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FOREWORD

The studies, tests, calculations, and analysis contained in the following report were prepared
by the General Electric Company, Management and Technical Services Department (GE-MTSD),
Bay Saint Louis, Mississippi, under National Aeronautics and Space Administration (NASA)
Contract NAS8-23524 for the Engineering Test and Evaluation Section, Process Technology
Branch, Chemical Process Laboratory, Weapons Development and Engineering Laboratory,
Edgewood Arsenal, Maryland.

The work described herein was performed in accordance with the contract workscope with
technical direction and assistance from W. P, Henderson, Chief, Engineering Test and Evalu-
ation Section,
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ABSTRACT

As a result of a systematic analysis of the findings from operational surveys, plant tours, and
inspections conducted at Pine Bluff Arsenal, four manufacturing operations have been identified
as areas of primary concern. These operations have been evaluated under Phase II, Segment

2, Operational Survey. However, another relatively important but potentially more serious
accident mechanism, namely run-up reactions, has been identified as an area worthy of investi-
gation, This report represents a preliminary investigation of the parameters included in the

run-up dust reactions.
Two types of tests were conducted:
® Ignition criteria of large bulk pyrotechnic dusts
® Optimal run-up conditions of large bulk pyrotechnic dusts

These tests were used to evaluate the order of magnitude and gross scale requirements needed
to induce run-up reactions in pyrotechnic dusts; in particular, to simulate at reduced scale an
accident that occurred in a manufacturing installation.

Results of testing showed propagation of pyrotechnic dust clouds resulted in a fireball of
relatively long duration and large size. In addition, a plane wave front was observed to travel

down the length of the gallery.
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SECTION 1
INTRODUCTION AND SUMMARY

1.1 GENERAL

In accordance with the requirements of Contract NAS8-23524, Amendment 8, General Electric,
Management and Technical Services Department (GE-MTSD) has conducted the program
described below with appropriate testing to determine the characteristics of a reaction propagat-
ing through a large scale pyrotechnic dust suspension.

1.2 RATIONALE

The concept of run-up and the sequence of events involved in dust reactions are as follows:

Incident occurs during manufacturing operation whereby mechanical or electrical
energy is dissipated in a small localized region or "hot spot' within bulk pyrotechnic
mix.

With ignition induced below the surface of the mix, the material above supplies a

significant pressure head which allows a transient pressure buildup caused by the
temporary confinement of reaction by-products,

As a result of the above, extensive blow-out of the mix occurs with formation of a
burning dust cloud. (Refer to Investigation of Hazards Associated with Pyrotechnic
Manufacturing Processes, Phase II, Segments 4-7 Report, GE-MTSD-R-058.)

If the above flame front is afforded a predetonation run, the end result is a larger or
more extensive volume of material reacting with an increase in burn rate.

As a result of a predetonation run of the flame front, it may undergo transition from
subsonic to supersonic velocities (i.e., transition from the type of burning induced by
heat transfer across the combustion wave to the type induced by heat generated by
shock compression). During the run, a rarefaction wave propagates backward into
the unburned dust suspension, and a jet of unburned dust develops which penetrates
deeply into the burned gas. The shear between burned and unburned dust in this flow
configuration produces extreme turbulence so that a sudden large increase of the
burning occurs. The end result is an unstable detonation occurring at some distance
from the ignition source, Additionally, previous investigations have revealed that the
terminal velocity of the reaction front in dust suspensions may be subsonic for a given
dust density, but, if a density gradient exists, the communication properties may be
affected, opening the possibility of run-up to supersonic velocities.
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As a result of a systematic analysis of the findings from operational surveys, plant tours, and
inspections conducted at Pine Bluff Arsenal, dust/vapor atmospheres have been identified as
areas of basic concern, Additionally, secondary hazards were evidenced in areas where settled
dust and vapor accumulations could conceivably result in propagation to large concentrations of
the bulk pyrotechnics with its ultimate detonation.

Data is required to furnish a basis for discrete safety assessments and design recommendations
of manufacturing operations since small quantities of dust are always present and in the event of
a minor accident much more may be generated.

The importance of this type of simulation is borne out by experience. A number of accidents that
have occurred in manufacturing installations are suspected of resulting from run-up reactions
propagating through dust cloud formations. This type of accident frequently results in severe
damage to facilities and equipment and extensive injuries to personnel.

To establish the kinematics (location as a function of time) of the reaction front based on avail-
able information (heat of combustion, burn rate, density, etc.) would be too ambitious a task
and well beyond the scope of this program.

This program has:

® Investigated in a very limited way the order of magnitude and gross scale requirements
needed to induce run-up reactions.

®  Studied various initiation processes.
® Developed criteria for more definitive tests.

