
Langky Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION , 0. C *



1. Report No. 2. Government Accession No.

NASA TM X-2492
4. Title and Subtitle

A MULTIPLE -IMPULSE FUNCTION FOR ORBITAL
TRANSFER AND ITS DERIVATIVES

7. Author(s)

James F. Kibler and Lawrence H. Hoffman

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Va. 23365

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

March 1972
6. Performing Organization Code

8. Performing Organization Report No.

L-8106
10. Work Unit No.

815-00-00-00

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A multiple-impulse function is represented as a sequence of single-impulse func-
tions. The single -impulse transfer which yields the velocity change required to transfer
from a specified initial orbit to a partially specified final orbit is developed. Analytic
derivatives of the function are obtained for use in optimization techniques. A four-impulse
transfer is outlined. The analytic derivatives may allow more efficient optimization than
numerical derivatives do.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Impulsive transfers Unclassified — Unlimited
Orbital mechanics
Orbital transfer derivatives

19. Security Qassif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified
21. No. of Pages 22. Price*

23 $3.00

For sale by the National Technical Information Service, Springfield, Virginia 22151



A MULTIPLE-IMPULSE FUNCTION FOR ORBITAL TRANSFER

AND ITS DERIVATIVES

By James F. Kibler and Lawrence H. Hoffman
Langley Research Center

SUMMARY

A multiple-impulse function is represented as a sequence of single-impulse func-
tions. The single-impulse transfer which yields the velocity change required to transfer
from a specified initial orbit to a partially specified final orbit is developed. Analytic
derivatives of the function are obtained for use in optimization techniques. A four-
impulse transfer is outlined. The analytic derivatives may allow more efficient optimi-
zation than numerical derivatives do.

INTRODUCTION

The calculation of the impulsive velocity change required to transfer between two
general orbits is a frequently encountered problem in celestial mechanics. Orbital trim,
planetary deboost, and orbital rendezvous problems are examples which may require one
or more transfer maneuvers to achieve the desired objectives. In most cases, it is also
desirable to minimize the fuel expended during the maneuver. A comprehensive survey
of previous work in impulsive transfers has been made by Gobetz and Doll (ref. 1). In
particular, the two-impulse transfer between inclined elliptical orbits has been studied
intensively by McCue (ref. 2) and Lee (ref. 3). However, in some cases, it is desirable
to satisfy constraints on the intermediate or final orbits and thus additional impulses may
be required. The purpose of this paper is to develop a multiple-impulse function which
describes the transfer between two general orbits. In addition, for minimization pur-
poses, the partial derivatives of the function are taken with respect to the independent
variables.

The technique is to consider the multiple-impulse transfer to be a sequence of
coupled single impulses; thereby, the orbit elements of the intermediate conies are made
independent variables. The equations which describe the single-impulse transfer are
found to be a function of only four variables on the second orbit; thus, the single-impulse
maneuver consists of transferring from a given orbit to an orbit which is only partially
specified. The multiple-impulse function can then be minimized over the space defined
by four independent variables from each intermediate conic.



The impulse function is developed for a single-impulse transfer. Analytic deriva-

tives of the impulse function are presented and, as an example, the derivatives required
to minimize a four-impulse transfer are given.

SYMBOLS

a '• semimajor axis, km

e j eccentricity

f true anomaly, deg

i inclination, deg

n number of impulses

P unit radius vector lying in orbit plane and pointing toward periapsis

Q unit radius vector lying in orbit plane and pointing toward 90° true anomaly

R unit vector along line of intersection between two noncoplanar orbits

r magnitude of radius at a given true anomaly, km

r,h,n radial, horizontal, and normal components of velocity

V velocity magnitude, km/sec

AV magnitude of change in velocity required to transfer between two orbits,
km/sec

W unit vector normal to orbit plane and completing the PQW right-handed
triad

|3 angle between two velocity vectors, deg

y flight-path angle, deg

9 angle between two orbit planes, deg



M gravitational constant,

fl right ascension of ascending node, deg

w argument of periapsis, deg

Subscripts:

0,1 refers to the first or second orbit, respectively

T total

Bars over quantities denote vectors.

ANALYSIS

Derivation of the Impulse Function for a Single-Impulse Transfer

The single-impulse transfer between two noncoplanar intersecting Keplerian orbits
can be determined analytically if five elements are known on the first orbit and four
elements are specified on the second orbit. It is arbitrarily chosen to specify the classi-
cal elements (ao,eQ,io,wo>^o) on the initial orbit; and the second orbit is specified by
the orientation angles (ii,wi,flj_^ and one of the shape parameters (for example, ajY
Of course, other choices are possible and would result in a different formulation.

