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COMPUTER PROGRAM FOR PRELIMINARY DESIGN ANALYSIS
OF AXIAL-FLOW TURBINES
by Arthur J. Glassman

Lewis Research Center

SUMMARY

This report presents a computer program for the preliminary design analysis of
axial-flow turbines. The computations are based on mean-diameter flow properties and
do not consider any radial gradients. Given asinput to the program are power or pres-
sure ratio, mass flow rate, inlet temperature and pressure, rotative speed, inlet and exit
diameters (either hub, mean, or tip), exit radius ratio or stator exit angle, turbine loss
coefficient, and gas properties. Computations are then performed for any specified
number of stages and for any of three types of velocity diagrams (symmetrical, zero
exit swirl, or impulse). EXit turning vanes can be included in the design. The program
output includes inlet and exit annulus dimensions, exit temperature and pressure, total
and static efficiencies, blading angles, and last-stage critical velocity ratios.

The analysis method, a complete description of input and output, and a FORTRAN IV
program listing are presented in this report. Sample cases are included to illustrate
use of the program.

~ INTRODUCTION

The preliminary analysis of a power or propulsion system involves many repetitive
calculations to determine system performance, component performance, and component
geometries over a range of conditions. This must be done in order to eventually deter-
mine the best system and operating conditions. For this type of screening analysis,
complete design accuracy and detail for the components are not necessary. Approximate
and rapid generalized procedures rather than complex and time-consuming detailed de-
sign procedures are sufficient to yield the desired component overall geometry and per-
formance characteristics.

This report presents a computer program for the preliminary design analysis of



axial-flow turbines. The analysis is based on mean-diameter flow properties and does
not consider any radial gradients. Input design requirements include power or pressure
ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design
variables include inlet and exit diameters, stator angle, and number of stages. Compu-
tations are performed for any of three types of velocity diagrams (symmetrical, im-
pulse, or zero exit swirl) by assuming the same shape diagrams for each stage. The
program output includes inlet and exit annulus dimensions, exit temperature and pres-
sure, total and static efficiencies, blading angles, and last-stage velocity ratios.

The analysis method, a complete description of input and output, and a FORTRAN IV
program listing are presented in this report. Sample cases are included to illustrate
use of the program.

SYMBOLS
A stage loss parameter
Aan annulus area, mz; £t2
B exit loss parameter
C blade loss parameter
CA dimensional constant, 27 rad/rev; 60 sec/min
CB dimensional constant, 1; 550 ft-1b/(sec)(hp)
¢y heat capacity, joules/(kg)(K); Btu/(lb)(°R)
D diameter, m; ft
E squared ratio of stage-exit axial velocity to stage-average axial velocity
F blade loss weighting factor
g dimensional constant, 1; 32.2 ft-lbm/(secz)(lbf)

Ah specific work, joules/kg; Btu/lb

st s

stage number i, i=1,2, . .. n
dimensional constant, 1; 778 ft-1b/Btu
turbine loss coefficient

Mach number

Z 2 R

rotative speed, rad/sec; rpm

=

number of stages

J

shaft power, watts; hp



p pressure, N/mz; lb/ft2

R gas constant, joules/(kg)(K); ft-1bf /(1bm) (°R)
Re Reynolds number

r radius, m; ft

T temperature, K; °R

U blade speed, m/sec; ft/sec

1% absolute gas velocity, m/sec; ft/sec

w relative gas velocity, m/sec; ft/sec

w mass flow rate, kg/sec; lb/sec

o absolute-flow angle from axial direction, deg
¢ relative-flow angle from axial direction, deg
Y heat capacity ratio

n static efficiency

n' total efficiency

A speed-work parameter

L viscosity, (N)(sec)/mz; Ib/(sec)(ft)

p density, kg/m3; lb/'f'c3

Subscripts:

a first stage

cr critical

ev exit vane

ex turbine exit

h hub

i stage 1, 1i=1,2, . . ., n

in turbine inlet

m mean section

n last stage

Tro rotor

st stator

t tip



u tangential component

X axial component
1 stator exit

2 rotor exit
Superscripts:

turbine overall
! absolute total condition

" relative total condition

METHOD OF ANALYSIS

The method is based upon an analysis of the flow at the turbine mean diameter .
Radial gradients of the flow properties are not considered. Specific heat ratio is as~
sumed constant throughout the turbine. For any given turbine, all stages, except the
first, are specified to have the same shape velocity diagram. The first stage differs
only in that the inlet flow is axial. The velocity diagram shape depends upon the speed-
work parameter value and the specified type of velocity diagram. Three types of veloc-
ity diagram are considered: symmetrical, zero exit swirl, and impulse. These three
types of velocity diagram are shown in figure 1 for three values of speed-work param-
eter.

Various input options dictate the exact nature of the calculation procedure. There
is, however, one basic procedure that is direct and without iteration. This basic pro-
cedure will be presented and then the alternate procedures required for the various in-
put options will be discussed. The computations can be done either in SI units or in U.S.
customary units.

Basic Calculation Procedure

The required inputs for the basic procedure are shaft power P, mass flow rate w,
inlet total temperature Tin’ inlet total pressure pin, rotative speed N, inlet mean
diameter Dm,in’ exit mean diameter Dm,ex’ stator exit angle @, gas constant R,
specific heat ratio y, viscosity p, loss coefficient K, and squared ratio of stage-exit
to stage-average axial velocities E. Also specified for each calculation are the number
of stages n and the type of velocity diagram. For a multistage turbine, the input var-
iable specified as inlet diameter is used to calculate first rotor blade speed and annulus
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dimensions at the first rotor exit. Therefore, it is truly an inlet diameter only if the
hub and tip diameters are assumed constant across the first stage. For a one-stage
turbine, the specified exit diameter is used for the calculations, and the inlet diameter
is of no significance.

The first- and last-stage blade speeds are

U = T,& (2)

For more than two stages, it is assumed that the stage blade speeds vary linearly be-
tween the first- and last-stage values. Therefore,

U_ -1
U =——2G-D+T, (3)
n-1
Turbine specific work is
_ C
Apr - _B P (4)
J w

and is equal to the sum of the specific work of the stages:
n
Ah' = 2 Ah} (5)
i=1

Expressing stage specific work in terms of stage speed-work parameter as

2

Ah} = - (6)
gJA

and substituting equation (68) into equation (5) yield



U2

A_h' = T)l\- (7)
g

i=1

Since the velocity diagram shape is specified to be the same for all stages, the speed-
work parameter is the same for all stages and is computed by rearranging equation (7)
as

2 U
A =d=l (8)

gJAh'

In
i=

The value of A is the primary factor determining turbine efficiency.