® Determined restraints that can be imposed on manufacturing operations which will
prevent run-up type reactions,

In order to accomplish the above objectives, this test program (see Run-up Test 1, paragraph
2.2.3) simulated at reduced scale a possible accident on the mixing line for large bulk pyro-
technics at Pine Bluff Arsenal. (See Figure 1-1.) It is assumed that a pyrotechnic dust cloud
can be simultaneously ignited and confined in the 8 x 12 x 32 foot passageway between the mixing
bays of Building 31620, It is postulated that the passageway contains two 175 quart mixing
vessels each filled with 125 pounds of a pyrotechnic mix.

The worst cast conditions which could possibly arise occur when the contents of one vessel is
dispersed as a dust suspension in a cloud either through accidental spillage or dust being formed
in conjunction with the sifter operation at the end of Building 31620. Furthermore, it is assumed
that the dust suspension forms a cloud which decreases in density geometrically down the length
of the passageway (varying in that direction only) with a final density of 0.1 oz/ft3 (the minimum
concentration range for ignition) at the far end. It is also assumed that an unspilled vessel is

1-2
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located at the high concentration end of the room and ignition of the dust cloud occurs at the low
concentration end.

Based on the results of the above test, an additional test (run-up test 2) was designed to help
establish the optimal conditions which lead to run-up reactions in dusts.

1.3 APPROACH

The overall program of dust investigation (see Figure 1-2) for studying ICT (ignition, communi-
cation, and transition) criteria encompasses two phases:

®  Laboratory evaluation of the explosive characteristics of pyrotechnic dusts and para-
meters that affect their explosibility were conducted using procedures as specified by
the Bureau of Mines for the Hartmann Apparatus, Data obtained in this manner gives
minimum density and energy for ignition of pyrotechnic mixes.

® Investigations in partly open chambers or galleries ranging from 75 in3 512 ft3.
1.3.1 INITIATION EVALUATION OF DUSTS

In any hazard appraisal, it is important that the ignition sensitivity of the pyrotechnic materials
(suspended in the air) to the potential stimuli available be explored in detail. Specifically if one
particular ignition source (e.g., open flame, glowing particle, electric arc, static discharge,
frictional spark) is more effective than another.

To satisfy the above requirements, laboratory evaluation of the explosive characteristics of
pyrotechnic dusts and parameters that affect their explosibility have been conducted using proce-
dures as specified by the Bureau of Mines for the Hartmann Apparatus. Data obtained in this
manner gives the minimum density and energy for ignition of pyrotechnics.

1.3.2 COMMUNICATION AND TRANSITION EVALUATION

The purpose of communication and transition testing is to study in a dust suspension the charac~
teristics of a system interacting with its environment which affect the run-up potential of the
critical system from ignition to detonation. Specifically, the tests are designed to determine the
potential of the reacting material for communication (by shock wave, fragmentation, pyrotechnic
spray, etc.) to adjacent material inducing ignition of the entire system. The nature of the reac-
tion of pyrotechnic dust suspensions may be such that certain dust densities or variations in
density may run up to transition within the confines of a room, thus providing a more severe and
somewhat different hazard potential. The end result is a much larger critical mass than the
initiating mass; consequently, the incident is much more severe and the damage to equipment

and personnel is much more extensive.
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Because dust suspensions behave as a gas, they can occupy large volumes of a room, as such
they can interface with any exposed material to provide a means of communication to other
components. When the detonation or near detonation reaction front propagates to an interface
with pyrotechnic powder, slurry, or end items, it encounters a significantly different environ-
ment. Whether it will continue to propagate, run up, run down, or fail to penetrate will depend
on the nature of the incident reaction front and on the condition of the target material.

Two types of dust dispersal occur:
®  Prior to the Passage of the Reaction Front by External Means

Loose pyrotechnic powder is present in almost all manufacturing operations, and as
a result, dust clouds may be emitted as a by-product or dispersed as a result of a
spill.

® Coincident with the Reaction Front

Turbulence or shock of the reaction front impinges upon open vessels or piles of
pyrotechnic powder or where dust has settled on surfaces (particularly horizontal
surfaces).

To be considered in the investigation of pyrotechnic dusts is that, unlike single base fuel/
reactants, pyrotechnics are tertiary base reactants. For single base fuel suspensions, the air
surrounding the particulate provides the required oxygen (a maximum run-up resulted when a
stoichiometric ratio of fuel/oxygen was maintained. In the case of pyrotechnics, sufficient
oxidizer to react with the fuel is already included in the material, but excess oxidization as
supplied by the air may possibly increase the reaction rate by including the other components of
the mix in the reaction and changing the energy output of the net reaction.

Dust suspensions of the final pyrotechnic mixtures are not the only materials of interest, for the
component materials or incomplete mixtures encountered during manufacture may have similar
or even more severe run-up characteristics., Organic liquids with large vapor pressures,
including heptone and acetone, are used in various manufacturing operations. The existence of
their vapors in the air-dust mixture may affect reaction rates for a particular dust density,
particularly since the presence of vapor increases the fuel-oxidizer ratio.