The first requirement is to find the line of intersection of the two orbits which is
uniquely determined by IQ, OQ, ij, and fij. It is convenient to perform a coordinate
transformation from the XYZ set of axes to the PQW system as shown in sketch (a).

Periapsis

Sketch (a) - Transformation of XYZ to PQW.



In the PQW system, P is a unit vector pointing in the direction of periapsis, Q is a
unit vector lying in the plane of the orbit and pointing toward a true anomaly of 90°, and
W is a unit vector, normal to the orbit plane, which completes the right-handed triad.
By rotating through the angles J2, i, and u>, the resulting transformation (ref. 4) is

P = (cos co cos J2 - sin co sin S2 cos i) i + (cos co sin fi + sin co cos n cos i) j

+ (sin co sin i)k

Q = (-sin co cos J2 - cos co sin J2 cos i) i + (-sin co sin fi + cos co cos £2 cos i) j

+ (cos co sin i)k

W = (sin fl sin i) i + (-cos n sin i) j + (cos i)k

(1)

where i, j, and k are the corresponding unit vectors in the XYZ coordinate system.

The unit vector R, along the line of intersection of the two orbits, is determined
by

R =
WQ XWj

where

WQ = (sin IQ sin OQ) i + (-sin IQ cos OQ) j + (cos ig

(normal to first orbit) and

Wj = (sin ij sin fli) i + (-sin ij cos flj) j + (cos ij)k

(normal to second orbit) are known from equation (1) .

Now,
». •*•

i . j

W 0 X W 1 = sin ig sin

sin i sin

-sin ig cos

-sin ij cos

cos ig

cos i

(2)

Expanding this expression results in



-sin ig cos ij cos fig + sin ij cos ig cos fij

-sin ig cos ij sin fig + sin i^ cos ig sin fij (3)

sin ig sin ij sin Afi

where Afi = fij - fig. The magnitude of Wg x Wj is given by

I Wg x Wj = (sin2ig cos2^ cos2fig - 2 sin ig sin ij cos ig cos ij cos fig cbs fij

+ sin2ij cos^ig cos^fij + sin^ig cos^ij sin2fig

-2 sin ig sin ij cos ig cos ij sin fig sin fij + sin2ij cos2ig sin2fij

\l/2

Simplifying this expression results in

* i r / N?~|Wg x Wj = 1 - (cos ig cos ij + sin ig sin ij cos Afi)

Substituting equations (3) and (4) into equation (2) yields the expression for a unit vector
in the XYZ system along the line of intersection between the two orbits:

(4)

R = •
r / x2i1 - (cos 10 cos ii + sin IQ sin ij cos ASJJ

-sin ig cos ij cos fJQ + sin *! cos '0 cos

-sin IQ cos ij sin OQ + sin 4 cos '0 sin

sin ig sin ij sin AO

(5)

There are two points where an impulsive maneuver can take place, that is, in the direc-
tion of either positive or negative R. Consider first the case of the transfer point lying
in the positive R direction. The transfer -point true anomaly on each orbit must be
determined.

For the first orbit

cosfo

or

COS fg = Pg • R (6)



Substituting the expression for PQ from equation (1), and equation (5) into equation (6),
and simplifying yields

cos f0 =
-cos uv)(sin in cos ii - sin i-, cos in cos Afi) + sin wn sin ii sin

J

[ ' -(•cos I cos i + sin I sin i cos \9~1
A°)J

1/2

In order to resolve the ambiguity involved with the cosine, an expression for sin
,i

required.

By definition,

is

P0 X R = W( Pnl lR sin fo

or

WQ sin f0 = PQ x R

From equation (2),

W0 sin f0 = P0 x
_ P 0 x ( w 0 x W 1 )

WQ X WQ X Wj

Using the identity

A x (B x c) = (A • C)B - (A • B)C

where A, B, and C are any vectors yields

(P0 • W^WQ - (P0 • WQ

W0 sin f0 = ̂ - V V °
|W0 x Wj

But P0 • W0 = 0; therefore,

W0 sin fQ =
iWr

or



sin
W g X W j

(8)

