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ABSTRACT

The existence of large terrestrial impact crater doublets and crater

doublets that have been inferred to be impact craters on Mars suggests that

simultaneous impact of two or more bodies can occur at nearly the same point

on planetary surfaces. An experimental study of simultaneous impact of two

projectiles near one another shows that doublet craters with ridges perpen-

dicular to the bilateral axis of symmetry result when separation between impact

points relative to individual crater diameter is large. When separation is

progressively less, elliptical craters with central ridges and central peaks,

circular craters with flat floors containing ridges and peaks, and circular

craters with deep round bottoms are produced. These craters are similar in

structure to many of the large lunar craters. Results suggest that the

simultaneous impact of meteoroids near one another may be an important

mechanism for the production of central peaks in large lunar craters.
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In the past it has usually been assumed that impact of cosmic debris
*~*'

against lunar and planetary surfaces produces spacially and temporally random

crater distributions. However, there is a considerable body of evidence that

suggests that the impact process produces craters near one another at the same

time. The Clearwater Lakes impact crater doublet, shown in Figure 1, is an

example of two impact craters produced at the same time. One crater is 32 km

in diameter and the other is 22.5 km in diameter. A detailed study of the

Clearwater Lakes crater doublet has resulted in the conclusion that two large

meteoroids impacted simultaneously near one another to produce the doublet

members (l), and there is a possibility that the meteoroids could have been

~) coupled together before entry into the atmosphere (2). The Ries Crater and

(VJ the Steinheim basin are two other craters that have been considered to have

formed at the same time (3). Many of the terrestrial crater fields have been

considered by some workers to have been produced by swarms of meteoroids enter-

ing the Earth's atmosphere (4). There is now evidence of simultaneous impact

on the planet Mars. A recent study of Mariner 6 and 7 photographs of Mars

revealed more crater doublets than should have been observed if all craters

were products of random single body impact events, yet there was strong evidence

that crater doublet members were impact craters (5).

Observed Martian crater distributions were shown to be consistent with a

meteoroid tidal fission model recently proposed (6). This model describes the

relationship between tidal forces from the impacted planet or satellite and the
-*

stresses produced in a meteoroid that can split the meteoroid when stresses ex-

ceed the tensile strength. The analysis of splitting of a meteoroid due to the

gravitational field of the impacted planet is important because it offers a

mechanism for the production of paired meteoroids that is required in order to
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explain terrestrial and Martian crater doublets and the mechanism leads to

consideration of the simultaneous impact process. It has long been known that

a planetisimal approaching a planetary body would break up due to the effect

of the gravitational field of the larger body on the other; breakup occurring

at a critical distance known as the Roche limit. However, until now, no con-

sideration has been given to the types of craters that could be produced by

simultaneous impact of the fission products at nearly the same impact point.

The purpose of this paper is to present some preliminary results of a series

of simultaneous impact cratering experiments and to show that the craters pro-

duced are similar in structure to many of the large lunar craters.

All experimental craters were produced by cylindrical projectiles of

Lexan plastic that were bisected longitudinally to a point within 0.2 mm from

the end of the projectile. Projectiles were launched normal to the fine

grained quartz sand target at 2.3 km/sec and projectile spin imparted during

launch by gun barrel rifling was sufficient to sever the small amount of

material holding together the two halves of the projectile. Typically pro-

jectile separation at impact was about 6 cm for those projectiles launched

with a gun barrel having one turn of rifling per 2̂ >k cm of gun barrel and about

U cm separation for gun barrels having one turn of rifling per 330 cm of gun

barrel. Except for one experiment, one impact occurred within five micro-

seconds of the other impact. In this series of experiments the primary subject

of investigation was the effect of variation of the ratio S/D where S is

separation between impact points and D is the diameter of the craters produced

by the projectile halves. This ratio is important because it varies for

different conditions of impact on planetary surfaces (5) and this produces
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craters with different morphologies. Individual crater size was varied by

increasing or decreasing projectile length.

