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ABSTRACT

The objective of significantly advancing the state-of-the-

art of "white", spacecraft-radiator coatings has been realized

in a comprehensive goal-oriented, pigmented-coatings research

program. The results of this study are presented in nine chapters.

They are: an introductory chapter, one on general experimental

aspects, two on inorganic pigments and coatings~ two on silicone

polymers and coatings, one on the design and construction of a

combined ultraviolet-pIus-proton irradiation facility (the CREF)
one on the development of zinc orthotitanate pigment and coatings,

and one on the effects on several low a s /€ paints of combined

ultraviolet and proton irradiation in the CREF. Major accomplish­

ments are:

• The development of a structure/property theory that
relates to the selection of the most appropriate
candidate pigments for employment in space paints,

• The improvement of IITRI's 293 zinc oxide-pigmented
potassium silicate paint as an engineering material,

• The development of S-13G silicated-zinc oxide-based
silicone elastomer coating as a reliable engineering
material (currently being widely employed as prime
thermal control on numerous satellites and spacecraft),

• The development of a rationale for selection of
silicone binders that led to the discovery of Owens­
Illinois 650 "Glass" resin as the most stable resin
binder commercially available~

• The elucidation of ultraviolet-damage mechanisms in
semi-conductor pigments,

• The development of reactive encapsulation to stabilize
semiconductor pigments against ultraviolet radiation
in vacuum,

• The elucidation of "plasma" annealing to stabilize
reactively-encapsulated zinc orthotitanate against
combined ultraviolet-pIus-proton irradiation,
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• The design and construction of the l2-specimen IRIF
(In Situ Reflectance/Irradiation Facility),

• The design and construction of the CREF (Combined
Radiation Environmental Facility) which simultaneously
deposits ultraviolet at IX to 4X solar-ultraviolet
acceleration factors and 1.2 keV protons from 1.5X to
250X solar-wind acceleration factors,

• The development of a stable, reactively-encapsulated
zinc orthotitanate-pigmented potassium silicate paint
having a nominal solar absorptance, a , of 0.1 and a
~a of less than 0.01 in 1000 ESH of flltraviolet
radiation in vacuum, and

• The development of a stable plasma-annealed, reactively­
encapsulated zinc orthotitanate paint based on Owens­
Illinois 650 "Glass" silicone resin that possesses a
no~inal a of 0.2 and a ~a of much less than 0.01 in
2000 ESH ~f ultraviolet irfadiation in vacuum.

(In work on another program~( an Owens-Illinois 650 "Glass"
resin paint pigmented with plasma-annealed, hexafluorosilicate­
treated zinc orthotitanate subsequently has been shown to be
stable to more than 2000 ESH of ultraviolet and simultaneous
irradiation with 2 x 1016 H+/cm2-sec.)

*IIT Research Institute Project C6233, NASA-MSFC Contract No.
NAS8-26791.
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INVESTIGATION OF ENVIRONMENTAL EFFECTS ON COATINGS FOR
THERMAL CONTROL OF LARGE SPACE VEHICLES

1. INTRODUCTION

The temperature control of satellites and spacecraft is

perhaps the most challenging technical problem that has confronted

spacecraft designers and engineers. The ultimate objective of

thermal design is to ensure that the spacecraft operates within

the prescribed temperature range defined by the temperature

limitations of the vehicle's materials and components. Therefore,

the thermal design, fabrication, launch, and operation of satellites

and spacecraft involves a complex balancing of various factors,
each of which must be weighed in terms of overall mission require­

ments, performance, and reliability.

Although many materials' problems have arisen as we have

progressed from the early, functionally short-lived satellites
of the late 1950's to the sophisticated spacecraft planned for

the 1970's, none have been as historical, as tenacious and as

technically challenging as the problem of ensuring stability of

optical properties of materials (and, to a lesser extent, physical

properties) in the hostile radiation environment of oxygenless

space. This is attested to by the fact that the multidisciplinary
field of Thermophysics, although based on well-established

scientific disciplines such as optics, radiation-heat transfer

and radiation- and photochemistry, has exhibited most of its

growth in the past ten years--growth that has gained its impetus
from the need to control the thermophysica1 properties of surfaces

and materials as an essential condition of the temperature regu­

lation of satellites and spacecraft.

The surface temperature of an object in space depends primarily

upon the absorptance of solar radiation by the surface, the re­

radiation of energy from the surface, and the generation of heat

in the body of the object. Secondary parameters that influence
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the surface temperature of a space vehicle are material properties

such as the thermal conductivity and specific heat of spacecraft

components.

By definition, the temperature of a spacecraft is that

temperature at which the absorbed energy and the emitted, or re­

radiated, energy are in equilibrium. As the size of the absorb­

ing area (because of changes in attitude) or the intensity of the

incident energy changes, an exactly compensating change in tem­

perature occurs, so that the temperature is always changing to

affect a new equilibrium. Thus, the optical (reflectance) and

radiometric (emittance) characteristics largely determine the

limits of the surface temperature of a spacecraft.

Two fundamentally different techniques are used for regu­

lating the temperature of satellites and spacecraft~ active

temperature control and passive temperature control. Active

control is achieved by feedback techniques that usually employ
both electrical power and moving parts. For example, bimetallic
strips or thermostats control shutters and vanes, whose manipula­

tion results in a constantly varying surface in terms of effective

optical properties. Passive control, in contrast, requires

neither electrical power nor moving parts. Passive control is

achieved by the use of surface materials with appropriate thermo­

physical characteristics, namely, solar absorptance, as' and
infrared emittance, e.

Passive control techniques are more reliable than active

control techniques because the latter employ both electrical and

mechanical parts, which can fail. On the other hand, active

control systems can readily accommodate the radiation changes

caused by changes in altitude and attitude of the spacecraft, as

well as for space radiation-induced changes in the optical pro­

perties of the passive surfaces. Active systems are therefore

often used in conjunction with passive techniques to provide the

most effective control of temperature. Regardless of which con­

trol systems are used, the thermophysical properties of the entire
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surface of the spacecraft must be specified, since it is the

average properties of the surface that determine the temperature

excursions of satellites and spacecraft.

It is therefore immediately obvious that surface coatings

necessarily play a large role in the temperature control of

spacecraft. It is because of this role that the technical area
of thermophysics known as "spacecraft thermal-control materials
technology" has developed since the launching of Explorer I

(1958~) in 1958. However, it is also immediately obvious that

within the framework of this materials technology the most sen­
sitive and challenging problem of all is that of the development

of space-stable, low ~ 18 radiator coatings, the nature of whichs
makes them both highly important to spacecraft temperature control
and highly vulnerable, optically, to space radiation damage--to
both the ultraviolet environment of near space, i.e., that beneath
the Van Allen radiation belts, and the ultraviolet~plus-charged

particle environment that characterizes space at distances greater
than the Van Allen and the induced belts. Low ~s/€ surfaces can
be divided into those represented by diffusely-reflecting, "white",
pigmented-coatings, or paints, and those represented by second­

surface mirrors that obtain their low solar absorptance from the
metallic reflection of the mirror (usually aluminum or silver) and
their emittance from the selectively-transmitting substrate (usually

quartz, FEP Teflon, etc.).

Because of the very significant engineering advantages of

sprayable coatings, the former type, the "white", low-cx.s/€
coatings, were chosen for study on the research program for which

this final report is presented. Historically, the research effort
has been divided into four major phases: (1) Inorganic pigment
technology; (2) silicone-photolysis and silicone-paint investiga­

tions, (3) the design and characterization of two ultraviolet­

(the IRIF's) and a combined-radiation (the CREF) environmental
facilities and (4) general coatings investigations. However,
for the convenience of reporting on and discussing these aspects,
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the research results are presented as eight (8) independent

chapters~ One is on the general experimental aspects of the

program (Chapter 2), two are on inorganic technology (Chapter 3

on pigments and Chapter 4 on coatings), two are on silicone

technology (Chapter 5 on silicone polymer photolysis and Chapter 6

on silicone coatings), one chapter is on the development of a

combined-radiation environmental testing capability (Chapter 7),

another chapter is devoted solely to the development of zinc ortho­

titanate pigment and zinc orthotitanate-pigmented coatings

(Chapter 8), and the last chapter, exclusive of a brief summary,

is on the effects of combined ultraviolet-plus-proton irradiation

of several thermal-control coatings (Chapter 9).

The relative emphasis on each major task has varied during

the course of the program according to the urgency of the various

problems elucidated by our investigations. However, the major

emphasis during the past four years has involved the investigation

of new, potentially-stable white pigments, particularly zinc
orthotitanate and zinc orthotitanate-pigmented silicate and

silicone coatings, and on the design, construction and utilization

of a combined-radiation environment facility (CREF) that is

capable of simultaneously irradiating evacuated specimens with

simulated solar-wind protons and extraterrestrial ultraviolet

radiation.

Finally, it is appropriate to briefly examine the philosophy
that has guided this program from its inception. The approach

employed throughout was predicated almost solely on the applica­

tion of sound materials sciences practices within the framework

of a highly goal-oriented research and development program.

Basic mechanisms studies were instituted whenever needed, however

not with the frequency nor the intensity that we, as scientists

and research technologists would have preferred, yet with a

sufficiency of frequency and intensity that we, as practical

chemists and engineers,deemed necessary within the framework and

limitations imposed by the reality of the program requirements.
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The silicone photolysis studies were not completed due to more

pressing problems in terms of time and funds as well as to the

emergence of Owens-Illinois 650 resin as a strong candidate for

a stable binder. The value of the silicone photolysis results

presented in Chapter 5 relate more to their relevancy as a point

of departure for the future research required than as a solution,

to the combined radiation-environment problem of stabilizing

binders for long-term, deep-space. On the other hand, the much

more complete mechanism study reported in Chapter 8 for zinc

orthotitanate served as a guide to the stabilization of this

material utilizing surface treatment techniques and, as such, has

provided far more than a point of departure for the stabilization

studies that are currently underway on a subsequent research

program (the results of which have provided strong confirmation

of our choice of zinc orthotitanate as a pigment and of the
approach selected for its stabilization).

Consistant with the decision to perform goal-oriented develop­
mental research has been the operating ground rule that any can­
didate chemical structure, whether pigment or binder, in order

to be studied must be capable of being developed as a practical,

and therefore manufacturable, engineering material. Because of

this ground rule and because of the fact that during the entire

time of this program coatings have been required for (field)

application to spacecraft of all sizes (with emphasis on large

systems~ we have selected systems the stabilization of which de­
pends on impurity effects as a secondary rather than a primary

variable. Thus, the assurance of maintaining coatings' stability

when applied to large space vehicles tends to be a much more

straightforeward extension of laboratory-scale preparations for

such systems compared, for example, to systems the stabilization

of which depends on maintaining an exceedingly high degree of

purity as a first order variable. Indeed, the fact that field­

engineered, commercially-feasible coatings have been continuously

available as best-option selections based on the expanding state­

of-the-art is, we believe, testimony to the philosophy that has

guided this study. liT RESEARCH INSTITUTE
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2. EXPERIMENTAL

2.1 Test and Evaluation Philosophy

Tests of proposed candidate thermal control materials should

be made under conditions resembling as nearly as possible those
existent in the real space environment. Since these conditions

vary with distance from the earth--and sometimes even temporarily-­
simulation facilities must be able to operate over a range of

conditions. Yet, whatever the real space conditions are, the

equipment can rarely reproduce them. Therefore, and most impor­

tantly, we must make certain that the net effect of the real space

conditions is being achieved. This implies that we must be certain

that the effects induced in a test material by our simulation
facilities must be qualitatively--and, as nearly as possible,
quantitatively--the same as those induced by the space environ­

ment for the same exposure.

In space simulation testing of thermal control materials,
the damaging environments are the ultraviolet component of the
solar electromagnetic spectrum and charged particles (Van Allen

Belt and the solar wind). The hard vacuum of space in itself

does not constitute a damaging environment but indirectly has

much to do with the effects caused by ultraviolet and charged

particle radiation. The net effect of the vacuum of space is
such that, if a molecule or atom leaves an exterior spacecraft
surface, the probability of its returning is infinitesmally small.

Hence, all surface reactions involving the loss of atoms or
molecules are in effect irreversible.

The solar spectrum has always been very difficult to simu­

late. Although it is possible to achieve good spectral matches
in certain spectral regions, the cost of doing so virtually

prohibits routine use of exact simulators. Also, most of these
simulators "age"; that is, certain spectral lines exhibit dis­

proportionate decreases in certain spectral emission lines

relative to others. In short, even the best solar simulators
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are not very close in spectral match in the ultraviolet region;
their spectral outputs change with time.

Fortunately, most materials not only have relatively steep

absorption spectra at their fundamental absorptions, but also

exhibit broad and nearly constant absorption at wavelengths below

their fundamental absorption edges. Consequently, the most
important simulation parameter is total energy absorbed. This

varies considerably between different kinds of ultraviolet sources

but not so much with time in any single source. For any given

material the amount of ultraviolet absorbed fundamentally will be

some definite (but usually unknown)fraction of that which is

incident. For this reason the measure of ultraviolet exposure-­

the equivalent sun-hour (ESH)--has a meaning which depends upon

the total ultraviolet content of the source relative to that of

the sun. It is a convenient and constant, but by no means

accurate, measure of actual ultraviolet absorption. The equivalent
sun-hours of ultraviolet exposure were determined by the technique
employed in an earlier program (Ref. 1), a technique that simply

relied on the computation of total energy d~posited employing an
Eppley Model S Pyrhe1iometer.

The philosophy employed throughout this program has been

that, regardless of whether an ultraviolet, proton, or combined·­

radiation screening test, the shortest exposure was performed

that always permitted the extab1ishment of the degree of instability

exhibited by the most stable specimen in anyone test. In other

words, if 500 ESH of ultraviolet was sufficient to degrade all

specimens in any given screening test, that test was terminated.

On the other hand, the tests were always continued to 2000 ESH

even if only one specimen of twelve was sufficiently stable to

warrent such a test.* This philosophy has become even more

important as the need for and ability to test in the expensive,

simulated (combined) u1travio1et-p1us-proton radiation environment

*This rule did not extend to 293, S-13G or second surface OSR's
used as controls.
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has become established. The only cases where this philosophy

has not prevailed are where either low-ESH quality-control tests
of "specification" surfaces, or high-ESH simulation tests of
experimental surfaces "for record," were required.

2.2 Vacuum Considerations

The use of oil diffusion-pumped facilities has all but ceased

in space environment-effects studies. It has been found that the

oil back-streaming encountered with even highly baffled systems

is sufficient to contaminate specimens being irradiated by either
ultraviolet, charged particles or both. Oil diffusion-pumped
systems have not been used on this program.

Indeed, it has been found necessary and is now common practice

to regularly clean the ion-pumped facilities that are now almost
universally employed in space-irradiation facilities. At IITRI,

the vacuum pumps are themselves regularly dismantled and cleaned.

Because the bake-out techniques carbonize many of the low molecular
weight organic molecules collected by getter-ion pumps, the
residue builds up in the pump and usually it eventually causes

arcing and deterioration of pump performance. Non-carbonized
molecules that are removed from ion pumps and chamber structures
and walls by bake out are often collected on the colder portions

of chamber structures and walls.

Oil-based mechanical "roughing" pumps are rarely employed in
space irradiation facilities because of the impracticability of
eliminating oil contamination of the vacuum chamber. The use of

turbomo1ecu1ar pumps (if used properly) and/or 'sorption pumps to
evacuate facilities to pressures required to "start" ion pumps

has helped solve the major vacuum pumping problems inherent in
space-radiation-effects studies.

The non-in situ Quad-Ion ion pumped facility described in
paragraph 2.3.1 was rough-pumped with a well-trapped, oil-based
mechanical pump. The IRIF (para. 2.3.2) and CREF (para. 2.3.3

and Chapter 6) were pumped with 400 liter/sec. ion pumps that
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were rough-pumped with the Geleral Electric "Gulper," a fast
'sorption pumping system that itself is rough pumped with a
cryo-trapped carbon-vane mechanical pump.

The vacuum levels that have been employed during the course

of this program have ranged from 5 x 10- 6 torr (for the Quad-Ion
System) to 10-9 torr for the CREF (when utilized for ultraviolet

irradiation only). We have shown in other studies that vacuums
greater than 10- 5 torr are not required from the standpoint of

the partial pressure of oxygen necessary to interfere with
observable damage kinetics (Ref. 2). As a consequence, the
vacuums of 10- 7 torr that have been routinely achieved - with the

IRIF and CREF are deemed entirely sufficient for these studies.

2.3 Space Simulation Facilities

2.3.1 The Quad-Ion Ultraviolet Facility

The Quad-Ion ultraviolet-irradiation facility that was
employed until 1966 is shown in Figure 1. It was the facility
used to perform all non-in situ tests described in this report.

The Quad-Ion facility is a multiple-chamber, ultraviolet-irradia­
tion system that was pumped with 20 liter/sec. Ultec ion-pumps,
each equipped with a 180 liter/sec. titanium-sublimation pump.
This system employs four chambers and four ion-pumps with a
common rough-pumping system. The four chambers, which are pro­
vided with liquid-cooled samples tables, are mounted such that
the lamp-to-sample distance is variable, thus providing different
solar intensities during a given space-simulation test.

This system is not currently being used.

2.3.2 The IRIF-I and IRIF-II Facilities

The IRIF, an acronym for "In-Situ Reflectance/Irradiation

Facility," is a multiple-sample ultraviolet-simulation facility
possessing in situ hemispherical spectral-reflectance-measurement

capabilities. Two IRIF's are available; I and II. Both facilities
exhibit exceptional precision (repeatability) in the measurement
of spectral reflectance in the 220- to 2700nm wavelength range.
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IRIF-II is currently mated to a

with this facility, is known as
Environment Facility), which is

solar wind simulator, and-, tog'e~ther
,', ,

the CREF (Combined Radiation

de scribed in detail in Chapt-e,i: 6.

Each IRIF incorporates an integrating sphere with center­

mounted sample. IRIF-I employs a Beckman DK-2A and IRIF-II (the
CREF) , a Beckman DK-1 spectrophotometer. The major features of
the IRIF's include:

1. Operation of the integrating sphere in vacuum at
,..,,10- 7 torr.

2 . A sample exchange mechanism that maintains, during
irradiation, each of the 12 samples in contact with
a temperature-controlled sample table and that permits
the transfer of anyone of them to the integrating
sphere for measurement and the subsequent return to
the sample table for continued irradiation.'

The IRIF's are pumped with 400 liter/sec. ion pumps and are
rough-pumped with a General Electric "Gu1per" cryosorptionpump.
The IRIF has been described in detail by Zer1aut and Co~r~ney

(Ref. 3). It is shown in Figure 2; the A-H6 mercury argon ultra­
violet source that is employed with IRIF=I is not shown. (A
schematic of IRIF-II which is essentially identical to IRIF-I, is
shown as part of the CREF facility in Figure 52, Chapter 7).

2.3.3 The CREF

The CREF is described in detail in Chapter 7 of this report
and will not be discussed here. A 5-kw Hanovia mercury-xenon
source is employed with the CREF.

2.4 Ultraviolet Sources

2.4.1 The A-H6 Mercury-Argon Source

Because of a number of factors, chief among them being

economical operation, the General Electric 1000 watt A-H6 lamp
is widely employed as an ultraviolet source. Another factor that
prompts its use is the high ratio of ultraviolet to total (radiant)
energy. Accelerated ultraviolet testing at several equivalent

solar factors, based on total ultraviolet only, is possible.

liT RESEARCH INSTITUTE
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Accelerations of 10 equivalent solar factors are easily achieved

with an A-H6 lamp (compared to a maximum of about 4 to 6 for a

5kw mercury-xenon source and about 1.5 for 5kw xenon sources).

The principal problems associated with the use of high­

pressure mercury-argon sources are twofold: (1) They possess a

low-order continuum with strong superimposed mercury emission

lines, and (2) they exhibit short lifetimes and considerable

instability of spectral distribution as a function of age and

the number of starts. For that reason, we change A-H6 lamps every

72 hr during tests of longer duration at lIT Research Institute.

Lamp intensity (in equivalent solar factors) is determined

by first comparing the lamp to be employed to the characteristics

of an "average" lamp. The "average" lamp characteristics have

been determined over a period of time by plotting the output in
watts of a number of lamps as a function of 1amp-to-detector

distance. A linear plot (Figure 3) was drawn as an "average" to

be used for calibrating A-H6 lamps. The detector employed is a
Model S wide-angle temperature-compensated thermopile obtained

from the Eppley Laboratories; it possesses a constant of 6.98
- 1 - 2 . -1 Th . h .. f .mV·cal ·cm ·m~n e operat~ng c aracter~st~cs 0 any·g~ven

lamp are determined by measuring its output at 25 cm. These data

are then plotted on Figure 3 and a line is drawn through this

point parallel to the average data curve (tedius calibration is

thus avoided on a routine basis). Reference is then made to

Figure 4, which is a plot of the equivalent solar (ultraviolet)

factor as a function of total radiation received (by the thermo­

pile). Figure 4 was prepared by assuming that 30% of A-H6

radiation is in the 200- to 400-nm range and that "one" solar

factor is 13 mv/cm2 . These two plots are thus sufficient to

establish the 1amp-to-samp1e distance of a given lamp required

to achieve a given solar factor.

2.4.2 Xenon and Mercury-Xenon Sources

Xenon and mercury-xenon burners (100- to 10,000 watt short­

arc lamps) are being employed more and more frequently as
liT RESEARCH INSTITUTE
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ultraviolet sources; both 5000-watt Hanovia xenon and mercury­
xenon burners are employed at lIT Research Institute. Their
principal disadvantages are initial cost and only modest life­
times; they cannot be operated with confidence in the horizontal
position.

We prefer the mercury-xenon to the xenon source for two
reasons: (1) Hg-Xe sources possess a greater amount of ultraviolet
in the 200- to 230-nm wavelength region, permitting accelerated
testing, and (2) xenon sources possess intense emission bands in
the near infrared (850- to 1000-nm) that require filtering. The
combination of filtering and low ultraviolet intensity at short
wavelengths make accelerated testing with xenon lamps difficult,
if not impossible, for single arrays. The lamp output of the
two typical sources are compared for 1000-watt burners in Table 1
below (Ref. 4).

Table 1

COMPARISON OF SPECTRAL OUT-PUT OF SHORT ARCS

Spectral Range Total Watts Radiated
(nm) Hg-Xe Xe

200 - 210 0.19 0.04
210 - 220 0.72 0.07
220 - 230 1.09 0.10
230 - 240 2.15 0.14
240 - 250 2.86 0.18

2.5 Computation of Solar Absorptance

Solar absorptance is computed from the hemispherical spectral
reflectance data by integration with the standard Johnson solar
energy spectrum. The computation of solar reflectance is per­
formed simply by the addition of the reflectances (x 0.02) of
50 equal-energy wavelengths. The reflectances are listed by
employing a photo-positive overlay over the raw-data reflectance*

*Providing the 100% line does not necessitate compensation.
liT RESEARCH INSTITUTE
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chart-paper: Two overlays (one for the 325- to 700-nm and one
for the 700- to 2700-nm wavelength regions) are employed for the
Beckman DK-2A and one overaly is used in reducing the DK-l data.

The data are sometimes divided into two solar-absorptance

components, ~l and ~2; these two components are chosen such that
each encompasses one-half of the integrated energy in the Johnson
spectrum. Thus, ~l represents all energy below about 700-nm and

a2 represents all energy of greater wavelength, such that the

following identity can be made:

Computation and reporting of solar absorptance data in this manner
permits quick and easy reference to that portion of the spectrum

that undergoes the greatest amount of damage.

2.6 Pigment-Powder Specimen Preparation

The "water-mull" technique of pigment powder preparation,
which was developed by Y. Harada at IITRI, and which has been
described in various Triannual Reports and widely used in the

thermal-control coatings field, was employed in all pigment
studies except the screening tests described in section 3.1.
The water mull, also called the "wet-powder" spray method con­

sists of preparing a dilute water suspension of the pigment by
gently mulling the pigment in distilled water (if necessary).
The water suspension is then sprayed, preferrably with an air

brush, onto a substrate, usually aluminum pre-heated to ~200°F.

This technique permits the successful build-up of thick, reflec­
tive coatings of most pigment materials; nominal thicknesses of
5 mils are achieved. Indeed, we have found the technique to work
for IRIF specimens that are inverted by the mechanical sample

transfer in order to measure reflectance in the evacuated
Edwards-type integrating spheres that are modular attachments to

the IRIF's.

liT RESEARCH INSTITUTE
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3 . SUMMARY OF PIGMENT TECHNOLOGY

3.1 Pigment Screening Studies

3.1.1 Introduction

All pigment screening studies performed before 1965 were

performed prior to the advent of in situ reflectance measurements.
The facility described in paragraph 2.3.1 was employed in such

experiments. Even though the space ultraviolet simulation

employed during the period 1963 through 1965 would not be accept­

able technology today, the work is germane to the extent that:
(1) pigments and materials shown to degrade by post-exposure

measurements performed in air have been shown to never have

degraded less when the measurements were subsequently performed

in situ in vacuum, and (2) generally only the semiconductor pig­
ments have been found to be very sensitive to oxygen bleaching

and the data on the many dielectric pigments examined are largely

useful, though generally disappointing.

Reflectance spectra of the degraded "screened" pigments are

not presented, since, with only a very few exceptions, chief

among which were the zinc titanates, all pigments degraded

severely--as evidenced by the data presented in tabular form.

3.1.2 Reflectance of Various White Crystalline Materials

The reflectances of a large number of white materials were
determined (versus magnesium oxide) utilizing a Cary 14 spectro­
reflectometer (Ref. 5, 6). More than 40 potential pigments were

examined as pressed compacts (50-60 psi), making a total of about

100 that were examined at IITRI in the period 1963-1964. (Over
50 potential candidate pigments were screened previously in the

Stable White Coatings program for the Jet Propulsion Laboratory
(Ref. 1).)

The white pigment candidates listed in Table 2 are typical
of those examined in the early part of the program (Ref. 5-7).

The candidate materials were calcined to determine the effect of

heat treatment on their reflectance.
liT RESEARCH INSTITUTE
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All materials listed in Table 5 showed enhanced reflectance

in the infrared to varying degrees as a result of heat treatment.

In the visible and ultraviolet portions of the spectrum, improved
reflectance was relatively minor and was not realized for all
materials. Petalite, Kona F-4 and Edgar ASP revealed the most
significant increases. The approach to enstatite through partial
loss of water of talc (900°C is the water-loss temperature)
colored the material significantly. These experiments indicate
a method by which optical properties of a pigment can be altered.

Earlier work (Ref. 1) with zinc oxide powders has also shown
that improved resistance to ultraviolet-vacuum can be obtained by
calcination. Although no similar beneficial effect from heat
treatment was observed for alumina, zirconia, and zircon (Ref. 5),

the possible volatilization of contaminants and elimination of
defects suggested that heat treatment should be a standard pro­
cedure for pigments.

3.1.3 Ultraviolet Stability of Pigment Candidates

3.1.3.1 China Clays

The effect of ultraviolet irradiation on a number of aluminum
and magnesium silicates is presented in Table 3 (Ref. 7). A
decrease in solar absorptance for the Molochite china clay was
realized both from acid leaching and calcination. The higher
solar reflectance resulted from an increase in the infrared
portion of the spectrum, as indicated by the a Z values. In­
creased stability also occurred as a result of the treatments;
the most significant was that from acid leaching.

The mullite from fused grain (Mullnorite from the Norton
Company) and the Enstatite (American Lava) both showed severe
damage, especially the Mullnorite, which received only ZOO ESH
of ultraviolet irradiation (Ref. 8).

The Foresterite (American Lava) showed exceptional stability
to ZOOO ESH of ultraviolet irradiation. Unfortunately it
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possesses a poor solar reflectance and we were unable to obtain

improvements by beneficiation (Ref. 9).

3.1.3.2 Zirconium Compounds

The stability of a number of zirconias and zircons are
presented in Table 4 (Ref. 7, 8). Of the zirconium oxides ex­
amined as compacted powders, only the 99% pure Fluorescent Grade
produced by TAM was reasonably stable. TAM's very pure HP grade
(99.9%) was badly degraded, although it was examined in a very
severe test (i.e., 2370 ESH).

The double zirconium silicates were surprisingly stable
except for the barium zirconium silicate (Ref. 9). These data
led us to examine the double zircons in much greater detail.
The results of further studies are presented in paragraphs
3.2.7.4, a literature survey and 4.5.2, which deals with potassium
silicate-based paints.

3.1.3.3 Aluminum Oxide Pigments

The results of irradiation of a number of aluminas from
three manufacturers (Norton, Gulton, and Alcoa) are presented
in Table 5 (Ref. 8, 9). These data were surprising in that it
indicated that heat treatment at calcining temperatures had a
strongly deleterious effect on A1203 . Because we believe that
degradation is due to surface states and that lowering the sur­
face area (and hence the surface energy) of a pigment improves
resistance to degradation, the behavior of the A1203 is believed
to be due largely to a change in stoichiometry, which obviously
greatly effects the kinetics of the oxygen reactions at the sur­
face and in the bulk.

3.1.3.4 Other Pigment Candidates

The data for several pigment compacts (50-60 psi) are pre­
sented in Table 6. Typical of the stability of most of the

remaining materials examined are the results of irradiation of
dysprosium oxide and barrium sulfate (Ref. 7), and of the oxides
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of tin, calcium, molybdenum an.d tantalum (Ref. 8). As with

aluminum oxide, heat treatment had a deleterious effect on the

stability of the tin oxide (contrary to our previous and more

recent experience in heat treating, e.g., calcining, pigments,

in general).

The most exciting data obtained in the pigment screening

tests was the generally better stability of the zinc titanates

(Ref. 9). It was on the basis of these data that greater emphasis

was placed on zinc titanate-potassium silicate paints prepared

from the experimental materials obtained from the New Jersey Zinc
Company. These additional data are presented in the next chapter

(Chapter 4), the results of which subsequently led to the con­

centration on zinc orthotitanate as a new stab1e-white-pigment
candidate (see Chapter 8).

3.1.4 Summary of Pigment Screening

As pointed out in the introduction to this section, the
irradiation results on pigments (and coatings) whose post-exposure
reflectance measurements were performed in air (rather than in

situ in vacuum) are considered valid for those "dielectric" pig­

ments that do not exhibit significant oxygen-bleaching reactions
in air. This concept was proven in studies on another program,
also performed for NASA's George C. Marshall Space Flight Center
(Ref. 2).

The zinc titanates, however, were later found to exhibit
fast oxygen bleaching. Nevertheless, the basically good stability

exhibited by Zn2Ti04 in these studies gave impetus to the studies

that have now resulted in the development of new, low-solar
absorptance, stable white coatings.

3.2 Potentially-Stable, New* White Pigments

3.2.1 Basic Considerations

Theoretical considerations led us to believe that certain

binary and ternary systems containing complex and/or po1ynegative

*In addition to zinc orthotitanate.
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anions should be candidates for highly-reflective, space-stable,

white pigments. Not only do such materials offer the strong
possibility of possessing high refractive indices, but the" very

structure that assures high refractivity, namely high (electron)

density, was also believed to be important to stability. That

is, these less symmetrical structures should have stabilities

that are related to the reduction of vacancy formation and ionic
mobility.

Although these factors may not be as important to semicon­

ductors that exhibit "gaseous-sorption" bleaching, such as the

ultraviolet-induced, "bleachable" damage exhibited by rutile

titanium dioxide, and certain zinc orthotitanates, reduced ionic

mobility in semiconducting systems might at least preclude

additional, complicating reactions at the surface. Significant

gaseous-sorption bleaching of optical degradation is believed to

be limited to materials having semiconductor character, and such

instability should be amenable therefore to reactive encapsula­
tion techniques that have been found useful with zinc oxide,

titanium dioxide, and zinc orthotitanate (see Chapter 8). We

have not attempted at this time to ascertain the semiconducting

properties of the pigments described in section 3.2.2.

On the basis of ionic refractivities after Fajans and Joos

(Ref. 10), the double titanates, tungstates and stannates can be

expected to possess high refractive indices. In general, high

refractive indices can be obtained by utilizing the following

concepts:

1. a cation of high atomic weight and low charge

2. an anion of high charge and high atomic weight, or

3. complex ions.

Also, "if a compound of element A has a high refractive index,

then a compound of B, in the same group but of a greater atomic

weight, may be expected to have a higher one" (Ref. 11)
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It was decided to investigate the optical. and physical
properties, first through a thorough literature search, and then
on selected materials in the laboratory, of the following groups
of compounds: titanates, tungstates, stannates and double zir­
conium silicates.

3.Z.Z Literature Search

3.Z.Z.l Titanates

A thorough literature search on the properties and methods
of preparation of the zinc titanates was reported in a Triannual
Report (Ref. lZ) and is the subject of Chapter S; they therefore
will not be discussed here.

3.Z.Z.l.l Lithium Titanates

Six lithium titanates are discussed in the literature:

LiTiOZ (or LiZO'TiZ03)

LiZTi03 (or LiZO'TiOZ)

LiZTiZOS (or LiZO'ZTiOZ)

LiZTi30 7 (or LiZO'3TiOZ)

Li4TiS01Z (or ZLiZO'STiOZ)

Li4Ti70 l6 (or ZLiZO'7TiOZ)

Lundberg and Anderson (Ref. 13) mention the existence of a

series of compounds with the general formula of LixTi4_x/408'
They explain that this series of compounds has a ramsdellite
structure with "tunnels" that can accommodate a varying numb'er
of lithium atoms. No other reference could be found in the
literature which substantiates Lundberg and Anderson's thesis.
LiTiOZ is described by Reuter and Weber (Ref. 14) and by Lecerf
(Ref. lS). The latter author gives the color of LiTiOZ as black.

LiZTi03 is repeatedly mentioned in the liaterature, notably
by Kutolin and Seegeva in Russia (Ref. 16) and Lecerf in France
(Ref. lS), who implies, although he does not definitively state
it, that LiZTi03 crystals are white. Jonker (Refl 17),

liT RESEARCH INSTITUTE
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Yamaguchi (Ref. 18) and Barb1au (Ref. 19) have all synthesized
Li2Ti03 , although each author used different methods and reacted
the products of synthesis at widely varying temperatures ranging
from 6S0 to 12S0°C in environments such as vacuum, CO2 or
atmospheric conditions. The structure Li2Ti30S is only mentioned
by Barb1au and his coworkers (Ref. 20), where Li2Ti307 is dis­
cussed by two separate investigators - the previously cited
Lundberg and Anderson (Ref. 13) and Jonker (Ref. 17). There is
some doubt as to the very existance of Li4Ti70 16 , which was
reported by Bertant and Durif (Ref. 21), since Jonker claims that
the x-ray pattern of Li4TiS0 12 agrees with the pattern previously
attributed to Li4Ti70 16 .

3.2.2.1.2 Lanthanum Titanates

Five different titanates are reported in the literature:

La2TiOS (or La203Ti02)

La2Ti207 (or La2032Ti02)

La2Ti309 (or La2033Ti02)

La4Ti9024 (or 2La2039Ti02)

LaTi03
La2Ti207 is of special interest to us because of its out­

standing transmission properties, which were reported by Merker
and Herrington (Ref. 22). Transmission data were not available
for the other titanates, but at least one of them must be ruled
out as totally unsuitable: It is LaTi03 , which is reported to be
black by Kestigian and Ward (Ref. 23). LaTi03 and compounds in
the solid solution series between LaO. 69Ti03 and LaTi03 are
reported to have a cubic perovskite structure by Kestigian and
Ward, but this is contested by Johnston and Sestrich (Ref. 24),
who claim that the crystals are orthorombic. They relate this
orthorombic structure to the previously reported cubic perovskite
structure by doubling the cubic unit cell in the c direction and
using face diagonals for a and b.
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The various authors agree on the structure of LaZTiZ07 : It;:

has a distorted pyroch10re structure. This is reported by
Merker and Herrington who synthesized this compound by flame

fusion and by Co110ngues and his coworkers (Ref. ZS), who pre­

pared it by coprecipitation of LaC13 and TiC13 . The colors of
LaTi03 and LaZTiZ07 are complete opposites in spite of the rather

small difference in oxygen content. This should not deter the

selection of LaZTiZ07 as a potential space stable pigment,

however. LaZTiZ07 and LaTi03 are made from different initial
components - namely TiZ03 for the former and TiOZ for the latter.