The method used for computing turbine static efficiency is basically similar to that
presented in reference 1, but has the following additional features: (1) the turbines con-
sidered in this report are not restricted to a constant mean-section diameter, (2) exit
vanes to provide axial flow leaving the turbine can be included in the design, and (3) the
velocity diagrams can be specified to be symmetrical. The efficiency computation
method is explained fully in reference 1, and only the key equations are presented in
this section.

With turbine reheat neglected, turbine static efficiency can be expressed as

_ AR
M= ] (9)
Shig o+ Y Ahig i+ Ahyg 4
i=2
Dividing numerator and denominator by Ah' and introducing stage efficiencies yield
= 1
m= — (10)
1 8hy Ah L1 Ahy
772'1 Ah' N AR T Ah'
i=2

Dividing equation (6) by equation (7) shows that



Ah! U2
1 1

— = (11)
Ah! 2
S
i=1
Substituting equation (11) into equation (10) and recognizing that
n-1
v? v o
n =1-— " ™h (12)
2 2 2
U U DU
i=1 i=1 i=1
1=2
finally yield
_ 1
n= (13)
2 2 2 2
§) U U U
1 a 14, ._ a_ + 1 n
z Ul z Ui Z Ul z U1
i=1 i=1 i=1 i=1
The stage-total and last-stage-static efficiencies are
' A
n = A (14)
A +—=
2
and
R S— (19
A+ 1 (A + B)
2

The stage loss parameter A is expressed as



-0.2

_KRe
A = 'W (Fstcst + FroCro + Cev) (16)
1

The constant of proportionality K, called the turbine loss coefficient in this report,
must be determined empirically. On the basis of comparisons of predicted with experi-
mental efficiencies, a value of K = 0.4 was selected in reference 1. For large tur-
bines of recent airbreathing engines, a value of K = 0.35 seems better. The Reynolds
number used in this calculation is defined as

Re = _2W am
“Dm,in

Some of the terms within the parentheses in equation (16) are the same for all
cases, while others depend on stage location, velocity diagram type, and use of exit
vanes. The rotor weighting factor Fr o and rotor loss parameter Cr o are the same
for all cases:

Fro =2 (18)
2 2 2
A% v \'"
Cro =2 co’tzof1 u,l1 + u,l_ A e |2 A (19)
AVu AVu AVu

For all stages other than last stages and for last stages where exit vanes are not used,
the exit vane loss parameter is

Cev =0 (20)

For last stages of turbines having exit vanes,

C —Zcot2 Vu’12+ v ¥
ev ~ 2

AV, avy

(21)

Axial inlet flow is assumed for all first-stage stators, for which the stator loss param-
eter is expressed



\'
c,, - <1 v 2 cot2cyl> ul (22)
AV
u
For all stators other than first-stage stators,
2 \(VaiV | (Va2
Cst = <1 + 2 cot a1> — ) | —2= (23)
AVu AVu

The stator weighting factor F st also depends on whether or not the stator is a
first-stage stator and further depends on the type of velocity diagram. The inlet and
exit swirl parameters Vu, 1/AVu and Vu, 2/AVu of equations (19) to (23) also depend
on the type of velocity diagram. The following table presents the relations for evaluating
the stator weighting factor and the swirl parameters:

Stage Velocity Stator |Inlet swirl | Exit swirl
diagram weighting | parameter, | parameter,
type factor, Vu, 1/AVu Vu, o/ AV
F
st
. A+l A -1
First Symmetrical 1 —
2 2
Zero exit swirl 1 1 0
Impulse with 1 X+ 1 X - 1
x=0.5 2 2
Impulse with 1 - 1 N 1
A=0.5 2 2
A+l x -1
Intermediate| Symmetrical 2 -2 ; T
and last
Zero exit swirl 1 1 0
Impulse with 21 - ) N X - 1
A=0.5 2 2
Impulse with 1 N +l A - 1
A=0.5 2 2




The exit loss parameter B of equation (15) is expressed as

2 2
\Y A%
B:ECOtzal _wily (w2
AV AV
u Ufoy
where
Vu, 2\ _ Vu, 2
AV AV
U Jox u
with no exit vanes and
A%
_4,2) _,
AV
U /ex

with exit vanes.

The turbine exit velocities and state conditions are computed as follows:

U
Ay, =1
u,n -y
A%
~_ul
Vu,l,n— AV AVu,n
u
v
__u,2
Vu,2,n AV AVu,n
u
Vi n:Vu 1 ncotoz1

v . Vu, o.n 1O exit vanes}
u,ex .
’ 0 exit vanes

10

(24)

(26)

(27)

(28)

(29)

(30)

(31)



c =Y R (34)
P 5 _1J
E{V Y/(Y—l)
Pex = Pipn - (35)
c. T! n
p in
T — 1 - E'
TeX— in c (36)
p
2
-
T =T -—& (37)
ex ex
2chp
v oY/ -1)
v ESX_ (38)
Pex = pex T
ex

In order that the turbine total and static efficiencies be consistent with the computed
exit velocity, the total efficiency is computed as

AR

p1 (‘)/"'1)/7/
c. T 11 - &

7 = (39)

Exit annulus area, radius ratio, and hub and tip diameters are obtained as follows:

Pex
Pag = (40)
eX R
ex
B w
Aan,ex - v (41)
Pex¥x,ex

11



=2 = MmEX (42)

D _ m, ex (43)

b (44)

Absolute and relative flow angles, which are the same for each stage, are computed
from the last-stage velocities:.

az = tan-l _u}_g)_n. (45)
Vx,n

Wu,l,nzvu,l,n'Un (46)

wu,z,n:Vu,Z,n - Uy (47)

w

8 = tan~! _u,1,n (48)
Vx,n
-1 Wu 2,n

[32 = tan e e (49)
Vx,n

Critical velocity ratios are computed for the last stage, where temperatures are lowest
and the velocity ratios are most severe:

_ 2 2
V2,n' Vvu,2,n+vx ex (50)
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_ 2 2
W2,n— Wu,2,n+vx,ex (51)

