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A MULTIPLE-IMPULSE FUNCTION FOR ORBITAL TRANSFER
AND ITS DERIVATIVES

By James F. Kibler and Lawrence H. Hoffman
Langley Research Center

SUMMARY :

A multiple-impulse function is represented as a sequence of single-impulse func-
tions. The single-impulse transfer which yields the velocity change required to transfer
from a specified initial orbit to a partially specified final orbit is developed. Analytic
derivatives of the function are obtained for use in optimization techniques. A four-
impulse transfer is outlined. The analytic derivatives may allow more efficient optimi-
zation than numerical derivatives do.

INTRODUCTION

The calculation of the impulsive velocity change required to transfer between two
general orbits is a frequently encountered problem in celestial mechanics. Orbital trim,
planetary deboost, and orbital rendezvous problems are examples which may require one
or more transfer maneuvers to achieve the desired objectives. In most cases, it is also
desirable to minimize the fuel expended during the maneuver. A comprehensive survey
of previous work in impulsive transfers has been made by Gobetz and Doll (ref. 1). In
particular, the two-impulse transfer between inclined elliptical orbits has been studied
intensively by McCue (ref. 2) and Lee (ref. 3). However, in some cases, it is desirable
to satisfy constraints on the intermediate or final orbits and thus additional impulses may
be required. The purpose of this paper is to develop a multiple-impulse function which
describes the transfer between two general orbits. In addition, for minimization pur-
poses, the partial derivatives of the function are taken with respect to the independent
variables.

The technique is to consider the multiple-impulse transfer to be a sequence of
coupled single impulses; thereby, the orbit elements of the intermediate conics are made
independent variables. The equations which describe the single-impulse transfer are
found to be a function of only four variables on the second orbit; thus, the single-impulse
maneuver consists of transferring from a given orbit to an orbit which is only partially
specified. The multiple-impulse function can then be minimized over the space defined
by four independent variables from each intermediate conic.



The impulse function is developed for a single-impulse transfer. Analytic deriva-
tives of the impulse function are presented and, as an example, the derivatives required
to minimize a four-impulse transfer are given.

SYMBOLS

a - semimajor axis, km

e eccentricity

f true anomaly, deg

i inclination, deg

n number of impulses

P | unit radius vector lying in orbit plane and pointing toward periapsis

Q unit radius vector lying in orbit plane and pointing toward 90C true anomaly

R unit vector along line of intersectioﬁ between two noncoplanar orbits

r magnitude of radius at a given true anomaly, km

f‘,ﬁ,ﬁ radial, horizontal, and normal components of velocity

\' velocity magnitude, km/sec

AV magnitude of change in velocity required to transfer between two orbits,
km/sec

W unit vector normal to orbit plane and completing the PQW right-handed
triad

B angle between two velocity vectors, deg

v flight-path angle, deg

0 angle between two orbit planes, deg



" gravitational constant, km3/sec2

Q right ascension of ascending node, deg

w argument of periapsis, deg

Subscripts: : s
0;1 refers to the first or second orbit, respectively .
T total

Bars over quantities denote vectors.

ANALYSIS

Derivation of the Impulse Function for a Single-Impulse Transfer

The single-impulse transfer between two noncoplanar intersecting Keplerian orbits
can be determined analytically if five elements are known on the first orbit and four
elements are specified on the second orbit. It is arbitrarily chosen to specify the classi-
cal elements (ao,eo,io,wo,ﬂo) on the initial orbit; and the second orbit is specified by
the orientation angles (il,wl,ﬂl) and one of the shape parameters (for example, aj).

Of course, other choices are possible and would result in a different formulation.

The first requirement is to find the line of intersection of the two orbits which is
uniquely determined by iy, g, ij, and 1. It is convenient to perform a coordinate
transformation from the XYZ set of axes to the PQW system as shown in sketch (a).

ALZ

Periapsis

X

Sketch (a) -~ Transformation of XYZ to PQW.



