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RESEARCH OBJECTIVES

Our research objectives include developing fundamental performance limits and
designing optimum embedding networks for diodes in microwave applications.

During the coming year we plan to investigate the application of the Josephson junc-
tion to problems of low-noise millimeter wave detection. In this case the frequency
range of interest is 100-600 GHz; We plan to take an approach similar to that of
millimeter-wave mixer diode development that has been in progress for several years.

In other areas we are seeking to establish the fundamental limits on intermodulation
distortion in PIN diodes. We shall investigate workable embedding for MSM bulk-effect
devices that will yield low-noise amplification in the microwave region, and also investi-
gate circuit techniques for the design of extremely wideband low-noise IF amplifiers
in the range 1-1000 MHz with a noise figure under 2 dB.

P. L. Penfield, Jr. , D. H. Steinbrecher

A. PEAK-LOCKING APPROACH FOR STABILIZATION OF HIGH-

RESOLUTION MASS SPECTROMETERS ̂

1. Introduction

Much effort has been devoted toward improving resolution and stability in the

CEC 21-110, Mattauch Herzog double-focusing mass spectrometer. At present, mea-

surements indicate that magnetic-field instability is the major source of performance

degradation.

This report first reviews the stringent requirements imposed by some experiments

that the present instrument is incapable of meeting, and then I discuss a control sys-

tem based on locking a mass peak by introducing compensatory corrections in the mag-

netic field.

*
This work was supported by the National Aeronautics and Space Administration

(Grant NGL 22-009-304) and by the Joint Services Electronics Programs (U.S. Army,
U.S. Navy, and U.S. Air Force) under Contract DAAB07-C-0300.

^Supported by National Institutes of Health Grant RR00317 from the Biotechnology
Resources Branch, Division of Research Resources.

QPR No. 104 89



(V. SOLID-STATE MICROWAVE ELECTRONICS)

2. Experiments Requiring Operation of the Present Mass Spectrometer

at and beyond the Limits of Performance

a. Analysis of Target Compound A at Concentrations of Less Than 1 ppm

in a Volatile Mixture B for Sample Sizes in the Range 0. 3-1 mg

Detection of insecticides, herbicides and other toxic compounds in the environment

requires these, and even greater, detection limits, if possible. If 1 ppm of A in B is

detectable during a 3-min exposure time, then 0. 1 ppm is detectable in a 30-min expo-

sure.

b. Analysis of Volatile Compounds Trapped in a Nonvolatile Matrix

The detection of oil residues in oil shale, volatiles in lunar samples, and so forth

requires heating a powdered sample at high temperatures for periods over 10 min. Any

instrument instabilities resulting in a mass measurement error greater than 5 ppm will

prevent accurate mass assignment of elemental compositions.

c. Analysis of Compounds with High Molecular Weight (1000 amu)

During the analysis of compounds with high molecular weight any electric or mag-

netic field drift results in loss of mass accuracy and causes a consequent loss in our

ability to assign elemental compositions. If the compound in question is C^o^l 20^4^5'

and the measured mass is 1000.9258, then a unique and correct elemental composition

can be assigned, provided that the relative error of the mass measurement is 1 ppm.

If the mass measurement error resulting from instrument instability is degraded to

5 ppm, then 3 elemental compositions are possible; for 10 ppm, the number of possible

compositions is 8. Furthermore, an increase in the number of heteroatoms N.O,. to

a larger number N,.O. cSi2 causes a tremendous increase in the number of possibili-

ties.

d. Direct Analysis of Low-Volatility Compounds

Direct analysis of low-volatility compounds is limited by the instrument instabilities

during long vaporization periods. Therefore conversion of the compound into a more

volatile derivative (with loss in structure information) is necessary. The vaporization

times for a direct analysis are in the range 1 -24 h.

3. Previous Work and Present State of the Mass Spectrometer
2

Upgrading of the manufacturer's specifications required theoretical studies, a con-

trolled environment, and improvements in instrumentation. The instrument was placed

in a semiclean electrically shielded room with temperature and humidity controls. It

was mounted on a 1-Hz air piston antishock and vibration-controlled assembly.
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10J -

ppm

Fig. V-l. Degradation of resolution with random power supply error.

Exit slit = 2.5 nm; theoretical resolution = 1.25 X 10
(absence of power supply noise); operating point P deter-
mined by measurement.

Power -line isolation in excess of 150 dB from 10 Hz to 1 GHz had been reported by

Lovins and Steinbrecher. For the electric sector power supply we substituted two pre-

cision DC Standards (HP 740 -B) with a stability of 1 ppm.