Furthermore, no author reports significant problems in synthesizing

either compound. In fact, MacChesney and Aauer (Ref. Z6) do not
show the presence of LaTi03 in their phase diagram of the LaZ03­

TiOZ system.

The other three titanates are described by MacChesney and

Sauer. They personally discovered the existence of LaZTiOS and
La4TigOZ4 ' and received a personal communication from Jonker
who identified LaZTi309 . The existence of this latter compound

was later confirmed by Kestigian and Ward (Ref. Z7) and Repp
(Ref. Z8). The optical properties of these compounds are
unfortunately not discussed in these papers; the emphasis was
placed on methods of preparation and the measurement of dielectric
properties.

3.Z.Z.1.3 Gadolinium Titanates

Two forms of gadolinium titanates are reported in the
literature:

GdZTiOS (or GdZ03TiOZ)

GdZTiZ0 7 (or GdZ03ZTiOZ)

We will discuss our findings since they have a definite

academic interest. However, it should be noted that the cost of
gadolinium oxide, which is quoted by American Potash and Chemical

Corporation to be $300/1b, would probably prove to be a deterrent

to the use of GdZTiZ07 as a pigment. This is especially true if
liT RESEARCH INSTITUTE
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one considers that the equivalent lanthanum titanate can be made

from La203 , which costs $7/1b. Gd2Ti207 has excellent trans­

mission properties which are very similar to those of La2Ti207 ·

Both are reported by Merker and Herrington (Ref. 22). They

believe that the weak absorption at 0.9 micron in the gadolinium

titanate-transmission curve is due to contamination by ytterbium.

Roth (Ref. 29) indicates that Gd2Ti207 has a pyroch1ore structure

with cubic symmetry. Both Queyroux (Ref. 30) and Co11ongues and

his coworkers (Ref. 25) describe Gd2Ti05 as being monoclinic
derived from the fluorite type and the cell dimensions reported

by these two authors are in good agreement. Queyroux (Ref. 30,

31) makes an interesting observation concerning gadolinium oxide:

It has a cubic cell structure at ordinary temperatures which

becomes monoclinic when heated to 1000°C according to Perez y

Jorba (Ref. 32), where Queyroux notes that this transformation

occurs at 1250°C. They both agree that the reaction is reversible

and Perez y Jorba states that the cubic structure can be restored
by grinding the monoclinic oxide, followed by prolonged heating

at 900°C.

3.2.2.1.4 Tin Titanates

A thorough search in Chemical Abstracts did not provide any

information on crystal types, cell dimensions or transmission

properties of tin titanates. A British patent (Ref. 33) was

granted to Siemens and Ha1ske for the production of titanate

mixtures of tin, but no mention is made of the synthesis of pure

tin titanate. The existence of preparation procedures is implied

in the abstracts of two Russian publications (Ref. 34, 35) on

the dielectric properties of tin titanate. Khodakov and Kromakov
studied the small dielectric losses of solid solutions of SnTi03
and BaTi03 , whereas Kaczmarek discussed variations in dielectric
constants of solid solutions of BaTi03 and SnTi03 in a pulsed

electric field. A phase diagram of the Sn02-Ti02 was developed
by Padurow (Ref. 36).
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3.2.2.2 Tungstates

A publication by Cockayne and Ridley (Ref. 37) indicated

that not only calcium tungstate, but barium and strontium tung­

states as well, have outstanding transmission properties. This

opens the possibility of preparing solid solutions of two or

three of these tungstates that hopefully will have transmission

properties and stability superior to that of the individual

components. Calcium, barium and strontium ions have different

sizes and it is believed that a judicious apportionment of these

cations could relieve some of the stresses now present in the

calcium tungstate lattice.

3.2.2.2.1 Calcium Tungstate

The most commonly prepared form of calcium tungstate is

CaW04 , Nassau and Broyer (Ref. 38) report the existence of

Ca6W09 . Chang et a1 (Ref. 39) reports the existence of Ca3W06
as a stable compound; they report melting points of 1580°C and

2250°C for CaW04 and Ca3W06 , respectively. The phase diagram is

shown in Figure 5 (Ref. 39).

Cell dimensions of CaW04 are reported in two different

publications and are in good agreement. A very careful study of

interatomic distances in CaW04 was carried out by Kay, Frazer

and Almodovar (Ref. 40). They report that the slightly distorted
°W04 tetrahedron contains a w-o distance of 1.788 A and 01-W-02

angles of 113°27' and 107°56'. Nassau and Broyer (Ref. 38)
state that the distorted (W0

4
)2- ions are held apart by Ca2+ ions

which are surrounded by eight oxygens at the corners of a dis­

torted cube. The structure, a shee1ite structure, is described

as "very compact." The melting point of the CaW04 has been

reported to be 1535°C, 1566°C or 1576 ± 5°C by three different
investigators.

Lange's Handbook of Chemistry lists the refractive index of
CaW04 as 1. 9200.
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Fairly good agreement exists between the transmission spectra
given by Nassau and Broyer and the data of Cockayne and Ridley
(Ref. 37). The former report that their data does not entirely
agree with data presented by Gillette (Ref. 41) and they attribute
the structure in the 500- to 3000-nm region shown by Gillette to
the presence of either impurities or excess W03 .

Various investigators report preparing CaW04 by precipita­
tion from Na2W04 and CaC12 solution. Reduction of W6+ to W5+
by heating CaW04 in hydrogen at 1000°C produces a black compound
that can be reoxydized to white CaW04 by heating in oxygen.

3.2.2.2.2 Barium Tungstates

No less than six different barium tungstates have been re­
ported in the literature; BaO'W03 and 3BaO.W03 have been repeatedly
discussed and used whereas BaO'2W03 , BaO'3W03 , BaO·4W03 and
5BaO'12W03 are described only by Shivahare (Ref. 42). He formed
these compounds by titrating a solution of Na2W04 with BaC12 in
the presence of nitric acid. He observed that upon aging the
following reaction took place:

H20
5BaO'12W03 ) 4(BaO'3W03) + Ba(OH)2' (1)

whereas the normal (BaO'W03) and the (BaO'2W03) tungstates were
quite stable.

Normal barium tungstate appears to be a promising candidate
as a pigment for space vehicles; it exhibits good optical .,
properties, which are described by Cockayne and Ridley (Ref. 37),
and has a rather high heat of formation, which is discussed by
Rezukhina and his coworkers (Ref. 43).

The preparation of BaO.W03 can be performed by the method
employed by Shivahare (Ref. 42). This precipitation technique
was also utilized by Kis1yakov and his coworkers (Ref. 44). An
entirely different approach to synthesis was used by Zmud and
Ostapchenko (Ref. 45), who heated mixtures of W03 and BaC03 to
1600°C. A third technique used in the synthesis of BaW04 is
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SrO'W03
3SrO'W03
3SrO·8W03
5SrO'12W03 '28H20

described by Van Uitert and Soden (Ref. 46). BaW04 crystals were
grown by crystallization from a Na2W04 melt.

This technique was used to grow single crystals and it

gave a yield superior to the method previously employed to grow
single crystals in a NaCl melt.

3.2.2.2.3 Strontium Tungstates

A considerable number of strontium tungstates are reported
in the literature.

SrO'2W03
SrO·3W03
SrO'4W03

3SrO'7W03 '16H20

4SrO'10W0326H20

Two general methods of preparation have been employed. The first
one consists of precipitating various strontium tungstates by
adding strontium chlorides to the corresponding sodium tungstates.
This method yielded five different strontium tungstates and is
discussed by Shivahare (Ref. 47). The other method used to pre­

pare the strontium tungstates consists of reacting SrC03 and W03
at temperatures ranging from 800 to l200°C. This is discussed
by Fesenko (Ref. 48) and Belyaev (Ref. 49) and their coworkers.

3.2.2.3 Stannates

A quite complete discussion of the properties of the meta
and orthostannates by Dupuis (Ref. 50) indicated that the zinc,
magnesium and calcium stannates offered the possibility of being
white and potentially useful as space-stable radiator coatings.
We must rule out iron, copper, nickel, cobalt and manganese
metastannates, since they are not white.
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3.2.2.3.1 Calcium Stannates

Two forms of calcium stannate are reported in the literature:
The metastannate (CaSn03) and the orthostannate (Ca2Sn04). The
crystalline structure of the metastannate is the object of much
controversy. Colin (Ref. 51) and Nagay-Szabo (Ref. 52) indicate
that CaSn03 has a cubic cell but disagree on the size of the
unit cell, with Nagay-Szabo doubling the edge dimension. Megaw
(Ref. 53) believes the structure of CaSn03 is monoclinic whereas
Tanaka (Ref. 54), Smith and Welch (Ref. 55), Couganour (Ref. 56)
and Rooksby (Ref. 57) all believe that CaSn03 has an orthorombic
structure although they give it extremely different cell
dimensions.

The structure of calcium orthostannate is reported to be
orthorombic byTroeme1 (Ref. 58).

3.2.2.3.2 Barium Stannates

Barium metastannate has a cubic structure which is described
by four different authors. Nagay-Szabo (Ref. 52), Megaw (Ref. 53),
and Smith and Welch (Ref. 55) show very good agreement on the cell

°dimensions (a=4.12A) whereas Wagner and Binder (Ref. 59) attribute
°a larger dimension to CaSn03 (a=4.28A). Barium orthostannate has

been synthesized and described by Weiss and Faivre (Ref. 60).
It has a tetragonal structure.

3.2.2.3.3 Zinc Stannates

We could find only one reference on zinc metastannate:
Dupis (Ref. 50) claims that, upon heating, the metastannate is
stable up to 500°C and is completely transformed to the ortho­
stannate when the temperatures reaches 900°C.

Zinc orthostannate (Zn2Sn04) has a spinel structure.
good agreement is found between Colin (Ref. 51) and Natta
Passerini (Ref. 61) on cell dimension.
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3.Z.Z.4 Double Zirconates

These were of interest primarily because of the screening

studies performed very early in the program on the double-zir­

conium silicates. Results of a preliminary survey of the

literature are given in the following paragraphs.

3.Z.Z.4.1 CaO-ZrOZ-SiOZ

The CaO-ZrOZ-SiOZ system has been well characterized (Ref. 6Z)
and the phase relations are shown in Figure 6. For each pair of
constituent oxides, a 1:1 compound exists. Only in the CaO-SiOZ
system compounds of other molal ratio are formed. A ternary

compound was identified as Ca3ZrSiZ09 . This compound and
CaZZrSi01Z were reported previously (Ref. 63) but the latter was
thought to be in error (Ref. 6Z).

A ternary composition, unless of a confirmed compound, will
yield a mixture of phases whose make-up will be determined by
the method of preparation and the starting materials. The phase
composition of a quenched melt can be predicted from the phase

diagram.

A method has been described as to selectively dissolve .con­

stituents of the CaO-ZrOZ-SiOZ system for purposes of phase
composition analysis (Ref. 64). Various organic and mineral
acid reagents are used to successively dissolve free CaO,

CazSi04 , CaSi03 , other calcium compounds, SiOZ' and ZrOZ' leaving
ZrSi04 as a residue.

The refractive indices of these compositions would increase
with higher ZrOZ content. The ternary compound is low in ZrOZ
and therefore may not have good pigment qualities.

3.Z.Z.4.Z MgO-ZrOz-SiOZ
The MgO-ZrOZSiOZ system has recently been investigated in

some detail (Ref. 65) and no ternarys are reported. The phase
diagram is shown in Figure 7. Compounds of MgO and ZrOZ with

SiOZ are well known, while MgO forms solid solutions with ZrOZ
liT RESEARCH INSTITUTE
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stabilizing a cubic crystal structure,

been reported in the MgO-Zr02 system.

produce a phase mixture and increasing

tend to increase the refractive index.

but no compounds have

Ternary compositions would

zirconia content would

3.2.2.4.3 BaO-Zr02-Si02
Two ternary compounds have been reported for the BaO-Zr02­

Si02 system, namely Ba2Zr2Si3012 and BaZrSi30 9 (Ref. 66). Binary
phase relationships in the BaO-Zr02 system are unavailable.

However, high purity, ultra-fine size strontium zirconate (SrZr03)

powder has been synthesized by simultaneous hydrolytic decomposi­

tion of Sr and Zr alkoxides (Ref. 67). There is reason to believe
that BaZr03 could be synthesized likewise.

3.2.2.4.4 ZnO-Zr02-Si02
The ternary system ZnO-Zr02-Si02 has not apparently been

investigated and only the ZnO and Zr02 binary systems with Si02
are established. Commercially available ZnO-Sn02 compositions
are mixtures of the components, rather than a binary compound
and commercially available ZnO-Zr02-Si02 is a phase mixture,

whose x-ray diffraction pattern is essentially that of ZrSi04
and 2nO (Ref. 68).

3.2.2.4.5 Summary

Because of the information obtained in this survey of the

literature, coupled with the lack of good results achieved in the
earlier pigment screening and paint (Chapter 4) studies, no
synthesis experiments were performed.

3.2.3 Experimental Investigations

Various tungstates were obtained from Sylvania Electric
Products, Inc. and several new pigments described in the preceding

paragraphs were prepared by high-temperature solid-solution

reactions. The reflectances and ultraviolet stability of wet­
powder sprayed specimens of these pigments were determined
(Ref. 69).
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3.2.3.1 Ref1ectances of Several Pigments

3.2.3.1.1 Tungstates

The ref1ectances of five (5) tungstates purchased from
Sylvania Electric Products, Inc. were determined using the wet­

powder spray technique described earlier. The data which is

presented in Figures 8 through 12, was obtained with the Edwards­

sphere mounted Beckman DK-2A spectroref1ectometer, and is in

substantial agreement with the data shown by Cockayne and Ridley

(Ref. 37) for the tungstates of calcium, barium, and strontium.

We performed reflectance measurements further into the ultraviolet
region than Cockayne and Ridley and it is interesting to notice

that calcium tungstate has a definite absorption band at approxi~

mate1y 280-nm wavelength. Strontium tungstate has the highest

reflection in the 325 to 255-nm region and barium tungstate

appears to be the least promising of the three compounds.

Zinc tungstate has a definite absorption edge at 375-nm
wavelength. As shown by Figure 12, ZnW04 exhibits a gradual loss

of reflectance between 460 and 380 nm. Zirconium tungstate ex­

hibits a lower reflectance in the infrared region than the other

tungstates that were tested; it also has a gradual loss of
reflectance from 470 to 320-nm wavelength.

3.2.3.1.2 Stannates

We prepared a number' of stannates; the reaction conditions

are presented in Table 7. The most promising calcium stannate

prepared was CaSn03 (Batch A-773) reacted for 19.5 hr at 1000°C

(Figure 13). When higher reaction temperatures were used, the

ref1ectances of the resulting compounds progressively decreased,

probably because of the decomposition of stannic oxide.

Zinc orthostannate, Zn2Sn04' reacted for 19.5 hr at 1000°C
(batch A-770) is more reflective than all the other zinc stannates

that were prepared (see Figure 14). Zinc stannates prepared at
higher temperatures are less reflective and it is believed that

this also is due to the decomposition of stannic oxide.
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Table 7

EXPERIMENTAL PIGMENT SYNTHESES

Pigment Temperature Time,
Compound Degree Centigrade Hours Batch No.

CaSn03 500 5.75 A-747
CaSn03 500+ 5.75 A-751

1200 2.5
CaSn03 800 20 A-767
CaSn03 1000 19.5 A-773
CaSn03 1300+ 12 A-777

1400 2
Zn2Sn04 800 20 A-764
Zn2Sn04 1000 19.5 A-770
Zn2Sn04 1200 17 A-782
Zn2Sn04 1300+ 12 A-775

1400 2
SrSn03 1100 3 A-745
Sr2Sn03 1200 17 A-781

Examination of Figure 14 shows that, while the product prepared
at 1300°C (Figure 12) is less reflective in the visible portion
of the spectrum, it exhibits greater reflectance in the 1500-nm
wavelength region. This is attributed primarily to the greater
particle size of the high-temperature product.

It should be emphasized that prior to reaction, ZnO and
Sn02 were dry mixed and that no attempt was made to extract
unreacted elementary oxides from the final product. There can
be little question that slurrying and extraction of unreacted
oxides would improve the initial reflectance of zinc ortho­
stannate.

3.2.3.2 Stability of Several Pigments

3.2.3.2.1 Tungstates

The effects of 1000 ESH of ultraviolet irradiation on three
calcium tungstate powders are presented in Table 8. Different
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lots of calcium tungstate have been observed to vary in stability,

as exemplified by the differences between the heat treated lots
54 and 61.

Because of these discrepancies, a series of calcium tung­

state-powder specimens were prepared, the objective of which was

their stabilization by selected heat treatments. The data, in­

cluding the heat treatments, are presented in Table 9. Although

the various heat treatments employed were not effective in

stabilizing Lot No. 600-16 (Sylvania Electric Products, Inc.),

the results of subsequent irradiation of a heat-treated specimen

of Lot No. 8802-78 was encouraging. The spectral-damage curves

for the Lot No. 600-16 control are shown in Figure 15; the spectra

for the 800°C-treated Lot No. 8802-78 are presented in Figure 16.

A series of mixed tungstates of calcium, strontium and
barium were prepared according to the schedule contained in

Table 10. These materials were irradiated for 360 ESH of Hg-Xe
(ultraviolet) radiation in IRIF-II. The results are also pre­
sented in Table 10. (An exposure of 360 ESH was sufficient for

differentiating between the specimens being tested.)

Again, the tungstates were very disappointing. Only BaW04
exhibited reasonable stability. We believe that most of the

difficulties are due to intrinsic impurities in the percursor

tungstates. Also, the system is apparently very susceptible to

surface contamination and grinding.

Because of the erratic behavior of the calcium tungstates
when irradiated as powders (behavior that we also observed for

the CaW04-pigmented paints described in Chapter 4), coupled with

the disappointing behavior of the other/mixed tungstates, and

the increasing emphasis that was placed on the zinc orthotitanate

system, we suspended further studies on the tungstates until

more concentrated efforts could be placed on the synthetic and

solid-state chemistry aspects of the problem.
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Table 9

SPECTRAL DAMAGE SUSTAINED BY caW04
POWDERS (WET SPRAYED)

Heat Treatment Exposure1 tiRI-.. (I-.. , nm)

Lot No. Temp. , °C Time, Hr (ESH) 325 400 700 2400

600-16 No Heat Treatment 1000 15.0 9.0 0.5 0.0

600-16 500 16 1000 14.4 8.8 0.3 0.0

600-16 750 17 1000 15.0 8.3 0.2 0.0

600-16 1000 15 1000 18.0 11.0 0.0 0.0

600-16 1250 2 1000 16.0 9.0 1.0 0.5

600-16 1250 16 1000 17.0 9.0 -0.4 -0.3
1802-78 800 4 2500 4.0 2.0 2.0 0.0

I The 1000-ESH exposures were performed in IRIF-li
the 2500-ESH exposure was performed in IRIF-II.

Table 10

SPECTRAL DAMAGE SUSTAINED BY PIGMENT POWDERS (WET SPRAYED)
IRRADIATED FOR 355 ESH IN IRIF-II

uRI-.. (I-.. , nm)

Description 336 407 818 2362

SrWo
4 (Sylvania Elec. Prd. ) 14.2 8.0 1.0 0.8

BaW0
4 (Sylvania Elec. Prd. ) 2.0 4.0 1.0 2.0

ZnWo4 (Sylvania Elec. Prd. ) 0.0 2.3 10.0 9.0
ZrW04 (Sylvania Elec. Prd. ) 6.5 20.6 30.2 -2.2
CaW04 ·2 BaW0

4 (12 hr/1300 o C) 23.0 18.7 1.5 0.6
2 CaW04 ·BaW0

4 (12 hr/1300 o C) 8.6 6.0 0.7 0.0
CaW04 ·2 Srwo

4 (12 hr/1300 o C) 13.1 7.1 1.0 0.0
2 cawo4 ·SrWo

4 (12 hr/1300° C) 13.8 9.8 3.4 0.3
SrW04 ·2 BaW0

4 (12 hr/1300 o C) 19.4 12.3 2.0 1.2
2 SrW0

4
·BaW0

4 (12 hr/1300°C) 18.8 12.8 1.2 1.2
cawo4 • BaWo4 •Srwo

4 (12 hr/1300 0 C) 15.0 8.0 1.0 0.0
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3.2.3.2.2 Stannates

Both calcium and zinc stannate were prepared by solid­
solution reaction. Exactly 325.6 g (4 moles) of SP500 ZnO and
301.4 g (2 moles) of Sn02 (reagent grade) were each slurried for
5 min in distilled water (600 and 1200 g respectively). They
were then mixed and slurried for 15 min. The slurry was vacuum
filtered and dried at 110°C for 16 hr. One hundred grams of the
dried powder mixture (ZnO + Sn02) was placed in an alumina
crucible and fired for 16 hr at 950°C (1740°F). The results of
irradiation for 1000 ESH are presented in Table 11.

Table 11

SPECTRAL DAMAGE SUSTAINED BY WET-SPRAYED
STANNATE POWDERS IRRADIATED FOR 1000 ESH

Pigment
CaO·Sn02
2ZnO·Sn02

325
7.1

0.0

400
10.0

2.0

nm)
700
0.8

0.0

2400
-1.5

4.6

The zinc orthostannate specimen was remarkably stable in
all wavelength regions except the long wavelength region beyond
1200 nm. The spectra are plotted in Figure 17.

The damage exhibited by the Zn2Sn04 was confined to the
1500- to 2600-nm wavelength region - damage that is very similar
to that exhibited by ZnO, but much less intense. This damage
bleached out completely on admission of oxygen to the irradiation
chamber. The damage is therefore believed to be due to residual
(unreacted) ZnO.
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4 . SUMMARY OF INORGANIC COATINGS TECHNOLOGY

4.1 Porcelain Enamels

White, fused vitreous porcelain enamels were considered for

early U.S. spacecraft but were not employed for three principal

reasons: (1) they required high firing temperatures, (2) they

were heavy at thicknesses that provide adequate reflectance, and

(3) they possess generally poor infrared reflectance due to the

low concentration of opacifier employed in such enamels. Although

these disadvantages are accurate from an historical standpoint,

we have long believed that improved infrared reflectance could be

be achieved and that 10w-temperature-vitrifying glasses could be

developed, the realization of which would eliminate all three
objections.

Experiments at lIT Research Institute in 1965 (Ref. 8)
indicated that porcelain enamels could be developed that would

be very stable and we have since strongly advocated that greater
attention be devoted to such systems. The results of early

studies are presented in Table 12, along with the results of a

subsequent long-term irradiation exposure performed in the IRIF-I

in situ facility. The damage spectra of the rutile-opacified

enamel irradiated in the IRIF-I is presented in Figure 18.

Examination of this spectra shows that the high initial solar

absorptance is due to poor infrared reflectance, but that the

coating is quite stable. The rate curve is presented in Figure 19,

which is adapted from References 2 and 70. The flight curve is

also for a rutile enamel and is adapted from Nee1 (Ref. 71).

The stability of porcelain enamels, including the surprising
stability of the antimony oxide-opacified system, is believed to

relate to the prevention of oxygen reactions at the pigment

(opacifier) particle-glass matrix interface. The matrix density

and intimacy of the glass/oxide interface simply do not permit

the oxygen to escape--and, of course, the oxygen that is desorbed

in vitrification is not replaced on cooling for the same reasons.
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Table 12

RESULTS OF ULTRAVIOLET IRRADIATION OF
BOROSILICATE GLASS ENAMELS* (SOLAR FACTOR = lOX)

Solar
In Situ Exposure Absorptance

cc. 6cc. sOpacifier Meas. (ESH) s
r-Ti02 No 2350 0.242 0.016

r-Ti02 No 2150 0.252 0.008

Zr02 No 2150 00409 -0.014

Sb203 No 2150 0.355 0.030

r-Ti02 Yes 2800 0.306 0.021

'\-Obtained from Chicago Vitreous Company.

Therefore, as will be discussed in more detail in Chapter 5,
electrons are not free to accumulate either in low-energy surface
traps, in anion vacancies, or in the conduction band (as in the
case of ZnO). The opacifier is thus virtually stabilized by the
glass matrix.

Although neither high-temperature ultraviolet nor charged
particle (low-energy protons and electrons) irradiations of
porcelain enamels have been reported, their potential for use
on critical areas, where either high temperatures are reached or
where their c1eanabi1ity and non-outgassing characteristics are
needed, has been demonstrated. Providing that current studies*
result in improved infrared reflectance and in reasonably low­
temperature vitrifying characteristics, porcelain enamels may
very well receive greater attention in the future.

4.2 Z93 Thermal-Control Paint

Although lIT Research Institute's Z93 thermal-control
coating was developed for the Jet Propulsion Laboratory in an
earlier program (Ref. 1, 72), we have continued to evaluate Z93's

*NASA Contract NAS8-27439, Hughes Aircraft Co.
liT RESEARCH INSTITUTE
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characteristics in order to learn how to better handle and

,apPly this material. Z93 is a zinc oxide-pigmented potassium

silicate paint formulated in a pigment-to-binder weight ratio

(PBR) of 4.3 and a solids content of 57%. The original specifica­

tion called for calcination of New Jersey Zinc Company's SP500

ZnO at 700°C for 16 hr; the binder is Sylvania Electric Products

Corporation's PS7 potassium silicate (35% sdn.).

4.2.1 Experiments with Various ZnO Pigments

A limiting solar absorptance for zinc oxide-potassium

silicate paints of about 0.13 is observed due mainly to ZnO's

strong ultraviolet absorptance. Increasing the reflectance both

in the near-ultraviolet region and also in the infrared portion

of the spectrum is necessary for attaining lower solar absorp­

tance.

An investigation of the optical characteristics of various

zinc oxide powders as functions of particle size and manufacturer
was conducted. The reflectances of a number of commercial zinc

oxide powders were measured.

Sample preparation consisted of pouring the powder into a
copper ring placed on a vellum-covered steel plate. A steel

disc of 1-1/2 in. diameter (equal to the inside diameter of the

ring) is fitted into the ring covering the pigment. A pressure

of 5,000 psi applied on the steel disc results in a specimen with

one exposed face for reflectance determination. No binders or

lubricants were used, thus averting the possible effects of foreign

materials.

Information concerning the physical properties of the various
powders as well as solar absorptance values are presented in

Table 13. Absorptance values are reported as ~l and ~2 for the
reasons that were given in section 2.5.

Spectral reflectance curves are graphically illustrated in

Figures 20, 21 and 22. Among the "AZO" series shown in Figure 20,

lowest solar absorptance is exhibited by AZO-66. Although the
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reflectance of AZO-77 approaches that of AZO-66 in the visible

portion of the spectrum, a rapid reflectance drop-off in its

infrared reflectance contributes to a higher solar absorptance.

The larger particle-sized AZO-88 displayed a higher infrared

reflectance, but its poor reflectance in the visible caused a

relatively high solar absorptance.

Spectrographic grade SPsOO ZnO possessed the lowest solar

absorptance among the commercial zinc oxides. AZO-66 is more

reflective in the visible region, i.e., 0.38-0.70U, than SPsOO
whereas AZO-77 possesses about the same reflectance as SPsOO in
this region. This high purity material manifests its superior
reflectance in the infrared wavelength region. As tabulated in

Table 13, the Q 2 of SPsOO is 0.037 and is considerably less than
that of AZO-66 (0.050) or AZO-77 (0.070). Calcination of SPsOO
at 700°C did not significantly affect the solar absorptance.

However, a higher temperature, 1000°C, causes a distinct reflec­
tance loss in the visible. Use of a calcined, larger particle

size SPsOO {2.lU} results in lower visible reflectance and a

slight increase at wavelengths greater than 2.0U. Curves for

these powders appear in Figures 20 and 21. Not illustrated are
the 700°C calcined SPsOO materials which display curves practically
identical to the uncalcined powder.

Figure 22 illustrates the spectral reflectance of USP 12
which also has a relatively low solar absorptance and of two

materials of larger particle size, XX2s4 and E-P 730. The

Eagle-Picher material was visually yellow and had the highest

solar absorptance of the zinc oxides studied.

These studies indicate that reflectance at the longer wave­
length is improved with the use of larger particles, which is

consistent with light-scattering theories. However, since half
of the solar flux is concentrated in the portion of the spectrum
below 0.7U, and therefore it is this region in which the reflec­

tancemust be optimized, SPsOO ZnO was deemed still to be the

best choice of ZnO for the Z93 formulation in terms of initial

optical properties. liT RESEARCH INSTITUTE
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4.2.2 Calcination of SP500 ZnO

4.2.2.1 Calcination at New Jersey Zinc Company

A series of potassium silicate-bonded zinc oxides were pre­
pared from as-received, calcined New Jersey Zinc SP500 zinc oxide
(Ref. 73). The average particle size for three lots varied as
follows (provided by New Jersey Zinc Company):

5223
0.56

5222
0.47

5221
0.52

Sample
Particle Size
(microns)

Table 14 shows the ultraviolet degradation of three Z93 paints,
also designated 5221, 5222 and 5223, prepared from the "pre­
calcined" SP500. This preca1cined material is heat treated at
a temperature between 600 and 700°C for one hour, presumably in
air.

Table 14

COMPARISON OF Z93 PAINTS PREPARED FROM
SP500 ZINC OXIDE PIGMENTS CALCINED BY NJZ (Solar Factor: 7X)

Exposure Solar Absorptance
LSaa 1 a 2 aSample No. ESH s s

5221 0 0.076 0.052 0.128
1650 0.101 0.051 0.152 0.024

5222 0 0.081 0.060 0.141
1650 0.106 0.059 0.165 0.024

5223 0 0.091 0.064 0.155
1650 0.112 0.063 0.175 0.020

The change in solar absorptance is relatively high compared
to values that are usually obtained on paints containing "standard"
SP500 zinc oxide calcined at IITRI. Typical of the results is
the ~as of -0.016 reported for specimen 7173 of Z93 reported in
Table 4 of section 3.2.4.
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4.2.2.2 Calcination at IITRI

Although the original specification for Z93 calls for cal­

cination of the SPSOO ZnO pigment for 16 hr at 700°C, our
experience with currently furnished material is that 700°C is·
too high a temperature and slight yellowing results. We have
recently found that 635°C is the optimum calcination temperature
for currently-furnished SPSOO ZnO; a higher temperature is too
yellow and a temperature of 610°C, although slightly superior in
optical properties, results in a tendency to produce checking of
the cured paint.

4.2.3 Stability of Z93-Type Paints Prepared from Various
Zinc Oxides

Potassium silicate-bonded coatings with four different zinc
oxide pigments, which had been prepared more than one year
previously (and stored under normal laboratory conditions) were
irradiated for 2150 ESH of ultraviolet irradiation. The data,
presented in Table 15, show that the degradation resistance of
these coatings is not impaired by storage. Of the four coatings,
the standard Z93 was affected least by ultraviolet irradiation
in vacuum. The negative 6a for the paint (Z93) is attributed to
the reflectance increase in the a 2-region as a result of loss of
water by the silicate vehicle.

4.2.4 Grinding Z93 Paint

Because of the propensity for yellowing on grinding ex­
hibited by zinc oxide pigments, especially SP500, care must be
exercised in the preparation of paints pigmented with zinc oxide.

The yellowing has been attributed to a zinc interstitial that
results from lattice distortion during grinding and has been
studied by Gilligan (Ref. 74). (Work with S-13, the precursor
paint to S-13G, has also shown that the space environment
stability of overground ZnO is impaired seriously; see Chapter
6) .
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We have therefore historically ground Z93 (and S-13G) to a

much coarser grind than is standard practice in the paint and

enamel industry and the standard Hegman Gage is of no value in

registering and monitoring fineness of grind. Our current
practice is to employ a PB-20 Peanut Butter gage (Gardner La­
boratories) for determining the correct dispersion of Z93 (and

S-13G)

The original specification calls for a paint grind of 6 hr
in a laboratory pebble mill. This is much too long and current
practice is to grind as little as possible but usually between
35 and 45 min. A typical laboratory batch of Z93, ground for
40 min in a small pebble mill, has a PB-20 fineness of grind of
about 6. Recently a series of Z93 grinds was prepared in order
to correlate fineness of grind with solar absorptance. The

results are represented by Figure 23. The fineness curve is
easily explained from grinding theory. The solar absorptance
curve may be explained as follows: At grind times of less than
40 min (PB fineness >6-1/2), the lack of dispersion has an adverse
effect on light scattering efficiency and the total reflectance
(solar) is less than optimum; at grind times treater than 60 min
(PB fineness <5), yellowing due to lattice distortion overcompen­
sates for the increasing light scattering efficiency and the solar
absorptance increases. A composite of many years of experience
in observing the stability of over- and underground Z93 is
presented in the "dashed" curve of Figure 23. The poorer sta­
bility at low grind times is attributed to unprotected islands
of silicate binder. On the other hand, the poorer stability of
overground Z93 is attributed primarily to the greatly increased
solar energy absorption resulting from lattice distortion, i.e.,
the creation of the now recognized B-band in ZnO (Ref. 74).

It must be noted that the data represented by Figure 23
should be plotted for every combination of mill-type, ball-to­
charge ratio and mill speed employed in the manufacture of Z93.
Examination of the curves in Figure 23, which is quite typical
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for l-qt laboratory pebble mills operated at a standard 50%
charge and 70% of critical speed, show that about 40- to 70 min.
grind time is required for optimum reflectance but that 30- to
60-min. is optimum for space ultraviolet stability. We there­
fore currently grind 293 to a fineness of not less than 5-1/2,
which is usually between 35 and 45 min. for the mills employed.

4.2.5 Surface Preparation for 293

Two simple procedures have been found necessary for pre­
paration of metal surfaces for 293, procedures which, if not
performed, will likely result in early adhesion failure of the
cured paint, but which, if properly performed, will ensure an
exceptional bond. The first is to clean the metal surfaces to
the extent that they are break-free to water. This is accomplished
in various ways; a typical sequence for aluminum is:

Vapor degrease } Standard De-Ox procedures employed
5% NaOR in the Aerospace Industry will
De-smut with 15% RN03 usually suffice.
Rinse with water
Rinse (scrub if necessary) with ethanol
If not break free to water, scrub with 5% Alconox or an
abrasive cleanser such as COMET, etc. Rinse thoroughly.

The second important procedure consists of immediately rub-
priming with 293 (employing a lint-free swab) to effect a "washed,"
thin coating. Although rub-priming is not necessary for most
aluminum surfaces, it is absolutely necessary for magnesium,
stainless steel, brass and beryllium--and we recommend it also
for all aluminum alloys as well. Indeed, we have successfully
coated l-mil 304 stainless steel sheets (6-ft diameter) with
4 mils of 293, with the result that flexing of the stainless
steel sheet did not adversely affect the 293 coating. This was
made possible only by rub-priming the surface first.

We have been successful in applying 293 to plastic and
plastic fiberglass surfaces providing the surfaces can be
primed with Randolph Products' Non-Chromated Epoxy Primer
W-2248-A (at a thickness of 1 mil).
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4.2.6 Sununary

Z93 has proven to be the most ultraviolet-stable, diffusely­

reflecting, thermal-control coating currently being employed on

U.S. spacecraft. Typical of the data on Z93 for near-earth orbit

are the data of Pearson (Ref. 75) and Millard (Ref. 76), which

are included in Figure 19, page 60. Furthermore, because of its

exceptional stability to ultraviolet radiation in space, Z93 has

been employed as a standard against which the experimental paints

discussed in Chapters 6 and 8 were compared.