A

In the PQW system, P is a unit vector pointing in the direction of periapsis, Q isa
unit vector lying in the plane of the orbit and pointing toward a true anomaly of 90°, and
W is a unit vector, normal to the orbit plane, which completes the right-handed triad.
By rotating through the angles €, i, and w, the resulting transformation (ref. 4) is

P = (cos w cos © - sin w sin £ cos i)i + (cos w sin § + sin w cos © cos i) j

+ (sin w sin )k

’ Q = (-sin w cos © - cos w sin Q cos i)i + (-sin w sin £ + cos w cos  cos i) (1)

+ (cos w sin i)k

W = (sin 2 sini)1 + (-cos € sin i)} + (cos i)k J

where i, 3, and k are the corresponding unit vectors in the XYZ coordinate system.
The unit vector ft, along the line of intersection of the two orbits, is determined

by

WO X W]_

fi:'A—A
|Wo ><w1|

(2)

where

-~

Wg = (sin ig sin QO)E + (-sin ig cos Q) ] + (cos io)l::

(normal to first orbit) and

~

Wy = (sin ij sin Q)i+ (-sin iy cos Q1)+ (cos i)k

(normal to second orbit) are known from equation (1).

Now,

-~

i i

=

WO X Wl = |sinig sin 9  -sinipcos Qg  cos ig

sin iy sin 1  -sinij cos Q1  cos iy

Expanding this expression results in



-
-sin iy cos i1 cos g + sin iy cos ig cos €4

WO X Wy = | -sin ig cos i1 sin Qg + sin i1 cos iy sin 4 (3)
§ sin ig sin iy sin AQ
where AQ = 21 - €. The magnitude of WO X Wl is given by ‘

IWO X Wll = (sinzio cos2iy cos2Qy - 2 sin ig sin iy cos ig cos iy cos £ cds £
+ sin2iy cos2iy cos2Qq + siniy cos2iy sin29
-2 sin ig sin i cos i cos i1 sin £ sin 1 + sin2ij coszio sinzﬂl
+ sin2i sin?iy sin2a@)/2

Simplifying this expression results in

.. , _ g1L/2
,WO X Wll = [1 - (cos ig cos iy + sin ig sin iy cos AQ):I (4)

Substituting equations (3) and (4) into equation (2) yields the expression for a unit vector
in the XYZ system along the line of intersection between the two orbits:.

-sin ig cos i cos 0 + sin i1 cos ip cos

R= 1 172 -sin ig cos iy sin Qg + sin iy cos ig sin ) (5)
1 - {cos ig cos i1 + sin ip sin i1 cos AR
l: ( 0 1 0 1 ) sin ig sin iy sin AQ

There are two points where an impulsive maneuver can take place, that is, in the direc-
tion of either positive or negative R. Consider first the case of the transfer point lying
in the positive R direction. The transfer-point true anomaly on each orbit must be
determined.

For the first orbit
130 ‘R = lf’OHﬁl cos fp
or

cos fy = f’o ‘R (6)



Substituting the expression for f’o from equation (1), and equation (5) into equation (6),
and simplifying yields

-cos wo(sin ig cos iy - sin iy cos iy cos AQ) + sin wy sin iy sin AR

(7

cos fg =
° . . e 911/2
[1 - (cos i cos iy + sin ij sin i; cos AQ) ]

‘v

In order to resolve the ambiguity involved with the cosine, an expression for sin fy is
requi'red.

By definition,
130 XR = WOIi)Ol Iﬁl sin fy
or
WO sin fg =130><f{
From equation (2),

W sin o = D L g x Wy _Pg x (Wo x Wy)
050 =0 Mg kW[ T Wy x Wy

Using the identity

Ax(BxC)=(A-C)B-(&-BJC

where A, B, and C are any vectors yields

(Bo - Wiy)Wo - (Bg - Wo)W,y

WOSinf(): Iw XWI
0 1

But 130 . WO = 0; therefore,

(Bo - Wy)ivg

Wosinf0= lW xW,
0 1

or



(8)

Substituting equation (4) and the expressions for f’o and Wl from equation (1) into
equation (8) and simplifying yields

sin wo(sin ig cos iy - sin iy cos ig cos ASZ) + €0S wq sin iy sin AQ

" (9)

sin fy =
0 511/2
E - (cos ig cos iy + sin ip sin ij cos AQ):I t

In like manner, the equations defining the true anomaly of intersection on the second
orbit are

cos wl(cos ig sin iy - sin ig cos i] cos AQ) + 8in w1 sin ig sin AQ
cos f1 = (10)