_ 2 2
Wl,n" Wu,l,nJ'Vx,n (52)
_ 2 2
Vl,n‘ ﬁ,l,n+vx,n (53)
2 2
\% -W
Té‘n:Ti‘n:Téx'M (54)
’ ’ Zchp
2 2
w -V
T'l I ITE 1,n 1,n (55)
n I 2chp
f V \%
( 2 ) - 2,n (56)
\'%
°r,2/y Vz Y _gRT
vy +1
w A
w
er, 2 n V2 Y gRT'z' n
Yy +1 ’
W w
er, 1y ]/2 Y _gRTY
v +1 !
A% A\
. 1 > _ 1,n (59)
cr,2n VZ Y gRT'1 n
y +1 ’
V.
N X,ex
Mx,ex'—__’—_ (60)
78RT oy
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In order to establish the flow annulus geometry near the turbine inlet, a flow analy-

sis is made at the first-stage exit as follows:

U2
Ah' =2
a gdA
Ah?
1 — ' - a
T2,a - Tin c
p
Ah' 7/(7‘1)
Py 2 =Pjp (! - \ .>
’ cpTin"a
0]
AV =4
u,a
\%
__u,2
Vu,2,a" AV AVu,a
u
|/_Vu 1
Vx’z’az E —A—V,—AV , COtOfl

14

(61)

(62)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



A - % (71)

an,2,a
p2,an,2,a
A
1- an,2,a
2
r 7D .
_h :____:_A m,1n (72)
r
t 5a 1+ an,2,a
2
”Dm,in
2Dm in
Dt 9 a 2 (73)
b b rh
1+ —
r
t 2,a
*h
Dh,2,a:Dt,2,a - (74)
Tt
2,a

When a constant annulus is assumed for the first stage, the first-stage exit dimensions
become the turbine inlet dimensions.

Alternative Calculation Procedure

The basic calculation procedure described in the previous section requires as inputs
the inlet and exit mean diameters, stator exit angle, and shaft power. Alternatively,
the hub or tip diameters could be specified as input and the mean diameters computed,
the exit radius ratio could be specified as input and the stator exit angle computed, and
the turbine pressure ratio could be specified as input and the shaft power computed.
These alternative input options require iterative calculation procedures such as described
in this section.

With hub or tip diameters rather than mean diameters specified at the inlet and exit,
it is necessary to assume initial values for the inlet and exit radius ratios. Initial values
for inlet and exit mean diameters are then obtained as

15



D =~ 7 (75)

when hub diameter is input and

D =— -/ (76)

when tip diameter is input. The computation then proceeds from equation (1) through
equation (42) and the computed exit radius ratio is compared with the assumed value. If
they are not the same (within a given tolerance), then the computed value of exit radius
ratio is used to calculate a new value for exit mean diameter (from eq. (75) or (76)) and
the computation procedure is repeated until convergence is obtained. Then, computa-
tion proceeds through equation (72) and the computed inlet radius ratio is compared with
the assumed value. If they are not the same, the computed value of inlet radius ratio is
used to calculate a new value for inlet mean diameter, and the computation procedure is
repeated from equation (1). This entire procedure is repeated until both inlet and exit
radius ratios in the same calculation pass converge to previous values.

With exit radius ratio rather than stator exit angle specified, a value of stator exit
angle is assumed for the evaluation of equation (16). The computation proceeds through
equation (40). Equation (42) is then used to compute the exit annulus area from the input
value of radius ratio, and the exit axial velocity is then obtained from equation (41). The
density used in equation (41), however, is not consistent with the exit area, and equa-
tions (41), (33), (37), and (40) must be iterated until convergence is obtained. Then, the
stator exit angle is computed as

a = tan~! _4,1,0 (77)

V

X,n

’
and compared with the assumed value. If they are not the same, the computed value of
stator exit angle is used for the evaluation of equation (16), and the computation proce-
dure just given is repeated until two consecutive values of stator exit angle are the same.
The remainder of the computation is then completed.

16



With the turbine inlet-total- to exit-static-pressure ratio rather than shaft power
specified as input, an initial value of turbine static efficiency is assumed. Turbine work
is then computed from

— p
Ah' = 7e T7 - 2. (78)

instead of from equation (4). The computation then proceeds through equation (26) in
order to compute a static efficiency from equation (16). If the computed value is not the
same as the assumed value, a new value of static efficiency is assumed, and the compu-
tation is repeated until two successive values are the same. The remainder of the com-
putation is then completed.

DESCRIPTION OF INPUT AND OUTPUT

This section presents a detailed description of the program input, normal output,
and error messages. Included in the input and output sections are several example
cases illustrating the use of the program and the various options.

Input

The program input, a sample of which is presented in table I, consists of a title
card and the required physical data and option indicators in NAMELIST form. The title,
which is printed as a heading on the output listing, can contain up to 77 characters lo-
cated anywhere in columns 2 to 78 on the title card. A title card, even if it is left blank,
must be the first card of the data package. Additional title cards can be used to identify
different cases being run in the same data package. This is done by placing a title card
in front of the data record for the particular case and using the option indicator ITIT as
subsequently described.

The physical data and option indicators are input in data records having the
NAMELIST name INPUT. The variables and indicators that compose INPUT and the
proper units are as follows. These must be inputed for all cases except where otherwise
indicated. Either the SI units or the U.S. customary units shown after them may be
used.
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PTIN
TTIN
MU

GAM
DIN

DEX

RREX

RPM
POW

ALPHA

KLOSS

NMIN
NMAX

PRTS
IALPH

IDIAM

18

inlet total pressure, N/cmz; lb/in.2

inlet total temperature, K; °rR

gas viscosity, (N)(sec)/mz; 1b/(sec)(ft)

gas constant, joules/(kg)(K); ft-1bf/(1bm)(°R)
heat capacity ratio

inlet diameter - hub or mean or tip value as specified by the indicator
IDIAM, cm; in.

exit diameter - hub or mean or tip value as specified by the indicator
IDIAM, cm; in.

