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FOREWORD

This final report describes the work accomplished by the Aerojet Liquid

Rocket Company, Sacramento, California, under Contract NAS 7-733. The work on

this "Bipropellant Shut-off Valve" program was performed during the period

from 20 June 1969 to 1 June 1971. The contract was sponsored by the National

Aeronautics and Space Administration. The NASA Project Manager was

Mr. Frank W. Stephenson, NASA Headquarters, Washington, D.C. and the NASA

Technical Manager was Mr. W. F. MacGlashan Jr., Jet Propulsion Laboratory,

Pasadena, California.

The author wishes to acknowledge the significant technical support con-

tributed by the following ALRC personnel:

Design: Messrs. R. Fieweger and F. M. Henson

Materials Analysis: Mr. J. W. Chung

Stress Analysis: Messrs. A. T. Caffo and J. E. Dever

Test: Messrs. B. 0. Bordenkircher and C. R. Grossman
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I. INTRODUCTION

The basic objective of this valve program was to provide an advanced

design of an all metal, fast response, bipropellaht, shut-off valve for use on

long duration space missions. The valve is to provide the flow control capa-

bility for a 1,000 Ib thrust, bipropellant engine using oxygen difluoride

(OF ) and diborane (B?H,) as the propellants. The program consisted.of a

series of tasks starting with valve concept evaluations. After concept selec-

tion, the valve was designed, fabricated, and tested under various conditions.

The initial 4 tasks of this program provided a valve design that was fabri-

cated and tested. Subsequent tasks involved redesign to improve specific

functional characteristics, fabrication, and testing to confirm the performance

of the valve.

Task 1 consisted of analysis of various valve elements and preparation

of conceptual designs for a bipropellant valve assembly, Task 2 was the

detailed design of the valve and preparation of component drawings. Task 3

included fabrication of hardware and preliminary testing to verify performance

and identify problem areas. Task 4 was the documentation of work performed in

Tasks 1, 2, and 3. Task 6, valve improvement, was directed toward improving

the actuator guide arrangement and testing to confirm performance of the modi-

fied designss Tasks 7 and 8 included propellant flow cycling using liquid

fluorine (LF ) and documentation of the program results. Task 5, development

of an all metal, fast response pilot valve, was deleted to allow the addition

of the propellant flow testing.

The results of Tasks 1, 2, and 3 have previously been reported in detail

in Report 7-733-11 dated 15 December 1970. Section III of this report provides

an abbreviated version of the information in that report which is necessary for

understanding the subsequent work. The remainder of this report is devoted to

the valve improvement and propellant flow test efforts.
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II. SUMMARY

The approach to the preliminary valve design concepts was to establish

basic design criteria and to evaluate different options for basic elements of

the valve assembly. The preferred valve concept resulting from the evaluation

was a 250 psig helium actuated, angle mounted, parallel poppet valve as shown

on Figure 1.

The shutoff seal selection is a soft-on-hard metal concept. The soft

seal is a spherical shell that seats, against a hard conical seat. Beryllium

copper (BeCu) and beryllium nickel (BeNi) seals were selected to seal against

an electrolyzed Inconel 718 seat. Poppet shaft sealing is achieved by use of

hydroformed, Inconel 718 bellows. The actuator also uses a hydroformed,

Inconel 718 bellows. Other design considerations such as travel limiting,

lead-lag capability, poppet guiding, and the actuator drive arrangement were

established to be compatible with the selected primary elements and the

desired valve assembly envelope.

Two valve assemblies were fabricated and subjected to a series of tests

including leak, response time, flow capacity, dry cycles, water cycles, liquid

nitrogen (LN ) cycles, liquid fluorine (LF ) cycles, and lead-lag operation

cycles. These tests demonstrated the ability of the valve to meet design goals

as shown below.

Parameter

Internal Leakage

External Leakage

Pressure Drop

Travel Time

Operating Temperature

Design Goal

-4
1.75 x 10 sec/sec

GHe at 200 psig

1 x 10~ sec/sec GHe

25 psid, max

0.005 to 0.015

open and close

-230 to +100°F

Demonstrated

4.68 x 10 sec/sec; BeNi

4.98 x 10~ sec/sec; BeCu

1 x 10 sec/sec

10.3 psid

0.004 to 0.015 sec open

0.007 to 0.015 sec close

-320 to +75°F
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II, Summary (cont.)

Dry cycle tests with lead-lag pintle settings proved that target leak

rates and response times could be achieved with either the fuel or oxidizer

pintle leading up to 50%.

1 i

A water cycle test proved the capability of the valve for 1,000 cycles

of fast response operation. The beryllium nickel shutoff seal leakage after

1,000 cycles was 5 x 10 sec/sec and the beryllium copper seal leakage was
-4

25 x 10 sec/sec.

The LN_ and LF_ cycle tests demonstrated the functional capability of

the valve at low temperatures and with a highly reactive propellant. The

design goals for leakage and response time were achieved at low temperatures.

This program demonstrated the ability of an all-metal valve to meet

extremely low leakage and fast travel time requirements. Additional work

should be directed toward a compatible pilot valve, confirmation of the ability

to meet all anticipated operating environments, and investigation of options

to expand capabilities of the basic design to other applications.

III. BACKGROUND

The work performed on valve element evaluation, design studies, detailed

design and initial testing has been reported in detail in Report 7-733-11

titled "Bipropellant Shut-off Valve", dated 15 December 1970. This section

provides a summary of this work for familiarization with the valve concept and

to aid understanding of the subsequent valve improvement work.

The objective of the program was to provide an all metal bipropellant

valve design to meet the final design criteria shown on Table I. The approach

to this effort was to evaluate valve elements, combine them in different ways,
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III, Background (cont.)

select a concept, fabricate hardware, and perform tests to verify the capabil-

ities of the design.

A. DESIGN STUDIES

Initial design studies were directed toward evaluation and selec-

tion of primary elements of the valve. The general approach to these element

evaluations was to define the element function, determine candidates, determine

the relative merits of each, and to select a preferred approach. The degree of

evaluation varied considerably. In some instances a superficial examination

effectively narrowed the choices. In other areas, a parametric and interaction

study was used to aid selections.

1. Main Shut-off Concept

Primary consideration was given to mechanical elements.

Approaches such as freezing and special electrical effects were not considered

compatible with functional and system requirements. Within the general frame-

work of mechanical elements, approaches such as a poppet, ball, butterfly,

spool, plug, and gate are candidates. Valve size, allowable leak rate, cyclic

life, and the all-metal requirement were governing factors in the selection of

a poppet. Concepts such as the ball, butterfly, plug, and gate require a

large amount of relative sliding between the seal and the moving element.

This condition is not conducive to low leak rates and long life with metal

seals. There are ways of eliminating this problem by seal lift-off but the

lift-off mechanism complicates the design and results in larger valve envelopes.

Also, in the relatively small size valve required, the pressure drop advantages

of other elements such as the ball and butterfly are lost. Another factor is

actuation. In general, the poppet can be actuated by less complex arrangements

than the other elements. Based on these factors, a poppet was selected as the

shut-off element.
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III, A, Design Studies (cont.)

2. Shut-off Seal

With a poppet shut-off element, the basic decisions for seal

selection relate to materials and configuration.

The two basic approaches to metal-to-raetal sealing are a soft

metal sealing against a hard metal (soft-on-hard) or a hard metal sealing

against another hard metal (hard-on-hard). The soft-on-hard approach depends

on plastic deformation of the softer metal to establish intimate contact along

the sealing interface. The hard-on-hard is more dependent upon fine surface

finishes and excellent alignment between the contacting surfaces to achieve

sealing with primarily elastic deformation.

The leak rate to be achieved influences the selection. With

either approach, seal load must be increased to obtain a lower leak rate but

the relative magnitude of the required load is a heavily weighted factor.

The design requirement of zero liquid leakage was established

in terms of equivalent helium leakage to aid comparison of the two approaches.