1-6
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SECTION 2
TECHNICAL APPROACH

2.1 GENERAL

From a functional point of view, the primary requirement of a dust suspension investigation is

to establish the acceleration of the reaction front as a function of its velocity and the dust density,
material, and particle size. The availability of this information and the properties of a given
dust cloud are sufficient to fully establish the kinematics (location as a function of time) of the
reaction front and, hence, the distance and time to detonation. Unfortunately, such an ambitious

task is well beyond the scope of this program.

Instead, three programs are proposed which will determine:
®  Ability of a dust suspension of certain densities to support combustion,
®  Ability of a dust suspension to communicate to a powder,

@ The propagation characteristics in a large scale experiment with a variety of dust

densities and density gradients.

2.2 TEST PROGRAM DESCRIPTION

2,2,1 LABORATORY SCALE TESTS USING THE HARTMANN APPARATLUS - 75 CUBIC INCHES

In order to evaluate pyrotechnic dust hazard characteristics, experimental work on explosibility
of pyrotechnic dusts was performed in a special laboratory scale apparatus (Figures 2-1 and 2-2)

developed by the Bureau of Mines,
Tests were designed to evaluate the ignition threshold of pyrotechnic dust atmosphere by deter-
mining:

® Minimum electrical energy of ignition as a function of dust particle density, humidity,

and stoichiometric ratio.

® Maximum reaction induced pressure and rate of pressure rise as a function of chemical
imbalance of stoichiometric ratio,

Basically, the chamber is a 2-3/4 inch diameter steel tube, 12 inches long, that is vertically

mounted on a support stand. The interior of the support stand consists of the following:
® Dispersion cup (where weighed sample is placed)..
® Adjustable compressed air deflector (in order to deflect compressed air onto sample).

Dust dispersal was accomplished by compressed air (80 psi - 100 psi) being released on command

by an electrically operated full-pot solenoid valve. After dust dispersal, ignition is ordinarily

2-1
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accomplished by connecting to the electrodes any one of the following electrical power supplies
(listed in order of decreasing energy):

® Single spark discharge (50 Joules capacity) - using a Fluke 410 high voltage power
supply (10,000 volt output) and a compatible capacitance bridge with a range of 10

picofarads to 1 microfarad.

® Hot wire - a 120 watt DC power supply was connected to a helical coil (1/2 inch in
diameter and 3/4 inch long) made from a 15-inch length of No. 18 Nichrome V wire. -

® 24-watt continuous induction spark - which consists of a capacitance discharge circuit
of 1 microfarad being pulsed at 550 Hz through a high voltage transformer.

The following visual observation criteria have been established by the Bureau of Mines in their
dust cloud ignition tests using the Hartmann Apparatus:

®  Filter paper rupture - a single disc or sheet of No. 4 Whatman filter paper was held
in place on top of chamber by a locking ring. Rupture of this disc provided evidence of
ignition of the dust cloud.

® Flame propagation four inches or longer inside the tube (as observed through viewing
ports inside of chamber).

2,2,2 32-CUBIC FOOT GALLERY (4x2x 4 Ft.)
The purpose of testing this intermediate size gallery is to:

®  Apply results obtained from the 75~cubic inch chamber to the full-size 32-foot length
gallery (see Section 2.2, 3) with minimum testing of the latter.

® Conduct series of trial testing to determine optimum size, duration, and intensity for

ignition of large bulk pyrotechnic dusts.

® Feasibility of dispersing large bulk pyrotechnic dusts using various dispersion systems
(e.g., pneumatic or detonating).

As shown in Figure 2-3, the 32-cubic foot gallery consisted of centrally mounted electrode
holders, transparent Lucite viewing panel, and, when required, a pneumatic duqt dispersion

trough.
As previously mentioned, dust dispersal was accomplished by either of two techniques:

® Compressed air (400 psi - 800 psi) being released on command by a solenoid valve
(the resulting turbulence generating dust dispersal).

® Number 8 blasting cap wired to the outside of an ordinary paper bag suspended from the
ceiling of the gallery - method suggested and used by the Bureau of Mines for dust
dispersal.
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Figure 2-3. 32-Cubic Foot Test Gallery Setup Consisting of Pneumatic Dust Dispersion
System and Power Supply for Single Spark Ignition Source



R-062

Various ignition sources were connected to the centrally mounted electrode holders:

® Single spark discharge of 50 Joules - using a Fluke 410 high voltage power supply
(10, 000 volt output) and a high voltage capacitor of 1 microfarad.

® Hot wire ~ a 120-volt AC power supply was connected to a heater coil 35 inches long.

® Booster igniter - consisting of a Number 8 blasting cap placed inside an ordinary
paper bag containing 100 gm (S + KC_103, 1:1).