Although at various times Z93 has been reported to have

failed in adhesion, examination has shown that in nearly 100%

of the cases, improper surface preparation was responsible for

the failure. Indeed, even in the cases reported concerning dis­

coloration of Z93-painted surfaces, improper surface preparation

has usually been responsible (external contamination has been
found responsible for the remaining cases of discoloration
reported).

The studies reported in the previous paragraphs have con­

firmed that the original Z93 formula (Ref. 1, 72), i.e., the
specific ingredients (SP500 ZnO and PS7 potassium silicate) and

the formula weights employed, is optimum. However, these studies
have shown that the proper calcining temperature for currently

furnished SP500 ZnO is 635°C (rather than 700°C), and that a

much shorter grind time is required in pebble mill manufacture of

the paint (about 40 min. rather than 6 hr). Also, rub-priming

for Z93 with Z93 has been found desirable for aluminum surfaces
and mandatory for all other metal surfaces. Finally, we have

found Randolph Products' W-2248-A epoxy primer to be satisfactory

for priming plastic and plastic-fiberglass surfaces for applica­
tion of Z93.

4.3 Reflective Topcoats for Z93

Attempts were made to improve the reflectance of a zinc

oxide-silicate system by application of an ultraviolet-reflecting
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topcoat. Because of its good ultraviolet reflectance and rea­

sonably good stability, a thin zirconia-silicate coating with a
pigment-to-binder ratio (PBR) of 4.30 was selected. It was brush­

painted on a portion of several 1 x 3-in. zinc oxide-silicate
(Z93) samples. For a 0.4 mil Zr02-silicate paint (-0.07g), the
reflectance improvement is given in Figure 24 (Ref. 5). The
solar absorptance changes due to topcoating are concentrated in
the ultraviolet, i.e., the a l region of the spectrum.

A space-simulation experiment was conducted to determine the
stability of Z93 overcoated with 0.4 mil of silicate-bonded
zirconia. Figure 25 illustrates the complete experimental
sample measuring 1 x 3 in. and the 1 x l/2-in. test specimens
(Nos. 1 to 4) which were cut from the parent. Samples 1 and 3
were heated at 400°C for 2 hr; Samples 2 and 4 received no
treatment. Data for this experiment, conducted at an accelerated
solar factor of 11.0 suns in the Quad-Ion Facility (see section
2.3.1), are tabulated in Table 16.

Table 16

EFFECT OF ULTRAVIOLET IRRADIATION IN VACUUM ON Z93 TOPCOATED
WITH A ZIRCONIA-SILICATE PAINT

Exposure ~olar Absorptance
Sample ESH a l 0.2 o. s D.o.

S

1 0 0.088 0.085 0.172
2560 0.130 0.081 0.211 0.039

2 0 0.068 0.081 0.149
2560 0.163 0.087 0.251 0.102

3 0 0.101 0.076 0.176
2560 0.107 0.070 0.178 0.002

4 0 0.102 0.080 0.182
2560 0.122 0.073 0.194 0.012

5-19-6* 0 0.080 0.120 0.200
2560 0.141 0.110 0.251 0.051

*Silicate-bonded zirconia coating only.
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Zr02-si1icate

on ZnO-si1icate ZnO-si1icate

4

Figure 25 EXPERIMENTAL SAMPLE AND CUT SPECIMENS

As can be seen from Table 16, a comparison of original
values, i.e., before irradiation, of samples 2 and 4 reveals the
improvement in reflectance of the topcoated specimens. Upon
heat treatment, the reflectance of zirconia (No.1) decreased,
but that of zinc oxide (No.3) did not. Comparison of a 2 values
of Z93 and the dual system with those of 5-19-6 shows the

superior infrared reflectance of the dual systems.

Irradiation resulted in significant degradation of the top­
coated samples. The heat-treated sample, however, was consider­
ably more stable than the air-dried sample. A curious result was
the inferior stability of the composite (Sample 2) in comparison
to that of the pure zirconia coating.

4.4 Effect of Heat Treatment on Silicate Coatings

4.4.1 Effect on Reflectance

Although a number of experiments were performed to determine
the effect on reflectance (and on optical stability) of heat
treatment (Ref. 6), typical of the results are those obtained
with potassium silicate paints pigmented with SP500 zinc oxide
(Z93) and zirconium oxide (zirconia, Fluorescent Grade).

Coatings of these two materials were examined (Cary Spectro­
photometer) before and after a 500°C treatment. Spectral curves
appear in Figure 26. The zirconia film was applied on a Pyrex
substrate, and the Z93 was applied on abraded aluminum. Both
samples showed significant improvement in the infrared region;
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apparently the heat treatment results in volatilization of water
and thus eliminates the water-absorption band that exists at

about 1900 nm wavelength.

The observed improved reflectance in the infrared for sili­
cate bonded coatings with heat treatment is not an irreversible
phenomenon. Optical examination of heat-treated samples after
periods of time showed that infrared reflectance drops slightly
with time, indicating a reintroduction of the water band at
about 1900 nm. However, this is a relatively slow process and
time lapses of 30 days has only a small effect on solar absorp­

tance.

4.4.2 Effect on Stability

A series of space-simulation experiments was conducted to
examine the effects of heat treatment on the stability of sili­
cate-bonded coatings. Samples of air dried and heat-treated
silicate-bonded diatomaceous earth and zirconia (TAM C.P.) paints
were subjected to ultraviolet irradiation in vacuum for 2000 ESH
in one and 1020 ESH in another test. The results are given in
Table 17.

The beneficial effect of the SOO°C treatment on stability
is obvious for both compositions and is stronger for the zirconia
sample. A lSO°C treatment did not appear to change the degrada­
tion characteristics for diatomaceous earth. In all cases a

bleaching effect in th~ infrared portion of the spectrum resulted
from irradiation for 2000 ESH.

A lowering of initial ~ was realized at lower heat treat-s
ments in the series irradiated for 1020 ESH; an increase resulted
at the higher temperatures. The heat-treated paints exhibited a
curious effect at the lower temperatures; mild heating produced
a more degradable coating. Improvement in ultraviolet-vacuum
resistance became apparent at 400 and SOO°C. Also included in
this experiment was a pigment sample of TAM's C.P. zirconia.
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Much stronger degradation occurred for this pigment than for the
silicate-bonded paints, indicating a protective effect for the

vehicle.

4.5 Stability of PS7 Paints Prepared from Various Pigments

A large number of potassium silicate paints were prepared
from various white pigments and were irradiated in the Quad-Ion
facility described in section Z.3.l. As pointed out earlier,
these non-in situ data are valid because, except for zinc ortho­
titanate, the pigments are dielectrics, which do not exhibit

significant 0Z-bleachable spectral damage. Additionally, the
zinc orthotitanate-coatings data largely are relevant since
potassium silicate paints do not exhibit significant 0Z-bleachable
spectral damage, even when pigmented with sensitive semiconductor
pigments (e.g., zinc oxide and rutile titanium dioxide).

4.5.1 Early Zinc Titanates-Pigmented Silicate Coatings

Ultraviolet damage data for several zinc titanate paints
are presented in Table 18. The earlier pigment studies led._ to
the preparation of a series of silicate paints (Ref. 7, 9, 77),
based on New Jersey Zinc Company's A-54-Z zinc titanate, later
determined by x-ray analysis to be the orthotitanate. Although
these data were certainly not conclusive, the results of the
short exposure of the high-PBR paint (5.38), with a 6a ofs
0.005, and the heat-treated paint prepared from unheat-treated
pigment, with a 6as of 0.OZ9 in ZOOO ESH of ultraviolet irradia­
tion, led to further consideration, which subsequently resulted
in research to successfully stabilize ZnZTi04 (see Chapter 5).
It should be noted also that the poor stability of the paint
prepared from New Jersey Zinc pigment 60Z-Z6-1M, which did not
contain excess zinc oxide, was considerably less stable than
paints prepared from A-54-Z, which contained excess ZnO.

4.5.Z Silicate Paints Prepared from Double Zircons

A series of silicate paints pigmented with double zirconium
silicates, obtained from TAM, were prepared and irradiated in a
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series of Quad-Ion space simulation tests (Ref. 9, 73). The

data are summarized in Table 19.

Examination of the compilation presented in Table 19 demon­

strates that the solar absorptance, ~s' of unirradiated paints,
as well as the change of solar absorptance due to irradiation,

varies considerably with the heat treatment applied. These data
indicate that annealing of the paint may cause a more significant

improvement of the paint than calcination of the pigment alone.

Heat treatment of the paint probably results in a better pigment­

vehicle bond and thus in the formation of a more effective
absorption-desorption barrier with respect to the surface of the

pigment particles. Calcination of the pigment powder on the

other hand essentially reduces the surface free energy of the
pigment and may give rise to an improved ultraviolet stability
of powder compacts due to a lower concentration of surface defects.

A lower surface free energy of the pigment powder however, may

also result in a decreased chemical activity and consequently in
a poorer pigment-vehicle bond in the paint with the resultant
possibility of photoinduced desorption of gases from the pigment
particles.

The following conclusions were made:

1. Heat treatment of the double zirconium silicate powders
increased I:::.~s' This might have been due to "fresh" surfaces
that were created in "breaking" the powder after the heat treat­
ment. The largest increase in I:::.o. s occurred with CaZrSiOS which
had the lowest MP and thus would "sinter" at lower temperatures
than the other two zirconium silicates.

2. The paints tended to be less stable than the pigments
alone except for CaZrSiOS '

3. In general, pigments heat-treated prior to paint pre­

paration, except for MgZrSiOS' exhibited inferior stability to
paint heat-treated after application.
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Table 19

EFFECT OF TREATMENT ON ULTRAVIOLET-STABILITY
OF DOUBLE ZIRCONIUM SILICATES

Treatment* Binder
as Non- !1as (ESH)

Material Irradiated

ZnZrSi05 A None 0.123 0.058 (2000)
B None 0.156 0.084 (2000)
C PS7 0.154 0.097 (1000)
D PS7 0.176 0.104 (2650)
E PS7 0.212 0.032 (2000)
F PS7 0.186 0.076 (2000)

CaZrSi05 A None 0.115 0.044 . (2000)
B None 0.136 0.080 (2000)
C PS7 0.165 0.012 (1000)
D PS7 0.138 0.126 (2650)
E PS7 0.178 0.021 ( 2000)
F PS7 0.136 0.099 (2000)

MgZrSi05 A None 0.102 0.058 (2000)
B None 0.167 0.060 (2000)
C PS7 0.138 0.067 (1000)
D PS7 0.171 0.064 (2650)
E PS7 0.145 0.032 (2000)
F PS7 0.176 0.065 (2000)

*Treatment: A - As received, powder compact.
B - Heat treated 800°C/12 hr powder compact.
C - As received pigment, paint.
D - Pigment heat treated 800°C/12 hr, paint.
E - Pigment as rec~ived, paint heat treated

500 oC/l hr.
F - Pigment heat treated 800°C/12 hr, paint

heat treated 500 oC/l hr.

83 U6002-97



4. Except for CaZrSi05 , heat-treatment of the paint increases

stability. Heat treatment of the paints (using non-heat-treated

pigment) has the most favorable effect on 6a s '

4.5.3 Silicate Paints Prepared from Other Pigments

A number of other pigments were employed in potassium

silicate paints, variously heat treated, and irradiated in the

Quad-Ion facility (Ref. 7, 9 77). Data from several space simu­

lation tests are presented in Table 20. Of the various pigments

employed in these coatings, the zirconium silicates (Zircon) and

tantalum oxide paints were the most stable, albeit none of these

coatings were of interest from the standpoint of resistance to

ultraviolet-induced damage. Generally, like for the double

zirconium silicates discussed in the previous section, these data

show that heat treatment of the silicate paint has a beneficial

effect on stability. This was particularly true for the yittria-,

lanthana- and tantala-pigmented coatings.

The lithium fluoride data are included in Table 20 for

another reason. The results of irradiation of pure lithium

fluoride powder and the paint is a good example of the escalation

of damage of the binder--even the reasonably stable PS7 potassium

silicate, by a highly-ultraviolet-transparent dielectric pigment.

The deep, multiple scattering in the system may have so effec­

tively increased the path length of ultraviolet in the film that

the silicate receives, in essence, a much greater dose of ultra­

violet in any small volume 6V within the film, with the result

that the total extinction is greatly increased as a manifestation
of the damage.

4.6 Stability of Calcium Tungstate-Pigmented Silicate Paint

Although both single and mixed tungstates, and zinc stannate,

were studied as pigments, only calcium tungstate was examined as

a paint (both PS7 potassium silicate and Owens-Illinois "650"

silicone resin paints). However, only one specimen of calcium

tungstate-pigmented potassium silicate was irradiated. It was
prepared at a PBR of 4.3.
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The effect of 1200 ESH of ultraviolet irradiation in IRIF-II
on a 5-mil specimen of this paint is shown in Figure 27. The
spectral data shows that calcium tungstate-potassium silicate
paints are certainly worthy of further study, since the paint
was not severely degraded in the ultraviolet and visible spectral
regions (the 6~s was 0.03).
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5. SILICONE BINDER PHOTOLYSIS

5.1 Introduction

Silicone paint-binders were selected for use on early u.S.
spacecraft due primarily to their high-energy -Si-O-Si- backbone
compared to other polymeric binders then commercially available.

These early coatings were based on heat-cured polyphenylmethyl­
siloxane resins. In studies performed in 1959-1961, one of the
authors, G.A. Zerlaut (Ref. 78), found that the 100% methyl
silicone resins were quite superior in optical properties and
space ultraviolet stability to the then used phenyl/methyl systems.
Subsequent study has not only confirmed these early results but
also has shown that siloxane polymers, depending on the silicon
ligand selected,are potentially the most stable candidates for

use in the combined ultraviolet-plus-charged particle environ­
ment of deep space.

It was on the basis of the early experience with methyl
silicone resins, the conclusions of which were subsequently rein­
forced by studies at lIT Research Institute for the Jet Propulsion
Laboratory (Ref. 2, 72), that more basic synthesis and photolysis
studies were undertaken on this program. These studies (Ref. 6,
7, 8, 12, 77, 79), which will be reviewed here, were undertaken
for the dual purpose of improving upon both the physical character­
istics and the ultraviolet radiation stability of methyl silicone
resins, with the goal being their use as binders for white, space­
craft radiator coatings.

The synthesis studies reported were terminated when we
discovered in 1964 that Owens-Illinois, Inc., of Toledo, Ohio,
manufactured a 100% polymethylsiloxane resin, designated "650"
Glass Resin, in pilot-production quantities. (Although both
General Electric's Silicone Department and Dow Corning Corporation
manufactured linear polydimethylsiloxane elastomers, neither
commercially furnished a polymethylsiloxane resin. To the best
of knowledge, no other 100% methyl resin is commercially available
even today.)
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However, even though the studies reported were not carried
to completion due to the changed priorities created by the

availability of the Owens-Illinois "650" res in, we are including

the work here because of both its germaneness to the stability
concepts of space-coatings materials in general, as well as

because the work provides a likely departure for future research

to extend the use of polysiloxanes to greater lifetimes and more
hazardous radiation environments.

5.2 Radiation-Induced Changes in Polymers

Organic materials undergo chemical changes when subjected
to radiation processes. These processes can be photolytic,
gamma- or x-ray, or electron and other charged-particle radiation.

The resulting chemical and physical changes that occur as a con­
sequence of radiation depend on the conditions of the environ­
ment surrounding the system in question, i.e., the presence or
absence of oxygen, pressure, temperature, etc. In polymeric
systems, the degradative changes generally will be accompanied
by cross-linking (chain scission and recombination), chain
scission alone, and certain 'oxidative changes. These result

from the reaction of free radicals formed in the polymer by the
radiation processes.

Although the mechanisms can be both ionic and free radical,
the latter processes are believed to predominate in polymers
since free radicals are observed in solid polymers by electron
paramagnetic resonance spectroscopy (EPR) in concentrations
comparable to the resulting cross-link density (Ref. 80). For

example, free radicals, trapped in the polymer, have been shown

to cause color formation (Ref. 81-83). Miller (Ref. 84) demon-·

strated with EPR spectroscopy that irradiated polyvinyl chloride
that has been exposed to air loses radicals at a much greater
rate than when retained in vacuum. This loss of free radicals
has been correlated with a loss of color formation which has been
attributed to the formation of a peroxy radical by several
investigators (Ref. 85, 86). Yegorova and coworkers (Ref. 87)

liT RESEARCH INSTITUTE

89 U6002-97



have shown that the free-radical formation is temperature
dependent, and St. Pierre and Dewhurst (Ref. 88) have demonstrated
the total inhibition of carbon-carbon cross-links by the intro­
duction of sufficient oxygen. The latter workers (Ref. 89) also

demonstrated that oxygen terminates the radiation-induced free
radicals by the formation of a carboxylic acid and two types of
peroxides during the radio1ysis of the dimer hexamethy1disi10xane.

The loss of color (Ref. 90) in the presence of oxygen and the
formation of oxidized end groups (Ref. 91) have also been demon­
strated in the radiation of po1yamides.

In the absence of oxygen, the generated free radicals are
not destroyed. Indeed, in polymers below their glass transition
temperatures, trapped free radicals are known to have very long
lifetimes in the absence of both oxygen and light. In such cases,
the resultant reactions are mainly disproportionation, which gives

rise to chain scissions and migration, which in turn result in
the formation of cross-links (Ref. 9Z, 93). In addition, if the
free radicals are long-lived, color formation will be observed,
as noted previously.

Lawton and coworkers (Ref. 94) have stated that the trapping
of free radicals in polymer systems occurs (1) within the crystal­
lites of the polymers, (Z) in the amorphous phase below the glass
transition temperature, and (3) in the heavily cross-linked poly­
mers where radical recombination is less possible due to shielding
of or attachment to the network. More recently, Ormerod (Ref. 95)
has shown that hydrogen has a marked effect on radical decay
rates in irradiated polyethylene, since free radicals can travel
intra- and inter-molecularly.

5.3 Radiation-Induced Changes in Po1ysi10xanes

In 1960 Miller (Ref. 96) examined the electron irradiation
of a linear po1ydim~thy1si10xane0t1 in the absence of oxygen and

found that both =SifcH3 and =SiCHZrH scissions occurred with the
evolution of HZ' CH4 and CZH6 as the gaseous products, cross­
linking was also observed on the basis of solubility
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characteristics. He also observed some anomalies in the overall
radiation chemical effects in the transition from the fluid to
the solid state. Subsequently, Miller (Ref. 97) observed a
decrease in cross-linking in the presence of oxygen as a function

of its partial pressure; he concluded that the residual cross­
links were not peroxide bonds. He also found that hydrogen trans­
fer agents (e.g., mercaptans) retarded cross-linking and that
scission of the siloxane backbone was negligible in comparison

to the propensity for cross-linking.

Subsequently, Ormerod and Charlesby (Ref. 98) examined the
effect of electron radiation on a linear, unblocked dimethyl­

siloxane in the absence of oxygen. They also found a temperature­
linked anomaly in the cross-linking reaction and concluded that
the radiation chemistry differed between the solid and liquid

states. They suggested that an ionic cross-linking mechanism

might be possible at low temperatures, although a\free-radical
mechanism appears to predominate at room temperature where radicals
are difficult to detect because of rapid reactions. As further
confirmation of the two temperature-dependent mechanisms, they
reported that stable free radicals could be produced in a vinyl­
containing polysiloxane at room temperature, but not at low
temperatures.

In a somewhat later paper, Charlesby and Garratt (Ref. 99)
added small amounts of anthracene to the dimethylsiloxane polymer
and found no protection against cross-linking. Sulfur gave more

protection against cross-linking than could be explained in terms
of radical combination--which is needed to explain the results
with anthracene. Benzophenone afforded cross-linking protection,

but from the lack of dose intensity dependence with anthracene

combined with the results obtained with the other additives, they
concluded, it was necessary to modify some present views on

cross-linking. They proposed a different mechanism with each of
the additives.
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Miller (Ref. 97), by using electron radiation, had previously

reported that benzene and tetralin both suppressed cross-linking

in polydimethylsiloxane oils, with the suppression a function of

added aromatic. In a later paper, Miller (Ref. 100) reported

work on trimethylsilyl endblocked polydimethylsiloxane and on

diphenylmethylsilyl endblocked polyphenylmethylsiloxane. He
concluded that the radiation stability depends not only on total

aromatic content but also on the types and positions of the

aromatic substituents. Thus, conjugated aromatic substituents

(e.g., biphenylyl and naphthyl) confer a greater stability than

a single phenyl group. In addition, the aromatic group is most
effective when it is attached to the same Si atom as the radiation­

sensitive methyl group; he stated that the stabilizing effect of

an aromatic group could not be effectively transmitted to a methyl
group on a different Si atom. However, Koike and Danno (Ref. 101),
by using gamma radiation, reported that in polydimethyldiphenyl­

siloxane the protective effect of the phenyl group may extend
over 5 or 6 neighboring units of dimethylsiloxane.

Koike (Ref. 102) independently agreed with the work of

Ormerod and Charlesby (Ref. 98) by concluding that below =lOO°C
the cross-linking of polydimethylsiloxane was due to non-radical
processes. In contrast, however, Koike stated that cross­

linking in polydimethyldiphenylsiloxane was temperature dependent

and due to radical processes. They attempted to relate cross­
linking to molecular motion of the group attached to the Si atom.

Like the polymer studied by Ormerod and Charlesby, their polymer
was not end-blocked.

It should be emphasized that, in the literature surveyed,
radiation protection was synonymous with protection from cross­

linking reactions. The optical properties of the polysiloxanes

have been relatively ignored. Thus, we find that although

aromatic groups confer radiation protection, only rare mention

is made of their color-forming propensities, especially when
irradiated with ultraviolet light.
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In summary, color formation in polymers results from two
general processes~ (1) permanent color due to the formation of

conjugated unsaturation, or of other chromophoric chemical

groups, and/or (2) transient coloration due to the trapping of

free radicals (i.e., electrons with unpaired spin) within the
polymer network at temperatures below their. glass transition
points. Trapped radicals usually give rise to absorption bands

whose presence are optically observable when the band intensity
is sufficient to cause absorption at optical wavelengths; this

absorption then becomes important in terms of increases in the

solar absorptance of coatings prepared from them. Although
degradation of polymers is manifested in both physical deteriora­
tion and optical changes, we generally estimate that greater
than 1018 defects/cm3 are required to cause physical changes in

a polymeric material, while, on the other hand, only little more
than 1014 defects / cm3 are required t·o be visuaily observable.
It is not surprising therefore that we have confined most of our
investigations of materials for thermal control of spacecraft to

the problem of coloration.

Since an important notion is that the properties and behavior
of the color centers produced are unrelated to the agency that
created them, the literature pertaining to electron- and gamma­
irradiation of polymers has given us many qualitative ideas

about what to look for and what to expect when we expose our
polysiloxane polymers to ultraviolet and ultraviolet-plus-proton

radiationo

5.4 Photolysis Studies

Ultraviolet photolysis experiments were conducted on five

silicone polymers: three model polymers (a linear, unblocked
polydimethylsiloxane, a nonlinear polydimethylsiloxane resin and
an oxidatively cross-linked polydimethylsiloxane), General

Electric Company's RTV-602 polydimethylsiloxane elastomer, and
Owens-Illinois "650" Glass Resin, a polY!Q;onomethylsiloxane.
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5.4.1 Experimental

5.4.1.1 Synthesis of Model Polysiloxane

5.4.1.1.1 Linear, Unblocked Polydimethylsiloxane

A linear, low-molecular-weight model polymer was prepared
by standard techniques but with the scrupulous avoidance of any
aromatic contamination. It was prepared by first synthesizing
octamethylcyclotetrasiloxane (Ref. 103), from which the polymer
was later prepared.

A 2-liter 3-neck flask was assembled with a thermometer,
stirrer, condenser, and an adding funnel protected with a drying
tube. By using a syringe, the plastic bag technique was employed
for transferring 400 ml of dichlorodimethylsilane (Union Carbide
Corporation) in an atmosphere of prepurified nitrogen to the
adding funnel. The silane was added as rapidly as dropwise
addition would permit to 1200 ml of water, which had been pre­
viously charged into the flask. With the intermittent applica­
tion of an ice bath, the temperature was maintained at 15 to
20°C throughout the vigorously stirred addition. The nonaqueous
phase was extracted with 300 ml of diethyl ether, washed with
water until neutral, and dried over sodium sulfate. After fil­
tration, the solvent was removed on a rotating evaporator (Rinco),
and the residue (~250 ml) was distilled rapidly through a 6 x
3/4-in insulated Vigreaux column. The fraction boiling at 164
to l7lo C/745.5 rom was collected and weighed (123 g).

This fraction was then carefully redistilled by using the
previously described apparatus. The fraction boiling at 170.0
to l73.0°C/738.7 rom was collected in two equal parts. Each of
the two parts had an index of refraction, ND

27 . 6 = 1.3932. This
value is in essential agreement with that reported by Hunter
(Ref. 104) and the boiling point reported (Ref. 103) is the same.
A total of 81 g of the cyclic tetramer was obtained, from which
the linear polydimethylsiloxane was prepared by catalytic re­
arrangement.
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Into a 250 m1 g.s. Pyrex bottle was charged 52 m1 of the
cyclic tetramer (octamethy1cyc1otetrasi1oxane) , 25 m1diethy1
ether, and 9.6 ml of cone. sulfuric acid. The stopper was
secured by wire and the bottle allowed to shake in an Eberbach

shaking machine for 24 hr at ambient room temperature. After

this time, the thick mass was diluted with 50 m1 of diethy1 ether,
25 ml of water was added and the bottle was shaken for 1 hr.
The solvent was separated and washed with three 10-ml portions
of water. The still-acid solvent layer was diluted a little

further with ether and dried over solid, anhydrous potassium
carbonate.

The filtrate was placed on a rotating evaporator to remove
the solvent, and the residue was distilled through a long
C1aisen adaptor by using a Woods' metal heating bath. At still­
pot temperatures up to 360°C, a few milliliters of liquid dis­

tilled at temperatures up to 117°C. The residue was allowed to

cool in an atmosphere of prepurified nitrogen. The molecular
weight of the residue averaged 3,030 by Mechro1ab vapor pressure

osmometer determination.

Analysis (Ref. 105): Found: H, 7.77, 8.09; C, 31.90, 31.84;

Si, 34.59, 34.89. Calcd. for (CH3)2SiO: H, 8.16; C, 32.38;
Si, 37.86.

The absorption spectrum of this polymer in isooctane was
better than 98% transparent from 400- to less than 190-nm wave­

length, as shown in Figure 28. The CH3 :Si ratio was close to the
theoretical value of 2. At the pressures required for photolysis
and at room temperature, about 10 to 15% of the polymer distilled
over a 16-hr period.

5.4.1.1.2 Oxidatively Cross-Linked Polydimethy1si1oxane

A flask equipped with a two-way addition tube fitted with
a gas-inlet tube and a reflux condenser was employed to cross­

link a cyclic po1ysi1oxane by the method of Hyde and Delong
(Ref. 106). The flask was charged with the cyclic polysiloxanes
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(pentamer and higher) obtained from the hydrolysis of dimethyl­
dichlorosilane. This material was heated by means of a Woods

metal bath to 220 to 230°C (pot temperature) for 16 hr while a

slow current of air was continuously bubbled through the polymer.

The resulting cross-linked material was of jello-like consistency
and was water-white with an excellent ultraviolet transmission,

65% at 220 ~ and 40% at 200 ~.

Analysis (Ref. 105): Found: C, 32.34; H, 8.06; Si, 33.51.

Calcd. for (CH3)2SiO: C, 32.38; H, 8.16; Si, 37.88.

The transmission spectra of the oxidatively cross-linked
polymer is also shown in Figure 28 and is compared with the linear
polymer from which it was prepared and the linear RTV-602 ob­

tained from the General Electric Company.

5.4.1.1.3 Nonlinear, Polydimethylsiloxane Resin

Six-tenths moles (77.4 g) of dimethyldichlorosilane (99.4%)
and 0.4 moles (60 g) of methyltrichlorosilane (95%) were mixed
in 300 g of anhydrous ethyl ether. The resultant mixture was

added dropwise with agitation, over a period of 40 min, to
1000 g of ice. The ether layer was separated and washed once
with distilled water. It was then washed once with a 5% solution

of sodium bicarbonate, followed by three washings with distilled

water. The ether solution was then dried overnight with Drierite
and evaporated at reduced pressure leaving a semi-viscous, color­
less oil. The Me/Si was calculated to be 1.6.

The above stock was then distilled at an average temperature
of 100°C and 4 x 10- 3 torr. The upper molecular weight fraction
was collected and employed in photolysis studies. The molecular

weight was found to be 2050 by vapor osmometry.

5.4.1.2 Photolysis

5.4.1.2.1 Facility

The photolysis investigation was conducted in the facility

shown in Figure 29. The glass vacuum manifold was pumped by a
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mercury diffusion pump through two liquid nitrogen traps, pro­

ducing a net pumping speed of approximately 1 liter/sec for

noncondensib1e species. Pressures in the range of low to mid
10- 7 torr were ordinarily produced in the empty system after a
mild bake-out at 150°C. Pressures in the 10- 3 to 10- 7 torr

range were measured with a hot-filament ionization gage. The
residual gases in the manifold were analyzed with a 60-degree­
sector field Nier-type mass spectrometer (Vacuum Electronics
Corp., model GA-4). This instrument has an ultimate sensitivity
f · f 10- 13 d k· . .. . hor n~trogen 0 torr an .a wor ~ng sens~t~v~ty ~n t ese
experiments below 10- 10 torr. The mass range is 2 to 300 AMU.

The polymer specimens were contained in 4-mm OD fused-silica

tubes and were irradiated with an A-H6 lamp through a quartz
envelope of approximately 1-rom thickness at a distance of 4 cm
measured from the lamp centerline to the polymer centerline,

with about 3 cm of the intervening distance filled with liquid
nitrogen.

5.4.1.2.2 Procedures

The polymer was irradiated by attaching the fused silica
polymer tube onto the glass manifold with graded seals. A
vacuum below 10- 6 torr was obtained, and liquid nitrogen was

slowly admitted to the Dewar surrounding the sample tube. The

liquid nitrogen was replenished automatically by a controller,
which maintained the liquid. level at approximately ± 2 cm from
a preset level. Tests were conducted with a continuous gaseous
nitrogen purge of the lamp cavity to preclude condensation of

water from the atmosphere on the inside of the quartz tube.

The polymer was irradiated for a predetermined time. The
unshunted polymer tube was then removed, still under a typical
vacuum and at liquid nitrogen temperature, for electron spin
resonance measurements. The shunted polymer tube was warmed to
room temperature, and the evolved gases were analyzed with the

masS spectrometer. After irradiation, the left polymer tube
was sealed from the vacuum manifold at the constriction, and the
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evolving gases were bled into the manifold with the variable
leak at a rate sufficiently slow that accurate mass spectrometric
analyses could be made.

Mass spectrometer analyses of the residual gases were made
on the empty system before the polymer tubes were attached, on
the system with the polymer tubes attached and at room temperature,
after cooling to liquid nitrogen temperatures, during {rradiation,
after irradiation while the polymer was still cold, while the
evolved gas from the room temperature sample was being bled into
the system, and again with the empty system after the polymer
tubes were removed.

5.4.2 EPR Analyses

5.4.2.1 Linear, Unblocked Po1ydimethy1si10xane (Me/Si=2)

Although two irradiation experiments were performed employing
the facility described in Figure 29, no EPR spectra could be
generated in either test (at exposures of 2 and 5 hr A-H6 irradia­
tion). No color developed in either sample, although slight
ge11ation occurred in the 2 hr exposure. The extreme transparency
probably accounts for the lack of gross effects, the conclusion
of which is that insufficient energy was absorbed.

5.4.2.2 Nonlinear Po1ydimethy1si10xane (Me/Si=1.6)

The EPR absorption spectrum observed in the u1travio1et­
irradiated, silicone polymer of Me/Si=1.6 is essentially the same
as those observed by other investigators (Ref. 98, 107). Trace
recordings of the spectrum are shown in Figures 30 and 31, where
Figure 31 is the same as Figure 30 multiplied in amplitude by a
factor of five. This spectrum is essentially the same as that
observed in this laboratory on the irradiated, solid, cross-linked
po1ydimethy1si10xane (Section 5.4.2.4). Note in Figure 31 the
weakest lines labeled a i . Although the lines a2 and a4 are
observed in these traces, if they are postulated to exist so as
to form a quartet spectrum, this group of lines may be identified
with .CR3 radicals which are unstable at 77°K. This probably
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explaines their low intensity since these spectra were taken

several hours from the time of irradiation.

The unpaired electron of the methyl. radical interacts with
three hydrogen nuclei, each having a nuclear spin quantum number

of liz. Four magnetic dipole transitions are expected for this
system corresponding to the nuclear magnetic quantum numbers
m = 3/z, liz, -liz, -3/z. The m ± 3/z transitions are the outer

lines labeled a l and a4 in Figure 31. The m ± liz would be the

lines labeled a Z and a 3 and are predicted to be three times more
intense than the m = ± 3/z transitions since there are more ways

of adding up the individual magnetic quantum number of the three

hydrogen nuclei to give m = ± liz. Energy eigen values for this
system in the strong field limit are given by

E(M,m) = g~HM + AMm (Z)

where ~ is the Bohr magneton, H is the external magnetic field,
g is the gyromagnetic ratio, A is the hyperfine splitting con­
stant, and where we have neglected the nuclear Zeeman interaction
(Ref. 108). Transitions labeled a l and a4 correspond to the

m = 3/z ~ 3/z, M = liz -7 1/2 and m = -3/2 -7 -3/z, M = -liz -7
-liz transitions where M is the electron magnetic quantum number

having two possible values ± liz. The condition of resonance

of these transitions are obtained from Equation (Z) using the
selection rules 6M = ± 1, 6m = 0 giving

E(l/Z, 3/Z) - E(-l/Z, 3.Z) = g~Hl + ~ A

E(l/Z, -3/Z) - E(-l/Z, -3/Z) = g~H4 - ~ A

(3)

(4)

where H, and H4 are the

Since these transitions

v, we set Equations (3)
solve for A and g. The

A = H H
g~ 4 - 1

resonance field position of a l and a4 .

occur at constant microwave frequency

and (4) equal to hv, divided by g~ and
result is

(5)
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(6)

From the experimental data we have Hl = 3400.2 oe, H4 = 3466.1 oe
at \) = 9627.8 Mc/s. Substituting these values in Equations
(5) and (6) gives A/g~ = (22.1 ± 0.5) oersteds and g = 2.0037" ±
0.0010. These results are in good agreement with the values
A/g~ = (21.9 ± 0.2) oersteds, g = 2.0026 (1) and A/g~ = 22.9
oersteds, g = 2.00242 (8) for CH3 radicals trapped in Zeolite
and CH4 matrices, respectively (Ref. 108). The errors in the
parameters for the present case are large since the spectral
lines are weak and not completely resolved.

Although Tsvetkov et' al (Ref. 107) have given tentative
assignments to the remaining spectra labeled band c in Figures
30 and 31, it is not clear that these identifications are correct.
For example, the lines which they call group b appear to be a
superposition of at least two spectra whereas this point was
previously overlooked (Ref. 98). It is not obvious that lines
labeled b belong to a triplet spectrum as suggested by Tsvetkov.
It may be possible to preferentially bleach out some of the lines
at various temperatures to determine if these assignments are
valid., The g-value measured for the central component labeled
c in Figure 31 is given by g = 2.0026 ± 0.0005.