Using information present in JPL Technical Report 32-926 entitled "Basic

Criteria and Definitions for Zero Fluid Leakage", equivalent gaseous helium

leak rates at 200 psi were calculated. The equivalent helium leak rate was
-4 -4

3.4 x 10 sec/sec for the fuel and 1.75 x 10 sec/sec for the oxidizer. The
-4

more severe value of 1.75 x 10 was used for evaluation.

Using the equations shown on Figure 2, required seal loads

for various materials, hardness conditions, surface finishes, seal contact

interface widths, and contact angles were calculated. There are assumptions

inherent in the calculations so that the values cannot be treated as precise;

however, experience has shown the accuracy on leak rate to be within one order
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III, A, Design Studies (cont.)

of magnitude when compared to experimental results. The primary value of these

calculated results is to provide a basis for comparison. With equations and

assumptions consistently applied, the results reflect a valid comparison between

alternatives.

Based upon the seal load analysis, a soft-on-hard material

combination was selected. This selection was influenced primarily by consid-
-4

eration of required load to achieve the target leak rate of 1.75 x 10 sec/sec

GHe and the available valve envelope. The configuration selected was a spheri-

cal soft metal seal contacting a conical hard metal seat as shown on Figure 3.

This arrangement also involved trade-offs between required valve poppet load

and wear life. The conical seat with a seat angle of 20° produces a signifi-

cant mechanical load advantage, but produces some relative motion between the

seal and seat during initial opening and final closing travel. Prior ALRC

experience with this seal-seat configuration indicated a life of 1,000 cycles

should be attainable; therefore, the load advantage of the angle seat was

retained.

3. Poppet Shaft Seal

Metal sealing allows consideration of a sliding seal ring,

diaphragm, torque tube, or bellows. The desired external leak rate of 1 x 10"̂

sec/sec, maximum stroke length of 0.225-in., and envelope restraints effec-

tively narrowed the candidates to a bellows.

Other options with respect to the bellows relate to bellows

location and method of fabrication. The shaft bellows could be located either

upstream or downstream from the poppet shut-off seal. The downstream location

was selected to minimize any long term (10 years) propellant compatibility

effects and to avoid pressure spike effects that may be produced by fluid
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III, A, Design Studies (cont.)

hammer during rapid closing of the valve. The candidate methods of fabrication

included welded, hydroformed, and machined. The hydroformed bellows was

selected as being more reliable, more easily cleaned, and less expensive than

the other candidates.

4. Actuation-

Selection of the best method for valve actuation is dependent

upon many factors, some valve-dependent and some system-dependent. The only

response criteria defined for the valve was travel time. The desired pintle

travel time was 0.005 sec to 0.015 sec. Criteria for response time from signal

to start of travel or for. response time repeatability were not defined.

a. Type of Actuation

The many potential types of actuators must be evaluated

for use in this valve application. Advanced concepts such as the use of high

thermal expansion elastic type materials or phase change metals have short-

comings with regard to load, stroke length, and response time.

Along more conventional lines, candidates include pro-

pellant actuation, use of a separate hydraulic system, direct electrical, and

pneumatic actuation. A separate hydraulic system would not be a serious candi-

date unless there are other on-board controls that could use the same system.

Even allowing this possibility, the cryogenic propellants would cause problems

for conventional hydraulic fluids because of freezing and high reactivity in

the event of leakage. This approach is not competitive.

Propellant actuation has advantages in some applications

but is not considered a desirable alternate for this valve. There are poten-

tial problems with fluid venting, system bleed-in, density changes, varying
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III, A, Design Studies (cont.)

actuation pressure, and fuel freezing if the fuel were selected for actuation.

Use of the oxidizer for actuation would have the same problems as above with

the substitution of a materials compatibility problem instead of a freezing

problem. Other approaches are more attractive.

Direct electrical actuation is generally considered a

prime candidate for small valves on long duration space missions. The primary

concerns with electrical actuation were size, weight, and electrical power

required to obtain the 0.005 sec travel time with the relatively high valve

poppet load. Preliminary calculations showed approaches such as solenoids and

torque motors to be uncompetitive. An electromechanical concept using a DC

motor, gear train, and clutches may be feasible. Evaluation of sub-component

trade-offs and optimization about a specific design point would be required to

define this type of actuator.

Pneumatic actuation offers several attractive advantages

for an on-off valve such as an available supply of gas, linear actuation to

match linear valve travel, relative insensitivity to temperature changes, non-

corrosive actuation fluid, low electrical power demands, and great latitude on

force and response with a basic' actuator size. The major disadvantages of

pneumatic actuation are in the areas of delay times and response repeatability.

For this application, there are no criteria defined for delay times and overall

repeatability; therefore, a pneumatic actuation concept is selected.

b. Pneumatic Actuation Concepts

There are many options within the broad scope of pneu-

matic actuation. GN or helium at either high or low pressure could be used.

An on-board gas supply or a separate reservoir could be used. Also, there are

options relating to whether the actuator is single-acting, dual-acting con-

stant area, or dual-acting differential area.
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III, A, Design Studies (cont.)

Evaluation of these options is based more upon system

and mission considerations than on factors such as size and weight. Comparison

of a separate gas supply versus an on-board supply must consider the mission.

For a 10-year mission with a separate supply, a reliable gas isolation device

is needed. This means a separate isolation valve or a leak free, highly reli-

able pilot valve is required. If a blowdown mode is used, valve delay and

travel times will vary. For constant pressure, a regulator would have to be

added. In view of these factors, pneumatic actuation loses much appeal unless

there is an on-board supply of gas. The selection is to use an on-board

supply.

Selection of an on-board supply makes the gas selection

a simple one. Since helium gas will be supplied for propellant tank pressuri-

zation, helium will also be used for actuation.

Evaluation of high-pressure vs low-pressure actuation

requires both system and valve envelope considerations. High-pressure gas

allows use of a smaller actuator and pilot valve. However, this advantage is

not really great. Since the valve may have to operate toward the end of the

mission, the high-pressure supply at that time will not be much higher than

regulated pressure. Actuator sizing will have to be based upon the end of

mission requirements; therefore, the actuator size advantage will be quite

small. The size advantage is weighed against the need for a high-pressure,

leak-free pilot valve. At the start of the mission, the pilot valve may have

to handle pressures in the range of 3,000 to 5,000 psi. With helium, this is

a definite problem. Considering the relative merits, use of low-pressure

helium is preferred. There is an added advantage in this approach in that a

constant pressure will be available.

A single-acting piston for opening with spring force

closing is the preferred arrangement for this valve. With spring loaded closing,
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III, A, Design Studies (cont.)

the valve will seal without having actuation pressure available. This simpli-

fies functional and leak checks. Also, with this arrangement a three-way pilot

valve can be used. The use of dual-acting pistons is not considered to offer

any definite advantages while having disadvantages of an added leak path during

coast periods and the requirement for a four-way valve for the dual-acting

equal area approach. If the number of actuations were high, then total gas

consumption would be a factor; however, for the present anticipated mission

requirements of 5 to 10 cycles, gas consumption is not a significant factor.

B. VALVE DESCRIPTION AND OPERATION

During the conceptual design work, five designs were prepared.

The selected concept is as shown on Figure 4. Figure 5 shows an exploded view

of the hardware. This design was preferred primarily on the basis of the

simple actuator and drive arrangement as compared to other concepts. The

materials used for the major valve subcomponents are shown on Table II.

The following is a brief description of the valve and how it oper-

ates. A more detailed description of critical elements is contained in

Report 7-733-11.

Propellant shut-off and sealing is achieved by a beryllium copper

or beryllium nickel spherical seal which is loaded against an electrolyzed

Inconel 718 angled seat. Basic sealing force is provided by helical springs

that act directly on each poppet. Additional sealing force is obtained from

the upstream pressure acting on the flexible seal. The poppet shafts are

sealed by hydroformed Inconel 718 bellows which are welded to the poppet shaft

on one end and to a body insert on the other end. The end of each poppet shaft

has a threaded cap which retains spacer shims to obtain the desired lead-lag

relationship. The actuator uses a bellows. , '
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III, B, Valve Description and Operation (cont.)

assembly which is internally pressurized. One end of the actuator bellows is

welded to a piston that has two legs for guiding travel. The other end of the

bellows is welded to a plate that is subsequently welded to the actuator cover.