exit radius ratio; RREX may be omitted in the case where both IDIAM = 2
and IALPH = 0; RREX is used as first trial value when IALPH = 0 and
IDIAM =1 or 3

rotative speed, rad/sec; rpm
shaft power - omit when IPR =1, kW; hp
mass flow rate, kg/sec; 1b/sec

stator exit angle from axial direction; ALPHA is used as first trial value
when IALPH =1, deg

turbine loss coefficient; a value in the range of 0.35 to 0. 40 is usually
applicable

minimum number of stages for which the calculations are performed

maximum number of stages for which the calculations are performed;
results are obtained for all stage numbers between NMIN and NMAX

squared ratio of stage-exit to stage-average axial velocities
turbine inlet-total- to exit-static-pressure ratio; omit when IPR = 0

indicates whether stator exit angle or turbine exit radius ratio is specified:
IALPH = 0 - turbine is designed for specified ALPHA
IALPH = 1 - turbine is designed for specified RREX

indicates whether inputed diameters are hub, mean, or tip values:
IDIAM =1 - inputed diameters are hub values
IDIAM = 2 - inputed diameters are mean values
IDIAM = 3 - inputed diameters are tip values



1VD indicates type of velocity diagram used:
IVD = 1 - symmetrical diagrams
IVD = 2 - zero exit swirl diagrams
IVD = 3 - impulse diagrams
IVD = 4 - zero exit swirl diagrams if x = 0.5 and impulse diagrams if
A =0.5

ITIT indicates use of title cards in addition to that required as first card of data
package:
ITIT = 1 - title card precedes next data set; must be inputed for each addi-
tional title card because ITIT is automatically restored to zero
after each title card is read

IEV indicates use of exit vanes:
IEV = 0 - no exit vanes
IEV = 1 - exit vanes are used to turn turbine exit flow to axial direction

IPR - indicates whether shaft power or pressure ratio is specified:
IPR = 0 - shaft power is inputed
IPR = 1 - turbine inlet-total- to exit-static-pressure ratio is inputed

1U indicates type of units used for input and output:
IU =1 - SI units
IU = 2 - U.S. customary units

Each line of the input form shown in table 1 represents one data card. The first
card is the mandatory title card, which can contain any desired message. The next
three cards are the first data set, which contains all required inputs. This first case
represents computation in accordance with the basic calculation procedure described
previously. Data inputed for subsequent cases need only include those values that differ
from previous case data. The fifth card is the second data set and represents the option
where hub diameter is input. Also, the second case data specify that a title card, which
is the sixth data card, precedes the third case data. Cards 7 to 10 represent four addi-
tional cases illustrating use of different input options. The output corresponding to this
sample input is described in the following section.

Output

The program output consists of title headings, the input variables, and computed
results. This section presents normal output. Error message output is described in
the next section.
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Table II presents the output that corresponds to the sample input shown in table I.
The top line of output is a program identification title that is automatically printed. The
second line is the title card message. The next four lines are the input variables and
their associated values for the first data set. The input variable names are spelled out.
The units for the input variable values are as described in the Input section. The zeros
printed under EXIT RADIUS RATIO and T-S PRESSURE RATIO indicate that these are
computed for this case and not specified by the input. The fact that the input diameters
are mean diameters is indicated by the MN in the variable name. Hub and tip diameters
would be indicated by HB and TP, respectively. These four lines of output are printed
for each new data set.

The next two groups of eight lines each are the computation results for a one-stage
turbine and a two-stage turbine, each satisfying the input requirements. Only one- and
two-stage designs were specified by the input. The output parameters are spelled out
and are self-explanatory. On the first line of each group are the number of stages, the
stage speed-work parameter, and the diagram type, which is symmetrical for this first
case. The remainder of the output includes exit and inlet tip and hub diameters in the
first column, exit total and static temperatures and pressures in the second column,
total and static efficiencies and velocity diagram angles in the third column, and first-
and last-stage blade speeds and last-stage absolute velocity components in the last col-
umn. The last line of each output group presents the last-stage absolute and relative
critical velocity ratios.

After the computations for each input case are completed, the input data for the next
case are printed. The second case presented here is that where the specified diameters
are hub values. The third input case in table I is preceded by an additional title card.
This causes the next output to begin at the top of a new page with the program identifica -~
tion title and the title card message. The third to sixth cases are computed for two
stages only.

The third case is for a specified exit radius ratio rather than for a specified stator
exit angle. This is indicated by a zero appearing under STATOR EX ANG in the row of
input variables. Exit vanes are included in this case, as indicated by WITH EXIT
VANES printed after number of stages on the first line of result output. The fourth and
fifth cases, as indicated by the top line of the fourth column of result output, are for
zero exit swirl and impulse diagrams, respectively. Turbine pressure ratio rather than
shaft power is specified in the sixth case. For this case, the inputed pressure ratio
was chosen to be the same as the computed value obtained for the two-stage design of the
second case. It is seen that, as should be expected, the program converges to identical
solutions for both cases. An extra line of output consisting of shaft power and specific
work is printed for the case where pressure ratio is specified as input.

20



Error Messages

The program contains five output messages indicating the nonexistence of a solu-
tion satisfying the specified input requirements. These messages are presented in this
section, and their causes are discussed.

(1) INSUFFICIENT ENERGY - This message is caused by the computed turbine exit
total temperature being less than zero. It indicates that the turbine specific work re-
quirement is greater than the energy available in the gas. Therefore, either the speci-
fied shaft power must be decreased or the specified flow must be increased.

(2) INSUFFICIENT IDEAL ENERGY - This message is caused by the computed ideal
energy being more than that available from an infinite expansion of the gas. It indicates
that the computed static efficiency is too low to yield a valid solution. Corrective action
includes decreasing power, increasingflow, using more stages, or perhaps using a dif-
ferent velocity diagram.

(3) NEGATIVE TEX - This message is caused by the computed turbine exit static
temperature being less than zero. It indicates a low value of turbine exit total tempera-
ture and/or a high value of turbine exit velocity. Corrective action could be the same as
for message (2) or decreasing a too high value of stage exit to average axial kinetic
energy ratio.

(4) INSUFFICIENT EXIT AREA - This message is caused by the computed exit area
being larger than that available in the turbine. Such a situation can be remedied in many
ways, including increasing exit diameter, decreasing stator exit angle, increasing inlet
pressure, decreasing mass flow, and increasing stage exit to average axial kinetic
energy ratio.

(5) INSUFFICIENT INLET AREA - This message is eaused by the computed inlet
area being larger than that available in the turbine. Corrective measures are the same
as for message (4).

PROGRAM DESCRIPTION

The computer program is called TURBAN. All computations are performed in one
main program written in IBM 7090/7094 FORTRAN IV language. The program variables
are defined in this section and the program listing is presented.

