE SERUM
383

HUMAN ADRENAL GLANDS
003

HUMAN ARTERIES
003 255

HUMAN ASCITES FLUID
256

HUMAN BLOOD
023 025 026 028 040 183 184 185 186 187 188 308 309 311

HUMAN BLOOD CELLS
041 194 316

HUMAN BLOOD CULTURES
380

IV-33
HUMAN BLOOD FACTORS
047 049 050

HUMAN BLOOD PLASMA
048 052 053 054 056
198 315 353 390

HUMAN BLOOD PLATELETS
057 199

HUMAN BLOOD SERUM
058 059 060 061 062
063 200 202 317

HUMAN BONE MARROW
005 007 010

HUMAN BONES
261 262

HUMAN BRAIN
263 369

HUMAN CADAVERS
303

HUMAN CARTILAGE
068

HUMAN CORNEAS
003 076

HUMAN DURA MATER
265

HUMAN EMBRYO FIBROBLASTS
161

HUMAN ESOPHAGEAL VARICES
370

HUMAN EYE LENSES
084

HUMAN FASCIA LATA
269

HUMAN FETAL TISSUE
159 267

IV-34
HUMAN GASTRIC JUICE
 206

HUMAN HEART
 211

HUMAN HEART VALVES
 096 272

HUMAN HEART-LUNG PREPARATION
 326 327

HUMAN INTESTINES
 105 106

HUMAN KIDNEY CELLS
 160

HUMAN KIDNEY TISSUE
 158

HUMAN KIDNEYS
 332

HUMAN LIVER
 335

HUMAN LYMPHOCYTES
 051

HUMAN MUSCLES
 115

HUMAN ORGANS
 353

HUMAN PARATHYROID GLAND
 381

HUMAN RED BLOOD CELLS
 021 022 024 030 031
 033 034 035 036 037
 038 039 042 043 044
 045 046 189 190 191
 192 193 195 196 197
 314

IV-35
HUMAN SALIVA
 129 130 284 285 316
 382

HUMAN SCLERA
 286

HUMAN SKIN
 134

HUMAN SPERMATOZOA
 136 140 144 146 288
 378

HUMAN TEETH
 163 246

HUMAN TUMOR TISSUE
 162

HUMAN TYMPANIC MEMBRANE
 345

HUMAN URINE
 176 177 249 250 250
 251 346 347 348 349
 350 351 352 367

HUMANS
 212

HYALURONIDASE
 134

HYBERNATION-STIMULATING BLOOD FACTOR
 027

HYDATID ANTIGEN
 292

HYDROCHLORIC ACID
 346 347

HYDROGEN ION CONCENTRATION
 048 052 086 137 177
 184 185 189 191 192
 225 250 251 279 309
 349 388

IV=36
HYDROGEN-PALLADIUM
275

HYDROXYLAMINE
080

HYDROXYETHYL STARCH
024 045 193 211

HYMENOPTERA
104

HYPERBARIA
208 209 211 214 216
217 219 224 228 231
232 245

HYPOXANTHINE
183

HYPOXIA
215

ICE CRYSTALS
089

ICHNEUMON WASPS
104

ILEUM
103 106 228

INCUBATION
390

INFLUENZA VIRUS
298 354

INOSINE
187 188 192 194 195
196 197

INSECT LARVAE
358 361

INSECTS
004 104 361
KIDNEYS
028 099 100 101 102
103 214 215 216 217
218 219 220 221 222
223 224 225 226 227
228 328 329 330 331
332 333 335 353 372
373

KILLIFISH
086 229

KINETOPLASTS
168

KNEE JOINTS
230

KREBS-RINGER SOLUTION
220

L CELLS
157

LACTALBUMIN HYDROLYSATE
098

LACTASE
105

LACTIC ACID
115 117 152 185 225

LACTIC DEHYDROGENASE
061 148 206

LACTOBACILLUS
259

LACTOBACILLUS ARABINOSUS
258

LACTOPHENOL-ACID FUSCHIN
107

LACTOPHENOL-COTTON BLUE
107

IV-39
LACTOSE
 028 032 289 294
LARVAE
 358
LAVDOWSKY'S FLUID
 374
LEAD CITRATE
 373
LEAF PROTEIN
 281 364
LEAVES
 107 273
LEISHMANIA
 169
LICHENS
 108
LILY-OF-THE-VALLEY
 302
LIMA BEAN MILDEW
 067
LIPASES
 056 390
LIPIDS
 034
LIPROTEIN LIPASE
 056
LIVER
 028 102 109 231 232
 233 234 304 333 335
 353 374
LIVER ENZYMES
 125
LIVER FUNCTION TESTS
 201
LIVER TISSUE
110

LOBARIA PULMONARIA
108

LOBSTER RETICULUM
276

LOCKE'S SOLUTION
328

LUNG
208 326 334 335

LYMPHOCYTES
051

LYOPHILIZATION
014 020 052 076 083
097 114 120 121 154
180 203 213 253 254
255 256 257 258 259
260 261 262 263 264
265 266 267 268 269
270 271 272 273 274
275 276 277 278 279
280 281 282 283 284
285 286 287 288 289
290 291 292 293 294
295 296 297 298 299
300 307 359 374 375

LYSINE ETHYL ESTER
080

LYSINE METHYL ESTER
080

MACACA MULATTA
236

MAGNESIUM
179

MAGNESIUM CHLORIDE
070
MAGNESIUM SULFATE 325
MALTASE 105
MAMMALIAN MYCOPLASMAS 120
MAMMALIAN SKELETONS 320
MANNITOL 099 100 226 332 359
MARINE BACTERIA 020
MARINE INVERTEBRATES 339
MARINE MAMMALS 320
MEASLES VIRUS 180
MEAT 114 275
MEMBRANE PERMEABILITY 083
MERCURIAL FUNGICIDES 340
MERCURIC CHLORIDE 367 375
MERCURY COMPOUNDS 367
MERTHIOLATE 064 269 367
METABOLISM 212
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>METAMORPHOSIS</td>
<td>358</td>
</tr>
<tr>
<td>METHICILLIN</td>
<td>135</td>
</tr>
<tr>
<td>METHYLCELLULOSE</td>
<td>383</td>
</tr>
<tr>
<td>MICERIN</td>
<td>343</td>
</tr>
<tr>
<td>MICROANGIOGRAPHY</td>
<td>065</td>
</tr>
<tr>
<td>MICROCOCCUS</td>
<td>020</td>
</tr>
<tr>
<td>MICROCOCCUS DENITRIFICANS</td>
<td>360</td>
</tr>
<tr>
<td>MICROCOCCUS LYSODEIKTICUS</td>
<td>258</td>
</tr>
<tr>
<td>MICROCOCCUS LYSODEIKTICUS</td>
<td>259</td>
</tr>
<tr>
<td>MICROORGANISMS</td>
<td>082</td>
</tr>
<tr>
<td>MILDEWS</td>
<td>067</td>
</tr>
<tr>
<td>MILK DIALYSATE</td>
<td>389</td>
</tr>
<tr>
<td>MILK SOLIDS, NON-DIALYZABLE</td>
<td>138</td>
</tr>
<tr>
<td>MILK, SKIM</td>
<td>120</td>
</tr>
<tr>
<td>MOISTURE CONTENT</td>
<td>052</td>
</tr>
<tr>
<td>MOLECULAR SIEVES</td>
<td>076</td>
</tr>
</tbody>
</table>

IV=43
MOLLUSK TRACE ELEMENTS

MOLLUSKS

MONKEY OVIDUCTAL FLUID

MOSQUITOES

MOUSE BLOOD

MOUSE BONE MARROW

MOUSE BRAIN

MOUSE FIBROBLASTS

MOUSE LIVER

MOUSE LIVER EPITHELIMUM

MOUSE MAMMARY ADENOCARCINOMA

MOUSE SARCOMA CELLS

MOUSE SKIN

MOUSE TUMORS

MUSCLE

MUSCLE BIOPSY
NITRATE REDUCTASE
 235
NITROGEN COMPOUNDS
 053 092 266 357
NN-DIMETHYLACETAMIDE
 143
NOREPINEPHRINE
 325
NORMAN JOHNSON NO. 2 EXTENDER (N-J-2)
 341
NUCLEI
 070
NUCLEIC ACIDS
 379
NUCLEOSIDE DIPHOSPHATASE
 125
NUCLEOSIDES
 194
NUCLEOTIDES
 013 110 112 183 194
NYCTOTHERUS
 375
ODOBENUS ROSMARUS
 204
OLEIC ACID
 199
ORANG-UTAN SPERMATOZOA
 146
ORGANIC COMPOUNDS
 362
ORGANO-MERCURY COMPOUNDS
 248

IV=46
PACKAGING 096 275
PALADIUM VAPOR 375
PALATINASE 105
PANAGRELLUS REDIVIVUS 122 123
PANCREAS 245
PANOGEN 340
PAPAVERINE 222
PAPER WICKS 291
PARA-INFLUENZA VIRUS 297
PARAFFIN EMBEDDING 374
PARAFFIN OIL 230
PARAMECIUM 375
PARAPLAST 369
PARATHYROID GLAND 381
PARDUCZ FIXATIVE 375
PARENCHYMA 089

IV-48
PAROTID GLAND SALIVA
284

PELLET FREEZING METHOD
142 149

PENICILLIN
154 220 231 332

PENICILLIUM SPINULOSUM
342

PEPSIN
091 126

PEPTONE PLUGS
365

PERFUSATES
054 094 209 210 211
214 217 219 221 223
224 225 226 227 228
231 232 233 234 245
285 301 318 326 327
328 329 331 332 334

PERFUSION APPARATUS
326

PEROXYDASE
155

PETROLEUM ETHER
237

PHENONIP
342

PHENOXYBENZAMINE
226

PHENYL MERCURIC BORATE
348

PHENYLETHYL ALCOHOL
324

PHENYL MERCURIC NITRATE
324

IV-49
PHENYLPYRUVIC ACID
347
PHLEBOTOMINE SANDFLIES
169
PHOCA VITULINA
204
PHOSPHATASE SUBSTRATE
237
PHOSPHATASES
053 058 059 148 317
PHOSPHATES
193
PHOSPHOCREATINE
117
PHOSPHOHEXOSE ISOMERASE
061
PHOSPHOLIPIDS
084
PHOSPHORUS
192
PHOSVITIN
127
PHOTO EFFECTS
242
PHOTOBACTERIUM
020
PHOTOPHOSPHORYLATION
073
PHOTOSYNTHESIS
073 108
PHYCOERYTHRIN
128