9 1/2
E - (cos ig cos iy + sin ig sin iy cos AQ):I

and

-sin wl(cos ig sin ij - sin ig cos iy cos AQ) +C0s wy sin ig sin AQ

2“_]1/2 (11)

sin {1 =

E - (cos ig cos iy - sin ig sin iy cos ASZ)

The second point where an impulsive maneuver can take place is in the direction of nega-
tive R. The true anomaly of intersection on the first orbit is given by

cos fg = Py - (-R)
and
Wy sin fg = Py X (-R)
Substituting and simplifying as in equations (7) and (9) yields

cos wo(cos i sin ig - sin iy cos ip cos AQ) - sin wg sin i1 sin AQ
cos fg = (12)
0

3 1/2
E - (cos ig cos iy + sin ig sin i cos AQ)]

and



-sin wo(cos i1 sin ig - sin i1 cos i cos AQ) - Cos w( sin iy sin AQ 13)

sin fO =
g11/2
E - (cos ip cos iy + sin ig sin ij cos AQ) ]

Similarly, the equations defining the true anomaly of intersection on the second orbit are

-cos wi (cos ig sin iy - sin ig cos i1 cos -AQ) - sin wy sin iy sin AQ

v (14)

cos fq =
1 _ 1/2
E - (cos ig cos iq + sin i sin iy cos AQ):]

4

and

sin wl(cos ig sin iy - sin ig cos iy cos AQ) - cos wq sin ig sin AR ‘(15)

sin f1 =

1/2
[ - (cos ig cos iy + sin ig sin iy cos Aﬂ)ﬂ /
In other words,
(fo)_g = (fo), 5 + 180°
and
(fl)_R = (f1)+R +180°

For an impulsive maneuver to take place at the point of intersection, the magnitudes of
the radii on the first and second orbit must be equal. Therefore, a constraint equation at
the point of intersection is

ao(l - 602) al(l - elz)
1+eocosf0=1+elcosf1

(16) .

The elements ag, ey, fy, fy, and a; or eq are known. Therefore, equation (16)
relates the unknown element in the second orbit (el or al) to known parameters.

Next, an expression for the magnitude of the vector difference in velocity (AV)
between the two orbits is required. From sketch (b), using the law of cosines,

@av)2 = Vg2 + V{2 - 2V(Vy cos B (17

where B is the angle between the two velocity vectors.



Orbit 0 Intersection point

Orbit 1

Sketch (b) - Geometry of AV.

At the maneuver point, by using the equations
1/2
_lop(l- L
V= [2“ <I‘ 23.)}

= a(l-ez?

“1+ecosft

and

the expressions for the magnitude of the velocity on the first and second orbit are

p.(l + 2eq cos fy + eoz) 1/2

ag(t - &)

(18)

Vo

and

1
M(l +2eq cos 1 + elz) /2

Vl al(l - 612)

(19)

]

From sketch (c), by using the law of cosines for spherical triangles, the angle
between the orbit planes 6 may be found from

cos 6 = -cos iy cos(1800 - il) + sin ig sin(1800 - il) cos AR
or

cos 8 = cos i cos i1 + sin ig sin ij cos A (20)



Sketch (c) - Computation geometry for 6.

From sketch (d), the velocity vectors may be written as

VO = VO cOSs Y0
0

and

sin 71

<l
sy

Ul

<
i

cOS y1 cos 6

cos vy sin 6

where Y0 and Yy are the flight-path angles on the first and second orbits. The angle
between the velocity vectors 3 may now be found from

Vo - Vi

COSB=—1\-’0—V—11—

= €0S 6 coS v COS ¥y + sin yq Sin y¢ (21)

10



Sketch (d) - Velocity vectors in the radial, horizontal,
and normal coordinate system.

