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SYSTEM EVALUATION FROM IMPULSE RESPONSE FRAGMENTS

INTRODUCTION

Estimation or identification of transfer functions is often required
in control techniques or any other field in which the knowledge of system dy-
namics is a necessity. In aerospace techniques, it might be desirable to
identify the flight dynamics of a vehicle. The two main cases of application
are (1) identification of vehicle dynamics in self-adapting or self-learning
control procedures and (2) confirmation of vehicle dynamics in flight testing
of newly developed aerospace vehicles.

Different approaches of estimation and identification have been made,
but all of them are based on statistical methods. A whole family of procedures
ends up with the impulse response of a system to be identified. Because of
the inherent characteristic of these procedures, the imp/ulse response is
represented by an equally sampled time series. The description of the sys-
tem by its impulse response is often not desirable for data handling., In many
cases, €.g., in control law optimization, it is more convenient to have the
vehicle dynamic described by a rational expression of polynominals [1].

Furthermore, the impulse response represented by the time series
is often available only for a limited time interval. This can occur if the
system under investigation is either instable, indifferent, or only slightly
damped. In these cases the calculation of the impulse response has to be
stopped after a time interval to be defined. Another reason for only a limited
knowledge of the impulse response might be a limited computer capacity
available for its calculation.

Given a sampled record of a portion of the impulse response of a lin-
ear system, estimate the transfer functions, G (S) and G (z), of the system.
A procedure which covers the preceding requirements is found by use of
rational approximation. The impulse response described by a time series is
converted to a rational expression in z. After determination of the poles and
zeros of the function, a transformation to the s-domain can then be provided
if required. In the following section, the appropriate procedure is described,
and restrictions are discussed. A digital program for implementation of the
method is attached.
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by its impulse response.

TASK DESCRIPTION

By use of some identiﬁcatibn or estimation procedure based on
statistical theory, up-to-then totally unknown systems have to be identified

The impulse response is represented by a time

series equally sampled by a sampling interval T, which is known from the
identification procedure (Fig. 1). As a shortcoming, the impulse response is

known only over a limited time interval.

x(kT)

where ¢

~
/

/ I [1-

0T 271 4T 6T

Figure 1. Time series represen-
tation of impulse response.

k

The available data must be
converted to a form which describes
the vehicle dynamic completely in
the sampling moments and which
can be used for further data pro-
cessing.

THE RATIONAL
APPROXIMATION

The z-transform of the time
series x(kT) is defined to be

G(z) = cO+c1z'1_+ ceo F ckz_k+...

= x(kT) with sampling interval T.

The desired equivalent rational expression in z is of the form

-1
a +ta,z +...+a z

1 m

F(z) =

1 -n

+bz

R -
bO b1z + ... N

(2)

If (1) is any series in zwi, there exists a unique rational "approxima-
tion" of the form (2) for each pair of integers m and n that agrees when ex-
panded term by term with the series for more terms than any other rational
expression with smaller or equal m and n [2]. It follows that, if G(z) has a



rational expression, as is the case with most engineering systems, the exact
rational expression should be found when m and n are chosen large enough.
The choice of m and n does create a problem which will be discussed later.

Once m and n are chosen, the rational approximation is found in multi-
plying G(z) by the denominator of F(z) and collecting the like powers of z~1:

c tez tren e, rez Ky
0 1 2 : k ‘
-1 -2 -n
b0+b1z +b2z + +bnz
bec. +becz +becz  + +bcz_k
00 0 02 0k
(3)
- -2 -3 -(k+1)
.+
bicoz +b101z +biczz + .. bickz
2

-1 -
boco+ (boc1+ blcO)z + (b002+ b1c1+ bzco)z

The first m+1 powers of z_1 can be forced to agree with the numerator
of F(z), and the next n can be forced to vanish.

The equations for this are

ak= z cibi s k =m ; (4)
i+j=k
thus,
a0=b0c0 ,
(5)
a =b001+b100 ,




and

i+j=k , k = m+1, m+2, ... m+n (6)
i=n

with n = m;

thus,

+ + =

bocm+1 bicm +bm+ic0 0
+° + =

b0cm+2 b1cm+1 + bm+200 0

bOCn+blcn—1+"’+bncO =0 (7)
+ to.s =

bocn+1 bicn bnci 0

bOCn+m " b10n+m—1 HERE bncm =0

The last equations are solved for bO’ b o bn and then substituted in the

first m+1 to obtaina_, a a - Clearly, one of the bi can be chosen

017t
arbitrarily (anything except 0), and the rest are unique if the system of equa-
tions is not singular. If m and n are chosen too large, the system of
equations will be singular.

If the rank of the system is r, the denominatér of F(z) should be of

degree r in z_1. If the system is solved using n too large, theoretically the
numerator and denominator of F(z) will have common factors which could
be factored out. In practice, these factors may not be exactly the same be-
cause of the roundoff errors.