5.4.2.3 Uncured RTV-602 (Me/Si=2)

Figure 32 is a trace of the EPR spectrum of ultraviolet
irradiated RTV-602 polydimethylsiloxane taken at 77°K immediately
following the irradiation. It is noted that this spectrum is
significantly different from that obtained with the irradiated
specimen of Me/Si=6 (see Figures 30 and 31) with the appearance
of at least two other lines labeled Hand Hon the recorder

xl x 2tracing. This suggests the presence of three or more para-
magnetic species, one associated with the components Hy

l , Hy
2

and Ho (where H 2 - H 1 = 35 gauss) the second associated withy y
Hx and Hx and the third associated with H ,H and H

1 2 zl 0 z2
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(unresolved). Also, the central line is highly asymmetric. The
line width measured between points of inflection is approximately
4.5 gauss. The large asymmetry in the central line (labeled Ho)
is probably due to the superposition of two or more lines which
are shifted by some small amount. If the radicals associated with
the y and z species give triplet spectra when their central com­
ponents would be shifted from one another to give the asymmetric
line observed at H. Since the central component is stronger

o
than the sum of the outer components of y and z there is most
likely at least one singlet at this field position.

5.4.2.4 Oxidatively Cross-linked Polydimethylsiloxane

Figure 33 presents the electron paramagnetic resonance
spectrum of the irradiated, solid, oxidatively-cross-linked
polymer. The results show the presence of one central strong
line and groups of weaker lines. The center line has a g value
of 2.0026 which is very close to the free spin value of 2.0023.
The subsidiary lines could be hyperfine lines associated with
the main line, but this is unlikely in view of the fact that
the weaker lines appear to be broader than the main line.
Rather it seems that the weaker lines are due to a separate para­
magnetic species associated with a center having a nuclear spin
I of 1/2. There are some structures associated with these weaker
lines, suggesting that a further set of weaker lines exists. The
data are consistent with this third center being associated with
two nuclei, each of spin 1/2, although the resolution of the
spectrum is not high enough to allow this to be stated unequivo­
cally.

5.4.2.5 Owens-Illinois 650 Polymonomethylsiloxane

A fairly weak EPR spectrum was observed in one sample; no
EPR spec.tra could be induced by ultraviolet in a second specimen.
Three lines similar to the RTV-602 spectra (Figure 32) were
observed. The central line is again highly asymmetric and the
high field satellite line is unresolved. The spectra is
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presented in Figure 34. This spectrum is seen to be different
from previous spectra because of the absence of the low field

sate llite line.

5.4.3 Mass Spectrometry

5.4.3.1 Linear, Unblocked Polydimethylsiloxane (Me/Si=2)

Although mass spectra data were taken, and reduced to tabu-
lar form, the data were too inconclusive to warrent presentation.
Hydrogen, methane and carbon dioxide were evolved when the
irradiated, liquid polymer was warmed from 77°C to room tempera­

ture.

5.4.3.2 Nonlinear Polydimethylsiloxane (Me/Si=1.6)

Mass spectra of the irradiated nonlinear polydimethylsiloxane
with Me/Si of 1.6 were obtained but not resolved.

5.4.3.3 RTV-602 Polydimethylsiloxane (Me/Si=2.0)

The mass spectra data for the uncured RTV-602 are tabulated
in Table 21. An increase in hydrogen was observed after com­
pletion of ultraviolet irradiation when the gas from the warmed
polymer was bled into the mass spectrometer. The hydrogen
content decreased from a relative peak height of 140 prior to
irradiation to approximately 50 during irradiation; the peak
height increased when the A-H6 lamp was turned off, however.
The methane content (14, 15 and 16 m/e) decreased during radia­
tion with no subsequent change after irradiation. The water con­
tent (18 m/e) decreased during the irradiation.

5.4.3.4 Oxidatively-Cross-linked Polymethylsiloxane
(Me!Si 2)

The mass spectra from the irradiation of the oxidatively
cross-linked polymer are given in Table 22. Only modest amounts
of methane evolution was observed; however, a significant in­
crease in m/e 12 (C+) was observed. The hydrogen content of
the system increased somewhat when the polymer tubes were attached,
although no increase in intensity resulted from the irradiation.
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It appears, however, that the irradiation again liberated carbon
dioxide (Co2+, 44 m/e; C+, 12 m/e).

5.4.3.5 Owens-Illinois 650 Po1ymonomethy1si1oxane (Me/Si=l)

The mass spectra of the irradiated Owens-Illinois Type 650
resin are tabulated in Table 23. Although the hydrogen peak
decreased on irradiation, considerable hydrogen was trapped in
the frozen polYmer. Little increase in mle 12 through 16 was
observed; however, the peak corresponding to mle 17 (OH+, CHS+)
increased after an initial decrease during irradiation; the peak
increased still further when the polymer was warmed. The peak
for mle 18 behaved similarly to that corresponding to mle 17.
Peaks corresponding to mle 29 (C2H5+) and mle 31 exhibited ~ig­

nificant increases when the frozen polymer was warmed.

5.4.3.6 RTV-602 Po1ydimethy1si1oxane Cured with SRC-05
Catalyst (Amine Functional)

The mass spectra results of solid RTV-602 (catalyzed at
0.4% with SRC-OS) are presented in Table 24. The hydrogen peak
not only increased when the LN2-coo1ed polymer was irradiated
but increased still further when the polymer was warmed and the
gases bled to the spectrometer. Methane peaks (12, 13, 15, 16
and 17 m/e) increased on irradiation and peaks at 14, 15 and 17
increased still further when the gases trapped in the polymer
were bled to the spectrometer. Water (18 m/e) appears to have
been trapped in the irradiated, frozen polymer. An interesting
observation is the increase in the mle 29 peak, which could have
been C2H5+, when the irradiated polymer is warmed. Similarly,
the mle 39 peak (C3H3+) increased when the polymer was warmed.

5.5 Summary of Photolysis Studies

The pertinent data from the photolysis experiments are
tabulated in Table 25. Although these studies were incomplete,
the data were strongly predictive of the direction that silicone
binder technology for near-earth spacecraft has gone--name1y to
the "cleanest" po1ymethy1si1oxanes possible.
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Although Tsvetkov (Ref. 107) assigned the triplet 'CH2Si=

to an EPR peak that we have also observed in all the spectra
examined, there is some doubt as to the correctness of this con­
clusion. However, in all cases where we observed the Tsvetkov­
assigned triplet state, we also observed large quantities of H+
being emitted in the mass spectra determinations, q result wholly
consistent with the assignment of the triplet state to the
structure.

Ormerod and Char1esby (Ref. 98) also detect spectra similar to
those observed in these studies and suggest that the singlet and
quartet species are:

yH3
-o-Si-Q
Singlet

H

H~-H
Quartet

In the present case the data are slightly different from those
reported by Ormerod and Char1esby. Specifically, the separation
in the doublets is 34 gauss compared to 40 gauss. However, these
values may fall within our experimental errors.

Since polymer I was the precursor for polymer IV, and in
a sense, III was the precursor for VI (they were from the same
lot), the greater effects of ultraviolet on the solid polymers
(IV, V and VI) are of interest. It could be speculated that
contamination of the POMS (I) occurred during oxidative cross­
1inking--and, certainly, the ethanol/butanol solvent used for
casting the Owens-Illinois 650 resin could have contributed to
its behavior. The amine cure of RTV-602, although not fully
understood, presents sufficient problems relative to its presence
after cure has taken place, that research has been prompted on
the problem. ')~

*Hughes Aircraft Corporation, Contract AF33615-69-C-1287.
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Aromatic, as well as ultraviolet-active aliphatic, contamina­
tion may act as energy traps and store energy for relatively long
periods of time. Through such insidious mechanisms as energy
transfer and photosensitization, in which the energy donor is not

damaged, infinitesimally small amounts of aromatic contaminants
can give rise to inordinately large deleterious effects.
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6. SILICONE COATINGS TECHNOLOGY

6.1 Introduction

The ultraviolet/vacuum-radiation stability of the silicone
polymers had been demonstrated to be superior to all other
commercial, soluble polymers by the time this investigation
commenced (Ref. 1, 72, 78). Except to verify the ultraviolet
stability, or instability, of other polymeric pigment binders
from time-to-time, we confined all non-inorganic paint studies
to the silicone-based systems. This section therefore treats
the investigations of silicone paints from the period preceding
the employment of the IRIF space simulation facilities, with
their capability for determining in-situ the post exposure
reflectance of irradiated specimens as an absolute hemispherical

reflectance measurement, to the present time.

No data are given in this section, as elsewhere in this
report, on pre-in situ reflectance data unless it either repre­
sents paints that (1) do not exhibit oxygen-bleachable spectral

damage, or (2) the data are useful for purposes other than
describing the stability in the infrared (~2500-nm for zinc oxide
and ~950-nm for unstabilized zinc orthotitanate paints).

6.2 Microporous Coatings

6.2.1 Introduction

In theory, a coating composed of appropriately sized voids,
uniformly dispersed in a matrix, should scatter light not unlike
a pigmented film. That is, each void (or microbubble) behaves
as a scattering center in which the scattering power depends
upon refractive index ratios of less than unity (compared with
ratios greater than unity for classical pigmented systems): It
matters not whether the optical disparity is a crystalline oxide
pigment (n ~ 2 to 2.7) surrounded by a lower refractive index
polymer binder (n ~ 1.4 to 1.6) or whether it is a void with an
index of unity surrounded by a binder of higher refractive index.
Therefore, the micropores in a foamed coating are in theory the
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ultimately stable, wholly transparent, non absorbing pigment.

A white paint appears white because the numerous scattering

events that take place within the white coating effectively

scatter the incident radiation back out of the coating without

selective absorption. Therefore, it is obvious why foamed

plastics are white and good reflectors of visab1e light.

A highly reflective microbubble coating must contain voids

whose average diameter is roughly 0.5~. Such voids must be

uniformly dispersed throughout the material and in sufficient

concentration to give rise to a high scattering density. To

remain effective as such a scatterer, its voids must remain con­

sistant in number and dimensions. Hence, the foam structure must

not only be photochemically stable but also mechanically stable.

To obtain a coating whose mechanical characteristics are as

stated, it is necessary to select a matrix, blow voids into it,
rigidize it so that the voids are firmly constrained, and,con­

struct it thick enough to attenuate at least 95% of solar
radiation.

From the inception of these studies (Ref. 5, 6, 7, 109) it

was realized that matrix stability would become very important.

Not only should the polymeric matrix material itself be very

stable, i.e., remain very transparent, but contamination had to

be avoided if the resultant foams were to be stable to ultraviolet

irradiation in vacuum. We chose to concentrate on methylsi1i­

cones, especially the elastomeric RTV-602, after preliminary

experimentation (Ref. 1, 109).

6.2.2 Experimental Methods

6.2.2.1 Mechanical Methods

Vigorous agitation of an emulsion, a suspension, or a solu­

tion of the resin produces a froth which is then gelled and fused

or cured. Originally developed for producing latex foam, this

method has been adapted to foaming polyvinyl acetal, polyvinyl
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chloride plastisols, and urea-formaldehyde resins. This method
cannot be used to produce a bubble structure in silicone resins
due to their slow cure characteristics.

6.2.2.2 Physical Methods

Physical methods use materials as bubble-forming agents
that change their physical state during the foaming operation,
e.g., compressed gases, volatile liquids, or soluble solids
(e.g. starch). Our best results were obtained with a solution
of a silicone resin (plus catalyst) in methylene chloride or
Freon 11 (trichloromonofluoromethane) which was sprayed with an
airbrush on a heated plate. By this means bubble formation in
the resin layer occurred through the sudden evaporation of the
organic solvent and the trapping of air bubbles in the rapidly
curing resin. Reflectance was poor due to the lack of numerical
density of the microbubbles and to the thin coatings that were
produced.

6.2.2.3 Chemical Methods

In chemical bubble formation, the expanding gas is generated
in situ, i.e., within the matrix of the polymer. The cell-forming
gas can be produced as a by-product of a chain extension or. cross­
linking of the polymer, e.g., the formation of polyurethane foams
with carbon dioxide liberated from the reaction between carboxyl­
bearing alkyd resins and an isocyanate.

Chemical blowing agents, frequently called foaming agents
in the plastics industry, are inorganic or organic materials
that decompose under the influence of heat to yield at least one
gaseous decomposition product. The most characteristic property
of chemical foaming agents is the temperature at which the gas
is liberated. In fact, the decomposition temperature determines
the usefulness of a foaming agent in a given plastic material and
also governs the conditions under which the foamable compound is
to be processed. Since we relied only on certain silicone resins
with specific curing properties, the selection of a suitable
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blowing agent was especially critical. The range of potential

blowing agents extends from baking powder to explosives. Indeed,

in the past 40 years at least a thousand different products have

been proposed as chemical foaming agents. The compounds which

we selected for our investigations are listed together with their

trade name and decomposition temperature in air in Table 26.

6.2.3 Results

Typical of the results of many formulations was that of an

RTV-602 coating foamed with 10% by weight Porofor N. The effects
of only 170 ESH of ultraviolet irradiation are shown for a 1/4"

thickness shown in Figure 35. The damage in all foamed specimens

tested was severe and catastrophic. Although Porofor N residue

could account for some of the damage seen, the deep and random

scatter of the ultraviolet into the film accounts for a large

portion of the damage. Indeed, coloration was observed deep in

the foamed coating.

Unfortunately, the very character of microbubble systems

that makes them attractive as solar-reflecting coatings may also

tend to preclude their use in the ultraviolet environment of

space. This can be seen by considering the nature of scattering
by totally non-absorbing particles.

First, consider the ray behavior and the path length of

ultraviolet in a coating pigmented with an ultraviolet-absorbing

pigment (e.g., rutile, zinc oxide, and zinc orthotitanate).

This is shown schematically in Figure 36. Such a pigment effec­

tively absorbs all the ultraviolet (below its absorption edge)

in the first two or three interactions, thus providing protec­

tion to the matrix. Unlike the ultraviolet-absorbing pigment

shown in Figure 36, the ultraviolet-transparent microbubb1es

depicted in Figure 37 deep-scatter the ultraviolet rays by the

very mechanism (multiple refraction) that accounts for the
reflectance of white paints as well as foams. Thus, when the

ultraviolet-absorbing pigment (Figure 36) is replaced by ultra­
violet-transparent microbubb1es or pigment particles, the
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Figure 36 RAY BEHAVlOR IN IDEALIZED PAINT FILM CONTAINING
TOTALLY ABSORBING PIGMENTS
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Figure 37 RAY BEHAVIOR IN IDEALIZED PAINT FILM CONTAINING
TOTALLY TRANSPARENT PIGMENTS
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ultraviolet path length in the matrix will be many orders of

magnitude greater, and the probability of a photon being absorbed

to cause a color center is greatly enhanced. The penetration

and random scattering of the ultraviolet photons within the film

will greatly increase the probability of damage, which in this

instance, is manifested as increased spectral absorption and

evidenced visually by coloration.

From the foregoing discussion and from experimental evidence,

the following can be listed as the attributes that are absolutely

essential to stable microbubble coatings:

1. The matrix must be completely transparent to
solar radiation - at all wavelengths.

2. It must have an index of refraction different
from unity.

3. It must have a void structure whose dimensional
characteristics are stable and are important in
terms of interaction with optical wavelengths.

The key point is that all the components of the matrix must be

transparent; otherwise the absorbing component will eventually

color and/or cause other components to degrade. Obviously, if

there is no absorption, there will be no damage. Consequently,

it is imperative that only pure, highly stable polymers be used
as matrices for microporous coatings intended for utilization in

the space environment. Commercial foams, while very reflective,

are not sufficiently stable and in.fact have been observed to
char after only a few hours of ultraviolet radiation in vacuum.

Even though the concept of a closed-cell foamed (and, there­

fore, insu1ative) polymer that would also possess solar absorp­

tances of less than 0.1 is very attractive for many space missions,

the utilization of this concept must await the development of

foamable polymers that are still more stable than the systems

available today.
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6.3 General Paint Technology

6.3.1 Introduction

Although the following paragraphs, which treat the subjects
of pigment volume, spray-up method and particle size, utilize

untreated zinc oxide-pigmented RTV-602 paints, they are included
here rather than in the section on S-13G (section 6.6) due to
the universality of application of the results.

6.3.2 Effect of Pigment Volume Concentration (PVC)

SP500 zinc oxide-pigmented methyl silicone (General Electric
Company's RTV-602 elastomer) specimens were prepared with pigment
volume concentrations (PVC) of 15, 20, 25, 30, 35 and 40%. The
thickness of each film was 6.7 + 0.1 mils; this was achieved by
painting nearly 100 specimens and measuring the reflectance on
those with thicknesses between 6.6 and 6.8 mils. The spectral
reflectances of these films (applied to 6061 aluminum) were then
determined in the wavelength range of 0.325 to 2.~.

The reflectance curves of five of the six films are pre­
sented in Figure 38. These data show the effect of increased
particle-packing on the reflectance in the various regions of
the spectrum. As the particles (mean diameter 0.3u) are packed
more closely together, they tend to behave as a particle with a
diameter larger than that of any single particle but smaller
than the diameter of the aggregate. Thus, the packing of the
particles as increased pigment concentrations appears to have a
greater effect on the near-infrared reflectance.

Simply stated, the PVC of all space paints should be main­
tained at just under the critical PVC (CPVC). The CPVC is that
concentration of pigment at which there is just sufficient binder
to cement the particles in a continuous, nonfragile film.

6.3.3 Effect of Particle Size

Solar absorptance values were determined on a series of
paints which were prepared from specific mixtures of SP500 and
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xx 254 zinc oxide pigments at a PVC of 32%. The mean particle
size for SP500 is reported by the manufacturer to be 0.3~ dia­
meter and that for the XX254 is 1.5~ diameter. The pertinent
data are given in Table 27. The paints were prepared at 100,
80, 50, 20 and 0% SP500 pigment. Except for the 0% SP500 (100%
XX254) , the films were cast with a Garner knife at 10-mil wet­
film thickness. The dry-film thickness of the five specimens
are given in Table 27, and their reflectances are shown in
Figure 39.

Table 27

SOLAR ABSORPTANCE AS A FUNCTION OF
PIGMENT PARTICLE SIZE (32% PVC)

Paint Percent Percent Thickness, Solar Absorptance
No. SP500 XX254 mill 0. 1 0. 2 o.s

1 100 0 5.3 0.10 0.11 0.21
2 80 20 6.5 0.11 0.11 0.22
3 50 50 6.8 0.12 0.11 0.23
4 20 80 6.8 0.13 0.11 0.24

5 0 100 13.0 0.13 0.11 0.24

Examination of the data shows the effect of m~x~ng two
zinc oxides of different particle-size distributions. (Although
paint 5 is considerably thicker than the other paints, the effect
of the mixing is most apparent in 0. 1 .) The effect of the larger
pigment tends to be much more noticeable in the visible portion
of the spectrum (which is manifested in 0.1). Examination of
the curves in Figure 39 shows that paint 5, prepared entirely
from the larger XX254 pigment, possesses a more sharply defined
near-infrared spectra compared to the other specimens and in
this respect is analogous to the spectra observed for the micro­
bubble coatings.

Although the general application of light scattering is
discussed in more detail in Chapter 8, it should be pointed out
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here that the results of the particle size experiment are in
concert with our present views on the maximization of solar
reflectance. As we point out in Chapter 8, the extensions to
the Mie theory for single particle scattering are useful only
in dilute suspension and the theory breaks down in the multiple­
scattering systems represented by our highly-pigmented space
paints. The data presented here show that if only 20% of the
SP500 pigment is replaced with a larger size, it seriously
detracts from the visable portion of the spectrum where the
solar output is greatest.

We conclude therefore that the solar reflectance is optimized

by using a particle size that is just under that which Mie theory
predicts for optimization at the solar maximum and increasing
the PVC to the greatest extent permissable.

6.3.4 Effect of Multiple Layers

The reflectances of two SP500 zinc oxide/silicone paint
specimens prepared at equal thickness (32% PVC) are presented in
Figure 40. One specimen was prepared in one application of about
8-mil film thickness. The other specimen was prepared in four
applications of about 2-mils each. The one-coat specimen was
carefully shaved (scapel) to 6.7 mils, and the multiple-coat
film was shaved to 6.8 mils. This experiment was conducted in
order to determine the degree of spectral reflectance which the
multiple-coat paint films would exhibit compared to that of a
single, equally thick coating. As indicated in Figure 40, the
reflectance of the multiple-coat film is 1 to 2% higher than the
single-coat film in the bulk of the solar spectrum. This is
attributed to refractive index changes at the interfaces of the
separately cured layers and represents a solar absorptance im­
provement of 0.02%.

6.3.5 Effect of Substrate Reflectance

The contribution to spectral reflectance of an unpolished,
clean aluminum substrate is shown in Figure 40. The bottom
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cure is the reflectance of an unbacked, free detached film of
S-13 (30% PVC SPSOO in RTV-602 silicone): The detached S-13

coating was backed with optical-black paper. The dashed curve
is the spectral reflectance of the aluminum substrate. These
curves illustrate the importance of the substrate reflectance,
even for S-mil-thick coatings.

6.4 The Silicone Binders Employed

6.4.1 General Electric RTV-602

General Electric's proprietary RTV-602 is a linear hydroxy­
terminated polydimethylsiloxane elastomer that is used primarily
in the electrical and mechanical encapsulating/potting industry.

The RTV-602 contains a reactive, low-molecular weight silanol
that is not necessary for cure*; the use of the silanol is un­
clear since its removal (Ref. 110) gives superior film and optical
properties and is indeed unnecessary for cure, as indicated by
the General Electric Company (Ref. 110, 111).

Although General Electric supplies a proprietary catalyst
for RTV-602, designated as SRC-OS, this polymer may be cured by
a number of curing agents. We have successfully employed the
following in addition to SRC-OS, a mixture of diethylenetriamine
and tetramethylguanadine (the best physical properties were
obtained with the "starred" candidates):

*Tetramethylguanadine (TMG)
Diethanolamine
Ethylene diamine
Diethylamine
Tin octoate

"'(She 11 H-Z

Akawie (Ref. 111) in more recent studies has employed the
following in an attempt to cure RTV-602 without leaving catalyst
in the system as a contaminant.

*Personal communication with General Electric Silicone Products
Department.
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NH (gas)
Trtethylamine
Tetramethylammonium hydroxide
Tetrabutyl phosphonium hydroxide

Current studies at lIT Research Institute (Ref. 110) employing
"spinning dish" molecular distillation has effectively reduced
the outgassing behavior of S-13G paints (see paragraph 6.6) pre­

pared from RTV-602 (VCM* > 0.04% weight), in addition to improving
both film toughness and ultraviolet stability.

Adhesion of RTV-602 requires the use of General Electric
Company's proprietary primer SS4044, although General Electric's
SS4l55 and Dow Corning's 4098 primers may also be employed
(without real advantages, however).

Because RTV-602 is a 100% solids material, solubility

characteristics had to be established for paint manufacture and
spray application. A wide variety of solvents and solvent com­
binations were employed involving flow-out tests on glass plates.
The results of these tests are presented in Table 28; these
experiments involved flow-out tests on glass plates.

While RTV-602 is quite soluble in a variety of solvents, a
smooth pour, free from "crawling," "ridging," discontinuous breaks,

and "rainbow" bands was observed using the following single
solvents only; isopropanol, isopropyl acetate and isopropyl
ether. The diluent petroleum ether (which is not a solvent) also
resulted in a smooth film.

The isopropyl ether gave the best solution and film but
resulted in extremely rapid evaporation and was, therefore, too
fast to handle. Based upon these tests, both a paint formulation

solvent and a spray thinner were selected for use with RTV-602
paints (S-13G):

*VCM = Vacuum condensible material.
liT RESEARCH INSTITUTE
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Table 28

SOLUBILITY OF RTV-602 IN VARIOUS SOLVENTS

Group
Hydrocarbons

Alcoho ls

bKetones

Acetates

Misce llaneous

Solvent
Light petroleum ether
Benzine

Benzene

Toluene a

Xylene

Turpentine

Methanol
Ethanol, 190p
Ethanol, 200p
Isopropanola

Butanol

Methyl isobutyl
carbinol

Diisobutyl carbinol

Acetone
Methyl ethyl ketone
Hethyl isobutyl

ketone
Diethyl ketone
Diisobutyl ketone
Diacetone

Isophorone
Cyclohexane

i;~~;o~~!t:~~tatea
n-Butyl acetate
Amyl acetate
Methyl amyl acetate
Methyl cellosolve

acetate
CelL·solve

Butyl acetate
Hethyl cellosolve
Cellosolve

Butyl cellosolve

Dioxane

2-Nitropropane
Isopropylether

Solution
Insoluble
Borderline, colloidal

suspension or gel
Soluble

Soluble

Soluble

Soluble

Insoluble
Insoluble
Insoluble
Soluble

Soluble

Excellent

Excellept

Insoluble
Soluble
Soluble

Soluble
Soluble
Borderline, colloidal

suspension or gel
Insoluble
Insoluble
Soluble
Excellent
Soluble
Soluble
Soluble
Insoluble

Borderline, colloidal
suspension or gel

Insoluble

Insoluble
Borderline, colloidal

suspension or gel
Borderline, colloidal

suspension or gel
Borderline, colloidal

suspension or gel
Insoluble
Excellent

Film

(Even, smooth)
Shrinkage or creep-up of

the pour, rainbow fringes
Shrinkage or creep-up of

the pour,· rainbow fringes
Shrinkage or creep-up of

the pour, rainbow fringes
Shrinkage or creep-up of

the pour, rainbow fringes
Shrinkage or creep-up of

the pour, rainbow fringes

Discontinuous pour, even,
smooth

Shrinkage or creep-up of
the pour, rainbow fringes,
discontinuous pour

Rainbow fringes, discontinu­
ous pour

Rainbow fringes, discontinu-
ous pour

Discontinuous pour
Rainbow fringes
Rainbow fringes

Rainbow fringes
Rainbow fringes
Rainbow fringes

Rainbow fringes
Even, smooth
Rainbow fringes
Rainbow fringes
Rainbow fringes
Discontinuous pour

Discontinuous pour

Discontinuous pour

Discontinuous pour
Discontinuous pour

Discontinuous pour

Discontinuous pour

Very smooth

aBest of group.

bNone of the ketones is a good solvent.
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T25 Solvent X99 Spray Thinner

Toluene 40 pbw
Isopropanol 50 pbw
n-Butano1 10 pbw

100

Toluene 40 pbw
Xylene 20 pbw
Isopropanol 20 pbw
n-Butano1 15 pbw
n-Buty1 acetate ~l~O~p~b=w

100

In order to pass Rule 66 (California Air Pollution Control Board),

the following formulation solvent must be employed for use in

and shipment to California:

X66 Solvent

VM&P Naptha
Isopropanol
Methylisobutyl Carbitol
Isopropyl Acetate
Ce1loso1ve
Ethyl Benzene

38 pbw
20 pbw
15 pbw

5 pbw
5 pbw

12 pbw

100

It should be noted that we have observed no poor shelf or ultra­

violet stability with specimens prepared from the X66 solvent.
We prefer the X99 solvent because of only slightly superior flow­

out characteristics compared to the X66 system.

6.4.2 Owens-Illinois 650 "Glass" Resin

The "650" glass resin is a condensation product (polymono­

methylsiloxane) of the hydrolysis of methyltriethoxysilane and

has sufficient stereoregularity to warrent denoting it as a

"broken-ladder polymer." This polymer is cured by therma11y­

induced cross-linking at the residual hydroxies. Its principal

disadvantage has been its propensity for embrittlement on aging

(termed "coasting") as a pigmented film, a characteristic that

is of little consequence to the electrical industry for whom it

was developed. However, it's exceptionally stable optical
properties have made it the most promising pigment-binder

currently available in commercial quantities. Type 650 resin

is supplied as a B-staged flake that is soluble in ethanol and

butanol and combinations thereof. However, it does not produce
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a smooth, easily applied film from either solvent alone. We
have found that the solvent system given below is excellent for

both formulation and spray thinning:

mils), pigmented films of

Typical of the early results

coatings is the behavior

Table 29.

n-Butanol
Isopropanol
Toluene
Methylisobutylketone

As indicated earlier, thick (-7

Owens-Illinois 650 do not age well.
of Owens-Illinois 650 "Glass" resin

exhibited by the films discussed in

35 pbw
30 pbw
15 pbw
20 pbw

100

The quality control of the 650 resin has been greatly
improved and pigmented coatings of the currently-supplied, B­

staged polymer exhibit much improved properties compared to

Table 29. Pigment volume is a critical factor and must not exceed

35% PVC. The cure schedule currently employed is:

24 hr Air dry
16 hr 200°F
16 hr 350°F

Although current Owens-Illinois 650-resin paints are much superior
to the earlier coatings in terms of. physical properties, 5-mil

pigmented films still cannot be bent with a conical mandrel

without failure at small radii.

Because of the brittleness of -5-mil films, which still
exhibit "coasting" with low-temperature thermal aging, we have

initiated plasticizer studies for the Owens-Illinois 650 "Glass"

resin in a current program for NASA-Marshall Space Flight Center.

These studies, which have been summarized in a recent Triannual

Report (Ref. 110), have been largely successful in that improved

physical properties were realized without detriment to the
optical and ultraviolet stability characteristics of coatings

prepared from them. Thermally cured 5-mil films of modified

resin can be bent without failure arouud a conical mandrel.
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6.5 Stability of Silicone Paints

6.5.1 Pre-IRIF Results

The space-ultraviolet stability of a number of silicone

paints is presented in Table 30. These paints, which are selected

as representative of those studied (in terms of the results of
space simulation), were all pigmented at between 30 and 32% PVC
(Ref. 8, 9, 12, 79). Although the three semiconductor pigments

r-Ti0
2 , ZnO and Zn2Ti04 all exhibit oxygen-bleachable infrared

damage, the data presented is worthy of reporting because of the

stabilities displayed in the aI-spectral region (the near-ultra­

violet and visible regions).

The RF-l "Flame Process," a chloride-process, rutile pro­

duced by Cabot Corporation, is the most stable rutile titania

examined. Because of the difficulty of preparing low-as silicone
paints from rutile, i.e., paints with a 's below 0.17, ands
because of the ~a of 0.05 (compared to 0.01 for both ZnO and
Zn2Ti04 ), we chose not to investigate r-Ti02 paints on the basis
of either a materials science or solid-state chemistry approach.

The excellent stability of the R-9 resin, prepared in
identical fashion to the non-linear po1ydimethylsiloxane resin

whose synthesis is described in paragraph 5.4.1.1.3, but at a

Me/Si of 1.43, was largely responsible for our early acceptance

of Owens-Illinois 650 resin. The R-9 resin was the basis of

IITRI's S-33 paint developed for the Jet Propulsion Laboratory

(Ref. 1, 72). (6a s = -0.008 for the ZnO-pigmented paint.)

Similarly, the excellent stability exhibited by the zinc
orthotitanate-pigmented Owens-Illinois 650 resin, coupled with

the results of concurrent Zn2Ti04 pigment-powder and potassium

silicate-paint studies (see Chapters 3 and 4), prompted the sub­

sequent attention devoted to the zinc orthotitanate system.

Unfortunately both ZnO and Zn2Ti04 proved to exhibit oxygen­

bleachable damage and extensive investigations were therefore

necessitated to stabilize these pigments. The zinc oxide/silicone
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paint studies (S-13 and S-13G) are presented in section 6.6 of

this Chapter and the zinc titanate system is the subject of

Chapter 8.

The two ~-A1203 and two Zn2Ti04 paints, all irradiated for
2000 ESH of ultraviolet in vacuum, are presented in Table 30
to show the importance of the matching, or mismatching, of the

ultraviolet spectra of pigment and binder. The results of
irradiation of these four coatings largely confirmed the selection
of the semiconductor pigments ZnO and Zn2Ti04 for study rather
than dielectrics such as A1203 , Si02 , MgO, etc., with their
absorption edges below 210 nm wavelength. Where the absorption
edge of the pigment is at a greater wavelength than the binder,

as with the zinc orthotitanate-pigmented 01-650 resin (6~s =
0.015), the paint's instability is largely due to the pigment
(6~1 = 0.012). However, when the binder's edge is at a much
greater wavelength (see Figure 28, Chapter 5) than the pigment,
as with the ~-a1umina-pigmentedRTV-602 (6~s = 0.174), the
damage is largely in the binder where the mechanism is, quite
simply, the fundamental instability of the binder multiplied by

some factor associated with the manifo1d1y-increased path1ength

in the film. Thus, as shown in section 6.2.3 (Figures 36 and 37)
of this chapter, the multiple scattering associated with a highly
ultraviolet-transparent pigment can easily destroy any but the

most stable po1Yffieric binder*--and none have been reported to
be more stable than either Owens-Illinois 650 "Glass" resin or
IITRI's R-9 nonlinear po1ydimethy1si1oxane (Me/Si = 1.43). We
have, on the basis of these as well as other considerations
delineated in Chapter 8 (8.1), confined our efforts in this
program to the stabilization of ultraviolet-absorbing pigments
that behave as a screening agent to help protect the binders in
which they are dispersed.

*Whi1e FEP Teflon is as stable, it cannot be formulated into
highly reflective pigmented coatings.
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6.5.2 IRIF Test Results on 01-650 Paints

Although the results of irradiation of si1icated zinc oxide­
and zinc orthotitanate-pigmented Owens-Illinois 650 resin paints
are presented in section 6.7 of this Chapter and in Chapter 8,
respectively, the behavior of several other pigmented Type 650
resin paints is worthy of note. The results of ultraviolet
irradiation of three such paints are shown in Table 31 and
Figures 41, 42 and 43.

The stability of the calcium tungstate-pigmented 650-resin
paint prepared from Crystal Grade powders was exceptional,
although a ~a1 of 0.006 was noted (visab1e region), which was
offset by a concommitant decrease (bleaching) in the infrared
region, i.e., the ~a2 region. The high initial solar absorptance
of about 0.21 for the Type 650 silicone paints dissuaded us from
giving greater attention to calcium tungstate paints, especially
in light of the somewhat erratic behavior observed for irradiated
CaW04 powders and silicate paints (Chapters 3 and 4).

Table 31

EFFECT OF ULTRAVIOLET IRRADIATION IN THE IRIF ON THE
SOLAR ABSORPTANCE OF SEVERAL 01-650 RESIN COATINGS

Exposure Solar Absorptance
0. 1 a 2 a ~a.sFigure Description (ESH) s

41 cawo~ (Crystal 0 0.116 0.089 0.205 -----
Grad ) 600 0.122 0.083 0.205 0.000

42 ca*wo, (Phosphor 0 0.128 0.103 0.231 -----
Grade 600 0.139 0.108 0.247 0.016

43 Cabot's RF-1 0 0.128 0.116 0.244 -----
r-Ti02 550 0.168 0.153 0.321 0.077

1200 0.170 0.156 0.326 0.082
Air 0.141 0.118 0.259 0.015

The difference between measurement in air and in vacuum of
the reflectance of irradiated semiconductor-pigments, and coatings
prepared from them, can be realized by comparing the data for the
Cabot r-Ti02 paint presented in Table 31 (Figure 43) with the
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data presented in Table 30 of the previous section (6.5.1). While
the binder was RTV-60Z in the earlier and Type 650 resin in the
later case, neither degrade in the infrared (aZ-region). The
extent of oxygen-bleachable damage is graphically shown in
Figure 43 and, from Table 31, represented a 6as of 0.067.
Similar to the zinc orthotitanate-pigmented Owens-Illinois 650
resin paints described in Section 8.4.4.4 of Chapter 8, it is

believed that rutile titanium dioxide degradation in the 400- to
l500-nm wavelength region (in rutile) is enhanced by the degrada­
tion of the binder, however slight it may be for the Owens-Illinois
650 resin. The reader is referred specifically to section 8.7.Z
of Chapter 8 for a possible explanation. Damage in this broad
wavelength region" is believed to be due to a shallow electron
trap that is associated with the ultraviolet-induced reduction
Ti+4~ Ti+3 (Ref. lIZ); Perny and Lorang (Ref. 113) have
examined the many radiation-induced absorption bands of both
rutile and anatase titanium dioxide and relate an absorption
b d 860 h T ·+3 . I" .an at nm to t e ~ spec~es: t ~s ~nterest~ng to note
from Figure 43 that it is the spectral region centered at about
97s-nm that bleached completely on admission of air to the IRIF.