Substituting equation (4) and the expressions for PQ and Wj from equation (1) into
equation (8) and simplifying yields

sin
sin u>g(sin ig cos ij - sin ij cos ig cos Afi) + cos u>g sin ij sin

1 - (cos ig cos ij + sin ig sin ij cos Afi)
1/2

In like manner, the equations defining the true anomaly of intersection on the second
orbit are

cos u;i(cos ig sin ij - sin ig cos ij cos AflJ + sin u>i sin ig sin
cos fj = - — - (10)

1/2

and

1 - (cos ig cos i^ + sin ig sin ij cos A Or

-sin wi (cos in sin ii - sin ift cos ii cos Afi) + cos cui sin in sin Afi

1 - (cos ig cos ij - sin ig sin ij cos Afi)
1/2

The second point where an impulsive maneuver can take place is in the direction of nega-
tive R. The true anomaly of intersection on the first orbit is given by

cos fg = Pg • (-R)

and

ftg sin fg = Pg X (-R)

Substituting and simplifying as in equations (7) and (9) yields

cos O)g(cos ij sin ig - sin ij cos ig cos Afi) - sin o>g sin ij sin
cos fg =

1 - (cos ig cos ij + sin ig sin ij cos Afi)
1/2

(12)

and



-sin u>g(cos ij sin ig - sin ij cos ig cos Afij - cos u>g sin ij sinslnf°" ,- (cos ig cos ij + sin ig sin ij cos AO)

Similarly, the equations defining the true anomaly of intersection on the second orbit are

-cos wjfcos ig sin ij - sin ig cos ij cos An) - sin ojj sin ig sin
cos fi = — (14)

1 - (cos ig cos ij + sin ig sin ij cos An)

and

sin cojfcos ig sin ij - sin ig cos ij cos An) - cos a)j sin ig sin
sin fi =

1 - (cos ig cos ij + sin ig sin ij cos An

In other words,

and

For an impulsive maneuver to take place at the point of intersection, the magnitudes of
the radii on the first and second orbit must be equal. Therefore, a constraint equation at
the point of intersection is

- eg2) ai(l - e^)
1 + 6g COS fg 1 + 6j COS fj

The elements ag, eg, fg, fj, and a^ or e^ are known. Therefore, equation (16)
relates the unknown element in the second orbit (e\ or a^ to known parameters.

Next, an expression for the magnitude of the vector difference in velocity (AV)
between the two .orbits is required. From sketch (b), using the law of cosines,

(AV)2 = V0
2 + Vj2 - 2V0V! cos 0 (17)

where 0 is the angle between the two velocity vectors.



Orbit 0 Intersection point

Orbit 1

Sketch (b) - Geometry of AV.

At the maneuver point, by using the equations

V-Rr-£

1/2

and

r =
1 + e cos f

the expressions for the magnitude of the velocity on the first and second orbit are

+ 2e cos f + >2)

and

- e02)

cos

1/2
(18)

\U/2

(19)

From sketch (c), by using the law of cosines for spherical triangles, the angle
between the orbit planes 6 may be found from

cos 8 = -cos i0 cos(l80° - ij) + sin iQ sin(l80° - ij) cos

or

cos 9 = cos ig cos ij + sin IQ sin ij cos Afl (20)



Sketch (c) - Computation geometry for

From sketch (d), the velocity vectors may be written as

V n = V ,

and

Siny0

cos YQ

0

sinyj

COS yj COS

cos y sin (

where YQ and y., are the flight-path angles on the first and second orbits. The angle
between the velocity vectors /3 may now be found from

cos ]8 =
Vn • Vi
^- .

= cos 0 cos yQ cos y^ + sin yQ Sin (21)

10



n

Sketch (d) - Velocity vectors in the radial, horizontal,
and normal coordinate system.

Substituting the flight-path angle relations from reference 4

sin y = e sin f

(l + 2e cos f + e2)

and

cos y =
1 + e cos f

(l + 2e cos f + e2)1/2

and equation (20) into equation (21) yields

(l + eg cos fg)(l + ej cos fjVcos IQ cos ij + sin ig sin ij cos Afi) + (eg sin fg)(ej sln *
CQS £ = :

[(1 + 2e0 cos fg + eg^j^l + 2ex cos ft + e^jj

Substituting equations (18), (19), and (22) into equation (17) results in the required
expression for AV:

(22)

A V = ,

r (l + eg cos fQ)(l + ej cos f i) (cos ig cos i^ + sin IQ sin i^ cos

sin T sin
fU/2infl]j (23)