IV-50
POLYESTER RESINS
371

POLYPEDILUM VANDERPLANKI, HINT.
358

POLYSTYRENE SPONGE
355

POLYVINYL TRAYS
344

POLYVINYL PYRROLIDONE (PVP)
006 032 045 171 299

PORCINE ARTERIES
255

PORCINE FECES
321 357

PORCINE LIVER
233 234

PORCINE MUSCLE
117

PORCINE PEPsin
126

PORCINE RED BLOOD CELLS
312

PORCINE SPERMATOZOA
139 143

PORPHYRIDIUM CRUENTUM
128

POTASSIUM
035 037 138 191 194
200 202 315

POTASSIUM CHLORIDE
318 332

Iv-52
POTASSIUM FLUORIDE
 308

POTASSIUM SALTS
 318 325

POWERS
 102 113

PRATYLENCHUS SCRIBNERI
 122

PREGNENOLONE
 001

PRESSOR SUBSTANCES
 352

PRIMATE KIDNEYS
 329

PRIMATE SPERMATOZOA
 146

PROCAINE
 221 329

PROLINE
 259

PROPYLENE GLYCOL
 136 160

PROPYLENE OXIDE
 305

PROPYLENE PHENOXETOL
 339

PROPYLHYDROXYBENZOATE
 342

PROTEIN
 147

PROTEINASES
 152

IV-53
PROTEINS
052 053 055 061 083
100 104 127 130 138
162 175 229 274 279
281 284 338 357 363
364

PROTEUS VULGARIS
259

PROTHROMBIN
048 049 052 309

PROTOZOA
365 375

PSEUDOMONAS
017 020

PSEUDOMONAS AERUGINOSA
324

PSEUDOMONAS AUREOFACIENS
258

PSEUDOMONAS DENITRIFICANS
360

PSEUDOMONAS FLUORESCENS
359

PUCCINIA GRAMINIS VAR TRITICI
151

PUMP-OXYGENATOR
328

PYRIDINE N-OXIDE
030 160

PYRIDOXAL PHOSPHATE
062

PYROPHOSPHYRILASE
109

PYRRULIDONE CARBOXYLIC ACID
259

IV-54
PYRUVATE
225

RABBIT BONE
319

RABBIT BRAIN HOMOGENATES
264

RABBIT HEART
102 210

RABBIT INTERFERON
213

RABBIT KIDNEYS
028 102 222

RABBIT LIVER
028 102 304

RABBIT OVIDUCTAL FLUID
236

RABBIT RED BLOOD CELLS
313

RABBIT RETICULUM
276

RABBIT SKIN
131

RABBIT SPERMATOZOA
136 145 288 341

RABBIT TENDONS
343

RABBIT TRACHEA
003

RABIES VACCINE
264

RADIATION
065 293 387
RADIATION PROTECTION
289

RADIATION STERILIZATION
096 265 388

RAM SPERMATOGONIA
148

RANA PIPIENS
337

RANA TEMPORARIA
116

RAT ADRENAL GLANDS
001

RAT BLOOD PLASMA
055

RAT BLOOD VESSELS
065

RAT BODY TEMPERATURE
238

RAT BONE MARROW
006

RAT BRAIN
013 015

RAT BRAIN ENZYMES
072

RAT ENDOCRINE GLANDS
077 078

RAT HEART
209 325

RAT INTESTINES
106

RAT KIDNEYS
100 101 220 372 373

IV-56
RAT LIVER
110

RAT LIVER ENZYMES
125

RAT MUSCLE
285

RAT SEX GLANDS
079

RAT SKIN
132

RAT TUMORS
170

RAT UTERINE HORMS
178 179

RED BLOOD CELLS
029

RED CLOVER
364
RIBONUCLEIC ACID (RNA)
083

RIBONUCLEIC ACID POLYMERASE
070

RIBOSOMES
083 283

RINGE-LOCKE SOLUTION
343

RINGE'S LACTATE SOLUTION
223 231 332

RINGE'S SOLUTION
094 209 318 335

ROCK OR MINERAL SPECIMENS
306

ROSSMAN'S FLUID
374

RUSSELL'S VIPER VENOM
278

RYEGRASS
364

SACCHAROMYCES CEREVISIAE
018 299 299 360

SACCHAROMYCES FRAGILIS
300

SALAMANDER PITUITARY GLAND
280

SALINE
310 310 328

SALIVA
129 284 285 382

SALIVA AMYLASE
316

IV-59
SALIVA PROTEINS 130
SALT GLANDS 377
SALTS 043
SARCOMA CELLS 383
SARCOMA 180 170
SARCOMA 37 170
SARCOMAS 172
SARCOPLASMIC RETICULUM 276
SARTORIUS MUSCLE 116
SCENEDESMUS 002
SCIATIC NERVE 124
SCINTILLATION COUNTING 385
SCLERA 205 286
SCOLICES 292
SCORPION VENOM 287
SEA LION EPIDERMAL CELLS 204
SEA PUDDING
339

SEAL EPIDERMAL CELLS
204

SEMINAL PLASMA
147

SERINE
259

SERRATIA
020

SERRATIA L FORMS
119

SERRATIA MARCESCENS
018 257 258 259

SERUM ACID PHOSPHATASE
317

SERUM TRANSAMINASE
233

SEX GLANDS
079

SHARK RECTAL GLAND
282

SHEEP BONES
319

SHEEP KIDNEYS
329

SHEEP LIVER TRIPHOSPHOPYRIDINE NUCLEOTIDE
166
SHEEP RED BLOOD CELLS
 032 368

SHEEP SPERMATOZOA
 137 149

SHIGELLA FLEXNERI VACCINE
 296

SIALOGASTRONE
 285

SILICA GEL
 360

SKELETONS
 320

SKIN
 131 132 133 134

SNAIL HAEMOCYANIN
 207

SODIUM
 202

SODIUM CYANIDE
 312

SODIUM PERBORATE TETRAHYDRATE
 320

SOIL ENZYMES
 239

SOLURILITY
 052

SONICATION
 181

SORBITOL
 042
STERILIZATION
249

STICHOPUS MOEBII
339

STIZOSTEDION VITREUM VITREUM
147

STOMACH
245

STREPTOBACILLUS
387

STREPTOCOCCUS
259

STREPTOCOCCUS CREMORIS
258

STREPTOCOCCUS LACTIS
152

STREPTOMYCES COELICOLOR
018 291

STREPTOMYCES VIRIDOFLAVUS
018

STREPTOMYCIN
220 286

STRIGOMONAS ONCOPELTI
365

STRONTIUM
001

SUCCINIC DEHYDROGENASE
109

SUCCINOXIDASE
109

SUCRASE
105
SUCROSE
021 031 110 121 292
294 299 322 338 359

SUCROSE GRADIENTS
153

SUGAR ALCOHOLS
243

SUGARS
033 240 243 257

SUPERCOOLING
174

SUSPENSIONS
355

TAENIA COLI
118

TAPEWORM ANTIGEN
292

TARTARIC ACID
259

TC 199 MEDIUM (GLAXO)
217

TEETH
163 246

TEMPERATURE EFFECTS
356

TENDONS
154 343

TESTES
077

TESTICULAR TISSUE
078 079

TETRAHYMENA
375

IV-65
TISSUE WATER
086

TISSUE, ANIMAL
171

TOLUENE
058 081 321 346

TOMATO MITOCHONDRIA
111

TOMATO PARENCHYMA
089

TONICITY
137

TOXOPLASMA GONDII
164

TRACE ELEMENTS
386

TRACHEA
003

TRACHOMA AGENT
098

TREMATOMUS BERNACCHII
085

TREMATOMUS BORCHGREVINKI
085

TREMATOMUS HANSONI
085

TRICHOMONAS VAGINALIS
165

TRIFLUOROTRICHLOROETHANE
264

TRIPHOSPHOPYRIDINE NUCLEOTIDE, REDUCED
166
UREDOSPORES 151
URIAC ACID 053 147
URIDINEDIPHOSPHATE GALACTOSE 4-EPIMERASE 081 300
URINE 175 176 177 213 249 250 346 347 348 350 351 352 367
URINE HORMONES 251
URINE SEDIMENTS 252
URINE STEROIDS 349
URONYCHIA 375
USNEA CERATINA 108
USNEA SUBMOLLIS 108
UTERINE HORMNS 178 179
UV RADIATION 353
VACCINES 011 295 296 353
VARICES 370
VASELINE OIL 131
VASOACTIVE DRUGS 065

IV=69
VEJOVIS SPINIGERUS 287
VENOM 278 287
VENTRICULAR ASSISTORS 333
VIBRIO 020
VIRAL INHIBITORS 213
VIRUS VACCINES 353
VIRUSES 098 180 181 297 298 354
VISCOSITY 052 066
WALLEYE 147
WATER ACTIVITY 290
WETTING AGENTS 113
WHEAT 364
WHEAT-LEAF PROTEIN 281
WHITE BANEBERRY 302
WOODCHUCK BLOOD 027
WYEOMYIA 361

IV-70
XYLOCAINE
227

YEAST
071 081 299 300 360

ZEPHIRAN CHLORIDE
345

2-P-DIOXANONE
304

2-PHENOXYETHANOL
338

2-PROPANOL
379

2,3-DIPHOSPHOGLYcerate
185 187 188 190 194

4-CHLORO-M-CRESOL
306

4-CHLORO-3,5-XYLENOL
306

8-HYDROXYQUINOLINE CITRATE
322 323
BIBLIOGRAPHY

* Ackerman, D. R. and Sod-Moriah DNA content of human spermatozoa after storage at low temperatures, J. Reprod. Fert., Vol. 17, 1-7 (1968)

Aitken, W. M., Wright, E. and Gray, H. S. Autoradiography of water-diffusible substances in sections of whole baby rats, Stain Technol., Vol. 43, No. 1, 1-7 (Jan. 1968)

Almond, D. and Valeri, C. R. Relationship between lipid fractions of erythrocytes and their in vivo survival following preservation with glycerol and the slow freeze technic, Transfusion, Vol. 7, No. 1, 10-16 (Jan.-Feb. 1967)

Anderson, N. G. Analytical techniques for cell fractions. XVIII. Use of cellulose wicks to monitor agglutination reactions, Anal.

Arnold, E. A., Young, D. E. and Stowell, R. E.
Protein synthesis in nuclei isolated from
frozen and thawed mouse liver, Exp. Cell Res.,
Vol. 52, 1-12 (1968)

* Arrighi, P. E., Bergendahl, J. and Mandel, M.
Isolation and characterization of DNA
from fixed cells and tissues, Exp. Cell
Res., Vol. 50, 47-53 (1968)

Art, G. P. and Finlayson, J. S. Stability
of immune serum globulin during storage;
Effects of prior heating, Vox Sang., Vol. 17,
No. 5, 419-33 (1969)

* Arthur, A. B. Intestinal disaccharidase
deficiency in children with coeliac disease,
Arch. Dis. Childhood, Vol. 41, 519-24
(1966)

Arundell, F. D. Pemphigus biopsies, Arch.
Dermatol., Vol. 98, 28-9 (July 1968)

** Asahina, E. Freezing process and injury
in isolated animal cells, Fed. Proc., Vol. 24,
1965)

Asahina, E. and Emura, M. Types of cell
freezing and the post-thawing survival of
mammalian ascites sarcoma cells, Cryobiology,

Ashida, M. and Ohnishi, E. Activation of
pre-phenol oxidase in hemolymph of the
silkworm, Bombyx mori, Arch. Biochem. Biophys.,
Vol. 122, 411-16 (1967)

AshwoodSmith, M. J. Low temperature preservation
of mouse lymphocytes with dimethyl sulfoxide,
USNRDL-TR-689, U. S. Naval Radiological
Defense Lab., San Francisco, Calif.,
Nov. 6, 1963 (AD 426,982)

** AshwoodSmith, M. J. The preservation of
bone marrow, Cryobiology, Vol. 1, No. 3,
61-3 (1964)

* AshwoodSmith, M. J. On the genetic stability
of bacteria to freezing and thawing,

** AshwoodSmith, M. J. Blood and bone marrow
preservation, Fed. Proc., Vol. 24, No. 2,
Part 3, Suppl. 15, S299-303 (Mar.-Apr. 1965)

** Association of Official Agricultural Chemists,
Official Methods of Analysis, Eleventh Edition,
Ass. of Official Agricultural Chemists,
Washington, D. C., 1970 (Sections on
Chemical Preservatives, pp 333-53; Disinfectants
pp 59-72)

* Atanasiu, L. Photosynthesis and respiration
of some lichens during winter, Rev. Roum.
(1969)

* Athreya, B. H., Coriell, L. L., Greene, A. E.
and Lehr, H. B. In vitro preservation
of functioning rabbit hearts in a depolarized
state at 4 deg. C., Cryobiology, Vol. 5,
No. 6, 403-9 (1969)

* Athreya, B. H., Grimes, E. L., Lehr, H. B.,
Greene, A. E. and Coriell, L. L. Differential
susceptibility of epithelial cells and fibro­
blasts of human skin to freeze injury; Report
on an improved method for storage of human
skin at -196 deg. C., Cryobiology, Vol. 5,
No. 4, 262-9 (1969a)

Atkins, R., Trimble, C. and Eiseman, B.
A countercurrent membrane oxygenator for
prolonged preservation of ex vivo organs,

Attai, L. A., Veith, F. J., Furman, S., Denize,
A., Boley, S. J., Robinson, G. and Gliedman, M. L.
Intracorporeal cadaver organ preservation by
mechanical ventricular assistance, Surg.