Position indication is provided by rotary potentiometers which are driven by

racks attached to the poppet spring retainers.

The key subcomponent of the valve is the shut-off seal. The

selected configuration is a scaled down version of an ALRC spherical seal which

has been successfully fabricated and tested in sizes ranging from 1-1/16 to

2-1/2 in. contact diameters. This seal as shown in Figure 3, consists of a

thin, spherical, metal shell seated in a conical seat that is machined as an

integral part of the valve body. In operation, the shut-off seal contacts and

centers itself upon the valve seat as the valve closes. Then, the poppet

travels a slight distance further until the poppet stop bottoms against a

shoulder in the body. This additional travel between initial seal-seat con-

tact and bottoming against the stop serves two functions. The seal deflection

provides the load necessary to prevent leakage and a slight wiping or lapping

action between the seat and seal produces the necessary microscopic conforma-

tion of the two sealing surfaces.

Operation of the valve is as follows. With the valve closed, the

springs and propellant inlet pressure effect the shut-off sealing. An electri-

cal signal to a normally closed, three-way, pilot valve causes the pilot valve

to shuttle thereby admitting gas pressure to the actuator bellows assembly.

The pressure force in the actuator overcomes the spring and inlet pressure

forces acting on the poppet and the oxidizer poppet lifts off the seat. As

the oxidizer poppet moves open, at some point the actuator piston contacts the

fuel poppet shaft and unseats the fuel poppet. Travel of both poppets continues

until the actuator piston bottoms against a body stop. For closing, the pro-

cedure is reversed. The pilot valve is de-energized to vent the actuator. The
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III, B, Valve Description and Operation (cont.)

helical springs then close the valve, moving the poppets until the poppet stop

contacts a shoulder in the body. By proper selection of the poppet end nuts

and shims, simultaneous poppet lift-off or 50% lead with either poppet can be

achieved.

C. TESTING

Test work was directed primarily toward evaluation of the seals and

the basic functional capability of the valve. The chronological sequence of

tests was as follows:

Preliminary seal assembly and leak tests

Dry cycle response time test, 50 cycles

Water flow test for determination of pressure drop

Dry cycle test, 100 cycles, fast travel time

Wet cycle test, 100 cycles, fast travel time

Dry cycle test, 100 cycles, slow travel time

Wet cycle test, 1000 cycles, slow travel time

Cryogenic leak test

These tests were all performed on one bipropellant valve assembly

using 2 beryllium copper and 2 beryllium nickel shut-off seals. Test details

and discussion of results are contained in Report 7-733-11.

1. Leak Tests

Initial leak tests were directed toward demonstration of the
-4

target leak rate of 1.75 x 10 sec/sec GHe. The primary area of concern was

the amount of seal deflection under the load required to achieve the desired

leak rate with the existing seat surface finish of about 2 to 4.5 arithmetic

average (AA).
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III, C, Testing (cont.)

Leak checks were conducted using either gaseous nitrogen (GN )

or gaseous helium (GHe). Leakage was monitored on most tests using a bubble

leak meter for a period of 300 to 400 sec. A condition of no bubbles in 300 sec

is considered as a leak rate of less than 3.3 x 10 sec/sec. To obtain more

accurate measurement of low leak rates, a mass spectrometer (helium leak

detector) was used. The best leak rates, as determined by a mass spectrometer

leak check, were 4.68 x 10 sec/sec for a beryllium nickel seal and 4.98 x

10 sec/sec for a beryllium copper seal. These values were obtained at the

nominal design pressure of 200 psig using GHe as the test fluid.

2. Dry Cycle Testing

Three series of dry cycle tests were run. The primary objec-

tives of these tests were to determine the response time of the valve, and to

determine the effects of dry cycles on general seal wear and leakage. With

respect to seal wear, there was concern that localized wear resulting from

impact during fast closing might cause rapid deterioration or deformation of

the seal.

Initial dry cycle tests were performed to demonstrate the

response capability of the valve* Over a series of 50 cycles, valve travel

time was decreased until the target time of 0.010 sec was achieved. Table III

shows that neither the beryllium nickel or beryllium copper seal showed a sig-

nificant change in leakage as a result of the cycles.

\

Subsequent series of 50 dry cycles showed that leakage

increases more rapidly with fast travel times than with slow travel times as

shown on Table IV. The data also indicates that dry cycles have less effect

on the beryllium nickel seal than on the beryllium copper seal.
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III, C, Testing (cont.)

3. Wet Cycle Tests

Two series of wet cycle tests were conducted; the first to

100 cycles and the second to 1,000 cycles. In both tests, 200 psig water was

admitted to the inlet of the valve through a 1/4-in. line to each bore. While

open, the valve was flowing 0.65 Ib/sec through each bore. Travel times for

all the cycles were in the range of 0.008 to 0.011 sec.

Both tests showed wet cycling to have little seal degradation

effects. As shown on Table V, both the "beryllium copper and beryllium nickel
-4

seals had zero bubble leakage (less than 3.3 x 10 sec/sec) at the start of

the 1,000 cycle test. After 1,000 cycles, helium leakage at 200 psig was
-4 -4

25 x 10 sec/sec for the beryllium copper seal and 5 x 10 sec/sec for the

beryllium nickel seal,

4. Other Tests

Other tests conducted included a water flow test to determine

flow vs poppet position characteristics and an LN. leak test. The valve pres-

sure drop, at water flow equivalents of 1.63 Ib/sec and 0.86 Ib/sec for the

oxidizer and fuel respectively, was 10s3 psi for the oxidizer and 3.1 psi for

the fuel at the 0.150-in. nominal opening stroke position. The test performed

with the valve immersed in LN did not provide valid shut-off seal leakage

data as a result of flange joint leakage. Ambient leak checks before and after
-4

the LN test showed less than 3.3 x 10 sec/sec GHe leakage for both shut-off

seals.

D. PROBLEM AREAS

The initial evaluation tests were defined primarily to demonstrate

the shut-off seal performance. During the testing, two other areas were
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III, D, Problem Areas (cont.)

identified as significant problems with respect to future test activity and

final application of the valve.

1. Actuator Guide

For the first series of dry cycles, the valve was assembled

without any lead or lag between the two pintles. With this condition, load on

the actuator piston is balanced. As the dry cycle test was run, a small glitch

on the valve closing traces was noted.

The actuator was removed from the valve and examined. One of

the guide legs was scratched and a localized build-up of material in the guide

bore indicated galling. Both external guide legs and the guide bores in the

body were reworked to improve the surface finish. Also, the edges of the guide

bore holes were chamfered to avoid heavy contact on a sharp edge.

The condition noted would be aggravated when the valve was

operated with a lead-lag setting on the pushrods. With a lead-lag setting,

the lead pintle imposes a high cocking load on the actuator during initial

travel until the lagging pintle is contacted.

The valve was reassembled with a 0.071-in. lead on one pintle.

With this setting, the valve would not close adequately to achieve sealing of

the lagging poppet seal.

Subsequent tests were conducted with a lubricant on the guide

pins and with the valve set for simultaneous poppet lift-off.
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I

III, D, Problem Areas (cont.)

2. Pintle Bellows

The majority of the valve cycles were run with the nominal

0.150-in. stroke. To evaluate the actuator and pintle bellows, the stroke on

both pintles was set for the maximum of 0.225-in, for the 1,000 wet cycle test.

The actuator bellows and both pintle bellows were checked for leakage before

and after the cycle test using a 15 min pressure decay test. There were no

bellows leaks at the start of the test; however, after the test the pintle

bellows in the right hand bore was leaking. A special test setup was made and

leakage was measured in the closed, relaxed, and open positions. Leakage was

from 10.2 to 13.2 sec/sec GHe at 200 psig in all three tests.