Some procedure for checking whether the value of n is too large should
be used to prevent the introduction of zeros in the denominator and also to
prevent the solution of a singular system of equations.

SCALING

Assuming that the time sequence x(nAt) has been received from the
time function x(t) through an ideal sampler, x(nAt) is attenuated by a
factor.-Ait [3]. For correct scaling, the numerator of f(z) must be multiplied
by At.

RECONVERSION TO THE TIME DOMAIN

For later use in the realization of the procedure described previously,
it is presumed [4] that F(z) is reconverted to the time domain by

= +a - ... b
Ve = 20%k T 2 %k-T & Xk-mT -~ P1Vk-T m k-mT  (8)

where xk and yk are the input and output time sequences of the digital filter,

and xk - mT and yk - mT are the m- T earlier values of the input and output

time sequences. Applying an impulse as an input to equation (8), the impulse
response of F(z) can be calculated as a time series representation.

IMPLEMENTATION OF THE PROCEDURE IN A DIGITAL COMPUTER

For implementation of the method just described, it has to be realized
that, according to the task description, the vehicle dynamics are completely
unknown; thus, information on the order of the rational expression in both
- numerator and denominator is not available. Consequently, a scheme must
be established to evaluate m and n. A suitable scheme has been found by
" taking logical steps as follows:



1. The order of the numerator and denominator of equation (2) is
assumed to be equal; thus m =n. As later shown, this assumption does not
introduce a significant error.

2. An initial estimate on m is made assuring that

-
Mestimate ~ “actual *

3. With this estimate in m, the procedure previously described
will be executed. If the estimate was too high, the matrix which has to-be
solved in the process of the procedure will be ill conditioned or will provide
an otherwise insignificant solution.

4. To confirm the result received from step 3, the coefficients of
F(z) will be checked out by calculating its impulse response according to
equation (8). The n+m+1 values of the impulse response time series will be
calculated. If these values disagree with the input time series, m is reduced-
by 1 and the complete procedure is repeated until correspondence between
both time series is received.

5. If we assume that the sampling rate has been chosen at least
four times higher than the highest natural mode of the system, all roots of
F(z) will be located in the right half of the z plane. This will result in alter-
native signs for the polynomial of F(z). Thus, an alternative sign condition
might be established and introduced prior to the implementation of step 4.
However, this condition is not necessarily acceptable or useful in all cases
of application. ‘

This scheme is, of course, sensitive to the accuracy of the calcula-
tion. Thus, the number of digits which have to agree has to be evaluated
taking into account the number of significant digits through the whole sequence
of calculations. Furthermore, in following this procedure, possible dis-
turbances by noise of the initial input data have to be considered.

Additional confidence in this described checkout procedure may bhe
established by extending the number of values from the time series to be
compared, e.g., 2. (n+ m+ 1).

A digital program performing the procedure described is presented
in the appendix.



APPLICATION OF THE DIGITAL PROGRAM

As an example and to show the significance of the method, the digital
program is applied to an impulse response of which the transfer function
in s is known. To provide exact knowledge to the input data, the impulse
response has been received by inverse Laplace transformation of the transfer
function in s.

The example has been chosen to be

(1+ 8)

1
31,4
2 1 2

+ +
(1+538 8 38 )

Fl(S) = (9)

with w = 6,28 and £ = 1,

The impulse response is printed in Table 1 for t = 0. 01 sec. Figure 2
shows the impulse response as a curve.

From the given example, we know that m = 2. Assuming that this is
not known, we make an initial estimate of m = 4; thus, the first m+n+ 1= 9
values are used as an input to the program. Futhermore, m =nandt = 0.01
sec.

Executing the program results in

1 2 1 -2

F (z) = 0.1256 - 10~ - 0.882432663955 - 10~ z~ + 0. 133715714656 - 10'5 4

1 0.1- 10"1 - 0. 187758651589 - 10:l z'1 0.881226462775 - 100 z=2

with gain factor GF = 1, 02666622147

Table 2 shows the impulse response derived from the calculated F (z)
according to equation (8). Comparing with the input response of Table 1
and Figure 2, it can be seen that a slight deviation builds up with increasing
numbers of time sequence values, due to roundoff errors, but that it still
does not exceed 15 percent of the hundredth already very small input value.
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RELATION BETWEEN z- AND s-TRANSFER FUNCTION

Considering the theoretical approach of the procedure and its execution
as previously described, it can be stated that an exact z-transform has been
provided with respect to F (s)’ The accuracy is limited only by the number

of significant digits used in the course of the calculation,

Assuming that the system to be identified has been a digital one, it is
totally described by the time series which has been used as input. Yet it has
to be realized that, in most of all cases, specifically in identifying the dynamic
of a vehicle, the system is an analog one. Thus, the dynamic of the calculated
F (2) differs from the actual F (s) represented by the impulse response.