* Attai, L. A., Veith, F. J., Furman, S., Denize,
A., Boley, S. J., Robinson, G. and Gliedman,
M. L. Intracorporeal cadaver organ preservation by external mechanical ventricular
assistance, N. Y. State J. Med., Vol. 69,
2221 (Aug. 15, 1969)

Baicoianu, C. and Dimoftache, C. The quantitative evolution of the deoxyribonucleic acid in spermatozoa of sperm preserved by cold and freezing; Microspectrophotometric investigations, Zootec. Vet., Vol. 23, No. 3-4, 105-14 (1968)

Bakondy, T. T. and Osten, T. A. Embryonic organ cells in a state of preservation and methods for preserving the same, US 3,490,437, Jan. 20, 1970

** Baldini, M. G. Discussion on the current status of platelet preservation, Cryobiology, Vol. 5, No. 1, 49-57 (1968)

** Ballantyne Jr., D. L. and Converse, J. M. Structure and properties of skin and of its components from the point of view of

* Barner, H. B. Mannitol as an osmotic antagonist to dimethyl sulfoxide, Cryobiology, Vol. 1, No. 4, 292-4 (1965)

* Basso, A., Calne, R. Y. and Hopkinson, W. I.

Bateman, J. B. and White, F. E. Relative humidity and the killing of bacteria; The survival of Serratia marcescens dehydrated by concentrated glycerol and sucrose solutions, J. Bacteriol., Vol. 85, No. 4, 918-26 (Apr. 1963)

Bello, J. Convenient apparatus for protein hydrolysis and greaseless freeze-drying,
Belzer, F. O., Ashby, B. S. and Dunphy, J. E.

Belzer, F. O., Ashby, B. S., Huang, J. S. and Dunphy, J. E.

Belzer, F. O., Ashby, B. S. and Downes, G. L.

** Belzer, F. O.

* Belzer, F. O., May, R., Berry, M. N. and Lee, J. C.

* Belzer, F. O. and Kountz, S. I.
Preservation and transplantation of human cadaver kidneys

Benbassat, J.

Benedict, R. G., Corman, J., Sharpe, E. S.,
Kempe, C. E., Hall, H. H. and Jackson, R. W.
Preservation of microorganisms by freeze-drying. I. Cell supernatant, Naylor-Smith solution, and salts of various acids as stabilizers for Serratia marcescens, Appl. Microbiol., Vol. 6, 401-7 (1958)

Preservation of microorganisms by freeze-drying. II. The destructive action of oxygen; Additional stabilizers for Serratia marcescens; Experiments with other microorganisms, Appl. Microbiol., Vol. 9, 256-62 (1961)

V-10

Bernheim, F. A comparison between the effects of a surfactant (chenodeoxycholamine) and freezing and thawing on some properties of the membrane of Pseudomonas aeruginosa Can. J. Microbiol., Vol. 14, 281-6 (1968)

Biggs, R. Fractions rich in factor VIII, Bibl. Haematol., No. 29, Part 4, 1122-6 (1968)

Bilbrough, J. Food sterilization by micro-

* Bishop, C. Changes in the nucleotides of stored or incubated human blood, Transfusion, Vol. 1, 349-54 (1961)

Bishop, C. R. Comparative acidity of blood collected in ACD and CPD anticoagulant solutions, Vox Sang., Vol. 13, 107-9 (July 1967)

Bjorksten, J., Andrews, F. A., Ashman, S. M. and Poole, R. Protein alterations in erythrocytes at low temperatures, Final Rept. on Contr. Nonr-4086(00), Bjorksten Research Foundation, Madison, Wis., Feb. 28, 1965 (AD 458,593)

** Blumenstock, D. A. Transplantation of the lung, Transplantation, Vol. 5, No. 4, Part 2, 917-28 (1967)

* Bodansky, A. Phosphatase studies. II. Determination of serum phosphatase; Factors influencing the accuracy of the determination, J. Biol. Chem., Vol. 101, 93-104 (1933)

Bourgeois, C. and Hubbard, B. A method for the simultaneous demonstration of choline-containing phospholipids and neutral lipids in tissue sections, J. Histochem. Cytochem., Vol. 13, No. 7, 571-8 (1965)

Bowling, M. C. and Werteke, P. T. Selective staining of magnesium by titan yellow applied to incinerated tissue sections, Stain Technol., Vol. 41, No. 6, 329-31 (1966)

* Boyce, K. J. and Edgar, A. W. Production
of freeze-dried Brucella abortus strain
19 vaccine using cells produced by
continuous culture, J. Appl. Bacteriol.,
Vol. 29, No. 2, 401-8 (1966)

Boyd, I. and Bullock, K. Freeze-dried
preparations of Penicillium spinulosum,
J. Pharm. Pharmacol., Vol. 18, Suppl.,
28S-29S (1966)

Boyde, A. and Wood, C. Preparation of
animal tissues for surface-scanning
electron microscopy, J. Microsc., Vol. 90,
Part 3, 221-49 (Dec. 1969)

Boyde, A. and Barber, V. C. Freeze-drying
methods for the scanning electron-micro­
scopical study of the protozoon Spirostromum
ambiguum and the statocyst of the cephalopod
mollusc Loligo vulgaris, J. Cell Sci., Vol. 4,
223-39 (1969)

** Boyne, P. J. Review of the literature on
cryopreservation of bone, Cryobiology, Vol. 4,
No. 6, 341-57 (1968)

Boyne, P. J. and Yeager, J. E. An evaluation
of the osteogenic potential of frozen
Vol. 28, 764-71 (Nov. 1969)

Boyum, A. A one-stage procedure
for the isolation of granulocytes and
lymphocytes from human blood, Scand.
J. Clin. Lab. Invest., Vol. 21, Suppl. 97,
51-76 (1968)

Bradley, C., McNally, R. E., Roseman, D. and
Miller, A. Perfusion of isolated composite
skin flaps, Surg. Forum, Vol. 20, 514-16
(1969)

Braid, H. L., Hagerty, R. F. and Lee Jr.,
W. H. Preservation of cellular viability
of human cartilage at low temperature,
Transplantation, Vol. 4, No. 1, 94-9
(Jan. 1966)

* Brandow, E. C. Homograft tympanic membrane
transplant in myringoplasty, Trans. Amer.
Acad. Ophthalmol. Otolaryngol., Vol. 73,
* Brandt, T. and Stokstad, R. C. Hindering the decomposition of accumulated samples of urine, Nor. Mag. Laegev., Vol. 22, 456-66 (1924)

* Bromfield, K. R. Some uredospore character-

* Brown, B. L. and Nagle Jr., S. C. Preservation of mammalian cells in a chemically defined medium and dimethyl sulfoxide, Science, Vol. 149, 1266-7 (Sept. 10, 1965)

Brown, B. L., Nagle Jr., S. C., Lehman, J. D. and Rapp, C. D. Storage of Aedes aegypti and Aedes albopictus cells under liquid nitrogen, Cryobiology, Vol. 7, No. 4-6, 249-51 (1971)

** Brown, D. C. The application of cryogenic fluids to the freezing of foods, Advan. Cryog. Eng., Vol. 12, 11-22 (1967)

Burki, H. J. and Okada, S. Killing of cultured mammalian cells by radioactive decay of tritiated thymidine at -196 deg. C.,
** Burns, M. E. Cryobiology as viewed by the microbiologist, Cryobiology, Vol. 1, No. 1, 18-39 (1964)

Calcott, P. H. and Postgate, J. R. Protection of Aerobacter aerogenes by nonionic detergents from freezing and thawing damage, Cryobiology, Vol. 7, No. 4-6, 238-42 (1971)

Campbell, R. Further electron microscope studies of the conidium of Alternaria brassicicola, Arch. Mikrobiol., Vol. 69, 60-8 (1969)

** Caraway, W. T. Chemical and diagnostic specificity of laboratory tests; Effect of hemolysis, lipemia, anticoagulants, medications, contaminants, and other variables, Amer. J. Clin. Pathol., Vol. 37, No. 5, 445-64 (May 1962)

Cavanaugh, J. R. Suitability of insulated containers for transport of material with critical thermal tolerances to cold, AAL-TN-57-43, Arctic Aeromedical Lab., Fort Wainwright, Alaska, July 1957 (AD 221,550)

Chagnon, A., Couture, B. and Pavilanis, V. Some optimal conditions in freezing rabbit kidney cells for tissue cultures, Cryobiology, Vol. 4, No. 4, 197-9 (1968)

Chan, T. and Terriere, L. C. Aldrin epoxidase activity of rat liver and rat liver microsomes under various conditions of storage, Biochem. Pharmacol., Vol. 18, 1061-70 (1969)

Chanutin, A. Electrophoretic and phosphate analyses of hemolysates of stored blood, Final Rept. on Contr. DA-MD-193-63-G93, Biochemical Lab., University of Virginia, Charlottesville, Va., Mar. 31, 1964 (AD 430,615)

Chapman, D., Fluck, D. J., Penkett, S. A. and Shipley, G. G. Physical studies of

* Chomet, B. and Gach, B. M. Demonstration

Ciegler, A. An investigation of factors that may influence the recovery of freeze-dried Serratia marcescens, Interim Rept. 54, Chemical Corps, Biological Labs. Camp Detrick, Frederick, Md., Oct. 12, 1953 (AD 222,761)

Clark, J. D. Method and means for indicating product deterioration, US 2,671,028, Mar. 2, 1954

Clark, W. A. Comparison of several methods for preserving bacteriophages, Appl. Microbiol., Vol. 10, 466-71 (Sept. 1962)

Clarke, D. B. Perfusion techniques in the preservation of the isolated canine lung, Thorax, Vol. 24, 342-7 (May 1969)

Cleveland, P. H. and Schneider, C. W. A simple method of preserving ocular tissue for scanning electron microscopy, Vision Res., Vol. 9, No. 11, 1401-2
Cleveland, R. J. and Lower, R. R.

Clunie, G. J. A., Lindsey, E. S. and Heemtsma, K.

Cochrane, T.

Cohen, L.

* Cohen, P. and Wittels, B.

* Cohen, R. J., Gaines, S. and Blair, E.

** Collins, E. B.
Use of preservatives in milk and dairy products, J. Dairy Sci., Vol. 50, No. 4, 599-603 (Apr. 1967)

* Collins, G. M., Bravo-Shugarman, M., Novom, S. and Terasaki, P. I.

Collins, G. M., Bravo-Shugarman, M. and Terasaki, P. I.
Kidney preservation for transportation. II. A simple technique for 12-hour storage and air transport, Transplantation, Vol. 8, No. 6, 821-8 (Dec. 1969)

* Collins, G. M., Bravo-Shugarman, M. and Terasaki, P. I.

V-26

Coogan, P., Friese, J., Maganini, H. and Hass, G. M. Inhibition of growth of fibroblasts in vitro by ultrafiltrate of chick embryo extract, Lab. Invest., Vol. 18, No. 2, 139-42 (1968)

Coriell, L. L., Greene, A. E. and Silver, R. K. Historical development of cell and tissue culture freezing, Cryobiology, Vol. 1, No. 1, 72-9 (1964)

* Cornish, C. B. and Scott, P. J. Freeze dried heart valves as tympanic grafts, Arch. Otolaryngol., Vol. 88, 350-6 (Oct. 1968)

** Costello, D. P., Davidson, M. E., Eggers, A., Fox, M. H. and Henley, C. Methods for Obtaining
and Handling Marine Eggs and Embryos,
Marine Biological Laboratory, Woods Hole, Mass.,
1957 247pp.