High~speed motion picture was used to verify/identify ignition of dust dispersion and chronology
of events; e.g., ignition delay time, propagation, size of fireball, etc.).,

2.2.3 LARGE-SCALE GALLERY (32 x 4 x 4 Ft,)

It has been established that simulation of large-scale dust cloud reactions must be performed
with large-scale equipment. Bureau of Mines' research has established that boundary influences
of confining walls are significant. Since the walls affect reaction front velocities, wall
separations should be as close to full scale as practical to properly access the run-up potential.

The gallery was bolted to a concrete pad for secure foundation with transparent Lucite front
walls and black plywood back walls for motion picture measurement of flame front velocities.
The ends and ceiling sections were sealed with mylar sheeting to contain the dust powder after
dispersion. For purposes of velocity measurements, reference scales, graduated in feet, were

placed both inside and outside the gallery.

The simulated gallery configuration has side walls and ceiling~floor separations of 4 feet each
to minimize boundary conditions and a length of 32 feet to be consistent with typical maximum
dimensions (see Paragraph 1.2).

Previously, having established the lower explosive limit with the Hartmann Apparatus and the
most effective method of bulk powder dispersal with the intermediate scale gallery, three
classes of experiments were performed with the large-scale gallery:

® Run-up test 1 - A constant dust density in order to establish the run-up to detonation
potential versus dust concentration. It is quite possible that the terminal velocity of
the reaction front will be subsonic under these conditions.

® Run-up test 2 - By varying the density as a function of distance from ignition point,
the reaction front may be induced to run up to supersonic velocities. Therefore, while
the former class of experiments is designed to establish the reaction properties of
pyrotechnic dust suspension, the latter is designed to establish optimal conditions
which lead to run-up reactions in dust.
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e In conjunction with the above tests, another class of experiments was the investigation
of the communication characteristics of a dust cloud reaction with undispersed pyro- '
technics, whereby the high velocity reaction front generated in the gallery impinged
upon a target situated at the downstream end of the gallery.

2,2,3.1 Run-up Test 1

The gallery is subdivided into four 8-foot sections, each of which had the same concentration

of dust (see Figures 2~4 and 2-5). The volume of the gallery corresponds to one-sixth of that
of the passageway in Building 31620,and in order to maintain the same mass to volume ratio,

only one-sixth of the total amount of powder in the large 125-pound capacity mixing bowl was

dispersed in the gallery.

2.2.,3.1.,1 Dust Distribution

In accordance with the requirement to establish the reaction properties of pyrotechnic dust
suspensions, a homogenous dust distribution was accomplished by placing in each 8-foot section
the following amounts of material (see Table 2-1):

® Four 1-lb bags of loose sulfur green powder were suspended from the ceiling in each
of the eight-foot sections.

® A Number 8 blasting cap was wired to the outside of each of the paper bags.

® As shown in Figure 2-6, the first eight 1-1b bags were fired simultaneously
followed by the second eight 1-lb bags plus two additional 100-gm bags of booster
(see next section),

2,2.3.1.2 Ignition Source

Rather than use a minimal energy spark as used in the Hartmann Apparatus, ignition was by a
positive means that would not allow ignition sensitivity to be a factor. As a result of a selected
number of tests with the intermediate size gallery, the 100-gm booster igniter was found to be

a more positive ignition source (i.e., more representative of the stimuli expected from a small
incident - fire). This type of igniter provides a volume type ignition source rather than a point
type ignition source, with the latter being sensitive to the dust distribution in a localized region/

immediate vicinity of the electrodes.

Based on testing in the intermediate size gallery, the booster ignition source consisted of two ‘
1-1b bags, each containing 100 gms of S + KC10g (1:1). The reasoning behind a two-bag
ignition source was to lessen the chance of a misfire, thereby having one bag as a contingency
ignition source should the primary ignition bag fail.
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Table 2-1,

Dust Distribution for Run~up Test 1

R-062

SECTION WEIGHT (LBS,) MATERIAL MESH

1 4 Sulfur Green As received per
Mil-Spec

2 4 Sulfur Green As received per
Mil-Spec

3 4 Sulfur Green As received per
Mil-Spec

4 4 Sulfur Green As received per
Mil~Spec

So as to not exceed the capacity of the two single-shot blasting machines (each rated at 10-shot
capacity), the following ignition sequence was used to fire a total of 18 blasting caps without

biasing test results:

® As a result of firing the first eight 1-lb sulfur green bags simultaneously, the first
sixteen feet of the gallery becomes filled with the sulfur green dust.

® Followed by 2 momentary delay of less than one second, after which the second eight

sulfur green and two 100-gm booster bags were simultaneously fired, the net result
is to ignite the booster in the first sixteen feet of the gallery where the dust cloud
has had sufficient time to be distributed. The delay allows time for the dispersed
dust to fill the interior of the gallery in the last gixteen feet before the arrival of the

combustion/reaction front.