11



The set of equations (7), (9) to (16), and (23) are those required for an analytic solution
to the problem of a single-impulse transfer between two noncoplanar orbits. Two solu-
tions result from the positive and negative cases for R. In addition, if ej is a function
of aj in the constraint equation (16), two solutions arise from the quadratic in ej. All
the multiple solutions may not be physically possible. For example, an arbitrarily spec-
ified aj may result in a maximum radius on the second orbit which is less than the
smallest radius on the initial orbit. That is, the constraint equation (16) cannot be sat-
isfied. In addition, if the central body has a finite radius, a region of mathematically
possible orbits must be rejected since they intercept the surface of the planet. In the
event no practical solutions for the transfer exist, a more realistic set of variables
(a.i,ii,an,fli) on the second orbit must be chosen. In the event of multiple practical
solutions for the transfer, a choice may be based on mission considerations, such as
choosing the transfer which results in the lowest AV.

Partial Derivatives of the Single-Impulse Function

In orbital transfer problems, it is usually desirable to minimize AV with respect
to the control parameters. Many of the minimization algorithms require partial deriva-
tives of AV with respect to the independent variables. Finite-difference approxima-
tions to the partial derivatives are commonly employed. However, in complex multiple-
impulse problems, it may take relatively large amounts of computer time to develop the
approximations. If exact partial derivatives are available, the minimization algorithms
are generally more efficient and less computer time is used. Therefore, analytic partial
derivatives of equation (23) have been developed. It is assumed that a, e, i, w, and
O are known on the initial orbit and that a, i, o>, and n are known on the final orbit.
Eccentricity of the final orbit is a dependent variable defined in the constraint
equation (16).

For convenience, define the following intermediate quantities as

AO = n[ao(l - eg2)]"1 Aj = M[ai(l - e^)]'1

BQ = 1 + 2eg cos fg + eg2 BI = 1 + 2ej cos fj + ej2

C = -2M[a0(l-e0
2)a1(l-e12)]"1/2

D = (l + eg cos fg)(l + el cos fjYcos io cos ij + sin ig sin ij cos Aft)

+ egej sin fg sin fj

12



Thus, equation (23) can be written as

AV = (AgB0 + AjBj + CD)1/2

Or

(AV)2 = AflBo + AjBj + CD

The required derivatives can be expressed in the form

9AV 1 8(AV)2

da 2AV dot

2AVI da da da da da dal

where a represents any one of the variables aQ, CQ, IQ, O>Q, OQ, a-^, ij, Wj,
and Oj.

It is necessary now to develop the partial derivatives of the following six interme-
diate parameters:

: Let

-1

(24)
^ '

-e0
2 )]

then

Similarly,

9AQ = 2AQ6Q

8eQ 1 - 602

and

8Ap = 8Ap = 3AQ = 8Ap _

where 01^ represents aj, i^, wi, and

13



(2) : Let

then

9Ai

i . 612 9a0

Similarly,

9e0 ~ i _ 612

2e1A1

9ei
The — — remain to be determined.act

< 3 > T ^

BQ = 1 + 2eg COS fQ + 6Q

Then

9aQ

since

9 cos
= 0

14

2e1A1 8ei A! SAj _ 2ej Aj
"

a 9i i _ 6J2 9

2e1A1



by inspection of equation (7). Similarly,

3 B 9 cos f

3BQ 3 COS fg 3BQ 3 COS fg
_ = 2eQ 9ajQ g^ = 2e0 — —

= 2 3 cos fp~ G

3BQ
~

3 COS fn
The — 3 - remain to be determined.3d!

Bj= 1 + 2ej cos fj + ej

then

3Bi 3 cos fi v 3ei N 3ei
3a7 = 2el -̂ T- + 2(COS fl + el) 3a7 = 2(cos fl + el) 3^7

since

8 cos

by inspection of equation (10). Similarly,

3Bi 3 cos fi , . 3ei. . ei i cos i , . ei
= 2(cos ft + ei)—i — ̂  = 261 — - — i + 2(cos fx + ej) — i

v 1 1; 9e 3i 9i ^ y 9l
0 eQ i0 iQ 9l

3Bi . 3ei 9Bi 3 cos

15



9B1 nr f \ 9el 8B1 9 cos
cos

1 nr f \ el 1 cos t .
— = 2(cos fl + e,)— _ = 2ei -_i + 2(c

9Bi 9 COS fi 9Bi 3 COS fi
£ = 2ei _ - _ =• = 2ei _ =•L 9 i

2(cos fi + ej) + 2(

9 COS f i
The — remain to be determine1!.

da

(5, : Le,

then

J el 9el

Similarly,

el 8el [

9e0.