* Couch, N. P., Cassie, G. F. and Murray, J. E.
Survival of the excised dog kidney perfused
in a pump-oxygenator system. I. Circulatory
changes in the hypothermic preparation,
Surgery, Vol. 44, 666-82 (1958)

* Cowley, C. W., Timson, W. J. and Sawdye,
J. A. Ultrarapid cooling techniques in
the freezing of biological materials,
Biodynamica, Vol. 8, No. 170, 317-29
(Dec. 1961)

* Cowman, R. A. and Speck, M. L. Low temperature
as an environmental stress on microbial
enzymes, Cryobiology, Vol. 5, No. 5, 291-9
(1969)

* Cox, C. S. Method for the routine
preservation of microorganisms, Nature,
Vol 220, 1139 (Dec. 14, 1968)

* Criddle, W. J., Moody, G. J. and Thomas,
J. D. R. Thin-film electrophoresis. Part
II. Freeze-drying of electropherograms,
J. Chromatogr., Vol. 18, 530-4 (1965)

Crosby, D. G. Natural toxicants in food,
pp 213-25, IN: Proceedings of the University
of Missouri's Annual Conference on Trace
Substances in Environmental Health, 1st,
Univ. of Missouri, July 10-11, 1967, Univ. of

Crosby, W. H., Williams, W. A. and Akeroyd, J. H.
Modification of standard plastic transfusion
pack to permit collection of plasma,
U. S. Armed Forces Med. J., Vol. 11, No. 2,
132-9 (1960)

Crosby, W. H. Frozen blood for a military
transfusion service, Mil. Med., Vol. 132,
119-21 (Feb. 1967)

Crowle, A. J. and Letcher, D. B. Tubercle
bacillary extracts immunogenic for mice.
VIII. Storge stability of trypsin-extracted
immunogen, Tubercle, Vol. 49, 304-9

Oamjanovic, V. and Radulovic, D. Predicting the stability of freeze-dried Lactobacillus bifidus by the accelerated storage test, Cryobiology, Vol. 5, No. 2, 101-4 (1968)

* Darrow, R. A. and Rodstrum, R. Purification and properties of uridine diphosphate galactose 4-epimerase from yeast, Biochemistry, Vol. 7, No. 5, 1645-54 (May 1968)

** Davies, D. F. Effects of freezing and thawing serum and plasma on selected quantitative recoveries, Cryobiology, Vol. 5, No. 1, 87-95 (1968)

* Davila, J. C., DeLaurentis, D. A., Molthan, L. and Winters, W. L. Homologous fresh-
frozen plasma as a priming fluid for clinical
cardiopulmonary bypass, Transfusion, Vol. 6,
379-88 (July-Aug. 1966)

* Davison, M. Stability of acid phosphatase
in frozen serum, Amer. J. Clin. Pathol.,
Vol. 23, 411 (1953)

* Dawe, A. R., Spurrier, W. A. and Armour,
J. A. Summer hibernation induced by
cryogenically preserved blood "trigger",

* Dawson, R. B. The control of hemoglobin
function in blood stored for transfusion
purposes, pp 231-42, IN: Hershey, D. (Ed.),
Proceedings of the International Symposium
on Blood Oxygenation, Univ. of Cincinnati,
1970

Dawson Jr, R. B., Kockolaty, W. F. and Shields, C.
The hemoglobin function of blood at 4 deg.
C., USAMRL-836, U. S. Army Medical Research
Lab., Fort Knox, Ky., Oct. 1969
(AD 701,884)

Dawson Jr., R. B., Kockolaty, W. F. The
control of hemoglobin function in blood
stored for transfusion purposes, USAMRL-856,
U. S. Army Medical Research Lab.,
Fort Knox, Ky., Feb. 1970 (AD 711,527)

Deal, P. H. Freeze-thaw behavior of a
moderately halophilic bacterium as a function
of salt concentration, Cryobiology, Vol. 7,
No. 2-3, 107-12 (1970)

* Dean, C. R., Hollenberg, M. D. and Hope,
D. B. The relationship between neurophysin
and the soluble proteins of pituitary
neurosecretory granules, Biochem. J., Vol. 104,
8c-10c (1967)

* Deanesly, R. Histological evolution of rat
gonadal tissue transplanted after freezing
and thawing, pp 86-99, IN: Wolstenholme, G. E. W.
and Cameron, M. P. (Eds.), A Ciba Foundation
Symposium on Preservation and Transplantation
of Normal Tissues, Ciba Foundation, London,
Mar. 16-18, 1953, Little, Brown and Co.,

DeLuca, P., Lachman, L. and Yost, W. Lyophilization of pharmaceuticals. II. Programming of a mathematical expression for estimating eutectic temperatures from melting point and solubility parameters, J. Pharm. Sci., Vol. 54, No. 9, 1348-53 (Sept. 1965)

* Dern, R. J., Brewer, G. J. and Wiorkowski, J. J. Studies on the preservation of human blood. II. The relationship of erythrocyte
adenosine triphosphate levels and other in vitro measures to red cell storageability, J. Lab. Clin. Med., Vol. 69, No. 6, 968-78 (June 1967)

Desjardins, P. R. and French, J. V. Storage of purified plant viruses in the unfrozen state free of microbial contamination, Experientia, Vol. 25, No. 4, 444-6 (1969)

Dewald, R. R. Kinetic studies on the destructive action of oxygen on lyophilized Serratia

** Diamond, L. S. Freeze-preservation of protozoa, Cryobiology, Vol. 1, No. 2, 95-102 (1964)

* Diamond, L. S., Bartgis, I. L. and Reardon, L. V. Virulence of Trichomonas vaginalis after freeze-preservation for 2 years in liquid nitrogen vapor, Cryobiology, Vol. 1, No. 4, 295-7 (1965)

** Doebbler, G. F. and Binfret, A. P. Rapid freezing of human blood; Physical and chemical considerations of injury and protection, Cryobiology, Vol. 1, No. 3, 205-11 (1965)

** Doebbler, G. F. Cryoprotective compounds; Review and discussion of structure and function, Cryobiology, Vol. 3, No. 1, 2-11 (1966)

** Dolan, M. F. The present status of organ freezing and possible future recourses, Cryobiology, Vol. 1, No. 3, 199-204 (1965)

* Doran, D. J. Freezing excysted coccidial sporozoites, J. Parasitol., Vol. 55, No. 6, 1229-33 (Dec. 1969)

Dowdy, E. G., Holland, W. C., Yamanaka, I. and Kaya, K. Cardioactive properties of d-tubocurarine with and without preservatives, Anesthesiology, Vol. 34, No. 3, 256-6 (1971)

* Drey, N. W. Preservation and analysis of
urine samples, US 2,652,314, Sept. 5, 1953

Ducker, T. B. and Hayes, G. J. Peripheral nerve grafts; Experimental studies in the dog and chimpanzee to define homograft limitations, J. Neurosurg., Vol. 32, 236-43 (Feb. 1970)

Eicher, E. M. An air-drying procedure for mammalian male meiotic chromosomes, following softening in gluconic acid and cell separation by an ethanol-acetic mixture, Stain Technol., V-36
Vol. 41, No. 6, 317-21 (1966)

* Ellis, J. J. and Roberson, J. A. Viability of fungus cultures preserved by lyophilization, Mycologia, Vol. 60, 399-405 (Mar.-Apr. 1968)

Elves, M. W. The mixed leucocyte reaction; Studies using leucocytes from unrelated human subjects, Vox Sang., Vol. 16, 81-96 (Feb. 1969)

Epstein, H. T. and Tousimis, A. J. A simplified

Ericsson, J. L. E. and Biberfeld, P. Studies on aldehyde fixation; Fixation rates and their relation to fine structure and some histochemical reactions in liver, Lab. Invest., Vol. 17, No. 3, 281-98 (1967)

** Evans, G. Dehydration of food, Chem. Ind.

Fellowes, O. N. Comparison of cryobiological and freeze-drying characteristics of foot and mouth disease virus and vesicular stomatitis virus, Cryobiology, Vol. 4, No. 5, 223-31 (1968)

Fellowes, O. N. Stability of purified foot and mouth disease virus after freeze-drying and storage, Cryobiology, Vol. 5, No. 3, 234-7 (1968)

** Fennema, O. An over-all view of low temperature food preservation, Cryobiology, Vol. 3, No. 3, 197-212 (1966)

* Fenton, B. H., Baume, P. E. and Piper, D. W. Cold stability of lactate dehydrogenase

* Fessenden, G. R. Preserving plant and animal tissue, US 2,658,836, Nov. 10, 1953

Fishbein, W. N. and Stowell, R. E. Studies on the mechanism of freezing damage to mouse liver using a mitochondrial enzyme assay. I. Temporal localization of the injury phase during slow freezing, Cryobiology, Vol. 4, No. 6, 283-9 (1968)

Fishbein, W. N. and Stowell, R. E. Studies on the mechanism of freezing damage to mouse liver using a mitochondrial enzyme assay. II. Comparison of slow and rapid cooling rates, Cryobiology, Vol. 6, No. 3, 227-34 (1969)

** Fraser, T. M. Storage of biological samples, NASA CR-781, Lovelace Foundation for Medical Education and Research, Albuquerque, N. Mex., 1967 (N67 25047)

Frost, R. S. A technique for cutting thin sections from solvent-substituted, paraffin-embedded tissues, Cryobiology, Vol. 1, No. 4, 261-9 (1965)

V-43
Fussell, C. P. Methyl green-pyronin as a stain for autoradiographs of plant material, Stain Technol., Vol. 41, No. 6, 315-6 (1966)

** General Electric Co., Missle and Space Division, Philadelphia, Pa., A study of the collection and preservation of biological specimens during space flight for post-flight analysis, Final Rept. on Contr. NASW-1562, 1967 (N67 39361)

Gheorghiu, I. Preservation of the properties of the hog cholera virus in virulent defibrinated blood treated with 0.3% phenol and buffered at 5.5 pH, Lucrarile Stiintifice, Vol. 4, 193-201 (1960) (Engl. Transl., JPRS-R-3090-D; AD 428,701)

Gibson, C. D. and Graham, E. F. The relationship between fertility and post-freeze motility of bull spermatozoa (by pellet freezing)
without glycerol, J. Reprod. Fert., Vol. 20, 155-7 (1969)

Gibson, J. G. The influence of population distribution on the metabolism and viability of the erythrocyte, Progr. Rept. 4 on Contr. DA-09-007-MD-610, Harvard Medical School, Boston Mass., July 1, 1960 (AD 246,304)

Gilchrist, G. S. and Ekert, H. Reduction of factor VIII activity in cryoprecipitate obtained from acidified plasma, Transfusion, Vol. 8, 294-8 (Sept.-Oct. 1968)

Gilman, E. N. and Wachter, R. F. Specificity in stabilizing suspensions of Rickettsia rickettsii, TM 188, U. S. Army Biological Labs., Fort Detrick, Pederick, Md., May 1965 (AD 464,213)

* Graham, E. F. and Pace, M. M. Some biochemical changes in spermatozoa due to freezing Cryobiology, Vol. 4, No. 2, 75-84 (1967)

Grand, N. G., Keane Jr., J. F., Bauer, W. H.

