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THERMAL ELASTIC DEFORMATIONS
OF THE PLANET MERCURY

Han-Shou Liu

ABSTRACT

The variation in solar heating due to the resonance rotation of
Mercury produces periodic elastic deformations on the surface of
the planet. The thermal stress and strain fields under Mercury's
surface are calculated after certain simplifications. It is shown
that deformations penetrate to a greater depth than the variation of
solar heating, and that the thermal strain on the surface of the
planet pulsates with an amplitude of 4 x 10- 3 and a period of
176 days.
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THERMAL ELASTIC DEFORMATIONS
OF THE PLANET MERCURY

INTRODUCTION

In this paper, we investigate the thermal elastic deformations of the planet
Mercury by means of equations of equiJibriurn and compatibility in which the
variation of solar heating due to resonance rotation has been involved. In view
of the localized nature of the inaxtmnm thermal stress and strain induced on the
surface of Mercury the half-space model is adopted for the analysis.

TEMPERATURE FIELD

We consider a half-space in the xyz coordinate system with a plane boundary.
Let a temperature wave T with cyclical frequency w and amplitude To be propa­
gated on the plane x = 0 with velocity v in the direction of the y axis. Then the
temperature wave T is described by

(1 )

Because of the orientation of Mercury relative to the sun during each peri­
helion passage (Liu, 1971) the variation of solar heating on the surface of the
planet can be taken into account by the introduction of a factor cos (w/2v) y. The
temperature distribution on th.e surface of Mercury is then given by the expression

TCo,y,t) = To cos (wt - 2E:y) cos Ey

where w = 4.2 X 10- 7 sec-I, E = w/2v = 2 x 10 ..9 em-i.

The problem of determining the temperature field T(x,y,t) is to find the
bounded solution of the heat-conduction equation

pc oTCX,y,t) = llk OTcx,y,t)] + ~ IkOTcx,y,t)]
ot oXL Ox oYL oy

1

(2)

(3)



for

o <x<OO

-00 < Y < 00

-00 < t

In equation (3) p is density, c the specific heat and k the thermal conduc­
tivity. If we assume that Fourier's law holds for the propagation of the temper­
ature wave, the temperature field is

(4)

where 8 = V(wpc)/(2k).

THERMAL STRESS

On Mercury's surface a progressing temperature wave T(o,y,t) is given in
a way to account for the variation in solar insolation; it generates the tempera­
ture field (4) along the equator of the planet. From this temperature field, we
can find th8 thermal stress. The components of thermal stress are related to
a stress function <I> by (Landau and Lifshitz, 1959)

(5)

u _
yy
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The stress components must satisfy the equilibrium conditions

. 00- 00-
~+~=oox oy

(6)

and the condition of compatibility

where E is Young's modulus, v Poisson's ratio, and a the coefficient of linear
thermal expansion. It is noted that the external forces in equation (6) are omitted
because the variation of body forces is small and simple calculations show that
thei r influence is negligible for the case of the planet Mercury.

Let <I> = ¢ - tj; . Then equation (7) is equivalent to a system of two differen­
tial equations

(
0 2 (2) aE- +- tj;---Tox 2 oy 2 - 1 - v ( x • y. t )

(8)

(9)

Since the solutions of equation (9) can be included in solutions to the bihar­
monic equation (8), only a particular integral is needed for the solution of equa­
tion (8). In addition, the boundary conditions are

0- I =0 and 0- I =0
xx x =0 xy x =0

(10)

because there is no vertical and shear stress on the surface x = O. Thus the
thermal stress problem is reduced to solving equations (8) and (9) with conditions
in equation (10). The stress will then be given by equation (5) for <I> = ¢ - tj;.
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The periodicity of the temperature variation at the boundary leads to a
periodic thermal stress under the surface. If we use the local character of the
solar heating during perihelion passage, the stress function can be expressed
in the form

(11)

By substituting equation (11) into equations (8) and (9), we obtain ordinary
differential equations. The unknown coefficients can be determined from the
boundary conditions in equation (10) by using equation (5). The results of the
components of thermal stress are

aETo {tfIE 2 ( 7T)a- =-- -- XCoS wt--
xx 1 _ v 28 4

E
2

. ]- - (1 + EX) S lnwt e-EX

28 2

aETo
a- =

xy 1 _ v

E

2

}+ __ e-8x sin(wt - SX) cOSEy
202

{[
fiE ( 1) ( 7T) E3 . ] -Ex- EX - cos wt -- - -- XSlnwt e
28 4 282

(12)

(13)