The leaking pintle assembly was machined out of the body after

conducting the low temperature test. There were circumferential cracks in the

outer diameter of two convolutions as shown in Figure 6. The cracked convolu-

tions were located approximately 1/3 of the bellows length from each end. The

cracks appeared to be much more severe than would be expected from the leak

rate of 10 to 13 sec/sec. The initial failure was probably aggravated by the

low temperature testing and the fact that the bellows was extended to provide

access for removal of the pintle assembly. Normal valve operation has the

bellows in compression over the full stroke.

The most significant visual observations were an apparent

oxide coating on the bellows and an etched or pitted appearance of the polished

section of bellows adjacent to the weld.
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IV. DESIGN IMPROVEMENT

The purpose of the design improvement effort was to improve the func-

tional capability of the valve assembly. This work was guided by the results

of the prior testing and was directed toward areas that would provide higher

confidence of meeting design goals with the basic concept.

A. PINTLE BELLOWS

Evaluation of the pintle bellows cracking involved cyclic life

analysis, dynamic effects, and fabrication factors. The dynamic effect of the

0.010 sec travel time was calculated to be equivalent to an additional bellows

deflection of 0.031-in. Thus, the effective stroke during the cycle test was

0.256-in.

A computer program developed as part of a cryogenic bellows IR&D

program was used to evaluate the effects of stroke length, material thinning,

and temperature on the cyclic life of the bellows. Predicted cycle life was

based on the combined stress level resulting from bellows compression and

200 psig external pressure. This is a more severe condition than that exist-

ing in service since maximum bellows compression occurs with the valve closed.

When the valve is closed, there is no external pressure acting on the bellows.

The results of this analysis are shown on Figures 7 and 8.

Figure 7 shows the effect of stroke while Figure 8 shows the effect of material

thinning. Normal material thinning for these hydroformed bellows is about 10%.

Based on the curves, with 10% material thinning the predicted ambient tempera-

ture cycle life is reduced from about 8,800 down to about 3,300 as the effec-

tive stroke is increased from 0.225-in. to 0.256-in. If the material thinning

were 15% instead of 10%, cyclic life would be reduced to about 1/2 of the

above. Thus, the added dynamic effect of rapid valve travel and 15% thinning

reduce predicted cycle life to.about 1,650.
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IV, A, Pintle Bellows (cont.)

Cycle life was evaluated with respect to operation at the nominal

stroke of 0.150-in. Under anticipated test conditions of -320°F, 0.150-in.

stroke, plus 0.031-in. dynamic effect, the predicted life is 25,843 with 10%

material thinning. Assuming 20% thinning as a basis to allow for the observed

bellows surface finish, predicted life is 8,937 cycles.

Subsequent to the bellows stress and cycle life analysis, evalua-

tion was directed toward hardware fabrication and material processing aspects.

The failed bellows was checked by X-ray diffraction. The coating was a nickel-

manganese oxide. Fabrication and material processing records were reviewed to

determine whether some variation from specified procedures may have influenced

the failure and oxide formation. No variations were found to explain the oxide

formation or any possibility of changed material characteristics.

Based on the analysis, the original bellows were used; however,

the stroke was limited to the 0.150-in. nominal value for the planned 1,000

cycle propellant flow test in order to assure an ample margin on bellows life.

B. ACTUATOR GUIDE

The actuator guide redesign was directed toward elimination of

binding.and reduction of friction when the valve is operated with a pintle

lead-lag setting. A change in the required valve envelope allowed considera-

tion of concepts having a longer actuator. This change resulted in reduced

loads at the contact areas of the guide. Although no problems were experienced

with the actuator bellows, with the longer envelope the bellows was also

changed to provide a greater margin of safety for cycle life.

Several conceptual designs were drawn including features such as a

linear ball bushing, guides with monoball contact alignment, and shaped contact
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lands. The selected concept, as shown on Figure 9, incorporated the guide

inside the actuator bellows.. An electrolyzed 304L CRES post with contact lands

at each end operates in a gold plated Inconel 718 sleeve which is pressed into

the actuator cover. The ends of the contact lands were contoured to avoid

digging or shaving and to increase the contact areas. The materials were

selected based on a zero wear life analysis and review of friction wear data

which indicated a 1,000 cycle life could be achieved. A sealed joint between

the actuator body and cover was included to allow separation of the parts for

examination of the. guide after testing. The bellows change resulted in an

increase in predicted cycle life from 10,000 to 55,000 cycles at the maximum

stroke condition.

C. OTHER AREAS

Two other areas of concern during the valve improvement effort were

locking the shut-off seal to assure no rotation and offsetting the actuator

bellows load.

The original arrangement to prevent the shut-off seal from rotating

after installation involved use of a tab washer. Two tabs were bent one direc-

tion and were placed in blind holes in the seal. Locking the seal to the pintle

was to be accomplished by bending a tab the other direction against a flat on

the side of the pintle. This final locking could not be accomplished on the

hardware without potential damage to the shut-off seal. The corrective change

made was to add a flat on the underside of the pintle so that the flat and

bend tab would be accessible through the valve outlet port.

The actuator bellows load was a concern primarily with a pintle

lead-lag setting. The actuator bellows is desired to be in compression over

the full stroke. With the existing valve design, the greatest compression
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exists when the valve is closed. Thus, when the pintles are set for lead-lag

operation, the lead pintle shut-off seal load is reduced by the actuator bel-

lows load acting in opposition to the pintle spring closing force. The com-

bined effect of actuator guide friction and actuator bellows load may reduce

shut-off seal load to a level where leakage would occur. This effect could

reduce shut-off seal load to about 70% of the design load.

This potential problem was solved by the addition of two helical

compression springs operating between the actuator piston and the valve body.

The spring load was designed to just offset the actuator bellows load. Subse-

quent testing of the valve proved the springs to be unnecessary since the

target leak rate was achieved without installation of these springs.

V. FABRICATION AND ASSEMBLY

Fabrication for the valve improvement effort included modifications to

parts made previously and procurement of one redesigned actuator assembly.

Locking tab flats were machined on two pintle assemblies fabricated during the

initial program procurement. The pintle assemblies were electron beam welded

into a valve body that had not been used previously. The four shut-off seals

(2 beryllium nickel and 2 beryllium copper) used in earlier test work were

reworked by grinding the seal edge and then polishing the sealing area using

diamond dust. The new actuator was fabricated by outside suppliers.

The basic valve assembly and seal installation procedures had been

established during work on the first valve assembly. Details of assembly

techniques are contained in Report 7-733-11.

The improved actuator was assembled using conventional tools and tech-

niques. Figure 10 shows the valve assembly with the new actuator installed.
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During initial assembly, several areas for modification to simplify assembly

and assure proper stroke control were identified. The piston travel stop pads

should be made longer to assure that the pintle stroke is limited to 0.225-in.

The stroke on the lead pintles of the test valve was 0.250-in. To avoid exces-

sive stress on the pintle bellows, 0.050-in. thick spacers were installed on

the piston travel stops to limit pintle travel to 0.200-in.

Another desirable change is the addition of a shoulder in the actuator

cover bore to allow easier shrink fit installation of the gold plated sleeve.

With the present hardware there are two potential installation problems. If

the sleeve is not positioned properly, it can bottom in the bore and restrict

the actuation gas flow. Another possibility is that the sleeve can "freeze"

in the bore before it is flush with the surface. This condition could result

in reduced stroke capability. The addition of a shoulder in the cover should

eliminate the potential assembly difficulties mentioned.

A third change is the addition of a shoulder in the 0.1875-in. diameter

actuator bleed plug hole. This shoulder would provide a stop for easier instal-

lation of the check valve.
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VI. TESTING

The tests performed during the valve improvement effort were directed

toward confirming satisfactory lead-lag operation, demonstration of low tem-

perature functional capability, and determination of propellant flow effects.