2.2,3.1.3

Communication Area

As shown in Figure 2-7, located at the end of the dust gallery was a communication area con-
taining a scaled 80-qt mixing bowl of 20.8 pounds of smoke mix, thus permitting evaluation of

the probability and characteristics of dust cloud communication to large bulk powders.

2.2.3.2 Run-up Test 2

The optimal conditions by which the reaction front may be induced to run up to supersonic

velocities are as follows:

® Increasing the percent concentration of combustible material

® Using fineness particle size that is prescribed in the Pyrotechnic Mix Formulary

® Varying the dust density as a function of distance from ignition point

2-11
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Figure 2-7. Communication Area for Run-up Test 1
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2.2,3.2.1 Dust Distribution

As shown in Table 2-2 and Figures 2-8 and 2-9, the 32-foot gallery had a varying density of dust
(increasing with distance from the ignition source). Each 8-foot section contained the following
amounts of materials:
® Four 1-, 2-, and 3-lb bags of loose sulfur red powder (see description below) were
suspended from the ceiling in each of the 8-foot sections.

® Afterwards, a Number 8 blasting cap was wired to the outside of each of the paper
bags.

®  All 16 of the bags (wired in parallel to a constant current type power supply) were
fired simultaneously followed by a momentary delay, after which the 200~gm booster
was fired (see Figure 2-10).

Table 2-2, Dust Distribution for Run-up Test 2

SECTION WEIGHT OF PYRO (LBS) MATERIAL MESH

1 4 SR IO 200

2 4 Spec. Red Smoke As received
per Mil-Spec

3 8 Spec. Red Smoke As received
per Mil-Spec

4 12 Spec. Red Smoke As received
per Mil-Spec

Total 28

2,2.3.2,2 Particle Fineness and Composition

Bureau of Mines' research indicates that the ignition sensitivity and reaction rate increases to
a limiting value with fineness of particle size and percent concentration of combustible material.

Therefore, in order to optimize the run-up potential to supersonic reaction front velocities, the

2-13
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Figure 2-9.

Run-up Test 2
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following modifications in the dust distribution were implemented:

® A specially blended formulation of sulfur red, which consisted of the maximum
allowable percentage of fuel-oxidizer with the minimum allowable inhibitors and dyes*,
was used as the dust medium (see Table 2-3).

® As shown in Table 2-2, the first section of the gallery contained four pounds of SR II.
SR II refers to the same composition as sulfur red; however, the components of
SR I have been individually screened through 200 mesh and prior to test stored in an
oven operating at 75°C.

2,2,3.2,3 Ignition Source

The same type of ignition sources as described in 2.2.3.1 was used for Run-up Test 2 with the
exception of using one 200-gm bag of booster, instead of two 100-gm bags of booster. The
latter configuration was adopted as a result of reviewing films of Run-up Test 1 (see Paragraph
3.3.1) which showed the inability of both booster bags to fire simultaneously.

As discussed previously, all 16 of the sulfur red bags were fired simultaneously, allowing the
entire length of the gallery to become filled with the sulfur red dust. After a delay of not more
than half of a second, the booster igniter was fired. The purpose of the delay firing of the
booster igniter was to allow time for the dispersed dust to completely fill the interior of the
gallery.

2,2,3.2.4 Communication Area
A communication area containing a scaled mixing bowl of 15 pounds of sulfur red mix was

located at the end of the dust gallery, thus permitting evaluation of the probability and charac-
teristics of dust cloud communication to large bulk powders,

2.2.,4 MATERIALS

2,2,4.1 Laboratory Scale Tests Using Hartmann Apparatus

To ensure the accuracy of the data, the following Bureau of Mines procedures were implemented:

® Dust was sieved through No, 200 (U, S. Standard series screens) to minimize particle
size variance in each batch (and therefore variation in test data from batch to batch).

* Red Smoke III - In accordance with Pyrotechnic Mix Formulary Table 2-3 and End Item
Information, December 1969, Weapons Dev. and Engr. Laboratories,Chemical Process
Laboratory, Edgewood Arsenal, Maryland.
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2.2.4,2
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Sample materials were individually weighed on a triple beam balance accurate to

+5 X 10"4gm.

All materials were dried in an overn at 75°C for 24 hours.

The entire Hartmann Apparatus was enclosed in an air tent containing heaters to
further reduce the relative humidity in and around the chamber.

Material Formulation

The various formulations used in the reported tests are shown in Table 2-3.

2.2,5

INSTRUMENTATION

The basic instrumentation requirements include the ability to determine the reaction front
velocity as a function of distance (or time), communication of the dust reaction with undispersed
powder, and determination of the order of reaction in the pyrotechnic powder. In order to
accomplish the objectives, the instrumentation system included:

Time of Flight - two 500-fps Mitchell cameras with coded digital print-out of time
on frames, one FASTAX camera and eight ionization probes with magnetic tape

recorder,

Transverse/Side-on Pressure - transducers located in reaction front in order to
determine wave shape and amplitude (see Appendix B).