For further consideration, we assume that the sampling rate has been
chosen as high and that with respect to the natural frequency of the system,
its dynamical behavior between sampling instances can be neglected.

Any remaining difference in the dynamical behavior between the calcu-
(2) and the actual F (s) is largely dependant on the sampling rate.

If the sampling rate has been selected sufficiently high with respect to the
natural modes of the system and the interesting frequency range, these dif-
ferences might be negligible. :

lated F

To cover more demanding requirements, a transformation to the
s-domain has to be provided.

Thus, after having solved F(z) for poles and zeros, the appropriate
roots in s are found according to Figure 3 as

'\FRe z)2 + (Im z)2

1
T lnlzl

||

Re s

11



imz Ims

s - plane .

Rez g 0 Res

Figure 3. Correspondence between z- and s-domain.

and

The gain factor of the system is received out of F(z) by letting

Z———-.-1

The executive of the transformation to the s-domain has been provided
for the example previously discussed. The printout in Table 2 shows that
some deviation from the original transfer function in s exists. This deviation,
however, would not be significant in a practical case of application. Further-
more, it can be seen that the assumption m = n does not result in any signifi-
cant error.” The erroneously introduced second zero at -1317 ... has no -
practical effect on the dynamic of the system.

- 12



ACCURACY

In working with the procedure outlined in this report, it must be con-
sidered that it is sensitive

1. To noise superimposed to the impulse response as a result of
errors in the identification procedure, and

2. To the accuracy of the execution in the digital program.

Both effects become more effective with decreasing T because of the
decreasing gradient between sample values. Thus, noise becomes more and
more significant and may create necessity for the application of smoothing
procedures. Furthermore, decreasing T requires increasing accuracy, i.e.,
number of significant digits of the execution procedure.

Inaccuracy effects become even more significant for more complex
transfer functions where the number of operations, necessary for the execu-
tion of the program, increases. '

CONCLUS[ON

The procedure outlined in this report allows the exact z transformation
from a continuous time function presented by an equally spaced time series
and conversion of the resulting power series in z to a rational expression in
z. By a proper choice of the sampling interval, the dynamical behavior of
the transfer function in s can be significantly approximated by the transfer
function in z with respect to practical application. If necessary, however, a
transformation to the s-domain is easily provided. By introduction of a special
program subroutine and by taking an initial estimate on the order of the trans-
fer function in s, it is possible to apply the procedure even if. the order. of the
system under investigation is not known. It has to be made sure only that the
estimate is greater or at least equal to the actual value. For the implementa-
tion of the procedure, only a limited number of values of the impulse response
time series have to be known. In the ideal case, this number equals 1 plus
twice the order of the denominator of the transfer function in s. For practical
application, it might be useful to have a slightly higher number for checkout
purposes. In any case, however, only a fraction of the complete impulse

13



response of the system under investigation has to be known. Thus, the pro-
cedure is suitable for data processing in connection with the identification of
unknown plants.

It must be realized that the digital program in the Appendix has been
developed to prove the practical feasibility of the described method. It is in
no way optimal with respect to the required computer c¢apacity. If the practical
application of the described method is envisaged, it.is suggested that the digital
program be reviewed. It is especially recommended to increase the accuracy
of the procedure. Furthermore, it might be useful to extend the checkout
procedure with respect to the number of time series values to be compared.
In addition, the integration of a smoothing procedure for smoothing of the
input values as a fixed subroutine of the program should be considered.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, June 1, 1971
70-103-19-04
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APPENDIX
DIGITAL PROGRAM

IHPLICIT DOUBLE PRECISION (A=H,0=Z)
DIMENSION C{5D0)»A(5U0)sB(500)
DINMENSION E(800),D(102)

DIMENSION F(800) '

DIMENSIUN RTR(S00U),RTI(500)+»TGI500)+G6(500),2(500),Y(5G0)

DIMENSION TGG(S500),6G(500) ,XX(5007,YY({500)

RATIGNAL APPROAIMATION fN DOUBLE PRECESION

1

2

15

123

NHAME LIST /ZINPUTY/Z Man,DT»C
READ (S, INPUT)

60 10 3

NEN=]

MBM=-]

DUY I=1,30

ﬂ(l)‘UoUUU

CONTINUE

N2mN2+2

MNEM+N

MlsMe]

NlsNe]

NZmb+biv]

WRITE(S6,15)MyN

FORMAT(//73H tis]9,4/ 4,30 N®IS/)
wiilE(643123) DTY

FURMAT (41 DTel]F4/)

1F (MebobweO) GO 1O 5C

CALL PRINTUIZHINPUT DATA WH2,C)