Figure 2 shows examples of craters produced under different conditions of

projectile separation relative to crater diameter. When separation is large

relative to crater diameter (S/D = 1.3, crater a) there is a subdued ridge

perpendicular to a line connecting the center of one undisturbed crater with

the other. When separation between impact is decreased relative to crater

diameter (S/D = 1.05, crater b) individual crater rims are flattened and the

ridge between craters is higher. For still smaller ratios of separation to

crater diameter (S/D = 0.8l, crater c) the individual craters begin to lose

their separate identity. The ridge between the craters is wider but lower.

Crater doublets characterized by S/D values less than 0.8l begin to resemble

one crater rather than two. For example, crater d characterized by an S/D

value of O.hk is elliptical. Ridge development outside the crater is poor,

but the ridge inside the crater is still quite well developed. When separation

between impacting projectiles relative to crater diameter range from 0.36 to

0.0, crater geometry ranges from a single elliptical crater to a single circu-

lar crater. For example, crater e, characterized by an S/D value of 0.36,

is elliptical and has a well developed central ridge. Crater f, characterized

by an S/D value less than 0.36, is less elliptical and it has a flat crater

floor that contains a well developed central peak. For,still smaller ratios

of S/D (crater g) the crater is circular and a series of straight ridges develop

on the flat crater floor. There is no ridge development outside the crater.

When projectiles are impacted at the same point, within 5 microseconds of one

another, there is no central peak or flat floor. An example, crater h, is

characterized by an S/D value of 0.0 and it has a deep round bottom. It
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resembles a crater produced by one projectile. In summary, simultaneous im-

pact of two projectiles in homogeneous targets produces doublet craters with

central ridges that extend across the target surface, elliptical craters with

central ridges, circular craters with central ridges and central peaks, circular

flat floored craters with central peaks and ridges, and craters with spherical

segment shape. The type of crater produced is dependent on separation between

the projectiles relative to crater diameter. Some preliminary experiments

have been performed where one projectile impacts behind the other. These re-

sults indicate that craters with central peaks and slump features on crater

walls may be produced by near simultaneous impact events. For example, impact

of a 0.24 gm projectile followed by a 0.43 gm projectile 25 ms later produces

a crater with central peak and terrace like features on the crater wall. These

result from collapse of the growing walls of the first crater as a result of

the second impact.

Craters produced in the laboratory by simultaneous or near simultaneous

impact of two projectiles are similar in structure to craters observed on the

Earth, Mars and the Moon. The Clearwater Lakes crater doublet and doublets on

Mars have already been compared to experimental craters (5). Craters produced

in the laboratory by simultaneous impact can be compared to lunar craters.

Figure 3 shows photographs of four of the craters produced by simultaneous

impact and four lunar craters. The experimental craters represent a wide

range in projectile separation. The existence of the lunar crater doublet

(Plato K and Plato KA) near the Alpine Valley (crater b) is considered strong

evidence for the existence of simultaneous impact on the Moon as well as Earth.

It corresponds in every way with the experimentally produced crater doublet a.

The presence of a ridge perpendicular to the bilateral axis of symmetry of the
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doublet is characteristic of simultaneous impact. Both doublets appear to

have been formed under similar conditions of separation between projectiles

relative to crater diameter. The ridge associated with each doublet is

equally developed. Crater d, the lunar crater Copernicus, has a flat floor

and one long ridge and one short ridge on the crater floor. Crater c is a

crater produced by simultaneous impact of two projectiles where the separation

distance relative to crater diameter is small (S/D = 0.36). The experimental

crater has a flat floor and three subdued straight ridges on the crater floor.

In this regard, it is important to note that many of the lunar central peak

craters actually contain straight ridges or ridge systems that are similar to

those that are produced by simultaneous impact. Circular central peaks also

occur such as that in the lunar crater Lansburg (crater f). Crater e, an ex-

perimentally produced crater with a central peak, is an analog for Lansburg.