Passive Sensors (Refer to Document 120) - the passive sensor study was added to the
run-up tests as a supplement to investigate whether passive sensors can be effectively
used to determine pyrotechnic safety criteria. The passive sensors consisted of thin
aluminum foil cylinders placed inside gallery to indicate ranges of pressure.

Acoustic - microphones placed 5 feet and 10 feet from each end.

2-19
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SECTION 3
TEST RESULTS

3.1 HARTMANN APPARATUS

3.1.1 MATERIALS

3.1.1,1 Pyrotechnics

In order to obtain the maximum amount of information with the minimum number of tests, the
following representative materials were tested:

® C/S Fuel Mix
®  Sulfur Yellow
® Lactose Yellow
®  Sulfur Green
® Lactose Green

In previous TB 700-2, TNT equivalency, DTA and Parr bomb tests, these materials proved to
exhibit sensitivity and energy release value representative of the lactose, sulfur base, and

fuel mix smoke compositions.
3.1.1.2 Fuels

The following five basic fuels used in pyrotechnic munitions were tested individually:

) Coal
® Sugar
e Sulfur

® Aluminum
° Lactose
3.1.2 DETERMINATION OF THE MINIMUM DENSITY REQUIRED FOR IGNITION

The lowest weight at which flame propagates or the minimum density required for ignition was

determined as follows:

® A weighed sample was placed in the dust dispersion cup. Initially, the amount of
weighted sample was determined to be at a level where a 50 percent response (see
paragraph 2,2, 1) is expected.

® The concentration level was moved up one step after each non-response, and down one

step after each response.
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® The next series of tests consisted in either moving the concentration up or down 50
percent of the previous level. This was continued until at the 5 mg concentration
level, an increase in the quantity of materials fails to propagate a flame in any of
four successive trails.

Results of testing using the hot-wire ignition source in conjunction with 80-psi continuous air
flow are given in Appendix A. Shown in Table 3-1 are the minimum concentration of fuels
determined by the Bureau of Mines using single spark discharge ignition source.

3.2 INTERMEDIATE SIZE GALLERY

Results of the nine tests using the intermediate size gallery are given in Table 3~2.

3.3 LARGE SCALE GALLERY TESTS

3.3.1 CALIBRATION TEST FIRING

In view of the success of test 9, it was decided to use the same type of igniter (200 gm of sulfur/
potassium chlorate) for the 32-foot gallery. Therefore, for purposes of comparison, a calibra~-
tion test was conducted to determine the size of the fireball, growth rate, etc., in open air;
consequently, by comparing this data with the run-up tests to this calibration test any appreciable
difference can be attributed to reaction of dust suspension, '

3.3.1.1 Chronology of Events

The test consisted of a calibration firing of a paper bag containing 200 gm of S + KCLO3 (1.1)
with a No, 8 blasting cap. The chronology of events, as recorded by a 500 fps Mitchell camera,

was as follows:

EVENT TIME (sec)
Dispersion of booster 0.0
Fireball 2-1/2 feet in diameter 0.016
Fireball 3-1/2 feet in diameter 0.020

{maximum fireball size)
3.3.2 RUN-UP TEST 1

3.3.2.1 Velocity Measurements

The velocity of the compression plane wave was determined by the following techniques:

® Pictorial - As recorded by two 1000 fps FASTAX cameras, the distance of travel
of wave was timed by counting elapsed frames:

Distance of wave front

1000 frameﬂ X Elapsed frames]
sec

3-2
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® Ionization Probes - Coincident with the passage of the plane wave front, five ioni-
zation probes were triggered. It was not possible to determine which locations were
triggered. Therefore, the calculated velocity was determined by using an average
distance for the spacing of the probes. Distance between the ionization pulses on a

strip chart recorder was measured to determine time.

®  Acoustic Monitors - The velocity of the wave was determined by measuring the total
distance between the microphones at each end of the gallery and the elapsed time for

the wave signal to reach each pickup.

Results of the above technique are shown in Figure 3-1 and as shown below:

Velocity Measurements Average Velocity
Pictorial 890 ft/sec
Ionization Probes 1300 ft/sec
Acoustic 1700 ft/sec

3.3.2.2 Chronology of Events

As recorded by two FASTAX cameras and acoustic instrumentation, the following chronology of

events was observed:

Event Time (sec)

Camera #1 Camera #2 Acoustic

Dispersion of Dust

by First Eight Bags 0 0 0
Booster* Ignition .85 - -
Fireball ‘Three Feet in Diameter 1,05 - -
Six Foot of Gallery Filled with Fireball 1.35

Plane Wave Front 1.42 1.56 - 1.2

Eight Foot Section of Gallery Filled
with Fireball 1.50 - -

Dispersion of Dust by Second
Eight Bags 3.09 3.37 2.5

* 200gmof S+ KClO3
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3.3.3 RUN-UP TEST 2

3.3.3.1 Velocity Measurements

The velocity of the compression plane wave was determined as follows:

® Pictorial ~ As recorded by a 500 fps Mitchell camera with binary coded digital printout
of time directly on film; therefore, the distance of travel of the wave was directly
timed to + 0.5 percent accuracy (as opposed to the previous methods, this technique
does not rely on filming speed accuracy).