The tests conducted included ambient storage functional tests, LN- cycling,

and liquid fluorine (LF«) flow cycling. LF_ was chosen for cycle tests as a

significantly lower cost option that would effectively demonstrate compati-

bility with the design oxidizer, OF-. Test costs flowing both diborane and

oxygen defluoride were prohibitive. LF~ tests could be performed more cheaply

than OF- tests because a fluorine valve flow test setup was available from

test work performed under Contract NAS 3-12035, Space Storable Oxidizer Valve.

A. AMBIENT STORAGE

A short term, ambient, dry storage test was prompted by results

observed on another metal seal valve program being performed under Contract

NAS 3-12035. One of the seals being used on the NAS 3-12035 Space Storable

Oxidizer Valve (SSOV) program is made from beryllium nickel. The beryllium

nickel seal contacts an electrolyzed Inconel 718 seat. This is the same mate-

rial combination being used in one bore of the bipropellant valve on this pro-

gram. During work on the SSOV program, on two occasions increased leakage was

noted after the assembled valve had set for periods of 2 to 3 weeks and was

then operated. Although the seal and seat materials are the same, there are

physical differences between the two valves. A brief test on the all-metal

bipropellant valve was considered desirable to determine whether a similar

leakage increase might result from ambient storage.

A beryllium nickel seal was installed in one bore of the valve

used for prior, testing. The assembly was leak checked at 200 psig with GHe

after 5 manual open-close cycles, stored for 18 days, and leak checked again

after 5 manual cycles. At the start of the storage test the leak rate was
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-4 ' -4
2.09 x 10 sec/sec. After storage and 5 cycles the leak rate was 4.75 x 10

sec/sec. After one more cycle, a leak check showed no bubbles in 5 minutes
-4

which is a leak rate of less than 3.3 x 10 sec/sec with the leak meter used

for these tests. Examination of the valve seat after disassembly did not

reveal any evidence of metal transfer.

B. LEAD-LAG OPERATION

A series of dry cycle tests were conducted with a lead-lag pintle

arrangement to evaluate the effects of the unbalanced load on the actuator

guide and on valve sealing capability. The test consisted of a series of dry

cycles with the left pintle as the lead pintle and then a series with the

right pintle as the lead pintle. During these tests, periodic actuator pres-

sure readings were taken to determine whether the friction load increased.

Also, shutoff seal leakage was checked to determine any adverse effects of

lead-lag operation.

The valve was assembled with beryllium nickel seal S/N 2 in the

left bore and beryllium copper seal S/N 2 in the right bore. The initial

assembly had the left pintle as the leading, or longer stroke pintle. Both

seals had less than 3.3 x 10 sec/sec leakage at 200 psi helium pressure as

installed. During setup and checkout of the test setup, the valve was cycled

105 times. One hundred cycles were with slow travel times approximately

0.130 sec open and 0.080 sec closing. Five cycles were with travel times of

about 0.015 sec. A leak check at this point showed the lag pintle with zero

bubble leakage. The lead pintle was zero at 50 and 100 psig but leaked
-4

28 x 10 sec/sec at 200 psig (Table VI shows leak rates and conditions for

this test series).
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Fifty dry cycles were run with travel times of .about 0.016 to

0.020 sec. The seals were again leak checked. Both seals had zero bubble

leakage at all pressures.

The actuator was removed and the lead-lag arrangement reversed so

that the right pintle would be the leading pintle. After reassembly of the
-4

actuator to the valve, the lead pintle leaked 47 x 10 sec/sec at 200 psig

while the lag pintle had zero bubble leakage. The valve was dry cycled

50 times with travel times in the range of 0.014 to 0.020 sec and leakage
-4

checked again. Both seals leaked less than 3.3 x 10 sec/sec at 200 psig.

The slow pressurization tests performed in an attempt to deter-

mine actuator friction load did not provide meaningful data. The end .of

stroke readings were adversely affected by the friction between the shutoff

seal and the seat. Full open readings were fairly consistent; however, at

this position the actuator load is balanced and seat-seal friction is not

a factor. Although actual friction loads could not be determined from the

data, the pre and post test data indicate that cycling did not significantly

increase the friction load. Cracking pressure readings before and after the

test were consistent although not identical. The variations recorded, from

1 to 7 psi, include the friction effects of the actuator guide, pintle guide,

potentiometer rack, and shutoff seal.

A better indication of the actuator guide performance was the

condition of the guide after testing. The actuator guide and sleeve were

examined after the first 50 fast cycles and again after the change in lead-

lag and 50 additional cycles. The guide showed no signs of wear. The gold

plated sleeve had slight wear marks in a localized area but there was no

evidence of the gold being shaved or removed.
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C. LN2 CYCLING

A 100 cycle functional test with the valve immersed in LN. and

flowing LN« was conducted. The objectives of this test were to determine the
if

shutoff seal leakage at low temperature and to demonstrate valve operation at

low temperature.

During final leak checks after the dry cycle, lead-lag tests, both

the beryllium nickel and beryllium copper seals had zero bubble leakage in

five minutes (less than 3.3 x 10 sec/sec). Therefore, the valve was not

disassembled prior to running the LN~ tests. The pintle nuts were set up to

provide the nominal 0.150-in. stroke on both pintles and the actuator assembly

was installed. Special flat lapped test flanges with spacers to accept gold

plated Inconel "V" seals, manufactured by the Parker Seal Co., were installed

on the valve inlet and outlet. The poppet seals were again leak checked and

had zero bubble leakage. The pintle bellows, actuator bellows, and flange

seals were satisfactorily leak checked. The valve was then installed in the

LN test setup shown schematically on Figure 11.

The poppet shutoff seals were leak checked at ambient temperature

using a mass spectrometer. The beryllium nickel seal leaked 5.51 x 10

sec/sec at 80 psig. The beryllium copper seal leakage stayed within the

range of the leak detector up to 200 psig. At 200 psig the leakage was 2.37 x

10 sec/sec. The valve was immersed in LN up to the level of the potenti-

ometers. After the temperature had stabilized, a bubble leak check showed no
-4

bubbles in 5 minutes at 200 psig on both bores (less than 3.3 x 10 sec/sec).

Fifty cycles were performed while flowing LN» through the valve.

Valve travel times were 0.013 to 0.015 sec open and 0.011 to 0.014 sec closing.
-4

A leak check performed at LN« temperature after 50 cycles showed 67 x 10

sec/sec leakage on the beryllium copper seal. The bore containing the
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beryllium nickel seal showed a varying leak rate ranging from about 0.001 to

0.011 sec/sec with no pressure applied to the inlet. This indicated that some

leakage past one of the joints in the submerged plumbing was occurring. Leak

rates with pressure applied were also variable. Recorded leakage ranged from

0.038 sec/sec at 50 psig to 0.19 sec/sec at 200 psig. Even allowing for a

variable tare leakage, the shutoff seal leakage was significant.

Fifty additional LN~ cycles were run and another leak check per-

formed. The beryllium nickel seal now indicated a leak rate of about 1 sec/

sec at 100 psig. Beryllium copper seal leakage had increased to 0.0118 sec/

sec at 200 psig. The valve was removed from the test setup and allowed to

warm to ambient temperature. An ambient leak check showed both seals having
-4

low leak rates. The beryllium nickel seal leakage was 7.5 x 10 sec/sec and
-4

the beryllium copper seal leakage was 4.05 x 10 sec/sec, both at 200 psig.

The actuator and pintle bellows were leak checked and no leaks were found.

The valve was disassembled and hardware examined. The valve seats

looked good with no evidence of scratching or wear. The beryllium copper seal

had an even wear pattern about 0.003 to 0.004-in. wide but had no significant

scratches or surface deformation. The beryllium nickel seal did not have a

uniform wear pattern and 3 scratches across the contact area were noted.