6.6 The Development of S-13G

6.6.1 Introduction

Although the development of S-13G is the subject of previous
reports (Ref. 9, 114, 115) and a communication to the 3rd Thermo­
physics Conference (Ref. 116), it will be summarized here. The
conceptual development of S-13G as well as most of the subsequent
innovations were carried out under this research program (NASA
Contract NAS8-s379). However, the pilot-production scale-up and
field engineering of S-13G were performed under contract to the
Jet Propulsion Laboratory (Ref. 115), Subcontract 951737 under
NASA Contract NAS7-l00. Production scale-up was performed for
the Astronautics Laboratory of the George C. Marshall Space
Flight Center under NASA Contract NAS8-Z3Z68. The S-13G coating
is currently manufactured by lIT Research Institute to George C.
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Marshall Space Flight Center Specifications 10M01835 and
10M01836, under a non-exclusive arrangement with the National
Aeronautics and Space Administration.

6.6.2 Zinc Oxide and the In-Situ Problem

Zinc oxide (ZnO) was, until 1965, thought to be the most
stable white pigment available in terms of the stability of its
optical properties to ultraviolet irradiation in vacuum (Ref. 1,
117, 118). However, in 1965 serious cha11anges to ZnO's purported
behavior were reported as discrepancies between laboratory-simu­
lation data and flight-experiment data obtained from the materials'
experiments flown on OSO-II (Ref. 119) and the Pegasus (Ref. 120)
spacecraft.

These data indicated that ZnO-based silicone coatings were
considerably less stable than predicted by the extensive space­
simulation testing to which they had been subjected. This
instability has since been attributed to the formation of an
easily-bleached (by oxygen) infrared adsorption band that is not
observed by the postexposure reflectance measurements that were
at that time performed in air. This absorption band was first
observed in the laboratory by MacMillan et a1 (Ref. 121) during
in-situ measurements of the bidirectional reflectance of in vacuo,

ultraviolet-irradiated ZnO. Confirmation was reported by
Miller (Ref. 122) and subsequently by Zer1aut et a1 (Ref. 9).

The effect of ultraviolet irradiation on IITRI's S-13
thermal control coating*, the po1ydimethy1si1oxane (General
Electric RTV-602) paint pigmented with untreated ZnO that had
degraded severely in flight tests (Ref. 119, 120) is shown in
Figure 44.

The S-13 paint exhibits a reflectance decrease of about
35% at 2000 nm (2~) after approximately 800 equivalent sun hours
(ESH) of ultraviolet irradiation in vacuum, Figure 44. However,
an essentially instantaneous increase in infrared reflectance

*5-13 was described in Reference 1 as being stable.
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occurs when either air or oxygen are admitted to the irradiated

specimen; the recovery is very nearly total after only two minutes
of exposure to air. The effect of 1000 E5H of ultraviolet
radiation on a "water-sprayed" specimen of 5P500 ZnO is shown in

Figure 45. These data show that the bulk of the solar absorp­
tance increase exhibited by ZnO as a powder, and as a paint in

the 5-13 coating, is due to the oxygen-bleachable damage sustained

in the infrared.

The rapidity with which the ultraviolet-induced infrared
absorption band develops in ZnO and the abruptness with which

oxygen annihilates the absorption strongly indicated that the

infrared phenomenon is not related to bulk diffusion phenomena
but is associated with the photodesorption of adsorbed oxygen.

Of particular significance was the fact that IITRI's Z93 thermal

control coating, an 5P500 ZnO-pigmented potassium silicate paint,

did not undergo the bleachable infrared damage exhibited by
5-13 and pure ZnO. Figure 46 is a typical example of the spectra
of irradiated and unirradiated Z93, which is seen to be quite

stable to ultraviolet radiation in vacuum.

The absence of damage to ZnO-pigmented alkali silicate coat­
ings suggested that the reaction of ZnO with the potassium sili­

cate may have precluded the bleachable infrared degradation
exhibited by ZnO powder and ZnO-pigmented silicone paints. The
po1ydimethy1si1oxanes do not "wet" the pigment particles and

consequently we conjectured that they do not offer an effective
barrier to photodesorption reactions on the surface of ZnO. We,
therefore, performed a series of experiments in which ZnO was

first reacted with potassium silicate and then extracted and

dried as a new, treated ZnO pigment. We showed that a ZnO

powder treated (reactively encapsulated) in this way does not
exhibit infrared degradation. The reflectance spectra of an

irradiated silicate-treated ZnO specimen are presented in
Figure 47.
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Although a complete description of the proposed mechanism

for damage in ZnO and its prevention by reactive encapsulation

with potassium silicate is presented in section 8.4.2 of Chapter 8,

the basic aspects of the mechanism, which is beginning to be under­

stood, should be presented here. We believe that the infrared
optical behavior of ZnO can be explained on the basis of a free­

carrier absorption mechanism. Gilligan (Ref. 74), in studies

conducted for the Jet Propulsion Laboratory, concluded that the

absorbed photon creates an electron-hole pair with the hole
migrating to the surface to discharge adsorbed oxygen species.

The valence-band holes are attracted to the surface, where they
discharge adsorbed oxygen (and other absorbate gases). The sur­
face thus becomes electron rich with the result being that the
electrons accumulate in the infrared-active conduction band where,
if their concentration is high enough, we observe them as the
so-called free-carrier absorption.

Obviously silicating with potassium silicate interferes
with the kinetics of electron accumulation in the conduction band.

We postulate in Chapter 8 that the polynegativity of the silicate
anion attracts the "positive" holes preferentially with the re­

sult that the electrons are no longer as free to accumulate in

the conduction band. While this concept is not without viable
counter-arguments, the usefulness of this thesis was proven when
other polynegative "reactive" anions were employed to also effect

a stabilization of zinc orthotitanate (Chapter 8).

6.6.3 S-13G

The S-13G paint was formulated to replace the S-13 coating

which had been specified for a large number of spacecraft. The
elastomeric S-13G paint was desired for those applications where

the use of Z93 was precluded or presented difficulties. For
example, the silicone coating is more easily applied, can be

manufactured and shipped (as opposed to Z93) and is, unlike Z93,
easily cleaned.

liT RESEARCH INSTITUTE

152 U6002-97



We quickly realized during the course of the early studies
that the development of stabilized ZnO-pigmented RTV-602 silicone
paints is largely a process problem. Factors that had to be con­
sidered in engineering S-13G were (Ref. 115, 116):

1. Initial ZnO-si1icate reaction parameters such as
materials' balance, reaction temperature, reaction
time, and mixing during reaction

2. Pigment filtration and silicate extraction (washing)
procedures

3. Pigment-drying and -grinding procedures

4. Silicone paint-manufacturing procedures

5. Optimization of paint formula relative to pigment
volume concentration (PVC), solvents employed,
catalyst concentration, etc.

The two major problems that arose during the course of the
research, both of which were completely solved, were (1) decreased
stability of S-13G compared to S-13 in the 385- to 450-nm wave­
length region, and (2) intermittently poor shelf life of produc­
tion batches that varied from 3 to 200 days. Current production
batches of S-13G possess nominal solar absorptance values of 0.19
for 8-mi1 films and engineering values for 6a of 0.02 in 1000s
ESH of ultraviolet irradiation in vacuum. The reflectance spectra
of a typical, irradiated production batch of S-13G is presented
in Figure 48.

6.6.4 Engineering Considerations

S-13G is currently furnished at 66% solids, a pigment volume
of 32% PVC, and a viscosity of 27 seconds (No.4 Ford Cup). The
solvents and thinners employed with S-13G are those best suited
to the RTV-602 binder and are delineated in section 6.4. The
shelf-life of S-13G is warranted by lIT Research Institute for
30 days from date of manufacture (DOM) , which is the date the
paint is removed from initial refrigeration. The paint currently
exhibits a shelf life of greater than one year. Indeed, we now
have production-batch retains that are still re-dispersab1e after
two years. liT RESEARCH INSTITUTE
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Although General Electric's SS4044 proprietary primer is
recommended for S-13G, both GE's SS4l55 and Dow Corning's

OC4098 may be used without added advantage. It is mandatory

however that the primer be kept less than 1 mil in thickness,
and less than 0.4 mils thickness if the S-13G is to be subjected

to a progrannned "slow" cryovac exposure to LNz-temperatures, or

the S-13G/primer system may completely loose adhesion to the
base metal.

6.7 The Development of A~4Z9 Thermal-Control Paint

6.7.1 Introduction

Once we learned how to prevent the infrared degradation of

zinc oxide by the now well-known treatment with potassium silicate
(aimed at incorporation into the RTV-60Z silicone elastomer), an

obvious course of action was the preparation of silicate-treated
zinc oxide paints based on the highly ultraviolet-stable Owens­
Illinois 650 resin. Unfortunately, the very chemical functionality
of the Type 650 resin, the residual hydroxies that allow it to be
thermally cured at low temperatures without the use of catalysts,
causes nearly instantaneous gellation when mixed with silicate­
treated zinc oxide. The highly alkaline surface of the treated
pigment acts as an alkaline catalyst to promote rapid polymeriza­
tion of the B-staged resin.

The previous work (Ref. 9, 114, 115, 116) dealing with the

development of S-13G as an engineering material indicated that
some advantage could be gained from an acid phosphate-treatment
of the silicate-treated zinc oxide. This was especially true for

the case where the silicate-treated zinc oxide w~s calcined prior

to incorporation into the S-13G paint; no loss in the protective
effectiveness of the silicate treatment in the infrared region
was observed in the phosphate-treated material.

We therefore reasoned that sodium acid phosphate might

successfully be employed to neutralize the alkaline surface of
the silicate-treated zinc oxide, thereby making it a useful
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pigment for the Owens-Illinois resin, without affecting the
infrared stability of the pigment that is achieved by silicating.
Experiments were accordingly performed to determine the effect
of different methods of phosphate treatment of the silicated
zinc oxide pigment.

6.7.2 Experimental

The starting point in all of these experiments was a filter
cake from the silicate treatment of the zinc oxide as regularly
produced in the manufacture of pigment for S-13G paint. In
order to obtain better process control, all variations in treat­
ment were made upon one sample of filter cake only, from a pro­
duction batch of S-13G pigment.

Silicate-Treatment Procedure <Cake 1)

Twelve (12) lb of New Jersey Zinc's SP500 zinc
oxide (bulking at 0.257 gal), 21 lb of Sylvania
Electric's PS7 potassium silicate solution
(bulking at 1.91 gal), and 3.25 lb of distilled
water (0.39 gal) were reacted together in a
double boiler in the following manner: The
water and the potassium silicate were heated to
165°F. The zinc oxide was then added under
high-speed agitation and the temperature was
maintained for 20 min with high-speed agitation.
The heat was then removed, a cold water-jacket
replaced the hot; 13.25 lb of distilled water
(1.625 gal) was immediately added. The slurry
was then mixed for 15 min and filtered through
a Buchner funnel. The filter cake was wrapped
in unplasticized Mylar and allowed to "sweat"
for 18 hr. The filter cake so produced is
labeled "cake 1". It analyzed at 62% solids
with a ~o content of 3.8% and a SiO? content
of 15% (the balance was ZnO). The entire
filter cake (cake 1) would normall~ be re­
filtered, and finally dried at 212 F for 18 hr.
(The pigment so produced usually shows an
analysis of 7 to 9% Si02 and 1 to 3% Kz0.)

Even though the K20 content of the final pigment (cake 3)
has been as low as 0.7%, the S-13G pigment has always been too
alkaline to permit dispersion in Owens-Illinois 650 resin. The
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cake-l silicate-treated zinc oxide described above was employed
as the starting material in all of the acid phosphate treatments,
including controls, that are discussed in the following para­
graphs.

Acid Phosphate-Treatment Procedures

Rigment A-4l3-l (control): Ninety (90)g of
caKe 1 was slurried with 50 g of distilled
water for 15 min and filtered. The resultant
cake Z was re-dispersed in 50 g of water,
slurried 15 min, filtered and dried for 18 hr
at ZlZoF. The product was designated Cake 3.

~ent A-4l3-Z (control): Ninety (90)g of
C~ 1 was treated identically to A-4l3-l ex­
cept that it received an additional re-disper­
sion in water. The final product was desig­
nated as Cake 4.

A-4l3-3 hos hate-treated : Ninety
g 0 ca e 1 was slurried for 15 min with

50 g of a 1% solution of NaHZPOa . The resultant
cake Z was redispersed in 50g of 1% NaHZP04 ,
slurried 15 min, filtered and dried for 18 hr
at ZlZoF. The product was designated Cake 3.

Pi ent A-4l3-4 hos hate-treated : Ninety
g 0 Ca e was treated W1. th 0 NaH POa

identically to A-4l3-3 except that it r~ceived
an additional redispersion in 50g distilled
water. The final, dried product was designated
Cake 4.

Pi ment A-4l3-5 Ninety
g of Ca e 1 was slurr1.ed for 15 min with

50 g of a 3% solution of NaHZPOa . The resultant
cake Z was redispersed in 50 g of 3% NaH PO ,
slurried 15 min, filtered and dried for t8 ~r
at ZlZoF. The product was designated Cake 3.

Pi ment A-4l3-6 hos hate-treated : Ninety
9 g of Ca e 1 was treated with 3% NaHZPOa .

identically to A-4l3-5 except that it received
an additional redispersion in 50 g of distilled
water. The dried product was designated Cake 4.
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Owens-Illinois 650-Resin Paints

Owens-Illinois 650-resin-based paints were pre­
pared from each of the pigments described above
by grinding 15 parts of the 28% 0-1 650-resin
solution (see section 6.5.2) with 10 parts of
pigment by weight (the PVC was approximately 32%
in all six cases).

6.7.3 Results

Shelf-life studies of the six paints were performed. The
results are presented in Table 32. Although additional studies
are obviously necessary, the data show that washing with sodium
acid phosphate has an advantageous effect on the shelf life of
the A-429 0-1 650 paint. In the absence of more definitive
studies, we concluded that the "fourth" water redispersion of
the 1% acid phosphate-treated pigment (A-4l3-4) removed the
neutralizing influence of the acid phosphate and A-4l3-4 gelled
due to alkaline polymerization of the polyfunctional 650 "sili­
cone" resin. On the other hand, we hypothesize that the
A-4l3-5 paint gelled by acid polymerization due to the 3% acid
phosphate employed in the neutralization--a factor which the
additional water dispersion employed in making pigment A-4l3-6
militated against. It should be noted, however, that the acid
phosphate was not "fixed" on pigments A-4l3-4 and A-4l3-6 by
drying prior to the last redispersion in water.

The two paints that possessed a three-day shelf life were
prepared on IRIF coupons and irradiated in the IRIF. The
results are presented in Table 33. The reflectance spectra of
the most stable of the two paints is presented in Figure 49.
Exa~ination of these data show that the specimen prepared from
the 3% acid phosphate wash was the superior of the two. Indeed,
this paint, designated A-429, gave the greatest stability to
ultraviolet irradiation in vacuum achieved with a zinc oxide­
polymethylsiloxane paint prior to 1971.
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Table 32

SHELF-LIFE OF 0-1 650/SILICATE ZnO PAINTS (A-429 SERIES)

Pigment Gellation Time
No. Description Cake No. hr

A-4l3-l Control 3 1
A-4l3-2 Control 4 2.5
A-4l3-3 1% Phosphate 3 ~72

A-4l3-4 1% Phosphate* 4 1.5
A-4l3-5 3/0 Phosphate 3 4
A-4l3-6 3/0 Phosphate* 4 ~72

*The last redispersion made in distilled water only.

Table 33

EfFECT OF ULTRAVIOLET IRRADIATION IN THE IRIF ON
TWO SILICATE-TREATED ZINC OXIDE O~I 650 RESIN PAINTS

Exposure Solar Absorptance
(11 (12 (1 b.(1sDescription (ESH) s

Paint No. A-429 (I) 0 0.127 0.098 0.225
(1% Acid-Phosphate 550 0.131 0.098 0.229 0.004
Washed Silicated ZnO 1200 0.129 0.097 0.226 0.001
in 0-1 650 Resin)

Paint No. A-429 (II) 0 0.158 0.170 0.328
(1% Acid Phosphate 550 0.168 0.170 0.338 0.010
washed Silicated ZnO 1200 0.169 0.171 0.340 0.012
in 0-1 650 Resin)
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7. COMBINED-ENVIRONMENT SIMULATION

7.1 Introduction

For approximately ten years researchers in the field of
spacecraft temperature control materials have been attempting
to develop low solar absorptance coatings which are unaffected
by the hostile elements of the space environment. During this
period we have learned much about the manner in which we should
test candidate materials. Nevertheless, it was not until six (6)
years ago that the need for in-situ testing (Ref. 9, 121) was
clearly demonstrated. Accordingly, IITRI designed theIRIF, the
In-Situ Reflectance Irradiation Facility (Ref. 3). As more
sophisticated missions were considered and as spacecraft missions
to the moon and planets became more cornmon, the requirements.of
these missions for stable spacecraft thermal control materials
became more demanding. The solar wind environment had to be added
to the testing scheme, because the environment of deep space
includes not only solar electromagnetic radiation but also solar­
wind protons (and low-energy electrons) and auroral electrons.

There are two points which from experience we know are
highly important in the evolution of a simulation laboratory and
the policy under which it operates. First, we firmly believe
that responsible testing requires a materials science approach
to the research and development of thermal control materials, a
basic knowledge of the effects of ionizing radiations on materials,
and an understanding of the operating principles and characteristics
of the systems employed. Second, we recognize a strong need for
credible simulation criteria. The greatest need we have at
present in this sense is to assess the effects of nonsimulation-­
i.e., the differences in effects on materials when spectral
compositions, flux rates and/or spectral flux rates are not close
to space values.

IITRI's Combined Radiation Environment Facility, the CREF,
evolved after consideration of the above and many other points.
A definite need exists for determining the effects of the deep
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space environment, where the solar wind and' solar ultraviolet
radiation are concurrent. Since these two types of radiation are
fundamentally different--one massive and the other electro­
magnetic, we expect, therefore, that the mechanisms of their
interactions will be fundamentally different.

7.2 Charged Particle Interactions - General Remarks

Charged particles lose their kinetic energy primarily in
interactions with the deeper-lying electronic levels of an atom.
As a fast-moving particle approaches an atom lying in its path,
part of its kinetic energy is transferred through the cou1ombic
field interaction to the electrons of the atom, with the result
that some of the electrons are either expelled (the atom is
ionized) or are raised from their ground states -to highly excited
states; some of the atoms may be ejected also. Some of the
ejected ions and electrons, in turn, possess sufficient energy
to displace, ionize and excite other atoms. The probability of
energy transfer is greatest for multiply-charged, slow-moving
particles. The passage of charged particles through matter
therefore involves a series of interactions, the nature of which
depends upon the charge and initial energy of the particle. As
it slows down, its potential for causing displacements and thus
secondary interactions decrease; the probability for direct
ionization also decreases with decreasing ve1ocity--unti1 finally
only minor excitations will occur. The interactions most important
in terms of optical stability are displacement of atoms, ioniza­
tion, and excitation. By no means do all of the displaced atoms
or excited electrons remain permanently away from their previous
or similar equilibrium positions; most in fact, do return. One
should note therefore that the excitation process is followed by
a recovery (luminescence) process in which x-rays and ultraviolet
radiation are emitted. It is thus highly probable that charged
particle interactions will induce damage characteristic of high

energy electromagnetic radiation as well as that due to atomic
displacements and chemical reactions (for example, with protons).
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Each incident proton will generate a multitude of hard ultra­
violet photons. If long wavelength radiation is not also present,

the damage will generally not be bleached.

Seitz, amongst others, developed equations showing that the.
rate of energy loss is directly proportional to: material density,
charge on the moving particle, and the atomic number of the
stationary atom; and that it is inversely proport~onal ~o: the
energy of the moving particle, and in the case of displacements,
to the mass of the stationary atom, and the displacement energy.
The rate of displacement can be calculated a1so--from knowledge
of the rate of charged particle incidence and the displacement
energy. rhis gives a rough idea of the maximum instantaneous
rate of formation of interstitia1s and vacancies, i.e., potential
color centers (Ref. 123).

For energetic reactions, in which the particle velocity
greatly exceeds the orbital electron velocities in the encountered
atom, we can use the overall energy loss rate of a particle from
the expression:

where

-dE
dx

2 4
N Z 10g(€/B) + 2nz e

o €
(7)

dE = the energy loss per unit distance per incident
dx particle

z = number of charges on the charged particle

e = electronic charge

Me = electronic mass

Vp = velocity of charged particle

No = density of stationary atoms

Z = atomic number of stationary atoms

B = a parameter characteristic of the electronic energy
structu~e ot the statiooary atoms (of the order of
the ~on~zat~on potent~als)
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z.
1.

B.
1.

= number of electrons per atom in the outer shell, and

= an energy parameter characteristic of that shell
(similar to B).

The energy loss spent in displacement of atoms per incident.
charged particle can be calculated from

-dE =dx

where

2 2Z2 4Nrrz e 0

MV 2
p

2
log<l .:r.)

D (8)

m = mass of the charged particle, and

M = atomic mass of stationary atom.

The displacement energy, ED' is the minimum energy which must be
transferred to an atom to eject it from its lattice site.

Regarding the fates of displaced ions and electrons, it is

a fortunate fact that the actual (net) induced vacancy and inter­
stitial concentrations of irradiated materials are orders of
magnitude less than those calculated from theory; this is because
the displaced atoms/ions eventually return to fill the vacancies
they generated. The estimation of induced vacancy and inter­
stitial concentrations therefore bears little relation to the
actual permanent concentrations of these defects.

In summary then, charged particle damage is certain to pro­
duce effects which ultraviolet produces, as well as some which
result from massive interactions, and in combined radiation
environments radiative bleaching is undoubtedly going to create
"synergism" and invalidate any reciprocity which might have
existed in single environment testing.

7.3 Space Simulation Criteria

7.3.1 Real Versus Simulated Space Environments

Ideal simulation implies exact duplication of the real space
environment, not simply the effects of the real space environment.
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Since the nature and composition of the real space environment

differ from one place to another, the effects likewise differ.

For example, the environment at 500 miles above the earth's"

surface differs very much from that 20,000 miles above it. How­

ever, beyond the radiation environment trapped in the earth's

magnetic field, the space environment becomes geometrically
uniform and depends only upon distance from the sun and temporal

variations in solar radiations. To reproduce these environments

in a laboratory we must have a reasonably good characterization
of the solar electromagnetic spectrum as well as of the solar

particulate radiations; the former is well known, the latter

reasonably well known (Ref. 124, 125). There are, however,

several other important questions involved in designing and

operating simulation equipment and in the evaluation of the data.

First, and foremost, it is essential that in an operating

system the response of materials be as nearly as possible the

same as their response would be in the actual space environment.
This condition is met when the exact conditions of the" space

environment are duplicated, i.e., when the electromagnetic

spectrum, the charged particle energy spectrum, the rates at
which both of these are incident on a surface, and when electrical

neutrality and vacuum-thermal conditions are achieved--a11

simultaneously!

7.3.2 The Electric Neutrality Problem

The incidence of energetic protons upon a dielectric material

will create a charge build-up in the material; in the case of

protons the charge of the proton (or any positive ion, in general)
in the dielectric material accummu1ates. This accumulation is

further compounded by a secondary electron release in the case of

energetic ions. In most materials the rate at which these
secondary electrons are emitted can be and often is higher than

is the rate of incidence of the charged particles producing them.

The net charge buildup therefore can easily proceed at a rate

higher than that due to the proton beam alone. Whether or not
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these conditions exist in space is a question of major significance.

In our opinion, it is not possible for a very large voltage to

build up on a spacecraft coating because the solar wind is elec­

trically neutral (Ref. 126). The build up of a positive charge

would in fact attract more strongly the electrons and tend to

repel protons. It also would tend to attract the secondary
electrons back to the surface so that the net charge buildup
could not possibly get much beyond the material's work function

(for the escape of electrons). This is of the order of possibly
5 to 10 electron volts. In the CREF the secondary electrons which
escape from the samples are replaced by a thermal ion source.

Although there may be some buildup of positive charge on the
coatings of a spacecraft, it is probably not significant enough
to affect spectral reflectance. In our opinion, however, this

ques~ion is not completely resolved. Yet, because it is likely
I

that charge build-up is not a significant problem on a space
vehicle, it, therefore, should not be permitted in simulation
facilities.

7.4 Desi~n and Construction of the CREF

The Combined Radiation Environment Facility (CREF) described

in a triannual report (Ref. 127) is a fully operational system

combining ultraviolet, proton and electron radiation sources

with an in-situ measurement capability (Ref. 3). Photographs
of the facility are presented in Figures 50 and 51. Its com­

ponents are shown schematically in Figure 52 and a block diagram

of it is shown in Figure 53. Except for the ultraviolet irradia­
tion facility (i.e., the burner and power supply), the entire
integral simulation laboratory is shown in Figure 50. The

Beckman DK-l ultraviolet/visible spectrophotometer is shown to

the rear (behind the CREF in the photograph); the control facilities,
including the high-voltage divider, are shown in the left of the
photograph. The IRIF (Ref. 3) and the interface with the
accelerator are shown in Figure 51. The vacuum integrating

sphere is shown on the left of this photograph. The 12 samples,
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Figure 51 CLOSE-UP OF THE CREF SHOWING THE IRIF AND THE SAMPLES
(REFLECTED IN THE 45 0 MIRROR)
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mounted radially in the IRIF, are shown reflected in the 45° first

surface mirror (located in the multiple-source adaptor housing)

employed to direct ultraviolet down onto the samples; the proton­

beam port in the mirror is clearly shown.

The protons are generated in the RF (plasma) source at a

potential of 1220 volts. The flow of hydrogen into the RF source

(glow discharge) tube is controlled with a pressure regulator

and a palladium leak. The proton beam is extracted through a

small hole in the RF source into the extractor region; two

collimator lenses with small diameter holes reduce the beam

current from the proton source, originally of the order of 175
microamps, to about 40 microamperes. The extractor lenses,

which are shown in Figure 54, also shape the beam, which then

moves to the first einzel lens, which, in turn, focuses the beam

into the magnet. The einzel lenses are shown in Figure 55. The
highly regulated magnetic field selectively bends the ion com-

. + +ponents of the beam and thus phys1cally separates the H , H2
and other species. The field strength is adjusted to obtain a
45° deflection of the H+ beam, which focuses it into another

einzel lens, which, in turn, focuses the beam (through a valve)

into a quadrapole lens. A Faraday Cup is located immediately

downstream of the analyzer magnet and this is used to characterize
the beam after it emerges from the magnet. The Faraday Cup

assembly is shown in Figure 56. The angular (geometric) separa­

tion, energy and uniformity of the beam can be determined with

this cup. After final focusing in the second einzel lens, the

beam passes through a valve into the quadrapole sweep/collimator

lens, shown in Figure 57, and then into the multiple-source

adaptor housing (which connects the proton accelerator to the

basic IRIF and possesses ports for simultaneous irradiation with

protons, ultraviolet light, and low-energy electrons).
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Figure 54 TWO-ELEMENT EXTRACTOR LENS (DISASSEMBLED)
TO REDUCE FLUX FROM RF SOURCE
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Figure 56 FARADAY CUP FLUX MAPPER (OPERATED BY A MAGNETIC CHUCK)
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Figure 57 QUADRAPOLE LENS (SWEEP/COLLIMATOR)
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7.5 Simulation Parameters

The important parameters in solar simulation and in solar

wind simulation are the spectral energy distribution of the
protons, of the solar electromagnetic radiation and the vacuum
level. The vacuum level is important in the sense that the
vacuum system must be such that the net pressure effect of space
is simulated, that is, that a molecule leaving a surface will
not return to it.

Achieving the correct energy distribution and average energy
level of the protons in the solar wind is a difficult task. In
practice, the methods for doing this are generally divided into
two categories--one is electrostatic, the other magnetic.
Separation is a parameter that determines the amount of HZ+' H3+
and other species that may be incident upon the samples. The
term separation generally refers to the geometrical relation­
ships between the components of an analyzed beam. Since the
magnetic separation is energy-selective, there will be an energy
separation as well. Thus, for a given magnetic field the protons
with the highest energy (in a Maxwellian distribution) will not
be bent as much as the lower-energy protons, while the lowest­
energy HZ+ ions will be bent most, and there may be a geometrical
overlap. This is illustrated in Figure 58, where it can be seen
that the beam incident on the x-axis after separation have an
energy distribution along the beam-isolation plate. In space
the separation parameter for H+ is of the order of 0.96, i.e.,

+the ratio of H to everything else. The solar wind, therefore,
is effectively simulated by a pure H+ beam along with the
accompanying thermal electrons which provide an essentially
neutral beam. In practice there also has to be an uniformity
of the incident beam. Consequently, uniformity becomes a practical
requirement. The rates at which the particles strike the sur-
face along with the rates of the solar electromagnetic radiation
should be very nearly that of space. The ratio of the two fluxes
(particulate and electromagnetic) should be very nearly unity;
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Figure 58 MAGNETIC ANALYSIS AND PHYSICAL ISOLATION
OF PROTON BEAM

that is, the ratios of the intensities of these two fluxes should

be very nearly that of the space environment.

The solar wind consists of 2.5 x 10
8

protons/cm2-sec with
ion energies centered approximately at 1.8 keV; they may rise

during solar flares to approximately 5 keV, where the energy

distribution of these protons is of the order of 0.01 of the

maximum energies, or 0.01 of the average energy (in other words

about a 1% spread of energy). In practice the flux rate cor-
-11 / 2responds to a current level of 4.0. x 10 amp em The methods

that are used to determine the degree to which a simulation device

is achieving its purpose are difficult to decide upon. The

detector/monitor for a solar wind simulator must be a Faraday Cup
which has the capability of scanning the entire beam to measure

its intensity in a horizontal plane. It must also be able to

measure the intensity of the beam on a unit area basis and it
must be able to scan the beam energy distribution. Consequently,

devices for measuring both the flux incident per unit area and

the energy of the beam itself must be provided at the sample

location. The total environment of the samples must be such that

they will respond to the incident beam solar electromagnetic and
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particulate radiations in very much, if not identically, the
same way they would respond in space. Consequently one must also

provide a charge buildup detector, because in reality the buildup
of charge induced by proton reactions will occur and provisions

for effectively neutralizing the charge must be provided.

7.6 Performance

7.6.1 Objectives

The calibration and characterization measurements performed
on the CREF have been quite successful. The system has been

operational since June 1969. In general, the CREF operates quite
well within the tolerance levels that were anticipated. Major

operational problems have not occurred. Our experience with the

CREF indicates that the basic design of the system as a whole is
fundamentally sound. Individually, the components and ancillary

equipment operate well within satisfactory limits. Typical of
some of the minor problems that we have encountered to date was
the necessity for maintaining the system electromagnetically
shielded (i.e., not allowing RF to get out of the building).

A not unusual number of electrical problems such as ground con­
nections and ground loops, interaction between instruments and
power grounds, faulty connectors and connections, etc., occurred
at first and were all corrected. Care in selection of components

was necessary in order to avoid problems such as poor construction,
insufficient ratings, or general defects. Operational problems
have been relatively minor except for the usual problems attendant

to high vacuum engineering.

The objectives of early experiments were mainly to determine

the effects of each of the major parameters on the performance
characteristics of the system as a whole. In general, we have

wished to vary the proton flux at the sample locations from
roughly one solar wind, or 4 x 108 protons/cm2-sec, up to

approximately 25 solar winds, or 1010 protons/cm2-sec. We have
also wanted the beam purity, that is the proton (H+) species,

to be greater than 95%, and approximately ± 5% energy spread about
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the effective energy. Geometric uniformity at the sample loca­

tion is a little more difficult to achieve in most cases; for

example, the microscopic flux at the sample location should be

within 20% of the total beam flux averaged over the whole sample

location.

These objectives have largely been met and the effects that

each of the major components have on these individual performance

objectives have been determined.

7.6.2 Characteristics of Operation

Rather than indicate the effects each component (for example,

each Einze1 lens) may have on the succeeding elements and even­

tually on the conditions at the sample position, we will present

so~e of the more important variables which fix these conditions
or have the most important effect on them.

The probe voltage, which is a positive voltage applied

directly to the RF-source tube, determines directly the beam
energy. This voltage is critical; the voltage drop between the

power supply and the probe must be accounted for or made extremely

minimal. The actual energy of the protons eminating from the

system is slightly less by some small amount (roughly 25-30 eV)

than the actual set energy as determined by the probe voltage.

The probe voltage also affects the flux and the ionic composition

of the emergent particle flux. All of these, of course, affect

the strength of the magnetic field required to separate (analyze)

the protons, and this in turn affects the focal properties of the

beam, the space charge, and the energy distribution of the beam.

We have found in measuring, or monitoring, the proton flux

that it is very important to account for the secondary electron

emission. The net effect of the secondary electrons is to in­

crease the apparent beam flux so that the actual beam flux is

slightly less (sometimes much less) than the apparent flux. At
approximately 1.2 kilovolts (kv) the correction is of the order
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of 20%. At 2 kv the correction is of the order of about 100%
(for aluminum targets). In other words, an indicated flux of .

2 x 108 2-keV protons would in fact be 1 x 108 protons/cm2-sec

under these conditions.

To measure beam purity, the separated (individual) beams
are scanned across the Faraday Cup using the magnetic separator
(or analyzer) and the resulting scan of Faraday Cup current (beam
intensity) versus magnetic field strength (such as Figure 59
shows) can be used to determine the magnetic separation between
the two beams and the amount of field strength required to pro­
duce these two beams at their individual locations on the Faraday
Cup. Since the Faraday Cup is divided into eight elements each
of known size and geometrical relationship to one another, the
beam can be tracked across each of the cups and the amount of
field strength required to move it from one element to another
can then be determined. The purity then can be determined by
the fact that, sufficiently far from the magnet, the divergence
of the two beams, H+ and H2+, is great enough to cause them (these
respective beams) to hit different elements of the Faraday Cup.
This divergence ordinarily is greater than the diameter of the
downstream aperture into which one beam Or the other is effec­
tively focused. In effect the H+ beam (first peak) is focused
directly into the downstream aperture and only that part of it
is focused which is at the top of the peak. Beam purity is thus

achieved by magnetic separation followed by geometric isolation.
The beam energy spread is determined by a scan, such as presented
in Figure 59, in which the bias potential on the Faraday Cup is
increased up to the order of the beam energy. When the current
drops effectively to zero, the shape of the curve in this region
is related to the energy spread (indicated by the dotted line).
The peak of the distribution is at the effective energy of the
proton beam. The width of the curve indicates its energy spread
and this is taken to be the energy difference between the half
power points as indicated by the ± E1/ 2 points on the curve.
For an energy of 1.2 kv this energy spread has generally been of
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the order of about 50 volts; the total spread has been slightly
less than about 1/~0 of a kv or less than about + 5%.

Beam uniformity has been measured at the sample location
using a 23-e1ement Faraday Cup detector that is shown in Figure 60.
In this method the entire Faraday Cup is placed above the' sample
location and ali 23 locations, or elements, of the Faraday Cup

are scanned. In general, the quadrapo1e lens has a fairly strong
effect on the beam uniformity. The beam can be spread out across
all of the samples by simply increasing the voltage across any
two of the lenses. A voltage of approximately -800v applied on
two of the four quadrapo1es gives a beam uniformity of about 80%.
Each element of the detector is one cm2 in cross-section and the
geometric relationship between each detector is known; hence the
relative flux uniformity throughout the sample area can be
determined quite well. Intensities at the center of the sample
location ~ere determined to be of the order of 1.1 x 10- 10

ampere/em which is roughly 4 solar winds. Correcting for
secondary-electron emission, this flux would be slightly less
than 4 solar winds.