V-47

Greaves, R. I. N., Davies, J. D. and Steele, P. R. M. The freeze-drying of frost-sensitive organisms, Cryobiology, Vol. 3, No. 4, 283-7 (1967)

** Greaves, R. I. N. Serum-plasma preservation;

V-48
Historical review, Cryobiology, Vol. 5, No. 1, 76-86 (1968)

Greiff, D. and Rightsel, W. A. Stabilities of suspension of viruses after freezing or drying by vacuum sublimation and storage, Cryobiology, Vol. 3, No. 6, 432-44 (1967)

V-49
Greiff, D. and Seifert, P. Cryotolerance of selected sites on the surfaces of membranes of cells. I. Mucopolysaccharides of erythrocytes, Cryobiology, Vol. 4, No. 6, 295-302 (1968)

Greiff, D. and Mackey, S. Cryobiology of platelets. II. Effects of freezing and storage at low temperatures on the survival of isolated human blood platelets as measured by assays for aminopeptidases, Cryobiology, Vol. 7, No. 1, 9-13 (1970)

** Gresham, R. B. Freeze-drying of human tissue for clinical use, Cryobiology, Vol. 1, No. 2, 150-6 (1964)

V-50

Gruft, H., Clark, M. E. and Osterhout, M. Preservation of mycobacterial cultures, Appl. Microbiol., Vol. 16, No. 2, 355-7 (Feb. 1968)

Guttman, P. M., Khalesi, A., Huxley, B. W., Lee, R. and Savard, G. Whole organ preserva-
tion. I. A technique for in vivo freezing canine intestine using intraarterial helium and ambient nitrogen, Cryobiology, Vol. 6, No. 1, 32-6 (1969)

Guttman, F. M., Khalessi, A. and Berdnikoff, G. Whole organ preservation. II. A study of the protective effect of glycerol, dimethyl sulfoxide, and both combined while freezing canine intestine employing an in vivo technique, Cryobiology, Vol. 6, No. 4, 339-46 (1970)

Guttmann, R. D. and Perry, V. P. Acquired tolerance to homografts induced with dimethyl sulfoxide-protected and frozen splenic cells, Cryobiology, Vol. 1, No. 3, 212-6 (1965)

Harris Jr., G. C. and Sweeney, M. J. Changes in the protein concentration of chicken seminal plasma after rapid freeze-thaw, Cryobiology, Vol. 7, No. 4-6, 209-15 (1971)

Hayashi, M., Shirahama, T. and Cohen, A. S. Combined cytochemical and electron microscopic demonstration of B-glucuronidase

* Hayden, P. R. Embalming material and method (Michel and Pelton Co.), US 3,249,502, May 3, 1966

Heckly, R. J. Preparation of spherical pellets of dried bacteria by isodensity freezing, Cryobiology, Vol. 2, No. 3, 139-42 (1965)

Heckly, R. J., Dimmick, R. L. and Guard, N. Studies on survival of bacteria; Rhythmic response of microorganisms to freeze-drying additives, Appl. Microbiol., Vol. 15, No. 5, 1235-9 (Sept. 1967)

Heckly, R. J. and Dimmick, R. L. Correlations between free radical production and viability of lyophilized bacteria, Appl. Microbiol., Vol. 16, No. 7, 1081-5 (July 1968)

* Herbert, W. J., Lunsden, W. H. R. and French,

Hoefle, F. B. Human corneal donor material, Arch. Ophthalmol., Vol. 82, 361-7 (Sept. 1969)

HolmHansen, O. Factors affecting the viability of lyophilized algae, Cryobiology, Vol. 4, No. 1, 17-23 (1967)

1969)

* Huggins, C. E. Frozen blood; Clinical experience, Surgery, Vol. 60, No. 1, 77-84 (July 1966)

Humphries Jr., A. L., Russell, R., Christopher, P. E., Goodrich, S. M., Stoddard, L. D.

**Hurn, B. A. L. Storage of Blood, Academic

** Hutton, B. S. and Foster, E. M. Drying and stabilization of bacteria, Final Rept. on Contr. DA-18-064-404-CML-27, Univ. of Wisconsin, Madison, Wis., Aug. 31, 1956 (AD 222,882)

Hwang, S. W. and Howells, A. Investigation of ultra-low temperature for fungal cultures. II. Cryoprotection afforded by glycerol and dimethyl sulfoxide to 8 selected fungal cultures, Mycologia, Vol. 60, No. 3, 622-6 (1968)

V-60

** International Atomic Energy Agency and the Food and Agriculture Organization of the U. N. Proceedings of a Panel on the Preservation of Fruit and Vegetables by Radiation, Vienna,

Iwaguchi, T. and Sakurai, Y. Peritoneal bleeding in normal rat induced by lyophilized powder of tumor cells, Gann, Vol. 61, 89-91 (Feb. 1970)

Jacob, S. W. Studies in organ preservation by actual freezing and reduction of the freezing point, Cryobiology, Vol. 1, No. 2, 176-80 (1964)

Janigan, D. T. Tissue enzyme fixation studies. I. The effects of aldehyde fixation on B-glucuronidase, B-galactosidase, N-acetyl-B-glucosaminidase, and B-glucosidase in tissue

V-62
blocks, Lab. Invest., Vol. 13, No. 9, 1038-50 (1964)

Jiranek, L. Comparison of the protective effect of a number of substances in the preservation of mammalian tissue cultures by freezing, Folia Biol. (Prague), Vol. 12, No. 4, 291-8 (1966)

Joffe, P. Preserving flowers and foliage, US 2,464,512, Mar. 15, 1949

* Kaplan, C. and Turner, G. S. Removal of encephalitogenicity from extracts of normal rabbit central nervous system by treatment with fluorocarbon, Nature,

Karow Jr., A. M., Carrier Jr., O. and Holland, W. C. Toxicity of high dimethyl sulfoxide concentrations in rat heart freezing, Cryobiology, Vol. 3, No. 6, 464-8 (1967)

** Karow Jr., A. M. Biological effects of cryoprotectants as related to cardiac cryopreservation, Cryobiology, Vol. 5, No. 6, 429-43 (1969a)

Kato, K., Hayashi, M. and Kamikubo, T. Isolation
of 5,6-dimethylbenzimidazolyl, cobamide coenzyme as a cofactor for glutamate formation from Acetobacter suboxydans, Biochim. Biophys. Acta, Vol. 165, 233-7 (1968)

Keane Jr., J. F. Comparative efficiency of some compounds containing the amido group in protecting tissues against freezing injury, Biodynamica, Vol. 7, No. 142, 157-69 (Dec. 1953)

Kempe, L. L. Determination of radiation sterilization dose for canned meat, Prog. Rept. on Contr. DA-19-129-QM-964, Univ. of Michigan Research Institute, Ann Arbor Mich., Nov. 30, 1959 (AD 239,540)

Kempe, L. L. Determination of radiation sterilization dose for canned meat, Final Rept. on Contr. DA-19-129-QM-964 Univ. of Michigan, Medical School, Ann Arbor
Mich., Nov. 30, 1959 (AD 240,112)

Keogh, B. P. Survival and activity of frozen starter cultures for cheese manufacture, Appl. Microbiol., Vol. 19, No. 6, 928-31 (June 1970)

Khan, A. W. Cryochemistry of animal tissue; Biochemical changes in poultry muscle during freezing and storage, Cryobiology, Vol. 3, No. 3, 224-9 (1966)

Klebanoff, G. and Phillips, J. Temporary suspension of animation using total body perfusion and hypothermia; A preliminary

* Kline, I. and Trapani, R. J. The freezing and preservation of animal tumors, Cryobiology, Vol. 1, No. 2, 130-9 (1964)

Kocan, K. M., Kelker, N. E. and Clark, D. T. Freeze-preservation of Leucocytozoon simondi
sporozoites in liquid nitrogen, J. Protozool., Vol. 14, No. 4, 724-6 (1967)

Koehler, J. K. and Johnson, L. K. Food supply as a factor in the survival of frozen and thawed rotifers, Cryobiology, Vol. 5, No. 6, 375-8 (1969)

* Kormano, M. Pharmaco-microangiography; An
experimental technique, Radiology, Vol. 95, No. 3, 694-6 (1970)

Kovaric, J. J. and Hamit, H. F. The use of fresh blood to correct coagulation defects associated with trauma and shock, Mil. Med., Vol. 133, No. 7, 534-7 (July 1968)

Krijnen, H. W., DeWit, J. J., Kuivenhoven, A. C. and Reyden, G. V. D. Freezing of red cells with liquid nitrogen. I. Results with glycerol as an intracellular substance, Bibl. Haematol., No. 23, 683-6 (1965)

V-70

Kushida, H. Glycol methacrylate as a dehydrating agent for embedding with polyester and epoxy resins, J. Electron Microsc., Vol. 13, No. 4, 200-3 (1964)

Lachman, L., DeLuca, P. P. and Withnell, R. Lyophilization of pharmaceuticals. II. High sensitivity resistance bridge for low-conductivity measurements at eutectic temperatures,
Lachman, L. The instability of antimicrobial preservatives, Bull Parenteral Drug Ass., Vol. 22, 127-44 (May-June 1968)

* Lapchinsky, A. G., Lebedeva, N. C. and Einhorn,

Lea, C. H. and Hawke, J. C. Lipovitellin. II. The influence of water on the stability of lipovitellin and the effects of freezing
and of drying, Biochem. J., Vol. 52, 105-14 (1952)

Leibo, S. P. and Mazur, P. Freezing of bacteriophage T4; Temperature and rate effects as a function of salt concentration,

Leighton Jr., A. T., Carte, I. F., Potter, L. M., Coleman, J. W. and Beane, W. L. The effects of storage temperature, storage time and dietary vitamin E on the fertilizing capacity and physiological characteristics of undiluted turkey semen, Poultry Sci., Vol. 47, No. 6, 1797-1806 (Nov. 1968)

Levin, E. and Worsham, E. M. Simultaneous defatting and dehydrating of fatty substances, US 2,539,544, Jan. 30, 1951

Levin, E. Drying and defatting tissue, US 2,619,425, Nov. 25, 1952

Levinson, W. Inactivation of Newcastle disease virus by freezing in the presence of guanidine hydrochloride, Virology, Vol. 27, 559-65 (1965)
** Levitt, J. Cryobiology as viewed by the botanist, Cryobiology, Vol. 1, No. 1, 11-17 (1964)

Lightfoot, R. J. and Salamon, S. Freezing ram spermatozoa by the pellet method. II. The effects of method of dilution, dilution rate, glycerol concentration, and duration of storage at 5 deg. C. prior to freezing on survival of spermatozoa, Aust. J. Biol. Sci., Vol. 22, 1547-60 (1969)

W-76

V-77

Lionetti, F. J. and McKay, J. Effect of adenine on volume and metabolism of erythrocytes preserved at 37 deg. C., Final Rept. on Contr. DADA17-68-6-9261, Brown University, Providence, R. I., Dec. 1969 (AD 698,032)

Little, A. D., Inc., San Francisco, Calif., Development of expendable liner centrifuge and solution flow control system for glycerolization and deglycerolization of red blood cells, Final Rept. on Contr. Nonr-3414(00), Aug. 1963 (AD 418,358)

Lund, D. B., Fennema, O. and Powrie, W. D.
Rotation apparatus for shell-freezing,
Cryobiology, Vol. 5, No. 1, 26-8 (1968)

Luscombe, M. Decrease in coenzyme I content
of spleen after freezing, Nature, Vol. 185,
No. 4714, 691-2 (Mar. 5, 1960)

Lusena, C. V. Preparation of dried native
whole wheat gluten, Cereal Chem., Vol. 27, 167-78
(1950)

Lusena, C. V. and Dass, C. M. S. Structural
changes associated with the release of enzymes
from rat-liver mitochondria by freezing,

** Lutz, E. Handbook of Plastic Embedding,

** Luyet, B. J. and Gehenio, P. M. Life and
Death at Low Temperature, Biodynamica, Normandy,
Miss., 1940 341pp.

Luyet, B. and Gonzales, F. Protective action
of glycerol against freezing injury in
embryonic tissues of chick, Biodynamica,
Vol. 7, No. 137, 101-6 (Dec. 1952)

Luyet, B. J. and Keane Jr., J. F. Comparative
efficiency of ethylene glycol, glucose,
and sodium chloride in protecting tissues
against freezing injury, Biodynamica, Vol. 7,
119-31 (Dec. 1952)

* Luyet, B. A method for increasing the
cooling rate in refrigeration by immersion
in liquid nitrogen or in other boiling
baths, Biodynamica, Vol. 8, No. 171,
331-52 (Dec. 1961)

** Luyet, B. J. Attempt at correlating some
of the extant data on low-temperature
preservation of various cells, Fed. Proc.,
Vol. 24, No. 2, Part 3, Suppl. 15, S315-22
(Mar.-Apr. 1965)

Luyet, B. Resumption of rhythmic pulsations
in small pieces of frog hearts after freezing
in liquid nitrogen, Biodynamica, Vol. 10,
No. 213, 211-7 (Dec. 1968)