9C Cel 9el

9C Cel 9el

9C _ Cel 9el

9C = J el 9el 1

9C Cel 9el~

16

cos



80)1

9C

Ce

Cel 9el
- ej2 9nl

(6) |jj: Let

D = fl + eg cos fgVl + ej cos fjVcos ig cos ij + sin ig sin ij cos AflJ

+ egej sin fg sin f j

Define the intermediate terms as

Dg = 1 + eg cos fg

= 1 + ej cos fj

then

= cos ig cos ij + sin ig sin ij cos

3D / \ el— = p>0D2 cos f ! + e0 sin fQ sin fXJ —

3D / 9el \ / ^ei= D2 IDg cos f j + Dj cos fg + sin fg sin f j (eg -— +

/ \ / 3 cos fi SeiN"]
Djjcos ig sin ij cos Af2 - sin ig cos iij+ D2le1 — + cos fj —— I

D2D1eg
3 COS f[

iQ

/ 3 sin f i 3 sin
ei sin fn —7:-. + sin fi —— +. sin fn sin fi

V ^0 9lO '\

3D 3 COS f 1 3 COS f.
D0 el -57^ + cos fl ^7 + DleO

+ en ei sin fn

3o)0y ' ~1~u 3wg

3 sin fi 3 sin fg\
+ sin fi — + sin fg sin f^

17



/ 8 COS fl
sin in. sin ii sin Afi + ̂ 2\el —arT— + cos *1

8 cos f0 8 sin fi 8 sin fG1 sin ft • ^ v) + sin fQ sin fx

- = (D0D2 c°s fl + e0 sin f0 sin fj)^i

an = DOu
/ \Dilsin in cos ii cos AJ2 - cos in sin ii) + D£ ei — rj- — + cosA\ u A u v \ A 9i

a cos f

a cos f0
+ DlD2eO 8il

 + eO

9a)l
= Do

cos f1

in £

9e

8 sin f 8 sin f
+ sin + sin fQ sin f! —

Dn e, — - - - + cos fi -3- + Dien —3
\ 8wl 9a)l/ 1

9 cos fO

e0 e s i n £0

8 sin f i 8 sin fQ\ 8ei~
sin f -— + sin f0 sin fj -

8D 8 cos fi
-Dj sin i0 sin i^ sin Aft + D2(ei —— + cos

+ DlD2eO
9 cos [0 + er sin f0

8^1

8 sin fi 8 sin
J. . f

cl
+ sin f i + sin fg sin f^

The
3 Sin f.Q

3Q!
and

3 sin
are to be determined.

The preceding equations involve derivatives of eccentricity on the second orbit with
respect to the elements on the first and second orbit. Rewriting the constraint equa-
tion (16) yields

el cos+ eO cos fo =

When E is defined as

E = agU - CQ j cos fj + + C cos f

this equation can be differentiated implicitly to obtain the following derivatives:

18



- el2) GOS fO

ON 9 COS f

= ![(!. cos f

cos

COS

)J

-
9 cos

cos

9 COS f -I

/
(l -

cos ffl

Finally, it is necessary to obtain derivatives of equations (7), (9), (10), and (11). (This
method assumes that the transfer takes place in the direction of positive R. For nega-
tive R (eqs. (12) to (15)) simply interchange the initial sign on the derivatives.)

Define

F = 1 - (cos ig cos ij + sin ig sin ij cos

By inspection of equation (7),

9 cos fg 9 cos fg 9 cos fg 9 COS fg
9 GO19e0

9 cos fg ! r__._

= 0

g i ,- . -,
TT: = -•= sin ij sin Afi(cos ig cos ij + sin ig sin ij cos AOJ sin fg

19



9 COS ffl
= sin f

9 cos fO = — sin ij/cos ig sin ij - sin ig cos ij cos Afi) sin fg

9 cos fg i
—Q-. = -pfsin ig sin A £2 sin fgj

9 COS f 9 COS f

By inspection of equation (9),

9 sin fg 9 sin fg 9 sin £Q 9 sin fp
9aO 9eO 9al 9a)l

9 sin f Q i r- , , -i
— — - = -^ sin ij sin Afi ̂ cos IQ cos ij + sin IQ sin ij cos Afij cos IQ