Substituting the flight-path angle relations from reference 4

siny = e sin {
(1 +2ecos f+ ez)l/z
and
cos y = l1+ecosft
(1 +2ecos f+ e2)1/2

and equation (20) into equation (21) yields

(1 + € COS fo) (1 + €eq cos fl) (cos ip cos iy + sin ig sin iy cos AQ)+ (eo sin fO)(el sin fl) (22)

cos = 172
[(1 + 2eq cos fg + eoz)(l +2eq cos f + elz)J

Substituting eqﬁations (18), (19), and (22) into equation (17) results in the required
expression for AV:

AV = {ao(_l}f_eoz) (1 + 2eq cos fg + e02> + 2) (1 + 2eq cos fy + e12)

al(l - ey

- - 2u <72 Kl + eq cos fy)(1 + eq cos f1)(cos iy cos ig + sin ig sin iy cos AQ)
[ao(l - e )al(l - eljl .
1/2
+ egey sin f sin fl:l} / (23)

11



The set of equations (7), (9) to (16), and (23) are those required for an analytic solution
to the problem of a single-impulse transfer between two noncoplanar orbits. Two solu-
tions result from the positive and negative cases for R. In addition, if ey is a function
of aj inthe constraint equation (16), two solutions arise from the quadratic in ey. All
the multiple solutions may not be physically possible. For example, an arbitrarily spec-
ified a; mayresultina maximum radius on the second orbit which is less than the
smallest radius on the initial orbit. That is, the constraint equation (16) cannot be sat-
isfied. In addition, if the central body has a finite radius, a region of mathematically
possible orbits must be rejected since they intercept the surface of the planet. In the
event no practical solutions for the transfer exist, a more realistic set of variables
(al,il,wl,ﬂl) on the second orbit must be chosen. In the event of multiple practical
solutions for the transfer, a choice may be based on mission considerations, such as
choosing the transfer which results in the lowest AV. '

Partial Derivatives of the Single-Impulse Function

In orbital transfer problems, it is usually desirable to minimize AV with respect
to the control parameters. Many of the minimization algorithms require partial deriva-
tives of AV with respect to the independent variables. Finite-difference approxima-
tions to the partial derivatives are commonly employed. However, in complex multiple-
impulse problems, it may take relatively large amounts of computer time to develop the
approximations. If exact partial derivatives are available, the minimization algorithms
are generally more efficient and less computer time is used. Therefore, analytic partial
derivatives of equation (23) have been developed. It is assumed that a, e, i, w, and
2 are known on the initial orbit and that a, i, w, and § are known on the final orbit.
Eccentricity of the final orbit is a dependent variable defined in the constraint
equation (16).

For convenience, define the following intermediate quantities as

Ag = “E‘O(l i} eoz)]'l Ap = uEu(l - 912>]-1

B()=1+2eocosf0+e02 By =1+ 2eqcosf] +e;

c - aufiolt - e - 2] 2

D= (1 + € COS fo)(l + e1 cos fl)(cos ig cos iy + sin ig sin i; cos AQ)

2

+ epeq sin fy sin f1

12



Thus, equation (23) can be written as
V = (a9Bg + AyBy + CD)!/2
or
(AV)2 = AgBg + A{B; % CD
The required derivatives can be expressea in the form

AV _ 1 3(AV)2
da 2AV  da

E)AO 8A1 9B1 .
o a o

where a represents any one of the variables agp, ey, ig, wg, €,

and Qq.

—a£> (24)

It is necessary now to develop the partial derivatives of the following six interme-

diate parameters:

d
1) —£9: Let
-1
ro= ol -]
then
840 2 2y _ A
—Y__ 1 - ="V
Similarly,
0Ap  2Aqeq
390 - 1- (i‘o2

and

8Ag BAg dAg dAg

Big  dwp 3%  day O

where «j represents aj, iy, wy, and £q.

13



® 5

then

Similarly,

8e1
The —
o

oB
0.
®) 5

Then

since

14

Let

Ay = u[a1<1 - 612)1'1

JA

33._01_ = Zuelal'l(l - e12>

8A; 2ejA; dey
deg 1 - 612 deg

0A1 2e1A; deq
wg 1 -ey2 209

9A1 _ 2e1A4 el Aq
b2; 1-e¢,2%a1 ay

944 2e1A1 9eq
Bwi 1 - g2 B0y

remain to be determined.