Lyon Jr., L. N. Method for dehydrating grain, US 2,561,442, July 24, 1951

* MacKenzie, A. P. and Luyet, B. J. Freeze-drying and protein denaturation in

* Marousky, F. J. Conditioning gladiolus spikes to maintenance of fresh weight with pre-treatment of 8-hydroxyquinoline citrate

MartinezSilva, R., Lopez, V. A. and Chiriboga, J. Preservation of Trypanosoma cruzi in tissue culture at liquid nitrogen temperatures, Cryobiology, Vol. 6, No. 4, 364-7 (1970)

* Marymount, J. H. and Smith, J. P. Topics in microbiology; The use of liquid

Mathison, G. E. An autoradiographic technique for the detection of cystine and peptides containing cystine or its derivatives in keratin digests, Mycopathol. Mycol. Appl., Vol. 27, No. 3-4, 225-32 (1965)

* McDaniel, L. E. and Bailey, E. G. Liquid nitrogen preservation of standard inoculum;
Gas-phase storage, Appl. Microbiol., Vol. 16, No. 6, 912-16 (June 1968)

Meade, R. E. Method of drying lacteal fluids, (Western Condensing Co.), US 2,661,294, Dec. 1, 1953

Meeteva, G. and Symes, M. O. A method for
the storage of human blood lymphocytes,
Folia Biol. (Prague), Vol. 15, No. 6,
478-9 (1969)

Melnick, J. L. Preservation of viruses by
freezing, Fed. Proc., Vol. 24, No. 2, Part 3,
Suppl. 15, S280-3 (Mar.-Apr. 1965)

Melnick, P. J. Effect of freezing rates
on the histochemical identification of enzyme
Suppl. 15, S259-68 (Mar.-Apr. 1965)

Melpar, Inc., Falls Church, Va., Investigation
of the interactions between gases and
freeze-dried bacterial and viral spores,
Progr. Rept. on Contr. DA-18-064-AMC-312-(A),
Jan. 15, 1965 (AD 457,623)

* Menguy, R., Masters, Y. F. and Manzi, J.
Characterization and partial purification
of sialogastrone, Surgery, Vol. 62, No. 5,
891-8 (Nov. 1967)

Meredith, P. A dry-ice trap for small-scale
freeze drying, Lab. Pract., Vol. 13, No. 2,
124 (1964)

Meryman, H. T. Sublimation freeze-drying
without vacuum, Science, Vol. 130, 628-9
(Sept. 11, 1959)

** Meryman, H. T. Preservation of living
cells, Fed. Proc., Vol. 22, No. 1,
81-9 (Jan.-Feb. 1963)

** Meryman, H. T. Preservation of blood by
freezing; A review, Cryobiology, Vol. 1,
No. 1, 52-6 (1964)

** Meryman, H. T. The interpretation of freezing
rates in biological materials, Cryobiology,
Vol. 2, No. 4, 165-70 (1966)

Meryman, H. T. Experimental investigation
of the mechanism by which freezing or drying
and associated effects affect living cells,
NHRI-022-J0, Naval Medical Research Institute,
Bethesda, Md., June 14, 1966 (N66-32441)

** Meryman, H. T. Observations on the present
state of blood preservation by freezing, Cryobiology, Vol. 5, No. 2, 144-6 (1968)

Meryman, H. T. Absence of unfrozen freezable water in rapidly frozen red cells, Cryobiology Vol. 7, No. 4-6, 252-5 (1971)

Mieny, C. J. and Eiseman, B. Liver preservation; Unperfused cold storage and continuous cold perfusion, Surgery, Vol. 63, No. 6, 923-8 (June 1968)

* Mohr, W. P. and Stein, M. Effect of different freeze-thaw regimes on ice formation and ultrastructural changes in tomato fruit parenchyma tissue, Cryobiology, Vol. 6, No. 1, 15-31 (1969)

* Moline, S. W. and Glenner, G. G. Ultrarapid tissue freezing in liquid nitrogen, J. Histochem. Cytochem., Vol. 12, 777-83 (1964)

* Morichi, T., Irie, R., Yano, N. and Kembo,

** Morrison, F. S. Preservation of blood platelets; Current methods, Cryobiology, Vol. 5, No. 1, 29-41 (1968)

* Mourad, N. Effect of prolonged storage on erythrocyte enzymes, Transfusion, Vol. 9,

Nath, J. and Patt, Jr., J. Biochemical changes associated with freezing in ram semen, Cryobiology, Vol. 6, No. 6, 522-8 (1970)

Naval Research Office, Dept. of the Navy, Bibliography on saliva, ONR Rept. ACR-48, Mar. 1960

Nei, T. Electron microscopic study of microorganisms subjected to freezing and drying; Cinematographic observations of yeast and coli cells, Exp. Cell Res., Vol. 28, 560-75 (1962)

** Nei, T. Freezing and freeze-drying of microorganisms, Cryobiology, Vol. 1, No. 1, 87-93 (1964)

Nei, T., Souzu, H. and Araki, T. Effect of residual moisture content of the survival of freeze-dried bacteria during storage under various conditions, Cryobiology, Vol. 2, No. 5, 276-9 (1966)

Nei, T. Mechanism of hemolysis of erythrocytes by freezing at near-zero temperatures. I. Microscopic observations of hemolyzing erythrocytes during the freezing and thawing process, Cryobiology, Vol. 4, No. 3, 153-6 (1967)

Nei, T. Mechanism of hemolysis of erythrocytes by freezing at near-zero temperatures. II. Investigations of factors affecting hemolysis by freezing, Cryobiology, Vol. 4, No. 6, 303-8 (1968)

* Neimark, H. Glutaraldehyde-fixed erythrocytes

V-95

Nyrop, J. E. Method of drying, concentrating by evaporation, or distilling heat-sensitive substances, US 2,585,825, Feb. 12, 1952

ODell, G. D. and Hurst, V. The effect of glycerol equilibration time on the freezing of bovine spermatozoa in egg yolk-sodium citrate and skim milk semen extenders, J. Dairy Sci., Vol. 39, 1156-60 (1956)

Olsson, C. A., Bauditz, W., Kiser, W. S.,

Orlando, M. M. and Panuska, J. A. Cardiovascular and respiratory function of hypothermic rabbits, as influenced by dimethyl sulfoxide, Cryobiology, Vol. 7, No. 4-6, 216-22 (1971)

** Pappas, A. M. Current methods of bone storage
by freezing and freeze-drying, Cryobiology, Vol. 4, No. 6, 358-75 (1968)

Pearson, B., Standen, A. C. and Esterly, J. R. The histochemical demonstration of \(\beta \)-\(\text{D-} \) glucuronidase in the reticuloendothelial system, Experientia, Vol. 23, 954-5 (1967)

* Pegg, D. E. Freezing of bone marrow for clinical use, Cryobiology, Vol. 1, No. 1, 64-71 (1964)

* Perry, V. P., Kerby, C. C., Kowalski, F. J. and Malinin, T. I. The freezing of human kidney cell suspensions, Cryobiology, Vol. 1, No. 4, 274-84 (1965)

** Perry, V. P. Description of current tissue bank methods of skin preservation, Cryobiology, Vol. 3, No. 2, 178-91 (1968a)

Persidsky, M. D., Richards, V. and Leef, J.
Cryopreservation of bone marrow with low
molecular weight polyvinylpyrrolidone,

Persidsky, M. D., Richards, V. and Leef, J.
Volume changes in bone marrow and Ehrlich
ascites cells after freezing as an index
of preservation efficiency, Cryobiology,

Pert, J. H., Schork, P. K. and Moore, R.
Low-temperature preservation of human
erthrocytes; Biochemical and clinical aspects,
Bibl. Haematol., No. 19, 47-53 (1964)

Pert, J. H., Moore, R. and Schork, P. K.
Low-temperature preservation of human
erthrocytes, Bibl. Haematol. No. 20,
674-82 (1965)

* Pert, J. H. and Schork, P. K. Low temperature
preservation of red cells using the fast
freezing method and low glycerol in plastic
containers, pp 168-75, IN: Spielmann, W. and
Seidl, S. (Eds.), International Symposium
on Modern Problems of Blood Preservation,
Johann Wolfgang Goethe Univ., Mar. 17-18, 1969,
Fischer Verlag, Stuttgart, 1970

Petajan, J. H., Vogwill, M. T. and Murray, M. B.
Plasma creatine phosphokinase changes induced
by freezing injury and adaptation to cold
J. Appl. Physiol., Vol. 27, No. 4, 528-30
(Oct. 1969)

* Petersen, B. and Vik-mo, L. Determination
of digestibility and metabolizable energy
in pure'fats and discussion of analytical
methods employed in experiments with
growing chickens, Acta Agr. Scand., Vol. 18,
No. 1-2, 42-8 (1968)

* Peterson, J. I., Wagner, F., Siegel, S. and
Nixon, W. A system for convenient combustion
preparation of tritiated biological samples
for scintillation analysis, Anal. Biochem.,
Vol. 31, 189-203 (1969)

Peterson Jr, W. D. and Stulberg, C. S. Freeze
preservation of cultured animal cells,
V-102
Cryobiology, Vol. 1, No. 1, 80-6 (1964)

Pickett, B. W. and Komarek, R. J. Effect of cold shock and freezing on loss of lipid from spermatozoa, J. Dairy Sci., Vol. 50, No. 5, 753-7 (May 1967)

Poisson, J. and Cahagnier, B. Action of moderate preliminary heating on the gamma ray sensitivity of mould spores, Food

*Pool, J. G. The effect of several variables on cryoprecipitated factor VIII (AHG) concentrates, Transfusion, Vol. 7, 165-7 (May-June 1967)

Price, L. K. Simple freeze-dry method for
fungal cultures, Lab. Pract., Vol. 19, 388

* Price, P. J., Bray, V. F. and Freeman, A. E. Short-term storage in dry ice of tissue culture cells previously stored in liquid nitrogen vapor, Cryobiology, Vol. 4, No. 5, 237-9 (1968)

** Purvis, M. J., Collier, D. C. and Walls, D., Laboratory Techniques in Botany, Butterworths,
** Pyle, H. M. Glycerol preservation of red blood cells, Cryobiology, Vol. 1, No. 1, 57-60 (1964)

Rahn, R. O. and Hosszu, J. L. Photoproduction formation in DNA at low temperatures, Photochem. Photobiol., Vol. 8, 53-63 (1968)

Ramachandran, N. and Kumar, K. S. V. Characterization of phosvitin from hen egg yolk, Indian J. Biochem., Vol. 4, 210-11 (Dec. 1967)

Rapatz, G. and Luyet, B. On the instability of frozen glycerol solutions stored at various low temperatures, Biodynamica, Vol. 10, No. 205, 81-93 (Oct. 1967)

Rapatz, G., Sullivan, J. J. and Luyet, B. Preservation of erythrocytes in blood containing various cryoprotective agents, frozen at various rates and brought to a given final temperature, Cryobiology, Vol. 5, No. 1, 18-25 (1968)

* Rapatz, G. Some problems associated with the freezing of hearts, Cryobiology, Vol. 7,

** Reeve, R. M. and Brown, M. S. Some structural and histochemical changes related to frozen fruits and vegetables, Cryobiology,
Vol. 3, No. 3, 214-23 (1966)

Vol. 26, No. 3, 396-405 (Sept. 1968)