The total flux or the flux at the sample location can be
decreased to a flux of the order of 1 solar wind by one of several
means. An aperture located just above the second einze1 lens
can be installed with a much smaller diameter; another possibility
is increasing the voltage potential on the first collimator lens.

Figure 61 shows the relationship between the potential
applied to this lens and the resulting maximum flux at the sample
location; on the right side of the figure are the intensities in
solar winds. Figure 62 shows the flux distribution over the
sample area at the sample location. This plot is at full scale
and shows the beam energy distribution, the samples and the
Faraday Cup elements superimposed upon ea,ch other. Figure 63 is
a plot of the total flux at the sample location versus the voltage
required to suppress it.
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7.6.3 Operating Conditions

We have found a number of operational procedures which seem
to stabilize and regulate the beam intensity. The hydrogen supply

system was found to be quite critical. We use a very high-purity

(research grade) hydrogen gas. We pass this through a regulator

and control the inlet pressure to a palladium leak at 16 psig.

The differential pressure across the palladium leak is therefore
kept very constant. The intensity of the flux is maintained con­

stant for the reason that there are no pressure surges or transients
in the ion source. The heater current to the palladium leak is

another critical factor. This must be highly regulated and for
this purpose we use a titanium sublimation pump power supply.

The general philosophy in the development of procedures was
to proceed from the ion source down to the sample location,
characterizing the effect at the sample location of each of the

lenses in the system. The total ion current extracted from the
source is shown in Figure 64 as a function of applied (probe)
potential. The relationship is essentially linear. The primary

investigation, however, was to determine the focusing properties
of each of the lenses and the effects that each lens would have
on the succeeding lens, and also, for example, the ability of

the einzel lens to focus the beam into the analyzer magnet. The
conditions best suited for this latter situation were found to be
with the middle element of the einzel lens at approximately +800

volts, or roughly 2/3 of the probe potential, and the two outer
lenses grounded. Further down the system the einzel immediately

following the analyzer lens has a very small aperature which
geometrically selects the H+ beam. This lens has in all cases

been grounded because the aperture on the exit side of the einzel
lens was inadvertently made too small to allow the einzel lens
to function effectively as a focusing element. Fortunately,
however, the four quadrapole lenses have a very strong focusing

effect.
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The current operating conditions are: the first collimator
lens is set at -1200 volts, the second collimator lens at -1300
volts, the three elements of the first einze1 lens at 0, +800,

and 0 volts respectively, all elements of the second einze1 at

o (ground, two of the four quadrapo1e elements at -830 volts
and two at 0) and with zero bias on the samples.

7.6.4 Performance Summary

The performance of the CREF may best be appreciated from
the information presented in Table 34. The validity of our design
approach was confirmed in a more recent and independent study by
King and Zuccaro (Ref. 128). Their design concept of an ideal
solar-wind simulator coincided with IITRI's actual design--in
all important aspects.

Table 34

CREF PERFORMANCE DATA

Flux, P+1 cm2-sec

Purity, P+llc

Energy, eV

Energy Spread
(6E/Ep )

Flux Uniformity

Objectives

2 x 108 - 4 x 109

>0.95

Ep ± 5io

+ 0.05

+ 20io

Actual

2 x 108 - 1.5x 1010

>0.98

E ± 2%
p

+ 0.04 - 0.06

Variable

The flux-analyzed protons at the sample location can be
varied from slightly less than one "wind" to approximately sixty
(60) winds. For discussion purposes one "wind" is a flux of

2.5 x 108 p+/cm
2
-sec. The purity of the beam, as determined by

measuring the ratio of p+ current to total ion current~exceeds
0.98. The proton energy(we have standardized on 1.2 KeV) is
highly stable, and reproducible to within better than 2%. The
fractional energy spread, which is a function of random losses
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in the ionization process and of focussing and defocussing losses
in the optics, is of the order of + 0.05, that is, the total
energy spread is about 120 eV. The geometrical uniformity of the
beam at the sample location depends very strongly on the quad­
rature field settings. At four winds the uniformity is better
than the 20% initially desired; at 10 winds, it is about 20-25%,
measured as the difference in fluxes at the edge and at the center
of the beam,compared to that at the center of the beam. At higher
intensities the uniformity decreases rapidly. The overall per­
formance of the CREF, as Table 34 indicates, has exceeded design
expect ions , in every important way.
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8 . ZINC ORTHOTITANATE

8.1 Selection of Zn2Ti04 for Study

8.1.1 Optical Properties

The solar reflectance of a white pigmented coating depends
upon the coating's ability to scatter light of a very broad
wavelength distribution.

Light-scattering theory has its origins in Maxwell's equa­
tions and modern theory is based largely on the mathematical
developments of Mie, who performed a complete analysis of the
interaction of an electromagnetic wave with a spherical particle.
The complex Mie functions, which treat the entire range of
particle size-to-wave1engths ratios for both real and complex
refractive indices, have been discussed by many workers and,
except for the work of Jaenicke (Ref. 129), will not be reviewed
here.

Jaenicke summarized his analysis of Mie theory by the
relation:

d(A) = 0.90 (m
2 + 2) A

n TT (m2 - 1)
(9)

where d is the particle diameter at which maximum scattering
occurs for wavelength A, n is the refractive index of the medium
surrounding the particle, and m is the ratio of the refractive
index of the material in the particle to that of the medium.

Applying Jaenicke's relation to rutile titanium dioxide dis­
persed in a vehicle of refractive index 1.48, we find that maximum
scattering at wavelength A occurs at a particle diameter of 0.41A.
In order to optimally reflect radiation such as that of extrater­
restrial solar energy, this equation suggests that it is desirable
to utilize a particle size distribution whose distribution curve
possesses a shape identical to the solar distribution curve, but
with the wavelength axis concentrated by the factor 0.41. Applying
the same relation to zinc oxide, we find that d = 0.85A. We
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have found this simple relation to be a useful guide in choosing
the particle size distribution for dilute suspensions. However,

the equation is not strictly applicable to concentrated pigment

dispersions such as white paints, due primarily to multiple

scattering phenomena associated with close-packed systems. In
highly pigmented systems, a somewhat smaller particle size

distribution is desirable because the agglomerated particles

scatter light of longer wavelength than their primary particle

size dictates from single-particle light scattering theory (on
which Jaenicke based his analysis).

From these considerations, it can be shown that in a system

designed for maximum reflection over the very broad wavelength
region represented by the solar spectrum, it is necessary to

maximize the pigment volume concentration (PVC) with pigment whose

size does not exceed that defined by the Jaenicke expression for
the solar maximum (500 nm), and to employ thick coatings in order
to compensate for the decreased infrared scattering power of such
a system (compared to its scattering efficiency in the region of
the solar maxima).

Implicit in the concept of maximization of solar reflectance
by pigmented coatings is the stringent requirement for complete

transparency, or lack of absorption, of the vehicle, whether
polymeric or inorganic in nature. That is, the very process of

light scattering by multiple refraction greatly increases the

path length in the film of light interacting with the surface.
Thus, absorption centers, or color, in the film, regardless of
whether inherent or radiation induced, tend to frustrate the

randomness of internal reflection and refraction, and the

statistical probability of photon absorption is greatly enhanced.

As the number of closely packed layers increases, the number

of scattering events, or changes in the direction of incident
photons, also increases. Increasing amounts of light in the

deeper layers are lost by absorption and are converted to thermal

and molecular energy modes. An increasing number of scattering
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events leads to an increasingly effective absorption path length

for each penetrating photon. If the absorption path is long

enough, the absorption mechanism of energy loss predominates in

the deepest layers of the suspension even when the absorption

efficiency is low, as is the case with most common pigments and

binders in the major portion of the solar spectrum.

These considerations relate most importantly to the concept

of ultraviolet stability in the following manner. In ultraviolet

absorbing, semiconductor pigments such as rutile TiOZ and 2nO,

the high extinction for ultraviolet at wavelengths below their

edge (which is 385 nm in 2nO), serves to effectively screen the

ultraviolet from the binder. The binder is thus essentially

totally protected below the outermost 10~ of film in the case of

2nO-pigmented coatings. The total extinction of visable light

contributed by damage in a 10-~ thick pigmented film is not great

even for only a moderately stable binder.

On the other hand, in low-refractive index, dielectric pig­

ments such as AlZ03 , MgO, SiOZ' etc., which by our definition are
transparent in most of the solar ultraviolet (down to approxi­

mately ZOO nm), and which therefore are effective scatterers of

ultraviolet, the total ultraviolet path length in the film is

manifoldly increased and the probability of creating serious,

observable spectral damage in the binder is increased by orders

of magnitude. That is, both the increased damage per infinitesi­

mally small unit volume (6V) due to increased path length of

ultraviolet light in that volume, coupled with the greater depth

that damage, i.e., color, is caused to occur, serve to enhance

the total extinction contributed by the binder, and even reasonably

stable binders are observed to degrade.

Since approximately 8% of extraterrestrial solar energy lies
below the absorption edge of zinc oxide, and since it is impossible

to achieve perfect reflectance over the remainder of the solar

spectrum, one can readily see why it is very difficult to obtain

coatings based on it with solar absorptances of less than 0.15.
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Also, since none of the three binders currently employed in the

thermal-control coatings field (Sylvania's PS7 potassium silicate,
GE's RTV-602 silicone elastomer, and Owens-Illinois 650 silicone

resin) absorb in the 300- to 400-nm wavelength region, where 80%

of the solar ultraviolet energy lies; accounting for about 6%
of the total solar energy, employment of a stable semiconductor

pigment with an edge at about 300 nm would serve two purposes.

It would still effectively screen the most harmful ultraviolet
from the deep layers of the paint system and at the same time

would offer an excellent chance of diminishing the solar absorp­
tance by the solar absorptance factor 0.06 (=0.8 x 0.08),

providing its refractive index is at least as high as ZnO (n=2.00)
and that equally thick and equally concentrated (pigment-wise)
paints are employed.

8.1.2 Ultraviolet-Damage Considerations

Our preference for semiconductor over dielectric pigments
also involves their intrinsic characteristics relative to the
location of damage sites, or color centers, in their respective

particles. The ultraviolet transparency of dielectric pigments

such as A1203 or MgO means that the damage is a bulk phenomena,
with its optical manifestations relating, among other things, to

bulk diffusion properties in the crystal. That is, the damage,
which is manifested in color centers, occurs in the interior of
the particles where, as shown by the voluminous literature, bulk
doping is required.

Semiconductor pigments such as ZnO and Zn2Ti04 possess high
extinction for the damaging ultraviolet and the damage is therefore

confined predominantly to the surface, where we have found it can

be treated more effectively (as will be shown for Zn2Ti04 in the
following paragraphs).
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8.1.3 Summary of Criteria for Selection of ZnZTi04
Of the many pigments examined during the course of our

investigations in the past several years, only zinc orthotitanate

appears to possess a maximum of the criteria that we had established.

These criteria are presented in tabular form in Table 35.

Because we at IITRI believe that sufficient doping to

stabilize dielectric pigments such as MgO and AlZ03 , against

ultraviolet damage would in all probability be accomplished at

too great a sacrifice to basic optical properties, we have con­

tinued to devote most of our pigment studies during the past

three years to the stabilization of the semiconductor pigment

zinc orthotitanate.

8.Z Preparation of Zinc Orthotitanate

8.Z.l Literature

Zinc orthotitanate is a spinel that is formed from Z moles
of ZnO and 1 mole of TiOZ' A complete discussion of the literature
pertaining to zinc titanates will not be attempted here. However,

the most pertinent literature results will be given.

In 1960, Dulin and Rase (Ref. 130) of the State University

of New York's College of Ceramics published a study of "Phase

Equilibria in the System ZnO-TiOZ'" They confirmed the existence
and structure of the orthotitanate but also reported the definite

existence of metatitanateas a compound (ZnTi03) having the hexa­

gonal structure of ilmenite and stable up to a temperature of

9Z5°C (their phase diagram is reproduced in Figure 65). The

orthotitanate melts congruently at l549°C while the metatitanate

decomposes to form the orthotitanate and rutile at above 945°C.

Their's was the first thorough study of zinc titanates in nearly

30 years and, along with Bartram and Slepetys (Ref. 131) in 1961,

to some extent cleared up the discrepancies in previous studies.

Bartram and Slepetys listed the orthotitanate as most easily

prepared from sulfate type anatase and zinc oxide; a reaction

time of 3 hr at 800° to 1000°C is required. The metatitanate,
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Table 35

CRITERIA FOR SELECTION OF
PIGMENT AND PROPERTIES OF ZINC ORTHOTITANATE

Criteria

1. High refractive index;
n > 2.0

2. Edge between 290 and 300 nm

3. No absorption from edge to
2700 nm

4. Synthesizable in laboratory,
pilot and production

5. Acceptable impurities and
unreacted materials

6. Stability to ultraviolet

7. Stability to charged
particle radiation

n = 2.4

Edge at 325 nm

No absorption from 325 to
2700 nm

Yes (not produced in quan­
tity yet, i.e., > 5 lbs.)

Yes (unreacted precursors
subject of much study)

Basically stable in bulk-­
stabilized by surface treat­
ment

Appears to be stable when
surface treated properly

they found, required chloride process rutile and an optimum

tempe~ature of 850°C. The solid solution phenomenon claimed by
earlier writers appeared to be explained by the claim of Bartram
and Slepetys to a third zinc titanate (Zn2Ti308), the sesqui­
titanate. This is a defect spinel structure made from anatase
and zinc oxide in ratios of 2 moles ZnO and 3 moles Ti02 reacted
at a temperature of 700°C for at least 100 hr.

In 1962, Loshkarev in three papers found only orthotitanate
as a compound using only rutile and zinc oxide and temperatures
up to l400°C (Ref. 132-134). The reaction between rutile and
zinc oxide did not begin below 740°C. The existence of unreacted
zinc oxide in the final product, regardless of composition,
temperature or time, was observed by Loshkarev and has been con­
firmed by these studies. They report "very intense shrinkage"
(from 15 to 18%) in forming the orthotitanate at temperatures
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above 1000°C. They therefore recommended slow heating when

reaching this range. (We follow this advice in our studies; the

high shrinkage is quite apparent.) The Russian papers do not

concede the existence of the metatitanate, ZnO·TiOZ' nor the
sesquititanate listed by Bartram and Slepetys.

A more recent publication on the subject is a paper by Kubo

et a1 in which they acknowledge the existence of the three titanates
and report success in making the metatitanate of exceptional

purity (Ref. 135).

Summarizing the literature, all workers agree on the com­
position, crystal structure and characteristics of the ortho­
titanate. A few agreed upon the existence and structure of the

metatitanate, and only one claimed the existence and structure of

the defect spinel, ZnZTi308 , which we call the sesquititanate.

It was considered best therefore to first attempt to form an
orthotitanate using the method of Bartram and Slepetys.

8.Z.Z Synthesis

The synthetic schedule for the three zinc orthotitanates that
were prepared is given in Table 36. The metatitanate was the

yellowest of the three stoichiometries prepared and possessed an
absorption edge similar, but considerably more gentle, in slope
than the rutile from which it was prepared. Like the ortho­

titanates discussed later, the metatitanate possesses unreacted

ZnO, which can be extracted easily with acetic acid. The spectra
of metatitanate (ZnTi03) and sesquititanate (ZnZTi308) are pre­
sented in Figure 66.

The sesquititanate is whiter than the metatitanate and its

absorption edge at -365 nm is intermediate between that of the
metatitanate (-400 nm) and the orthotitanate (-3Z5 nm).

The orthotitanate is a very white pigment, brighter to the
eye and more reflective than either of the pigments from which
it is prepared. The reflectance spectra of zinc orthotitanate

are presented in Figure 67. The "step" in the reflectance spectra
liT RESEARCH INSTITUTE
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Table 36

SYNTHESIS SCHEDULE OF
SEVERAL DIFFERENT ZINC TITANATES OF STOICHIOMETRY

Batch Ratios of Reactants Temp. Time,
No. ZnO Ti02 °c hr Structure

B-129 1 mol 1 mol (rutile) 850 17 meta

B-130 1 mol 1 mol (anatase) 700 64 sesqui

B-131 2 mol 1 mol (anatase) 700 64 sesqui

B-132 2 mol 1 mol (anatase) 1050 17 ortho

B-133 3 mol 2 mol (anatase) 1050 17 ortho

of all four heats is interpreted as being due to unreacted ZnO
in all cases, extraction with acetic acid results in a powder
that exhibits the spectra of curve E in Figure 67. Zinc oxide's
presence has been confirmed by x-ray diffraction.

3.2.3 Irradiation

The effect of 970 ESH of ultraviolet irradiation on zinc
orthotitanate prepared at 925°C is presented in Figure 68.
(These data were obtained utilizing the IRIF-I simulation
facility described in Chapter 2.) The absorption band at about
950-nm wavelength is characteristic of zinc orthotitanate and
since has been attributed to an electron trap associated with the
Ti+3 species (Ref. 136, 137). This conclusion is the result of
electron paramagnetic resonance spectroscopy studies that are the
subject of a later section (section 8.5) .

. Studies have shown that 0.5% excess zinc oxide is essential
in minimizing the production of Ti+3 (Ref. 137). This absorption
band is fast-bleachable with oxygen and has been studied by
Gilligan and Zer1aut (Ref. 2).

The importance of reaction temperature on the stability of
zinc orthotitanate is seen from the effects of 1000 ESH of ultra­
violet irradiation on pigment prepared at 1050°C (see Figure 69).
The high temperature product exhibited a ~~ of less than 0.01

s
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but was of such hardness and agglomeration that the material
could not be ground into paint. The 10S0°C product has a Mho
hardness of ",,6.

Because we were unsuccessful in preparing stable zinc ortho­
titanate at lower reaction temperatures, i.e., at temperatures
that produce soft, small particle-sized material, the employment
of surface treatments was initiated. Both very high-temperature
plasma annealing and reactive encapsulation were subsequently

employed.

8.3 Plasma Annealing

8.3.1 Rationale

The employment of a high-temperature plasma facility to
anneal the surface of zinc orthotitanate was considered because
it was thought, quite correctly it turns out, that it might be
possible to stabilize this pigment as an aerosol without either
aggregation or grain growth. That is, we hoped that sufficiently
high temperatures and sufficiently short residence times (in the
plasma) could be achieved such that the defects residing on the
surface could be annealed out without an accompanying increase
in the effective particle size.

8.3.2 Experimental

The plasma heat treatments were performed by Mr. E.P. Farley
of Stanford Research Institute utilizing SRI's rf-excited, in­
duction plasma facility. These experiments were performed under

separate contract to NASA-Marshall Space Flight Center (Ref. 138).
The facility, which is shown schematically in Figure 70 is
described by Bartlett in Reference 138. The procedure employed
consisted of passing an Argon/Oxygen aerosol of the pigment being
treated through the plasma reactor with variable mean effective
retention times and boundary layer temperature gradients, ~T.
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8.3.3 Early Results

Although the objective of the early experiments was to
establish the general range within which the reactor parameters

should be varied, some rather basic information was quickly

accumulated. Namely, it was found that the higher the tempera­

ture, the greater the damage sustained in the 1000- to 2600-nm

wavelength region on ultraviolet irradiation. Also, it was
observed that plasma annealing removed the 363-nm "shelf" absorp­

tion characteristic of Zn2TiD4 , providing the retention time was
not too large and the temperature 6T, not too high (Ref. 139).

Figure 71 is an example of the results of irradiation of one of

the early plasma-treated pigments.

The infrared damage was immediately ascribed to conduction­

electron absorption associated with increasing amounts of ZnD

condensed on the surface as a result of the reaction

(10)

The decrease in the 363-nm shelf was attributed to decreased un­
reacted ZnD from the original stoichiometry, an absorption that

reappeared when very severe infrared damage occurred.

The effect of plasma heat treatment at two temperature

gradients, 6T, (1900 and 2900°C) of zinc orthotitanates prepared

under different conditions was then determined. The treatment

history of these pigments is given in Table 37.

The specimens were irradiated for 1000 ESH of ultraviolet

irradiation. The results are presented in Table 38 and Figures

72 through 77. Examination of the data show that plasma heat
treatment at the lower temperature tends to de-stabilize the zinc
orthotitanate by creating free-carrier-like damage in the infrared

(similar to that exhibited by ZnD). High-temperature heat treat­
ment, as exemplified by the calculated plasma temperature

gradient 6T (Ref. 139), also produces a very strong increase in

ultraviolet absorption at 363-nm wavelength. This absorption is
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Table 37

HISTORY OF PLASMA ANNEALED ZINC ORTHOTITANATES

Plasma Heat 2
Batch Pigme£t Initial Reaction Treatment, I:1T

No. No. 925°C 1050°C 1900 0 C 2900°C---
B-183 3* 18 hr Yes

B-184 6* 18 hr Yes

B-185 4** 18 hr 5 hr Yes

B-186 6** 18 hr Yes

B-187 3** 18 hr Yes

B-188 4* 18 hr 5 hr Yes

1 From Table 2; * = low I:1T; ** = high ~T.

2 ~T = plasma temperature gradient.

Table 38

DESCRIPTIVE NATURE OF PLASMA HEAT-TREATED
ZINC ORTHOTITANATE ULTRAVIOLET DAMAGE SPECTRA

Shoulder at

Batch Pigment 363nm D?ffiage, %Ll~ Peak Damage
(R450-R363) ~nm .6.RA, , %No. No. 363nm 700nm 2600nm

B-183 3* Weak; 11% 6.5 2.5 0 900 4.0

B-184 6* Weak; 10% 7.0 2.0 0 900 5.0

B-185 4** Very strong; 0 1.6 10.5 960 3.0
54%

B-186 6** Very strong; -4.0 1.6 20.0 1000 4.0
57%

B-187 3** Very strong; 0 2.0 22.0 960 3.4
64%

B-188 4* weak; 9% 6.5 1.8 0 900 2.5
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believed to be due both to the creation of Ti02 and ZnO at
2900°C ~T. Unlike the strong absorption at 363 nm in the pre­

cursor materials, which is to a large extent extractable with

acetic acid in each case, and is therefore due to unreacted ZnO,
ZnO-type infrared damage occurred when the absorption was in­

creased, or created completely, by plasma annealing.

The infrared damage in the 1500- to 2600-nm wavelength
region (Figures 72-77) is therefore attributed to ZnO that was

first created by the reaction

~ >Ti02 + 2ZnO, (11)

in which case the volatile ZnO condenses on the Zn2Ti04 surfaces

where it is unprotected and subject to photodesorption of oxygen.

Not only does the 925°C product (3**) exhibit the strongest
absorption as' a result of high-temperature plasma annea~ing, but
it also exhibits the greatest damage in the infrared. The fact
that no damage is observed at 363 nm is attributed to the screen­

ing effect of the ZnO. Conversely, low-temperature annealing
resulted in damage at 363-nm wavelength to all three specimens,
which is consistent with the fact that the reflectance at 363 nm

was nearly maximized at the~T of 1900°C. (It should be noted
that the 1050°C product (6**) exhibited ZnO-type luminescence
bleaching at 363 nm as a result of ultraviolet irradiation.)

Low-temperature plasma annealing was most effective in

stabilizing the 925°C/1050°C product (#4,Tab1e 34). Although
the damage at 363-nm increased slightly, that in the 700- to 850-nm
region was all but eliminated (see Table 38).

Finally, it should be noted that plasma heat treatment
resulted in an increase in the peak wavelength and in the width
of the 800- to 1000-nm absorption attributed to Ti+3 (Ref. 131).
The greatest increase in peak damage that occurred" in this

region was exhibited by all three pigments plasma annealed at

the higher temperature gradient; with the longest wavelength
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8.4.1

Reactive Encapsulation of Zn2Ti04
Early Rationale for Reactive Encapsulation

being associated with specimen 6** (which exhibited luminescence
bleaching at 363 mn). It should be noted that the assignment of
peak wavelengths is difficult due to the well-known spectral
imprecision in powder-reflectance measurements (see Table 38).

8.3.4 Summary of Parameters Study

The results of plasma heat treatment at several mean
boundary-layer temperature gradients, ~T, and a reactor retention
time of 1.1 sec, are presented in Table 39. These parameters are
discussed fully in a recent SRI report by Farley (Ref. ·139).

Table 39

EFFECT OF ULTRAVIOLET IRRADIATION ON PLASMA TREATED B-229
Zn2Ti04 AT A RETENTION TIME OF 1.1 SECOND

Plasma Reflectance Decrease* Solar
Figure Temt>. Exposure ~RA (A = nm), % Absorptance

Cl s ~ClsNo. ~T ( C) (ESH) 362 425 700 950 2400
78 2000 1010 0.4 2.4 2.0 2.6 8.2 0.160 0.028
79 1400 1010 1.0 1.8 3.5 5.8 -1.2 0.130 0.029
80 2450 1010 -2.6 0 2.5 6.0 3.5 0.143 0.026
81 1670 2500 -4.0 0 0 0 10.0 0.145 0.010

*(-) values denote reflectance increases, i.e. , bleaching.

These data and the corresponding spectra, which are presented in
Figures 78 through 81, showed that a ~T of l670°C produced the
most stable pigment in terms of ~Cls. The resultant stability
was deemed insufficient however, and it was decided that plasma
heat treatments should be performed on reactively encapsulated
Zn2Ti04 . These studies are presented in paragraph 8.4.4.1.2.

8.4

The efficacy of reactive encapsulation as a method of
stabilization of pigments against the degrading influence of
space ultraviolet radiation was first established with Z93 as a
result of comparison with S-13, a comparison that led to the
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development of 8-l3G (see Chapter 6). However, it was not until

8-13, an elastomeric silicone paint based on untreated ZnO, was

discovered to be unstable that the protective mechanisms associa­

ted with Z93's exceptional stability were deduced. These early

experiments showed that zinc oxide was the unstable component in

8-13 and that, therefore, the potassium silicate employed in the

stable Z93 provided a stabilizing influence on the otherwise

unstable zinc oxide (Ref. 9).

The idea of utilizing potassium silicate as a treatment to

stabilize ZnO prior to its incorporation into the elastomeric

silicone binder was thus developed (Ref. 119) and the concept of

reactive encapsulation was subsequently postulated. The now

widely employed 8-l3G thermal-control paint utilizes this thesis

in its formulation, in which the zinc oxide is first reacted in

slurry with potassium silicate, is extracted and is then dried

prior to being milled into the silicone elastomer binder.

8.4.2 Theoretical Considerations

We have speculated previously on the possible mechanisms

that may explain why silicate treatment is a practical method of
preventing degradation of ZnO and ZnO-pigmented coatings (Ref.

119 and Chapter 6). We postulated that the effectiveness of

silicate treatment of ZnO can be explained by the barrier mechanism

concept in which the silicate coating on the pigment surface forms

a barrier to charge and/or excitation transfer. Although sub­

sequent experience has not disproven this concept, we are now of

the opinion that the protection could also be afforded by other
mechanisms, chief among which is the hole (p+) withdrawing effect

of the polynegative anions employed in reactive encapsulation.

Ultraviolet radiation produces electron-hole pairs with the

electron entering the conduction band, leaving a hole (p+) in the

valence band. The holes combine with the chemisorbed oxygen (and
other chemisorbed gases), now thought to be present on ZnO as

0-, releasing the oxygen at the surface,
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oads + p+ ----::»~ 0 (12)

Some lattice oxygen can be expected to be discharged by the holes,
although this is believed to be unimportant in 2nO. The non­
recombined electrons in the conduction band either accumulate
there, or fall into traps. Oxygen vacancies, i.e., from the dis­
charge of lattice oxygen, will attract electrons because of their

double positive charge.

On the basis of our studies of ultraviolet-irradiated zinc
oxide involving optical spectroscopy and gas-adsorbate bleaching
experiments (Ref. 2, 70), we have concluded that the predominant
behavior in 2nO, that which manifests itself in the well-known
broad infrared absorption that commences at approximately 1000 nm,
is attributed to conduction band electrons. Shallow traps have
been considered by others as being responsible for the observed
infrared damage in 2nO. Nevertheless, we do not believe that a
shallow trap with a transition energy of only about 0.03 eV, as
necessitated by the infrared band observed, would permit the
electron population required to be spectroscopically observable
(i.e., ~1014/cc). This is not to say though that shallow traps,

lying 0.03 eV below the conduction band, are not present.

We previously postulated that when the surface is treated
with potassium silicate, the 0- is displaced by the more highly
charged, and thus more tightly bound, silicate anion. Although
in a physical sense this may be true, we now believe that the
surface chemistry of protection is much more complicated and that
it is only possible to say with any certainty that reactive
encapsulation interferes with the oxygen chemistry at the pigment/
binder interface in favor of stabilization. We do believe, how­
ever, that the most probable explanation involves the interaction
of the "encapsulating" anion with the highly prevalent hydroxyl
(and other, namely, carboxyl) ions that are chemisorbed on all
metal oxide surfaces. Whether this interaction involves hydrogen
bonding with the hydroxyls, or the displacement of the hydroxyls,
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remains to be determined. Likewise, the concept that the high

hole affinity of the po1ynegative anion precludes ho1e/O~ds

combination (as shown by Eq. 12) or that the O-d is displaceda s
by the po1ynegative anion that acts as a physical barrier to

ho1e/O-d combination, also remains to be determined. As stateda s
earlier, we presently favor the hole affinity concept as applied

to the po1ynegative anion reacted on the oxide surfaces.

Regardless of whether the barrier mechanism or the hole
affinity concept is, in reality, operative, it is obvious that

oxygen is not photodesorbed when the electron-hole pair is pro­

duced in the pigment surface (where photon absorption takes place),
and the kinetics of conduction electron formation are radically

altered. Hence, as the electrons go into the conduction band,

any holes left at the pigment/anion interface are captured pre­

ferentially by the po1ynegative anion, which is not desorbed.

In the case of 2nO, the po1ynegative anion is silicate. We then
postulate that a charge is built up in the po1ynegative anion,

attracting electrons from the conduction band, and reducing their

concentration to the point that they are not spectroscopically
observable, or thermodynamically important from the standpoint of

spacecraft heat transfer.

8.4.3 Pigment Treatment Scheme

The complete history of all reactive-encapsulation studies

performed are presented schematically in Figures 82 and 83. The

exact experimental procedures employed in the preparation of each

batch are presented in the Appendix. The open circles and squares

in Figures 82 and 83 represent surface-treated (reactively en­

capsulated) powders that were irradiated in the IRIF and/or
employed as pigment material for silicate and silicone paints.

The first row of "filled" circles represents PS7 potassium silicate­

based inorganic paints and the second row of filled circles (the

last row) represents silicone paints prepared ,from Owens-Illinois
650 Glass Resin.
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The rationale for selecting these reactive encapsu1ants is
based on the thesis that: (1) Photodesorption of oxygen by the
migrating '~ole" produced by the interacting (ultraviolet) photon
provide for a permissive state in which the resultant electron is
free to enter the conduction band, if ZnO is present or to reduce
Ti+4 to Ti+3 in any case, and (2) highly po1ynegative anions should

have a high "hole" affinity the use of which was expected to
favorably interfere with the kinetics of the Ti+4~ Ti+3

reduction. The use of the Fe++/Fe+++ couple was suggested because
of the application to ZnO reported by Sancier (Ref. 140), who
discussed its efficacy in terms of the high electron cross-section
of the Fe+++ and the "hole" cross-section of the Fe++ These

treatments are discussed in greater detail in paragraph 8.7.2.

8.4.4 Results of Ultraviolet Irradiation

8.4.4.1 Reactively Encapsulated Pigments

The effect of ultraviolet irradiation in vacuum on a series
of zinc orthotitanate pigments that were reactively encapsulated
with soluble alkali salts of the polyvalent anions of interest

are shown in Table 40. This table presents the spectral reflec­
tance changes for five (5) pertinent wavelengths; the corresponding
spectral data are presented in Figures 68 and 84 through 92.

Of those specimens prepared according to the schedule pre­
sented in Figures 82 and 83, only those treatments that are most
effective, or are otherwise instructive, are discussed in this
report.

The si1icating of zinc orthotitanate clearly stabilizes the
surface against formation of the broad damage spectra in the

region 1000- to 2600-nm wavelength (Figure 84). However, as
with the si1icated zinc oxide employed in IITRI's S-13G, the
stability of the powder (as opposed to a silicate, or silicone,

paint) is decreased in the 400-nm wavelength region by si1icating.
No explanation is available for this phenomenon except to note

liT RESEARCH INSTITUTE

226 U6002-97



T
ab

le
40

EF
FE

C
T

O
F

IR
R

A
D

IA
TI

O
N

ON
TH

E
SP

EC
TR

A
L

RE
FL

EC
TA

N
CE

OF
CH

EM
IC

A
LL

Y
TR

EA
TE

D
Zn

2T
i0

4
PO

W
DE

RS

F
ig

u
re

B
at

ch
H

r.
@

E
xp

os
ur

e
liR

A
(A

=
nm

),
10

N
o.

N
o.

C
he

m
ic

al
T

em
p.

,
°c

(E
SH

)
36

2
40

0
70

0
95

0
24

00
68

B
-2

29
N

on
e

(C
o

n
tr

o
l)

97
0

2
.0

4
.0

4
.0

4
.5

2
.8

84
B

-4
l7

PS
7

97
0

4
.5

8
.0

1
.5

1
.0

1
.5

85
B

-4
20

N
aH

2P
0 4

97
0

7
.0

7
.5

6
.0

5
.0

1
.5

86
B

-4
23

Fe
-C

N
97

0
2

.6
7

.0
5

.4
6

.2
3

.3
'8

7
B

-4
53

L
i 2S

iF
6

10
10

8
.0

7
.2

3
.0

2
.5

1
.0

N
88

B
-4

54
L

i 2
S

iF
6

7
@

50
0

10
10

1
.0

2
.8

1
.0

1
.7

1
.7

N .....
..

89
B

-4
57

K 2S
iF

6
10

10
5

.0
5

.3
3

.1
3

.0
1

.8
90

B
-4

58
K
2
S
i
~
6

7
@

50
0

10
10

2
.7

3
.0

1
.6

2
.2

0
.3

B
-4

6
l

K
2S

nF
6

10
10

8
.0

6
.5

1
.0

1
.5

1
.5

,9
1

B
-4

62
K

2Sn
F

6
7

@
50

0
10

10
9

.0
6

.0
1

.3
2

.5
1

.7

B
-5

46
K

4S
i4

W
12

04
0

10
10

0
.8

4
.2

5
.0

4
.8

1
.5

c:
92

B
-5

47
K

4S
i4

W
12

04
0

7
@

50
0

10
10

0
.5

3
.3

2
.1

2
.1

1
.3

(
j\ 0 0 N I \0 .....
..



(j)

2.
5

8
0

6
0

N
IL

l
N

U
0

0
Z

I

~
J

u IL
l

-J IJ
..

4
0

IL
l a: ~ 0

c::: 0"
1

0 0 N I \0
I
n

it
ia

l
S

p
e
c
tr

a
--

J
20

_
_

_
9

7
0

E
SH

10
L5

O
L

-.
..

L
.-

..
I_

..
.L

..
..

..
..

L
_

...
...

...
.
,
L
"
.
.
-
-
I
I
-
.
.
.
.
.
b
.
~

...
...

...
.
b
.
.
"
.
.
.
J
c
.
.
~
6
a
z
-
..

..
.-

-
"
'_

..
..

..
..

..
..
_
~

..
..

.~
_
.
.
I
.
-

..
..