Figure 12 is a photograph of the damaged area. These scratches are believed

to be the major cause of the high leakage at LN« temperature. The cause of

the scratches is not known. The length and proximity of the scratches are

such that a contaminant particle that subsequently got flushed through could

have been the cause.
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D. LF2 CYCLING

The LF? test was to consist of 1,000 functional cycles while flow-

ing 1.99 Ib/sec LF_ through each bore of the valve. Leak checks were to

include an ambient leak check after system passivation, a cryogenic leak check

after 10 cycles, an ambient check after 100 cycles and both ambient and cry-

genie leak checks after 1,000 cycles. The test was performed in the J 4A test

facility.

1. Valve Assembly and Checkout

Following the LN~ test, the valve was completely disassembled,

all hardware cleaned in a sonic cleaner, and the valve reassembled on a laminar

flow bench in a controlled clean room. The valve was assembled with beryllium

nickel seal S/N 1 in the left bore and beryllium copper seal S/N 1 in the right

bore. Initial leak checks were satisfactory but after 10 dry cycles, the
-4

beryllium nickel seal leaked 7.5 x 10 sec/sec which was above the desired

leak rate.

During disassembly and rework, the beryllium nickel seal was

damaged. Beryllium nickel seal S/N 2, which had been used previously, was

repolished, cleaned and installed. Deflection settings were 0.0055-in. on

the beryllium nickel seal and 0.0048-in. on the beryllium copper. The pintles

were set for simultaneous lift-off with a stroke of 0.137-in. and the cracking

and full lift pressures were checked." The shut-off seals were leak checked

before and after 10 dry cycles. Both seals had zero bubbles in 5 minutes on

both tests. The inlet and outlet flanges were installed with gold plated

Inconel "V" seals and the flange joints leak tested. A final cleanliness

verification was performed and the assembly was sent to the test facility.
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2. Test Setup

A mockup bipropellant valve was used for plumbing the test

setup. The test stand flow loop was essentially the same as that used on the

SSOV flow test. Modifications were made to accommodate the bipropellant valve.

A large metal box was constructed to allow immersion of the test valve, down-

stream shutoff valves, and connecting plumbing in LN_ for cryogenic leak tests.

The required flow plumbing, helium actuation supply plumbing, and instrumen-

tation were installed. Photographs of the test setup are shown on Figures 13,

14, and 15. The workhorse actuation pilot valve was wrapped with an electri-

cal strip heater to avoid problems caused by repetitive operation with cold

gas. Burn wires were wrapped around various joints in the system to provide

a shutdown signal in the event of a fluorine leak.

The leak test arrangement used the water displacement method.

The volume between the test valve and the downstream shutoff valves was

plumbed to have this volume immersed in LN_ for temperature control. Both

stainless steel and tygon tubing were used to direct leakage to water filled,

inverted, 10 cc graduates. The relatively large downstream test volume and

the compliance of the tygon tubing raise some doubts as to the accuracy of
/ —?

leak indications in the 1 x 10 sec/sec range. Leak rates of 1 x 10 sec/

sec are considered quite readily detected by this test arrangement. Other

options were considered; however, cost and schedule restraints effectively

eliminated these more complex alternates.

3. Test Results

The test bipropellant valve was installed in the setup. The

valve timing was adjusted to provide opening and closing travel times of

0.010 to 0.012 seconds. An ambient leak test of the shutoff seals was
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conducted after system passivation using the water displacement method. Leak-

age results are shown on Table VII. This initial leak check showed no bubble

leakage on both seals.

Liquid fluorine was admitted to the system for flow cycling.

The first flow cycle was 35 seconds' to assure full system bleed-in and to

check flow rates. The measured flow was about 5% higher than the nominal

1.99 Ib/sec for each flow bore and the pressure drop across the valve was

about 8 psi. Valve travel times for the first ten cycles were in the range

of 0.004 to 0.010 sec opening and 0.007 to 0.010 sec closing. A cryogenic

leak check conducted after 10 cycles again showed no bubble leakage; however,

the leak data is subject to some doubt because of the setup as is discussed

in Section VI,D,2 above.

Cycles 11 through 100 were completed without any problems

except that one potentiometer trace shifted indicating potentiometer wiper

slippage. Travel times during this series of cycles were 0.004 to 0.010 sec

opening and 0.008 to 0.010 closing. An ambient leak check after 100 cycles

showed zero bubbles on the beryllium nickel seal; however, the beryllium
-4

copper seal leaked 856 x 10 sec/sec at 200 psig.

During the next series of cycles, several anomalies occurred.

Both potentiometer traces indicated wiper slippage. At about 125 cycles, the

pilot valve failed to operate. No cause for this failure was found and

energization was tried again. The valve functioned so cycling was continued.

Starting at about cycle 132, the potentiometer trace for the pintle with the

beryllium copper seal showed about 1/2 normal travel and by cycle 148 was only

showing about 1/3 normal travel. Also, opening travel times were down to

0.002 to 0.003 seconds. At cycle 160, the pilot valve again failed to operate.

A review of conditions, resulted in suspension of testing. A cryogenic leak
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check after 160 cycles showed leak rates of 0.182 sec/sec for the beryllium

nickel .seal and 0.833 sec/sec for the beryllium copper seal. A subsequent

ambient leak check with the valve still in the test facility produced leak

rates of 0.0685 sec/sec for the beryllium nickel seal and 0.370 sec/sec for

the beryllium copper seal. The valve was removed from the test facility and

returned to the Controls Laboratory for disassembly.

4. Posttest Checkout and Disassembly

The valve was leak checked as received from the J4a test

facility. The valve had not been operated since completion of flow testing

two weeks previously. The beryllium nickel seal showed no bubble leakage

while the beryllium copper seal leaked 0.054 sec/sec at 200 psig. The pintle

bellows and actuator bellows were leak checked and no leaks were detected.

Inlet and outlet flange seals were checked and displayed no bubble leakage.

Cracking and full lift pressure tests were performed. Cracking pressure was

about 15 psi lower than before the cycle tests. Full lift pressure was about

47 psi higher than before the LF_ tests. Also the hysteresis was much greater

than before the test. The significance of these readings relative to shutoff

seal performance is discussed in Section VII.A.5.

After initial tests, the actuator assembly was removed. The

spring retainer on the pintle having the beryllium copper seal was cocked

indicating that the potentiometer drive rack was binding in the guide bore.

The potentiometer rack retaining nuts were removed. This allowed the spring

retainer to return to the normal position. A 200 psig helium leak check showed

zero bubble leakage on the beryllium nickel seal and 0.0351 sec/sec on the

beryllium copper seal. The pintle with the beryllium copper seal was tapped

lightly on both ends and the leak check repeated. There was no bubble leakage

for 300 sec with 200 psig GHe.
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The valve was completely disassembled and parts examined.

The following conditions were noted:

Actuator - the actuator guide showed no significant evidence

of wear. The gold plated guide sleeve had several areas of local rubbing

that looked about the same as prior to LF« testing. The surface was bright

and shiny over the stroke contact length. A light haze was noted between the

contact lands'. This haze was removed by light wiping. Figures 16 and 17 are

photographs of the actuator guide components after testing.

Valve body - no body damage or attack was noted except the

potentiometer rack guide bores. The seal seat had rings in the seal contact

area. This contact area appeared to have fine particles of material some of

which were from the seal as indicated by the copper color tinge in the one

bore.

Pintle guides - both guides had scratches across the surface

in the direction of pintle travel as shown on Figure 18. The body did not

have comparable marks. These same guides had been used on prior tests with

the first valve body and scratches were found on the first body. The majority

of the guide scratching probably occurred during the earlier tests which

included a 1000 cycle test.

Seals - both seals had a haze or etched appearance over the

polished surface with this effect more noticeable on the beryllium copper

seal. The seal contact surfaces were fairly even around the circumference.

The contact line was on the edge of the beryllium copper seal. On the

beryllium nickel seal, the contact line was about 0.006 to 0.008-in. below

the edge of the seal. There were no significant scratches or deformities.