E
2

]- -- (1 - EX) S inwt e-Ex

28 2

(14)-e-h cos (wt _ Sx)} cos Ey

These components of stress satisfy the equilibrium conditions as can be
verified by substituting equations (12), (13) and (14) in equation (6).
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INCLINATION AND DISPLACEMENT

The thermal strain (Exx ' Eyy) and displacement (U,V) are related to thermal
stress (o-xx' o-yy) by means of the generalized Hooke's law

dU 1
E =- =- (0- - VO- ) + a Txx dX E xx yy (x,y,t)

dV 1
E =- =- (0- - VO- ) + aTyy dy E yy xx (x,y,t)

(15)

(16)

Therefore, the inclination (e) due to thermal elastic deformation can be calcu­
lated by

e =dU =~ f dU dx
dy dy dX

dJ[1 ( ) T- J- - - 0- - vo- a- dy E xx yy + (x,y,t) dx

and the component of displacement V is

v =J[.!.. (0- - VO- ) + a T( t)J dyE yy xx x,y,

(17)

(18)

We substitute the stress components (12) and (14) in equation (17) and (18).
The desired components of the deformation are

aTo {(2E [ ] (TT)e = -- 28 (v + 1) (EX + 1) - 2v e-EX cos wt --
1 - v 4

- ~ (v + 1) (EX + 2) e-Exsinwt + fiE e-Sx sin (wt _ ox +2:.)
202 20 \- 4

_ f2E
3

e-Sxcos(wt _ 8x +2!..)} sinEy
20 3 \- 4
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aTo {f2 ( Tr)V =-- - [2 - (v + l)Ex] e-EXcos cut--
1 - v 28' 4

__E_ [v + 1 + (v _ 1) EX] e- EX sincut
28 2

f2 (1 E) OX . ( '" Tr)}.-V2"E - 2"'8 e- Sln wt - oX +4 slnEy

LATITUDINAL STRESS AND STRAIN

The thermal stress and strain are accompanied by a stress component
given by

O"zz =V (0" + 0" ) - aET( t)xx yy x, y,

and by a strain component Ezz given by

E =_::"'(0" 0") aT
zz E xx + yy + (x,y,t)

(20)

0"zz

(21)

(22)

Therefore, the latitudinal stress component 0" and strain component E are
zz zz

vaETo {[2E ( Tr) E2
• ] _Ex0" = -cos wt -- --Slnwt e

zz 1 _ v 8 4 82

-[.!. cos (wt - 8x) - ~ S in(wt - 8X)] e-ox } cos Ey (23)
v 28 2
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E zz
vaTo {tfiE ( 77) E2 . ] -EX=--- -- COS cut -- .,... - Slncut e
1 - v 0 4 02

-[lcos (cut - Ox) -~ S in(cut - Ox)l e _sx} COS Ey (24)
V 202 J

NUMERICAL RESULTS

The maximum value of the thermal elastic inclination, e, in equation (19)
occurs at cut = 77 /4 for x = O. This implies that the surface inclination reaches
its maximum value when Mercury is at a position which is 7 days after peri­
helion passage. Numerical calculations were carried out for E = 1011 dyne cm- 2 ,

To = 3 X 102 deg, k = 0.5 X 10- 2 cal cm- 1 sec- 1 deg-l, p = 5 gcm- 3 , c=0.2 calg- 1

deg - 1, v = 0·.3 and a = 10- 5 deg - 1. The main results are: e , = 2.6" x 10- 4,

IE I = 4 X 10. 3 and la-y I = 4 X 10 8 dyne cm- 2
• It sh~~ld be pointed out

zz max Y max
that calculations of equation (19) show that the thermal elastic inclination, e,
penetrates to a greater depth than the temperature variation in solar heating
because it is not only produced by the absolute value of the temperature, but
also by the temperature gradient.

CONCLUSION

The variation of solar heating on Mercury's surface due to resonance rota­
tion generates periodic thermal elastic inclination and displacement. From the
foregoing analysis, we may draw the following concluding remarks.

(1) The thermal stress on the surface of Mercury is about 4 x 10 8 dyne
per cm 2

(2) Thermal elastic inclination penetrates to a greater depth than the
temperature variation of solar heating. The maximum value of sur­
face inclination occurs when Mercury is in a position which is 7 days
after perihelion.

(3) Equations (19) and (20) describe the thermal elastic response to the
variation of solar heating. The latitudinal strain on the surface of Mer­
cury's thermal bulges pulsates with an amplitude of 4 x 10- 3 in a period
of 176 days.
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