..
._
~
-
&
.
.
.
.
.
.
.
,
.
\
~

W
A

V
E

L
E

N
G

T
H

t
(

M
IC

R
O

N
S

)

F
ig

u
re

84
EF

FE
C

T
OF

UV
ON

B
~
4
1
7

Zn
ZT

i0
4



8
0

--
--

--
--

--
--

~
...

.-
-.

..
..

..
..

..
.

..
,.

_
0

0
-
-
-
-
-
-

/
....

....
._
-
-
-
~

I I I

6
0

N
IJ

J
N

U
\0

Z ~ U IJ
J

-
l

LL
.

4
0

IJ
J a:: ~ 0

c:::
:

0
'

0 0 N I \0
I
n

it
ia

l
S

p
e
c
tr

a
"'

-J
20

-
-
-

9
7

0
E

SH

10
1.5

W
A

V
E

LE
N

G
TH

,
(M

IC
R

O
N

S
)

F
ig

u
re

85
EF

FE
C

T
OF

UV
ON

B
-4

20
Zn

ZT
i0

4



8
0

~
-
-
-
-
-
-
-
-
­ --

--
--

---
---

---
--

-
..,

..-
--

--
...
--

..
_

-
--..

....
.-

--
-

-
-
-

-
-
-

-
--

--

®
2.

5

6
0

N
LI

J
•

w
u

/
0

z ~ U LI
J

...
J

LL
.

4
0

LI
J a: ~ 0

c:: 0"
1

0 0 N I \0
I
n

it
ia

l
S

p
e
c
tr

a
.....

....
20

_
_

_
9

7
0

E
SH

10
1.5

2.
0

ob
-

..
..

..
"
"
"
"
"
'
~
"
"
"
"
'
=
b
=
d
-
"
"
"
"
"
"
"
"
'
=
u
~
"
"
"
"
'
.
.
.
.
,
!
"
"
"
"
"
"
.
.
a
.
.
.

...
...

...
...

...
...

..A
.
=
.
.
.
.
,
,
,
J
,
_
.
.
.
d
o
.
=
_
.
.
_
_
~
"
"
"
"
"
"
b
=
~
=
=
~
'=

.....
....L

._b
.,=

_~
"
"
"
"
'
=
&
o
.
.
_

_
..

..
..

._
"
"
"
"
"
"
_

..
..

..
_

.
.
.

W
A

V
E

L
E

N
G

T
H

,
(M

IC
R

O
N

S
)

F
ig

u
re

86
E

FF
E

C
T

O
F

U
V

ON
B
~
4
2
3

Z
n

2T
i0

4



8
0

,
-
'
-
~
'
-
-

"".
,.

...~
-
-
-

...:
--

-..
.

."
"

.....
---

---
-.-

--.
,"

:..
.'

--
--

:::
-.

---
.

._--
--

/
--

-
-

-
=:

:..
-
-
.
:
.
.
-
~
-
-
-

'/..
..

--
--

:
.
.
.
-
:
-
~

'1
-

-
~
'
.
:
:
-
-
.

If
-

-
-
~
=
-
=
-
.....

.,.,
I;

'-
-"

--
';

....
...

_
-
.
I

U I

60

tv
LL

J
LV

(,
)

I-
'

Z ~ (,
)

I
LL

J
..

J
I

I.&
-

LL
J

4
0

I
a:

i
~

I
0

c:::
:

0
\

0 0 tv I \0
I
n

it
ia

l
S

p
e
c
tF

a
-...

..J
20

1
0

1
0

E
SH

0
2

A
d

so
rb

a
te

10
1.5

O
L

-.
..

.L
.-

-'
_

.L
-.

..
._

.L
-.

..
,J

..
"
--

I_
z
J,

..
.,

...
...

...
...

...
.J

..
..

.,
..

..
I-

...
...

...
_

...
...

...
..

..
I.

..
..

.."
-
-
.
.
"
"
.
L
"
.
.
.
.
.
.
.
.
J
"
"
"
'
"
"
"
~
-
d
.
"
"
.
.
,
.
,
,
.
,
J
.
.
.
.
.
-
o
=
&
.
.
.
~
'
=
-
.
.
a
.
.
.
.

..
..

..-
-
-
I

W
A

V
E

LE
N

G
TH

t
(
M

IC
R

O
N

S
)

F
ig

u
re

8
7

E
F

F
E

C
T

O
F

tN
O

N
B
~
4
5
3

Z
n

2
,T

i0
4



8
0

--
--

---
--

-

6
0

--
-- -

- -
--

--
-

N
LL

I
w

(,
)

N
Z ~ (,

)
LL

I
...

J
LI

..
4

0
LL

I
a:: ~ 0

c:: 0
'\

0 0 N I 1.
0

'-
J

20
I
n

it
ia

l
S

p
e
c
tr

a

1
0

1
0

E
SH

(jj
)

10
1.5

W
A

V
E

L
E

N
G

T
H

t
(

M
IC

R
O

N
S

)
F

ig
u

re
88

E
FF

E
C

T
O

F
U

V
O

N
B
~
4
5
4

Z
n

ZT
i0

4



8
0

6
0

N
lL

J
w

U
W

z ~ ~ ...
l tt

4
0

a:: 'o!
c:::

:
0"

1 o o N I \D -..
..J

20

10
15

W
A

V
E

LE
N

G
TH

,
(M

IC
R

O
N

S
)

F
ig

u.
re

89
EF

FE
C

T
OF

UV
ON

:6
=4

51
Zn

2T
i0

4

I
n

it
ia

l
S

p
e
c
tr

a

1
0

1
0

E
SH

_
.

-
0

2
A

d
so

rb
a
te



3.
0

2.
6

2.
2

1.
4

1.8

W
av

el
en

gt
h,

(f
L

)
1.

0
0

.6

-,
..

--
--.

-
..
_-

/'
--

- -
-

,-
~

-
r
-
.
-
-
-
-
-
-
-
-

C
-
-
.

I
- -

-.
r:-:

:::-
--

If
--

--
~

---
r---

----
---.

--
-

-
---

;;;

O
ri

g
in

a
l

-
-
-
-
-
-

1
0

1
0

E
SH

@

8
0

10
0

~
6

0
c: c +
- o

N
~

W
'+

-

~
~ ~

4
0

o

c: 0
' g

2
0

N I \0 '-
.I

F
ig

u
re

90
EF

FE
C

T
O

F
UV

ON
B

-4
5

8
Z

n
zT

i0
4



10
0

=
=

=
"
"
'
~
-
-
~
~
~
~
-
-
~
-
-
-
-
-
~
-
-....

8
0

6
0

N
I.L

I
w

U
l/

l
Z ~ U I.L

I
...

J
lJ

..
4

0
I.L

I
a:: ~ 0

c: 0
'

0 0 N I \D
I
n

it
ia

l
S

p
e
c
tr

a
.....

..
20

1
0

1
0

E
SH

0
2

A
d

so
rb

a
te

10
1.5

W
A

V
E

LE
N

G
TH

,
(M

IC
R

O
N

S
)

F
ig

u
re

9
1

E
F

F
E

C
T

O
F

U
V

O
N

B
~
4
6
Z

Z
n

ZT
i0

4



."
..

..
..

._
-

8
0

-

~
.
,
.
-

.....
.....

,
.....

_.....
_
.
-
:
-
:
:
~
=
-
:
=
-
:
:
:
-
:
:
:
-
:
:
:
:
-
:
:
-
=
:
=
:
:
:
-
-
-
-
-
-
J

"
.....

.....
.--

-
-

-
-
-
-

-
-
-
-
-

-
--

-
.,

-
-
~
-
-
-
-
-
-
-
-

-
-
-
-

p
-
-
-
-
-
-

.'1 [' l

6
0
-

N
LL

J
~j

w
U

(
j\

z
.J

~ u LL
J

I
...

J
lJ

..
4

0
-

LL
J cr ~ 0

c: (
j\ 0 0 N I

I
n

it
ia

l
s
p

e
c
tr

a
~ .....

.
20

-
--

-
1

0
0

0
E

SH

_
.-

0
2

A
d

so
rb

a
te

@

q
2

.
I
~

I
I

I
•

~
•

•
•

•
~

I
I

•
•
~

•
•

•
•

2p
O
b
=
,
"
"
"
=
~
"
"
"
"
"
"
,
-
"
"
~
=
~
~
=
-
!
!
.
s
:
z
"
"
.
.
.
b
o
z
~
"
"
"
"
"
,
,
,
~
~
=
=
o
d
"
"
"
'
=
~
~
~
~
~
=
"
"
"
"
"
"
'
~
~
~
,
,
,
,
,
,
"
,
-
=
:
I
.
_
.
a
-
.
.
"
"
'
-
-
I
~
'
"

W
A

V
E

LE
N

G
T

H
t

(
M

IC
R

O
N

S
)

:F
ig

u
re

9
2

E
F

F
E

C
T

O
f

lT
V

O
N

B
~
5
4
7



that, in the case of zinc oxide, the stability of the pigment in

this region of the spectrum is greater than that of the potassium
silicate.

The phosphate treatment (Figure 85) improved the reflectance

in the ultraviolet by essentially removing the shoulder at ~362-nm

that has been attributed to unreacted zinc oxide (Ref. 136, 137).

The damage exhibited by the phosphated powder is greater than that

sustained by an earlier specimen and cannot be explained except

that it is conceivable that, in the present case, not all un­

reacted NaH2P04 was removed from the surface by washing after

phosphating.

Treatment with ferro/ferricyanide (Figure 86) also has a

deleterious effect on the spectral stability of zinc orthotitanate

powders irradiated by ultraviolet.

Of the reactive encapsulants Li2SiF6 , K2SiF6 , K2SnF6 and

K4Si4W12040' all three fluorinated materials substantially re­
duced the infrared damage in the 700- to 2400-nm wavelength

region that is characteristic of untreated zinc orthotitanate

(without subsequent heat treatment of the reacted powder). Of

these, the fluorostannate treatment was the most effective in

preventing infrared damage in the non-heat treated powder; how­

ever, the fluorostannate treatment had a highly deleterious effect
on the stability of zinc orthotitanate in the 350- to 600-nm

wavelength region and, in this respect, was more deleterious than

the potassium silicotungstate treatment (see Figure 91).

Heat treatment of all four chemically-treated zinc ortho­

titanate powders resulted in pigment having greater stability

than the untreated control (B-229) in the infrared region 700-
to 2400-nm wavelength. The lithium and potassium silicofluoride­

(hexafluorosilicate) treated pigment that was heat treated for

7 hr at 500°C exhibited improved stability in the near-ultraviolet

and visible wavelength regions, as well.

liT RESEARCH INSTITUTE
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Although the heat-treated product prepared from the potassium

silicotungstate-treated powder (B-547) was nearly as stable as the
the silicofluoride-treated products, this chemical treatment was
not effective in removing the 362-nm shoulder absorption that is

present in the Zn2Ti04 control--an absorption band that con­
tributes significantly to the solar absorptance of coatings pre­
pared from zinc orthotitanate. Treatment with the three fluorinated

salts resulted in considerably decreased, if not completely
eliminated, absorption at 362-nm wavelength (B-458, Figure 90);
this change is presumably due to the extraction of unreacted zinc
oxide during the reflux operation.

The poorer reflectance of the heat-treated powders (Figures
88, 90, 91) is attributed primarily to the lesser thicknesses of
the treated oxide when "wet sprayed." The heat treated, encapsu­

lated powder, perhaps ~y virtue of the decreased surface free
energy, is more difficult to build-up by the "wet spray" method
than the nonheat-treated, encapsulated powders.

8.4.4.2 Plasma-Heat Treated Pigments

The data for a series of plasma-annealed zinc orthotitanate
powders that were previously silicated are presented in Table 41
and Figures 93 through 95. The data for the B-229 control pigment
is included from Table 39 as a reference.

The subtleties in the spectra of plasma-annealed zinc or tho­
titanate have been discussed previously (Ref. 2 and para. 8.3.3.1).
The infrared damage sustained by the specimen annealed at 6T of
l670°C is attributed to conduction electrons as a result of free
zinc oxide that is presumably condensed on the surface of the
aerosol powder in the plasma.

Examination of the data and Figures 78 through 81 clearly
shows that a 6T of l670°C is essentially optimum for Zn2Ti04 .
This temperature is clearly shown to be superior for the silicated/
phosphated zinc orthotitanate (Batch B-4l2) annealed at l670°C
(Figures 93 through 95). The data for the l670°C product represents
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the greatest ultraviolet stability we have ever observed in a
pure pigment powder; this is especially significant when we

consider that it was irradiated for 2500 ESH of ultraviolet

radiation in vacuum.

8.4.4.3 Silicate Paints

Examination of Table 42 and Figures 96 through 99 confirm the

the results obtained previous1y--name1y that potassium silicate

paints pigmented with zinc orthotitanate are, even in the absence

of reactive encapsulation, quite stable to ultraviolet irradiation
in vacuum.

Both specimens B-421 and B-563 possess excellent solar ab­

sorptances by virtue of the extraction of the zinc oxide-related
shoulder in Zn2Ti04 at 368 nm by the acid phosphate and potassium

hexaf1uorosi1icate. Although the paint based on ferro/ferri­

cyanide-treated pigment exhibited stability that was superior to

the control paint (B-419), its higher solar absorptance of 0.15
is characteristic of iron cyanide-treated pigments.

The excellent stability exhibited by the silicate paint pre­

pared from phosphated pigment should be noted (Batch B-421,

Figure 97). In this case, unlike the phosphated-pigment irradiated
as a powder, the phosphate treatment preceeded pigmentation in the

silicate vehicle and neutralization of any excess acid phosphate
was assured by the highly alkaline silicate solution. (A similar

formulation has been furnished the British RAE at Farnborough,

England for a flight experiment to be flown on the Black Arro~~

and to NASA-Goddard Space Flight Center for a flight experiment

to be flown on OSO 8**.)

The potassium silicate paint B-563 based on the heat-treated,

potassium hexaf1uorosi1icate-treated Zn2Ti04 , is equally stable

to Z93 and possesses the lowest solar absorptance of any of the

more stable coatings investigated to date (Figure 99).

*Mr. J. Porter (RAE)
**Mr. J. Triolo (NASA-GSFC)
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It should be noted that removal of water during the irradia­
tion of these paints accounts for the increased reflectance in

the infrared region with its attendant contribution to the low

6~S'S observed (Figures 96 through 98).

8.4.4.4 Silicone Paints

The silicone paint prepared from untreated zinc orthotitanate

was less stable in the near infrared (700- to 2600-nm wavelength)
than the pigment powder itself (Figures 68 and 100). Indeed
Owens-Illinois 650 resin paint prepared from silicated/phosphated

pigment (B-427, Table 43) was even less stable than the control
paint (Figures 100 and 101). Even the paint prepared from pigment
that had been treated with potassium hexafluorosilicate exhibited
only slight improvement over the control paint (Figure 102).
These disappointing results confirmed earlier studies that an

adverse synergistic effect exists between the Owens-Illinois 650
resin and the surface of zinc orthotitanate (see Discussion for
an explanation).

The data in Table 43 shows clearly that this adverse synergism
between zinc orthotitanate and Owens-Illinois 650 resin can be
completely overcome by plasma heat treatment of a silicated/

phosphated Zn2Ti04 . Indeed, irradiation of this paint (Figure 104)
resulted in an increase in solar absorptance of essentially zero
after 2000 ESH of ultraviolet radiation. The interesting observa­
tion is that the character of the spectra in Figures 103 and 104,

representing specimen numbers B-704 and B-705, respectively, is
identical to the character of the spectra of the pigments alone
(Table 41 and Figures 81 and 95, respectively).

The Zn2Ti04 paint (Batch B-574 prepared from RTV-602 silicone

elastomer and B-229 control pigment) was very badly damaged in

the near ultraviolet and visible spectrum in only 1000 ESH
(Figure 105). Although this coating did not exhibit a noticeable

"belly damage" at 950-nm wavelength, as did the Owens-Illinois

650-resin analog (Figure 100), the 02-bleaching in the 950-wave-

1 h . . . d' . f h T .+3 L- T' +4 . .engt reg~on 1S 1n ~cat~ve 0 t e ~ ~ trans~t~on.
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The severe visible damage is attributed to two synergistic factors:
The employment of the near-ultraviolet-scattering ZnZTi04 pigment
(compared to the absorber ZnO) in a binder that is less stable
than Owens-Illinois 650 resin. (RTV-60Z is less stable only by
virtue of the requirement for amine curing. Owens-Illinois 650
resin heat cures by residual hydroxyl functionality.)

8.5 Electron Paramagnetic Resonance (EPR) Studies

8.5.1 Summary of Early Results

8.5.1.1 ZnZTi04 Containing Excess TiOZ
In the ground state, zinc orthotitanate material (prepared

with a slight excess of TiOZ and extracted with acetic acid which

partially removed the free, residual ZnO) exhibited no paramagnetic
centers attributable to ZnO and little or no centers attributable
to Ti+3 (Ref. 136). Material gamma-irradiated at 77°K exhibited
an asymmetric center "x" with gl = 1.98 which we attributed to
Ti+3 and a center "k" with mean g = Z.013 which we attributed to
0Z-. Ultraviolet-irradiation was performed under high vacuum
(10- 7 torr) in the apparatus pictured in Figure 106, at ambient
temperatures utilizing uncolumnated light from a mercury AH-6
lamp as described previously (Ref. 141). The effect of ultraviolet
irradiation is shown in Figures 107 and 108 indicating the photo­
creation of the center "x". If the material was heated to 500°C
in vacuum before ultraviolet irradiation, a slightly different
resonance was observed (Figure 109). These materials had ex­
hibited their peak near-infrared damage at 800-875 nm.

8.5.l.Z Plasma-Annealed ZnZTi04 (excess TiOzl

In contrast to the starting material, the nonirradiated
higher plasma-annealed orthotitanates (designated ** for
6T ~ Z900°C; see para. 8.3.3) exhibited both extensive amounts
of the center "x" (Ti+3) and a center called "y" with a mean
g = 1.960 which we attribute to centers found in ZnO. The g­
values of the nonirradiated plasma-annealed materials are listed
in Table 44 and the EPR spectra for one sample with low (*) and
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high (**) plasma treatment are shown in Figures 110 and 111.

Material gamma-irradiated at 77°K also exhibited the centers x and

and y and in addition the center k, all with essentially the same

g-va1ues as the TiOZ-excess produced, gamma-irradiated ortho­
titanates. High-vacuum ultraviolet-irradiation of the high
temperature plasma-annealed material exhibited a slightly different

EPR signal (Figure 11Z) than non-plasma treated or low-temperature

plasma treated materials whose u1travio1et-EPR spectra were the
same. There appears to be a systematic shift in the peak position

of the near-infrared damage (as well as a broadening) from 800-
to 875-nm wavelength for non-plasma treated orthotitanate, ~900-nm

wavelength for the lower plasma treatment, to 960- to 1000-nm
wavelength for the higher plasma treatment. The reflectance and
EPR measurements indicate that two (or even three) kinds of Ti+3

may be created in different treatments and may account for the
peak shift and broadening of the reflectance spectra.

8.5.1.3 ZnZTi04 Containing Excess ZnO

The unirradiated orthotitanates produced with excess ZnO
exhibit the ground-state EPR center y' with gl = 1.9556 and

gll = 1.9569, shown in Figure 113 (Ref. 137). The center is
identified with ZnO but is not the center "y" observed in the
high plasma-treated excess TiOZ-ZnZTi04 ; no "x" was observed.

Various chemical surface treatments of this material yielded the

same center and the g-va1ues are listed in Table 45. Material
gamma-irradiated at 77°K resulted in the creation of "x" and "k"

with essentially the same g-va1ues as in other orthotitanates.
Ultraviolet irradiation of these orthotitanates did not result
in the creation of x but did produce a change in the low-field
side of the center y' indicating that y' is in fact two centers.
The spectra are shown in Figure 114.
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8.5.1.4 Summarv of Interpretations Based on Previous Work

8.5.1.4.1 The Resonance "v"

Resonance "y" with g = 1.960 is identical with the center

created by heat treating ZnO at 975°C for 19 hr and attributed to
halogen donors (chlorine) by Kasai (Ref. 142). The resonance is

only detected in high-temperature plasma-treated Zn2Ti04 containing

excess Ti02 .

8.5.1.4.2 The Resonance v'

Our g values of gl = 1.9556 and gll = 1.9569 agree well with
a second center found after heat treatment by Kasai (Ref. 142)

with gl = 1.956 and gll = 1.957 and attributed to (electrons in)
oxygen anion vacancies. Kazai reported a slight decrease in this

signal intensity on ultraviolet-irradiation. Geisler and Simmond
(Ref. 143) further resolved the signal into an ultraviolet-sen­
sitive center at a slightly lower field (~0.6 Gauss) and the

heat-created center which is ultraviolet-insensitive. Sancier
(Ref. 140), in investigating iron cyanide-treated ZnO finds the
ultraviolet-sensitive center (but not the higher field signal)

in y' at g ~ 1.957 as well as the 1.960 signal. He concludes

that both signals are due to conduction electrons and are
responsible for the ultraviolet and near-infrared damage in ZnO.

His assignment of conduction electrons to the 1.960 signal is not
a convincing refutation of Kasai's demonstration that the center

is a halogen donor. Furthermore, our observation that y (g = 1.960)
is present and y' is absent in high-temperature, plasma-annealed
orthotitanates with severe infrared damage is at variance with

Sancier's conjectures. It may well be that the conduction

electrons are not observable at 77°K by EPR methods and that the
observation that y (g = 1.960) is associated with severe infrared
damage is explained by the ionization of an halogen donor: C1 =
C1 + e with the EPR signal y associated with neutral (and para­
magnetic) chlorine while the electrons are in the conduction band

and are not EPR-observab1e. The absence of damage at 363-nm
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wavelength and the failure to detect y' in the high-temperature

plasma-treated material, coupled with the observation of 363-nm
wavelength damage and the resonance y' in ZnO-excess produced

materials, lends support to the thesis that the damage at 363-nm

is manifested as the heat-created, ultraviolet-insensitive com-

ponent of signal y'. Oxygen bleaching experiments planned in

the future should help to clarify the problem.

8.5.1.4.3 The Resonance "x"

The resonance "x" too appears to be due to more than one

species. The center Ti+3 created by high-temperature (500°C) in

vacuum with gl = 1.98 and gll = 1.94 is reminiscent of Ti+3 found

in rutile heated in air at those temperatures. However, since

(at least a large part of) the damage at 0.9 microns is oxygen

bleachable and since ultraviolet irradiation produces a different

(narrower) EPR signal, we recognize that another kind of Ti+3 is

produced by the photodesorption of oxygen, reducing the Ti+4 to

Ti+3 . Experiments in+~rogress,* to be reported later, indicate
that the nature of Ti is responsible for damage at 0.9 microns

and that Ti+3 is associated with orthotitanate material. A com­

plicated solid state chemistry is certainly involved, with the

equilibrium dependent on halogen donors, conduction electrons,

three centers in ZnO, at least two Ti+3 centers and surface and

bulk oxygen species.

8.5.2 Summary of Most Recent EPR Studies

8.5.2.1 Introduction

The EPR investigations during the last six months of 1970
were undertaken as initial steps in resolving the following

problems:

a. Rationalization of the significant optical damage of
otherwise "good" Zn2Ti04 pigments when made into
0-1 650 paint.

*Contract NAS8-2679l, IITRI Project C6233.
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c .

b. Elucidation of the mechanisms for alteration of the
optical damage in both pigments and paint by surface
treatment such as obtained with potassium silicate or
Li2SiF6 ·

Classification of the nature of the Ti+3 species in
Zn?Ti04 materials and its relation to the optical
damage at 0.91-1.

No attempt was made to further investigate the effects of
plasma annealing on the defect structure as evidenced by EPR
during this period.

8.5.2.2 Experimental

(a) Significant departures from previously used experimental
procedures were effected and are described below. In particular,
the changes involved (1) in situ ultraviolet-irradiation, rather
than transfer of the sample from the irradiation facility
(described in Ref. 141) to the EPR cavity and (2) use of a vacuum
system which maintained a much poorer vacuum (>10 microns) than
that used for previous ultraviolet-irradiation (10- 5 - 10- 7 torr).
Experiments were performed under these poorer vacuum conditions
while a very high-vacuum, in situ epr/irradiation facility was

being constructed. These experimental changes are significant
and their implications are further amplified in the discussion
of results.

(b) Samples and materials examined were as follows:

Sample
3

B-229
B-233
B-454
R-900 Ti02
FF Ti02-r
01-650
RTV-602

B-229 01-650
R-233 01-650

Description
Ti02-excess produced Zn2Ti04
ZnO-excess produced Zn2Ti04
Potassium silicate-treated B-229
Li2SiF6-treated B-229
Rutile Ti02
Rutile Ti02 produced by converting FF anatase
Owens-Illinois (non-cured resin)
RTV-602 (uncured liquid)
B-229 in Owens-Illinois "650" paint
B-233 in Owens-Illinois "650" paint.
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(c) Ultraviolet-irradiation was carried out in situ in the

Varian EPR multi-purpose cavity by irradiation through a grating

in the wall of the cavity. The sample in a quartz tube was
evacuated to about 10 microns, placed in a Varian quartz dewar

situated in the EPR cavity and irradiated at either liquid nitrogen

temperatures or at room temperature. The irradiation was

accomplished by using an Osram 500-W point-source lamp collimated

with a four-inch, fused silica lens and filtered by 5-cm pathlength

of an aqueous solution of NiS04 ·6H20 (240 gil), and CoS04 ·7H20

(45 gil) which removed most of the visible and infrared-red. For

irradiations carried out at room temperatures, liquid nitrogen

was added to the dewar just before cessation of illumination. In

all irradiations the sample was rotated by n/4 every fifteen

minutes. The total irradiation time was usually 1 to 2 hr, but

Ti02 was irradiated for ~5 hr in some instances. In summary,

these irradiations differed from those performed previously in

that (1) liquid-nitrogen t~mperature irradiations were achieved
(2) the light was both collimated and filtered and (3) a poorer

vacuum was maintained.

All EPR measurements were carried out at liquid nitrogen
temperatures.

8.5.2.3 Experimental Results

All EPR measurements were carried out at ~77°K.

B-229

The EPR spectra in the ground-state (non-irradiated) B-229

Zn2Ti04 are shown in Figure 115. The resonance y' attributed to

electrons in oxygen anion vacancies in ZnO and observed previously

is present and another resonance was found at g = 2.000, due to

ultraviolet-created centers in the dewar. Ultraviolet-irradiation

at 77°K (Figure 116) and at room temperature (Figure 117) produced

similar results. The resonance "x" was created in both and a

resonance was found which we shall call k', with g-values as

indicated on the spectra. It would appear that the resonance "x"
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is more intense in the 77°K irradiated material. Both ultraviolet

irradiation doses were the same (1 hr).

B-233 (Silicated B-229)

The EPR spectra of ground-state B-233 are similar to that

of B-229 and are shown in Figure 118. Ultraviolet-irradiation
at 77°K produced the spectra in Figure 119, showing both "x"

and k'. On warming the sample to room temperature both resonances
disappeared and were not observable on recooling (Figure 120).

B-454 (Li2SiF6-treated B-229)

The EPR spectra of ground-state B-454 showed only the dewar
resonance (Figure 121). Ultraviolet-irradiation produced both
"x" and k' (Figure 122). No y' was observed.

B-229 01-650

The EPR spectra of the ground-state paint material is shown
in Figure 123. Ultraviolet-irradiation at 77°K (Figure 124) and
at room temperature (Figure 125) produced similar results and
s how both "x" and k' ,

B-233 01-650

The EPR spectra of the ground-state paint material was the
same as the pigment alone and is not shown. Ultraviolet-irradia­
tion at 77°K produced a rather strong "x" center (Figure 126)
which disappeared upon warming to room temperature and re-cooling
(Figure 127).

R900 Ti02 (Rutile)

Figure 128 shows the EPR spectra of ultraviolet-irradiated
rutile at 77°K for 5-1/2 hr. No "x" is observed. Nor is "x"

observed by irradiating rutile produced by converting FF anatase

to rutile by following the procedure used in making Zn2Ti04 , The
implications of this finding are discussed in the next section.
The resonance k' is also not observed in the rutile samples.
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01-650 and RTV-60Z

The EPR spectra of the ultraviolet-irradiated materials at

77°K are essentially identical and are shown in Figures lZ9

and 130. Free-radicals reported previously (Ref. lZ) were ob­
served after a short exposure to ultraviolet (1 hr) and were

present in high concentration.

The #3 ZnZTi04 previously investigated, (Figure 31, Ref. 136)

was ultraviolet-irradiated again under the new experimental con­

ditions and the EPR spectra are shown in Figure 131. No y' or
y is observed, but "x" and k' are.

8.5.Z.4 Discussion of Experimental Results

These initial experiments have pointed out some rather sig­
nificant results. While it may be rationalized that "x" is not
observed in rutile TiOZ on ultraviolet-irradiation--because the
vacuum is too low and oxygen, even at >10 microns (~lO-Z torr),

can bleach any Ti+3 formed (Ref. llZ)--the fact is that "x" is
observed in ZnZTi04 material. Obvious possible explanations are

that (1) the "x" observed in ZnZTi04 (or TiOZ present) is bulk
rather than surface related (Z) the nature of the surface of the
ZnZTi04 (or TiOZ present) is protected from 0z bleaching or
(3) most of the surface "x" is in fact bleached and only residual
metastable bulk or surface-protected "x" remains.

Investigation of 01-650 paints made with pigments B-ZZ9 and
B-Z33 do not result in significantly different EPR spectra under

poor vacuum conditions and lend support for the third explanation
since in fact the optical damage in the paints is more severe than

for that in the pigments alone. But these explanations need
further elucidation. Experiments performed under higher vacuum

should settle the anomaly.
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The observation that no y' is found in Li2SiF6-treated B-229

(B-454), even though excess ZnO is present, is an indication of
the alteration of the surface of (the ZnO?) by Li2SiF6 . The
optical spectra show that the pigment is extremely stable to

ultraviolet irradiation (Figure 7, Ref. 144).

Perhaps a most suprising observation is that the free-radicals
found so easily in 01-650 (and RTV-602) are not observed in
Zn2Ti04-pigmented Owens-Illinois 650 resin paints. These free­

radicals (or their predecessors) may in fact provide damaging
electrons for the orthotitanate materials. The fact that Li2SiF6
treated Zn2Ti04 makes a good (silicate) paint (and a better 01
paint than the contro1)--and yet y' is not observed (in the pig­

ment)--imp1ying an electron scavenging effect and lends support
to the thesis that in the absence of electrons capable of reducing
Ti+4 to Ti+3 (x), the pigment and paint will be ultraviolet-stable.

The Li2SiF6 somehow appears to diminish electron damage.

The resonance k', observed in these ultraviolet-irradiated
materials may in fact contain the resonance "k" (attributed to
02-) previously observed only in gamma-irradiated material-­
since (1) it appears to have structure, (2) is broader than "k"
and (3) its transition occurs in the area in which "k" would be
observed. The center is not observed in the irradiated ruti1es
and may be associated with Zn2Ti04 . This is yet to be resolved.

More definitive conclusions from the EPR experiments performed

must await the results of in situ high vacuum studies--but it is
apparent that the nature of the surface of the pigment can be

altered by surface treatment and pigment-binder interactions--and
that electrons are the damaging species and can be prevented from
producing centers which absorb. These conclusions will appear in

Report No. IITRI-C6233-12 on the current contract (NAS8-26791).
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8.6 Proton Irradiation

The effects of irradiation of surface-treated pigments with

1.3 keV protons is shown in Table 46 and Figures 132 through 136.
The 6~s's of 0.04 for the plasma-treated Zn2Ti04 and the phos­
phated Zn2Ti04-pigmented silicate paint are encouraging, since
the fluence of 8.4 x 1015p / cm2 represents greater than one year

in the solar wind stream.

The most important observation is the stability exhibited
by the Owens-Illinois 650 resin paint that was pigmented with
"cyanated" Zn2Ti04 . The ferro/ferricyanide treatment first
utilized by Morrison and Sancier (Ref. 145) in studies of the

defect state of ZnO, has been employed at IITRI in treating

Zn2Ti04 (see para. 8.4.3). We have been generally unsuccessful
in using iron cyanide to effectively stabilize either ZnO or
Zn2Ti04 to ultraviolet irradiation under ambient irradiation con­
ditions. However, the ferro/ferricyanide treatment did indeed
militate against the severe damage seen in wet-sprayed powders
and silicate paints irradiated at high temperature (Ref. 146).

Although preliminary combined ultraviolet-pIus-proton radia­
tion experiments have been performed on untreated Zn2Ti04-pigmented
potassium silicate and Owens-Illinois 650 paints, these data are

the subject of another communication (Ref. 147) and are not
included here. The efficacy of reactive encapsulation, of ferro/
ferricyanide treatment, or of plasma annealing has yet to be
established in terms of either proton irradiation, or combined
ultraviolet-pIus-proton irradiation.

8.7 Discussion

8.7.1 General

It is pecessary that an excess of ZnO (in our studies 0.5%)
be present in the preparative stoichiometry to minimize the
"surface" Ti+4 available in Zn2Ti04 for the photodesorption
reaction
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(13)

from occurring, yielding an EPR-observab1e center and the con­
comittant broad 9S0-nm absorption band observable by in situ
optical spectroscopy. The 9S0-nm absorption band is fast o~ygen

bleachable. On the basis of gas adsorbate kinetic studies re­
ported earlier (Ref. 2), we have shown that the oxygen bleaching
process associated with the 9S0-nm absorption peak depends upon
the one-fourth power of oxygen pressure. Since the pressure
dependencies of 02-' 0- and 0= adsorption are n = 1, O.S and
0.2S, respectively, we previously concluded that Equation 13 can
be rewritten to represent a 2-step bleaching reaction

(14)

Similarly, the infrared damage that commences (when present)
in the lS00-nm region in Zn2Ti04 is associated with ZnO that is
thermally produced--either by severe heating in air or by plasma
annealing at too high a temperature. The presence of ZnO under
both thermal circumstances has been observed by EPR spectroscopy
and has been confirmed by x-ray powder diffraction. Furthermore,
like conduction-electron absorption in ZnO powder (see the
discussion in section 8.4.2) the infrared absorption in Zn2Ti04
is broad and still increasing at the limits of the near infrared
spectrometer emp1oyed,* and, more importantly, is fast bleachable
with an oxygen pressure dependence of n = O.S (Ref. 2).

Of significance is the fact that residual zinc ~xide in
Zn2Ti04 , present in the 92SoC product, causes the 3S0-nm absorp­

tion (shoulder) in the reflectance spectra, yet does not result
in infrared damage on irradiation, even though the conduction
electron center is observable by EPR spectroscopy. However, it
is not yet settled whether the EPR center(s) observed at g = 1.96
is in fact due to conduction electrons or is due to electrons

*Beckman DK-2 and DK-2A spectrometers.
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in shallow traps (Ref. 140). (We stated earlier, however, that
the observable infrared optical damage can only be due to con­

duction electrons.)

Also, whenever the zinc oxide-related ultraviolet shoulder
is present at 350 rum, it can be removed by extraction with acetic
acid or reaction with sodium acid phosphate, potassium arid
lithium hexafluorostannate. Conversely, plasma annealing at too
high a temperature always causes the bleachable ZnO-like infrared
damage to occur, which is usually accompanied by an increase in
absorption at 350 rum. However, we have occasionally observed
bulk heat treatments and lower temperature plasma annealing
experiments that have resulted in apparently anomalous behavior
since conduction electron absorption in the infrared is increased

at the same time that the ZnO-related shoulder at 350-nm is re­
duced, and even eliminated.