Both seal contact lines had a somewhat darkened appearance. This was
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particularly noticeable on the beryllium copper seal where the contact area

was a much darker color than the rest of the seal. The seal contact areas

are shown on Figure 19.

Potentiometer racks - the potentiometer rack on the beryl-

lium copper side was galled and tightly bound in the bore. Figure 20 shows

the rack after removal from the bore. The other rack also had heavy rub marks

along the sides of the rack; however, it was not bound in the bore.

VII. DISCUSSION OF RESULTS

The test results showed that an all-metal valve could achieve zero

liquid leakage after 1000 cycles of operation with travel times as fast as

0.005 sec. Further refinement may expand the performance and life of the

valve. This section relates information obtained during testing to potential

refinements and discusses the effect of various factors on valve performance.

A. SHUT-OFF SEALING

1. Seal Seat Surface Finish

To achieve a leak free metal to metal seal with reasonable

loads, good surface finishes are required. With a soft-on-hard approach, the

most critical surface finish is the hard material. In the bipropellant valve,

the hard material is the electrolyzed Inconel 718 seat. The conical seat pro-

vided some difficulties in attaining the desired surface finish.

With the conical shape, final lapping or polishing was some-

what restricted. Plugs used as carriers for the lapping compound could be

rotated but not moved axially in the seat cone. With this condition, circum-

ferential scratching of the seat could occur. Thus as the surface finish
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t

was worked, there was always the potential of degrading rather than improving

the surface finish.

This problem could be eliminated by design of special lapping

tools that would change diameter while maintaining the correct seat angle.

This would permit both rotational and axial motion. Another approach is to

make the seat spherical and the seal conical. With this configuration,

essentially the same seal-seat contact interface could be established. The

advantage would be the use of spherical laps for polishing which should

attain surface finishes better than the 3 to 4 AA achieved with the conical

seat.

The major advantage of a better seat surface finish is lower

load required to attain a given leak rate. Reduced loads on the seal inter-

face could result in less seal wear, a smaller valve, and less weight.

2. Storage Effects

Data from the SSOV program and data from the storage test

conducted during this program are contradictory. One shows an adverse effect

of storage on leakage, the other shows no effect. This divergence indicates

that further evaluation is needed.

For the planned application of the OF^/B Hfi valve, several

factors must be considered. The reactivity of the propellants will require a

high cleanliness level for the valve. Sterilization cycles at 300°F may be

required. Coast time in space may be several years duration. The combined

effects of very clean hardware, high temperature, and long durations under

the high seal load may result in some seal material transfer that could effect

leakage during subsequent functional cycles. In addition to potential metal
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transfer, the possibility of material creep in the stressed seal should be

considered. Relaxation or creep would result in a lower seal-seat interface

stress that may change the leak rate. Thus, the storage aspect requires

further consideration to assure success in the proposed application for the

valve.

3. Seal Wear

A small amount of rubbing between the seat and seal occurs

during normal functioning. The rubbing length depends upon the deflection

setting but is normally in the range of about 0.004 to 0.006 in. This rubbing

produces some seal wear. An added wear effect results from the fast closing

times. The design of the seal and the pintle guide is such that a small arc

of the seal edge is subjected to impact during rapid closing. The guide was

designed to have enough clearance in the guide bore so that the seal could

center in the conical seat. When the valve is closed, the seal establishes

the pintle position. When the valve is open, the guide establishes the pintle

position. The transition from the guide controlling to the seal controlling

produces an impact wear effect on the seal during closing.

The 1000 wet cycle test showed seal wear to be very minor;

however, dry cycle tests indicate that seal wear could be a problem. Seal

wear is indicated by increased leakage as shown on Table IV, increased width

of the contact line on the seal, and the color of the contact line on the

seat which indicates some removal of seal material. The data shows that

travel times of about 0.008 sec result in more wear than the 0.150 travel

times. Also, the softer beryllium copper material is subject to more wear

than the beryllium nickel.
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VII, A, Shut-Off Sealing (cont.)

The primary concern with regard to seal wear is dry,

functional cycles that may be required during valve processing, installation,

and checkout of a vehicle. To minimize any seal wear, a method to slow travel

times during dry cycles would be desirable. This could be done quite easily

by adding a flow restriction in the actuation cavity vent line.

4. Pintle Guide Wear

The scratching noted on the pintle guides is a concern with

regard to potential seal damage. Since the guide is located upstream of the

shut-off seal, any particles that might result from continued guide rubbing

might damage the seal. The low leak rates obtained after the 1000 cycle

water flow test indicate that no significant damage occurred; however, the

possibility exists.

This potential problem could be eliminated by analysis of

the loads involved, wear analysis of the parts, and selection of materials to

obtain zero wear.

5. Friction Effects on Leakage

There are several areas in the valve where friction may have

an effect on the seal-seat interface load. The pintle guides, the seal

rubbing on the seat, and the potentiometer racks in the guide bores may

singularly or in combination reduce the load transmitted to the seal Inter-

face. A reduced seal interface load would result in higher leakage.

Evidence of the friction effects were noted during several

tests. During the LF_ cycle test, one potentiometer rack was stuck in the

bore and the other rack had rub marks. The added friction from the rubbing
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VII, A, Shut-Off Sealing (cont.)

racks is believed to be the cause of the high leak rates during the LF~ tests

as indicated by both seals displaying no bubble leakage after the racks were

disengaged during posttest work. The same may be true of the LN test where

high leakage was experienced at low temperature while the posttest leakage

was very low even though one seal was scratched. Friction effects were also

evident during lead-lag tests involving cracking and full lift pressure checks.

After a slow opening and closing, as experienced on a cracking pressure test,

the shut-off seal leaked. After one cycle at the normal travel time, the

seal did not leak.

Based on the LF~ and LN« tests, the primary problem was the

potentiometer drive rack. Before LF_ cycle tests, the cracking and full open

pressures were recorded as 109 and 150 psig respectively. After cycling,

cracking was 95 psig and full open was 207 psig. These data indicate that

the load on the seal-seat interface was reduced. A 14 psi change in cracking

pressure converted into load per pintle is 22 Ib. This represents about a

10% reduction in seal load at ambient conditions. This condition may be more

severe at cryogenic temperatures as a result of slight thermal distortion

affecting the alignment of the drive rack in the guide bore. Provision of

greater alignment capability between the spring retainer and the rack should

correct the rack rubbing condition. Use of a harder material for the rack

would also be beneficial.

B. VALVE RESPONSE TIME

The total valve response time includes the time from electrical

signal until the pilot valve shuttles, delay time until start of main valve

travel, plus, the travel time for the main valve. Only the valve travel time

was defined as a goal for this program; however, all parts of the response

time would have to be considered in a final application.

Page 36



Report 7-733-2F

VII, B, Valve Response Time (cont.)

1. Travel Time

The desired travel time of 0.005 to 0.015 sec was quite

readily obtained. Actual times varied dependent upon test conditions such

as lead-lag setting, total stroke, inlet pressure, outlet pressure, and

actuation pressure supply plumbing. Opening travel times of 0.002 to 0.003

sec were obtained during LF_ cycling. These very fast times resulted from

increased valve friction. Under normal flow conditions, the actuation pressure

required to crack the poppet off the seat is lower than the pressure required

to reach the full open position. With increased friction at cracking, the full

open pressure can be lower than cracking pressure. Thus, when the actuation

pressure is high enough to start opening, it is high enough to reach full

open. Under this condition, the valve is opened by gas expansion rather than

being controlled by a flow restriction such as the pilot valve or a timing

orifice.

Two areas affected by rapid travel times, the shutoff seal

and pintle bellows, were discussed previously. Another affected component is

the potentiometer. The fast travel time causes the potentiometer wiper to

slip on the shaft as was noted after about 700 cycles of water flow cycling.

Low temperature accelerates the start of wiper slip. During the LF~ test,

wiper slip occurred between 54 and 98 cycles. A modification to the wiper

retainer would be required to eliminate slip during extended low temperature

cycling.