Program Variables
A factor in eq. (16), KRe'O'z/cot oy
AA factor in eq. (42), A /aD>

an,ex’" “m,ex
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AA1l
AEX
Al

AlIL
ALP
ALPH
ALPHA
ALPHA1
ALPHA2
ALPH1
ALPH2
ASEX
Al

AlL

A21

BETA1
BETA2
BET1
BET?2
BL
CCN
CCPp

CI

CL
CONV
coT
CpP

C1

22
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factor in eq. (72), A m, in

an,2,a
turbine exit annulus area

stage loss parameter for intermediate stage and last stage having no exit
vanes

stage loss parameter for last stage having exit vanes
stator exit angle value printed in input section of output
previous value of stator exit angle

input value of stator exit angle

output value of stator exit angle

output value of stage exit angle

stator exit angle

stage exit angle

speed of sound at turbine exit

stage loss parameter for first stage or single stage having no exit vanes
stage loss parameter for single stage having exit vanes
first-stage-exit annulus area

turbine exit loss parameter with no exit vanes

output value of rotor inlet angle

output value of rotor exit angle

rotor inlet angle

rotor exit angle

turbine exit loss parameter with exit vanes
dimensional constant

dimensional constant

blade row loss parameter for intermediate stage stator
blade row loss parameter for exit vanes

tolerance for radius ratio convergence

cotangent of stator exit angle

heat capacity

blade row loss parameter for first-stage stator



DELHT
DELHI
DEX
DH
DHEX
DHID
DHTID
DH1
DIN
DM
DMEX
DMIN
DN

DT
DTEX
DT1
DVUN
DVU1
DX

D1

ES
ESA
ESI
ESIL
ES1
ESIL
ET
ETI

blade loss parameter for rotor

turbine specific work

first-stage specific work

input value of turbine exit diameter

data statement word HB for output use

turbine exit hub diameter

turbine ideal work based on inlet-total- to exit-static-pressure ratio
turbine ideal work based on inlet-total- to exit-total-pressure ratio
first-stage-exit hub diameter

input value of first-stage-exit diameter

data statement word MN for output use

turbine exit mean diameter

first-stage-exit mean diameter

turbine exit mean diameter

data statement word TP for output use

turbine exit tip diameter

fir st-stage-exit tip diameter

change in swirl velocity across last-stage rotor

change in swirl velocity across first-stage rotor

output word set equal to DH, DM, or DT as appropriate
first-stage-exit mean diameter

ratio of stage-exit to stage-average axial Kinetic energies
turbine static efficiency

previous value of turbine static efficiency

static efficiency of last stage with no exit vanes

static efficiency of last stage with exit vanes

static efficiency of single stage with no exit vanes

static efficiency of single stage with exit vanes

turbine total efficiency

total efficiency of intermediate stage or last stage with no exit vanes
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ETIL total efficiency of last stage with exit vanes

ET1 total efficiency of first stage or single stage with no exit vanes
ETIL total efficiency of single stage with exit vanes

FLS stator weighting factor

FLSL exit vane weighting factor

G dimensional constant

GAM heat capacity ratio

IALPH option indicator - see Input section

IDIAM option indicator - see Input section

IEV option indicator - see Input section

IPR option indicator - see Input section

ITIT option indicator - see Input section

IU | option indicator - see Input section

IVD option indicator - see Input section

J dimensional constant

KLOSS turbine loss coefficient

LAM stage speed-work parameter

MU gas viscosity

MXEX turbine exit axial Mach number

N number of stages

NMAX maximum number of stages

NMIN minimum number of stages

NN number of stages

PEX turbine exit static pressure

PI i

POW shaft power

PRS computed value of inlet-total- to exit-static-pressure ratio
PRT computed value of inlet-total- to exit-total-pressure ratio
PRTS input value of inlet-total- to exit-static-pressure ratio
PTEX turbine exit total pressure
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PTIN
PT21
P21

Q

Q2

R

RE
REX
REX1
RHOEX
RHOEX1
RHO21
RPM
RREX
R1

R11

ST

ST1
ST2
SUMUSQ
TEX
TITLE
TTEX
TTIN
TTRN
TTIN
TT21
T21

U1sQ

turbine inlet total pressure

first-stage-exit total pressure

first-stage-exit static pressure

ratio of rotor inlet swirl velocity to change in swirl velocity
ratio of rotor exit swirl velocity to change in swirl velocity
gas constant

Reynolds number

computed value of turbine exit radius ratio

previous value of turbine exit radius ratio

turbine exit gas density

previous value of turbine exit gas density
first-stage-exit gas density

rotative speed

input value of turbine exit radius ratio

fir st-stage-exit radius ratio

previous value of first-stage-exit radius ratio

output word set equal to ST1 or ST2 as appropriate
blank data statement words for output use

data statement words WITH EXIT VANES for output use
sum of squares of stage blade speeds

turbine exit static temperature

input/output array for title card message

turbine exit total temperature

turbine inlet total temperature

last-stage-rotor inlet and exit relative total temperature
last-stage-stator exit absolute total temperature
first-stage-exit absolute total temperature
first-stage-exit static temperature

rotor mean blade speed

rotor mean blade speed squared
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V1OVCR
V2N
V2NR
V20VCR
Va1

w

WwC
WCRN
WUIN

26

last-stage-stator-exit absolute critical velocity
last-stage-exit absolute critical velocity

data statement word SYMMET for output use

data statement word RICAL for output use

data statement word (blank) for output use

data statement word ZERO E for output use

data statement word XIT SW for output use

data statement word HIRL for output use

data statement word IMPULS for output use

data statement word E for output use

last-stage-rotor inlet swirl velocity

first-stage-rotor inlet swirl velocity

last-stage-rotor exit swirl velocity

first-stage-exit swirl velocity

turbine exit axial velocity

last-stage average axial velocity

first-stage exit axial velocity

output word set equal to VD1, VD4, or VD7 as appropriate
output word set equal to VD2, VD5, or VD8 as appropriate
output word set equal to VD3 or VD6 as appropriate
last-stage-stator -exit absolute velocity
last-stage-stator-exit critical velocity ratio

turbine exit absolute velocity

last-stage-rotor-exit absolute velocity
last-stage-rotor-exit absolute critical velocity ratio
first-stage-exit absolute velocity

mass flow rate

factor in egs. (56) to (59), [Zng/(y + 1)]1/2
last-stage-rotor-inlet and exit relative critical velocity

tangential component of last~stage-rotor-inlet relative velocity



WU2N tangential component of last-stage-rotor-exit relative velocity
WI1N last-stage-rotor -inlet relative velocity