Let

By = 1+ 2eq cos fo + 602

9B B £
8_9= eo-_cai‘l:o
a9 2]

9 cos fO
—_8?30_——

~2 deq ~ zelAl deq
820 1 - 2 dag

8A1 2ej1Ap odeq

%lg 1 - ¢92 %ig

0A1 2e14A4 deq

9 1-e,2 99

0A1  2e1A 9eq

91 1-e2 %

BA1 _ 2e1A1 de

001 1 -e2 90



by inspection of equation (7). Similarly,

3By 9By 9 cos fy
8_6-6 = 2(60 + COS fo) —8—1-0— = 260 310
9Bg 9 cos fg 9Bg 9 cos fg
a—— = eo [ —_— = 260 ——
wo Bwo 8&20 aszo
9B oB 9 cos f
=0 S = 200 —5r—
a1 1 11
9B 9B 9 cosf
_.g = 0 _0 = 2e0 ———-Q—
8(:)1 391 391
9 cos fo
The ~5a remain to be determined.
. BB]_. Let
(4) -BF. [S]
By =1+ 2eq cos f1 + elz
then
9B dcosf de de
1 2eq -1, 2(cos fy + eq) L= 2(cos fq + el)-—l
dag dag dag %ag
since
9 cos {3
—E()__ =
by inspection of equation (10). Similarly,
9B1 9 cos fy deq

3_]?_1_ = 2<cOs fl + el)% + 2(cos f1 + el)

390 8io = 281 aio 3—10—

B ael 3B1 9 cos fl

1_ -
e 2(cos f1 + el)gw—o- o 2e o

361

+ 2(cos f1 + el)a_ﬁa

15



9B deq 8B; - 9 cos fy deq

1 = -_

—331——2(005 f1+ el)aa—]? —a-;i--—zel——a-il——+2(COS fl +el)—a-i-i- -

2B 9 cos f ' oB dcosft

-5—1 = 281 —1- __1 = Zel .__—1_

(1)1 awl 391 391
de oe
1
+2(cos f1 + el)wl +2(cos f1 + el)a_s‘z—l
9 cos 3
The o remain to be determiner.
aC,
(5) -871'. Let
-1/2

C= -2u@0(1 - e02)a1(1 - elz)]
then

8C _ 2y |3/2 2 2 2

o “E"(l - ep2)ay (L -eg )] a1 (1 - eg2)(1 - e12) - 2eqaga; (1 - ep?)

_ €4 ael 1
1-e.2 %29 23

Similarly,

oC _of_€1 %1 _ 1
daq 1- e12 da; 234

81 1 _elz diq

16



aC _ Cel 361

aC _ Cel 8e1

(6) gg: Let

D= (1 + €g €OS f0>(1 + €1 COS f1><cos ig cos i + sin ig sin ii cos AQ)

+ epey sin fO sin fl
Define the intermediate terms as

D0=1+e0cosf0

D1=1+e1 cos fj

Dy = cos i cos ij + sin iy sin iy cos AQ
then

oD . . ey

% = (D0D2 cos fl + e Sin fg sin fl)'%

8D Dy (D cos b1 D s f sin fy sin f1 (e b1 + e
2eq 2\Yg cos 1y deg 1 cos Iy in g 11€0 deq 1

oD D C . e D d cos f1 deq\
.ai_0=D0 l(cos ig sin iy cos AQ-smlo cos 11)+ 2e1T+cos flgg

3 cos fo . 9 sin fl . 9 sin fo . . 361
+ DDy eg ——a$— + eg ey |sin Iy 5 + sin fy ig + sin fo sm'fl

A 4 ETY

o cos fq . de 9cosf
a—D-=D Dgle -—-——1+cosf—i+D1e — 0
3(.00 2|70\°1 30.)0 1 3(4)0 0 3(.00

. 9sinfy 9 sin fy . - deq
+ egleq|sin fy o + sin 1 5wg + sin fg sin fy _Bw—o

17



D e 9 cos £y oeq
_a_Q_()__-:DODlsm1osm11s1nAQ+D2ela—Qo-—+cosf1m

8 cos fj . 9 sin g . 8 sin fj . . deq
+ DyDgeq ——aﬁb— + egleyplsin fy 5% + sin fy 50 + sin fy sin fy ?{%