Rickles, N. H., Bennett, J. S. and Hiller, M. A.
The individual effects of liquid nitrogen and freeze-dry storage on several dehydrogenase reactions in tissue sections, Cryobiology, Vol. 2, No. 4, 219-222 (1966)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood.
IV. Installation of processing center for experimental freezing and thawing of blood at the Buffalo General Hospital, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Dec. 15, 1960 (AD 286,747)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood.
III. Engineering and biological factors in the development of a process to preserve blood by freezing and thawing, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Dec. 15, 1960 (AD 286,746)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood.
II. In vivo determination of red cell survival in rabbits using consecutive tagging with chromium-51, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., July, 1, 1960 (AD 286,745)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood,
Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Apr. 25, 1960 (AD 286,744)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood.
VI. A basic engineering study of the freezing and thawing process, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Apr. 1, 1961
Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. VII. Red cell damage and protection during freezing and thawing; A basic biological and chemical study of mechanisms, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., July 1, 1961 (AD 286,751)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. IX. Study of methods for the determination of in vivo survival of preserved red cells, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Aug. 1, 1961 (AD 286,752)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. VII. Design and development of an integrated unit for processing blood at low temperature-model BPU-1, Progr. Rept. on Contr. Nonor-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Apr. 1, 1961 (AD 286,750)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. V. Red cell viability studies in man and rabbits using blood frozen with glucose and lactose-glucose as protective additives, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Apr. 1, 1961 (AD 286,748)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. XI. Development and clinical evaluation of processes for the low temperature preservation of blood based on rapid cooling and warming and protection by polymers, Progr.
Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., July 1, 1962 (AD 286,754)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. XIV. Biological studies in animals of the properties and functionality of rapidly frozen blood and erythrocytes, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Nov. 30, 1963 (AD 427,993)

Rinfret, A. P. Research on procedures for the low-temperature preservation of blood. XVII. Freeze thaw damage as a function of cell age using Fe59 labeled human and rabbit erythrocytes, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Jan. 16, 1964 (AD 428,211)

Rinfret, A. P. Development of procedures for the low-temperature preservation of blood. XIX. Process II studies, Progr. Rept. on Contr. Nonr-3003(00), Union Carbide Corp., Linde Division, Tonawanda, N. Y., Mar. 6, 1964 (AD 433,663)

* Ringer, S. Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle, J. Physiol., Vol. 3, 380-90 (1882)

Rob, C. The sterilization and preservation of homologous arterial segments, with special reference to the heart valves, Surgery, Vol. 63, No. 5, 875-6 (May 1968)

** Robertson, R. D. and Jacob, S. W. The preservation of intact organs, Advan. Surg., Vol. 3, 75-159 (1968)

* Ross, D. J. Effects of storage on dehydro-

** Roth, N. G., Symons, J. J., Cohen, D. and Wheaton, R. B. Human waste collection and storage during aerospace flight, AMRL-TDR-64-3, Aerospace Medical Research Labs., Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB, Ohio, Feb. 1964 (AD 433, 574)

Ruddell, C. L. Hydroxyethyl methacrylate combined with polyethylene glycol 400 and water; An embedding medium for routine 1-2 micron sectioning, Stain Technol., Vol. 42, No. 3, 119-23 (1967)

* Rudolf, L. E. and Mandel, S. Supercooling, intermittent perfusion, and high pressure oxygen in whole organ preservation, Transplantation, Vol. 5, No. 4, Part 2, 1159-66 (1967)

* Runck, A. H., Valeri, C. R. and Sampson, W. T. Comparison of the effects of ionic
and non-ionic solutions on the volume and intracellular potassium of frozen and non-frozen human red cells, Transfusion, Vol. 8, No. 1, 9-18 (Jan.-Feb. 1968)

Salamon, S. Deep freezing of ram semen;

V-117
Recovery of spermatozoa after pelleting and comparison with other methods of freezing,

Salamon, S. and Lightfoot, R. J. Freezing ram spermatozoa by the pellet method. I.
The effect of diluent compositions on survival of spermatozoa, Aust. J. Biol. Sci.,

* Salamon, S. The survival of ram spermatozoa following pellet freezing below -79 deg. C.,

Salisbury, G. W. Aging phenomena in spermatozoa.
III. Effect of season and storage at -79 deg. to -88 deg. C. on fertility and prenatal

* Sanderson, A. H. Tissue typing in man,

Sands, M. P., Nelson, R. J., Mohri, H. and
Merendino, K. A. The procurement and
preparation of aortic valve homografts,

Sandstrom, B. and Westman, J. Non-freezing
light-and electron microscopic enzyme histo­
chemistry by means of polyethylene glycol

* Sanfilippo, A. and Lewin, R. A. Preserva­
tion of viable flexibacteria at low temper­
atures, Can. J. Microbiol., Vol. 16, No. 6,
441-4 (June 1970)

* Saravacos, G. D. Freeze-drying using molecular sieve
adsorbents, Food Technol., Vol. 21, 187-206
(Feb. 1967)

Saroff, J. and Minner, J. P. The relationship
of egg yolk and glycerol content of diluters
and glycerol equilibration time to survival
of bull spermatozoa after low temperature
freezing, J. Dairy Sci., Vol. 38, 292-7
(1955)

Sato, T., Aoki, N. and Asada, T. Preparation

Schiff, R., Quinn, L. Y. and Bryan, J. H. D. A safranin-east green stain for the differentiation of the nuclei of rumen protozoa, Stain Technol., Vol. 42, No. 2, 75-80 (1967)

Schneider, M. D. and Shefner, A. M. Extended low-temperature storage of a highly lethal Plasmodium berghei strain, Amer. J. Vet.

Schopf Ebner, E., Gross, W. O. and Bucher, O. M. Pulsatile activity of isolated heart muscle cells after freezing storage, Cryobiology, Vol. 4, No. 4, 200-3 (1968)

* Schutz, L. and Mora, P. T. Growth of mouse fibroblasts in the presence of irradiated and lyophilized monolayers of the same type of cells, J. Cell. Physiol., Vol. 71, 7-16 (Feb. 1968)

Sell, K. W. and Dupree, E. Recent advances in tissue banking, NAVMED-MR005.02-0010A-2, Naval Medical Research Institute, Bethesda, Md., 1967 (AD 695,563)

Sell, K. W., Abbott, W. M. and Dupree Jr., E. L. The role of organ preservation in transplantation, NAVMED-M4305.03-3004-5, Naval Medical Research Institute, Bethesda, Md., 1968 (AD 691,522)

Shanker, R. Effect of temperature and humidity on the survival of infective-stage juveniles

* Sherman, J. K. Pretreatment with protective substances as a factor in freeze-thaw survival, Cryobiology, Vol. 1, No. 4, 298-300 (1965)

Shields, C. E. Comparison studies of whole blood stored in ACD and CDP and with adenine, Transfusion, Vol. 8, No. 1, 1-8 (Jan.-Feb. 1968)

* Shields, C. E. Effect of adenine on stored erythrocytes evaluated by autologous and homologous transfusions, Transfusion, Vol. 9, No. 3, 115-19 (May-June 1969)

Shields, C. E. Studies on stored liquid whole blood. III. Evaluation of plastic collection containers, USAMRL-833, U. S. Army Medical Research Lab., Fort Knox,
Shields, C. E. and Bunn, H. F. Clinical evaluation of transfused blood after long-term storage in ACD with adenine, USAMRL-808, U. S. Army Medical Research Lab., Fort Knox, Ky., Apr. 1969 (AD 692,286)

** Shohet, S. B. and Mohler, W. C. Low temperature preservation of chronic myelogenous leukemia cells, Cryobiology, Vol. 4, No. 2, 47-60 (1967)

** Simatos, D. and Rey, L. Freeze-drying of biologic materials, Fed. Proc., Vol. 24,
Simon, E. M., Stahl, K. L. and Wilson, J. B.
Preservation by freeze-drying and the stability
of virulence of Salmonella typhimurium,
Appl. Microbiol., Vol. 11, No. 4, 371-6
(July 1963)

Simon, E. R. and Finch, C. A.
Erythrocyte
preservation and metabolism, Progr. Rept. on Contr.
DA-49-007-MD-508, Univ. of Washington
School of Medicine, Seattle, Wash.,
Apr. 1, 1961 (AD 255,166)

Singer, L. and Armstrong, W. D.
Total fluoride
content of human serum, Arch. Oral Biol.,
Vol. 14, 1343-7 (1969)

Singh, L. N., Sengupta, B. P. and Rawat, J. S.
Studies on certain chemical constituents
of buffalo semen, Indian J. Anim. Sci.,

* Singleton, E. F.
Field collection and
preservation of bovine semen for arti­
ficial insemination, Aust. Vet. J.,

Sinskey, T. J., Silverman, G. J. and Goldblith,
S. A.
Influence of platen temperatures
and relative humidity during storage on
the survival of freeze-dried Salmonella
typhimurium, Appl. Microbiol., Vol. 15,
No. 1, 22-30 (Jan. 1967)

* Sinskey, T. J. and Silverman, G. J.
Characterization of injury incurred by
Escherichia coli upon freeze-drying,
(Feb. 1970)

Siska, K., Holec, V., Fedele, M., Siegelhoffer,
A., Slezk, J., Styk, J., Petras, J. and
Tregerova, V.
Investigation of heterotopically
transplanted dog hearts after preservation,
Transplantation, Vol. 9, No. 2, 93-109
(Feb. 1970)

Siska, K., Holec, V., Fedele, M., Ziegelhoffer,
A., Slezk, J., Styk, J., Petras, J. and
Tregerova, V.
Investigation of heterotopically

V-124
transplanted dog hearts after preservation,
(1970)

Skeel, R. T., Yankee, R. A., Spivak, W. A.,
Novikovs, L. and Henderson, E. S. Leukocyte
preservation. I. Phagocytic stimulation
of the hexose monophosphate shunt as a
Med., Vol. 73, No. 2, 327-37 (Feb. 1969)

Preservation and transplantation of dog
organs maintained in vivo for 24 hours by
mechanical ventricular assistance, J. Surg.
Res., Vol. 10, No. 6, 253-64 (June 1970)

* Slapak, M., Wigmore, R. A. and MacLean, L. D.
Twenty-four hour liver preservation by the
use of continuous pulsatile perfusion and
hyperbaric oxygen, Transplantation, Vol. 5,
No. 4, Part 2, 1154-8 (1967)

* Slater, T. F. Oxidized and reduced nicotinamide-
adene dinucleotide phosphate in tissue
suspension of rat liver, Biochem. J.,
Vol. 104, 833-42 (1967)

Sloviter, H. A. Mechanism of haemolysis
caused by freezing and its prevention,

* Small, E. B. and Marszalek, D. S. Scanning
electron microscopy of fixed, frozen and
dried protozoa, Science, Vol. 163, 1064-5
(Mar. 7, 1969)

* Smith, A. U. The use of glycerol for
preservation of living cells at low
Vol. 47, 57-60 (1954)

* Smith, A. U. and Parkes, A. S. Storage and
homografting of endocrine tissues, pp 76-85,
In: Wolstenholme, G. E. W. and Cameron, M. P.
(Eds.), A Ciba Foundation Symposium on Preservation
and Transplantation of Normal Tissues, Ciba
Foundation, London, Mar. 16-18, 1953, Little,
Brown and Co., Boston, 1954a

** Smith, A. U. Biological Effects of Freezing

V-125

Vol. 21, No. 3, 419-27 (1969)

** Spacelabs, Inc., Van Nuys, Calif., biological specimen storage for extended space missions, SN67-1043, Oct. 1, 1967 (N68 10277)

Spriggs, T. L. B., Lever, J. D., Rees, P. M. and Graham, J. D. P. Controlled formaldehyde-catecholamine condensation in cryostat sections to show adrenergic nerves by fluorescence, Stain Technol., Vol. 41, No. 6, 323-7 (1966)

Stamp, L. The preservation of bacteria by

V-127

Steele, P. R. M., Davies, J. D. and Greaves, R. I. N. Some factors affecting the viability of freeze-thawed T4 bacteriophage, J. Hyg., Vol. 67, 679-90 (1969)

Steinbach, J. and Poote, R. H. Osmotic pressure
and pH effects on survival of frozen bovine spermatozoa, J. Dairy Sci., Vol. 50, No. 2, 205-13 (Feb. 1967)

Stewart, G. J. and Turner, H. M. Ultrastructural characteristics and behavior of previously frozen, glycerolated, and deglycerolated human red blood cells, Cryobiology, Vol. 4, No. 4, 189-96 (1968)

Stewart, R. H. and Wright, D. N. Storage of meningococcal and streptococcal L-forms, Cryobiology, Vol. 6, No. 6, 529-32 (1970)

* Strohal, P., Lulic, S. and Jelisavcic, O.