As expected, power -supply noise and stability measurements placed the operating

point at P (stability, 10 ppm, resolving power, 30.000) as illustrated in Fig. V-l. This

indicates that the performance can indeed be improved by stabilizing the magnetic field,

since the electric field stability is 1 ppm with the mentioned substitution.

A stability figure for magnetic field which is compatible with the electric field sta-

bility is 1 ppm.

4. Peak -Locking Approach

Stabilization of each field (in the range of a few parts per million, over 1-10 h

periods) by using feedback circuits with dc voltage references, strikes against the flicker-

noise problem, which imposes degradation when time periods are extended. Conse-

quently, an alternative approach will be taken.

Our purpose is to obtain a peak that is fixed in space within such limits that,

for the instrument operating with high resolution, the peak stability is not a degrading

factor of resolving power. A control system that introduces changes in the magnetic

field to maintain the position of a given mass peak will be considered. The peak-

locking approach will stabilize the entire system with direct control of mass accuracy.
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DETECTOR'S OUTPUT

REFERENCE SIGNAL

(a)

DETECTOR'S OUTPUT

(b)

(c)
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Fig. V-2. Principle of operation.
(a) Lock on a mass peak.
(b) Peak drifts to the -x direction.
(c) Peak drifts to the +x direction.

a. Principle of Operation

Simultaneous photoplate detection and electrical single-peak detection are possible.

A reference peak can be located with respect to the exit slit so that the electron multi-

plier is exposed to the maximum F of the ion flux distribution; see Fig. V-2a. Based

on the symmetry of the mass peak, if the ion beam is modulated with a symmetrical

square wave, the detector will read the ion fluxes at F. and F~. The corresponding

output voltages will be identical, provided the peak does not drift. Therefore the output
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signal of the detector, in arbitrary units proportional to the ion flux, will be a dc value

with superimposed spikes resulting from the excursion from F, to F, through F , in
_ 4. A £ O

time interval (t ,t ). Figure V-2b shows the consequences of a drift of the flux profile

in the -x direction. The detector's output corresponding to the exposures to F. and F_

is no longer equal and the resulting output is a square wave with mean and superimposed

spikes. By the same procedure, the output signal for a drift in the -fx direction can be

constructed as shown in Fig. V-2c. Inspection of the output waveforms in Fig. V-2 and

the reference modulation signal leads us to the following conclusions.

(i) In the absence of drift the output of the detector is a dc value.

(ii) A drift in the ( _X ) direction produces a ( , Q O O ) phase shift 4> with respect

to the reference square-wave signal.

(iii) The magnitude of the square wave, and hence the amplitude of the first har-

monic, is a monotonic function of the drift.

A simulation carried out by using a set of deflection plates that are available in the

existing detector and leaving the exit slit wide open confirmed the conclusions.

b. Block Diagram

A "lock-in amplifier" will be used to process the information contained in the detec-

tor's output and the reference signal. The output of the lock-in amplifier locked on the

fundamental of the square wave is

EXIT SLIT

DEFLECTION

POWER SUPPLY

Fig. V-3. Diagram of peak-locking control.
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Eout = 7 E cos

for a +x drift

for a -x drift

This output will be weighted with the reference voltage of the control circuit (see

Fig. V-3).

c. Performance

A voltage reference was built, and indirect stability measurements indicated a sta-

bility better than 1 ppm in a controlled environment. Power-supply isolation in excess

of 70 dB was measured for frequencies up to 100 kHz. With this reference the magnetic

field stability should be approximately 1 ppm; therefore, with the peak-locking control

incorporated, the performance in mass accuracy should be at least 1 ppm over the

depletion time of the reference peak, which can be chosen to be longer than the depletion

time of the target compound. At present the magnet stability is somewhere between

5 ppm and 10 ppm for a 10-min period.

+v

ref

+V=30 TO 50 VOLTS

Z =IN 940, Vz=9.2 VOLTS,

DYNAMIC IMPEDANCE: 20 O

R =12000

Q,=2N 3906

Q2=2N 3904

Q,=2N 4360
O

Q4=MP 105

5. Voltage Reference

Fig. V-4. Reference voltage circuit.

A voltage reference circuit was built (see Fig. V-4). The components were imbedded

in an aluminum heat sink. The Zener current stability was 15 ppm per hour. The

voltage stability is given by
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AV R.AI

R ac

where

R , = 20 f2 (dynamic impedance)

R = 1200 n

fj = 2X10 6 / °C

AC = 0. 1°C.

Substitution yields a voltage stability of 0. 45 ppm per hour.

6. Further Work

We are planning a computer analysis of the control circuit to evaluate design and

performance, and modification of the three-way slit to incorporate a set of deflection

plates.

A. Chu
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