WI1OWCR 1st-stage -rotor -inlet relative critical velocity ratio

W2N last-stage -rotor-exit relative velocity

W20WCR last-stage-rotor -exit relative critical velocity ratio

X function of v, ¥/& - 1)
XREX exit radius ratio value printed in input section of output
YAA factor in eq. (35), Ah'/cpTinn

Program Listing

$IBFTC TURBAN DECK

THIS PROGRAM PERFORMS TURBINE GEOMETRY AND EFFICIENCY CALCS ON A
MEAN SECTIUN BASIS ASSUMING SAME SHAPE DIAGRAMS FUOR EACH STAGE
(EXCEPT FIRST, WHICH HAS AXIAL INLET FLOW) AND IF
[VD=1 - SYMMETRICAL OIAGRAMS
[vD=2 - ZERO EXIT SwIRL DI AGRAMS
[vD=3 - IMPULSE DIAGRAMS
IALPH=0 - EXIT RADIUS RATIO IS COMPUTED FOR INPUT VALUE OF ALPHA
- INPUT RREX IS FIRST TRIAL VALUE [F IvIAM=1 OR 3
IALPH=1 -~ ALPHA IS COMPUTED FOR INPUT VALUE OF EXIT RADIUS RATIO
INPUT ALPHA IS FIRST TRIAL VALUE
DIAMETERS ARE INPUT AT INLET AND EXIT, AND BLADE SPEED VARIES LIN.
IDIAM=1 - INPUT OIAMETERS ARE HUB VALUES
IDIAM=2 - InPUT DIAMETERS ARE MEAN VALUES
IDIAM=3 — INPUT DIAMETERS ARE TIP VALUES
[2V=0 - NU EXIT VANES
[sv=1 - EXIT VANES TO TURN FLOW T0 AXITAL DIRECTION
[PR=0 - PUWER IS INPUT AND PRESSURE RATIO IS COMPUTED
IPR=1 - PRESSURE RATIO(T-S) IS5 INPUT AND POWER IS COMPUTED
[T1T=1 - TITLE CARD PRECEDES NEXT DATA SET
[U=1 - SI UNITS ARE USED FOR INPUT AND OUTPUT
[Us2 - UeSe CUSTOMARY UNITS ARE USED FOR INPUT AND OUTPUT

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
[}

REAL LAMyNN,JyMXEX,KLOSS,MU

DIMENS 10N U(99).TITLE(13),ST1(3)yST2(3)gST(3)
NAMELIST/I&PUT/PTIN,TTIN,MU,R,GAM,DIN,DEX'RREX.RPM'PON,H,ALPHA.
1KLUSS.lALPH.NMIN.NMAX,IDIAM.E-IVD.ITIT-IEV,IPK.PRTS'IU

DATA DHyDM,DT/2HHB,2HMN, :HTP/

DATA VDl'VDc,VDB,VD4.VUS,VDé'VU7yVDBI6HSYMMETngR[CAL,1H s 6HZERD E
1,6HXIT SW,3HIRL,6HIMPULS,1HE/

DATA ST1+ST2/71H s1H oiH +6H WITH JOHEXIT V,6HANES /

PI= 3.1416

98 WRITE({6,100)
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1060
99

101

35

96

S7

14

13

15

17

19
109

110

FORMAT (1H1+49X,33HTURBINE VELOCITY DIAGRAM ANALYSIS)
READ(5,99) TITLE
FORMAT(13A6)

WRITE (6,1C0i) TITLE
FORMAT(1H , 13A6)

[TIT=)

REAU(5, INPUT)

GO TO (95,96),1U

J=1.

G=l'

CCN=2.+P]

CCP=1000.

GO 10 97

Jd=7178.

G=3;.17

CCN=6D.

CCP;SSOO

R1=.9

ES=.8

ALP= ALPHA

REX=RREX

XREA=REX

IF{IALPH.EWL1l) ALP=0.0
IF {IALPH.EQ.0) XREX=0.0
IF(IPR,EQ.D) PRTS=0,0
IF{IPR.EQe1) POW=0,0

DO 14 [=1,3

ST(I1=ST1(1)
IFUIEVLEQLi) ST(I)=ST2(1)
GO TO (13,i5417),ID}AM
OX=DH
DMEX=(1.+REX)/ 2, #DEX/REX
DMIN=(1+4+R1)/2.%DIN/R1
GO T 19

DX=1M

DMEX=DEX

DMI~=DIN

GO TO 19

DX=0T
DMEX={1++REX)/2.#DEX
OMIv=(1.+R1)/2.#DIN
WRITE(6,109)

FORMAT (1H )
HR[TE(6,1lC)DX.DX,PON,w,TTIN.PTIN,RPM,D[N,DEX,XREX,ALP,R,GAM,MU.
1KLOSSy E4PRTS

FORMAT {126HQ SHAFT MASS INLET INLET ROTATIVE INLET

1 ExXIT EXIT STATOR GAS HEAT GAS TURBINE AXIAL
1 T1-5/ 48H
2 PUWER FLOW TEMP PRESS SPEED 1A2+6H DIA ,A2,
2 69H DIA RADIU
38 X ANG CONST CAPAC VISCOSITY LOSS Vel SQ PRESS/

465X, SHRATIU, 19Xy 5HRATIU, 14X, 19HCOEF RATIO RATIQ/
5 FlG.l,3F9-2-FlO.Z,F7.2vF8.2.F9.4-2F8.2vF8.3v
6Eli.3,F7.3,.F8.3)

ALPH1= ALPHA#,017453

X=GAM/ (GAM~[,)

CP= X*R/)

IF{IPR,EQLL) UHID=CP’TTIN'(1.‘(l./PRTS)**(l./X))

IFCEPR.EQel) PEX=PTIN/PRTS



53

37

11

55

61

62

63

IF(IPRG,FQ.L) GO TO 53
DELHT=CCP*PUW/ W/ J

TTex= TTIN-DELHT/CP
IF(ITEX.LT.0.0) GG TO 20
N=NMIN

CONV=,01

IF(IU.EQ.1) DN=UMEX/1LO0.
IF{1U.EQs2) DN=UMEX/12Z.
IF(1U.EQel) DLI=DMIN/1CO.
IF(IULEQa2) DL=DMIN/12.
U{1)=PI#RPM=D1/CCN
U{N)=PT#RPM=DN/CCN