Apparently these observations relate to the location of the
free ZnO on, in or beneath the Zn2Ti04 surface. The ultraviolet
and near-infrared spectra, as well as EPR spectra, relate to the
concentration of ZnO-related species required to be seen by the
three spectroscopic techniques (ultraviolet, infrared and EPR).
Residual zinc oxide must reside in the crystal sufficiently below
the surface so that it is protected from the electrons remaining

I

after hole/oxygenads coupling. However, the ZnO is still seen
as a 350-rum shoulder since the edge of Zn2Ti04 is at 325~nm com­
pared with ZnO's 385-nm wavelength. On the other hand, if
created thermally by

and

ZnTi03 ~Ti02 + ZnO,

(15)

(16)

ZnO may be on the surface in sufficient concentration to permit
the necessary quantity of electrons to be associated with the
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(de localized) conduction band, such that these conduction
electrons are infrared observable, but in insufficient concentra­
tion to be seen by ultraviolet spectroscopy.

It should be emphasized that proper plasma annealing results
in a pigment without either conduction-electron damage in the
infrared or Ti+3-re1ated damage at 950-nm.

8.7.Z Surface Treatments

Reactive encapsulation with potassium silicate, and with
potassium and lithium hexafluorosi1icate, potassium hexaf1uoro­
stannate, and potassium si1icotungstate, substantially reduces
the Ti+3-re1ated damage in ZniTi04 observed at 950-nm. Heat
treatment of the reactively-encapsulated ZnZTi04 powders totally
eliminates the possibility of damage at 950-nm for all treatments.
Of these, surface treatment with lithium and, especially, potassium
hexafluorosi1icate stabilizes zinc orthotitanate in the entire
solar spectrum. Potassium silicate paints prepared from the
reactively encapsulated pigment were all quite stable with the
potassium hexafluorosilicate-treated ZnZTi04 producing a paint of
exceptional stability (~~s of O.OOZ in 1000 ESH) and solar re­
flectance (n < O.lZ).s

Reactive encapsulation of zinc orthotitanate did not, by
itself, result in stable silicone paints based on Owens-Illinois
650 resin. Indeed, these paints exhibit greater damage to
ultraviolet irradiation at 950-nm than the pigment powders alone.
However, plasma annealing (~T = 1670°C) of reactively-encapsulated
ZnZTi04 (si1icated and phosphated) not only resulted i~ a pigment
that exhibited no damage, but the Owens-Illinois 650 silicone
paints produced -therefrom exhibit a ~~s of~ in Z500 ESH of
ultraviolet radiation in vacuum.

We believe, on the basis of the optical spectroscopy reported
here, and EPR studies to be reported later, that the treatments
with potassium silicate and hexaf1uorosi1icate provide a barrier
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to photodesorption of oxygen, as with zinc oxide, wherein the
holes are captured by the po1ynegative anion, thus preventing the
photodesorption of ° and 0- (or 02-) by reaction (12).

We attribute the failure of the reactive encapsu1ants
K20'Si02 and K2SiF6 to protect the Zn2Ti04 (in silicone paints)
from 9S0-nm damage as being due to the interaction with the pig­
ment surface of the free radicals formed in the Owens-Illinois 6S0
silicone resin ( a triethoxYffiethy1si1ane condensation product) on
ultraviolet irradiation. A possible mechanism might be written
as a two step process~

1.

2.

(17)

(18)

--a process that is precluded by plasma annealing of Zn2Ti04-­
especially if the pigment is first si1icated. We believe that,
although oxygen species hydrogen-bonded to the surface hydroxyl
groups can reduce the surface before plasma annealing, the
removal of the hydroxyl groups by plasma annealing and subsequent
alteration of the surface, combined with the reactive encapsulant,
results in a very different kind of reduction chemistry, certainly
involving the free radicals produced in the silicone matrix.
Ultimately, the oxygen species, though capable of reducing the
surface by itself, most importantly acts as a shuttle for
electrons provided by the matrix. Hence, removal or alteration
of oxygen species from the surface is the removal of the conduit
rather than the predominant source of damaging electrons.
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8.8 Sununary

In sununary, both water and carbon dioxide, among other species,
are highly absorbed on the surface of zinc orthotitanate.

°II
H Q" /0 C° '\.c 0/ \
I I I . I

Ti/Zn Ti/Zn-o-Ti/Zn Ti/Zn-D-Ti/Zn, etc. (19)

We believe that these species promote the association of 0- and
0-, as well as 02-' on the surface, the photodesorption of which
allows an electron to be.injected into the surface where, in the
case of zinc oxide, it is available for conduction absorption
(i.e., broad based, free-carrier absorption) and, in the case of
zinc orthotitanate, where it is available for reduction of Ti+4

to Ti+3 . This concept is wholly consistent with the considerable
improvements obtained by plasma annealing and reactive encapsu­
lation of zinc orthotitanate. Plasma annealing dehydroxa1ates
the surface (and oxidizes adsorbed carbonate, as well), thus
reducing the sites for absorbed 0- and 0-. Similarly, reactive
encapsulation is thought to tie up the surface, and again, the
availability of sites for absorption of O-n is greatly diminished.x
Thus, photodesorption of oxygen and the injection of an electron
into the lattice surface is precluded and ultraviolet-induced
damage does not occur.

The role of ferro/ferricyanide in militating against ultra­
violet-induced damage in Zn2Ti04 powder and Zn2Ti04-pigmented
silicate (but not in silicone) paints, and in proton-induced
damage in Zn2Ti04-pigmented silicone, is of interest. This
seeming disparity is rationalized in the following manner: The
iron cyanide treatment described by Morrison et a1 (Ref. 145), and
later by Sancier (Ref. 140), as providing a high capture cross
section for electrons, has not in our studies, as he predicts
from his studies of the defect state, provided an effective means
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of stabilizing ZnO (or, Zn2Ti04) to ultraviolet-induced reflectance

degradation in vacuum. (It should be pointed out, however, that
Sancier* has suggested that we might obtain greater effectiveness
at an order of magnitude greater concentration of Fe++/Fe+++ in

the treatment solution. We point out, however, that this treat­
ment has a deleterious effect on solar reflectance at the con­
centrations we employ and an increased level of Fe++/Fe+++ would

seriously impair the reflectance of these coatings.)

The effectiveness of the iron cyanide treatment in stabilizing
Zn2Ti04 to ultraviolet irradiation at high temperature and proton
irradiation as a silicone paint is, however, noteworthy, and is
attributed to the electron capture cross section of the Fe++/Fe+++

couple. Ultraviolet irradiation of the silicate paint at high
temperature (_160°C) changes the kinetics of silicate damage,
and, most probably the character, with the result that ionization

(as opposed to excitation) of the silicate occurs, injecting
electrons into the surface of the Zn2Ti04 where the following
reaction is enhanced.

(20)

Likewise, proton irradiation, which results in the production of
an ionization track in the methyl silicone, along with secondary

electrons are produced (a cascade ghenomenon), also furnishes
electrons for the reduction of Ti+. In both cases, the presence
of the ferro/ferricyanide provides a barrier to Ti+4 reduction

by the capture of the electrons that are produced in the binder
(silicate in the case of high temperature ultraviolet irradiation
and silicone in the case of proton irradiation).

Although it is obvious from this discussion that these studies
have posed more questions than have been answered, the efficacy of
surface treatment by reactive encapsulants and/or plasma annealing,
has been firmly established. These techniques offer a very promis­
ing and practical approach to the stabilization of the

*Private communication.
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semiconductor pigment zinc orthotitanate. It is obvious that a
total-system (pigment plus binder) approach is required and that
this approach has indeed led to the degree of success achieved-­
namely the development of an ultraviolet-stable ZnZTi04-pigmented
potassium silicate paint having a nominal solar absorptance of
0.1, and a cleanable, hard-finish silicone paint of as ~ 0.16,
also of exceptional ultraviolet stability. (Although we would
not hesitate to employ the potassium silicate paint on spacecraft
at this time, the utilization of the silicone paint must await
improved plasma annealing capabilities and the improvement in the
physical characteristics of Owens-Illinois 650 resin, which is
currently being studied under a current contract.*

Finally, we believe that the potential for stabilizing zinc
orthotitanate paints to ionizing charged-particle radiation has
at least been suggested and that a different surface treatment,
employed in addition to the "hole-capturing" reactive encapsu1ants,
may be required ultimately to do so.

\

*IITRI ProjectC6Z33, NASA-MSFC Contract NAS8-Z6791.
liT RESEARCH INSTITUTE
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9. RESULTS OF COMBINED RADIATION TESTING EMPLOYING THE CREF

9.1 Proton Irradiation Only

9.1.1 Irradiation Conditions

The results of two solar-wind simulation tests are presented.
The figures shown (Figures 137 through 142) represent the form in
which the in situ hemispherical reflectance data are displayed.
The data, taken with a Beckman DK-1 strip recorder, are typical
of those taken with the basic IRIF-II ultraviolet facility.

The irradiations were performed at a pressure of 1 x 10- 7

torr and at a specimen temperature of 12°C. Reflectance measure­
ments were performed in-situ, initially at -6 x 10-8 torr pressure.
Three specimens were irradiated in each test (Figures 137, 139 and
142 in one test and Figures 138, 140 and 141 in the other). The
important conditions and parameters employed in these irradiation
tests are listed in Table 47.

9.1.2 Results

The effects of proton irradiation on zinc oxide and the two
specification paints based on zinc oxide, 293 and S-13G, are
shown in Figures 137 through 139 respectively. The data are
summarized in Table 47. Examinations of the damage spectra show
that the SP500 zinc oxide powder underwent damage in both the
visible and infrared regions of the spectrum: The 293 specimen
sustained similar, but slightly diminished, damage in these two
regions. Surprisingly, the S-13G exhibited only sIght damage in
the visible spectrum; damage in the infrared was only slightly
less than for the 293 specimen.

The effects of proton irradiation on zinc orthotitanate pig­
ments and paints are presented in Figures 140 through 142. Again,
the pigment powder (in this case an early plasma-calcined 2n2Ti04),
Figure 140, exhibited the greatest damage in the visible spectrum,
while the silicone paint (in this case based on Owens-Illinois 650
resin) exhibited no visible-region damage. The acid phosphate­
treated pigment prepared as a potassium silicate paint (Figure 141)

liT RESEARCH INSTITUTE
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developed a mildly-intense band at 900-nm wavelength and the
powder specimen exhibited a much less-intense band in that wave­
length region. The Owens-Illinois 650-resin-based paint pre­
pared from pigment that had been treated with ferric/ferrocyanide
exhibited no specific damage at -900-nm wavelength, and degraded
only slightly throughout the infrared region.

9.1.3 Discussion of Results (Protons Only)

Although at this time it is impossible to obtain definitive
correlation of preparation and treatment parameters of the zinc
orthotitanates with their proton-damage spectra, the behavior of
the pure powders versus that of the silicone paints is intriguing.
It may be that the binderless pigments are damaged physically by
the proton irradiations and develop lattice-strain related damage
similar to that attributed to grind of zinc oxide. The explana­
tion might then be that the pigments are physically protected by
silicone binders from the "sand-blast" effect of the protons and
that the threshhold for damage to the silicone (ionization-wise)
is greater than the threshhold for development of a physically
induced b-band, as discussed previously by Gilligan (Ref. 74).

The reasons for and results of treatment with potassium
ferro/ferricyanide were discussed in Chapter 8. The reader is
referred specifically to sections 8.4.3., 8.6 and 8.8.

9.2 Combined Environment Irradiation

9.2.1 Irradiation Conditions

In a second test, the samples were exposed to a series of
different irradiation conditions. The irradiations were per­
formed at a pressure of 1 x 10- 7 torr and at a specimen tempera­

ture of 12°C. Reflectance measurements were performed in situ,
initially at -6 x 10- 8 torr pressure. In the configuration used,
all samples were continuously exposed to ultraviolet radiation,
but only three at any given time to protons; Table 48 summarizes
the sample environment conditions employed in this test. Thus,
the ultraviolet exposure sequences were as follows: first,

liT RESEARCH INSTITUTE
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Table 48

COMBINED TEST EXPOSURE SEQUENCE

Exposure Conditions
Sample

No. Description
Part 1* Part 2*

+ +
UV + P UV UV + P UV

1

2

3

4

5

6

7

8

9

Z-93

S-13G

SP-500 ZnO

Zn2Ti04 /OI-650

Zn2Ti04 /PS-7

Z-93

Z-93

S-13G

SP-500 ZnO

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10 Zn2Ti04 /PS-7 X X

11 Zn2Ti04 /OI-650 X X

12 SP-500 ZnO X X

*In Part 1, exposure to u1tray!ol~t a2d to protons was
600 ESH and 670 EWH (~6 x 10 p /cm ) respectively;
in Pt4t ;, t2e exposure was 700 ESH and 930 EWH (~8.3
x 10 p /cm ).
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samples 1, 2 and 3 were exposed, simultaneously to 600 ESH of
simulated solar radiation and 670 Equivalent Wind Hours (EWH)
of solar wind protons (approximately 6 x 1014p+/cm2). After

this irradiation and after measuring the spectral reflectance of
all 12 samples again, samples 4, 5 and 6 were then irradiated
simultaneously with protons (p+) and ultraviolet radiations (930
EWH and 700 ESH, respectively). Samples 7 through 12 all received
ultraviolet irradiation only, except that some overlap of the
proton beam onto samples 7 and 12 apparently occurred. These
latter samples, 7 and 12, were adjacent to samples 6 and 1,
respectively.

9.2.2 Analysis of Results - Combined Testing

The effect of combined ultraviolet and proton radiation on
ZnO can be seen in Figure 143 in which we have shown its reflec­
tance spectra before and after irradiation. These spectra are
to be compared with those in Figure 144, which represents ultra­
violet-only effects. Only the infrared spectra are comparable.
Both protons and ultraviolet cause infrared damage, but only
protons induce visible damage. Significantly the proton-induced
ultraviolet/visible damage in ZnO is not oxygen-bleachable. These
data, as well as for all 12 specimens, are summarized in Table 49.

S-13G and Z93 both exhibit ultraviolet/visible damage when
exposed to ultraviolet radiation, but this is because of optical
damage in the silicone and silicate vehicles, respectively. This
we can deduce from the lack of any such damage in the pigment
alone under the same conditions.

In Part 1 of the combined environment test in which samples 1,
2 and 3 were subjected to simultaneous p+ and ultraviolet radia­
tions, the 293 displayed very little damage. An additional 700
ESH in Part 2 had scarcely any effect. In S-13G the additional
700 ESH of ultraviolet produced a little more than half again as
much damage; and, not surprisingly, the ultraviolet-visible damage
is 02-bleachable. This is because of a silicone/oxygen reaction.
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The spectra of zinc orthotitanate in Owens-Illinois 650
resin (Sample #4) shown in Figure 145 indicated that it was exposed
to a small "spillage" dose of protons; the sample was in a fringe
area during Part 1 of the test. The effect of ultraviolet-only
in this material can be seen in Figure 146.

Most significant in these data are the spectral regions in
which ultraviolet and protons cause optical damage. In 2nD

(Figure 143), protons and ultraviolet cause damage which appears
both in the visible and in the infrared regions. Ultraviolet
radiation alone, however (Figure 144) produces damage which is
predominantly in the infrared, that is, it is essentially free­
carrier damage (Ref. 74). The proton induced visible damage, we
feel, is due to the "b-band" defect elucidated in Reference 74.
The behavior of S-13G and 293 is consistent with our interpretations
of the 2nD damage mechanisms. In these two paint systems, however,
the vehicle damage, which occurs primarily in the near ultraviolet
and visible regions of the spectrum, adds to the b-band contribution
in proton-only and combined ultraviolet-proton irradiations. In
ultraviolet-only irradiations, the damage· spectra are slightly but
yet significantly different from those induced by protons. The
slopes of the reflectance spectra in the region of 0.4 - 0.5~ and
the D2-b1eaching spectra in this same region clearly indicate
these differences. The spectra which result from combined
irradiations of component materials often can be predicted on the
basis of their behavior in single environments.

Comparing spectra of materials which have been exposed to
various sequences of irradiation conditions reveals several im­
portant results. Apart from the small differences in total
exposure, the only differences in exposure conditions were the
sequence of irradiations (see Table 49). Compare the spectra of
293 in Figures 147, 148 and 149 in which the sequence appears to
make a very big difference. Figure 147 shows little visible
damage relative to that in Figures 148 and 149. The sample in
Figure 147 initially received ultraviolet plus protons, then more
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ultraviolet; the sample in Figure 148 initially received ultra­
violet-only, then ultraviolet plus protons; and the sample in

Figure 149 received ultraviolet-only, then ultraviolet plus a

small spillover of protons. (In the fringe region, the proton

flux is roughly l/lOth of the flux in the main beam.)

Analysis of the Z93 spectra indicates that the proton dama~e

due to induced-infrared absorption saturates at about 1014p+/ cm ;

that part of the damage caused by the protons in the silicate

vehicle is radiatively bleachable, and that some of it is oxygen

bleachable. In contrast, analyses of the S-13G spectra (Figures
150 and 151) indicate that the RTV-602 silicone is not as much
affected by protons as is the potassium silicate vehicle (in Z93).

The damage spectra in the visible region of S-13G show b-band
formation in the ZnO and possibly some slight damage in either
or both of the silicone vehicle or the silicate encapsulant.

There is some evidence that a slight charge build-up
occurred as a result of proton irradiation. The spectra of the
ZnO samples (Figures 143 and 144), when compared indicate extensive

b-band formation in the proton-irradiation sample and only the

typical infrared damage for the ultraviolet-only irradiated sam­

ple. Our previous studies of induced b-band formation in ZnO
(Ref. 148) indicated that the b-band is not oxygen bleachable. ­
Hence the apparent bleaching in the proton-irradiated sample

(Figure 143) is much more likely to be the disappearance of a
charge build-up.

Yet unexplained is the response of zinc orthotitanate. In

Owens-Illinois 650 "Glass" resin (Figures 145 and 146) the protons
clearly have an important effect, but not in the expected spectral

region. The oxygen bleaching behavior leads us to suspect that
the orthotitanate-silicone interface is unstable. Similarly the

behavior of zinc orthotitanate in potassium silicate (Figures 152
and 153) adds further weight to our suspicion of an interfacial

stability phenomenon. In later experiments we have indeed shown

that zinc orthotitanate can be completely stabilized against
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ultraviolet irradiation, if encapsulated in neutral or oxidizing

(alkaline) encapsu1ants. Subsequently, we have shown that these

encapsulated pigments, when plasma annealed, can be formulated

into very-stable Owens-Illinois 650 resin-based paints.* The

zinc oxide sample whose reflectance spectra are displayed in
Figure 154 bears out the b-band damage concept in that it was

exposed to a very small dose of protons and its damage in the

visible is significant (5%) as compared to the sample in Figure 144,

which was exposed to ultraviolet-only and sustained about 1% change

in this region.

9.3 Conclusions

The simulation of the total space environment becomes an

increasingly difficult and complex task as more individual test

environments are added. The data presented here obviously show

that protons affect the optical performance of IITRI's specifica­

tion coatings S-13G and 293. Most importantly, however, analyses
of the test results emphasize the fact that experimental test

parameters are very critical. It is clear that not only is

sequence important, but that the relative rates are very important.

All individual radiation fluxes (electromagnetic and particulate)

should be the same multiple of actual space rates, and should not

exceed rates which will cause temperature effects in the samples.

The use of spectral analyses of the effects of different

radiation sources in component materials provides a very important

insight into the mechanisms of degradation. Oxygen bleaching

following the irradiations also has been a very important diag­
nostic test. Comparison of oxygen bleaching spectra of materials

irradiated in separate and combined environments can greatly aid

the interpretation and understanding of test results, and often
gives a primary indication of charge buildup. In summary, accurate

simulation of the real space environment involves not only the

duplication of radiation spectra but the scaling of their rates

*IITRI Project C6233, Contract NAS8-26791.
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to actual environmental rates. When there is an interaction of
visible and near-ultraviolet radiation from the solar simulator

with charged particle induced defects, the ratio of ultraviolet

"suns" to charged particle rates will be especially important.

It may well be tha~ the discrepancies between laboratory and

flight data can be explained on the basis of unacceptably high
and unbalanced environmental flux rates. A final point is that

in the real space environment charge buildup would tend to approach

a low asymptotic value; whereas, in a laboratoryin-situ.test

facility, such as the CREF, secondary electrons ejected from the

test material will usually reach "ground" rather than be attracted

back to the sample. The extent to which charge build-up indeed

occurs in the real space environment is a question which has a

direct bearing on how representative the data from our test devices

actually are.

The space environment stability problem in white pigmented
coatings will remain obscure until we are certain that our space

simulation facilities are indeed accurately simulating the space

environment. The stability problem then will become one of
knowing the intrinsic responses of materials to specific environ­

ments, the optical character and physical interactions of environ­

mentally-induced defects, and the gross reflectance changes these
interactions occasion. Because the PVC of white pigmented coatings

for spacecraft is so high, the tendency has usually been to

emphasize pigment stability. One should be aware, however, of

the dilemma wherein the greater the pigment's· transparency in the

ultraviolet, the lower the solar absorptance, and thus the in­

creased probability of binder photolysis. Accordingly, the further

into the ultraviolet the pigment is transparent, the greater will

be the demand upon the ultraviolet stability of the binder.
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APPENDIX

MATERIALS PREPARATION

A batch of zinc orthotitanate (Zn2Ti04 ) prepared at 925°C,
employing 0.5% excess ZnO, was used as the basic pigment for all
the studies reported herein. It is designated Batch B-229. The
treatments and coatings prepared from them are presented in the
following paragraphs. The phylogeny of all specimen preparations
are presented schematically in Figures 82 and 83.

B-226

Five hundred (500) g of Batch B-229 Zn2Ti04 were slurried
with 1250 g of 0.001 M potassium ferrocyanide and 1250 g of
0.001 M potassium ferricyanide for 1 hr at room temperature. With
continued agitation, the temperature of the slurry was raised to
80°C and held for 30 min. (Thirty minutes was required to raise
the temperature to 80°C.) The slurry was then cooled to room
temperature (with agitation) and was then vacuum filtered through
a Buchner funnel; the resultant powder was dried for 16 hr at
110°C.

B-233

Five hundred (500) g of Batch B-229 were mixed with 267 g of
distilled H20 and 500 ml of PS-7 potassium silicate. The mixture
was refluxed with agitation for 8 hr. After refluxing, 666 ml
of distilled H20 was added to the mixture and the mixture was
vacuum filtered through a Buchner funnel. The filter cake was
redispersed in 600 ml of distilled H20 and refiltered. The moist
filter cake was broken up and then dried at 110°C for 16 hr.

B-24l

Five hundred (500) g of Batch B-229 Zn2Ti04 were mixed with
834 g of a 5% solution of NaH2P04 . The slurry was refluxed for
4 hr, vacuum filtered through a Buchner funnel, rinsed with
334 ml distilled H20 and dried for 16 hr at 110°C.
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B-412

One hundred (100) g of Batch B-233 (silicate-treated Zn2Ti04 )
were mixed with 167 g of a 5% solution of NaH2P04 . The mixture

was refluxed for 4 hr, vacuum filtered through a Buchner funnel,
rinsed with 67 ml distilled H20 and dried for 16 hr at 110°C.

B-413

One hundred (100) g of Batch B-233 (silicate-treated Zn2Ti04 )
were mixed with 250 g of 0.001 M potassium ferrocyanide and 250 g
of 0.001 M potassium ferricyanide. The mixture was heated to 80°C

with agitation and held for 30 min. After cooling, the mixture
was filtered through a Buchner funnel and dried for 16 hr at
110°C.

B-414

One hundred (100) g of Batch B-241 (phosphate-treated Zn2Ti04 )
were mixed with 250 g of 0.001 M potassium ferrocyanide and 250 g
of 0.001 M potassium ferricyanide. The mixture was heated at
80°C for 30 min with agitation, cooled and filtered through a
Buchner funnel. The resultant filter cake was dried for 16 hr
at 110°C.

B-415

Twenty (20) g of Batch B-229 were ground with 34 g of a 28%
ethanol solution of Owens-Illinois 650 resin (32% PVC). The

mixture was ground for 3 hr in a Mini-mill (0000) ball mill. The
resultant paint was spray applied on IRIF coupons and baked at
110°C for 16 hr.

B-416

Sixty (60) g of Batch B-229 were ground with 25 ml of PS-7
potassium silicate and 35 ml of distilled H

2
0. The mixture was

ground for 2 hr in a Mini-mill (000) ball mill. Two sets of
IRIF coupons were spray coated with the resultant paint and

allowed to air dry for 16 hr. One set was then baked for 16 hr
at 110°C and the other set was heat treated for 16 hr at 427°C.
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B-4l7

Fifteen (15) g of Batch B-233 (silicate-treated Zn2Ti04 )
were ground with 35 ml of distilled H20 for 15 min in a Mini-mill
(000) ball mill. The resultant slurry was "wet" sprayed on "hot"
IRIF coupons.

B-4l9

Thirty (30) g of Batch B-233 (silicate-treated Zn2Ti04 ) were
ground with 12.5 ml of PS-7 potassium silicate and 12.5 ml of
distilled H20. The mixture was·ground for 1 hr in a Mini-mill
(000) ball mill. Two sets of IRIF coupons \Ere spray coated with
the resultant paint and allowed to air dry for 16 hr. One set
was then baked for 16 hr at 110°C and the other set was heat
treated for 16 hr at 427°C.

B-420

Ten (10) g of Batch B-24l (phosphate-treated Zn2Ti04 ) was
mixed with 25 ml of distilled H20 and ground for 15 min in a
Mini-mill (000) ball mill. The resultant slurry was "wet" sprayed
on "hot" IRIF coupons.

B-42l

Twenty-four (24) g of Batch B-24l (phosphate-treated Zn2Ti04 )
was mixed with 10 ml of PS-7 potassium silicate and 10 ml of
distilled H20. The mixture was ground for 15 min in a Mini-mill
(000) ball mill. Two sets of IRIF coupons were spray coated with
the resultant paint and allowed to air dry for 16 hr. One set
was then baked for 16 hr at 110°C and the other set was heat
treated for 16 hr at 427°C.

B-422

Twenty (20) g of Batch B-24l (phosphate-treated Zn2Ti04 ) were
mixed with 34 g of a 28% ethanol solution of Owens-Illinois 650
resin. The mixture was ground for 3 hr in a Mini-mill (000) ball
mill. The resultant paint was spray coated on IRIF coupons, air
dried for 16 hr, and then baked for 16 hr at 110°C.
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B-423

Fifteen (15) g of Batch B-226 (Fe++/Fe+++-treated Zn2Ti04 )
were mixed with 35 ml distilled H20 and ground for 20 min in a
Mini-mill (000) ball mill. The resultant slurry was "wet" sprayed
on "hot" IRIF coupons.

B-424

Thirty (30) g of Batch B-226 (Fe++/Fe+++-treated Zn2Ti04 )
were ground with 12.5 ml PS-7 potassium silicate and 12.5 ml
distilled H20. The mixture was ground for 1 hr in a Mini-mill
(000) ball mill. The resultant paint was spray coated on two
sets of IRIF coupons and allowed to air dry for 16 hr. One set
was baked for 16 hr at 1100e and the other set was heat treated
for 16 hr at 427°e.

B-425

++/ +t+ . )Twenty (20) g of Batch B-226 (Fe Fe -treated Zn2Ti04
were ground with 34 g of a 28% ethanol solution of Owens-Illinois
650 resin. The mixture was ground for 3 hr in a Mini-mill (000)
ball mill. The resultant paint was spray coated on IRIF coupons,
air dried for 16 hr, and then baked for 16 hr at 110oe.

B-426

Thirty (30) g of Batch B-4l2 (phosphate- and silicate-treated
Zn2Ti04 ) were mixed with 12.5 ml of PS-7 potassium silicate and
12.5 ml distilled H20. The mixture was ground for 1 hr in a
Mini-mill (000) ball mill. The resultant paint was spray coated
on two sets of IRIF coupons and allowed to air dry for 16 hr.
One set was then baked for 16 hr at 1100e and the other was heat
treated for 16 hr at 427°e.

B-427

Twenty (20) g of Batch B-4l2 (phosphate- and silicate­
treated Zn2Ti04 ) were mixed with 34 g of a 28% ethanol solution
of Owens-Illinois 650 resin. The mixture was ground for 3 hr in
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a Mini-mill (000) ball mill. The resultant paint was spray coated
on IRIF coupons, air dried for 16 hr, then baked for 16 hr at
110°C.

B-428

Thirty (30) g of Batch B-4l3 (Fe++/Fe+++-silicate treated
Zn2Ti04 ) were mixed with 34 g of a 28% ethanol solution of Owens­
Illinois 650 resin. The mixture was ground for 1 hr in a Mini­
mill (000) ball mill. The resultant paint was spray coated on
two sets of IRIF coupons and air dried for 16 hr. One set was
then baked for 16 hr at 110°C and the other was heat treated for
16 hr at 427°C.

B-430

Thirty (30) g of Batch B-4l4 (Fe++/Fe+++-phosphate treated
Zn2Ti04 ) were mixed with 12.5 ml PS-7 potassium silicate and
12.5 ml distilled H20. The mixture was ground for 1 hr in a
Mini-mill (000) ball mill. The resultant paint was spray coated
on two sets of IRIF coupons and air dried for 16 hr. One set
was then baked for 16 hr at 110°C and the other set was heat
treated for 16 hr at 427°C.

B-43l

Twenty (20) g of Batch B-4l4 (Fe++/Fe+++-phosphate treated
Zn2Ti04) were mixed with 34 g of a 28% ethanol solution of Owens­
Illinois 650 resin. The mixture was ground for 3 hr in a Mini­
mill (000) ball mill. The resultant paint was spray coated on
IRIF coupons, air dried for 16 hr, and then baked for 16 hr at
110°C.

B-453

Five (5) g of lithium silicofluoride (Li2SiF6 '2H20) were
dissolved in 1000 ml distilled H20. One hundred (100) g of
B-229 (Zn2Ti04) were added to the solution and the mixture was
refluxed for 6 hr with agitation. On cooling, the mixture was
filtered through a Buchner funnel, rinsed 4 times with 600 ml
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quantities of distilled H20, and dried for 16 hr at 110°C.

Five (5) g of the dry pigment were dispersed in forty-five (45)
m1 of distilled H20 by hand shaking and the resultant slurry was
"wet" sprayed on "hot" IRIF Coupons.

B-454

Approximately fifty (50) g of Batch B-453 were placed in a
porcelain crucible and heat treated for 7 hr at 500°C. Five (5) g
of the pigment were dispersed in forty-five (45) m1 of distilled
H20 by hand shaking and the resultant slurry was "wet" sprayed
on "hot" IRIF coupons.

B-457

Five (5) g of potassium silicofluoride (K2SiF6) were dissolved
in 1000 m1 distilled H20. One hundred (100) g of B-229 (Zn2Ti04)
were added to the solution and the mixture was ref1uxed for 6 hr
with agitation. On cooling, the mixture was f~ltered through a
Buchner funnel, rinsed 4 times with 600 m1 quantities of dis­
tilled H20, and dried for 16 hr at 110°C. Five (5) g of the dry
pigment were dispersed in forty-five (45) m1 distilled H20 by
hand shaking and the resultant slurry was "wet" sprayed on "hot"
IRIF coupons.

B-458

Approximately 50 g of Batch B-457 were placed in a porcelain
crucible and heat treated for 7 hr at 500°C. Five (5) g of the
pigment were dispersed in forty-five (45) m1 of distilled H20 by
hand shaking. The resultant slurry was "wet" sprayed on "hot"
IRIF coupons.

B-459

Five (5) g of si1icotungstic acid (H4Si4W12040) were dis­
solved in 1000 m1 distilled H20. One hundred (100) g of B-229
(Zn2Ti04 ) were added to the solution and the mixture was re­
fluxed for 6 hr with agitation. On cooling, the mixture was
filtered through a Buchner funnel, rinsed 4 times with 600 m1
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quantities of distilled H20 and dried for 16 hr at 110oe. Five
(5) g of the pigment were dispersed in forty-five (45) ml of
distilled H20 by hand shaking. The resultant slurry was "wet"·
sprayed on "hot" IRIF coupons.

B-460

Approximately fifty (50) g of Batch B-459 were placed in a
porcelain crucible and heat treated for 7 hr at 500oe. Five (5) g
of the pigment were dispersed in forty-five (45) ml distilled
H20 by hand shaking. The resultant slurry was "wet" sprayed on
"hot" IRIF coupons.

B-46l

Five (5) g of potassium hexafluorostanriate (KzSnF6 'xH20)
were dissolved in 1000 ml distilled H20. One hundred (100) g
of B-229 (Zn2Ti04 ) were added to the solution and the mixture was
refluxed for 6 hr with agitation. On cooling; the mixture was
filtered through a Buchner funnel, rinsed 4 times with 600 ml
quantities of distilled H20, and dried for 16 hr at l10oe. Five
(5) g of the pigment were dispersed in forty-five (45) ml
distilled H20 by hand shaking. The resultant slurry was "wet"
sprayed on "hot" IRIF coupons.

B-462

Approximately 50 g of Batch B-46l were placed in a porcelain
crucible and heat treated for 7 hr at 500 o e. Five (5) g of the
pigment were dispersed in forty-five (45) ml distilled H20 by
hand shaking. The resultant slurry was "wet" sprayed on "hot"
IRIF coupons.

B-546

Five (5) g of potassium silicotungstate (~Si4W12040'l8H20)

were dissolved in 1000 ml distilled H20. One hundred (100) g of
B-229 (Zn2Ti04 ) were added to the solution and the mixture was
refluxed for 6 hr with agitation. On cooling, the mixture was
filtered through a Buchner funnel, rinsed 4 times with 600-ml
quantities of distilled H20, and dried for 16 hr at llOoe. Five
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(5) g of the dry pigment were dispersed in forty-five (45) ml of
distilled H20 by hand shaking. The resultant slurry was "wet"
sprayed on "hot" IRIF coupons.

B-547

Approximately 50 g of Batch B-546 were placed in a porcelain
crucible and heat treated for 7 hr at 500°C. Five (5) g of the
pigment were dispersed in forty-five (45) ml distilled H20 by
hand shaking. The resultant slurry was "wet" sprayed on "hot"
IRIF coupons.

* * * * *

The following paints were prepared in identical fashion.
The procedure used in their preparation was as follows: Five
(5) g of the pigment being studied were mixed with 8.5 g of a
28% ethanol solution of Owens-Illinois 650 resin. The mixture
was ground by means of a)mortar and pestle. The resultant paint
was sprayed on IRIF coupons and baked for 17 hr at 110°C. The
pigments studied are tabulated below.

Coating
No.

B-552
B-553
B-554
B-555
B-556
B-557
B-558
B-559

Pigment
Batch No.

B-453
B-454
B-457
B-458
B-46l
B-462
B-546
B-547

Pigment Description
Li2SiF6 treated Zn2Ti04
Heat treated B-453
KzSiF6 treated Zn2Ti04
Heat treated B-457
K2SnF6 treated Zn2Ti04
Heat treated B-46l

K4SiW12040 treated Zn2Ti04
Heat treated B-546

** * *
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The following paints were prepared in identical fashion.
The procedure used in their preparation wa: as follows: Seven
and one-half (7.5) g of the pigment being Etudied were mixed with
3.1 ml PS-7 potassium silicate and 3.1 ml distilled HZO. The
mixture was ground by means of a mortar and pestle. The resultant
paint was sprayed on IRIF coupons and baked for 16 hr at 110°C.
The pigments studied are tabulated below.

Coating
No.

B-560
B-56l
B-56Z
B-563
B-564
B-565
B-566
B-567

Pigment
Batch No.

B-453
B-454
B-457
B-458
B-46l
B-46Z
B-546
B-547

Pigment Description
LiZSiF6 treated ZnZTi04
Heat treated B-453
KZSiF6 treated ZnZTi04
Heat treated B-457
KzSnF6 treated ZnZTi04
He~t treated B-46l

K4SiWlZ040 treated ZnZTi04
Heat treated B-546
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