>v

2. Signal Time

The pilot valve used for the test program was a workhorse

unit having the desired flow capacity to obtain the 0.005 to 0.015 sec travel

times. This valve was P/N BF35C-11 manufactured by the Eckel Valve Co. The
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VII, B, Valve Response Time (cont.)

valve signal times were 0.012 sec open and 0.005 sec closing at ambient condi-

tions with 250 psig supply pressure and 28 VDC. During testing, these times

varied widely. Supply pressures above 250 psig and low temperatures were

major factors producing longer signal times. Consistency of opening and

closing signal times was not a requirement for this program; however, in a

vehicle application repeatable times under all anticipated operating condi-

tions would be desirable.
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VIII. CONCLUSIONS

. The results.of work performed during this program demonstrate the

feasibility of an all-metal valve to meet the desired functional criteria.

Major conclusions are as follows:

1. Zero liquid leakage can be achieved with metal shutoff seals.
-4 -4

The equivalent gaseous helium leak rates of 1.75 x 10 and 3.4 x 10 sec/sec

were demonstrated consistently with both the beryllium nickel and beryllium

copper seals.

2. The valve can operate with up to 50% lead on either pintle and

achieve the target leak rate without use of special compensating springs.

3. Travel times in the range of 0.005 to 0.015 sec are easily

attained with this valve.

4. Contact at the edge of the shutoff seal is not critical to effective

seal performance. Used seals were repolished by conventional techniques result-

ing in seat contact below the edge. The leak rate or cyclic life did not appear

to be degraded.

5= A cycle life of 1000 cycles is attainable. The test seals after
-4

1000 wet cycles had leak rates of 5 x 10 sec/sec for a beryllium nickel
-4

seal and 25 x 10 sec/sec for a beryllium copper seal.

6. The basic valve and shutoff seals can operate successfully at

fast travel times while flowing a highly reactive, cryogenic propellant.

The LF- cycles demonstrated short term materials compatibility. Based on

this test and comparison of propellant properties, the valve should perform

satisfactorily with oxygen difluoride and diborane.
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VIII, Conclusions (cont.)

7. Both the potentiometer and potentiometer drive arrangement would

require improvement to reliably meet the desired performance. The potentio-

meters were added to aid analysis of valve performance during the test program.

If position indication were needed for an application, other options such as

end position proximeters could be used in lieu of a continuous indication

device such as a potentiometer.

IX. RECOMMENDATIONS

The valve tested has demonstrated the ability to meet the basic

functional criteria; however, additional information may permit an expanded

capability for this valve as well as provide guidance for design of all metal

valves for other applications. Within this context, the following recommenda-

tions are presented.

1. Analyze and evaluate the seat-seal arrangement to reduce the

effects of fast closing and dry cycling. Configuration changes such as a

spherical seat and conical seal may allow better surface finishes, and improved

guiding which would reduce seal load and seal interface rub.

2. Correlate the relationships between surface finish, load, contact

width, rubbing distance, and leakage with the analytical model predictions.

An analytical model was used during the preliminary design effort to evaluate

the various factors affecting leakage and wear. Evaluation of test results

with controlled parameters would allow improved predictability of the analytical

techniques.

3. Perform concurrent OF_/B_H, flow tests to provide confirmation of

material compatibility and evaluate thermal gradient effects resulting from

the propellants being at different temperatures.
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IX, Recommendations (cont.)

4. Redesign the position indication arrangement to provide more

reliable, longer life position indication for test work.

5. Perform detailed analysis on the dynamic effects of fast travel

on bellows. Variable convolution diameters and thicknesses may be advantageous

to long life.

6. Perform extended duration storage tests under conditions simulating

production processes and the flight environment. Conditions not encountered

during this program may have an adverse effect on the metal seal interface.

7. Investigate and evaluate pilot valves for compatibility with the

bipropellant valve and the operational criteria for response time and firing

duration.
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.TABLE I

DESIGN REQUIREMENTS

APPLICABLE FLUIDS

FLOW PASSAGES
Diborane
,(B2H6)

Oxygen Difluoride
(OF2)

ACTUATION

Gaseous Helium Gaseous Nitrogen

FLUID PRESSURES, psig

PROPELLANT CAVITIES
ACTUATION CAVITIES

Operating

200
250

Proof

400
500

Burst

600
750

FLOW RATE, Ib/sec

Fuel • 0.57 Oxidizer 1.99

PRESSURE DIFFERENTIAL AT RATED FLOW: 25 psig

LEAKAGE RATE, sec/sec helium

External 1 x KT7 Internal 1.75 x 10~4

VALVE TRAVEL TIME, sec

Open 0.005 to 0.15 Close 0.005 to 0.015

ENDURANCE LIFE: 1000 cycles, minimum

STORAGE LIFE: 10 years

TEMPERATURE, °F

Operating -320 to +100 Nonoperating -320 to +300

OTHER ENVIRONMENTS

Zero g; Radiation; Shock; Vibration; Thermal Shock; Sterilization; Thermal
Cycling, and Hard Vacuum

OTHER DESIGN FACTORS.

The design shall be Ian all-metal valve

The valve shall have" the capability to provide either a 50% fuel or
oxidizer lead. \

Valve position indicators shall be provided.

Inlet and outlet valve assembly interfaces shall be parallel.

Table I
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Component

Body, valve

Guide-poppet

Seal

Spring

Shaft, poppet

Bellows, shaft

Body, actuator

Piston, actuator

Bellows, actuator

Tube and flange
weldment

TABLE II

VALVE COMPONENT MATERIALS

Preferred Material

Inconel 718

Electrolyzed CRES 304

Beryllium Nickel, Beryllium
Copper

CRES 17-7 PH

Inconel 718

Inconel 718

CRES 304L

CRES 304L

Inconel 718

CRES 304L

Alternates

Electrolyzed CRES 347

CRES 321, 347

CRES 347

CRES 321, 347

CRES 321, 347

CRES 347

Table II
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TABLE VII

LF2 CYCLE TEST LEAKAGE

GHP Leak Rate, sec/sec x

Test
Condition

ambient
(pre-test)

cryogenic

ambient

cryogenic

ambient

ambient
(as received)

ambient
(after rack
bind release)

ambient
(after tapping

Test
Facility

J4a

J4a

J4a

J4a

J4a

Controls
Lab

Controls
Lab

Controls
Lab

Cumulative
Cycles

0

10

100

160

160

160

162

162

Beryllium Nickel
50 psig 200 psig

0 0

0 0

0 0

449 1820

213 685

0 0

0 0

-

Beryl 1
50 psig

0

0

0

1720

953

40

57

0

-4*
10

ium Copper
200 psig

0

0

856

8330

3700

540

351

0

pintle)

*Zero denotes no bubbles in 5 minutes.

Table VII



Report 7-733-2F

co
•H
JJ
0)

a
<u

4J

n)

(X
o
S-i
p.

•H

tt)
ft
a
o

a)

Figure 1



Report 7-733-2F

Equations and parameters are based on information contained in

Investigation of Leakage and Sealing Parameters, Technical Report

AFRPL-TR-65-153, by IIT Research Institute, August 1965

2 2

<" < - " 2 ' * ' «+ <•» *
3

Q = leak flow, atm. in. /sec
Li

PI = upstream pressure, psia

P_ = downstream pressure, psia

w = length of sealing edge normal to flow, in.

L = sealing edge width in direction of flow, in.

h = equivalent leak path height, in.

2
y = fluid viscosity, Ib-sec/in.

P = pressure used for selection of y and A psia

e = gas constant

A = mean free path of gas, in.

(2) h = f(R) empirical relationship

R = modified stress ratio

2/n'
(3) R A a

a m

W = applied normal load, Ib

n' = Meyer index

2
A = apparent contact area, in.
a

2
a = Meyer hardness, Ib/in.
m

Equations for Calculation of Sealing Loads

Figure 2
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