9 sin fn
= "COS fn

°

8 sin f i r , N -i
= — sin ij (sin ij cos ig - cos ij sin IQ cos Aft) cos fQ

9 sin f 1 /
sin AS2 cos

9 sin fg 9 sin fg

By inspection of equation (10),

9 cos f i 9 cos fj 9 cos f j 9 cos
= 0

9 cos f i i / v
— — - = — (sin ii sin Afi sin fj)

9i F > '

.9 COS
f i i r / • ' • . . • • • • • . . \ n— = — sin ig (sin ig cos ij - cos ig sin ij cos AOj sin f j

20



9 C°S f l 1C:-, „;
os ii i r / N -i

JT: = — sin ig sin Afi (cos ig cos ij + sin ig sin i^ cos AOj sin fjl

3 COS fi
—— = sin I-,

3 cos fj 3 cos fj

By inspection of equation (11),

3 sin ft 3 sin fi 3 sin f i 3 sin fi
L i = i = i = 0

9 sin f 1 1 / \—-—- = —(sin ii sin AO cos fi)
3ig F^ l ij

3 sin f i i r , . N—rpr— = — sin in (sin in cos ii - cos ig sin ii cos AO) cos
Ouuf\ JC I *

3 sin f i i r , \ -i
—r:—=• = -—sin ig sin AO (cos ig cos ij + sin i^ sin ij cos Aflj cos fj

3 sin f
- = - cos

3 sin f i 3 sin f j

All these relations can be substituted into equation (24) to obtain the desired derivatives
of AV. It is prohibitive to write these equations explicitly. However, they are readily
programed for the computer. The analytic derivatives have been checked with good
agreement against central -difference numerical derivatives.

Generalization to Multiple -Impulse Transfer

The multiple -impulse transfer is treated as a sequence of single -impulse transfers.
The first orbit is specified by a, e, i, w, and £2, and the final orbit is specified by
a, i, co, and £2, eccentricity being a dependent variable. On each intermediate conic
there are four control variables (a, i, co, and fi) and one dependent parameter (e). By
choosing values of the control variables, the total velocity change is the sum of the single
impulses. For minimization purposes, the derivatives of total AV with respect to the

21



control variables are obtained by chaining together the derivatives obtained in the pre-
vious section for the single-impulse transfer.

As an example, consider a four-impulse transfer problem. Let o^ represent any
of the four independent parameters of the ith intermediate orbit (i = 1,2,3). The total
velocity change is the sum of the four impulses and may be written as

AV = AV2 + AV3 + AV4 (25)

where

AV1=AV1(o!1)

AV =

AV3 = AV3(a2,o<3,e2)

AV4=AV4(a3,e3)

and

el =

e =

The partial derivatives of AV-p with respect to the independent elements are

9AVT _ 9AVj /9AV2 9AV2
~ + 9AV3/9e2 9e2

"̂̂ ^^^^^ I T "̂̂ "̂ ~ i '

9e2

9AV 9e
9eQ 9e

3/9e2 9e

9AVT 9AV2

9d!r

9AV3 9e2>

9e2 9or2,

9AV4/9e3 | 9e3

9e3 \9o!2
 + 9e2

9AVT 9AV3 /9AV4 9AV4

9(Xo dctn \ 9Q!o 9eoO O \ O O

(26)

(27)

(28)

22



Thus, to relate any two consecutive orbits, the following'derivatives are necessary:
9AV4, i 9AVi+1 9AV;,i 9ei.i 364.1 96;

Q
 1+1, n , . 1+i, -jiii, -jiti, and —i-. The derivatives are obtained from

Sej 9o(i ' 9o?i+i 3ei ' a^i ' 9^
equation (24) and AVi+j represents the velocity change required to transfer from the
ith to the (i + l)th orbit. The extension of this formulation to n-impulses simply involves
n - 1 equations similar to equations (25) to (28).

CONCLUDING REMARKS

A multiple-impulse function has been developed as a series of single impulses.
Analytic derivatives of the function with respect to the independent variables have been
presented. An example of a four-impulse transfer is given and could be expanded to
n-impulses by the same techniques. The development of analytic derivatives of this
impulse function removes the dependency of optimization algorithms on numerical deriva-
tives. Analytic derivatives may permit much more efficient optimization techniques.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., January 18, 1972.
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