® Jonization Probes - Plane wave did not trigger ionization circuitry.

®  Acoustic Monitors - Procedure for velocity determination i8 same as given in para-.

graph 3. 3. 2, Acoustic Monitors,

Results of the above technique are shown in Figure 3-2 and as shown below:

Velocity Measurements Average Velocity
Pictorial .
Mitchell 1675 ft/sec
FASTAX 1164 ft/sec
Acoustic 1230 ft/sec

3.3.3.2 Chronology of Events

As recorded by one Mitchell camera, the following chronology of events was observed:

Event Time (sec)
Camera

Dispersion of Dust by all Sixteen Bags 0

Booster Ignition and Plane Wave Front .55

Fireball 3 feet in Diameter .58

Six feet of Gallery Filled with Fireball .66

Maximum Size of Fireball .75

3-7
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SECTION 4
TEST CONCLUSIONS AND RECOMMENDATIONS

4.1 TEST CONCLUSIONS

4.1.1 HARTMANN TESTING

The pyrotechnic formulations and fuels are ranked (Table 3-1) according to the minimum mass
required for ignition. Fuel mix containing no additives (dyes or inhibitors) is rated the highest
pyrotechnic formulation followed by Lactose Green, Lactose Yellow, Sulfur Yellow, and

Sulfur Green. Aluminum is the hottest fuel followed by sugar, sulfur, and coal. Lactose did
not ignite; therefore, on the basis of this test, it would represent only a fire hazard as compared

to a dust explosion hazard.

Greater reproducibility in test results was obtained using a continuous air flow in conjunction
with the hot wire igniter as compared to the recommended Bureau of Mines technique consisting
of a single blast of air. Deviation from recommended testing procedures was justified since it
was observed that the continuous air flow operation generates greater turbulence (therefore,

greater dust dispersion than the single blast technique).
The following additional information was derived from the Hartmann Testing:

® Comparison of both single and continuous spark ignition sources with the hot wire
source showed that the physical dimensions of the ignition sources greatly affect
the ignition threshold or minimum amount of material required for ignition. Since
it was observed that dust cloud dispersion was non-uniform, it can be concluded that
the probability of ignition increases greatly with size of the ignition source. There-
fore, the success of the hot wire ignition source over the spark techniques is explained
in view of the large physical dimensions of the hot wire source as compared to the
other spark modes. It is concluded that radiating heated surfaces (i. e., broken light
bulb) can represent a more hazardous ignition source in a dust environment than

spark discharge (i. e. , motor brushing or frayed grounding strap).

® The Hartmann Apparatus is useful for conducting small scale tests because the dust
chamber represents, at reduced scale, an operational situation with all data directly

relatable to a full scale accident.

® For over 15 years, the Hartmann Apparatus has been the standard method used to
determine dust ignition criteria. Data obtained under the present testing program
can be directly compared to Bureau of Mines data (with appropriate modification)

for the same material.



R-062

® It was observed that there was a delay of 3 - 5 seconds associated with the ignition
of pyrotechnic mixes in contrast to the fuels, which ignited immediately. In view of
the fact that typical pyrotechnic formulations contain 20 to 30 percent combustible
fuel, a longer time is required before criteria for ignition of dusts are satisfied.

® Comparison of the minimum concentrations as obtained by the Bureau of Mines with
those obtained herein show good agreement in view of the fact that different types of
igniter sources were used (hot wire for data obtained herein and single spark dis-
charge for Bureau of Mines investigations).

4.1.2 THE INTERMEDIATE SIZE GALLERY

As reported in Table 3-2, the most positive results occurred in test number 9 in which all of
the dust propagated. The fact that all of the powder propagated resulted in a much larger fire-

ball of longer duration than was observed for the open air calibration firing.

As a result of dust propagation, the mylar curtain was heavily charred (Figure 4-1). It was

also observed that all of the powder was either consumed or blown out of the gallery.
4.1.3 RUN-UP TEST 1

During the functioning of the first eight blasting caps, the powder in the second bag from the
right (in the immediate vicinity of the booster) ignited and fell onto the booster causing its
premature ignition (see Figure 4-2). As a result, dispersion of dust by the second eight bags
did not occur as planned,

Between 1, 2 seconds and 1, 42 seconds after dispersion of the dust by the first eight bags, a
well defined plane front traveled down what appears to be the first sixteen feet of the gallery.
Unfortunately, the wave front was no longer detectable in the last sixteen feet of the gallery.