D

-—(DD cos f1 + ep sin f sinf)a—el-
aal" 02 1 0 0 18a1

BD = Dn D AQ D 9 cos fy ; deq
s i1 cos -cosig s + e —5— t oS f1 5=
811 0 l(sm ig cos iy ig sin 11) 2 €1 By 1 31y
3 cos {; . d3sinf; 8 sin f fe ain £ ey
+ D1Dyeg —ail— + eqgleq(sin iy 5, + sin {1 51 + sin fg sin fy —61_1—
8 cos f %e 9 cos i
8D 1 1 0
—_— DZ]})O(EI ——a—w-i-— + COS fl _8w1> + Dleo __80)1 }

) 9sinfy 9 sin fj ] . 9eq
+ eglep|sin fy 5oy + sin {1 P + sin fg sin I ey

oD 8 cos fl
8_QI=D0 -D; sin ig sin i; sin AQ + Dyle] —— o + COS fl aQ

3 cos fy - dsinf; 8 sin fg\ - deq
+ D1Dgeq T + eglep|sin fy 5%, + sin fq 5% + sin fg sin fy —5?2—1

an

—_— are to be determined.
15" tfs)

The

The preceding equations involve derivatives of eccentricity on the second orbit with
respect to the elements on the first and second orbit. Rewriting the constraint equa-
tion (16) yields

aj) (1 - e12><1 + €p COS f0> = a0<1 - e02><1 + €7 cos f1>
When E is defined as
E =3y (1 - e02> cos f1 + 2a1e1<1 + € COS f0>

this equation can be differentiated implicitly to obtain the following derivatives:

18



;Z-(l) = %;(1 - eg?)(1 + eq cos fl)]

Z—Z% = H1a; (1 - e12) cos fo + 2ageq(1 + ey cos fy)

:i%l = %3}190 (i - 912)23%?9 - agey(1 - eoz)f%:—fl]
;Z—; = %%160 - 912)8—2%2——%]

Z—;la = %Eﬁeo(l - 812)3':%%& - agey (1 - eoz)f-g—?%f—l]

—

Z%i = —[:(1 - elz) (1 - €q COS fo):]

=

dey 1 9\ 2 cos fy gy 8 cos fy
Wl— =-E-|:aleo(1 - e )———-—8,11 - aoel(l - €g )_—_811
861 1 B 9 9 cos fl

30)1 =E£a0e1(1 ) ) 3(4)1

de1 . 1| a1 2 cos fo gy 8 €os fq
3o, = 10 (t - e1?) 55— - 20e1 (1 - eo?) 55—

Finally, it is necessary to obtain derivatives of equations (7), (9), (10), and (11). (This
method assumes that the transfer takes place in the direction of positive R. For nega-
tive R (egs. (12) to (15)) simply interchange the initial sign on the derivatives.)

Define

F=1- (cos ig cos iy + sin ig sin iq cos AQ)Z

By inspection of equation (7),

dcosfg dcosfy dcosfy 9cosiy 0
dag ~ Odeg  9day  dwy

9 cos fO

i =-F sin iy sin Aﬂ(cos ig cos iy + sin ig sin iy cos AQ) sin f(ﬂ

19



o cos fy

3(00 = sin fo
dcosfog 1r- ., o . . -
——3-%—— = -ﬁEm 11‘(cos ig sin iy - sin iy cos iy cos AQ) sin f()]
dbcosfg 1, . . .
T = ?—(sm ig sin AQ sin fO)‘

9 cos fO 9 cos fo
391 T 890

By inspection of equation (9),

8 sin fO 8 sin fO 9 sin fO 8 sin f0

® sinfp o : o
'_Eﬁa— = F|(sin iy sin A (cos ig cos iy + sin iy sin iy cos AQ) cos fO]
9 sin fo "
-Tw'(;— = =CO0S 1y
9 sinfg R AQ f]
g - FSR (sin iy cos ig - cos i1 sin ig cos AR) cos f;
0sinfo _ 1., .