SIMULTANEOUUS EQUATIONS ARE FOoRMED

MysMeN

K20

Mi=2

LL={MN/2)*+MHM
D02YS usli N}

K=2K+]

E(K)=C(LL)

LLe=il~1

CONT INUE

IF {MMeNEWN]) GO TO 9
0 TO 8

MitaMMe ]

6L TOUO 5

CALL PRINT(12H E W 3ULE)
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290

3yo

19

Ju4

4

CUEFe UF B ARE STORED IN Es AND PUTY
SUBROUTINE

K=y

DU LU J=1 M

LS=mesy

DV2OD i=1si

KaKel

Lsp+M+]

FiK)=sELL)Y

L==n

VU0 JsleM

K=Kk+]

LEL+me]

FIKl==E(L)

CAaLL PRINT (12x F 13U ,F3

K=(ies 2+ M

CaLL DPSE(FoNynsDET)
3 IS CHANGED INTO LQUBLE PRECESION
0 D03u4Y lal,N

Jxiisil=No{]=])

dllleFlJl

DU4S I=1] N

Kan=j+]
5 B(K+1)=31K)

Bli)=alet

CALL PRINT(12H B ARRAY sN1yB)
A ARHRAY IS CALCULATED

allr=ci1)

Bll)=}.0

DU4UY I=2,M])

li=al

T=0e0

VO30 Jel,l

T=T+3(J)eC(11])

30 Ilsii=1
40 ALEr=T .
C IMPULSE S CALCULATED AS A CHECKOUT FOR THE PROGRAM

i102)=3eD
DiL)=mA(])

JU979 [=2,101
L=

T=d,0

PIVEY-ERENE PN
LEL=]

K

IF(JeuTel)l K212
frep tJIPVIK)*TY

888 CUNTINUE

XF(loGToNl) Atl)=y,0
VII)I=A(1)+T

999 CONTINVE

16
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DU777 1=l4NI}

All)satl)e0T

777 CunT[WUE

1222

yul

555

THE

111
29

10

332

441
442

443

445

447
146

448

560
449

502

503

506

504

50

CALL PRINT(12HA AKRRAY M1 AD
R=0e0

T#0.0

DUL222 131,N1)

T2T+A(1)

RER+B(1)

CUNnT INUE

GF=l/xK

WRITE(64YUL) GF

FURMATIYH oF=®yD24412/7)

TOL=QW0

VUS55 l=l,nle2

1F (1) eLToTOLLOReBI1 @) e6TeTUL) GG TO 2
CUNTINUE

CALL PRINT(12H 8 STABLE ,N1,8)

LMPULSE IS CHECKED wITH THE IMPULSE-RESPONSE INPUT
Vo111 le),ne
[F(ABS(D(L)=C(1)IeGELD LUODI) GO TO 2
CONTINUE
CaLL PRINT(12H O IMPULSE 101,09
K=y
VULl I=lan
AlK)I=SA(KIZALL)

KeK=]

CALL nTPOLY(N.A.bo.l.E-Zs.RTR.RT[.comv.A.a.C.D.E)
alklTEL6,332) '
FORMAT(? NuM ROOTS 2°)

D042 =l 4N

Wl TE(O941) RTR(L)eRTID)

FURMATLIIH 2= 0291291 1H + AND = J D24412)
CunT INUE

U443 I=1,N
Tuill)sDSARTIRTRULIORTR(1ISRTICIISRTEILLI D)
GULIaRTICII/ZRTRL)
A{II=DATAN(GLI) ) /TG ] )eDT
YOL)=DLOGITG(UI))/DY

CONTINUE

W ITE(6,445)

FURMAT(® nuM ROOTS S

UUH46 131,4N

At TEL6,447) Y(I), k()

FURMAT(3H S® D249¢1201l1H + AND = J 024912}
CONT INUE

CALL KTPULY(H BsS0,1sE=253RTR,RTI L CONV4Asp,CyD,E)
aRlTELE,448)

FORMAT(? DENOM ROOTS zv)

DOGYY [=ml4N

AR TE(6,500) RTR{I)yRTI(1) N
FURMAT(IH 7% D24012011H + AND = J D24e12)
CUONTINUE

LUSUZ2 I=) 4N

Tou (1 )mOSQRT(RTR(I)oRTRIII«RTI(LYeRTI(LI))
Gia{I)sRTI(I}/RTH(])
XXK(I)SDATANCQG(L))/TGG(()eDT
YY(I)mDLOG(TFEG (1)) /DT

CULTINUE

wRITE(64503)

FORMAT (' DENOM ROOTS §¢)

VUS04 1mi,yN

WKITE(6,506) YY(I),XX(])

FORMAT (3N S= D24l 2eltnt + ARD = J D24412)
CONT INUE

G0 TO |

Catl PRINT(IZ2HENU OF RUN ,1s4)
STOP

END
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