The result of velocity determination indicates the wave front to be in the sonic range (Figure 3-1).

It was observed that a large amount of powder propagated resulting in a larger fireball of

longer duration than was observed in open air test (See Figure 4-3).
4.1.4 RUN-UP TEST 2

In conjunction with firing the booster, a plane wave front traveled down the entire length of the
gallery. As shown in Figure 3-2, pictorial determination of the velocity of the wave indicates

it to be traveling in the sonic range.

4,2 COMPARISON OF TESTS (TEST 9 (RUN-UP TESTS 1 AND 2)

Comparison of Tun-up tests1 and 2 with open air calibration tests (all used a 200 gm booster
igniter) clearly shows the fireball in the run-up tests to be of longer duration and larger size
than in the calibration tests. This is attributed to the excessive amount of unburned pyrotechnic

dust which apparently propagated as a result of the booster fireball.

4-2
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Figure 4-1. Results of Dust Ignition Inside 32 Cu. Ft. Gallery
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4.3 RECOMMENDATIONS

Based upon results observed during the Hartmann Tests, the following recommendations are

made:

Need exists for future work using the Hartmann Apparatus to determine maximum
explosive pressure developed by semi-vented and completely closed chambers so as
to obtain the explosive severity and run-up potential of dust reactions.

A need exists to determine ignition criteria for dust/vapor atmosphere.

Future work is planned that provides (cost effective) validation/replication of infor-
mation required for operafional shielding, suppressive construction for run-up and
operational shielding applications. This will be obtained by modification of Hartmann
chamber by addition of a second chamber into which suppressive/quenching materials

can be inserted,

Results of findings that dust explosions in general, during their initial phase, are
relatively slow, suggest that it would be highly advantageous to achieve control of

an explosion during the incipient stage. Designing tests to evaluate quenching tech-
niques and relief vents in likely ignition areas would help to greatly control pressure
buildup; and consequently, abort the tendency for flame front to undergo transition
from subsonic to supersonic velocity.

Need exists for future work using other materials (such as C/S fuel mix) to deter-
mine maximum explosive pressure developed and their run-up potential in order to
fully understand the hazards involved in the manufacture of pyrotechnics.

4-6
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Figure A-1. Minimum Ignition Concentration Tests versus Trial Number for Lactose Yellow
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Figure A-2, Minimum Ignition Concentration Tests versus Trial Number for Sulfur Yellow
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APPENDIX B
BLAST OVERPRESSURE INSTRUMENTATION

The blast instrumentation system used in this program is shown in Figure B-1 and consisted of

the following:

Piezoelectric Transducer - which emits a signal that is a function of the magnitude
of the overpressure, Since it is a dynamic instrument, it requires no external over-

pressure excitation potential.

Source Follower - an integrated circuit that is directly coupled to the piezoelectric
transducer and converts the charge signal from the transducer to voltage signals suit-
able for memory of the biomation transient recorders.

Charge Amplifier - a solid-state unit which converts charge signals from the piezo-
electric transducer to voltage signals suitable for display on oscilloscopes.

Peak Meter - which indicates the voltage signal encountered from the blast over-

pressure signal.

Transient Recorders - which utilize a very high speed six-bit analog to digital con-
verter with a maximum word conversion rate of 10 mHz combined with a 6 bit x 128
word MOS shift register memory to capture and hold the digital equivalent of the
analog signal from the transducer. This signal is then displayed on an X-Y plotter to
be converted into engineering units for data reduction of a blast overpressure and

impulse readings.

Oscilloscope - which is set for a single sweep external trigger and is triggered by the
blasting machine on the positive rise of the firing pulse. The oscilloscope records

blast overpressure utilizing the Polaroid camera pack.

Electronic Counter - which is triggered by a break wire to record time of arrival of

the shock front of the blast overpressure at each transducer.

X-Y Plotter - an analog device that graphically displays the blast overpressure held
in memory by the transient recorder. The graphic display is then converted into

engineering units for further data reduction.

The equipment utilized for the GE blast overpressure instrumentation system consists of the

following:

Susquehanna Instrument Company Model ST-7, Piezoelectric Transducer

PCB Piezotronics Inc. , Model 401A11 ICP, Source Follower



Kistler Model 504A, Charge Amplifier

Kistler Model 538A, Peak Meter Indicator

Type 502A, Dual-beam Oscilloscope with Camera Pack
Hewlett-Packard Model 2501C, Digital Voltmeter
Hewlett-Packard 5233L, Electronic Counter

DuPont Model CD-12, Blasting Machine or equivalent
Firing Circuit Voltage Divider (as-built),

X-Y Plotter

R-062
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Blast Instrumentation System
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