511 = —f(sm ig sin 'AQ cos fo)

By inspection of equation (10),

9 cos f1 9 cos d cos fl 9 cos fl

dag deq 3wy dag
9 cos { ;
—BTO—l = -%(sin i sin AQ sin f1)
.9cosf . .- o
. - 1_ "lf sin i (sin ig cos iy - cos ig sin iy cos AQ) sin fﬂ

20



dcosfy 1. . . . . c .. .

e = fEm ig sin AQ (cos ig cos iy + sin '10 sin iy cos AQ) sm fﬂ
9 cos f in f

8(4)1 Sin 1

By inspection of equation (11),

Bsinfl 9 sin fy 8sinf1 8sinf1 0

aao Beo awo ay
| 7P
—_—= F(sm i sin AR cos fl)

osinfy gy o : .
ey - F sin ig (sin ig cos iy - cos ig sin iy cos AQ) cos fﬂ
Osinfy 1. o , e
—611— = -F|sin ig sin AQ (cos ig cos iy + sin iy sin iy cos AQ) cos f1:|
9 sin fy
—awl——- = - COSs fl
9 sin fy 9 sin fj
3y o9y

All these relations can be substituted into equation (24) to obtain the desired derivatives
of AV. It is prohibitive to write these equations explicitly. However, they are readily
programed for the computer. " The analytic derivatives have been checked with good
agreement against central-difference numerical derivatives.

Generalization to Multiple-Impulse Transfer

The multiple-impulse transfer is treated as a sequence of single-impulse transfers.
The first orbit is specified by a, e, i, w, and £, and the final orbit is specified by
a, i, w,and $, eccentricity being a dependent variable. On each intermediate conic
there are four control variables (a, i, w, and £) and one dependent parameter (e). By
choosing values of the control variables, the total velocity change is the sum of the single
impulses. For minimization purposes, the derivatives of total AV with respect to the
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control variables are obtained by chaining together the derivatives obtained in the pre-
vious section for the single-impulse transfer.

As an example, consider a four-impulse transfer problem. Let «; represent any
of the four independent parameters of the ith intermediate orbit (i = 1,2,3). The total
velocity change is the sum of the four impulses and may be written as

AV = AV + AVy + AVg + AVy | (25)
where

AV = AVy(ey)

AVg = AVZ(al,az,el)

AVg = AV3(a2,a3,e2)

AVy = AVy (oz3,e3)
and

e1 = e(ey)
ey = eg(ay,ay,e1)
e3 = e3(oz2,a3,e2)

The partial derivatives of AV with respect to the independent elements are

PAVD 9AVy <8AV2 8AVy 8e1> |3AV3<ae2 deg ae1>]
= + + + +

daq daq dary de1 day Laez day 9%eq 9aq
0AV, Oeq fO0e deqy Oe
3e3 3e2 aal 381 8011
3AV oAV AV AV o de 8AV, (de deq Je
T= 2 + 3 + 32 + 4 3 + 3 72 27)
80‘2 8a2 dag 9eg dag de3 \dag9 deg dagy

BAVy 0AVg [8AV4 0AVg de
T _ 3+< 4 4 3> (28)

8013 8a3 8013 8e3 8a3
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Thus, to relate any two consecutive orbits, the following derivatives are necessary:
BABZ?-I’ aAa‘;i;l’ 3:;’;:1, 3‘;1;1.-1, a:;zl’ and %’ The derivatives a..re. obtained from
equation (24) and AV, 1 represents the velocity change required to transfer from the
ith to the (i+1)th orbit. The extension of this formulation to n-impulses simply involves
n - 1 equations similar to equations (25) to (28).

CONCLUDING REMARKS

A multiple-impulse function has been developed as a series of single impulses.
Analytic derivatives of the function with respect to the independent variables have been
presented. An example of a four-impulse transfer is given and could be expanded to
n-impulses by the same techniques. The development of analytic derivatives of this
impulse function removes the dependency of optimization algorithms on numerical deriva-
tives. Analytic derivatives may permit much more efficient optimization techniques.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., January 18, 1972.
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