NN= FLOAT (N)

IF( 4.EQel) SUMUSQ=U(N)=UI(N)
IF(1.EQs1) GO TO 3
SUMUSQJ= 0.t

bo - I=1sN

UGI)= (UIN)=U(L))}/(NN-1.)#(FLOAT{I)-1.) + U(1l)
UISU=J(1)es2
SUMJSQ=SUMUSQ+UISQ
IF{IPR.EQ.O) GO TO 55
DELHT=ES*#DHID
TTEA=TTIN-UELHT/CP
ESA=ES
LAM=SUMUSQ/G/J/DELHT

GO TO (6146c+463,64)41VD
Q=(LAM+1,.) /¢,
Q2=(LAM-1.,)72,
FLS=2.-LAM

VX11i=vDl

VX2=vD2

VX3=VD3

GO TO 65

Q=1.0

Q2=..9

FLS=1,0

vVX1l1i=VD4

VX2=vD5

VX45=VD6

GO 10 65

Q=LQM+.5

QZ:LAM"QS

FLS=1.0

IF(LAMLTeeS) FLS=24%#(le-LAM)
VX11=vD7

vX2=vD8

VX3=VD3

GO TO 65

IF(LAM.GE..5) GO TO 62
GO TO 63

DVUN=J (N) /LAM

VUl = Q#DVUN

VU i=32#DVUN

CUT= COTAN(ALPH1)
Cl={(1l.+2.,#COT#22)#(QnQ
CI= Cl+(Q-1l.)#xg
0=2.800Ten28Q8Q+ (Q-LAM)# %2+ ((-LAM—1, ) %2
RE= W/MU/Dl#l.
IF(NGEQe]) RE=W/MU/DN*/,
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30

A=KLOSS/COT/RE##,2
Al=A#{C1l+2.%D)
Al=A%(FLS#CI[+2,#D)
B:thJTiQZ!Q‘Q#QZ‘lZ
ETL=LAM/(LAM+AL1/2.)
ESi= LAM/(LAM+(AL+B)/2.)
ETI= LAM/(LAM+AI/2.)
ESI= LAM/(LAM+(ALI+B)/2.)
IF (IEV.EQ.1) GO TO 34
IF(N=1) 545,06
5 ES= ES1
GO T0 7
6 ES=L.I(U(l)*U(l)/ETl/SUMUSQ+(1.
l+U(4)'U(N)/tS[/SUMUSQ)
GO TO 7
CL=2.2COT##2#QeQ+Q2ns?
FLSL=]1.
AlL=Al+A=CL#FLSL
AIL=AT+A=CL#FLSL
BL=FeLOT*#2%Q#(
ETIL=LAM/ (LAM+ALIL/2.)
ESlL=LAM/(LAM+(A1L+BL)/2-)
ETIL=LAM/ (LAM+AIL/2.)
ESIL=LAM/(LAM+(AIL+BL)/2.)
IF(N-1) 35,335,236
ES=rS1L
GO 70 7
36 ES=A./(U(1)!U(l)/ETl/SUMUSQ+(l.
l#U(N)lU(N)/ESIL/SUMUSQ)
7T IF(IPR) 564,56,57
56 ZZI=DELHT/CP/TTINJES
IF(/Z.GEe1.0) GO TO 21
PEX=PTIN®(l.,~22)nsxX
GO TO 58
IF(ABS(ES-ESA).LT..OOOI) GO TO
ES=(ES+ESA)}/2.
GO 170 54
VXND=Q#COT=DVUN
VXN=VXND#SORT(E)
VZ2N= SQRT{VUZN#=Z+VXN#%2)
V2NR=V2N
IF(IEV.EQal) V2N=VXN
TEX= TTEX-VIN®#2/2./G/J4/CP
IF(TEX.LE.D40) GO TO 272
IF(IU.EQ.L)
IF(IU.EQa2)
IF(IALPHEQa. L)

34

35

57

58

GO TO 8

AEX= W/RHOEX/VXN

AA= AEX/PI/UN##2
[IF{AALGE.1.G) GO TO 23
REX .=REX

REX= (le=AA)/({14+AA)
IF{IDIAMJEQ.2) GU TO 9

“(UCLI*UCL)+U(NI®U(N) ) /SUMUSQ) /FTI

UL #UCL)+UINI®UIN) ) /SUMUSQ) 76T

53

RHOEX=PEX/R# ,000C./TEX

IF(ABS(REX-REXL1).LT.CONV) GO TO 9

IFCIDIAMJEQ.3} GO TO 33
OMEX={1.+REX)/2.*DEX/REX
GO 10 37



35 DMEX=(1.+RLX)/2.#DEX
GO 10 37
8 AEX= PI#DN##2&(1.-REX)/( Les+REX]
31 VXN= WN/AEX/RHOEX
V2H=SQRT(VULN##Z+VXNE=2)
V2NR=V 2N
IF(IEV.EQel) VZN=VXN
TEX=TTEX=VZin®2/2./G/J/CP
RHU: X1=RHOEX
IF{IUsEQel) RHOLX=PEX/R#i0000.,/TEX
IF(fUsEQe2) RHOEX=PEX/R*144,/TEX
IF(ABS (RHOEX-RHUEX1)«GT+,001*RHUEX) GO TO 31
ALPH= ALPHI
VXND=VXN/SQRT(E)
ALPHL=ATANZ2(VULIN,VXND}
IF(ABS(ALPHLI-ALPH)+«GT..0.02) GG TO 4
9 ALPH2=ATAN2(VU2N,VXND)
PTEX=PEX# (TTEX/TEX)*=X
DHTIO=CP#TTIN#{Lla={PTFX/PTIN)#x(1,/X))
ET=DELHT/DHTID
POW=DELHT#w/CCP#J
WULN=VUIN=U(N)
WU2N=VUZN=U(N)
BETI=ATANZ2(WULN,VXND)
BET =ATANZ2 (WU2N,VXND)
W2N=SQRT(WUZN®22+VXN&#2)
WIN=SQRT(WULN##2+VXND#*=#2)
VIN=SQRT(VUIN#22+VXND*#2)
TTRI=TTEX~(V2NR##2-W2N=#?2)/2./G/J/CP
TTL14=TTRN-{WIN®#2-VIN*#2)/2,/G/J/CP
WC=SQRT(2.#GAM/ {GAM+1.)*G*R)
VCR2N=WC=SQRT(TTEX)
WCR=AC#SQRT(TTRN)
VCRIN=WC#SQRT(TTIN)
V1IOVCR=VIN/VCRIN
WLUWCR=WLN/WCRN
W20WCR=W2N/WCRN
V2OVCR=V2NR/VCRZN
ASEX= SQRT(GAM*G#R=*TEX)
MXEX= VXN/ASEX
DTEXx= DMEX#z,/(1++REX)
DHEX= REX#DTEX
IF(%.EQ.1) GO YO 51
DELH1= U({l)*#2/G/J/LAM
TT2.= TTIN-DELHL/CP
PT2:= PTIN#(1,-DELHL/CP/TITIN/ET1l) ==X
pVvul = Ul1l)/LAM
VX1=Q#COT*DVUL*SQRT(E)
vuzl= QZ2+DVUl
vuii= Q=DVUL
V21= SQRT(VUZ1##2+VX1l%#2)
T2l= TT21-Ve1#82/2./G/J/CP
P2i= PT21#{(T21/TT21)#xX
IF(IU.EQ.1) RHO21=P21/R#10000,./721
IF(IU.EQe2) RHDZ1=P21/R#144,/T21
A21=W/RHO21/VX1
AAl1=A21/P1/D1/D1
IF(AAl1.GE.1.0) GO TO 24
R11=R1
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32