Strumia, M. M. Preservation of red cells in the frozen state with the aid of sugars and macromolecular additives; Effect of lactose dextran and albumin on recovery and survival of frozen red cells, Progr. Rept. 55 on Contr. DA-49-193-MD-2084, John S. Sharpe Research Foundation, Bryn Mawr Hospital, Bryn Mawr, Pa., June 30, 1964 (AD 602,233)

* Strumia, M. M., Strumia, P. V. and Eusebi, A. J. The preservation of blood for transfusion. VII. Effect of adenine and inosine on the adenosine triphosphate and viability of red cells when added to blood stored from zero to seventy days at 1 deg. C., J. Lab. Clin. Med., Vol. 75, No. 2, 244-9 (Feb. 1970)

** Strumia, P. V. Platelet preservation, Cryobiology, Vol. 5, No. 1, 58-9 (1968)

Strumia, P. V. and Strumia, M. M. Preservation of blood in acid-citrate-dextrose anticoagulant solution for more than twenty-one days, Amer. J. Clin. Pathol., Vol. 52, No. 6, 671-8 (1969)

Stumpf, W. E. and Roth, L. J. Freeze-drying of small tissue samples and thin frozen
sections below -60 deg. C.; A simple method of cryosorption pumping, J. Histochem. Cytochem., Vol. 15, No. 4, 243-51 (Apr. 1967)

Sugiura, K., Tortolani, A. J. and Sargent, M. G. Viability of various solid and ascites tumors after prolonged storage at -79 deg. C., Cryobiology, Vol. 4, No. 4, 177-83 (1968)

Sun, S. C., Cooper, W. C., Gershon, R. K. and Fresh, J. W. Liver disease survey on Taiwan, Arch. Pathol., Vol. 79, 619-26 (June 1965)

** Sunderman, F. W., MacFate, R. P., Evans, G. T. and Fuller, J. B. Symposium on blood glucose, Amer. J. Clin. Pathol., Vol. 21, 901-34 (1951)

Swartz, H. M. Effect of oxygen on freezing damage. I. Effect on survival of Escherichia coli B/r and Escherichia coli Bs-1, Cryobiology, Vol. 6, No. 6, 546-51 (1970)

Taylor, W. D. and Snipes, W. Enhancement

V-132

* Thomas, R. S. A convenient specimen carrier for use with the quartz-fiber fishpole microbalance, Mikrochim. Acta, Vol. 6, 831-4 (1959)

Thurston, R. J. and Harris Jr., G. C. Calcium-45 uptake as a measurement of freeze-thaw injury to chicken spermatozoa in the presence or absence of cryopreservatives, Cryobiology,

Tissue Culture Bibliography, Microbiological Associates, Bethesda, Md., (Periodical 1960 to date)

*Tompsett, S. L. and Smith, D. C. The preservation of urine intended for the determination of corticosteroids, Acta Endocrinol., Vol. 20, 310 (1955)

*Truman, J. W. Acetone treatment for preserva-
tion of adult and larval mosquitoes, Ann. Entomol. Soc. Amer., Vol. 61, 779-80 (May 1968)

Trump, B. F., Goldblatt, P. J., Griffin, C. C., Waravdekar, V. S. and Stowell, R. E. Effects of freezing and thawing on the ultrastructure of mouse hepatic parenchymal cells, Lab. Invest., Vol. 13, No. 9, 967-1002 (Sept. 1964)

** Tullis, J. L. and Lionetti, F. J. Preservation of blood by freezing, Anesthesiology, Vol. 27, No. 4, 483-93 (1966)

* Tullis, J. L., Eberle II, W. G., Baudanza, P. and Tinch, R. Platelet-pheresis; Description of a new technique, Transfusion, Vol. 8, No. 3, 154-64 (May-June 1968)

* Tullis, J. L., Gibson II, J. G., Sproul, M. T.,

Turchini, J. P. and Malet, P. Long conservation of histoenzymatic activities of fresh tissues in glycerol, J. Histochem. Cytochem., Vol. 13, No. 5, 405-6 (1965)

Turk, A. Laboratory apparatus for the control of vapors, US 3,288,566, Nov. 29, 1966

Turner, M. D., Pitts, H. R. and Turner, A. C. Respiratory changes in isolated perfused rat kidneys after freeze-thaw and hypothermic storage, Cryobiology, Vol. 4, No. 3, 140-6 (1967)

Turner, M. D. and Alican, F. Successful 20-hour storage of the canine liver by continuous hypothermic perfusion, Cryobiology, Vol. 6, No. 4, 293-301 (1970)

Valeri, C. R. and McCallum, L. The age of human erythrocytes lost during freezing and thawing with glycerol using the Cohn fractionator, Transfusion, Vol. 5, No. 5, 421-6 (Sept.–Oct. 1965)

Valeri, C. R., McCallum, L. E. and Danon, D. Relationships between in vivo survival and (1) density distribution, (2) osmotic fragility of previously frozen, autologous, deglycerolized erythrocytes, Transfusion, Vol. 6, No. 6, 554-64 (Nov.-Dec. 1966)

Valeri, C. R. Observations on the chromium labelling of ACD-stored and previously frozen red cells, Transfusion, Vol. 8, No. 4, 210-19 (July-Aug. 1968)

Valeri, C. R., Brodine, C. E. and Moss, G. E.

* Valeri, C. R. and Runck, A. H. Long term frozen storage of human red blood cells; Studies in vivo and in vitro of autologous red blood cells preserved up to six years with high concentrations of glycerol, Transfusion, Vol. 9, No. 1, 5-14 (Jan.-Feb. 1969a)

VanDerSchaaf, A. A stable antigen for the tube agglutination test in chronic swine erysipelas, Amer. J. Vet. Res., Vol. 29, No. 1, 205-7 (Jan. 1968)

VanDyke, K., Stitzel, R., McClellan, T. and Szustkiewicz, C. An automated procedure

* VanGelder, N. M. Hydrazinopropionic acid; A new inhibitor of aminouutyrate transaminase and glutamate decarboxylase, J. Neurochem., Vol. 15, 747-57 (1968)

VanHulle, G., Fennema, O. and Powrie, W. D. Apparatus for transferring and freezing tissue under high pressure, Cryobiology, Vol. 4, No. 6, 329-32 (1968)

VeraCruz, N. C., Loe, J. R. and Graves, C. N. End products of bovine spermatozoan metabolism
as influenced by incubation diluent and temperature, J. Dairy Sci., Vol. 50, No. 4, 558-61 (Apr. 1967)

* Vos, O. and Kaelen, A. C. Prevention of freezing damage to proliferating cells in tissue culture, Cryobiology, Vol. 1, No. 4, 249-60 (1965)

Wajntal, A. and DeMars, R. A tetrazolium method for distinguishing between cultured human fibroblasts having either normal or deficient levels of glucose-6-phosphate dehydrogenase, Biochem. Genet., Vol. 1 61-4 (1967)

* Walford, R. L., Sowa, M. and Daley, D.

* Walford, R. L., Sowa, M. and Daley, D.

Walker, J. S., Lincoln, R. E. and Weirether, F. J.

Walker, R. W.
Cis-11-heaxadecenoic acid from Cytophaga hutchinsonii lipids, Lipids, Vol. 4, No. 1, 15-18 (1969)

Wallis, C. and Melnick, J. L.

Walwick, E. R., Brady, J. T. and Kay, R. E.
Evaluation of T3 coliphage injuries and efficacy of selected materials in preventing them, Appl. Microbiol., Vol. 15, No. 4, 885-92 (July 1967)

* Waravdekar, V. S., Goldblatt, P. J., Trump, B. F., Griffin, C. C. and Stowell, R. E.
Effect of freezing and thawing on certain nuclear and mitochondrial enzymes of mouse liver, J. Histochem. Cytochem., Vol. 12, No. 7, 498-503 (1964)

Ward, B. Q.
Isolations of organisms related to Vibrio parahemolyticus from American estuarine sediments, Appl. Microbiol., Vol. 16, No. 3, 543-6 (May 1968)

Ward, M. J., Van Zyl, J. J., Groenewald, J. H. and Murphy, G. F.

** Ward, T. G.
Methods of storage and preservation of animal viruses, pp 481-9, IN: Maramorosch, K. and Koprowski, H. (Eds.), Methods in

* Ways, P. O. Degradation of glycerophosphatidies during storage of saline-washed, saline-

V-143
suspended red cells at -20 deg. C., J. Lipid Res., Vol. 8, 518-21 (Sept. 1967)

Weichselbaum, T. E. Hemolyzing composition, (Brunswick Corp.), US 3,446,751, May 27, 1969

Weichselbaum, T. E. Tissue infiltrant, (Brunswick Corp.), US 3,527,863, Sept. 8, 1970

** Weinstein, R. S. and Someda, K. The freeze-cleave approach to the ultrastructure of frozen tissues, Cryobiology, Vol. 4, No. 3, 116-29 (1967)

Wellman, A. M. Penicillin titer after storage of Penicillium chrysogenum by liquid nitrogen refrigeration, Cryobiology, Vol. 7, No. 4-6, 259-62 (1971)

Wenzelberger, E. P. Method of dehydration by freezing, (Commonwealth Engineering Co.), US 2,735,779, Feb. 21, 1956

Whitaker, A. M. Growth and maintenance of dog kidney cell cultures, Brit. J. Exp.

Wilson, W. J. The preparation and properties of cryoprecipitate and its use in the

Wirth, H., Daniel, E. E. and Carroll, P. M.

Wodinsky, I., Meaney, F. and Kensler, C. J.
The strain specificity of transplantable neoplasms after freezing and storage in liquid nitrogen, Cryobiology, Vol. 2, No. 1, 44-6 (1965)

Wodinsky, I., Meaney, F. and Kensler, C. J.

Wodinsky, I., Foley, C. and Kensler, C. J.
Spleen colony studies of leukemia L1210. VI. Quantitation of the surviving population of frozen-thawed L1210 cells using the spleen colony assay, Cryobiology, Vol. 4, No. 6, 333-6 (1968)

Wolf, K., Quimby, M. C. and Carlson, C. P.

** Wolstenholme, G. E. W. and O'Connor, M. **

* Woolfrey, B. F. Radio autographic evaluation of freeze-thaw buffers using nucleic acid and glycine-related synthetic systems in vitro, Lab. Invest., Vol. 13, No. 6, 581-6 (1964)

V-148
Yassen, A. M. and Foote, R. H. Freezeability of bovine spermatozoa in tris-buffered yolk extenders containing different levels of tris, sodium, potassium and calcium ions, J. Dairy Sci., Vol. 50, No. 6, 887-92 (June 1967)

Yassen, A. M. and Foote, R. H. Relationship of ion concentration to the critical temperatures during freezing of bull spermatozoa, J. Dairy Sci., Vol. 50, No. 6, 893-5 (June 1967)

Yassen, A. M. and Foote, R. H. Freezeability of bull semen in centrifuged or dialyzed and reconstituted buffered egg yolk extenders, J. Dairy Sci., Vol. 50, 1481-5 (Sept. 1967)

Yiamouyiannis, J. A. and Dain, J. A. The appearance of ganglioside during embryological development of the frog, J. Neurochem., Vol. 15, 673-6 (1968)

Zagury, D., Model, P. G. and Pappas, G. D. The preservation of the fine structure of cryostat-sectioned tissue with dimethylsulfoxide for combined light and electron microscopy, J. Histochem. Cytochem., Vol. 16, No. 1, 40-8 (1968)

Zamudio, I., Cellino, M. and Canessa-Fisher, M.

* Zimmerman, L. Survival of Serratia marcescens after freeze-drying or aerolization at unfavorable humidity, J. Bacteriol., Vol. 84, No. 6, 1297-1302 (Dec. 1962)