Both craters are characterized by a well developed central peak. Crater h, the
s

lunar crater Wollaston, is bowl shaped and is similar to crater g, the experi-

mental impact crater produced by simultaneous impact of two projectiles at

the same place or by one projectile of twice the mass.

Simultaneous impact experiments using homogeneous targets have produced

craters that resemble craters observed on the lunar surface. This, coupled with

evidence for simultaneous impact on earth, is considered evidence that simul-

taneous impact of large meteoroids may have produced many of the lunar craters.

There is additional qualitative evidence that supports this conclusion. It has

long been known that there is a change in structure of lunar craters with dia-

meters greater than 1 km (7>8). Preliminary measurement and classification of

a large sample of craters on the moon's front side performed in this laboratory

has documented this change of crater structure with size. The smallest of these
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lunar craters are round bottomed. The frequency of these decreases as the

number of flat bottomed craters increases. Central peak craters are more

common for craters larger than the flat bottomed or round bottomed craters,

and terraced craters, with and without central peaks, are most frequent in

the largest crater classes. This change in crater structure with size re-

sembles in some details the change in crater structure with size for lunar

craters less than ^00 meters in diameter. The structure of small lunar

craters has been related to strength differences in the layered near surface

structure of the maria (9). However, these layering effects do not control

crater structure for craters larger than approximately 400 meters (9)» Thus

target properties probably cannot account for the structural differences ob-

served in large lunar craters that are discussed in this paper. However, all

of these crater types can be produced by simultaneous or near simultaneous im-

pact of two projectiles in homogeneous targets. The mechanism of tidal

splitting of meteoroids provides a mechanism for the production of paired

meteoroids and this mechanism would also at this time provide a qualitative

explanation of the observed change in lunar crater structure with size.

The theory of meteoroid fission by the tidal fission mechanism predicts

that larger meteoroids break up at higher altitudes above the lunar surface

than smaller meteoroids and the separation between impacting fragments on the

moon's surface is greater for large meteoroids (£). Since crater size de-

pends on projectile kinetic energy for impact craters (10), crater size is

dependent on meteoroid size for a given impact velocity; the larger craters

on the moon would as a rule have been produced by projectiles that are more

widely spaced at impact than is the spacing for small craters. Consequently

according to the experimental results presented in this paper and the tidal
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splitting model we should expect the smallest craters to be round bottomed

and the next largest to be flat bottomed. Still larger craters should con-

tain central peaks. The observed change in lunar crater structure is from

round bottomed to flat floored to.central peaked, in qualitative agreement

with that expected on the basis of the tidal splitting theory and the experi-

mental results presented in this paper. A detailed quantitative check on

the degree of agreement between the observed distribution of lunar crater

types and those predicted by the tidal fission model is now in progress, but

the qualitative results suggest a relationship between the predictions of

the tidal fission model and the distribution of craters of different morphol-
V

ogy. There may also be other as yet unknown causes for coupled meteoroids

that could produce the observed crater types. However, any other mechanism

must also explain the direct relationship between total meteoroid mass of

the coupled bodies and separation at impact on the planetary surface.

The existence of the Clearwater Lakes craters shows clearly that simul-

taneous impact of meteoroids occurs. Experiments in the laboratory have shown

that simultaneous impact of projectiles produces craters with structures

similar to those of lunar craters. The most typical characteristic of craters

produced by impact of projectiles very close to one another is the formation

of a central peak or ridge. Therefore, some central peaks in lunar craters

must have formed by this mechanism. However, other mechanisms have also been

proposed for the formation of central peaks in lunar and terrestrial impact

craters and they remain as valid possibilities.
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FIGURE CAPTIONS

Figure 1 - Dominion Observatory photograph of the Clearwater Lakes impact

craters.

Figure 2 - Impact craters produced by simultaneous impact of two halves of a

cylindrical projectile. S = separation distance between impact

points; D = diameter of crater produced by 1/2 projectile.

Figure 3 - Comparison of experimental impact craters and large lunar craters.
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