44
45

47

41
42
43

49

51

52

120

121
122

12

20
130

21

Rl1= (le-AAl)}/(1.+AA])

IF(IOIAM,EQ.2) GO TO 49

IF{ABS(R1-R11).LT.CONV) 00 TQ 4}

IF(IDIAM=2) 45,49,47

DMI I=(1la+R1)/2.*DIN/R1

OMEX=(1e+Ri:X)/2.#DEX/REX

GO T0 37

DMIN=(1.4R1)/2.#DIN

DMEX=(1++REX)/2,#DEX

GO TO 37

IF{CONV=,001) 42,42,43

GO 10 49

CONV=,0001

GO TO 44

DT1=DMIN#2./(1.+R1)

DHL = R1#DT1

GO 10 52

R1=2EX

DT1=0TEX

OH1 =DHEX

ALPHAL =ALPH1/.017453

ALPIHA2= ALPH2/.U17453

BETALl=BET1/.017453

BETA2=BET2/.017453

PRT= PTIN/PTEX

PRS= PTIN/PEX ]
NRITE(6'120)N.ST.LAM.Vxl;.VXZ.VX3.DTEX.TTEX'ALPHAI-U(l).DHEX.TEX.
IALPHAZ.U(N),REX,PTEX.BETAI,VUIN.DTI,PEX,BETAZ.VUZN,DHl.PRT.ET,VXN,
ZR14PRS4yES,MXEX

FORMAT (BHOSTAGES=412,3A6,2X,2THSTAGE SPEED-WORK PARAMETER=,F5, 3,
126X, 13HDI AGRAMS ARE ,3A6
1 /20H EXIT TIP DIAMETER =,F6.2,4X,18HEXIT TOTAL
1 TEMP  =yF742+45Xe18HSTATUR EXIT ANGLE=,F6e2+4Xs23HFIRST STAGE MEAN
2 SP-ED=yFB.c/20H EXIT HUB DIAMETER =,F642,4Xy 18HEXIT STATIC TEMP =
39F7.2¢5Xs 18BHSTAGE EXIT ANGLE =,F6.2,4X,23HLAST STAGE MEAN SPEFD =,
4F8.2/20H EXIT RADIUS RATIO =,F6,.4,4X,18HEXIT TUTAL PRESS =,FT7e2,5%
5+18HROTOR INLET ANGLE=,F5e2¢4Xe23HLAST STAGE INLET SWIRL=,F8.,2/2CH
6 INLET TIP DIAMETER=,F64 44X, 18HEXIT STATIC PRESS=,F742+5X,18HROTO
TR EXIT ANGLE =4F642+4X,23HLAST STAGE EXIT SWIRL =,F8.2/20H INLFT H
BUB DIAMETER=,F6.2,4X,1BHT-T PRESS RATIO =9F7e3,5X,18HTOTAL EFFICI
FENCY =4F5.3,5X923HLAST STAGE AXIAL VELOC=,FB8.2/20H INLET RADIUS RA
1TIO=yF6.444X,18HT-S PRESS RATIO =,F7.3,5X,18HSTATIC EFFICIENCY=,
2F5. 345X 23HEXIT AXIAL MACH NUMBER=,F7.4)

[F{IPR.EQel . AND. IU.EQ.1) DELHT=DELHT/1000,

IF{IPR.EQsl) WRITE(6,121) POW,DELHT

FORMAT(1TH SHAFT POWER =9F9elv4Xy18HSPECIFIC WORK =4F7.2)
WRITE(64122)VIOVCRyW10WCR, W20OWCR,V20VCR

FORMAT{20H LAST STG (VI/VCR1)=,Fbe4,4Xy L8HLAST STG{WL/WCRL)=yF a4,
ISXs .84LAST STG(W2/WCR2)=4F6.4,4X423HLAST STG (V2/VCRZ) =3 FTe4)
N=N+1

CONV=,01

IFIN.LEsNMAX) GO TO 11

IF(ITIT.EQ..) GO TO 98

GO 1O 1

WRITE(6,130)

FORMAT { 1HO y5Xy I9HINSUFFICIENT ENERGY)

GO 10 1

WRITE(6,140)N



140 FORMAT{1HO,7HSTAGES=,12,3Xs25HINSUFFICIENT [DEAL ENERGY)
GO TO 12

22 WRITE(6,15U)N

150 FORMAT [1HO,7HSTAGES=4+124 :X» 12HNEGATIVE TEX)
G0 TO 12

23 WRITE(6,16C)N

160 FURMAT(1HO,7HSTAGES=,12,2Xy22HINSUFFICIENT EXIT AREA)
R1=.g
REX=e7
GO 10 12

24 WRITE(6,170) N

170 FORMAT{1HO, /HSTAGES=,12,5X+23HINSUFFICIENT INLET AREA)

R1=.9
REX=47
GO 10 12
END

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, December 16, 1971,
764-74.
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Figure 1. - Effect of diagram type and speed-work parameter on velocity diagram shape.

NASA-Langley, 1972 — 28 E-6603
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